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Abstract

Superconducting qubits are a promising candidate for developments in quantum communica-

tion and computation. As the qubits couple to a fluctuating environment, their properties shift

over time. In the experiment we have been working on, Transmon qubits are used to teleport

a quantum state. Fluctuations in the system require a daily calibration taking up to 1.5 hours.

As we scale the number of qubits in the system, automating the calibration routine becomes

unavoidable. In this thesis we present a calibration program written in LabVIEW and Mathe-

matica. The program QubitCalib automates the calibration routine for an arbitrary number of

qubits and resonators and the calibration modules can be executed in any desired order. After

execution of the program, all parameters needed for single qubit gates are adjusted and a log

file containing the data analysis results is shown. QubitCalib is run over a simple interface

that is easy to manage.
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2. Overview of the Experimental Setup

1. Introduction

Theoretical physicists have worked out ground-breaking implications of quantum communica-

tion and quantum computation over the last few decades. Simulation of physical quantum

systems and implementation of highly efficient quantum algorithms are accessible with quan-

tum computers. For example, P. Shor developed a quantum algorithm for factoring large

integer numbers in polynomial time [1] - on a classical computer, the complexity of the prob-

lem is exponential.

Using transistors, information is stored in bits that can take the values 0 and 1 on a classical

computer. A quantum computer requires a quantum mechanical two-level system with the

states |g〉 and |e〉. The difference to a classical bit is, however, that the system can not only

take on |g〉 and |e〉 but any superposition of both states. Such quantum bits are called qubits

and their practical implementation is one of the major challenges in current research.

Experimentally, qubits can be realized in many different ways including photons, trapped ions

and Rydberg atoms. In the experiment at hand, we are using superconducting qubits. These

are macroscopic superconducting circuits which behave like single atoms. Superconducting

qubits are solid state devices and by coupling to their environment they are subject to fluc-

tuations. In order to account for variations in the system, we have to calibrate the system

regularly. For this project, we were working on the teleportation experiment presented in [2],

which uses three qubits. In this setup, calibration has to be done daily in order to assure good

quality of the measurement outcomes.

As we advance towards quantum communication and quantum computation, experiments

will include more and more qubits. Our experiment uses three superconducting qubits and a

calibration of all qubits takes up to 1.5 hours. This is a repetitive kind of work that doesn’t give

any new physical insights. As we scale the qubit number, automating the calibration routine

becomes unavoidable. In this report we present a calibration program based on Mathematica

and LabVIEW that automates the calibration routine for an arbitrary number of qubits.

Mathematica scripts were written with Mathematica 9 in this project and for visual program-

ming we used LabView 2009. The TortoiseSVN revision number for the program presented

here is 1293.

2. Overview of the Experimental Setup

2.1. Circuit QED

In the experiment we were working on, we used superconducting qubits coupled to supercon-

ducting waveguide resonators [3]. The coplanar waveguides are in the form of a 1 D analog

to the coaxial cable. In Fig. 1, the waveguide is depicted in light blue. The energy levels of

the waveguide are equally spaced.

The second component of the circuit is a two-level system behaving like an atom in the
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2.2. Experimental Setup
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Figure 1: Layout for a single qubit in a resonator. Derived from [4].

waveguide resonator. In our setup, this component is a superconducting Transmon qubit.

The Transmon qubit design presented in [5] is derived from the Cooper Pair Box (CPB). A

CPB consists of an array of two Josephson junctions biased with a voltage [6]. Fig. 3 in Sec.

2.2 shows the circuit diagram of the qubit in the bottom left part, the Josephson junctions

being indicated by a box containing a cross. The LC-circuit would be a harmonic oscillator

but the Josephson junctions serve as a non-linear inductance. In this way, the energy levels

experience an anharmonic shift and we can use the two lowest levels to represent a two-level

system. The advantage of the Transmon design is that it is almost insensitive to charge noise.

The Transmon qubit is now coupled to the waveguide resonator. This system is described

by the generalized Jaynes-Cummings Hamiltonian, which leads to the field of circuit quantum

electrodynamics (circuit QED). For a thorough treatment of this, refer to [7]. As can be

seen from Fig. 1, the qubit is placed next to the resonator. In this way, it is coupled to its

modes. On the actual microchip used in the experiment, the qubits are placed at the ends of

the resonators rather than in the middle. This chip is depicted in Fig. 2. It contains three

resonators and four qubits, of which only three are used.

2.2. Experimental Setup

The microchip from Fig. 2 is placed on a printed circuit board (PCB), placed in a vacuum

chamber and cooled down to about 25 mK in a dilution refrigerator. There, the qubits and

resonators become superconducting and are well shielded from thermal noise. As we can see

in Fig. 2, there are several ports that connect the microchip to the setup: The qubits (orange)

are driven by their respective charge line, here shown in blue. For fast manipulations of the

resonance frequency, we can use the flux line (green). Finally, the resonator ports are coloured

in red.

Fig. 3 depicts the circuit diagram of the setup for one qubit. Control of the charge line is

done in the orange part. The constant sinusoidal microwave signal from microwave generator

(MWG) 4 serves as the LO input of a mixer. This LO is called the upconversion LO. A channel

pair of the AWG5014 serves as the input for the quadratures I and Q, which are 90◦ phase
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3. Calibration Parameters

Figure 2: Microchip layout with four qubits. Taken from [2].

shifted relative to each other.

MWG 3, colored in yellow, is the resonator drive. On the other side of the resonator, the

readout of the resonator is shown in green. MWG 2 serves as the so-called downconversion

LO mixer input. The readout signal is downconverted to a frequency of 25 MHz and then

sent to a Field Programmable Gate Array (FPGA) for signal analysis.

Qubit and resonator are placed in a dilution refrigerator as indicated by the dashed box. In the

circuit, they are followed by a parametric amplifier (paramp), controlled via the blue part of

the circuit. As it is not important for this project, we will not go into properties and control

of the paramp.

With this setup, a deterministic teleportation protocol was performed on three Transmon

qubits using single- and multi-qubit gates. The experiment is presented in [2]. For more

detailed information on the setup, we again refer to [7].

3. Calibration Parameters

As the higher energy levels are detuned, the Transmon can be approximated as a two-level

system as shown in Fig. 4. The resonance frequency between the ground state |g〉 and the

first excited state |e〉 is approximately given by:

ω01 ≈
√

8EJEC
~

[5]

Here, a pulse that transfers the qubit state from |g〉 to |e〉 is called a π-pulse. As the two-level

system is quantum-mechanical, we can also transfer the qubit in to the equal superposition

state |g〉+i |e〉√
2

. This operation is called a π
2 -pulse.
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Figure 3: Circuit diagram of the setup. Adapted from [6].
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3. Calibration Parameters

We can also understand π- and π
2 -pulses in a nice way using the Bloch sphere. This is depicted

in Fig. 5. In the figure, the ground state is referred to as |0〉 and the first excited state as

|1〉. The qubit state lies on the surface of the sphere and is pointed to with a vector (red). A

π-pulse corresponds to a rotation of the state vector by 180◦, a π
2 -pulse to 90◦. If not labeled

otherwise, a rotation around the x-axis is meant. For our purposes, we assume that the Bloch

sphere is fixed in a frame rotating with the qubit drive frequency. If the drive frequency is on

resonance with the qubit, the state vector is stationary after a rotation operation on the qubit.

When it is off-resonant, however, the state vector will start to precess around the z-axis.
2 Short Review of Quantum Information Theory

0

 

1

x

z

y
0 1+i

0 1+
I

T

Figure 2.1: Bloch sphere representation of a qubit.

state is mathematically represented by | i = ↵|0i+�|1i, where ↵ and � are complex
numbers, or in other words, by a vector in a two-dimensional complex vector
space with the orthonormal basis states |0i and |1i (computational basis states).
One might wonder why | i is called a qubit, as it can be prepared in infinitely
many superposition states. The reason is that whenever the state is measured, the
result only contains one bit of information. The measurement outcome is 0 with
a probability |↵|2 or 1 with probability |�|2, and the state after measurement is
collapsed onto the computational basis states |0i or |1i, respectively. Because all
probabilities must add up to one, |↵|2 + |�|2 = 1 must be satisfied.

It is sometimes useful to have a visual interpretation of a qubit state to better un-
derstand the action of quantum operations on the state. To find such a representation
we can rewrite an arbitrary qubit state in the form

| i = ei�
✓

cos
✓

2
|0i + ei� sin

✓

2
|1i
◆

, (2.1)

where the global phase factor � can be set to zero as it is not measurable. The
variables ✓ and � are real and define a point on a three dimensional unit sphere,
the so called Bloch sphere, see Figure 2.1. Every point on this sphere represents
a qubit state, and the vector pointing to the north pole is the ground state |0i and
the vector to the south pole is the excited state |1i. The direction of the z axis is
defined by the direction of the static magnetic field. The time evolution of the state
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Figure 5: Bloch sphere representation of a qubit. Taken from [7].

The qubit is driven via the charge line at its expected resonance frequency ranging between

4 GHz and 10 GHz, depending on the properties of the circuit. Good control of the frequency

and shape of the signal requires the use of an IQ mixer. The LO input is a CW signal adjusted

100 MHz above the expected resonance frequency of the qubit. 100 MHz signals modulated

with the desired pulse shape are 90◦ phase shifted relative to each other and sent through the

I and Q ports. Those signals are obtained from an AWG, as described in Sec. 2.2. We then

drive the qubit using the left sideband of the RF (mixer output) signal. (We could also adjust

the LO 100 MHz below the resonance and use the right sideband.) The frequency of the I

and Q inputs is called IF frequency and is an important parameter in the experiment. When

calibrating the qubit drive frequency, we leave the LO constant and change the IF frequency.

[8]

Higher energy levels of the qubit are detuned from the resonance frequency ω01. However,

it turns out that these levels induce an undesired phase shift when we apply pulses to the

qubit. Motzoi et al. [9] investigated this matter and came up with a solution: A special

pulse shaping called DRAG (derivative removal by adiabatic gate) can be used to account for

the extra phase. In our experiment, the DRAG pulse is calculated using the so called QScale

parameter qs .

The environment induces fluctuations in the superconducting qubits. This leads to small shifts

in the resonance frequencies of the qubit. Normally, the shift is below 1 MHz a day. In order to
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take care of this, the π- and π
2 -pulses of the qubit, IF frequency and QScale parameter qs have

to be calibrated daily. In the following we will call those parameters “calibration parameters”.

We can determine the calibration parameters from certain measurements as presented below.

Additionally, there is a calibration (named CalTom) that tests the quality of the single-qubit

operations. Note that rotations of a qubit such as π- and π
2 -pulses are often referred to as

single-qubit gates.

4. Calibration Measurements

4.1. Rabi Measurement

With the Rabi measurement we can determine the amplitude of the π- and π
2 -pulses. The pulse

pattern is - as for all other measurements - saved in a file that is loaded onto the respective

AWG. For this measurement, we apply pulses of a fixed time interval and increasing amplitude.

This leads to oscillations of the qubit between the ground state |g〉 and the excited state |e〉.
After the pulse, we apply a measurement signal. The pattern and the measurement results

are depicted in Fig. 6. The π
2 -pulse is given by the pulse amplitude for which we measure the

excited state as often as the ground state (i.e. |e〉 population is 0.5) for the first time. The

π-amplitude corresponds to the pulse amplitude yielding the maximum |e〉 population for the

first time. In praxis, we calculate the amplitudes from a sinusoidal fit of the data set. The

fitting procedure is described more accurately in section 5.

Measure
t

Figure 6: Pulse sequence and data plot for the Rabi measurement. The π- and π
2

-pulse amplitudes are found

by fitting the data.
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4. Calibration Measurements

4.2. Ramsey Measurement

By using the so called Ramsey fringe oscillations, we can experimentally determine corrections

to the IF frequency. Two π
2 -pulses - with amplitude known from a Rabi measurement - are

applied to the qubit, as shown in Fig. 7. Between the pulses, there is a time delay ∆t and the

second pulse is followed by a measurement. The pulses are detuned by 4 MHz from the qubit

resonance frequency. As a result, the qubit picks up an extra phase during the time ∆t. In

the Bloch sphere picture, this can be seen as a precession around the z-axis with a frequency

of 4 MHz. The measurement outcome therefore depends on ∆t, as shown in Fig. 7. The final

state is expected to oscillate with 4 MHz. If that is not the case, the qubit resonance frequency

has shiftet. This shift can be found by fitting the data and determining the frequency of the

sinusoidal fit. Now we can adjust the IF frequency to the new qubit frequency.

Due to interaction with its environment, the qubit experiences dephasing and thus loss of

quantum information [7]. A characterisctic time constant for this process is the dephasing

time T ∗2 , which can also be determined from the Ramsey measurement. It is given as the

inverse exponential coefficient of the oscillations’ enveloping curve. As an information for the

experimentalist, the decay time will also be determined in the calibration and shown in the

calibration log file. The decay time has an important practical relevance for our experiment:

In order to execute the teleportation protocol successfully on the qubits, T ∗2 needs to be much

longer than the protocol.

Measure
t

π/2 π/2
Δt

Figure 7: Pulse sequence and data plot for the Ramsey measurement. The π
2

-pulses are off-resonant by 4 MHz

to the expected qubit frequency. The effective drive frequency (IF frequency) is adjusted from the frequency

of the fit.
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4.3. QScale Measurement

4.3. QScale Measurement

The aim of the QScale measurement is to account for extra phases that are induced to the

qubit by the presence of higher energy levels. The qubit drive signal is given by

εx(t) cos(ωd t) + εy (t) sin(ωd t),

where ωd is the qubit drive frequency. εx and εy are chosen in such a way that the signal is

Gaussian and cancels the AC Stark shift error. More information on this and the formulas for

εx and εy can be found in [7].

Now we want to practically implement the DRAG pulse shaping discussed in section 3. In the

measurement, we do this by scaling εy by a factor of qs , where the QScale parameter qs is

swept from -1.5 to 1.5. For every value of qs , we do three qubit operations, each one followed

by a measurement: We first do a π
2 -rotation around the x-axis followed by a π-rotation either

around x, y or -y. Theoretically, all the operations should result in an average excited state

population of 0.5. The measurement results are shown in Fig. 8. The blue dots show the

results for both rotations around the x axis. The violet dots result from the second rotation

around y and the yellow dots from the second rotation around -y. The rotations about y and

-y are not as reliable due to the phase error we discussed above. However, we can choose qs

in such a way that it accounts for the phase error. The optimal scaling parameter is found at

the intersection of the three lines in the plot.

Figure 8: Average excited state populations for the QScale measurement.

4.4. CalTom Measurement

The calibration tomography (short ”CalTom”) measurement tests the fidelity of single-qubit

gates. After finishing calibration of the parameters, we are interested in how reliable the

qubit rotations are. In order to test this, we apply 25 different rotation patterns to the qubit
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5. Data Analysis Techniques

and afterwards measure the excited state population. The measurement results are shown

in Fig. 9. The red dots show the expected excited state populations, the blue dots give the

average measured state. If the measured populations are significantly off the expected ones,

the calibration was not successful.

Figure 9: Calibration tomography of a qubit showing the fidelity of different qubit operations.

5. Data Analysis Techniques

From the Rabi and Ramsey measurement outcomes, we calculate the IF frequency, π and π
2

amplitudes with a sinusoidal fit. The fit function is given by

f (t) = y0 + Ae−
t
τ cos

(
2π

λ
t −

π

2
δ

)
. (1)

The argument t corresponds to the pulse separation time in Ramsey measurements and to the

pulse amplitude in Rabi measurements. The frequency of the oscillations is given by ν = 1
λ ,

so we have to add 4MHz − ν to the IF frequency to adjust it. When we do the fit on the

Rabi measurement data, the π pulse amplitude is given by δ λ4 and the π
2 pulse amplitude by

(δ − 1) λ4 . The respective calibration parameters are therefore easily calculated once we found

the correct fit parameters.

The challenge of our data analysis lies in finding good initial values for the fit. We fit both

Rabi and Ramsey data sets with the same function (1). The analysis is done in a Mathematica

script (”.m” file extension) and the function NonlinearModelFit is used to fit it to the data.

Before the start of the semester project, the initial values for y0, A, τ , λ and δ were hardcoded

in the script. As NonlinearModelFit is sensitive to how accurate the initial values are, the fit

often failed, for example as in Fig. 10. This did not pose a problem because the data analysis

was conducted by hand and the initial values could be adjusted such that the fit converges

properly. In QubitCalib, however, the analysis was to be done automatically, so we could not

re-adjust the initial values manually. Still, we had to be sure that the fit works for every

reasonable Ramsey and Rabi data set. (We define ”reasonable” data sets as measurement
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outcomes that clearly show Ramsey or Rabi oscillations.) In the following we present some

methods we used to find initial values that are close to the definite values.

Figure 10: Rabi data fit that failed due to inaccurate initial values.

In order to estimate the parameters, we use the properties of the data set. The offset y0 is

approximately given by the minimum population and the amplitude A is the difference between

maximum and minimum population measured. The inital value τinitial for the decay time is left

hardcoded. We found out that τinitial = 2000 for Rabi and τinitial = 800 for Ramsey works for

every reasonable data set we tried (units in nanoseconds for Ramsey and arbitrary units for

Rabi). As for the period λ, one may note that the main frequency of an oscillating data set

is given by the peak frequency of its discrete Fourier transform. As an example, we show the

Fourier spectrum of the data set of Fig. 10 in Fig. 11. Defining the frequency corresponding to

the maximum amplitude as νmax, we can estimate the period as λinitial = 1
νmax

. In the figure, we

plotted the absolute value of the amplitudes. Generally, however, the amplitudes are complex.

Denote by Bmax the amplitude with the largest absolute value. It turns out that the initial

phase δ is approximately given by δinitial = arg (Bmax). Especially the last two estimates of λ

and δ contributed to the reliability of the data analysis and the fit has converged properly for

every reasonable data set ever since.

6. The Calibration Program QubitCalib

6.1. Motivation for the Project

The idea to write a calibration program for superconducting qubits was not new in the Quan-

tum Device Lab of Prof. Wallraff. Previously, Jonas Mlynek had written a program called

Autocalib that executed a Rabi-Ramsey-Rabi array of succeeding measurements to adjust the

π- and π
2 -pulses and the IF frequency. This already leads to one of the big challenges of the

project. As all the other setups in the Qudev group, the teleportation experiment is run using
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6. The Calibration Program QubitCalib

Figure 11: Discrete fourier transform of the Rabi data set.

the visual programming software LabVIEW. It is used to control the setup and collect the

data. However, other procedures including pattern generation and data analysis are done with

Mathematica.

When we do a measurement, we first have to generate a pulse pattern that is to be applied to

the qubit. This is done with Mathematica scripts and requires the π- and π
2 -pulse amplitudes,

IF frequency and QScale parameter qs . Those values are stored along with other pulse settings

in a config file called pattern config. The pulse patterns are loaded onto the respective AWG

(arbitrary waveform generator) for the qubit, the data sets are then acquired via LabVIEW and

stored on a specific drive F. For the analysis, the data set is called from F with Mathematica

and analyzed, for example as described in section 5. As can be seen from this measurement

overview, both LabVIEW and Mathematica perform vital tasks in the measurement process.

A calibration program thus needs to combine both programs. Jonas already implemented a

solution to this in Autocalib. The solution was not so handy to the experimentalist, though,

as several steps had to be done besides operating the program interface. Furthermore, we

were looking for a solution that could easily be extended to additional modules.

Autocalib was well suited for the task of a Rabi-Ramsey-Rabi procedure on the respective

experiment. Our vision was to rewrite this into a more complete program that allows for an

arbitrary order of the calibration modules - Rabi and Ramsey as well as QScale and CalTom

- executed for an arbitrary number of qubits and resonators. In this way, the experimentalist

would be able to decide which qubit needed calibration and if it needed a full calibration or

just, say, an adjustment of the QScale parameter. Moreover, we wanted to find a way to

simplify the interaction between LabVIEW and Mathematica. This is described in section 6.4.

In the end we were interested not only in the new values of the calibration parameters but

also in how they came about. This triggered the idea of a log file showing the data sets and

fits that were generated in the calibration procedure.
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6.2. Structure and Overview

6.2. Structure and Overview

Before the execution of QubitCalib, the qubit properties have slightly shifted, so the calibra-

tion parameters (π- and π
2 -pulse amplitudes, IF frequency and QScale paramter qs) are not

accurate anymore. We now choose which qubit we want to calibrate and specify an order of

calibration modules (Rabi, Ramsey, QScale, CalTom) that is to be executed on every qubit.

A typical sequence for a full calibration is Rabi-Ramsey-Rabi-QScale-Rabi-Caltom and takes

about 1.5 hours on our experiment when we don’t use a parametric amplifier. (For information

on the use of a parametric amplifier in the teleportation experiment, cf. [2].)

After running the calibration program, the respective calibration parameters in the pattern

config file are corrected and a log file in .pdf format is shown. It contains the data plots and

fits for the conducted measurements. Each plot is labeled with the name of the corresponding

data set as it appears on the data storage drive F. It is of the format ”MeasurementNum-

ber ModuleNameChannelPair cal”, where the token ”cal” indicates that this was a calibration

measurement conducted by QubitCalib. The calibration parameters corrected in this step are

written below the plot. For a Ramsey measurement, QubitCalib also gives the coherence

time T ∗2 of the qubit. A sample log file for a Ramsey-Rabi-QScale-Rabi-CalTom calibration is

shown in Fig. 12.

Tim$Menke$

Log"File"

Mi0woch,$5.$Juni$2013$ 12$
Figure 12: Sample log file for a Ramsey-Rabi-QScale-Rabi-CalTom calibration.
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6. The Calibration Program QubitCalib

In Fig. 13 we present the structure of QubitCalib. We start with the first qubit to calibrate and

execute the first calibration module, e.g. a Ramsey measurement. First we generate the pulse

pattern that is applied to the qubit. This is done in Mathematica. The pattern is then loaded

onto the respective AWG. The setup is controlled with a LabVIEW VI called Cleansweep. We

load the measurement configurations into Cleansweep and start the measurement.

What measurement configurations do we load? The background to this is that a lot of settings

have to be specified for the setup in Cleansweep, including hundreds of parameters. Since most

of the parameters are the same for all Rabi, Ramsey, QScale and CalTom measurements,

we decided to import the Cleansweep configuration from a recent measurement. After a

measurement, the Cleansweep settings are saved on F under the data set name. In this way,

we just have to go back every now and then and specify a configuration. With ”recent” we

mean that the setup must not have changed since the measurement we specify. When we

have loaded the configurations, we just have to adjust the few settings that are specific to

calibration module and qubit. This includes the path to the pattern sequence, the file number

for the measurement and the FPGA channel. The qubits are driven by different AWGs and

MWGs, so we also have to turn on the proper generators.

In the next step, we call Mathematica to do the data Analysis. The corrected configuration

parameters are saved in .txt files that are located in a temp file in the QubitCalib program

folder. Mathematica also outputs a combined figure of data set name, data plot, sinusoidal fit

and corrected calibration parameters. This figure will be assembled with similar figures from

the succeeding measurements to make the log file. The text files with the new parameters

are read back into LabVIEW to rewrite the pattern config. This is done by opening the

pattern config file and using regular expressions to find and replace the old values. A sub

VI called Rewrite Pattern cfg ModuleName adapted from Jonas’ Autocalib takes care of

that. ModuleName is replaced by Rabi, Ramsey, QScale respectively. (The CalTom module

does not correct any parameters but only tests the calibration.)

We now proceed to the next calibration module, e.g. a Rabi measurement. The module follows

the same structure: We generate the pattern for the measurement, run the measurement in

Cleansweep, analyze the data and rewrite the pattern config. Note that the pattern generation

script already uses the new values for the π and π
2 pulse amplitudes, IF frequency and QScale

paramter qs if they have been updated in a previous module. We proceed through all the

modules we specified beforehand, finally finishing the calibration of the first qubit. Then we

go on to the next one. In the program code, we construct an array of the channel numbers of

the qubits we want to calibrate and another array of the desired modules. We then loop over

all the channels and within each channel we loop over the calibration modules.

In appendix A we present the LabVIEW block diagrams of QubitCalib and - as an example

for a calibration module - of the Rabi module. QubitCalib has a modular structure. A new

calibration module can easily be included by copying the Rabi module and replacing the pattern

generation and analysis scripts.
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Montag,$3.$Juni$2013$ 11$
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Figure 13: Overview of the QubitCalib program structure.

6.3. Interface

In order to adjust and run the calibration procedure, the user just needs to access the ”Control

Panel” of the QubitCalib interface shown in Fig. 14. Each qubit corresponds to a channel

pair, as described in Sec. 2.2. To activate calibration for a qubit, we click on the LED next

to the channel pair. There is some information we have to specify about the setup for each

qubit: The microwave generator (MWG) for the upconversion LO input, the MWG for the

downconversion LO input, the resonator drive MWG and the FPGA channel used for the

readout. Those inputs only need to be changed when the setup was altered, so we normally

don’t have to worry about them. Below this input array, we have to specify a ”Recent Rabi or

Ramsey Config”. Here we input the path to the config file of a recent Rabi, Ramsey, QScale

or CalTom measurement. The meaning of this config file is explained section 6.2.

In the horizontal array at the top, we choose the calibration modules we want to use in the

calibration. We can create an arbitrarily long sequence of Rabi, Ramsey, QScale and CalTom

modules. By clicking on the LED below the module, we can enable or disable the module for

the calibration. Next to the module array, a STOP button is located. When the button is

pressed, the current calibration module is finished but all subsequent modules are skipped. A

log file is created from all the measurements that have been completed.

The output arrays are located in the right middle part of the interface. For each channel that

was calibrated, it displays the corrected calibration parameters that were written to the pattern

config. If the parameter was not calibrated, the indicator is set to zero. If the parameter was

calibrated multiple times in the calibration procedure, the last correction is displayed.

A convenient feature of QubitCalib is located in the bottom left part. The Timer allows us

to set the time we want to start the calibration. If we enable the timer with the respective
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LED and start the program, QubitCalib will be executed on the preset time and date. This is

often used to calibrate the setup at 6 a.m. The experimentalist then finds a freshly calibrated

setup in the morning.

The Status window at first reports the start time of the calibration. During the calibration,

it is updated to display which channel is currently calibrated and which module is executed.

Finally, the calibration end time is output. Next to this, we located the typical LabVIEW Error

out status window.

The interface also includes a note that the pattern config is backuped before the calibration.

In practice, a copy of the pattern config is moved to a backup folder specified in the Calibration

Directories before the original config file is manipulated by the program. If something goes

wrong in the calibration, the updated calibration parameters will very likely be wrong. However,

we can easily recover the old ones from the backuped pattern config.

Figure 14: Control Panel of the QubitCalib interface. Here we specify the channels we want to calibrate and the

calibration modules. The updated calibration parameters are dispayed and a status window tracks the progress

of the calibration.

The second part of the QubitCalib interface is a list of directories contained in the Calibration

Directories panel. This is shown in Fig. 15. Unless we want to change the file structure

of the program, we leave this part of the interface unchanged. In the Data Storage section

we have to specify the path to the data repository. The data saving folder of the format

‘YYMMDD” and the measurement number for this day will be found automatically. In the

General section next to this, we specify the path to QubitCalib on the computer, the path to

the Mathematica MathKernel in our installation and the output folder for results generated

with the Mathematica scripts. The latter one is by default located within the QubitCalib

program folder. Config Files includes the paths to the pattern config and its backup folder,

Log File the Mathematica script that generates the log file and the folder where the file is
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saved. Pattern Generation lists the pattern generation scripts and Analysis Scripts the data

analysis scripts. Note that the interaction between LabVIEW and Mathematica might fail if

paths containing spaces are not put in quotation marks.

Since all the paths used in QubitCalib can be changed, the file structure of QubitCalib is very

flexible.

Figure 15: The Calibration Directories panel of the interface contains paths such as the one to the pattern

config and the Mathematica analysis scripts. In everyday use of the program, thes part of the interface is left

unaltered.

6.4. Combining LabVIEW and Mathematica

As stated above, we need to have an interaction between LabVIEW and Mathematica in order

to run the pattern generation and data analysis scripts. More precisely, we need to execute a

Mathematica script and pass arguments to it.

Normally, Mathematica is used with the notebook-interface (.nb file extension). Another way

to execute Mathematica is to save it as a Mathematica script (.m file extension) and then run it

from the command line. To do so, we need to call the Mathematica Kernel MathKernel.exe,

which is by default in the same folder as the familiar application Mathematica.exe. The

command line input looks as follows:

C:\¿cmd /c ”Program Files\Wolfram Research\Mathematica\9.0\Mathkernel.exe”
-script C:\Software\Cleansweep Transmon\Experiments\ResonatorVIs\QubitCalib
\scripts mathematica\rabi.m

The first path specifies the path to the Mathematica Kernel, the second path denotes the

script we want to execute. In this example, we are calling the Rabi analysis script. A nice
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6. The Calibration Program QubitCalib

feature of Mathematica is that we can pass arguments to the script by writing them into the

command line after the script file path, separated by spaces. To properly execute an analysis

script, we need to pass the saving folder for the data set, measurement number, output folder

and an index. The output folder is the saving folder for the new parameters and the plot. The

index labels the plot that is created. In this way, the log file generation script can properly

assemble all the plots in the end. The complete command line input is therefore given by:

C:\¿cmd /c ”Program Files\Wolfram Research\Mathematica\9.0\Mathkernel.exe”
-script C:\Software\Cleansweep Transmon\Experiments\ResonatorVIs\QubitCalib
\scripts mathematica\rabi.m\ S:\130128\ 3006 C:\Software\Cleansweep Transmon
\Experiments\ResonatorVIs\QubitCalib\Output\ 1

The arguments can now be imported by using the command $Commandline in the script.

When executed, the Mathematica analysis scripts store the corrected calibration parameters

in text files in an output folder within the QubitCalib program folder. Using the VI Read from

Text File, we can read them back into LabVIEW to adjust the pattern config. A scheme of

the interaction between LabVIEW and Mathematica is given in Fig. 16.

Tim$Menke$

Input"

System"Exec.vi"

Combine"Mathema)ca"and"LabVIEW"

Mi0woch,$5.$Juni$2013$ 14$

LabVIEW"

pi_pulse.txt"
pihalf_pulse.txt"

plot1.png"

Figure 16: Interaction of LabVIEW and Mathematica. We use the VI System Exec to write directly into a

command prompt.
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7. Conclusion

We succeeded in writing a calibration program for an arbitrary number of qubits and resonators.

QubitCalib executes the single-qubit gate calibrations Rabi and Ramsey, the DRAG pulse

shaping routine QScale and the calibration tomography CalTom in any desired order. After

execution of the program, all the calibration parameters needed for single qubit gates have

been updated and a log file containing the data analysis results is shown.

Crucial steps in developing QubitCalib were simplifying the interaction of LabVIEW and Math-

ematica - both of which are needed in the measurement and analysis process - and assuring a

reliable data analysis. An easily manageable front end has been programmed, containing some

additional small features such as a timer. The backend of the program has been designed

such that it displays a modular structure. In this way, new calibration modules can be included

easily by adding new pattern generation and analysis scripts and doing some adjustments in

LabVIEW.

QubitCalib was developed and is currently used on a teleportation experiment with Transmon

qubits in the Qudev group at ETH Zurich. The calibration program has two positive effects on

the experiment: In a full calibration with a Rabi-Ramsey-Rabi-QScale-Rabi-CalTom sequence

for all three qubits, QubitCalib executes a 1.5 h measurement and analysis procedure which

would otherwise have to be conducted manually. Secondly, as QubitCalib is easy to handle,

the setup is calibrated more frequently, leading to higher precision of the whole experiment.

8. Outlook and Acknowledgements

Since I finished work on the project, development of QubitCalib has been going on. Two

new semester students - Andreas Landig and Johannes Heinsoo - have put a lot of effort

into improving and extending the program. The current interface is shown in Fig. 17. It

includes a lot of new modules: RabiEF, RamseyEF, QScaleEF, CalTomEF which extend all

the measurements we did in our project to excitations between the first and second excited

levels |e〉 and |f 〉. Modules that measure the decay time T1, another important time constant,

have been included as well. Furthermore, Andreas and Johannes started to realize multi-qubit

gate calibrations. The controls for those advanced operations are located in the bottom left

corner of the control panel in figure Fig. 17.

Another important change in QubitCalib is the introduction of a new data flow. In an effort to

improve the modular structure of the program, the code was developed to make the LabVIEW

code completely independent of the type of the calibration module. This is achieved by

outsourcing information that is characteristic to a module into a file called QubitCalib.ini.

Moreover, the new version is more watchful for errors and allows for error correspondence

between LabVIEW and Mathematica.

Further development and daily use of QubitCalib to calibrate the setup indicate that this was

a successful semester project. I want to thank Andreas Wallraff, Lars Steffen, Yves Salathe,
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Figure 17: Current QubitCalib interface. A lot of work has been going on since we finished this semester

project.

Markus Oppliger, Philipp Kurpiers, Jonas Mlynek and Christian Lang for making this Project

possible and helping me with all kinds of computational, theoretical and practical problems.
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A. LabVIEW Block Diagrams

A. LabVIEW Block Diagrams

Figure 18: LabVIEW block diagram for QubitCalib.

Figure 19: LabVIEW block diagram for the Rabi module.
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