ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

SEMESTER THESIS

Single-Qubit Gates Calibration in
PycQED using Superconducting Qubits

Stefania Balasiu

Supervisor
Dr. Christian Kraglund Andersen

Prof. Dr. Andreas Wallraff

August 17th, 2017

Contents

[Abstractl 1

I Tach [Motivation 1

[2° Theoretical Background| 3
[2.1 Short Introduction to Circuit Quantum

| Electrodynamics|o 3

[2.1.1 System Design| 3

[2.1.2 Qubit-Resonator Interaction| 6

[2.2 Single-Qubit Gates Calibration| 7

[2.2.1 Resonator Spectroscopy|l oL 8

[2.2.2 Qubit Spectroscopy| 8

2.2.3 Rabi Measurementl 10

[2.2.4 Ramsey Measurement|, 11

[2.2.5 T; Measurement| 13

2.2.6 DRAG Pulse Calibrationl 13

(3 The Python for Circuit Quantum Electrodynamics (PycQED) Frameworkl 15

B.I TIntroductionl 15

B.2 Framework Structurdo 16

[3.2.1 The Qubit Object|. 17

[3.2.2 Measurement. Control Flowl 21

[3.2.3 The Measurement Analysis Structure| 24

[3.3 Using PycQED in an Experiment|00 0L 30

[4 Single-Qubit Calibration using PycQED)| 35

[4.1 Resonator Spectroscopy| 35

[4.2 Qubit Spectroscopy| 36

4.3 Rabi Measurementsl 37

4.4 Ramsey Measurements| L 41

4.5 11 Measurements| e 44

4.6 DRAG Pulse Calibrationl 45

5__Conclusions and Outlookl 47

[Appendix A Summary of Contributions to the PycQED Framework| 48

[Appendix B Qubit Designs Used for the Measurements in this Workl 51

[Acknowledgements| 53

[References| 54

Abstract

The prospect of building the first commercial universal quantum computer is closer to becoming
a reality than ever before. In particular, circuit quantum electrodynamics architectures based
on superconducting qubits have produced highly promising results in the field of quantum in-
formation and computation. In the Quantum Device Lab (QuDev) at ETH Ziirich, traditional
work on superconducting qubits employs several software packages such as LabVIEW for qubit
control and data acquisition, and Wolfram Mathematica for data processing and analysis. This
thesis introduces PycQED, a new software platform for circuit QED, that unifies the entire
experiment under a single Python-based environment. The framework was developed by Pro-
fessor Leonardo DiCarlo’s group at the Delft University of Technology, and is currently being
extended in collaboration with the Quantum Computing team at QuDev. The complete set of
single-qubit operations has been implemented in PycQED, such that the framework can now
be used to calibrate these gates for both the first and second qubit energy transitions. This
thesis covers the first quantum computing experiments at QuDev that were performed using
PycQED, and it is the first work in the group that presents the PycQED framework.

1. Introduction and Motivation

Interest in building a universal quantum computer has risen considerably in the last few decades
as the necessary technology has become available. The increasing level of enthusiasm and antic-
ipation for new quantum information processing technologies around the globe, from corporate
giants such as Microsoft, Google, and IBM, to research universities, and even including the
mainstream media [1], has given the quantum computing science a real boost forward in terms
of scalability. In May 2016, IBM opened to the public their "Quantum Experience” 5 qubit
quantum computer [2]. Easily accessible to anyone over the IBM cloud, this innovation has
enabled a great deal of research in quantum computation and information processing with 5
qubits [3], [4]. Microsoft’s Station @ project [5] brings together several prestigious research
teams, including groups at ETH Ziirich and Delft University of Technology, in a global effort
to build a quantum computer. Microsoft has also started to extend its research into Europe,
with the first Microsoft research laboratory expected to open at Delft and Copenhagen in the
near future [6].

A significant advancement in the field of quantum computing has come in the form of soft-
ware frameworks specifically aimed at controlling quantum computers. Until recently, quantum
information processing laboratories would rely on various different software packages for qubit
control and measurement analysis, such as custom-designed routines in LabVIEW and C++ for
control, and Wolfram Mathematica, Python, or MATLAB for data processing (see [7] and [§]
for an example of what was used in our group at QuDev). Recent efforts have been made
to move to more universal software frameworks that are specifically designed to automate a
quantum computing experiment. In 2016, Steiger et al. launched ProjectQ [9], [10], a python-
based framework for writing and implementing quantum computing algorithms on any physical
back-end. Another example is the recently-developed quantum instruction language (Quil) re-
leased by Rigetti Computing [11]. Quil allows to implement and execute algorithms on hybrid
classical /quantum architectures that consist of feedback loops between classical and quantum
computers.

The Python for circuit Quantum ElectroDynamics (PycQED) measurement acquisition
framework presented in this thesis is another software initiative that promises to become a uni-
versal package for quantum computing experiments with superconducting qubits. The platform
was developed by Professor Leonardo DiCarlo’s group at QuTech, and its further development
is now done in collaboration with the quantum computing team at QuDev. Switching to the
PycQED platform has several benefits. PycQED brings the entire experimental control together
under one single software that has the drivers for all the equipment, stores all the qubit param-
eters, and performs the data analysis. The advantage here is that PycQED has access to all
the experimental parameters, and hence all the necessary modifications and updates to those
parameters can be done behind the scenes, without the need for the user to manually change
them (this was sometimes the case in our previous setup).

The PycQED platform also makes extensive use of object-oriented features [12], and this
aspect may truly show its power as the experiment scales up and there will be a need to ma-
nipulate larger systems with many more qubits. The object-oriented features of a programming
language are needed for any large-scale software framework, be it classical or quantum. The

structure of object-oriented programs is built from grouping together code that creates logical
entities called objects. In PycQED, each new qubit or instrument is an object that stores all
the relevant physical parameters, such as transition frequencies, drive pulse parameters, and
readout parameters for the qubit, and addresses, port numbers, and channel numbers for the
physical instruments. These objects would also contain functions that allow the user to manipu-
late them and to access their parameters. This logical structure of object-oriented programming
facilitates both the maintenance process and the further development of the framework. Fur-
thermore, future quantum computer designs with many qubits would simply need to create as
many instances of the qubit object as necessary, without the need to alter the structure of the
code.

PycQED has great potential for circuit QED experiments, but at the start of our collab-
oration with the DiCarlo group, its structure was missing several features of interest for our
team, such as further routines for single-qubit gates. These gates represent logical operations
with one qubit and are the basic units of quantum computation. Thus, gaining full and proper
control over them is essential to the implementation of higher level quantum algorithms. The
goal of the project presented in this thesis is to implement all the necessary calibration routines
for single-qubit gates on both the first and the second qubit energy transitions. This thesis will
present the PycQED framework with a focus on its functionality for calibrating single-qubit
operations. will give a short overview of circuit QED, and single-qubit manipulations
will be presented. The first part of will explain the structure of PycQED, and the
overall flow between its layers during a measurement. Then, will present the Py-
cQED measurement analysis module, and will highlight the structural changes that have been
made during this project. The section will end with an example showing how we currently
use PycQED in our lab to calibrate single-qubit gates. Finally, will present in detail
the main focus of this project: improving the data analysis routines for extracting the relevant
parameters from single-qubit calibration measurements. Each subsection will provide details
about the implementation of a specific calibration measurement and will show experimental
results, thus illustrating the current stage in the development of the PycQED framework at
QuDev.

2. Theoretical Background

2.1 Short Introduction to Circuit Quantum
Electrodynamics

2.1.1 System Design

The most basic architecture of circuit QED consists of a superconducting transmon qubit
capacitively coupled to a readout coplanar waveguide (CW) resonator. The design used for
most of the measurements presented in this thesis is shown in [Figure 2.1, and contains eight
qubits (yellow), each coupled to its own readout resonator (red). The entire architecture is
micro-fabricated on a chip, making it essentially two-dimensional. Typical materials used for
fabrication are silicon or sapphire for the insulator substrate, and aluminum or niobium for
the superconducting structures . The eight qubit chip has a sapphire substrate (black), the
qubits are made out of aluminum using electron beam processing, and the resonator structures
were made by etching a thin film of niobium previously deposited onto the substrate using
photolithography.

Figure 2.1: False-colored drawing of the 8-qubit chip used for most of the experiments presented
in this thesis. See main text for details and for a summary of the different samples
used throughout this thesis.

The CW resonator is a two dimensional resonator which allows to access the information
stored in the qubit in a non-destructive way through a quantum non-demolition (QND) mea-
surement ,. The principles behind a QND measurement are explained in the next section.
The resonator is also used to transmit quantum information between qubits on the chip. Thus,
each of the eight qubits in is also capacitively coupled to its nearest neighbor(s) via

3

the resonators in blue. This qubit-qubit coupling allows to perform two-qubit gates between
nearest neighbors [16]. The reduced dimensionality of circuit QED gives this design a major ad-
vantage over three-dimensional architectures, such as cavity quantum electrodynamics(cQED)
or Rydberg atoms, because the strength of the vacuum field inside the resonator increases with
smaller volumes. This feature ensures a stronger coupling between the superconducting qubit
and the resonator [14].

The purple lines in[Figure 2.1]are the qubit charge lines which transmit the microwave pulses
that drive each qubit. The flux lines shown in dark green are used to tune the qubit transition
frequencies by applying a magnetic flux through the superconducting quantum interference
device (SQUID) loop of each qubit (described below). Purcell filters (light green) sit between
the readout resonators and the readout transmission line (brown), and protect the qubits from
the Purcell decay ([17] and [18] present this effect in more detail).

The measurements presented in this thesis were performed on a transmon qubit, which is the
improved version of the Cooper pair box (CPB), or charge qubit (details below). The transmon
design for the eight qubits in is shown in and the corresponding circuit
diagram is illustrated in [Figure 2.2h]

Both the transmon and the charge qubits exploit the superconducting properties of cooled
electrons, which form Cooper pairs. The transmon has two superconducting islands (yellow
rectangles in [Figure 2.2al). The left island (Islandl) capacitively couples to the readout res-
onator, and each island is connected to a qubit-qubit coupling resonator. Cooper pairs can
tunnel between the islands via two Josephson junctions [20], which are non-linear inductors
consisting of two superconducting areas separated by an insulating layer that permits Cooper
pairs to tunnel between these areas [13]. A Josephson junction is described by the Josephson
equations [13]:

= I.siné (2.1)

Dy By 1
o 05 20
2 2mlycosd

(2.2)

where I and V are the current and voltage in the junction, /. is the junction critical current,
®y = h/2e is the flux quantum, and 6 = drganda1 — Orsianaz 1S the difference between the phases
of the Cooper pair wavefunctions in the two superconducting islands. The equations show that
the Josephson junction is a non-linear element; it forms an anharmonic oscillator and thus gives
the design its quantum properties.

For many quantum computing architectures it is important to be able to vary the critical
current through the Josephson junction in order to tune the qubit transition frequencies. This
feature is achieved by forming a SQUID loop out of two such junctions connected in parallel,
as shown in [Figure 2.2b] A magnetic flux applied through this SQUID loop effectively allows
to change the qubit level separation by up to a few GHz. This degree of freedom becomes very
useful for two-qubit gates implementations [21].

The charge qubit is completely characterized by the canonical variables ¢ and n, where
the latter is the difference in the number of Cooper pairs on each island. The Hamiltonian of
the Cooper pair box has an electrostatic contribution (from the capacitances in the box and
external electric fields) and a magnetic contribution (from the potential energy of the Josephson
junction) [13]:

H = Hy + Hypay = Ec(i —ny)? — Ej, cosé. (2.3)

In the equation above, Ec = 4¢%/2C is the qubit charging energy, where C is the sum of all
the capacitances in the box, F; = hl./2e is the specific Josephson energy of the junction,

4

| e | e | e | e | s | e

=
J:—,,\lz_.ll:n:l::]:m

naf (]
N []
L [
L [|
L I
L I
] Island 1 Island 2 []
N [
AN]
L |
LSS - L
| - ﬂ':]

u

(a) Transmon
Magnetic flux Drive pulses
Talal Q
CL
SQUID
To neighboring qubit To neighboring qubit
— — 5
CRI Islandl Island2 CR2
RR —

l To Purcell filter
(b) Circuit diagram.

Figure 2.2: False-colored schematic (a) and circuit diagram (b) of the transmon qubit design
used for the experiments presented in this work. The yellow SQUID line connecting the two
islands was drawn in software. RR is the readout resonator, CR1 and CR2 are the coupling
resonators between qubits, FL is the flux line that tunes the qubit frequencies, CL is the charge
line used to drive the qubits; SQUID, Islandl, and Island2 are explained in the text. Circuit
diagram adapted from

and ng is the gate charge, which appears due to the voltage applied to the qubit control line.
The magnetic term H,,,, can be tuned by applying an external magnetic flux through the
SQUID loop because § ~ P, |13]. The main difference between the Cooper pair box and
the transmon is that the latter operates at a ratio E;/Ec > 50, which is much higher than
the value E;/Ec ~ 2 used for the charge qubit [18]. This new regime is an enhancement in
qubit design because it removes the dependence of the qubit energy levels on the gate charge,
and it improves coherence by reducing the charge dispersion of the qubit energy levelf] [18].
Increasing E;/E¢ also reduces the qubit anharmonicity, which is the difference in frequency
between the second and first qubit transition frequencies resulting from the non-linear nature
of the system. This reduction is undesirable because it makes it difficult to have good control
over which of the qubit levels is being addressed. However, since the anharmonicity decreases
algebraically with F;/FE¢s, while the charge dispersion is reduced exponentially, the transmon
offers a great advantage over the charge qubit at a reduced cost [18]. Furthermore, even this
cost can be corrected for by designing qubit drive pulses that are optimized to couple to only

one energy level (see [Section 2.2.6]).

2.1.2 Qubit-Resonator Interaction

For an N-level qubit, the coherent interaction between the CW resonator and the transmon
qubit is described by the generalized Jaynes-Cummings Hamiltonian [18]:

N-1 N-2
H =" huwli)(i| + hwpala + | Y hgiiali)(i + 1ja’ + hee. |, (2.4)
1=0 1=0

where af, @, are the creation and annihilation operators, and h.c. means Hermitian conjugate.
For the above equation it was assumed that the rotating wave approximation (RWA) is ValidE],
and that the ground state energy of the qubit is Fy = hwy # 0. The first term in
represents the N energy levels of the transmon with frequencies w;, and the second term describes
the resonator as a harmonic oscillator with frequency w,. The third, interaction term describes
the energy exchange between the coupled qubit-resonator system: an excitation annihilated in
the resonator is created in the qubit and vice versa. This interaction is characterized by the
coupling strengths g; ;11 between the resonator and the i*" excitation of the qubit. g sets the
angular frequency with which excitations are exchanged between the two systems. When ¢ is
larger than both the qubit decoherence rate () and the rate of photon loss from the resonator
(k), the system is said to be in the strong coupling regime. If this regime cannot be achieved,
then the system is not suitable for quantum information processing because the qubit and the
resonator cannot coherently exchange an excitation before the system decoheres [20].

In quantum mechanics, measurement is intrusive and changes the state of the system being
observed by projecting it into an eigenstate of the measurement operator. However, in QND
measurements, the measurement operator commutes with the Hamiltonian of the system of
interest, which in this case is the qubit. Thus, a QND measurement prevents mixing of the
measured observable &, such that repeated measurements of the qubit will give the same re-
sults. For more details about QND measurements see [14] or |15]. In order to perform QND
measurements of the qubit state, the system is placed in the dispersive limit, where the qubit
and the resonator are far detuned from one another and g; ;41 < A; [15], [18]. In this limit,
the qubit and the resonator do not exchange energy but they are still dispersively coupled to
each other, such that the state of one has an influence on the state of the other, and vice versa.

!The charge dispersion refers to the sensitivity of the qubit energy level separations to fluctuations in the
gate charge. These fluctuations are also referred to as shot noise.
2The RWA applies if |A;| = |w;it1 — wr| € wiir1 +w, and g; 11 < wy,w, [15].

6

This can be seen from the dispersive Hamiltonian, obtained by treating the interaction term
in as a perturbation to the uncoupled Hamiltonian |13|, and approximating the
qubit by a two-level system with one excitation (but also including the effects of coupling to
the second energy level):
!/

]f[dispersive - @é—z + h(UJ?’n + XC}Z)CAZTCAL (25)
The first term describes a qubit with renormalized transition frequencies w(; = w1 + x01. The
qubit frequencies are shifted by the Lamb shift xo1 = g31/A¢ produced by vacuum fluctuations
inside the resonator. The second term is a dispersively shifted resonator with renormalized
frequencies w!. = w, — x12/2. The shift x12/2 is caused by the interaction of the resonator with
the second excited state of the qubit. x = xo1 — 9%/2A1 = Xo1 — X12/2 is the dispersive shift
of the resonator, and is caused by coupling of the resonator to the qubit states. Ay = wp1 — w;.
and Ay = wiy — w, are the detunings of the first and second qubit state frequencies from the
resonator frequency, and &, is the Pauli Z operator. The second term in illustrates
the principle of QND dispersive measurements: @, = w,. + X0, which can be thought of as the
new resonator frequency, is pulled by the qubit, such that if the qubit is in the ground state
lg) (first excited state |e)), the resonator frequency is @, = w]. + x (@, = w.. — x). This effect is
illustrated in [Section 2.2.2 |[Figure 2.4l Denoting afa = 7, and rearranging this Hamiltonian in
the following way

N h
Hdispersive = §(w(l)1 + 2Xﬁ)a—z + hw;dfd, (26)

immediately shows the mirror effect of the dispersive shift, called the AC-Stark shift, whereby
the effective qubit transition frequency @j, = wj; + 2xn changes depending on the number of
photons n inside the resonator. Consequently, the dependence on n means that fluctuations
in the photon number (shot noise) induce fluctuations of the qubit levels. This is a highly
undesired effect as it induces dephasing in the qubit and hence loss of quantum information.
However, this disadvantage can be overcome by placing the entire system in a vacuum and
cooling it down to near zero kelvin. For more details about these phenomena, see [22]. All
the effects described above can be observed during calibration measurements for single-qubit
operations, which is the topic of the next section.

2.2 Single-Qubit Gates Calibration

In order for any quantum algorithm to be successful one must ensure that the quantum gates
used in computation are well calibrated. Both single- and two-qubit gates are important in
quantum computation, yet the current work will only focus on the former. Robust single-qubit
gates are a prerequisite not only to implementing two-qubit gates, but also to characterizing
general qubit performance; thus, developing software routines to calibrate and control single-
qubit operations is a top priority.

A complete single-qubit calibration routine on the |g) <> |e) transition follows these steps
(adapted from [15]):

1. Find the readout resonator frequency w, by performing spectroscopy on the readout
resonator.

2. Get an estimation of the qubit transition frequency wg. by performing spectroscopy on
the qubit at the readout frequency determined in step 1.

3. Drive the qubit at the frequency found in step 2 in order to observe Rabi oscillations, and
extract the first estimations of the 7 and 7 /2 drive pulse amplitudes by fitting the data
to a cosine.

4. Perform a Ramsey measurement at a drive frequency that is intentionally detuned from
the qubit frequency estimated in step 2 in order to find the true value of wy. from a fit to
an exponentially decaying cosine.

5. Perform another Rabi measurement at the true qubit frequency found in step 4 and
extract better values for the m and /2 pulse amplitudes.

6. Perform a DRAG (derivative removal by adiabatic gate) pulse calibration measurement
to find the optimal ¢,... scaling factor such that the quadrature component of the drive
field is €, (t) X @scate€x(t)-

7. Perform the Rabi measurement one last time to obtain the best values for the 7 and /2
pulse amplitudes.

8. Measure the qubit energy relaxation time T;.

9. Measure the averaged dephasing time Ty* for the qubit using a Ramsey measurement,
and the qubit’s real dephasing time T using an Echo-Ramsey measurement. For details
about the latter technique, see [23].

10. Validate the calibration routine by performing randomized benchmarking on the qubit.
For details about this technique, see Section 2.5 in [13].

If one is also interested in the second excited state (qutrit), the calibration steps above must be
repeated for the |e) <+ |f) transition, with a few minor differences, as explained in the remainder
of this section. Calibration steps 1 through 8 and the measurement for the averaged dephasing
time will be described in the remainder of this section, and the experimental results for these
measurements are shown in [Section 41

2.2.1 Resonator Spectroscopy

In order to read out the qubit state, the best readout frequency of its corresponding readout
resonator must be identified. Finding this frequency is not always easy, especially for a complex
design like the chip in with eight resonators coupled to eight Purcell filters. The
full transmission spectrum of this chip is shown in [Figure 2.3| The transmission spectrum was
obtained by driving all readout resonators with the same input signal applied at one end of the
brown transmission line in and measuring the I and Q signal quadratures at the other
end (see section 4.3 of [15] for details about the data acquisition process). Since any emitter
driven on resonance will reflect most of the signal, a dip in the spectrum is expected whenever
one of the resonances is reached. The best readout frequency for each qubit corresponds to
the frequency point on the spectroscopic line of its readout resonator that is most sensitive to
the dispersive shift discussed in [Section 2.1.2] As seen in in the next subsection, a
very good choice is typically the lowest point in the transmission spectrum since the effect of
the dispersive shift subsides far away from the lowest point. For more details about resonator
spectroscopy, see [24] and [13].

2.2.2 Qubit Spectroscopy

Qubit spectroscopy is performed in order to determine the approximate qubit frequencies, wyge
and wey. The frequency of the qubit drive signal is varied over a range of frequencies in order
to measure the readout signal as a function of qubit drive frequency. The resulting graph will
show a peak or dip at the qubit frequency depending on the chosen readout frequency. This
is illustrated in |Figure 2.4] which shows a measurement of the dispersive shift for readout

RO Resonator - Full Spectrum Scan

le—-2 ‘ ‘ ‘ ‘
— 159, PR8 PR6 PR5 PR4 PR3 PR2 PR1 PR7
w150/ " 'RR8 RR7 RR6 RR5 RR4 ' RR3 RRZ2 RRl
51.25 | | |
g
81.00
5
20.75;
2
€0.50
&
= 0.25)

6.8 7.0 7.2 7.4 7.6 7.8
Frequency (GHz)

Figure 2.3: Transmission spectrum of all eight readout resonators (RR) and Purcell resonators
(PR) on the chip shown in The graph was generated in Python, but the measurement
was performed using the old LabVIEW setup. Plot is adapted from data measured by Johannes
Heinsoo (QuDev) and Ants Remm (QuDev).

resonator 7 (see full readout spectrum in , and two potential choices for the qubit
readout frequency. For f RO2, qubit spectroscopy will show a peak because the transmission
power of the readout resonator is higher when the qubit is in the excited state (green) compared
to when it is in the ground state (blue). A dip will appear for f RO1, where the resonator shows
a weaker response when the qubit is in the excited state.

Readout Resonator 7 - Dispersive Shift
le-2

— |g) state
— |e) state -

o
(o]
T

o o o
N BN)]
T T T

Transmission power (arb. units)

o
o
T

6.9700 6.9725 6.9750 6.9775 6.9800 6.9825 6.9850 6.9875 6.9900
Frequency (GHz)

Figure 2.4: Measurement of the dispersive shift of RR7 in The transmission power
spectrum is shown as a function of readout frequency when the qubit is in the ground state
(blue) and in the excited state (green). The dashed lines indicate two potential choices for
the readout frequency. For f RO2, the qubit spectroscopy will show a peak, while for { RO1 it
will show a dip. See main text for details. The measurement was preformed by Ants Remm

(QuDev).

Two types of qubit spectroscopy are commonly used to determine the qubit frequencies. In
continuous wave (cw) spectroscopy ([Figure 2.5a]) both the qubit and the readout resonator are

9

driven at the same time, while in pulsed spectroscopy (Figure 2.5bf) the resonator drive is only
turned on after the qubit drive has been turned off.

resonator dri

=
a

Y

measurement begins measurement ends

(a) Continuous wave

3
a

A\ £]

measurement begins measurement ends

(b) Pulsed

Figure 2.5: Pulse sequences used for continuous wave (a) and pulsed (b) qubit spectroscopy. In
the former, the qubit and the readout resonator are driven continuously and at the same time,
while in the latter the readout signal is turned on only after the qubit drive has been switched
off. See main text for details.

The downside of cw spectroscopy is that the number of photons inside the readout resonator
will AC-Stark-shift the qubit frequencies during the qubit drive (see . Hence, this
measurement must be done at low resonator drive power. This problem is avoided in pulsed
spectroscopy because there are no photons in the resonator while the qubit is being driven
(see [24] for details). In both types of spectroscopy, the qubit should be driven at low power
to avoid power broadening the linewidth, which will lead to a decreased resolution of the
qubit frequency [25]. However, to obtain values for both the |g) <> |e) and |e) <> |f) transition
frequencies, the spectroscopic measurement must be performed at a higher qubit drive power
than for regular spectroscopy. This higher power will stimulate a two-photon transition at
wgf/2, which will appear as a thinner spectroscopic line indicating the ”|gf/2) transition.”
Then wep = 2wyr/2 — wgeﬂ. For more details about qubit spectroscopy, see [24] and [13].

2.2.3 Rabi Measurement

By varying the amplitude of the qubit drive pulse, one can observe Rabi oscillations between
two qubit energy levels. Since harmonic oscillators do not exhibit this behavior [25], observation
of Rabi oscillations is a clear indication that the system being studied is indeed a qubit, i.e. an
anharmonic system (see .

The Rabi experiment is also used to determine the 7-pulse (the drive pulse amplitude that
produces the first qubit population inversion; for example, taking the qubit from its |g) state to
its |e) state), and the m/2-pulse (the drive pulse amplitude that brings the qubit in a superposi-
tion of two adjacent states). To do this, several pulses of varying amplitudes are applied to the
qubit drive line, each followed by a measurement. The pulse sequences for a Rabi measurement
on the |g) <> |e) and the |e) <> |f) transitions are illustrated in [Figure 2.6a and [Figure 2.6b}
respectively. These procedures rotate the qubit around the x-axis (for a zero phase pulse)
or the y-axis (90 degrees phase pulse) on the Bloch sphere, and map its final position onto

3The |gf/2) is really a virtual state in the two-photon process from |g) to |f). It is often referred to as the
"lgf/2) state” because its frequency is somewhere around the value wyr/2, and it is used as a reference for
approximating the value of w¢. This two-photon process via a virtual state is different from two single photon
transitions from |g) <> |e) and |e) <> | f) in that the virtual state is never populated. For more details about this
type of process see section 8.4, and appendix E of [26].

10

the z-axis. At the end of the experiment, the probability for the qubit to be in the excited
state as a function of the applied pulse amplitude will trace out a cosine. The m-pulse and the
7/2-pulse amplitudes are then extracted from a fit to the data (see [Section 4.3]).

Wge Wef Wge

Amplitude
-«
Amplitude
3)&
<
«>
3

Time Time

(a) Qubit (b) Qutrit

Figure 2.6: Pulse sequences used for a Rabi measurement on the |g) <> |e) (a) and |e) <> |f) (b)
qubit transitions. w, and w,y are the |g) <> |e) and |e) <> | f) transition frequencies, respectively,
7 denotes a m-pulse at the respective frequency, and the vertical double arrow denotes a varying
pulse amplitude. The time separation between the pulses is arbitrary, but must be shorter than

the qubit energy relaxation time discussed in [Section 2.2.5 Figures adapted from [§] and [13].

A Rabi measurement on the |e) <+ |f) transition requires an additional 7-pulse at wg. at
the beginning of the measurement in order to place the qubit population in the excited state.
The additional |g) <> |e) m-pulse shown in before each measurement is optional.
This pulse maps the population back to the ground state, such that one effectively observes
Rabi oscillations between |g) <> |f). The disadvantage of using this procedure is that it relies
on the assumption that the population in the |e) state is completely mapped to the |g) state by
the |g) <> |e) m-pulse, which is not a guarantee. The Rabi measurement on qubits and qutrits
is explained in greater detail in |13].

2.2.4 Ramsey Measurement

The Ramsey measurement identifies the true qubit transition frequency wge by using the qubit

frequency estimated with spectroscopy wspe. (Section 2.2.2)), which is typically slightly detuned
from the real wg.. and illustrate the pulse sequences for a Ramsey

measurement on a qubit and qutrit, respectively.

To measure the |g) <> |e) transition frequency, two m/2-pulses are applied to the qubit
at a frequency that is intentionally chosen to be detuned by ¢ (typically a few MHz) from
Wepee. Our lab usually uses 6 =4 MHz. In PycQED, ¢ is called "artificial_detuning” because
it is "artificially” introduced by the researcher during the measurement, and thus it is not an
effect of the interactions inside the system. If we assume for the moment the ideal case where
Wspee = Wge, @ calculation readily shows that the probability for the qubit to be in the excited
state at the end of the measurement oscillates as a function of this artificial detuning ¢ and the
time delay At:

P(le)) = %(1 + cos(Atd)). (2.7)

In reality, Wepec = wge — ¢, where ¢’ is the detuning from the real qubit frequency that we want
to find. The result in this case will not oscillate at a frequency 0, but at wramsey = 9 — (—0).

11

Wge

®

’
Wer

Amplitude

NS
Amplitude
3 &
ry
o | _
o1 €
&
3

ESTENY

At ' Time ; At . Time

(a) Qubit (b) Qutrit

Figure 2.7: Pulse sequences used for a Ramsey measurement on the |g) <> |e) (a) and |e) <> | f)
(b) qubit transitions. wg. is the |g) <> |e) transition frequency, w;, and w, are the applied
qubit drive frequencies that are detuned from the |g) > |e) and |e) <> |f) transition frequencies
estimated with spectroscopy by a few MHz, m and 7/2 denote a 7-pulse and 7 /2-pulse at the
respective frequencies, and At represents a variable time delay. The time separation between

the pulses is arbitrary, but must be shorter than the qubit energy relaxation time discussed

in [Section 2.2.5| Figures adapted from [8] and [13].

Then, using that § = |wpuse — Wspee|, the real qubit transition frequency can be recovered from:

/
Wge = Wspee — WRamsey +0= Wspee — J. (28)

If the Ramsey measurement is now repeated, we are back to the case wspec = wgye, and a trace
oscillating at ¢ will be observed.

The above procedure shows that performing a Ramsey measurement at one single arti-
ficial detuning cannot distinguish between wgye. = wye £ 0’ if ' >> . The solution is to do
two Ramsey measurements at two different artificial detunings, for example é; = 4MHz and

dy = — 4MHz. Assuming that wgye. = wge — 0’, we test the four cases
Wge = Wspec + WRamseyl + 51 = Wspec + 251 + & (29)
Wge = Wspec — WRamseyl + 51 = Wspec — ¢ (210)
Wge = Wspec + WRamsey2 + 62 = Wspec + 252 + o (211)
Wge = Wspec — WRamsey?2 + 52 = Wspec — §. (212)

The results of these four cases show that the real qubit frequency will be either wgpe. + 201 2 + ¢
Or Wspee — 0'. The correct qubit frequency will be given by the two cases above that produce
the same result. In this theoretical example, it is easy to see that we indeed recover the correct
answer, Wype. — 0, from 2.10 and 2.12. In practice, two of these four cases will always give the

same result, which will be the correct qubit frequency (see [Section 4.4)).
As explained for the Rabi case in[Section 2.2.3|and shown in a Ramsey measure-

ment on a qutrit requires an additional |g) <> |e) m-pulse at the start and optionally one right
before the measurement. Then the procedure described above is identical, with wg. replaced by
Wef-

The Ramsey measurement is also used to find the averaged dephasing time Tg*ﬂ The
Ramsey oscillations will have an exponentially decaying envelope proportional to e %72 due
to the loss of phase information (dephasing) from the qubit during the measurement. The

4The distinction between the averaged (T2*) and pure (T2) dephasing times is explained in [8].

12

dephasing time can be easily extracted from a simple exponential envelope to the cosine fit
function described above (see |Section 4.4]). More information about the Ramsey measurement
can be found in [13].

2.2.5 T, Measurement

A measurement of the energy relaxation time is done using the pulse scheme shown in[Figure 2.8a]
for a qubit, and in for a qutrit.

Wge

" -.»

At Time) At Time

Amplitude
—>
Bl tne

°
Amplitude
CRNS
°

a &
Y

(a) Qubit (b) Qutrit

Figure 2.8: Pulse sequences used for a Ty measurement on the |g) <> |e) (a) and |e) <> |f) (b)
qubit transitions. wg and wey are the |g) <> |e) and |e) <> | f) transition frequencies, respectively,
7 denotes a w-pulse at the respective frequencies, and At represents a variable time delay. The
time separation between the pulses is arbitrary, but must be shorter than the qubit energy
relaxation time. Figures adapted from [8] and [13].

An excited system will decay to its thermal equilibrium state when left to relax in time.
Thus, in order to measure this energy decay time (T;) for a qubit, one applies a |g) <> |e)
m-pulse, and waits for a variable time delay At before measurement. The probability for the
qubit to be in the excited state will show an exponential decay proportional to e=2%/" and T,
can be easily extracted from a fit to the data (see [Section 4.5)).

As explained in the previous two sections and shown in [Figure 2.8b] in a T; measurement
on the second excited state a |g) <> |e) m-pulse must be applied first in order to place the
population in the excited state, and an optional m-pulse can be applied before the measurement
to map the population back to the ground state. Reference [13] offers more details about the
T, measurement on qubits and qutrits.

2.2.6 DRAG Pulse Calibration

The DRAG pulse is an optimized qubit drive pulse that prevents leakage outside of the com-
putational subspace, and phase errors due to coupling to neighboring energy levels.

A Gaussian pulse is generally preferred over a square-shaped pulse because it has a narrower
frequency spectrum, and thus allows for better qubit control by reducing leakage into the
|f) state [15]. A higher standard deviation for the Gaussian pulse in time domain makes it
easier to target the qubit |g) <> |e) transition. However, this width is limited by the qubit
energy relaxation time since the qubit will decay during the operation if the pulse is longer
than T;. Moreover, even after controlling for these limitations, the Gaussian pulse’s width in
frequency domain may include the qubit |e) <> | f) transition (this is especially likely for designs
with relatively low anharmonicity). This scenario is very disadvantageous because it limits the

13

ability to accurately manipulate the qubit. Luckily, the DRAG pulse can be calibrated to have
a vanishing frequency component at the |e) <> |f) transition, as illustrated in [Figure 2.9}

€
2
9 Gaussian Pulse
o
(V]
]
2
&
DRAG Pulse
f_ef f ge Frequency)

Figure 2.9: Schematic comparison between a regular Gaussian qubit drive pulse (blue) and a
DRAG qubit drive pulse (green). The latter suppresses the unintended excitation of the qubit
|f) state.

For a drive field expressed in quadrature form [15]:

€(t) = €;(t) cos(wat) + €q(t) sin(wat), (2.13)

with €; and €g the in-phase and quadrature field components, and w, the drive frequency, the
first order DRAG pulse is defined as [27]

er(t) = €Gauss(t) (2.14)
)\2
€Q (t) - _4A12 éGauss<t> - QScaleéGauss (t) (215)

In the two equations above, €g.uss 1S a Gaussian-shaped pulse, A is the scaling factor from
reference [27], A1z = wef — wye is the anharmonicity between the first two qubit levels, and
Gscale = —A\° /415 is the quadrature scaling factor that must be calibrated.

To find the value of gsqe that achieves the effect in [Figure 2.9, the parameter is swept
between ~ -1.5 and ~ 1.5, and the following three sets of pulses are applied for each ggcue
value: Xz X Xz, and XzY_ ., where X and Y denote the rotation axes about which the
7- and 7/2-pulses are applied. Since the m-pulse amplitude was previously calibrated with a
Rabi measurement, the first set of pulses leave the qubit in an equal superposition of |¢g) and
le) states. Ideally, the other two sets of pulses should do the same, but because of phase errors
introduced as a result of leakage outside of the computational subspace, the last two sets cause
the qubit to move away from the equatorial plane on the surface of the Bloch sphere to a mixed
state inside the sphere. Hence, as shown in the plots in [Section 4.6 the measurement data of
the Xz X set traces out a constant line at 0.5 qubit population, and those of the other two
sets trace out an increasing and a decreasing line, respectively. Since, in theory all three lines
should intersect at an equal superposition of the qubit states, the g ... value of this intersection
point is the optimal ¢,.q. parameter.

For a qutrit, the DRAG calibration requires an extra |g) <> |e) m-pulse at the beginning
and an optional one before each measurement. For more details about the DRAG pulse and
the gscare calibration see |15],[13],]7], and [27].

14

3. The Python for Circuit Quantum

Electrodynamics (PycQED)
Framework

3.1 Introduction

Integrated measurement and analysis software frameworks become more desirable as the ex-
perimental setups for developing quantum computers scale up and become more complex. Such
cohesive frameworks offer several benefits over setups that employ different software packages
for measurement control and data analysis. In particular, the communication between differ-
ent stages of a measurement is improved because it is easier and less error-prone to develop
and optimize a control software that must only access parameters and operations implemented
within a single software environment.

Another feature that becomes desirable, especially as the number of qubits in quantum
computer designs scales up, is a framework based on object-oriented languages. This section
will show that working with objects has the great advantage that each qubit or instrument
within the software framework is a logical entity (called an object), and thus it is much easier
to manipulate and control. Since this encapsulation into objects creates a logically organized
code structure, it greatly facilitates both the development of new features in the framework and
the debugging process. Furthermore, object-oriented programming also reduces the risk of errors
by using special functions called constructors and destructors [12], [28]. The former ensure that
a new object instance is initialized correctly, while the latter ensure that all communications
with instruments are properly closed and that the relevant information in memory is released
upon the instance’s destruction.

PycQED offers such an object-oriented integrated measurement environment designed in
Python 3 and implemented specifically for circuit QED experiments. The PycQED project is
a recent development by Leonardo DiCarlo’s group at Delft University of Technology, Nether-
lands, and is licensed under the MIT License. PycQED is an extension of the QuCoDeS
data-acquisition framework created by the Copenhagen-Delft-Sydney-Microsoft quantum com-
puting consortium. QuCoDeS has most drivers and necessary support for communicating with
the physical instruments, and contains the algorithms for defining the parameters in the Pyc-
QED meta-instrument classes, which will be described in this section.

In 2016, our group at QuDev have started a joint collaboration effort with the DiCarlo
group to expand and improve the PycQED framework. At the start of our collaboration, the
main PycQED skeleton was already functional and in a high stage of development. The main
focus of the contribution presented in this work was on adding and improving single-qubit
measurements and analysis routines, with the goal to make available the possibility to run all
the single-qubit gates calibration steps enumerated in for both the |g) <> |e) and
the |e) <> |f) transitions. Many of these measurement and analysis algorithms were already
partially or completely implemented at the start of this project. Yet, some of these routines,

15

albeit functional, were either not producing the results that our team was interested in, or were
not fully integrated into the framework flow. For example, the fitting routines would sometimes
fail in some of the analysis classes for single-qubit operations, or a few parameters of interest to
us, such as the m-pulse and 7/2-pulse amplitudes, were not being calculated. Another example
is that even though some of the arbitrary waveform generator (AWG) sequences for operations
on the |e) < | f) transition were functional, they were not completely integrated into the higher
levels of the code structure, and hence could not be called during an experiment.

In the remainder of this section, the PycQED structure will be presented in [Section 3.2} and
then will give a more practical description of how to use PycQED to run circuit
QED measurements. In it is explained in more detail how PycQED controls a
measurement, from the pulse designs and instrument configurations, to data acquisition using
the Zurich Instruments Ultra High Frequency Lock-In (UHFLI) amplifier, and
presents the available data analysis routines. Overall, the main focus will be on the improve-
ments made to the measurement and analysis routines for single-qubit operations, which were
the main contributions of this work to the PycQED collaboration.

3.2 Framework Structure

PycQED makes heavy use of object-oriented programming features. This section will give tech-
nical details about how the objects in PycQED are interconnected and how objects inherit from
one another. An object-oriented program works with logical entities called objects, which are
defined by their classes. Hence, an object/class is comprised of parameters, functions (called its
methods), and even other objects that describe the operation of a specific concept. For example,
the most generic qubit object would contain qubit parameters such as its transition frequencies
or its energy relaxation and dephasing times, but it would also contain methods that allow the
user to access the qubit parameters, or to manipulate the qubit by driving it with microwave
pulses. The qubit objects in PycQED follow this template and will be discussed in [Section 3.2.1]
PycQED also makes extensive use of the concept of inheritance. When an object inherits from
another object (called the base object), the former can access and use al]E| the parameters and
functions of the latter. Further details about these features can be found in [12] and [2§].

The three main objects in PycQED that control the qubit characterization measurements
are the Qubit object, the MeasurementControl object, and the MeasurementAnalysis object. The
Qubit object is called directly by the user at the start of each measurement. All the relevant
measurement, parameters, like the array of pulse amplitudes for a Rabi experiment or the
number of calibration points for the measurement (discussed in , are passed to this
object, which then proceeds to pass them to the MeasurementControl, to the sweep functions,
and to the measurement analysis classes.

In the following sections we will look more closely at the Qubit object in [Section 3.2.1] then
at the role of the MeasurementControl and its dependencies in [Section 3.2.2] and finally at the
structure of the MeasurementAnalysis class and its dependencies in [Section 3.2.3] Throughout
the text, the following convention is used in order to reduce confusion: the sans serif font family
is used for classes, methods, and functions, italics is used for naming conventions of various
parameters inside PycQED, and all file names are followed by the ”.py” extension. For simplicity
and for a clearer understanding of the highly layered PycQED structure, important parts of
the source code will be exemplified, wherever appropriate, on a typical Rabi measurement.

!This is not true in general because inheritance cannot access the private variables of a class (see [28] for
details). This thesis will discuss in detail only the inheritance structure of the measurement analysis classes for
which the statement in the main text is correct.

16

3.2.1 The Qubit Object

The Qubit object used in our lab is the QuDev_transmon (QuDev_transmon.py), and it inherits
from the Qubit object base class developed by the DiCarlo group (qubit_object.py). All qubit
objects are meta-instruments. This means that they control the lower-level QuCoDeS instru-
ment classes, which are the ones that communicate directly with the physical instruments in
the lab.

As mentioned above, QuDev_transmon stores all the parameters that characterize one qubit,
but it also stores the parameters that describe qubit operations. Typical operations that all
qubits must have are listed below:

Readout (RO) The readout operation with the readout signal parameters, such as pulse
type, pulse amplitude, pulse length, modulation frequency, and other parameters of the
microwave pulses used for reading out the qubit state.

Spectroscopy (Spec) The qubit spectroscopy operation with the spectroscopy signal param-
eters, such as pulse type, pulse amplitude, pulse length, pulse delay, and other parameters
of the microwave pulses used for qubit spectroscopy.

X180 and X180_ef The qubit and qutrit drive pulse parameters (pulse_pars), such as the
m-pulse and 7 /2-pulse amplitudes, gs.qe factors, pulse modulation frequencies, standard
deviation of the Gaussian envelope of the pulses, and other parameters of the microwave
pulses used for driving qubits.

All operations and operation parameters pertaining to a qubit can be accessed by calling
the get_operations_dict method. A possible output of calling this method is shown in [Listing 3.1]
All the qubit operation parameters discussed above and illustrated in |[Listing 3.1| are objects
of the QuCoDeS Parameter class. They are created during the qubit initialization routine with
the add_parameter method of the QuCoDeS Instrument class.

'RO gb': {'I_channel': '0',
'Q_channel': '1',
'RO_pulse_marker_channel': 'AWG1_ch3_marker2’',
'acq_marker_channel': 'AWG1_ch3_marker2',
'acq_marker_delay': 1e-07,
‘amplitude': 0.1,
'length': 2.2e-06,
'mod_frequency': 25000000.0,
'operation_type': 'RO',
'phase’: 0,
'pulse_delay': O,
'pulse_type': 'MW_IQmod_pulse_UHFQC',
'target_qubit': 'gb'},
'Spec gb': {'amplitude': 1,
'channel': None,
'length': 1e-05,
'operation_type': 'MW',
'pulse_delay': 1e-05,
'pulse_type': 'SquarePulse',
'target_qubit': 'gb'},
'X180 gb': {'I_channel': None,
'Q_channel': None,
‘alpha': 1,
'amp90_scale': 0.5,
‘amplitude': 1,
‘amplitude_90': 0.5,
'mod_frequency': 100000000.0,
'motzoi': O,
'nr_sigma': 6,
'operation_type': 'MW',
'phase': 0,
'phi_skew': O,
'pulse_delay': O,

17

'pulse_type': 'SSB_DRAG_pulse’,
'sigma': 2e-08,
'target_qubit': 'gb'}

Listing 3.1: Output of calling the get_operations_dict method of the QuDev_transmon class. See
main text for details.

The methods in QuDev_transmon are the functions that the user calls to perform a measure-
ment. The methods in this class use the following prefix convention:

measure_ These methods only perform the measurement, without altering any of the qubit
parameters, or doing any data analysis specific for the measurement. Some examples of
these routines are measure_ramsey, measure_T1, measure_rabi (the last function is described
below).

find_ These methods perform the measurement by calling the measure. methods, they perform
the relevant data analysis, and they can update the relevant qubit parameters based on the
analysis results. Some examples include find_resonator_frequency, find_T1, find_amplitudes
(the last function is described below).

calibrate_ Currently, these methods have the same functionality as the find_ methods, but
use a different name for clarity. Examples are calibrate_ramsey, which is described in

[tion 4.4 and calibrate_readout_weights.

calculate_ These methods do not perform a measurement. They use already-existing qubit
parameters to calculate new ones. In the current PycQED structure, the only examples
are calculate_anharmonicity, which is described below, and calculate_ EC_EJ.

All the measure. methods have the same general structure illustrated in for
measure_rabi. These methods prepare the instruments for the type of measurement that is
about to be performed (line 33), then they send the information about what is being measured
to the MeasurementControl object (lines 41-47), which runs the experiment (line 48). Finally, at
the end, they instantiate a MeasurementAnalysis object with the relevant parameters from the
user (line 52).

The method that uses measure_rabi to extract the w-pulse and 7/2-pulse amplitudes from a
Rabi measurement was developed during this project and is called find_amplitudes. Its source
code is shown in [Listing 3.3l This function is a find_. method, and hence it calls the correct
measure_ method to perform a measurement (line 49 for a qubit, and line 56 for a qutrit),
analyzes the data using the correct class from measurement_analysis.py (line 65), and at the end
updates the relevant qubit parameters (lines 74-79) if the user wants to do so (update = true).

Finally, an example calculate- method is calculate_anharmonicity, shown in [Listing 3.4 This
function simply subtracts the frequency of the first transition from the frequency of the second
transition.

def measure_rabi(self, amps=None, MC=None, analyze=True,
close_fig=True, cal_points=True, no_cal_points=2,
upload=True, label=None, n=1):

Varies the amplitude of the qubit drive pulse and measures the readout
resonator transmission.

Args:
amps the array of drive pulse amplitudes
MC the MeasurementControl object
analyse whether to create a (base) MeasurementAnalysis

object for this measurement; offers possibility to

18

14 manually analyse data using the classes in

15 measurement_analysis.py

16 close_fig whether or not to close the default analysis figure
17 cal_points whether or not to use calibration points

18 no_cal_points how many calibration points to use

19 upload whether or not to upload the sequence to the AWG
20 label the measurement label

21 n the number of times the drive pulses with the same
22 amplitude should be repeated in each measurement
23 e

24

25 if amps is None:

26 raise ValueError("Unspecified amplitudes for measure_rabi')

27

28 # Define the measurement label

29 if label is None:

30 label = 'Rabi-n{}'.format(n) + self.msmt_suffix

31

32 # Prepare the physical instruments for a time domain measurement

33 self .prepare_for_timedomain()

34

35 # Define the MeasurementControl object for this measurement

36 if MC is None:

37 MC = self.MC

38

39 # Specify the sweep function, the sweep points,

40 # and the detector function, and run the measurement

41 MC.set_sweep_function(awg_swf.Rabi(pulse_pars=self.get_drive_pars(),
42 RO_pars=self.get_RO_pars(), n=n,
43 cal_points=cal_points,

44 no_cal_points=no_cal_points,

45 upload=upload))

46 MC.set_sweep_points (amps)

47 MC.set_detector_function(self.int_avg_det)

48 MC.run(label)

49

50 # Create a MeasurementAnalysis object for this measurement

51 if analyze:

52 ma.MeasurementAnalysis(auto=True, close_fig=close_fig)

Listing 3.2: Source code for the measure_rabi method of the QuDev_transmon class. awg_swf.Rabi
is the class defining the Rabi sequence inside the awg_sweep_functions.py module, and ma is
the measurement_analysis.py module. The input parameters are explained in the grey text.

1 def find_amplitudes(self, rabi_amps=None, label=None, for_ef=False,

2 update=False, MC=None, close_fig=True, cal_points=True,
3 no_cal_points=None, upload=True, last_ge_pulse=True,
4 analyze=True, **kw):

5

6 if not update:

7 logging.warning("Does not automatically update the qubit pi and "
8 "pi/2 amplitudes. "

9 "Set update=True if you want this!")

10

11 if MC is None:

12 MC = self.MC

13

14 if (cal_points) and (no_cal_points is None):

15 logging.warning('no_cal_points is None. Defaults to 4 is for_ef==False,'
16 'or to 6 is for_ef==True.')

17 if for_ef:

18 no_cal_points = 6

19 else:
20 no_cal_points = 4
21
22 if not cal_points:
23 no_cal_points = 0
24
25 # How many times to apply the Rabi pulse
26 n = kw.get('n',1)
27
28 if rabi_amps is None:

19

29
30
31
32
33
34
35
36
37
38
39
40

46

-~

-3

SEEN|

-3

J
1

~
IO ULk W N =

- ~J -
© 00 ~

80
81

amps_span = kw.get('amps_span', 1.)
amps_mean = kw.get('amps_mean', self.amp180())
nr_points = kw.get('nr_points', 30)
if amps_mean ==
logging.warning("find_amplitudes does not know over which "
"amplitudes to do Rabi. Please specify the
"amps_mean or the amps function parameter.")

return O
else:
rabi_amps = np.linspace(amps_mean - amps_span/2, amps_mean +
amps_span/2, nr_points)

if label is Nomne:

if for_ef:

label = 'Rabi_2nd' + self.msmt_suffix
else:

label = 'Rabi' + self.msmt_suffix

Perform Rabi
if for_ef is False:
self .measure_rabi(amps=rabi_amps, n=n, MC=MC,
close_fig=close_fig,
label=label,
cal_points=cal_points,
no_cal_points=no_cal_points,
upload=upload)
else:
self .measure_rabi_2nd_exc(amps=rabi_amps, n=n, MC=MC,
close_fig=close_fig, label=label,
cal_points=cal_points,
last_ge_pulse=last_ge_pulse,
no_cal_points=no_cal_points,
upload=upload)

Get pi and pi/2 amplitudes from the analysis results
if analyze:
RabiA = ma.Rabi_Analysis(label=label, NoCalPoints=no_cal_points,
close_fig=close_fig, for_ef=for_ef,
last_ge_pulse=last_ge_pulse, **kw)

rabi_amps = RabiA.rabi_amplitudes
amp180 = rabi_amps['piPulse’]
amp90 = rabi_amps['piHalfPulse']

if update:
if for_ef is False:
self.amp180(amp180)
self.amp90_scale (amp90/amp180)
else:
self.amp180_ef (amp180)
self.amp90_scale_ef (amp90/amp180)
else:
return

Listing 3.3: Source code for the find_amplitudes method of the QuDev_transmon class. In the
input parameters, for_ef specifies whether to perform the measurement and analysis for the
second qubit excitation, update specifies whether to update the relevant qubit parameters,
cal_points specifies whether to use calibration points or not, no_cal_points specifies the number
of calibration points to use, upload specifies whether to upload the created sequence to the AWG,
last_ge_pulse specifies whether to apply a |g) <> |e) m-pulse at the end of each sequence for qutrit
measurements , and analyze specifies whether to perform the data analysis. The
role of calibration points will be described in [Section 3.2.3. measure_rabi_2nd_exc performs the
Rabi measurement on the |e) <+ |f) transition, and ma is the measurement_analysis.py module.
"kw” means "keyword arguments,” and it allows functions to receive an arbitrary number of
input keyword arguments. For example, all the input parameters to measure_rabi are passed in
as keyword arguments.

20

1
D
3
1
5
]

{

8

9
10
11
12
13
14
15
16
17

def calculate_anharmonicity(self, update=False):

if not update:
logging.warning("Does not automatically update the qubit anharmonicity
"parameter. Set update=True if you want this!")

if self.f_qubit() == O:

logging.warning('f_ge = 0. Run qubit spectroscopy or Ramsey.')
if self.f_ef_qubit() == O:

logging.warning('f_ef = 0. Run qubit spectroscopy or Ramsey.')

anharmonicity = self.f_ef_qubit() - self.f_qubit()

if update:
self.anharmonicity(anharmonicity)

return anharmonicity

Listing 3.4: Source code for the calculate_anharmonicity method of the QuDev_transmon class.
f-qubit and f-ef qubit are the |g) <> |e) and |e) <> |f) transition frequencies.

3.2.2 Measurement Control Flow

This section presents the interdependence between the most important classes necessary to run
a measurement: MeasurementControl, detector functions, and sweep functions. The first part
describes the communication between these objects during a measurement, and then the rest of
the section looks more closely at a particular category of sweep functions, the AWG sequences,
and explains how they are created in PycQED.

The MeasurementControl Object and its Dependencies

The MeasurementControl (MC) is the meta-instrument class that is in charge of running an
experiment. It passes the correct instructions to the physical instruments before and during the
measurement, and saves the acquired data in Hierarchical Data Format (HDF) (described at
the end of this section). For each measurement, the MC needs to know from the qubit object
the following three items:

Sweep Function An object that sets the parameters which will be swept over during the mea-
surement. These sweep parameters are set in a format that is expected by the MC. Exam-
ples: all the AWG sweep functions classes defined in the module awg_sweep_functions.py,
and discussed later in this section.

Sweep Points An array of values for the parameter that will be swept over in the measure-
ment. Examples: the drive pulse amplitudes for Rabi oscillations, or the delay times for
a Ramsey experiment.

Detector Function A meta-instrument that is in charge of the data acquisition process by
communicating directly with the acquisition device. Examples: all the classes in the mod-
ule detector_functions.py

From we see that for a Rabi measurement the sweep function (line 41) was
the Rabi class from awg_sweep_functions.py (this function is described in more detail below),
and the detector function (line 47) was int_avg_det. There are two types of sweep and detector
functions: hard(ware-controlled) and soft(ware-controlled). A measurement must contain only
one of these types for both sweep and detector functions, i.e. one cannot use, for example, a
soft sweep and a hard detector.

21

The hard functions prepare the measurement which is then entirely controlled by the phys-
ical hardware in the lab. At the end of each measurement, the acquired data is returned
to PycQED. For example, the QuDev_transmon function int_avg det used by the measure_rabi
method is an instance of the hard detector object UHFQC_integrated_average detector defined
in detector_functions.py. This object performs an integrated average of the readout data using
the UHFLIL.

The soft functions control the entire measurement themselves. They define a sweep point
on an instrument and use another instrument to measure it. The measure_(qubit)spectroscopy
method, for instance, uses the Heterodyne_probe soft detector, an object that in turn controls
the Heterodynelnstrument. The latter is a meta-instrument that communicates with multiple
physical instruments (microwave generators, AWGs etc.) defined by the user when an instance
of the qubit object is created.

In the current PycQED version, the naming convention for homodyne and heterodyne does
not necessarily refer to the experimental setups that these names conventionally describe. In
a homodyne acquisition setup, the mixer that upconverts the signal for driving the readout
resonator and the mixer that downconverts the output signal use the same local oscillator
(LO) signal. In a heterodyne scheme, the LO signals for the upconversion (UC) and down-
conversion (DC) mixers are provided by different microwave generators (see section 4.3 in |15]
for details about IQ modulation). In PycQED, for example both measure_spectroscopy and
measure_resonator_spectroscopy use the Heterodyne_probe soft detector, to which they pass the
self.heterodyne instrument object defined in QuDev_transmon. Thus it appears as if this mea-
surement should only be used with the heterodyne setup. Yet this is not necessarily so; the two
spectroscopy routines also work for a homodyne setup, because the self.heterodyne parameter
can actually be any (meta)-detector that is passed in by the user when the qubit is initialized.
For more details about homodyne and heterodyne detection in the context of circuit QED see
section 4.3 in |15] and section 6.3 in [29].

The acquired data is returned to the MC where the method create_experimentaldata_dataset
prepares it for the MeasurementAnalysis object and saves it using the hHpy package. h5py is a
Python-style interface to the HDF5 format [30]. The latter is a platform-independent package
developed by the HDF Group to facilitate storage and handling of big data [31]. Measurement-
Control saves the measurement data using the Data object defined in hdf5_data.py, which is a
wrapper of an h5py data object.

In the remainder of this section, the hard sweep functions, and in particular the classes that
create the AWG sequences, will be discussed in more detail.

AWG Sequences Classes as Sweep Functions

All time-domain measurements presented in this thesis (Rabi, Ramsey, T1, DRAG pulse cali-
bration) use the AWG hard sweep functions classes, which are the ones that upload the pulse
sequences presented in to the AWG. These routines follow the template illustrated
in for the Rabi class.

The prepare method in (line 17) passes all the relevant parameters to the Rabi_seq
function (line 19) shown in [Listing 3.6 The Rabi_seq function then proceeds to define (lines 23-
28) and upload (line 36) the pulse_list to the AWG via the Pulsar object, a meta-instrument that
controls the communication with the AWGs. Pulsar needs to know the Sequence object and the
list of Elements to upload. An Element contains a list of Pulse objects, which create a waveform
of time-amplitude pairs for each AWG channel. An example of a Pulse is the SSB_DRAG _pulse
defined in pulse_library.py. As the name suggests, this object implements the DRAG pulse
described in [Section 2.2.6]

Once it has the list of pulses, Pulsar also needs to know the instructions for how to build

22

1
2
3
4
5

6
7
8
9
10
11
12
13
14

15

an AWG sequence. This information is contained in the Sequence object, which is a list of
instructions specifying the Elements that must be used, the order in which they must occur,
and the number of times that each should be repeated. The Sequence object also contains
information that instructs the AWG whether to expect a trigger and at what point it should
expect it.

Finally, the QuCoDeS object Station contains all the information about an existing exper-
imental setup, thus defining the current work station. Hence, line 36 in [Listing 3.6| instructs
PycQED to upload the newly-generated Rabi sequence to the AWGs in the current work sta-
tion. All the instruments and meta-instruments (including Pulsar) must be added to the Station
object during each initialization of PycQED.

class Rabi(swf.Hard_Sweep):

def __init__(self, pulse_pars, RO_pars, n=1, cal_points=True,
no_cal_points=2, upload=True, return_seq=False):
super () .__init__Q)
self.pulse_pars = pulse_pars
self .RO_pars = RO_pars
self.n = n
self.cal_points = cal_points
self.no_cal_points=no_cal_points
self.upload = upload

self.name = 'Rabi’
self.parameter_name = 'amplitude'
self.unit = 'V’

self.return_seq = return_seq

def prepare(self, **kw):
if self.upload:
sgs.Rabi_seq(amps=self.sweep_points,
pulse_pars=self.pulse_pars,
RO_pars=self.RO_pars,
cal_points=self.cal_points,
no_cal_points=self.no_cal_points,
n=self.n, return_seq=self.return_seq)

Listing 3.5: Source code for the Rabi AWG sweep function class inside awg_sweep_functions.py.
In the input parameters, pulse_pars and RO_pars are the qubit drive parameters and the readout
parameters described in [Section 3.2.1] n is a number specifying how many times to repeat
the same sequence before measurement, cal_points are the measurement calibration points,
no_cal_points specifies the number of calibration points to use, upload specifies whether or not
to upload the sequence to the AWG, and return_seq instructs the Rabi_seq function to return
the generated sequence object. The role of calibration points will be explained in [Section 3.2.3
sgs refers to the single_qubit_tek_seq_elts.py module which contains all the objects that generate
AWG sequences for single qubits. "kw” means "keyword arguments” and it allows functions
to take an arbitrary number of input keyword arguments, such as all the input parameters to
Rabi_seq.

def Rabi_seq(amps, pulse_pars, RO_pars, n=1, post_msmt_delay=3e-6, no_cal_points=2,
cal_points=True, verbose=False, upload=True, return_seq=False):

seq_name = 'Rabi_sequence’

seq = sequence.Sequence(seq_name)
station.pulsar.update_channel_settings()
el_list = []

pulses = get_pulse_dict_from_pars(pulse_pars)

for i, amp in enumerate(amps): # seq has to have at least 2 elts
4 calibration points
if cal_points and no_cal_points==4 and \
(i == (len(amps)-4) or i == (len(amps)-3)):
el = multi_pulse_elt(i, station, [pulses['I'], RO_pars])
elif cal_points and no_cal_points==4 and \

23

16

18
19
20

26

(i == (len(amps)-2) or i == (len(amps)-1)):
el = multi_pulse_elt(i, station, [pulses['X180'], RO_pars])
2 calibration points
elif cal_points and no_cal_points==2 and \
(i == (len(amps)-2) or i == (len(amps)-1)):
el = multi_pulse_elt(i, station, [pulses['I'], RO_pars])
else:
pulses['X180'] ['amplitude'] = amp
pulse_list = n*[pulses['X180']]+[RO_pars]

copy first element and set extra wait
pulse_list[0] = deepcopy(pulse_list[0])
pulse_list[0] ['pulse_delay'] += post_msmt_delay

el = multi_pulse_elt(i, station, pulse_list)

el_list.append(el)
seq.append_element (el, trigger_wait=True)

if upload:
station.pulsar.program_awgs(seq, *el_list, verbose=verbose)

if return_seq:

return seq, el_list
else:

return seq

Listing 3.6: Source code for the rabi_seq function inside single_qubit_tek seq_elts.py. In the
input parameters, amps is the array of Rabi amplitudes, pulse_pars and RO_pars are the qubit
drive parameters and the readout parameters described in [Section 3.2.1] cal_points are the
measurement calibration points (see main text), no_cal_points specifies the number of calibration
points to use, upload specifies whether or not to upload the sequence to the AWG, return_seq
decides whether to return the generated sequence object, n is a number specifying how many
times to repeat the same sequence before measurement, and post_-msmt_delay is the time to
wait between the measurement of one run and the start of the next run. verbose is a Python
parameter that instructs a function to output detailed logging information during its operation.

The role of calibration points in lines 12-21 will be explained in [Section 3.2.3|

3.2.3 The Measurement Analysis Structure

This section will present the overall structure of the measurement_analysis.py module, with a
focus on the analysis routines needed for single-qubit gates calibration. Most of this structure
already existed at the start of our collaboration with the DiCarlo group, but several features
have been improved throughout this project. This section will describe the structural changes
that have been made to measurement_analysis.py, and will present in detail the
original and current states of the analysis classes for single-quit operations.

The MeasurementAnalysis object was designed to be the lowest base class for all the analysis
routines discussed in this thesis. Thus, it implements functions that are common to all these
classes. The get_naming_and_values(_2D) methodﬂ extracts all the measurement parameters from
the data file. In particular, it extracts the array of sweep points (sweep_points) and the array
of acquired data (measured_values), and it gets the names and units of the measured variables.
This method was improved during this project to also produce the scaled_sweep_points array
with the sweep points scaled to the appropriate units for each measurement.

The default_ax(is) and default_fig(ure) methods create plots with the standard sizes for one
and two column articles defined in the Physical Review Letters (PRL) journal [32] (this feature
was added during this project). The plot_results_vs_sweepparam method is the main plotting

2The 72D” refers to a two-dimensional measurement where two independent variables are swept and the
response of the dependent variable is measured.

24

function used by all analysis routines to plot the final results versus the sweep parameters
(for example the |e) population vs. time delay values for Ramsey). This method was already
implemented before this project, and it was incorporated into some of the analysis routines
for single-qubit calibration measurements. During this project, this plotting function was also
included into the remaining routines and has been improved to produce well-proportioned
graphs (all figures in illustrate plots produced with this method).

The MeasurementAnalysis base class also save(s)_fitted_parameters that result from the fit,
save(s)_computed_parameters that are computed from the fit results (m-pulse , 7/2-pulse etc.),
and save(s)_fig(ure).

In each analysis class, the run_default_analysis method is the main function that controls the
entire flow of operations required in each routine. In MeasurementAnalysis this method simply
produces two subplots of the measured_values vs. sweep_points. Depending on the measurement
type, the measured_values array can store either the raw I and Q data acquired by the UH-
FLI (for example for all time-domain measurements in Sections [2.2.3(2.2.6]), or the complex
magnitude and angle of the I and @ data (for example for spectroscopy measurements). The
plots produced by the run_default_analysis method of the base class for a resonator spectroscopy
measurement is shown in [Figure 3.1]

In order to generate plots of the unmodified data like the one shown in [Figure 3.1} all the
other analysis classes inherit this method either directly from the MeasurementAnalysis base
class, or indirectly from another intermediate base class, such as TD_Analysis discussed below.
Each analysis class then proceeds to add operations and plots that are specific to each routine
(see Bcction J).

The analysis classes for qubit spectroscopy and resonator spectroscopy inherit directly
from MeasurementAnalysis. All the other single-qubit calibration analysis routines deal with
time-domain experiments, and were designed to inherit first from TD_Analysis, which itself
inherits from MeasurementAnalysis. The TD_Analysis class adds on top of the Measurement-
Analysis base class those functions that are common to all time-domain analysis routines. In
particular, the normalize_data_to_calibration_points method in TD_Analysis uses calibration points
(cal_points) to extract the most useful information from a data set. This calibration process is
explained in detail later in this section. At the start of our collaboration, this method could
only support 4 calibration points. As a result of this project, the algorithm is now more robust
and allows the user to choose between using 2, 4, 6, or no calibration points for a measurement.

As mentioned above, the TD_Analysis class inherits the run_default_analysis method from Mea-
surementAnalysis. An important improvement added during this project is that now TD_Analysis
also generates a plot object of the calibrated data versus the sweep_points, which is accessible
to each analysis class for single-qubit time-domain operations. These specific classes fit the
calibrated data to the relevant fitting model, extract the parameters of interest, and plot the fit
results on the same figure that was produced in TD_Analysis. As a result, no code is duplicated,
and the plots generated by all time-domain routines shown in are consistent.

This layered inheritance structure was the original intent for measurement_analysis.py. Yet,
it was not being properly used before the completion of this project. For example, the code
for producing the plots shown in was duplicated several times throughout the entire
inheritance tree instead of reusing the same algorithm from the run_default_analysis method
of MeasurementAnalysis. This type of implementation not only introduces redundancy and de-
creases code readability, but it also produces a lack of consistency between plots produced with
different routines. Consequently, an additional improvement as a result of this project is that
all the figures produced by the analysis classes for single-qubit operations are consistent in that
they use the same font sizes, marker sizes, and line widths.

The remainder of this section will describe how calibration points are used to extract the
most information about the qubit state from the raw measurement data.

25

resonator_scan_gbl
20170611 144939

le-2

7.45 7.46 7.47 7.48 7.49 7.50
Heterodyne frequency (GHz)

le2

15 F .
1.0 .

-0.51 .

S21 angle (deg)
o
o

=15 .

7.45 7.46 7.47 7.48 7.49 7.50
Heterodyne frequency (GHz)

Figure 3.1: Complex amplitude (|S21|) and phase (521 angle) of the I and Q raw data from a
resonator spectroscopy measurement plotted as a function of the input frequency to the readout
resonator (heterodyne frequency). In the current version of PycQED, the x-axis label will always
be Heterodyne frequency irrespective of whether a heterodyne or homodyne acquisition setup
was actually used for the measurement (see for details).

26

S UL W N

N

26

Measurement Calibration for Time-Domain Analysis

Calibration points are used to find the best way to combine the I and Q data stored in
measured_values into one single data set with as little loss of information about the qubit state
as possible. For a Rabi measurement, for example, the information about the qubit population
must be extracted from the raw I and Q data. If we look back at the rabi_seq in |Listing 3.6}
the no_cal_points parameter decides for how many values in the array of pulse amplitudes to
use calibration sequences instead of the normal Rabi sequence described in [Section 2.2.3] If
there are 2 cal_points, then the last two sequences in the Rabi measurement consist of an "I’
pulse each. "I’ is the PycQED notation for an identity pulse, i.e. nothing is applied and the
qubit remains in the |g) state. The reason why two identity pulses are used instead of one is
explained below. If 4 cal_points are passed in, then the last four sequences are used as calibra-
tion sequences such that the first two of these last four sequences are [-pulses (qubit remains
in |g)), and the very last two sequences are X180-pulses. X180’ is the PycQED notation for a
m-pulse on the |g) > |e) transition, which brings the qubit population into the |e) state. There
is also the third option where the cal_points parameter is False. In this case a regular Rabi
sequence is applied for all the sweep points, and no cal_points are used.

The reason for using two identical calibration sequences for each calibration state is to
improve the accuracy of each calibration measurement. When the data is modified based on
these points, the results from each pair of identical calibration measurements are averaged.
Then, just as one would expect, there are indeed only no_cal_points/2 calibration states.

The matter becomes slightly more complicated for qutrit measurements, as here we have
three transmon states and can have up to 6 cal_points. The source code for rabi_2nd_exc_seq is
shown in [Listing 3.7} As we have seen in the previous paragraph, the cal_points place the qubit
population in one of the two qubit states for the duration of the measurement. For a qutrit
then, we expect the cal_points to do the same. It is easy to see that for 6 cal_points, the last
six sequences do precisely this: the first two of these last six leave the qubit in |g), the middle
two leave it in |e), and the last two leave it in |f). For 4, 2, and no cal_points, the behavior is
the same as described in the previous paragraph.

def Rabi_2nd_exc_seq(amps, pulse_pars, pulse_pars_2nd, RO_pars, n=1,
cal_points=True, no_cal_points=4, upload=True, return_seq=False,
post_msmt_delay=3e-6, verbose=False, last_ge_pulse=True):

seq_name = 'Rabi_2nd_exc_sequence'

seq = sequence.Sequence(seq_name)
station.pulsar.update_channel_settings()

el_list = []

pulses = get_pulse_dict_from_pars(pulse_pars)
pulses_2nd = get_pulse_dict_from_pars(pulse_pars_2nd)

for i, amp in enumerate(amps): # seq has to have at least 2 elts
6 calibration points
if cal_points and no_cal_points == 6 and \
(i == (len(amps)-6) or i == (len(amps)-5)):
el = multi_pulse_elt(i, station, [pulses['I'], pulses_2nd['I'], RO_pars]l)
elif cal_points and no_cal_points == 6 and \
(i == (len(amps)-4) or i == (len(amps)-3)):
el = multi_pulse_elt(i, station, [pulses['X180'], pulses_2nd['I'], RO_pars])
elif cal_points and no_cal_points == 6 and \
(i == (len(amps)-2) or i == (len(amps)-1)):
el = multi_pulse_elt(i, station, [pulses['X180'], pulses_2nd['X180'], RO_pars])
4 calibration points
elif cal_points and no_cal_points == 4 and \
(i == (len(amps)-4) or i == (len(amps)-3)):
el = multi_pulse_elt(i, station, [pulses['I'], pulses_2nd['I'], RO_pars])
elif cal_points and no_cal_points == 4 and \
(i == (len(amps)-2) or i == (len(amps)-1)):
el = multi_pulse_elt(i, station, [pulses['X180'], pulses_2nd['I'], RO_pars])
2 calibration points
elif cal_points and no_cal_points == 2 and \

27

(S S S WS

DU W N

v Ot

3

(i == (len(amps)-2) or i == (len(amps)-1)):
el = multi_pulse_elt(i, station, [pulses['I'], pulses_2nd['I'], RO_pars])
else:
pulses_2nd['X180'] ['amplitude'] = amp

pulse_list = [pulses['X180']]+n*[pulses_2nd['X180']]

if last_ge_pulse:
pulse_list += [pulses['X180']]

pulse_list += [RO_pars]

copy first element and set extra wait
pulse_list[0] = deepcopy(pulse_list[0])
pulse_list[0] ['pulse_delay'] += post_msmt_delay
el = multi_pulse_elt(i, station, pulse_list)
el_list.append(el)
seq.append_element (el, trigger_wait=True)

if upload:
station.pulsar.program_awgs(seq, *el_list, verbose=verbose)

if return_seq:

return seq_name, el_list
else:

return seq

Listing 3.7: Source code for the rabi_2nd_exc_seq function inside single_qubit_2nd_exc_sqs.py.
This routine implements the same functionality as the Rabi_seq function discussed in
but for a qutrit. In the input parameters, amps is the array of Rabi amplitudes,
pulse_pars and RO_pars are the qubit drive parameters and the readout parameters described
in pulse_pars_2nd are the drive parameters for the |e) < |f) transition, n is a
number specifying how many times to repeat the same sequence before measurement, cal_points
are the measurement calibration points, no_cal_points specifies the number of calibration points
to use, upload specifies whether or not to upload the sequence to the AWG, return_seq decides
whether to return the generated sequence object, post_msmt_delay is the time to wait between
the measurement of one run and the start of the next run, and last_ge_pulse decides whether
there will be a |g) <> |e) 7-pulse at the end of each sequence (see [Section 2.2.3). verbose is a
Python parameter that instructs a function to output detailed logging information during its
operation.

To help understand what the cal_points do, the raw data from two Ramsey experiments
plotted in the complex plane are shown in the topmost graphs of [Figure 3.2 where the cal_points
are marked in black, green, and red, for the |g), |e), and |f) states, respectively. The question
can now be reformulated to ask, on which axis in this plane should the data points be projected
in order to obtain the most relevant information about the qubit state compared to just simply
discarding the QQ data pointﬂ (the y axis in the top row of .

If no calibration points are used, then we have no certain information that any one of the
data points truly represents a known qubit state. Thus, the best strategy is to use principal
component analysis (PCA) in order to project the data onto the line that minimizes the normal
distance from each data point to the line. This is different from least squares minimization where
the distance along the x or y axis from each data point to the line is minimized. For details on
PCA see [33].

For all other cases, the data is first translated such that the qubit |g) state is placed at the
origin of the coordinate system (see second row of graphs in . This effectively means
that everything is done with respect to the |g) state. If only 2 cal_points exist, then we know

3This technique is sometimes used in practice because most of the information about the qubit is contained
in the I data. Some of the analysis routines have support for cases where only one quadrature is measured, but
not all. This issue was outside the scope of this project.

28

1e4 raw data le—3 raw data

78F T : T . i T T T
8 HS « data ° « data
77F ° ° o |g> - 1.00-® o |g> -
. ° |e> ® |e>
761 .: b 0.98 . . * . o |f> A
7.5F ° . q . . .o
. 0.96 o e P 1
S74r N - S . ol s
= o2 = ce Sace o
< e ©0.94 .« % . .
7.3+
22L . , 0.92F . 1
) ¢ ® o
7.1¢ cre 1 0.90} °
7.0 ¢ A
. . . . *® 0.88 . Lt . 1
-2 0 2 4 -4 -3 -2 -1
1(V) le3 1(V) le-3
1e3 translated to |g> le—4 translated to |g>
L ® d .
8 LA 0.2} e data |
. * |g>
r .] o |e>
N 0.0F 0 1
_6f .:. § _ « o ° o |f>
b P > . . .o
z | | 2 o2k .. ;]
3 57 ¢ data °: e . N RS
24r ® lo> .2 1 7 -0.4F : ce, P o
§ 5| ® |e> ‘oo | § « ° . . .
OI ., O'I -0.6 o . B
2 .. b M LIS
ool _os8l o
1t . — .
.
ol i -1.0f . 1
-6 -4 -2 0 0 1 2 3
|_translated (V) le3 |_translated (V) le-3
1e2 rotated to lie along ge le-5 rotated to lie along gf
3F ° e data - N e data
e e |g> 4 e o ® |g>
2t <. o le> ey e e
. . ° S e |f>
_ 2F p . . .*
2 1r M ® 2 R 1
o > ° o . °
Qe o . g ot o -
s ol ° . ° i 8 o % es ° .
s Of & N . S . > .
ol ¢ . ¢ ° ol 2t 4 . oo 4
-1r e v 1 .
. . .
L. . . ® .
—2F °« ° . * . 4 —4r 1
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3
|_rotated (V) led I_rotated (V) le-3
1e4 |_rotated vs sweep points 1e—3 |_rotated vs sweep points
T . : . .; T T T . -
1.0 q 3.0F o
0.8 1 251]
s 220t 1
- 0.6 1 °
3 1
I S15¢ 1
o o
Zi10.4¢1 b =
1.0+ 1
021] 0.5F 4
0.0 L 0.0F o
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
T (us) le-6 T (us) le-6
(a) Ramsey_ge (b) Ramsey_ef
4 cal_points 6 cal_points

last_ge_pulse=True

Figure 3.2: The steps for measurement calibration based on calibration points are illustrated
for a Ramsey measurement on a qubit (a) and qutrit (b). I and Q refer to the in-phase an
quadrature data arrays stored in measured_values. See main text for details.

29

that they represent the |g) qubit state. A least squares optimization routine is employed to find
the line of best fit through the data that also necessarily intercepts the origin (|g) state). The
data is then projected onto it.

If there are 4 cal_points, the data points are then rotated such that they lie along the axis in-
tersecting the two qubit states described by those calibration points (third row in .
For example, if the analysis is for a qubit, then the 4 cal_points are the |g) and |e) states
(Figure 3.24). If there are 6 cal_points, and a |g) «+ |e) m-pulse was applied before each mea-
surement (last_ge_pulse=True in , then only the cal_points that place the qutrit in
the |g) and |f) states will be used to rotate the data, because the oscillations will be between
those two states (Figure 3.2b)). Similarly, for 6 cal_points and last_ge_pulse=False, only the |e)
and |f) states calibration points are used. After the correct rotation is performed, the data is
projected onto the respective axis by keeping only the first array (the x coordinates) in the
rotated data and discarding the other. The last row in plots this array versus the
sweep_points.

The function that performs the measurement calibration for all the cases discussed above
is called rotate_and_normalize_data, and is defined in analysis_toolbox.py.

3.3 Using PycQED in an Experiment

This section will show how to use PycQED to perform the single-qubit calibration measurements
discussed in [Section 2.2

All the relevant folders on the PycQED PC are located on the Data drive. The data folder
is where each measurement is saved, and the Control software folder contains the local copies
of the PycQED and QuCoDeS repositories, as well as the Jupyter Notebooks used to actually
perform the measurements (this interface is illustrated in the three figures shown below). For
logging purposes, the current convention is that a different notebook should be used on each
new day of measurements.

The first cell of each notebook must call the init(ialization) script for the particular chip
and setup used. Mostﬁ of the work in this thesis was performed on the eight qubit chip pre-
sented in [Section 2.1.1, which uses the initialization script bluefors1_M81B1.py, where M81B1
is the chip name. The role of this script is to import all the required files from the PycQED
and QuCoDeS repositories, to open the connections to all the instruments and initialize all
meta-instruments (including all the 8 qubits available on the chip), and to initialize a QuCoDeS
station and add all the meta-instruments to it.

The room-temperature electronics setup used for this example is shown in [Figure 3.3a] Up-
conversion board 5 (UC5) was used for readout, with the LO provided by microwave generator
(MWG) 5, and UC2 was used for qubit drive, with the LO provided by MWG 7. The interme-
diate frequency (IF) for both UC5 and the downconversion board (DC) was generated by the
UHFLI, and for UC2 it was generated by channels 1 and 2 of AWG1. Each UC board has a
switch that decides whether the LO signal is routed directly to the RF output (bypass mode),
or whether it first gets upconverted by the mixer (modulated mode). The circuit diagram of
the upconversion boards used in our lab is illustrated in [Figure 3.3b] For the measurements
shown in the three figures below, the bypass mode is only used for the continuous wave qubit
spectroscopy measurement.

Figure 3.4 shows how to import the init file, how to set the control switches inside the
upconversion boards and the warm amplifier (WA), how to set the voltage to the coil that
tunes the frequencies of the desired qubit, and how to perform resonator spectroscopy by
calling the find_resonator_frequency method of QuDev_transmon. The homodyne object is the

4See [Appendix B|for a summary of the different samples used throughout this thesis.

30

AWG

Channel 1 Dilution Refrigerator
Channel 2 UC Board 1
Q
Qubit Drive
I RF —) .
MWG 7 Signal Input DC Board
LO
| Signal Q
1 Output) RF 1=
Q LO
. |
Resonator Drive
I RF +
Signal Input
LO
UC Board 5
MWG 5

UHFLI

(a) Room temperature setup.

—HzooH
] inm) RF
| A VAT)
min| Mixer
U calib

TTL 24V

(b) Upconversion board circuit diagram.

Figure 3.3: (a) Room temperature setup for the microwave components and devices used in
the example presented in this section for how to perform measurements in PycQED. See main
text for details. (b) Circuit diagram for the upconversion (UC) boards used in our lab. LO is
the local oscillator, I and Q are the in-phase and quadrature components of the intermediate
frequency (IF) signal, and ”Mixer calib” is the output used for mixer calibration (more details
about mixer calibrations can be found in [15]). The radio-frequency (RF) port of the UC board
mixer is used as an output that is routed to the dilution refrigerator, while the RF port of the
downconversion (DC) board is used as an input from the dilution refrigerator.

31

meta-instrument that controls all the readout equipment: the microwave generator providing the
LO signal, the instrument providing the IF signal, the acquisition instrument (in this case the
UHFLI), and the trigger instrument (typically the AWG). In this case, the class instance name
homodyne does refer to a homodyne setup, where the mixers inside the readout upconversion
and resonator signal downconversion boards use the same LO signal, which for this setup was
MWG 5. The readout power (in Volts) and the IF frequency are set with the mod_amp and
f-RO_mod parameters, respectively. Finally, the RO_fized_point sets the time at which the AWG
should generate the readout pulse trigger.

In []: from pycgedscripts.init.blueforsl ME1El import *

Set the switch inside the upconversion board 5 to modulated

This means that the "i' = used

SwitchControl. WA2 mnde(H=a5mre'}
station.sequencer config['RO fixed point'] = 20e-8&

In []1: | # S=t coil voltags

DC_source.volt_coil 5(-0.3)

Resonator Spectroscopy

In [1: | # homodyne is the RO insrument MWGS
homodyne.auto seq loading (True)

5=t RO powver in Veolts

homﬂdyne mod_amp (0.24)

Number of averagss

homﬂdyne nr avexagestz** o)

RO modulation freq cy; creates top side-band to the

right of LO freq

homﬂdyne £] RO mﬂdt;S eE}
homodyne. 51ngle sideband demod (True)

Performs the measursms=nts and analyzes the rssults

gb2.find resonator frequency(fregs=np.linspace (7.38e9,7.4229,300))

Figure 3.4: General settings and resonator spectroscopy. All input values must be in SI units.
WA and UC refer to the warm amplifier and the upconversion boards, respectively. The
RO_fized_point sets the time at which the readout pulse occurs, DC_source is the instrument
that sets the DC coil voltages, and homodyne is the readout meta-instrument.

[Figure 3.5 and [Figure 3.6/ show how to perform the single-qubit gates calibration measure-
ments on a qubit and qutrit, respectively. Both spectroscopy measurements are continuous wave
(see for details). Switching between a qubit and a qutrit operation is easy in Py-
cQED as it only requires setting the for_ef (or analyze_ef for qubit spectroscopyED parameter
to True. In these two figures, update decides whether to update the relevant qubit parameters,
upload decides whether to upload the respective sequences to the AWG (since this takes some
time, it is useful to be able to prevent it if the same measurement is performed multiple times in
a row), show_fit_results displays the fit report, show displays all images produced by the analy-
sis routines, and last_ge_pulse decides whether to finish each sequence in a qutrit measurement
with a m-pulse on the |g) <> |e) transition.

The readout frequency can be set either by configuring the frequency of the homodyne
meta-instrument directly (as is done for both resonator and qubit spectroscopy), or by changing
the f RO qubit parameter. This option allows the user to both store a different value of this
parameter for each qubit, and control it directly through the readout meta-instrument for
measurements that might not involve a qubit. The same applies for all other readout parameters.

5This parameter has a different name for qubit spectroscopy because here the relevant changes in the mea-
surement settings (higher qubit drive power and wider sweep range) are made by the user not by PycQED
behind the scenes. The only information PycQED does need to know is whether to search for two peaks instead
of one in the analysis routine.

32

In []:
In [1]
In [1]
In []:
In [1]
In [1]

Qubit Spectroscopy

ns
SwitchControl.UCZ _mode ('

Power used to d
gkl .spec_pow (40
homodyne.mod_amp (0. 3)

RO fregusncy

homodyne . frequency (7.4045e9)
homodyne.nr_averages (2%+%10)
Performs the measurements and analyzes the results

gbl.find frequency (fregs=np.linspace(6.0525,6.1523,300), update=True)

time Jy asu ts
SwitchControl.UCZ mode ('modulated')

Rabi Oscillations

gibZ.find amplitudes (rabi_amps=np.linspace(0,1,60),
cal points=False, update=True, upload=True,
show fit_results=True, show=True)

Ramsey Measurement

gb2.find frequency T2 ramsey(times=np.linspace(0,le-6,50),
artificial detuning=4s6, update=True, upload=True,
show_fit results=True, show=True)

DRAG Pulse Calibration

gib2.find gscale (gscales=np.linspace(-0.5,0.5,50),
update=Troe, upload=True,
show_fit results=True, show=True)

T1 Measurement

gb2.find T1(times=np.linspace (0, 5=-6,50),
update=True, upload=True,
show_fit_results=True, show=True)

Figure 3.5: Qubit calibration measurements. All input values must be in SI units. UC2 refers
to the upconversion board used for qubit drive, and homodyne is the readout meta-instrument.

33

High Power Qubit Spectroscopy

In []1: SwitchControl.UC2 mode ('bypass')
gb2.spec_pow (-10)
homodyne .mod anp (0. 3)
homodyne . frec_iuency [7.4045e9)
homodyne .nr_averages (2%%14)
gb2.find freguency(fregs=np.linspace(5.98e59,6.15e9,600), update=True, analyze ef=True)

In [1: #

SwitchControl.UCZ _mode ('modulated')

Rabi_ef Oscillations

In [1: gb2.find amplitudes(rabi_amps=np.linspace(0,1,60),
cal points=True, no_cal points = 4, update=True, upload=True,
show fit results=True, show=True, for_ ef=True, last_ge_pulse=False)

Ramsey_ef Measurement

In [1: gb2.find fregquency T2 ramsey(times=np.linspace(0,le-&,50),
artificial detuning=4e6, update=Troe, upload=True,
show_fit_ results=True, show=True, for_ ef=True, last_ge pulse=False)

DRAG Pulse_ef Calibration

In [1: gb2.find gscale(gscales=np.linspace(-0.5,0.5,50),
update=False, upload=True,
show_fit_results=True, show=True, for ef=True, last_ge_pulse=True)

T1_ef Measurement

In [1:|gb2.find T1(times=np.linspace (0,0.5e-&,50}),
update=True, upload=True,
show fit results=True, show=True, for_ ef=True, last_ge_pulse=False)

Figure 3.6: Qutrit calibration measurements. All input values must be in SI units. UC2 refers
to the upconversion board used for qubit drive, and homodyne is the readout meta-instrument.

34

4. Single-Qubit Calibration using
PycQED

In the overall structure of measurement_analysis.py was presented and only Mea-
surementAnalysis and TD_Analysis, the base classes of all single-qubit calibration analysis rou-
tines, were described in detail. This section will present the data analysis classes for each of
the calibration measurements described in [Section 2.2l All these classes existed at the start of
our collaboration with the DiCarlo group. Each subsection below will discuss the status of the
respective class at the start of this project, whether improvements have been made and what
they are, and will illustrate the current status of these routines with experimental results.

4.1 Resonator Spectroscopy

The resonator spectroscopy analysis class is called Homodyne_Analysis. Adding major improve-
ments to this routine, such as more complex fitting models, was not the focus of this project.
However, the generated plots have been improved as described in [Section 3.2.3| and the ex-
isting models have been tested. This class can fit the complex amplitude of the signal to a

”sloped Hanger” function (describing the structure shown in [Figure 4.1a] between 7.49 GHz
and 7.5 GHz), or the square of that amplitude (the power) to a Lorentzian function (shown

in [Figure 4.1h)):

1— 2 -
Qe 0
AW (1 —+ df fo (Sloped Hanger)
A . + offset (Lorentzian)
— . Z
T (f = fo)? + K2

In the equations above, df is the slope of the deviation of the hanger structure away from
a potentially non-flat background, fy is the resonance frequency of the resonator, f is the
independent variable which is swept in the measurement, A is the amplitude, (Q and (). are the
total and external quality factors of the resonator (see [15]), € is a phase angle describing the
capacitance couplings to the resonator, x is the full width at half maximum (FWHM) linewidth,
and offset is the offset from zero.

A few issues are already apparent in [Figure 4.1] First, already indicates in the
interval 7.48 GHz - 7.49 GHz that the fit will fail as soon as the data deviates from an ideal
Hanger function shown in red. Hence, this model cannot be used for a spectrum as complicated
as the one shown in [Figure 2.3 Therefore, better models for describing resonators inside Purcell
filters must be implemented.

Second, while the initial guess for the fit in is good, the one for the Hanger model
is wrong. This is because they both use the peak_finder function from analysis_toolbox.py to
find the tallest (smallest) peak (dip) in the data, which then becomes the initial guess for
the fy parameters in the functions above. While this method works well for a Lorentzian fit

35

(see [Section 4.2)), it very often fails for the Hanger model. This initial guess estimation must
also be improved.

resonator_scan_qgbl
20170602_120456
resonator_scan_qubit

E 20170220_175658
S 20 7
E 3
8 € 15 -
o o
gl 0.5r . E 10 .
(’l:I|]]] | | g 5 T
V' 7.480 7.485 7.490 7.495 7.500 5
Heterodyne frequency (GHz) 0 I I | 1]
8.100 8.105 8.110 8.115 8.120
fcenter = 7.49427 GHz + (445e-06) GHz Heterodyne frequency (GHz)
Qc = 9258.4 + (168.1)
Qi =37629.4 + (2781.2) feenter = 8.11079 GHz = (1.18e-05) GHz
folg = 7.49380 GHz Q = 2465.7 = (33.4)
(a) Hanger model (b) Lorentzian model

Figure 4.1: (a) Spectroscopy of readout resonator 1 from M The amplitude of the
complex signal is shown as a function of sweep frequency with a fit to the PycQED sloped
Hanger function. (b) Spectroscopy of a readout resonator showing the signal power as a function
of the sweep frequency, with a fit to a Lorentzian. The data in (b) was measured by Ants Remm
(QuDev) on a different chip than the one presented in [Section 2.1.1] (see [Appendix BJ). The
dashed traces in both images represent the initial guesses for the fits. These traces can be
removed by setting the parameter show_guess to False.

The QuDev_transmon method that performs a complete resonator spectroscopy measure-
ment and analysis is called find_resonator_frequency. shows a typical call to this
function. The fitting_model type that the analysis class should use is passed in to this function
by the user (the default value is ’hanger’). Due to the issues mentioned above, currently the
readout frequency is most often extracted by eye from interactive versions of plots like the one
in [Figure 3.1 The main reason for not optimizing this routine is that the issues mentioned
above were only properly observed during testing in the lab, which occurred towards the end
of the project. This occasion to test the developments added throughout this project was also
used for the first proper testing in the lab of many new features in PycQED that were developed
during the months of chip design.

4.2 Qubit Spectroscopy

The analysis routine for qubit spectroscopy is called Qubit_Spectroscopy_Analysis. This class was
highly improved during the course of this project. Just like the Homodyne_Analysis discussed
in the previous section, the original version of this routine also used peak_finder to find initial
guesses for the fit function parameters, and then fitted the data to the same Lorentzian function
as shown in the previous section. There was no support for finding and fitting to the second

36

peak/dip at fyr/2 described in [Section 2.2.2, and even for just one Lorentzian, the fit would

often fail because of inaccurate initial guesses.

The success of the fit depends very strongly on how good the initial guesses are. There-
fore, peak_finder was optimized to find peaks or dips more reliably. However, after the first
round of improvements, the fitting routine would still sometimes fail depending on the value
of num_sigma_threshold. This parameter defines at how many standard deviations above the
background noise the algorithm should start to search for peaks/dips. The background noise is
calculated from the input percentage parameter percentile such that percentile/100 of the num-
ber of values stored in the data array are considered noise. The value of num_sigma_threshold
varies greatly between data sets. Therefore, the current qubit spectroscopy fitting routine uses
the maximum point in the data set for peaks, and the minimum point in the data set for dips.
This has produced consistently good results like the ones in [Figure 4.2

The functionality of Qubit_Spectroscopy_Analysis was also extended to include a fit to a
double Lorentzian function, thus adding the support for finding the |g) <> |f/2) frequency. The
algorithm first finds the tallest peak or the lowest dip. For simplicity let us assume it has found a
peak. The algorithm then searches for the next two highest peaks, one to the left of the tallest at
a frequency fi.r: and amplitude A, and one to the right of the tallest at a frequency f,ign: and
amplitude A, ;4. The frequency of the tallest peak will be denoted by fiain. If Aese > Apignt
then fier, is chosen to correspond to fyr/2 and fiain t0 fge. If Ajepr < Apigne, then frin, is chosen
to represent fg. and fpqi, is reassigned to fy¢ /ﬂ.

shows the plots produced with this routine for a normal (qubit) spectroscopy
(a) and a high power (qutrit) spectroscopy (b). The latter illustrates the power broadening
effect discussed in which widens the |g) <> |e) transition peak compared to the
lg) <> | f/2) transition peak. The y-axis labels ”S21 distance” refer to the distance away from
the ground state. Qubit_Spectroscopy_Analysis combines the complex amplitude and phase of
the acquired signal with the function calculate distance_ground_state from analysis_toolbox.py.
This function defines the ground state as the mean of the lowest 70 percent of the signal’s real
and imaginary parts. This makes sense, as the qubit is mostly in the ground state during qubit
spectroscopy, and the ground state does not shift the readout resonator. Hence, it is indirectly
represented by the noisy background signal in [Figure 4.2

The markers showing the peak frequencies and text boxes below each plot are additional
minor improvements added during this project. The text boxes print the values and standard
deviations of the peak frequencies and of the FWHM line widths from the fit results, as well as
the old values for the respective transition frequencies stored in the qubit object.

The QuDev_transmon method that performs a complete qubit or qutrit spectroscopy mea-
surement and analysis is called find_frequency. This function needs to be told through the input
parameter method, what type of spectroscopy measurement to perform (the default option is the
continuous wave spectroscopy presented in , and whether to perform the analysis
on a regular or a high power spectroscopy (analyze_ef False or True, respectively). A typical
call to this function for a qubit and a qutrit is shown in [Section 3.3

4.3 Rabi Measurements

The Rabi measurement analysis class, Rabi_Analysis, fits the data that was rotated and projected
based on calibration points as described in [Section 3.2.3|to a cosine function of the form:

Beos(2mfA — ¢) + offset, (4.1)

IThis is because fgf/2 is always smaller than fge, and hence the peak corresponding to the former will be to
the left of the one corresponding to the latter.

37

spectroscopy_qb2
20170612_175516

1.0 A
Zost]
c
]
£
L 0.6 i
[}

o
C
©
B 0.4 1
©
—
o
Y 0.2+ i
0.0 i 1 1 1 Il 1 Il 1]
5.90 5.95 6.00 6.05 6.10 6.15 6.20
Frequency (GHz)
f0=6.11181 GHz + (0.02) MHz
old f0=6.06785 GHz
kappa0=0.3330 MHz %+ (0.02) MHz
(a) RO amplitude = 0.24V
Qubit drive power = -40 dBm
214 averages
spectroscopy_qb2
20170602_144754

1.0 K T T T T]
:.:"7 0.8+ b
'c
=
Qo
E 0.6 b
[J]

o

C

204t 1

2

—

o

0.2 1
0.0 1 1 |]

5.90 5.95 6.00 6.05 6.10 6.15 6.20
Frequency (GHz)

f0=6.11090 GHz % (0.41) MHz
old f0=6.10900 GHz
kappa0=16.6474 MHz + (0.69) MHz
f0_gf/2=5.99840 GHz + (0.17) MHz
old f0_gf/2=0.00000 GH
kappa_gf=1.9275 MHz + (0.25) MHz

(b) RO amplitude = 0.01V
Qubit drive power = 0 dBm
214 averages

Figure 4.2: (a) Regular and (b) high power qubit spectroscopy using the settings shown below
each image. The two readout amplitudes, which set the readout power, cannot be directly
compared because the data in (a) was taken with an additional 23 dB of gain from an amplifier
inserted before the readout input port of the dilution refrigerator. Thus, for (a) this voltage
corresponds to around -36 dBm, and for (b) to around -42 dBm. The dashed traces in both
images show the guesses for the fits. These traces can be removed by setting the parameter
show_guess to False. The y-axis label refers to the distance of the measured qubit state from
the known qubit ground state. See main text for details.

38

where B is the cosine amplitude, f is the frequency (in units of 1/Volt), A is the qubit drive
amplitude which is swept during the measurement, ¢ is the phase, and offset is the offset of the
cosine from zero.

The Rabi_Analysis class existed at the start of this project, but was incomplete. The routine
would simply fit the magnitude of the signal (1/I* + Q?) to a cosine, calibration points were
not being used, and the 7- and 7/2-pulses were not being calculated.

As a result of this project, PycQED can now be used to perform Rabi measurements and
analyses on both qubits and qutrits. The QuDev_transmon method measure_rabi (which was
already implemented before this project) drives Rabi oscillations between |g) <+ |e). Rabi oscil-
lations on the second excitation are driven using measure_rabi_2nd_exc, which was implemented
during this project. Even though the source code for Rabi_seq and rabi_2nd_exc_seq
(Listing 3.7)) existed, they were improved to let the user choose between using 0, 2, or 4 cal-
ibration points for the qubit, and up to 6 cal_points for the qutrit. All this support for the
Rabi measurement is brought together inside the QuDev_transmon method find_amplitudes (dis-
cussed in , and shown in . This function conveniently lets the user
choose between all these types of measurements by simply changing the input parameters
for_ef (switch between qubit and qutrit), last_ge_pulse (bring qutrit to |g) before each mea-
surement), cal_points (use cal_points or not), and NoCalPoints (how many cal_points to use).
A typical call to the find_amplitudes method is shown in [Section 3.3]

The results of Rabi measurements and analyses on a qubit and qutrit are shown in[Figure 4.3
By passing to the Rabi_Analysis class the for_ef and NoCalPoints parameters, the routine
uses the appropriate measurement calibration algorithm to process the raw data as described
in Dection 3.2.3l Thus, the same analysis class can be used to analyze the Rabi measurements
for both the |g) <> |e) and the |e) <+ |f) transitions, with only a minor change in the y-axis
label as seen in [Figure 4.3

The red markers in show the m-pulse (top) and the 7/2-pulse (middle), which
are calculated from the fit results using:

1
-pulse = 4.2
opuse 2 - frequency _fit (4.2)

1
7/2-pulse = (4.3)

4 - frequency _fit”

Based on the definitions of the m-pulse and 7 /2-pulse given in , these expressions
were obtained from for zero phase, by setting 2rfA = 7 and 27rfA = 7/2,
respectively. In order to describe the physics of the qubit state, the projected data returned
after calibration to cal_points is flipped as necessary to ensure it will always start at (closest
to) zero (see for why this must be so). This allows to fix the phase value at zero
during the fit.

The dashed black line shows that the initial guess for the fit was very good. The frequency
guess is obtained by computing the power spectrum of the data and finding the index of the
largest response in the first half of the rangd? Then the guess frequency is this index divided
by the sweep range (in order to get the correct scaling, because the cosine frequency must have
units 1/Volt). This method was adapted from [7].

However, if the trace does not cover at least one full period of the cosine (as is the case
for both plots in , then this method for finding the guess frequency might fail. This
is because the index will always be 1, and the inverse of the sweep range is not guaranteed
to give a correct estimation of the oscillation frequency. In this case the routine assumes that
the difference between the maximum and minimum values of the sweep points represents half

20nly half the spectrum is considered due to the symmetry of the Fourier transform; see Chapter 3 of [34].

39

0.8

F (|e))(arb. units)
o o
B o

o
N

0.0

1.4

1.2

1.0

|A)(arb. units)

F(

0.4

0.2

0.0

tive qubit state in

both images show
parameter show_guess to False.

Rabi_gb2
20170613_104608

le-3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Amplitude (V)

m—Amp = 0.933V * (0.00295) V
m/2 —Amp = 0.466 V + (0.00295) V
m—Ampyqg = 0.933V
m/2 — Ampyy = 0.467 V

(a) Rabi oscillations between |g) < |e)
0 cal_points

Rabi_2nd_qb2
20170613_110936

0.0 0.2 0.4 0.6 0.8 1.0
Amplitude (V)

n—Amp = 0.751V £ (0.00637) V
n/2—-Amp = 0.375V = (0.00637) V
m—Ampyqg = 0.0972 V
/2 —Ampold = 0.0486 V

(b) Rabi oscillations between |e) <+ | f)
4 cal_points

Figure 4.3: Rabi measurement on a qubit (a) and qutrit (b) using the QuDev_transmon method
find_amplitudes. The parameters with the ”old” subscript show the previously measured val-
ues for the m-pulse and 7/2-pulse amplitudes. The two red markers show the location of the
m-pulse and 7 /2-pulse amplitudes, and the y-axis label denotes the population in the respec-
arbitrary units. The last 4 data points in (b) are the |g) (lowest two) and
le) (higher two) calibration points, as explained in The dashed black traces in
the initial guesses for the fits. These traces can be removed by setting the

40

the oscillation period Tj4f, and computes the frequency guess as f_guess = 1/(27}q4f). This
algorithm can be further improved in the future to deal with cases where the data trace is
shorter than half a cosine period, which is useful in order to find very accurate values for the
7- and 7 /2-pulse amplitudes by sweeping over a narrow amplitude range.

4.4 Ramsey Measurements

The Ramsey_Analysis class fits the calibrated data to the exponentially decaying cosine function

Ae 2T cos(2m fAL + ¢) + oscillation_offset] + exponential_offset, (4.4)

and calculates the new qubit frequency based on a single value of the artificial_detuning pa-
rameter, using introduced in [Section 2.2.4] In[Equation 4.4] A is the amplitude, f
is the frequency of the Ramsey oscillations (wgamsey /27 in , At is the time delay
which is varied between the two m/2-pulses, To* is the averaged dephasing time, and ¢ is the
phase. For more details about these parameters, see [Section 2.2.4 The two offsets are the offsets
from zero for the cosine and the exponential function, respectively.

The Ramsey_Analysis was already very well implemented in PycQED at the start of this
project, and hence it was not greatly modified. The same sequences and QuDev_transmon mea-
sure. methods existed for the Ramsey measurement as for the Rabi measurement described
in the previous section. Hence, the same additional functions and parameters as described in
the previous section have also been added here, such that the user can now perform a Ramsey
measurement and analysis for both qubits and qutrits by calling the find_frequency_T2_ramsey
method. shows the output of this method for a Ramsey measurement on a qutrit
with the option last_ge_pulse=True (see . This figure shows the same Ramsey data
that was used to illustrate the calibration procedure in [Figure 3.2b A typical call to the
find_frequency_T2_ramsey method is shown in

Before this project, there was no support for performing the Ramsey calibration at two differ-
ent artificial detuning values, which is accomplished as explained in [Section 2.2.4] This measure-
ment was implemented during this project in the new QuDev_transmon method, calibrate_ramsey.
Additionally, the Ramsey_Analysis_multiple_detunings class, which performs the new analysis rou-
tine, was added to measurement_analysis.py. This class inherits from TD_Analysis, and uses the
original Ramsey fitting routine to find the oscillation frequencies of both Ramsey measurements.
These results are then used to find the correct new qubit frequency as explained in [Section 2.2.4]

The input parameters to the calibrate_ramsey function are the same as the ones used with
the find_frequency_T2_ramsey method. However, each sweep point passed in by the user will be
duplicated, since the same measurement, but with a different value of the artificial_detuning, is
performed for each sweep point. Hence, PycQED will process the Ramsey measurement with
an input array for the time delay values that has twice as many sweep points.

The results produced by the calibrate_ramsey routine for a Ramsey measurement on a qubit

is shown in [Figure 4.5 for which the four cases described in give:

£y = Fupee + FRamsey1 + 61 = 5682.710590MHz
fe = fupee — FRamseyt + 01 = 5680.708343MHz
fye = fupee + FRamseys + 02 = 5681.310502MHz
£y = fupee — FRramsey2 + 02 = 5680.708431MHz.

R s

A~ N /N
o 3 O Ot
~— ~— ~— ~—

As expected, two of these four cases (4.6 and 4.8) produce very similar values, which are also
closest to the estimated qubit frequency (fyupit.oia in [Figure 4.5)). Thus, the real qubit frequency
is approximately 5.580708 GHz.

41

Ramsey_2nd_exc_gb2
20170602_184618

0.8

0.4

F (|H)(arb. units)

0.2

00 B ® 9 .
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t (us)

fqubit_old = 5.88117 GHz
fqubit new = 5.882864 GHz = (1.9311e-05) GHz
framsey = 2.306 MHz = (0.019311) MHz
T, =1.52016 us + (0.264218) us
artificial detuning = 4 MHz

Figure 4.4: Ramsey measurement on the |e) <+ |f) transition for the artificial detuning value
4 MHz. foupitoia 1s the original qubit frequency that had to be calibrated, fyupitnew iS the

correct qubit frequency identified as described in fRamsey 1s the frequency of each
oscillation obtained from the fit, and T5* is the averaged dephasing time. The last 6 data points

are the |g) (lowest two), the |e) (next highest two), and the |f) (topmost two) calibration points,
as explained in [Section 3.2.3] The y-axis label denotes the population in the respective qubit

state in arbitrary units.

42

Ramsey_mult_det_gbl
20170725_184936

T T T T

1.0 artificial detuning = 1 MHz
' \ framsey = 1.0011 MHz + (3.9896e+08) MHz
n T, =10.3 us + (0.26) us

F (|e))(arb. units)

02} UUUU :

0.0 1 1 | 1 1 1 1 1
0 2 4 6 8 10 12 14
t (us)
1ol ' ‘ ' artificial detuning = 0.3 MHz
: framsey = 0.30104 MHz = (4.0709e+08) MHz
T, =10.4 us * (0.275) us
0.8+ i
)
E
- 061 |
S
S
0
= 04r 7
w
0.2]

t (us)

fqubit old = 5.680709 GHz
fqubit new = 5.680708 GHz = (3.99e-07) GHz
T, =10.3 us = (0.26) us

Figure 4.5: Ramsey measurement on the |g) <> |e) transition for the artificial detuning values 1
MHz and 0.3 MHz. framsey is the frequency of each oscillation obtained from the fit, Ty* is the
averaged dephasing time, fqupit_oiq is the original qubit frequency that had to be calibrated, and

fqubit new 18 the correct qubit frequency identified as described in [Section 2.2.4] The calibration
points are not shown on these plots. The y-axis labels denote the population in the |e) state in

arbitrary units.

43

4.5 T1 Measurements

The routine that analyzes the T1 data is the T1_Analysis class, which performs a fit to an
exponentially decaying function of the form:

Ae AT 4 offset, (4.9)

where A is the amplitude, At is the varying delay between the m-pulse and readout, Ty is the
desired energy relaxation time, and offset is the offset from zero. See for details
about the T1 calibration measurement.

The T1 measurement and analysis for the |e) state were already completely implemented and
were working very well. During this project, support was added for measuring and analyzing
the energy relaxation time for the |f) state. The QuDev_transmon method that is used to
perform a complete T measurement on a qubit or a qutrit is called find_T1. As described for
the Rabi measurement in [Section 4.3] this function also allows the user to easily choose how
many calibration points to use (by setting cal_points, no_cal_points), and whether to perform
the measurement on a qubit or qutrit (by setting for_ef, last_ge_pulse). As already mentioned in
the previous two subsections, by passing in the for_ef and NoCalPoints parameters, T1_Analysis
can be used for Ty measurements on both qubits and qutrits. A typical call to find_T1 is shown
in [Section 3.3

shows the result if using find_T1 to measure the energy relaxation time of the
qubit |e) state.

T1 gbl
20170723_194855

1.0+ o,

0.8 1
)
s
5 06¢r 1
S
8
T 0.4r 1
«“

0.2+ i

0.0 i

0 5 10 15 20 25
t (us)

T, = 5.77701 us + 0.08240 us
old T; = 0.00000 us

Figure 4.6: Energy relaxation time measurement for the qubit |e) state. old T; shows the
previously measured value of the energy relaxation time. Here it is zero because this was the
first T; measurement performed on qubit 1. The last 4 data points are the |g) (lowest two)
and the |e) (higher two) calibration points, as explained in [Section 3.2.3| The fact that the |g)
calibration points appear as a continuation of the measurement confirms that the qubit has
indeed relaxed to the ground state. The y-axis label denotes the excited state population in
arbitrary units.

44

4.6 DRAG Pulse Calibration

The QScale_Analysis class analyzes the DRAG pulse calibration data by fitting a constant line
to the Xz X, data, and two general lines described by y = mz + b to the XzY; and XzY_

data, as described in [Section 2.2.6|
The quadrature scaling factor ¢geqe in PycQED is called motzozﬂ, and has a slightly different

definition compared to the one given in [Section 2.2.6}

motzoi = —Leale) (4.10)
OGauss

where ogquss 1S the standard deviation in seconds of the Gaussian pulse applied to the in-phase
quadrature of the drive field. Hence, the motzoi parameter will require a smaller sweep range
than the gscqre-

At the start of this project, the original DRAG pulse calibration measurement and analysis
routines were using a slightly different technique to find the motzo: parameter. The routine
would apply the two sets of pulses X;Yz and Y;Xz for each motzoi value. In the ideal case,
both these sets of pulses map the qubit population to an equal superposition of two adjacent
qubit levels. This routine has not been tested. However, a calculation on the Bloch sphere of
the probability for the qubit to be in the excited state after each set of pulses as a function of
the drive frequency w, gives:

(le))
(le))

where At is a fixed time delay before measurement. A simulation of this result for some values
of wgAt is shown in [Figure 4.7 As illustrated in [Section 2.2.6] [Figure 2.9 the ggcqe (or motzoi)
modifies the frequency spectrum of the drive field. Therefore, the information about the motzoi
parameter is contained in wy. The original analysis routine, Motzoi_XY _Analysis, is expected to
extract the ideal motzoi parameter from the drive frequency value at which the first intersection
point of the two curves in occurs.

The traditional measurement and analysis routines for calibrating the DRAG pulse described
in [Section 2.2.6] have been implemented during this project for both a qubit and a qutrit.
All the implemented routines follow the same structure as already described in the previous
three sections. The QuDev_transmon method that performs a complete DRAG pulse calibration
measurement and analysis for a qubit or a qutrit is called find_gscale, and it gives the user
the same options as mentioned in the previous three sections. A typical call to the find_gscale
method is shown in , and a DRAG pulse calibration measurement for the |e) state,

obtained by using this method is shown in [Figure 4.8

P 5[l — cos(wgAt) cos(wgAt)] (X7Yx)
P 5

—0
= 0.5[1 — cos(wyAt) sin(wgAt)], (YaXx)

3Named after the first author of reference 35|, which was the first theoretical proposal of the DRAG pulse.

45

Motzoi Calibration - Simulation

0.75

0.50

o
N
Ul

le)) (arb. units)

F(

0.00} , , . . . J
0.0 0.5 1.0 1.5 2.0 2.5 3.0
wqAt

Figure 4.7: Simulation of the probability for the qubit to be in the excited state as a function
of the qubit drive frequency wy. At is the fixed time delay before measurement, and the y-axis
label denotes the population in the qubit |e) state in arbitrary units.

QScale_gb2
20170713_160003

1.0+ —— XX .

0.8r 8
)
-
S 0.6 .
|
S
L o4t -
w

0.2+ i

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
gscales (s71)

gscale= —0.018265 s~ +(—0.0017017) s7!
gscaleyy= —0.0056706 s~1

Figure 4.8: Calibration measurement for the gs.q. factor of the DRAG pulse on the qubit |e)
state. gscale,q shows the previously measured value of ¢g.q.. The x-axis label is the motzoi
parameter but we denote it by gs.qe to remove confusion. The y-axis label denotes the excited
state population in arbitrary units

46

5. Conclusions and Outlook

As a result of this project, the PycQED software framework at QuDev now has full support for
calibrating single qubit and qutrit operations. The features added throughout this project have
already been used by other team members to find the readout and qubit transition frequencies
using spectroscopy measurements, to measure the 7-pulse and m/2-pulse amplitudes of the
qubit drive signal with a Rabi measurement, to determine the accurate transition frequencies
and the averaged dephasing time with a Ramsey measurement, to measure the energy relaxation
time with a T1 measurement, and to calibrate the quadrature scaling factor for a DRAG pulse
with a QScale measurement.

Currently, each of these measurements has its own find_ method that must be called indi-
vidually. The long-term goal will be to bring all these methods together under a single, highly
optimized and very flexible calibrate_single_qubit_operations function, that will eventually replace
the current LabVIEW-based QubitCalib routine (this framework is described in [7] and [g]).

Moreover, several of the analysis routines can be further improved in the future. In par-
ticular, more accurate fitting models must be found for the resonator spectroscopy analysis
in order to correctly find resonance frequencies from more complex spectra that result from
readout resonators coupled to Purcell filters. The Rabi analysis class can also be improved to
fit to and extract the w-pulse and 7/2-pulse amplitudes from traces that are shorter than half
a cosine period, and that do not necessarily start at zero. This will be useful to extract the
m-pulse and 7/2-pulse amplitudes with more accuracy and precision.

The necessary next step in PycQED development, and a natural continuation of this project,
is to build on the existing support for measuring, calibrating, and characterizing two-qubit gates.
Several two-qubit gates together with single-qubit rotations form universal quantum gate sets
(see chapter 4 of [36]), and thus PycQED will then be capable of implementing any quantum
algorithm. This achievement, together with all the other benefits of PycQED highlighted in
the introduction (Section 1f), will equip our team with the best tools for scaling up towards the
realization of a universal quantum computer.

47

A. Summary of Contributions to the
PycQED Framework

QuDev_transmon

Added routines:

find_amplitudes Performs a complete Rabi calibration measurement on a qubit or a qutrit.
Updates the m-pulse amplitude parameter amp180(_ef), and the amp90_scale(_ef) param-
eterll] of the qubit object.
Performs calls to the measure_rabi and measure_rabi_2nd_exc methods of QuDev_transmon,
which run the measurement for a qubit and qutrit, respectively, and to the Rabi_Analysis
class inside measurement_analysis.py, which analyzes the data and computes the 7- and
7/2-pulse amplitudes.

Described in Section 3.2.1} and [Section 4.3}

find _frequency T2 ramsey Performs a complete Ramsey calibration measurement on a qubit
or qutrit for one single value of the artificial_detuning.
Updates the qubit frequency parameter f(_ef)_qubit, and the Ty* parameter T2_star(_ef)
of the qubit object.
Calls the measure_ramsey and measure_ramsey_2nd_exc methods of QuDev_transmon, which
run the measurement for a qubit and qutrit, respectively, and the Ramsey_Analysis class
inside measurement_analysis.py, which analyzes the data and computes the new qubit
frequency and the averaged dephasing time Ty*.

Described in [Section 4.4]

calibrate ramsey Same functionality as find_frequency T2 ramsey above, but for two values
of the artificial_detuning.
Performs calls to the QuDev_transmon methods measure ramsey_multiple_detunings and
measure_ramsey_2nd_exc_multiple_detunings, which run the measurement for a qubit and
qutrit, respectively, and to the Ramsey_Analysis_multiple_detunings class inside the module
measurement_analysis.py, which analyzes the data and computes the new qubit frequency
and the averaged dephasing time Ts*.

Described in [Section 4.4

find_T1 Performs a complete measurement of the energy relaxation time T; on a qubit or
qutrit.
Updates the Ty parameter T'1(_ef) of the qubit object.
Performs calls to the measure_ T1 and measure_T1 2nd_exc methods of QuDev_transmon,
which run the measurement for a qubit and qutrit, respectively, and to the T1_Analysis

!This parameter is defined as amp90_scale=(m/2-pulse amplitude)/(w-pulse amplitude).

48

class inside measurement_analysis.py, which analyzes the data and finds the energy re-
laxation time.

Described in [Section 4.5

find_qgscale Performs a complete calibration measurement for the ¢g.q. factor of the DRAG
pulse on a qubit or qutrit.
Updates the gseqe parameter motzoi(-ef) of the qubit object.
Calls the measure_gscale and measure_gscale_2nd_exc methods of QuDev_transmon, which
run the measurement for a qubit and qutrit, respectively, and the QScale_Analysis class
inside measurement_analysis.py, which analyzes the data and finds the best g factor.

Described in [Section 4.6l

AWG Sequences

Added routines:

Sequences for a Ramsey measurement with multiple detunings Functions that create
and upload to the AWG the sequences for a Ramsey calibration measurement for two val-
ues of the artificial_detuning.

Ramsey_seq_multiple_detunings for a qubit; located in single_qubit_tek_seq_elts.py.
Ramsey_2nd_exc_seq_multiple_detunings for a qutrit; located in single_qubit_2nd_exc_seqs.py.

Sequences for a DRAG pulse calibration measurement Functions that create and up-
load to the AWG the sequences for calibrating the g,... factor of a DRAG pulse.
QScale for a qubit; located in single_qubit_tek_seq_elts.py.

QScale_2nd_exc_seq for a qutrit; located in single_qubit_2nd_exc_seqs.py.

T1 2nd_exc_seq This function creates and uploads to the AWG the sequence for measuring
the energy relaxation time of the qubit |f) state.

The functions that generate these sequences have not been specifically addressed in this thesis,
but they follow the templates discussed in for a Rabi measurement, specifically that

shown in [Listing 3.6|for a qubit, and that shown in [Listing 3.7| for a qutrit.

Measurement Analysis

This work has only addressed the analysis routines needed for the single-qubit calibration mea-
surements described in [Section 2.2 The PycQED measurement analysis structure is discussed

in [Section 3.2.3] and specific classes are described in [Section 4]

Improvements to existing code structure:

Inheritance tree MeasurementAnalysis is the lowest base class for all analysis classes. All time-
domain analysis routines (Rabi, Ramsey, QScale, T1) use the intermediate base class

TD_Analysis, which itself inherits from MeasurementAnalysis. Discussed in [Section 3.2.3|

Option to use more calibration points PycQED can now calibrate a measurement based
on 0, 2, 4, or 6 calibration points. Prior to this project, there was support for using only

4 calibration points. Discussed in [Section 3.2.3

49

Consistent plots All generated plots now use the same figure sizes, marker sizes, font sizes,
and line widths. Saved figures have no overlapping features and fit nicely inside the figure
window. Discussed in [Section 3.2.3, and shown in

Qubit_Spectroscopy_Analysis Additional support was implemented for finding the second
peak/dip corresponding to the |g) <> |f/2) transition frequency. The peak-/dip-finding
routine used to establish initial guesses for a Lorentzian fitting function was improved to
find the desired features more reliably (the routine would often fail before the start of

this project). Discussed in [Section 4.2

Rabi_Analysis Minimal support existed for this routine at the start of this project. The work
presented in this thesis has greatly improved the fitting and plotting routines, and has im-

plemented code that computes the w-pulse and 7/2-pulse amplitudes from the fit results.
Discussed in [Section 4.3l

Scaled sweep points The sweep points are scaled correctly for each measurement in order
to have nicer plots (for example, the delay times in a Ramsey measurement are in pus,
and the spectroscopy sweep frequencies are in GHz). This scaling was implemented in the
MeasurementAnalysis base class, not for each particular routine. Hence, this feature can

easily be used by all analysis classes. Discussed in [Section 3.2.3|

Added routines:

Calibration routines based on 0 and 2 calibration points The calibration algorithm for
6 cal_points could reuse the existing routine for 4 cal_points, but the latter was not
suited for 0 and 2 cal_points. The algorithm for 0 cal_points employs principal component
analysis, while the one for 2 cal_points uses least squares minimization to project the
two-dimensional data onto a single axis. Discussed in

Ramsey_Analysis_multiple_detunings Analyzes data from the calibrate_ramsey measurement

routine (see above). Discussed in [Section 4.4

QScale_Analysis Analyzes data from the find_gscale measurement routine (see above). Dis-
cussed in [Section 4.6

20

B. Qubit Designs Used for the
Measurements in this Work

The work presented in this thesis was carried out in parallel with the team’s efforts to test new
qubit designs. Hence, the measurements shown throughout this thesis have been performed on
several different samples. summarizes the measurement results shown in this thesis,
and the chips on which they were performed. The latter are listed in the chronological order
in which they were fabricated. The chip designs that were not discussed in are

shown in [Figue B.1

Sample name Short description Measurements Reference
M65B1 4 qubit chip Lorentzian resonator spectroscopy |Figure 4.1b|
Full resonator spectrum Figure 2.3
Resonator dispersive shift Figure 2.4
Raw data plots Figure 3.1
- Measurement calibration plots Figure 3.2
M81B1 See PycQED usage example code Figu%es 13.4413.6|
Resonator spectroscopy Figure 4.1
Qubit spectroscopy Figure 4.2
Rabi measurements Figure 4.3
Ramsey for 1 detuning Figure 4.4
M&4XMC1 First two-qubit swissmon design T, measurements Figure 4.6
DRAG pulse calibration measurement Figure 4.8
M84XM4 Second two-qubit swissmon design Ramsey for 2 detunings Figure 4.5

Table B.1: Summary of the qubit design samples used for the measurements presented in this
thesis.

51

(a) M84XMC1

Figure B.1: The other three chip designs on which some of the measurements in this thesis have
been performed. Q denotes a qubit, RR denotes a readout resonator, FL denotes a flux line,
DL denotes a qubit drive line (charge line in , CR denotes a coupling resonator,
and PF denotes a Purcell filter. The designs in (a) and (b) contain 2 qubits, and the blue
arrows point to the location of the qubit not shown in these images. The design in (c) contains
4 qubits.

52

Acknowledgements

I would like to kindly thank Ants Remm for his great help and support as I was learning
to understand and navigate the PycQED structure. I am also very grateful for his always-
valuable input during PycQED development. I would also like to warmly thank Dr. Christian
Kraglund Andersen, Johannes Heinsoo, and Ants Remm for their help and guidance in the lab.
The experimental results presented in this paper could not have been successfully measured
without their extensive knowledge about the entire experimental setup, and their experience
with circuit QED measurements.

I would like to express my sincere gratitude to Professor Andreas Wallraff for the privi-
leged opportunity to pursue this project with QuDev. I am also very grateful to Dr. Christian
Kraglund Andersen for his kind guidance, his constructive feedback, and overall great support
throughout this entire project. Thank you also to all the other members of the group, who have
been always warm and helpful towards me. In particular, I thank Yves Salathé for everything he
has taught me about FPGAs and how they are used in the lab. I gained a deeper understanding
about digital data acquisition, and this knowledge has helped me time and again throughout
this project.

Lastly, I would like to thank Professor Leonardo DiCarlo and his team for starting this
collaboration, and for their warm support during the PycQED development.

23

References

[1] The Economist. The Economist. 1843. URL: http : / / www . economist . com / news /
essays /21717782 - quantum - technology - beginning - come - its - own#s - 3 (visited
on 06/19/2017) (cit. on p. [1).

[2] IBM Computer Manufacturing Company. IBM Quantum Ezxperience. 2016. URL: https:
//www.research.ibm.com/ibm-q/ (visited on 06/19/2017) (cit. on p. [1)).

[3] Simon J. Devitt. “Performing quantum computing experiments in the cloud”. In: Phys.
Rev. A 94 (3 2016), p. 032329. DOT: 10.1103/PhysRevA.94.032329. URL: http://link.
aps.org/doi/10.1103/PhysRevA.94.032329 (cit. on p. [1]).

[4] Christine Corbett Moran. “Quintuple: a Python 5-qubit quantum computer simulator
to facilitate cloud quantum computing”. In: arXiv:1606.09225 [quant-ph/ (June 2016).
arXiv: 1606.09225. URL: http://arxiv.org/abs/1606.09225 (visited on 07/06/2016)
(cit. on p. [I)).

[5] Microsoft Research. Microsoft Research Station . 2005. URL: https : //stationg .
microsoft.com/ (visited on 06/19/2017) (cit. on p.[I).

6] QuTech. Microsoft and TU Delft collaboration started. 2017. URL: https://qutech.nl/
microsoft-and-tu-delft-collaboration-started/| (visited on 06/19/2017) (cit. on
p- [1).

[7] Tim Menke. “Realizing a Calibration Program for Superconducting Qubits”. MA thesis.
ETH Zurich, Aug. 2013. URL: http : //qudev . phys . ethz . ch/ content / science/
Documents/semester/Tim_Menke_Semester_Thesis_130829.pdf (cit. on pp. , , ,
7).

[8] Andreas Landig. “Software for arbitrary single qubit and qutrit gate calibration”. MA
thesis. ETH Zurich, Nov. 2013. URL: http://qudev.phys.ethz.ch/content/science/
Documents/semester/Andreas_Landig_semesterthesis_131020 . pdf| (cit. on pp. ,
I @,

[9] Damian Steiger and Thomas Hner. Project@. 2016. URL: https://projectq.ch/ (visited
on 06/19/2017) (cit. on p. [1).

[10] D. S. Steiger et al. “ProjectQ: An Open Source Software Framework for Quantum Com-
puting”. In: arXiv:1612.08091 (2016). URL: https://arxiv.org/abs/1612.08091 (cit.
on p. [1).

[11] Robert S. et al. “A Practical Quantum Instruction Set Architecture”. In: arXiv:1608.03355
(2017). URL: http://arxiv.org/abs/1608.03355 (cit. on p.).

[12] TutorialsPoint. Learn Python Programming Language. 2006. URL: https://www.tutorialspoint.
com/python/python_classes_objects.htm (visited on 07/20/2017) (cit. on pp. [1] [L5]

1G).

[13] Marek Pechal. “Microwave photonics in superconducting circuits”. PhD thesis. ETH
Zurich, 2016. URL: http://qudev . phys . ethz . ch/content /science/Documents/

phd/MarekPechal _PhDThesis_v4_160928.pdf| (cit. on pp. 3] 14).

54

http://www.economist.com/news/essays/21717782-quantum-technology-beginning-come-its-own#s-3
http://www.economist.com/news/essays/21717782-quantum-technology-beginning-come-its-own#s-3
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://doi.org/10.1103/PhysRevA.94.032329
http://link.aps.org/doi/10.1103/PhysRevA.94.032329
http://link.aps.org/doi/10.1103/PhysRevA.94.032329
http://arxiv.org/abs/1606.09225
https://stationq.microsoft.com/
https://stationq.microsoft.com/
https://qutech.nl/microsoft-and-tu-delft-collaboration-started/
https://qutech.nl/microsoft-and-tu-delft-collaboration-started/
http://qudev.phys.ethz.ch/content/science/Documents/semester/Tim_Menke_Semester_Thesis_130829.pdf
http://qudev.phys.ethz.ch/content/science/Documents/semester/Tim_Menke_Semester_Thesis_130829.pdf
http://qudev.phys.ethz.ch/content/science/Documents/semester/Andreas_Landig_semesterthesis_131020.pdf
http://qudev.phys.ethz.ch/content/science/Documents/semester/Andreas_Landig_semesterthesis_131020.pdf
https://projectq.ch/
https://arxiv.org/abs/1612.08091
http://arxiv.org/abs/1608.03355
https://www.tutorialspoint.com/python/python_classes_objects.htm
https://www.tutorialspoint.com/python/python_classes_objects.htm
http://qudev.phys.ethz.ch/content/science/Documents/phd/MarekPechal_PhDThesis_v4_160928.pdf
http://qudev.phys.ethz.ch/content/science/Documents/phd/MarekPechal_PhDThesis_v4_160928.pdf

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

)
BEAS

)
RS2

~
Y

Alexandre Blais et al. “Cavity quantum electrodynamics for superconducting electri-
cal circuits: An architecture for quantum computation”. In: Phys. Rev. A 69 (6 2004),
p. 062320. DOI: 10.1103/PhysRevA.69.062320. URL: https://1link.aps.org/doi/10.
1103/PhysRevA.69.062320) (cit. on pp. 3] [[6).

Matthias Baur. “Realizing quantum gates and algorithms with three superconducting
qubits”. PhD thesis. ETH Zurich, Mar. 2012. URL: http://qudev . phys . ethz.ch/
content/science/Documents/phd/PhD_Thesis_Baur _Matthias. pdf| (cit. on pp. 3|

J. Majer et al. “Coupling superconducting qubits via a cavity bus”. In: Nature 449.7161

(Sept. 2007), pp. 443-447. 1sSN: 0028-0836. DOI: 10 . 1038 /nature06184. URL: http:
//dx.doi.org/10.1038/nature06184 (cit. on p. [4)).

Eyob A. Sete, John M. Martinis, and Alexander N. Korotkov. “Quantum theory of a
bandpass Purcell filter for qubit readout”. In: Phys. Rev. A 92 (1 2015), p. 012325. DOTI:
10.1103/PhysRevA.92.012325. URL: http://link.aps.org/doi/10.1103/PhysRevA.
92.012325| (cit. on p. [4)).

Jens Koch et al. “Charge-insensitive qubit design derived from the Cooper pair box”. In:
Phys. Rev. A 76.4, 042319 (2007), p. 042319. DOI1: 10.1103/PhysRevA.76.042319. URL:
http://link.aps.org/abstract/PRA/v76/e042319 (cit. on pp. [4] [6).

L. Steffen et al. “Deterministic quantum teleportation with feed-forward in a solid state
system”. In: Nature 500 (2013), pp. 319-322. DOI: 10.1038/nature12422. URL: http:
//www .nature.com/nature/journal/v500/n7462/full /naturel12422 . html?WT_ec_
1d=NATURE-20130815 (cit. on p. .

A. Wallraff et al. “Strong coupling of a single photon to a superconducting qubit using
circuit quantum electrodynamics”. In: Nature 431 (2004), pp. 162-167. DOI: 10.1038/
nature02851. URL: http://www.nature.com/nature/journal/v431/n7005/full/
nature02851.html/ (cit. on pp. [4] [6).

L. DiCarlo et al. “Demonstration of two-qubit algorithms with a superconducting quan-
tum processor”. In: Nature 460.7252 (July 2009), pp. 240-244. 1SsN: 0028-0836. DOTI:
10.1038/nature08121. URL: http://dx.doi.org/10.1038/nature08121 (cit. on p. [4).

D. I. Schuster et al. “AC Stark shift and dephasing of a superconducting qubit strongly
coupled to a cavity field”. In: Phys. Rev. Lett. 94.12 (Apr. 2005), p. 123602. DO1: 10.1103/
PhysRevLett .94 .123602. URL: http://link.aps.org/abstract/PRL/v94/e123602
(cit. on p. [7)).

D. Vion et al. “Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit”.
In: Fortschritte der Physik 51 (2003), pp. 462-468. URL: http://www3.interscience.
wiley.com/cgi-bin/abstract/104528217/ABSTRACT (cit. on p. [§).

Simon Storz. “Spectroscopy Automation and Sample Characterization of Superconduct-
ing Qubits”. MA thesis. ETH Zurich, 2016. URL: http : //qudev . phys . ethz . ch/
content / science /Documents /master /Simon _Storz _MastersThesis . pdf (cit. on

pp- 8} [10).
Rodney Loudon. The Quantum Theory of Light. Oxford U, 2000 (cit. on p. .

C. J. Foot. Atomic Physics. Oxford University Press, 2007 (cit. on p. .

J. M. Gambetta et al. “Analytic control methods for high-fidelity unitary operations in
a weakly nonlinear oscillator”. In: Phys. Rev. A 83.1 (Jan. 2011), pp. 012308-13. DOI:
10.1103/PhysRevA.83.012308) (cit. on p. [14)).

95

https://doi.org/10.1103/PhysRevA.69.062320
https://link.aps.org/doi/10.1103/PhysRevA.69.062320
https://link.aps.org/doi/10.1103/PhysRevA.69.062320
http://qudev.phys.ethz.ch/content/science/Documents/phd/PhD_Thesis_Baur_Matthias.pdf
http://qudev.phys.ethz.ch/content/science/Documents/phd/PhD_Thesis_Baur_Matthias.pdf
https://doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature06184
https://doi.org/10.1103/PhysRevA.92.012325
http://link.aps.org/doi/10.1103/PhysRevA.92.012325
http://link.aps.org/doi/10.1103/PhysRevA.92.012325
https://doi.org/10.1103/PhysRevA.76.042319
http://link.aps.org/abstract/PRA/v76/e042319
https://doi.org/10.1038/nature12422
http://www.nature.com/nature/journal/v500/n7462/full/nature12422.html?WT_ec_id=NATURE-20130815
http://www.nature.com/nature/journal/v500/n7462/full/nature12422.html?WT_ec_id=NATURE-20130815
http://www.nature.com/nature/journal/v500/n7462/full/nature12422.html?WT_ec_id=NATURE-20130815
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature02851
http://www.nature.com/nature/journal/v431/n7005/full/nature02851.html
http://www.nature.com/nature/journal/v431/n7005/full/nature02851.html
https://doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08121
https://doi.org/10.1103/PhysRevLett.94.123602
https://doi.org/10.1103/PhysRevLett.94.123602
http://link.aps.org/abstract/PRL/v94/e123602
http://www3.interscience.wiley.com/cgi-bin/abstract/104528217/ABSTRACT
http://www3.interscience.wiley.com/cgi-bin/abstract/104528217/ABSTRACT
http://qudev.phys.ethz.ch/content/science/Documents/master/Simon_Storz_MastersThesis.pdf
http://qudev.phys.ethz.ch/content/science/Documents/master/Simon_Storz_MastersThesis.pdf
https://doi.org/10.1103/PhysRevA.83.012308

TutorialsPoint. Learn C++ Programming Language. 2006. URL: https://www.tutorialspoint.

com/cplusplus/cpp_classes_objects.htm (visited on 07/15/2017) (cit. on pp. [15] [L6).
D. I. Schuster. “Circuit Quantum Electrodynamics”. PhD thesis. Yale University, 2007

(cit. on p. 22).

Andrew Collette. HDF5 for Python. 2013. URL: http: //www . h5py . org/ (visited on
06/21/2017) (cit. on p. [22).

The HDF Group. Hierarchical Data Format Version 5 (HDF5) Technologies. 2016. URL:
https://www.hdfgroup.org/why-hdf/| (visited on 06/21/2017) (cit. on p.[22).

American Physical Society. APS Physical Review Letters Contributors Guidelines. 2017.
URL: https://journals.aps.org/prl/info/infol . html (visited on 06/21/2017)

(cit. on p. [24).

JD Long. Principal Component Analysis (PCA) vs Ordinary Least Squares (OLS): A
Visual Explanation. 2010. URL: https://www.r-bloggers.com/principal-component-—
analysis-pca-vs-ordinary-least-squares-ols-a-visual-explanation/ (visited
on 06/20/2017) (cit. on p. [28).

Richard G. Lyons. Understanding Digital Signal Processing. 3rd. Upper Saddle River, NJ,
USA: Prentice-Hall, 2011. 1SBN: 978-0-13-702741-5 (cit. on p. [39).

F. Motzoi et al. “Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits”.
In: Phys. Rev. Lett. 103.11, 110501 (2009), p. 110501. DOI: 10.1103/PhysRevlett.103.
110501, URL: http://link.aps.org/abstract/PRL/v103/e110501 (cit. on p. [45).

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2000. ISBN: 521635039 (cit. on p. [47).

56

https://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm
https://www.tutorialspoint.com/cplusplus/cpp_classes_objects.htm
http://www.h5py.org/
https://www.hdfgroup.org/why-hdf/
https://journals.aps.org/prl/info/infoL.html
https://www.r-bloggers.com/principal-component-analysis-pca-vs-ordinary-least-squares-ols-a-visual-explanation/
https://www.r-bloggers.com/principal-component-analysis-pca-vs-ordinary-least-squares-ols-a-visual-explanation/
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1103/PhysRevLett.103.110501
http://link.aps.org/abstract/PRL/v103/e110501

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

SINGLE-QUBIT GATES CALIBRATION IN PYCQED USING SUPERCONDUCTING QUBITS

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):
BALASIU STEFANIA

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

- | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

ZURICH, 17.08.2017 9;@ -

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

	Title Page
	Contents
	Abstract
	Introduction and Motivation
	Theoretical Background
	Short Introduction to Circuit Quantum Electrodynamics
	System Design
	Qubit-Resonator Interaction

	Single-Qubit Gates Calibration
	Resonator Spectroscopy
	Qubit Spectroscopy
	Rabi Measurement
	Ramsey Measurement
	T1 Measurement
	DRAG Pulse Calibration

	The Python for Circuit Quantum Electrodynamics (PycQED) Framework
	Introduction
	Framework Structure
	The Qubit Object
	Measurement Control Flow
	The Measurement Analysis Structure

	Using PycQED in an Experiment

	Single-Qubit Calibration using PycQED
	Resonator Spectroscopy
	Qubit Spectroscopy
	Rabi Measurements
	Ramsey Measurements
	T1 Measurements
	DRAG Pulse Calibration

	Conclusions and Outlook
	Appendix Summary of Contributions to the PycQED Framework
	Appendix Qubit Designs Used for the Measurements in this Work
	Acknowledgements
	References

