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Abstract

A tunable coupling between a qubit and its host resonator is desired for the implemen-
tation of quantum information processing applications related to entanglement distribu-
tion over distant atoms [1, 2]; and the demonstration of effects due to adiabatic quantum
processes such as the vacuum induced Berry phase [3]. In this semester thesis, we realize
the desired tunable coupling via a cavity assisted Raman process implemented in a multi-
level transmon qubit coupled to a single resonator mode. By virtue of being induced by
an external microwave drive, the Raman process provides an effective coupling between
the qubit and the resonator whose strength g̃ is tunable both in amplitude and phase.
We provide experimental data and numerical simulations characterizing the process. We
also provide a perturbative treatment to approximate the effective coupling strength g̃
and fidelity F of the Raman transition.
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1 Motivation

In this semester thesis, we will analyze a second-order off-resonant (Raman) process between∣∣f0
〉

and
∣∣g1
〉

states of a multi-level transmon qubit [15] coupled to a single resonator mode.
The Raman transition is enabled by the combination of the qubit-resonator coupling with
strength gn and external drive with strength Ωn (Fig. 1).

There are two main motivations for this thesis. First, we would like to demonstrate the
phase and amplitude tunability of qubit-resonator coupling via a two photon Raman process
and measure the dependence of the coupling rate to the external drive frequency and strength.

Second, we would like to create a simple toolbox to efficiently predict the effective coupling
strength g̃ and the fidelity F of cavity assisted1 Raman transitions in transmon qubits.
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Figure 1: The two second order transition paths through which the Raman process between∣∣f0
〉

and
∣∣g1
〉

can occur. The strength of interactions due to the qubit-resonator coupling and
the external drive are denoted by gn = g0

√
n+ 1 and Ωn = Ω

√
n+ 1, respectively. Subscript

n denotes the smallest number of excitations in the qubit for states coupled by the external
drive; and one less than total number of excitations for states coupled by the qubit-resonator
coupling.

1.1 Applications

A qubit-resonator coupling that is tunable both in amplitude and phase (g̃) is desired for
experiments both in fundamental and applied physics.

On the applied side, tunable amplitude and phase of g̃ plays the central role in “photon
shaping” experiments, in which one wants to tailor the wavepacket of a single photon to
optimize the transmission of information between two distant qubits. A proposal by Cirac
et. al. [1] shows that it is possible to establish perfect communication between two distant
quantum systems if the transmission is mediated by photons with time-reversal symmetric

1Cavity assisted means that one of the two coupling contributing to the Raman transition is the qubit-
resonator coupling g
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wavepackets. The main idea of the proposal is that if a photon’s wavepacket is time-reversal
symmetric, it will be emitted by one of the quantum systems the same way it is absorbed
by the other, allowing perfect transmission of quantum information. The implementation of
perfect transmission protocol is a big step towards the “Quantum Internet” [2] in which the
distant quantum systems, so called “nodes”, share and process quantum information. When
realized, the “Quantum Internet” will allow quantum computation at large scales.

Another application of the phase tunability of g̃ is in fundamental physics and is related
to the demonstration of the “Vacuum Berry Phase” [3] in a solid state cavity QED setting.
As in the previous demonstrations of the Berry phase in superconducting qubits [4, 5], the
qubit-resonator ground state is adiabatically transported around a closed loop on the Bloch
sphere representing the two-level system. The non-trivial topology of the two-level system
allows a non-zero geometric phase (i.e. Berry phase), which is directly proportional to area
enclosed by the closed loop. In the previous experiments, however, the adiabatic transport
was enabled by varying the phase of the coherent drive amplitude α as in the Rabi model.
Thus, the acquired Berry phase results from qubit’s interaction with many photons in a
coherent superposition. On the other hand, the “Vacuum Induced Berry Phase” is due to the
interaction of the qubit with a 1 photon state

(∣∣g1
〉

for our experiments
)
, and thus the Berry

phase acquired is due to the geometric evolution of the system under a quantized field 2[6].
Such a transition requires a phase tunable qubit-cavity coupling, which is possible with the
Raman process subject to this thesis.

Moreover, Raman transitions 3 are one of the building blocks of quantum information
science using atoms [7]. The large anharmonicity of the atomic energy levels (≈ 1 GHz)
and the abundance of dipole forbidden transitions allow the treatment of the problem as an
effective three level system in Λ or a ladder-type Ξ configuration [8]. The most common
method for calculating the dynamics of these three level systems is “adiabatic elimination”,
which relies on the condition that the two drive strengths Ω1 and Ω2 are much smaller than the
detuning of the drive frequencies ∆ with respect to their target transition frequencies. This
condition also entails that the intermediate levels in the Raman transition are not significantly
populated.

However, for superconducting transmon qubits, the ratio between the anharmonicity
(α/2π ≈ 200 MHz) and the typical drive strengths (Ω/2π ≈ 100 MHz) is much closer to
1, and the adiabatic elimination procedure fails to give satisfactory results. Other difficulties
with the adiabatic elimination scheme has been previously pointed out and new approaches
has been provided [11, 12]. In this thesis, we will also present a technique which can be
used instead of adiabatic elimination, and gives higher accuracy which is desired to explain
experiments involving higher order transitions in transmon qubits.

2 Introduction

In this thesis, we consider a quantum system consisting of a transmon qubit and a single
mode of the superconducting resonator. The Hamiltonian4 of this system is given by

2However, in principle, since the Raman process is induced by a coherent drive, the transmon qubit is still
interacting with many photons

3In contrast to their cavity assisted cousins, Raman transitions in atomic physics are induced by two
separate coherent drives, possibly with different frequencies, strengths and polarizations [9, 10].

4For simplicity, the resonator drive (which is used for qubit readout [13]) and resonator anharmonicity terms
are neglected. When included, the resonator and the qubit enter the exact same way in the Hamiltonian.
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H/~ = ωqa
†a+ αb†b†bb+ ωrn̂r + Ω cos(ωdt+ φ)(b+ b†) + g(ba† + b†a). (1)

Here, a, a† and b, b† are the annihilation and creation operators for the resonator and the
qubit, respectively. Also, ωq(r)/2π is the qubit (resonator) frequency, and α is the qubit
anharmonicity. In the last two interaction terms, Ω and g stand for the complex valued
strengths of the qubit drive and the Jaynes-Cummings couplings, respectively.

In the absence of interactions (Ω, g = 0) the eigenstates of the system can then be ex-
pressed as the tensor-product of the bare qubit and resonator eigenfunctions. We denote these
functions as

∣∣q〉⊗∣∣r〉 ≡ ∣∣qr〉. Since the qubit and the resonator are both discrete systems,
q and r denote integer numbers corresponding to the number of excitations in the qubit and
the resonator, respectively. The energy level diagram of the system above is shown in Fig. 2.

Figure 2: The energy level diagram of a quantum system consisting of a four level transmon
qubit and a single resonator mode. The arrows indicate some of the first order transition
paths. Ω and g are the associated transition strengths.

Here we note that the interactions induced by Jaynes Cummings coupling, g(ba† + b†a),
and the external drive, Ω cos(ωdt+φ)(b+b†), couple different set of states. According to Eqn.
(1), the Jaynes Cummings coupling conserves the number of excitations, whereas in the case
of external drive, only the number of excitations in the resonator mode are conserved (i.e.∣∣q, r〉→ ∣∣q + n, r

〉
, n 6= 0).

Another important difference between the transitions induced by the external drive and
Jaynes Cummings coupling is the degree of control one has over the complex amplitudes Ω
and g. Although the experimentalist has a good control over both amplitude and phase of the
external drive strength Ω, the same is not true for g. In standard circuit QED experiments
using transmon qubits the Jaynes Cummings coupling strength g is fixed during the sample
fabrication by the relation [15],

~g = 2eβV 0
rms

〈
e0
∣∣b†b∣∣g1

〉
, (2)
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where β is the ratio between the gate capacitance and the total capacitance of the qubit-
resonator system. As a result, it is impossible to turn the qubit-cavity interaction on and off
in a dynamical fashion5. As discussed in the previous section, in this thesis, we will investigate
the use of a Raman transition to overcome this difficulty.

The organization of this report is as follows. In Section 3, we present the measurement
procedure and the measurements of the effective coupling strength of the Raman transition
between

∣∣f0
〉

and
∣∣g1
〉
. In Section 4, we use perturbation theory to predict the dependencies

of the effective coupling g̃ and the fidelity F of the Raman transition on the experimentally
tunable parameters. In Section 5, we support the experimental and theoretical results with
numerical simulations.

3 Experimental

We used the experimental setup depicted in Fig. 3 to investigate the dependence of g̃ on the
system parameters.

Figure 3: A schematic of the measurement setup and its equivalent circuit. The resonator
and qubit frequencies are measured via the resonator transmission. χ represents the qubit
state dependent shift in the resonator frequency. C0 and Cg are the capacitances coupling
the resonator to the drive source and the qubit to the resonator, respectively.

3.1 Qubit and Resonator Characteristics

The qubit and the resonator were characterized separately using transmission spectroscopy of
the resonator [13]. Transmission spectroscopy is a way to measure the resonator’s response to

5Although it is possible to tune the coupling between qubit and resonator states by tuning the qubit
transition frequency in and out of resonance with the resonator frequency [14] with this method one cannot
control the phase of g.
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a small perturbing electric field. The resonator is connected to the environment capacitively
(C0) through two ports as shown in Fig. 3. One of these ports is used to drive the resonator
with the small drive field with a fixed frequency and amplitude, and the other is used to mea-
sure the resonator’s response. The data displayed in Fig. 4 is taken by sweeping the resonator
drive frequency while keeping its amplitude fixed. Being a damped harmonic oscillator, the
bare resonator’s response function is a single Lorentzian centered at the resonator frequency,
ωr/2π = 7.126 GHz. The full width half maximum of the peak is given by the resonator
decay rate κ/2π = 10 MHz. Because the resonator frequency shifts slightly as a function of
the qubit transition frequency, we calibrated the resonator after adjusting the qubit transition
frequency, ωq, using the external flux line.
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Figure 4: The response function of the bare resonator obtained via resonator transmission.
The bare resonator frequency, ωr

2π , is found to be 7.126 GHz.

The calibration of the qubit was also done using transmission spectroscopy of the res-
onator. The measurement principle makes use of qubit-state dependent dispersive shift of the
resonator frequency. For this experiment, we drive the resonator with a fixed amplitude at its
resonance frequency, where the resonator response is at its maximum. Dispersive measure-
ment means that the resonator frequency used for spectroscopy is far off-resonant from the
qubit transition frequency, ωq/2π. Meanwhile, the qubit is driven capacitatively by another
source, shown in purple in Fig 3. When the qubit is driven at its transition frequency, using
this on-chip drive, the oscillations between the qubit ground and excited states attenuates the
resonator response because of the state-dependent dispersive shift induced on the resonator
frequency. This attenuation results in a dip in the resonator response as a function of the
qubit drive frequency (Fig. 5). Using this measurement principle, the ωeg/2π frequency is
found to be 8.103 GHz6. This gives us a qubit resonator detuning of , ∆/2π = 979 MHz.

6The transmon qubit transition frequency can be adjusted by varying the magnetic flux that goes through
the split-pair of Josephson junctions by changing the voltage, V, applied across the solenoids positioned close to
the sample. The transition frequency separating the ground and excited states of the transmon qubit depends
on the flux through the Josephson junction in accordance with the equation

~ω ≈
√

8EJEC
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Figure 5: The transmission dip in the resonator signal. The center of the Lorentzian gives
the qubit frequency,

ωq

2π , which is found to be 8.103 GHz.

Lastly, the anharmonicity of the qubit was determined via the second order transition
between ground and 2nd excited states. The transition frequency ωgf obeys the equation

ωgf = ωq −
α

2
, (3)

in words, the difference in frequency between the qubit transition frequency, ωq/2π, and the∣∣g〉 to
∣∣f〉 transition frequency gives half the anharmonicity. The transmission dip corre-

sponding to this transition is shown in Fig. 6.

ωr
2π 7.126 GHz
ωq

2π 8.103 GHz
∆
2π 0.979 GHz
α
2π 0.376 GHz

Table 1: Characteristic frequencies of the qubit-resonator system.

3.2 Measurement of the Vacuum Rabi Splitting

The coupling strength of the Raman process, g̃, is measured from the splitting of the Lorentzian
peak of the resonator response (Fig. 7). The measurement principle is the same as the one
used to determine the ωeg, but in this case we fix the qubit drive frequency and sweep the
frequency of the resonator drive.

, where EJ = Emax
J

∣∣ cos(k.V )
∣∣ [16]. The constant k can be determined from using at least three values for V

when the qubit and the resonators frequencies cross each other, which is seen as an avoided crossing in the
resonator response. Once k is calibrated, the qubit transition frequency can be set to a desired value.
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Figure 6: The transmission dip in the resonator signal. The center of the Lorentzian gives
half the frequency of

∣∣g0
〉

to
∣∣f0
〉

transition,
ωg0f0

2π , which is found to be 0.376 GHz.

The reason for this splitting can be understood as follows. The effective interaction
between the

∣∣g1
〉

and
∣∣f0
〉

states will result in two polariton states∣∣Φ±〉, 7

which are the eigenstates of the total Hamiltonian. In 2nd-order degenerate perturbation
theory (See Appendix B), the energies of the polariton states are given by

E
(1)
± =

1

2

(
χf0 + χg1 ±

√
(χf0 − χg1)2 + 4g̃2

)
, (4)

where χg1 and χf0 are the AC Stark shifts induced on
∣∣g1
〉

and
∣∣f0
〉
, and g̃ is the transition

strength of the Raman transition. The associated eigenstates can be written as
∣∣Φ±〉 =

c
(0)
1

∣∣f0
〉

+ c
(0)
2

∣∣g1
〉
, where the 0th order coefficients are

c
(0)
1 =

 g̃

2 |g̃|

1±
χf0 − χg1√

(χf0 − χg1)2 + 4 |g̃|2

1/2

, (5)

c
(0)
2 = ±

 g̃

2 |g̃|

1∓
χf0 − χg1√

(χf0 − χg1)2 + 4 |g̃|2

1/2

. (6)

Because the one photon resonator state
∣∣g1
〉
, overlaps significantly with the two different

eigenstates
∣∣Φ±〉 of the qubit-resonator system, we expect the resonator response to be peaked

at two distinct frequencies E±/~.

7More accurately, the interaction that causes the splitting is the one between the dressed states, which are
discussed and denoted as

∣∣g̃1
〉

and
∣∣f̃0
〉

in Section 3.
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Figure 7: The resonator response function obtained via resonator transmission, when qubit
drive frequency was picked such that state

∣∣f0
〉

and
∣∣g1
〉

are energetically degenerate. The
Lorentzian peak of the bare resonator response is split into two peaks separated by a frequency
difference of 2g̃ when the width of the two peaks are approximately same. The g̃ extracted
from this trace is 2.8 MHz

In order to determine g̃, we first measure the resonator response as a function of the qubit
and resonator drive frequencies. The sweeps of these two variables results in the 3D data
set shown in Fig. 8. In addition, Fig. 7 shows the slice of this 3D data along the axis of
constant drive power with drive frequency, ωd/2π = 8.7 GHz. For this configuration, we find
the qubit-drive detuning, δq/2π = ωq/2π − ωd/2π = -0.6 GHz.

According to Eqn. 4, in the case

χf0 = χg1, (7)

the 0th order coefficients become ∣∣c0
1

∣∣ = ±
∣∣c0

2

∣∣ = ±1/
√

2. (8)

As a result, we can extract the value of g̃ directly from the splitting between the two trans-
mission peaks when

∣∣g1
〉

overlaps equally with both
∣∣Φ+

〉
and

∣∣Φ−〉. Experimentally, this
condition is equivalent to widths of the two transmission peaks being equal. For all other
cases, the FWHM of one of the peaks will be closer to the resonator decay rate κ and the
other closer to qubit decay rate γ. The FWHM of the polariton peak is given by

Γ± =

(
1

κ
+

1

γ

)−1

. (9)

Note that the transmission peaks cannot be fitted to two Lorentzians separated by 2g̃,
since in the regions that the two peaks overlap, they interfere de-constructively. It is pos-
sible to understand this interference using 2nd order perturbation theory (See Appendix B).
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Figure 8: The resonator response as function of qubit and resonator drive frequencies. The
white curve is the fit on the slice of data along a fixed qubit drive frequency ωd = 8.7 GHz.

Consider the transition paths connecting the states describing the input and output ports of
the resonator

(∣∣in〉 and
∣∣out〉) through intermediate states

∣∣Φ±〉. The transition strength is
proportional to ∑

i=+,−

〈
out
∣∣V ∣∣Φi

〉〈
Φi
∣∣V ∣∣in〉

Eres − EΦi

,

which is attenuated when the resonator is placed in between
∣∣Φ±〉 because of the opposite

signs of the detuning between the resonator and the two intermediate states.
We used a simple classical model of two coupled damped harmonic oscillators to fit the

experimental data. The equations of motion for this system is simply

2ωq g̃rr = ω2
qrq + r̈q + Γṙq (10)

A0e
iωt + 2ωrg̃rq = ω2

rrr + r̈r + κṙr, (11)

where operator V couples the qubit-resonator states to the input and output ports8. is given

8The interaction between the resonator and the ports can be written as

V =
1

2

(
κb(a†in + aout†) + κ̄b†(ain + aout)

)
, where κ and κ̄ are the coupling strengths between the resonator and the output and input ports respectively
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by κ
2 ()where ωq/2π and ωr/2π are the transition frequency of the qubit and the fundamental

frequency of the resonator. Thus, rq and rr describe the charge in the transmon qubit and
voltage in the resonator, respectively. The resonator driven by an external drive with an
arbitrary amplitude A0, and the damping terms describe the lifetime of the qubit (γ−1) and
the resonator (κ−1). Dephasing of the qubit is not included in this model.

The coupled equations can be solved using the linear response ansatz rq = rq0(ω)eiωt and
rr = rr0(ω)eiωt. We also set the qubit and the resonator on resonance, ωq/2π = ωr/2π =
ω0/2π, in accordance with the experimental configuration. We can solve the coupled equations
for rr, which corresponds to the voltage output of the resonator. Taking the square of the
result gives us the output power which we measure at the output port

S(ω) = A2
0

∣∣∣∣ i |Γ|ω − ω2 + ω2
0

4g2ω2
0 − (i |Γ|ω − ω2 + ω2

0)(i |κ|ω − ω2 + ω2
0)

∣∣∣∣2 . (12)

By fitting S(ω) to the trace in which the two peaks are approximately of the same width, we
extract the parameters g̃, and Γ. The results are shown in Fig. 9, with a fit to the theoretical
model shown in red. The drive power is presented in arbitrary units converted from the power
(in dBm) as read from Arbitrary Waveform Generator (AWG), because the losses between
AWG and the sample were not properly calibrated9.
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Figure 9: The dependence of g̃ extracted from the fits on the qubit drive power Ω. The fit
line uses Eqn. (18), with a the scale of Ω as the fit variable.

9An estimation of the losses considering the coaxial cables, thermalizing attenuators, and the factor β in
Eqn. (2) would give a large uncertainty which would not give a reasonable test of validity for the calculated g̃
in Eqn. (19). We intend to work on calibrating the drive power reaching the qubit in the future.
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4 Theoretical Predictions

4.1 Coupling Strength of Raman Process

In this section we will derive the formulas describing the dependence of g̃ on the qubit drive
strength Ω, anharmonicity α, and qubit-resonator coupling strength g. To this end, we use
time independent perturbation theory10 (See Appendix B). We notice that the Hamiltonian
of the system can be written as

H = H0 +H ′, (13)

Where H0 denotes the Jaynes-Cummings Hamiltonian whose exact solution is known, and
H ′ denotes the interactions due to the external qubit drive, which we will treat perturbatively.
The Jaynes-Cummings Hamiltonian in the rotating frame is given by:

H0/~ ∼= δqn̂q + αb†b†bb+ δrn̂r + g(ba† + b†a), (14)

where δq = ωge − ωd is the difference between the qubit transition frequency between the
ground (g) and excited (e) states. Operators a and b are annihilation operators for the
resonator and the qubit degrees of freedom, respectively, and n̂r and n̂q are the corresponding
number operators. The Jaynes-Cummings Hamiltonian can be solved exactly. On the basis
of bare eigenstates of the qubit-resonator system (denoted by

∣∣n,m〉 where n and m are the
number of excitations in the qubit and the resonator, respectively), the eigenfunctions can be
expended as

∣∣Φ+
n

〉
= cos (αn)

∣∣n,m〉+ sin (αn)
∣∣n− 1,m+ 1

〉
(15)∣∣Φ−n 〉 = cos (αn)

∣∣n− 1,m+ 1
〉
− sin (αn)

∣∣n,m〉, (16)

where α is defined as αn = arctan(g
√
n

δn
), with ~δ denoting the energy difference between

states
∣∣n,m〉 and

∣∣n−1,m+ 1
〉
. We shall use this set of eigenbases for the Jaynes-Cummings

Hamiltonian to construct a time independent perturbation theory for the external drive term

H ′ =
Ω

2
(b† + b). (17)

For the Raman process, we are interested in the transition between dressed states
∣∣f̄0
〉

and∣∣ḡ1
〉
, which correspond to states

∣∣Φ+
2

〉
and

∣∣Φ−1 〉, as defined in Eqn. (15,16). The transition
strength up to 1st order in Ω is given by the corresponding matrix element of H ′

g̃ =
〈
f̄0
∣∣H ′∣∣ḡ1

〉
=

Ω
√

2

2
cos(α2) sin(α1)− Ω

2
cos(α1) sin(α2). (18)

This expression for the coupling strength, is one of the main results of this thesis. In the limit
where the detuning δn is much smaller than the qubit-resonator coupling strength g

√
n, the

Raman transition strength g̃ reduces to the simple expression

g̃ =
Ω
√

2

2
α1 −

Ω

2
α2 = gΩ

α
√

2

2

(
1

δq + α
− 1

δq

)
= gΩ

α√
2δq(δq + α)

. (19)

10In order to use time independent perturbation theory, we transform our Hamiltonian to the rotating frame
of the drive frequency ω (See Appendix A).
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As anticipated in the introduction, the deconstructive interference between the two Raman
transition paths gives us a smaller coupling strength g̃ than the coupling strength associated
with either of the paths. Moreover, the anharmonicity, α, that differentiates between the
coupling strengths of the two paths plays as important of a role in the magnitude of g̃ as the
drive strength Ω and the qubit-resonator coupling g.

4.1.1 Fidelity of the Raman Transition

The fidelity of a transition between two states is defined as the amplitude population oscilla-
tions for either of the states. We calculate the amplitude of these oscillations using the time
evolution operator

U(t) = e−iHt,

where H is the Hamiltonian for the whole system. If the system is initially in state
∣∣Ψi

〉
, the

population in the initial state for consequent times is given by

PΨ(t) =
∣∣〈Ψi

∣∣Ψi(t)
〉∣∣2,

where
∣∣Ψi(t)

〉
= e−iHt

∣∣Ψi

〉
. As a result, the fidelity of the Raman transition can be found to

be (See Appendix C)

F = 2× 2
∣∣αn∣∣2∣∣αm∣∣2, (20)

where
∣∣αn∣∣ and

∣∣αm∣∣ are the two largest overlaps between the initial state
∣∣Ψi

〉
=
∣∣f̄0
〉

and
the eigenstates of the driven system.

Consequently, we need to calculate the coefficients αf̄0± in the expansion of the eigenstates

of the driven system
∣∣Φ±〉. We approach the problem perturbatively on the eigenbasis of the

Jaynes-Cummings Hamiltonian as in the last section. However, we need to be careful because
we have two distinct sets of states:

1. Nearly degenerate set of states (i.e. the dressed states
∣∣f̄0
〉

and
∣∣ḡ1
〉
). The interaction

due to the external drive Ω(a† + a) will give rise to up to first order corrections to the
dressed state

∣∣f̄0
〉
.

2. The set of states whose energies are quite different than the ones in the nearly degenerate
set (NDS). They will give 2nd order corrections to the dressed state

∣∣f̄0
〉
.

A treatment to the stated problem is given in [17]. We first treat the set of nearly
degenerate states (

∣∣f̄0
〉

and
∣∣ḡ1
〉
), and then calculate the second order corrections due to the

rest of the states (
∣∣ē0〉, ∣∣h̄0

〉
, and

∣∣ē1〉). According to degenerate perturbation theory, the
solution for the 2-fold degenerate problem is acquired by solving the Hamiltonian restricted
to the NDS:

HNDS =

(
Ef̄0 + χf̄0 g̃

g̃∗ Eḡ1 + χḡ1,

)
(21)

where Ef̄0/ḡ1 are the energies of the dressed states
∣∣f̄0
〉

and
∣∣ḡ1
〉

and χf̄0/ḡ1 are the respec-
tive AC Stark shifts due to states not included in the nearly degenerate set. An important
point to keep in mind is that since the dressed states,

∣∣f̄0
〉

and
∣∣ḡ1
〉
, are exact eigenstates of
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the Jaynes-Cummings Hamiltonian, there is no 2nd order process connecting them11. For the
sake of simplicity, we consider the case of perfect degeneracy (i.e. Ef̄0 + χf̄0 = Eḡ1 + χḡ1),
which is easily achievable using the experimental parameters ωq and δq as in Eqn. (14). In
the case of perfect degeneracy the eigenfunctions of the nearly degenerate set (

∣∣f̄0
〉

and
∣∣ḡ1
〉
)

can be found to be 12

∣∣Φ±〉 =
1√
2

(∣∣f̄0
〉
±
∣∣ḡ1
〉)
. (23)

Eqn. (23) includes corrections up to 1st order consistent withHNDS which includes corrections

up to 2nd order. If we stop our approximation scheme here, the values of α+ =
∣∣∣〈Φ+∣∣f̄0

〉∣∣∣ and

α− =
∣∣∣〈Φ−∣∣f̄0

〉∣∣∣ are both equal to 1/
√

2 and the fidelity of the Raman transition, F = 1, by

Eqn. (20). Since this result does not explain the results of numerical simulations discussed
below, we extend the perturbation theory to the 2nd order for the eigenfunctions

∣∣Φ±〉.
As mentioned above, we are only interested in the coefficient of the state

∣∣f̄0
〉

in the
eigenfunctions

∣∣Φ±〉 of the driven system. The 2nd order correction modifies the coefficient

α± = 1/
√

2 in the following way (See Appendix B)

α± = 1/
√

2→ α± =
1√
2

1− 1

2

(√
2Ω/2

δq + α

)2

− 1

2

(√
3Ω/2

δq + 2α

)2
 . (24)

Note that the corrections are in order to ensure normalization of
∣∣Φ±〉 up to 2nd order in

perturbation, and they correspond to the population that has leaked from the initial
∣∣f̄0
〉

state to the neighboring
∣∣ē0〉 and

∣∣h̄0
〉

states.
To obtain the final result for the fidelity of the Raman transition, we plug in α± into Eqn.

(20). Thus,

F = 1− 2

(√2Ω/2

δq + α

)2

+

(√
3Ω/2

δq + 2α

)2
 . (25)

This approximation for the fidelity of Raman transitions is a main result of this thesis,
and it offers an intuitive way to think about what limits the fidelity of the transition. F is
lowered due to the population leakage from the states in the NDS to the neighboring states.
An immediate consequence of Eqn. (25) is that the Raman process will have higher fidelity
if the qubit-drive detuning δq 6 0, because the anharmonicity α is always negative. Thus,
we need to choose δq such that δq 6 0, but not too large to reduce g̃ to impractical values.
However, since the fidelity decreases more slower than g̃ with respect to δq, one can have large
fidelity transitions for reasonable g̃.

11The matrix element for the 2nd order process is given as

∑
l=e0,e1

〈
f̄0
∣∣H ′∣∣n̄〉〈

n̄
∣∣H ′∣∣ḡ1

〉 , (22)

which vanishes because the pairs (
∣∣f̄0
〉
,
∣∣ē1〉) and (

∣∣ḡ1
〉
,
∣∣ē0〉) are no longer coupled by the Jaynes-Cummings

interaction.
12See Appendix B for the solution for near degeneracy
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5 Numerical Simulations

We also conducted numerical simulations to test the limits of the theory presented in the
previous section. In particular, we would like to demonstrate the dependencies, g̃ ∝ Ω and
F ∝ Ω2.

The quantities g̃ and F can be determined directly from the time evolution of the
∣∣f̃0
〉

population, which is described by Eqn. (69). The time evolution can also be numerically
computed using the equation of motion (EOM) for the density matrix 13 The EOM of a
density matrix ρ under a unitary Hamiltonian is a 1st order differential equation given by

ρ̇ = −i
[
ρ,H

]
; ρ(t = 0) = ρ0. (26)

In order to extract the population of a state generic state,
∣∣Ψ〉, using the density matrix,

we simply take the trace14

PΨ = Tr[ρ(t)
∣∣Ψ〉〈Ψ∣∣]. (27)

The expression in Eqn. (27) depends on the same variables as the Hamiltonian in Eqn.
(1): ωd, Ω, g, and α.

5.1 First Order Couplings and Stark Shifts

The algorithm that we used to solve Eqn. (26) is as follows. We first set the qubit coupling
constant g, and the qubit anharmonicity α according to the measurements described in Section
3. A typical value for α/2π is 400 MHz and 100 MHz for g/2π. Since we would like to
demonstrate g̃(Ω) and F(Ω), the only parameter left to be determined is the drive frequency
ωd.

As discussed earlier, the Raman process transition occurs with highest fidelity when the
drive frequency ωd compensates for the frequency difference between

∣∣ḡ1
〉

and
∣∣f̄0
〉

levels,
including the AC Stark shifts. Thus,

ωd = 2ωq + α− ωr + ∆AC , (28)

where ∆AC is the difference between the AC Stark shifts (χf̄0 − χḡ1) of
∣∣ḡ1
〉

and
∣∣f̄0
〉
. The

AC Stark shifts are approximately given by15

χf0 =

∣∣∣∣Ω2
∣∣∣∣2( 2

δq + α
− 3

δq + 2α

)
−
∣∣∣∣2g2

δq

∣∣∣∣ (29)

χg1 = −
∣∣∣∣Ω2
∣∣∣∣2 1

δq
+

∣∣∣∣ g2

δq + α

∣∣∣∣ , (30)

After numerically computing Pf̄0, for different drive powers Ω, each trace is fit to a single
cosine function (Fig. 10).

13However, in the absence of dissipation, the system can be described with only pure states. Thus the
density matrix formalism is not necessary.

14Note that th trace, Tr[· · · ] is like the dot product in the operator space. In other words, the trace operation
can be though as measuring the overlap between the density operator and the state

∣∣Ψ〉.
15The exact shift that we used for the simulations were optimized to give highest fidelity at small drive

strengths Ω. Implementing a correction for the AC Stark shifts is complicated because the shifts depend on
δq, δr, and Ω, exhausting the experimentally tunable parameters.
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Figure 10: Time evolution of the
∣∣f0
〉
,
∣∣g1
〉
, and

∣∣e1〉 states. The traces were produced by

sampling the solution to Eqn. (26) with initial state
∣∣Ψi

〉
≡
∣∣f0
〉
.

The fitting parameters give us the strength (2g̃) and the fidelity of the Raman transition.
The dependence of 2g̃ and F on the drive strength Ω can be seen in Fig. 11 and 12 . The

results are in good agreement the theoretical predictions, for Ω
δq

2 � 1, as expected. The

approximation seem to break down as Ω/2π is increased above 250 MHz. For experimentally
reasonable values of g/2π = 100 MHz and δq/2π = -600 MHz, we found that the fidelity of
the transition is lower than 90 percent for g̃/2π ≥ 10 MHz. The fit curve in Fig. 11 also takes
into account corrections up to 3rd order in the drive strength Ω.

6 Conclusion and Outlook

In this thesis, we have realized a Raman transition in a superconducting circuit QED archi-
tecture. The expressions for the fidelity and the strength Raman transition can be derived
straightforwardly from 1st order degenerate perturbation theory 16 . As anticipated in the
introduction, the rate of Raman transition suffers from the qubit-resonator detuning and the
destructive interference between the two transition paths connecting

∣∣f̄0
〉

and
∣∣ḡ1
〉

states.
This interference results in a coupling strength g̃ linearly dependent on anharmonicity, α,
which differentiates between the two Raman transition paths.

We also determined that the fidelity of Raman transition depends on the population
leakage from the initial state

∣∣f̄0
〉

to neighboring states other than
∣∣ḡ1
〉

(Eqn. (25)). Another
implication of this result is that the Raman transition has better fidelity for qubit frequency
above the resonator, δq 6 0, since anharmonicity is always negative.

16The 1st order perturbation theory is also applicable to simpler systems, such as the Λ configuration in the
atomic physics experiments. Importantly, unlike the adiabatic elimination method, the perturbative approach
also gives approximations for the population of the intermediate state and the fidelity of transitions.
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Figure 11: The dependence of the Raman transition coupling strength g̃ on the drive strength
Ω. The data points are the values of g̃(Ω) extracted from the numerical simulations. The fit
curve, also takes account of the effect of first order interactions on the strength of the second
order interaction g̃

Thus, one needs to choose the experimental parameters such that g̃ is much faster than the
decay rate of the qubit and the fidelity of Raman process is still reasonable for applications
discussed in the introduction. Our numerical simulations show that for a g̃/2π of 10 MHz,
the maximum fidelity is about 0.90.
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Figure 12: The dependence of the visibility of Raman process transition on the drive strength
Ω. The data points are the values of fidelity extracted from the numerical simulations. The
fit curve is shown in red and Eqn. (25) in blue.
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Appendix A Qubit-Resonator Energy Level Diagram in a Ro-
tating Frame

In this section we will transform the Hamiltonian

H/~ = ωqn̂q + αb†b†bb+ ωrn̂r + Ω cos(ωdt+ φ)(b+ b†) + g(ba† + b†a), (31)

to a time-independent form by going to the frame of reference rotating with the frequency of
the external drive, ωd. The time independent Hamiltonian is useful because we can then use
simpler time-independent perturbation theory to analyze it. The desired gauge transformation
is

U(t) = e−iωdn̂t, (32)

where n̂ is the number operator that counts the total number of excitations associated with
a state.

The transformation of the Hamiltonian under a time dependent transformation is given
by

H̃ = UHU † − iUU̇ †. (33)

Thus, using Eqn. (32), we obtain the Hamiltonian in the rotating frame

H̃ = UHU † − ωdn̂. (34)

Notice that this transformation can also be thought as going to the interaction picture of
the time-independent Hamiltonian, ωdn̂. As a result of the transformation, each basis state
of the Hamiltonian is shifted down in energy by an amount dependent on its total number
of excitations. While the energy of the state, Eg0 will not change under the transformation
since it has no excitations, the energy of the state Eg1 will be lowered by ωd and energy of
the state Ee1 will be lowered by 2ωd and so on (Fig. 13).

The action of the transformation on the raising and the lowering operators are given by

b̃+ = b+eiωdt (35)

b̃− = b−e−iωdt (36)

ã† = a†eiωdt (37)

ã = ae−iωdt. (38)

With the relations above, it is clear that any operator that has the same number of creation
and annihilation operators of any type will be invariant under the transformation U(t). The
only term that will be effected is the time dependent drive term, which, by setting φ = 0
becomes

U(t)
(
Ω cos(ωdt+ φ)(b+ b+)

)
U−1(t)

= Ω
eωdt + e−ωdt

2
(be−iωdt + b+eiωdt)

=
Ω

2
(b+ b+) +

Ω

2
(be−i2ωdt + b+ei2ωdt). (31)
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Lastly, we eliminate the terms which are evolving much faster than all the other terms
in the Hamiltonian17, and the Hamiltonian of the perturbed system in the rotating frame is
approximated by

H/~ ∼= δqn̂q + αb†b†bb+ δrn̂r + g(ba† + b†a) +
Ω

2
(b+ b†), (40)

where δq(r) = ωq(r)−ωd. The resulting energy level diagram of the Hamiltonian in the rotating
frame is shown in Fig. 13.

Figure 13: The energy level diagram for the qubit-resonator system in the rotating frame
of the drive ωd. The fast oscillating parts of the system are integrated out by applying the
rotating wave approximation.

In the energy level diagram depicted in Fig. 13, the separation between the levels corre-
sponds to the detuning between the transition frequencies and the drive frequency ωd. We

should remember that, according to Eqn. (51), we need to satisfy
(

Ω0
δq

)2 ∼=
(

Ω/2
δq

)2
� 1 in

order to ensure the validity of the 2nd order time independent perturbation theory. In general,
for the general perturbation theory on many states, one should make sure that the largest

ratio
(

Ωi
δi

)2
� 1.

17This step is commonly called the rotating wave approximation. Upon begin integrated over time coordi-
nate, the exponent of the factor e−i2ωdt will go to the denominator.∫

dte−i2ωdt =
e−i2ωdt

i2ωdt
(39)
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Appendix B Time Independent Perturbation Theory [18]

B.1 Nondegenerate Perturbation Theory

The main tool that we use to analyze the Raman transition is the time independent pertur-
bation theory. To begin with, we write our system’s Hamiltonian as a sum of an unperturbed
operator H0, and a perturbation operator V :

H = H0 + V. (41)

The eigenstates of the unperturbed operator are assumed to be known. These eigenstates
will be used as the basis we construct our perturbation theory on. For now, we only consider
non-degenerate bases. The basis states are defined by the equation,

H0

∣∣Ψ(0)
〉

= E(0)
∣∣Ψ(0)

〉
. (42)

Consequently, the equation whose eigen-system we would like to approximate is

H
∣∣Ψ〉 = (E0 + V )

∣∣Ψ〉 = E
∣∣Ψ〉. (43)

To start with, we expand the eigenfunctions of the Hamiltonian in Eqn. (41) in the basis
of unperturbed eigenfunctions: ∣∣Ψ〉 =

∑
n

cn
∣∣Ψ(0)

n

〉
. (44)

Substituting this expansion to Eqn. (41) and projecting it onto the unperturbed eigenstate∣∣Ψk

〉(0)
, we re-write the Schoedinger equation in the basis of unperturbed eigenstates

(E − E(0)
k )ck =

∑
n

Vkncn, (45)

where Vnk are the matrix elements of the perturbation operator defined by

Vnk =
〈
Ψ(0)
n

∣∣V ∣∣Ψ(0)
k

〉
. (46)

We then seek the solution to the Eqn. (45) in the following form:

ck = c
(0)
k + c

(1)
k + c

(2)
k + · · · E = E(0) + E(1) + E(2) + · · · . (47)

In order to determine the correction to the nth eigenvalue and eigenfunction, we set the
initial configuration to c0

n = 1 and c0
m = 0 for all m 6= n. To determine the first order

approximation, we need to expand the solution only to the first order: E = E
(0)
n + E

(1)
n and

ck = c
(0)
k + c

(1)
k . Plugging these expansions in Eqn. (45) and retaining only the first order

terms gives us the familiar correction to the energy for n = k

E(1) = Vnn =
〈
Ψ(0)
n

∣∣V ∣∣Ψ(0)
n

〉
; (48)

and the first order correction to the cn for n 6= k

c
(1)
k =

Vkn

E
(0)
n − E(0)

k

. (49)
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Thus, keeping terms up to the first order in our perturbation theory, the normalized eigenstate
of the perturbed Hamiltonian is

∣∣Ψ〉 ∼= ∣∣n0
〉

+
′∑
k

c
(1)
k

∣∣k0
〉
, (50)

where the primed summation omits terms with c
(1)
n . Note that the validity of the 1st order

perturbative treatment depends mainly on the condition that ck’s are smaller than unity.
Thus,

Vkn

E
(0)
n − E(0)

k

� 1. (51)

Using the 1st order correction coefficients of the wavefunction, we obtain the 2nd order cor-
rection in the eigenenergy.

E(2)
n =

∑
m

∣∣Vnm∣∣2
E

(0)
n − E(0)

m

. (52)

Eqn. (52) will gives us the “AC Stark shift” correction to the energies for a periodically
driven system described in the suitable rotating frame.

B.2 Degenerate Perturbation Theory

We have seen that in the rotating frame, the initial (
∣∣f̄0
〉
) and the final (

∣∣ḡ1
〉
) of the Raman

transition need to be nearly degenerate to ensure the highest fidelity of the transition. Let
us build a perturbation theory for such a system. Notice that the corrections given by Eqn.
(49) diverge when the unperturbed eigenstates are degenerate, so we need a slightly different
approach.

The starting point for the analysis is still Eqn. (45), which is the Schrödinger’s equation
written in the eigenbasis of the unperturbed states. We then equate k = n, n′, · · · , where
n, n′, · · · indexes the nearly degenerate states (NDS). We set the initial conditions as initially

set, cn = c
(0)
n , for the states in NDS, and c

(0)
m = 0, for states not in the NDS. Plugging these

conditions in Eqn. (45), we obtain∑
n′

(Vnn′ − E
(1)
n′ δnn′)c

(0)
n′ = 0, (53)

which has a solution only if the “secular equation” is satisfied:∣∣Vnn′ − E(1)
n′ δnn′

∣∣ = 0. (54)

The solutions to Eqn. (54) give us the first order correction to the energies in degenerate
perturbation theory. Also note that substituting the solutions of the “secular equation” in
Eqn. (53), it is possible to calculate the expansion coefficients c0

n′ . Lastly, we see that unless
the “secular equation” has repeating roots, the degeneracy of the unperturbed system will be
destroyed.

Next, we would like to write the like of Eqn. (54) for the second order correction to the
energies of the degenerate system, for this is exactly what we used to analyze the Raman
transition. In order to obtain the desired result, we first need to assume that we can select
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a basis in which the first order correction on the degenerate energies, E(1) is zero. Thus, we

can expand the energies of the perturbed system as E = E(0) + E(2), and cn = c
(0)
n , for the

first order correction is vanishing. Also, as before, we set c
(0)
m = 0 for m no in NDS.

We plug these initial conditions in Eqn. (45) to get the second order correction to the
degenerate energies:

E(2)c(0)
n =

∑
m

Vnmc
(1)
m . (55)

On the other hand, if k = m not in NDS, we get the first order correction to the degenerate
eigenstates (

E(0)
n − E(0)

m

)
c(1)
m =

∑
n′

Vmn′c
(0)
n′ , (56)

hence

c(1)
m =

∑
n′

Vmn′(
E

(0)
n − E(0)

m

)c(0)
n′ . (57)

Plugging Eqn. (57) into Eqn. (55), we obtain the secular equation for the second order
degenerate transitions ∣∣∣∣∑

m

VnmVmn′

E
(0)
n − E(0)

m

− E(2)δnn′

∣∣∣∣ = 0. (58)

The solutions to Eqn. (58) give us the second order correction to the energies of the degenerate
states. Notice that Eqn. (54) and Eqn. (58) are identical if we proposed

V
(2)
nn′ ≡

∑
m

VnmVmn′

E
(0)
n − E(0)

m

. (59)

Eqn. (59) gives us the second order coupling strength between two degenerate states. Finally,
we note that in the case that there are only two degenerate states,

∣∣n〉 and
∣∣m〉, in the

unperturbed system, the eigenstates of the perturbed system are given by
∣∣Ψ〉 = c0

n

∣∣n〉 +
c0
m

∣∣m〉, where

c
(0)
1 =

 V
(2)
nn′

2
∣∣∣V (2)
nn′

∣∣∣
1±

V
(2)
nn − V (2)

n′n′√
(V

(2)
nn − V (2)

n′n′)
2 + 4

∣∣∣V (2)
nn′

∣∣∣2



1/2

, (60)

c
(0)
2 = ±

 V
(2)
nn′

2
∣∣∣V (2)
nn′

∣∣∣
1∓

V
(2)
nn − V (2)

n′n′√(
V

(2)
nn − V (2)

n′n′

)2
+ 4

∣∣∣V (2)
nn′

∣∣∣2



1/2

, (61)

with energies,

E± = 1/2

(
V (2)
nn + V

(2)
n′n′ ±

√
V

(2)
nn − V (2)

n′n′ + 4
∣∣∣V (2)
nn′

∣∣∣2) , (62)

where V
(2)
nn is the AC Stark shift induced on the nth state by the states not in NDS, and V

(2)
nn′

is the effective second order coupling between nth and n′ th levels as given in Eqn. (59).
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Appendix C Fidelity of Transitions

We define the fidelity, F, of the transition between the states
∣∣n〉 and

∣∣n′〉 as the visibility
(amplitude) of Rabi oscillations between them.

To this end, let us consider a generic Hamiltonian H, the time evolution operator, U(t),
is given by (~ = 1)

U(t) = e−iHt. (63)

An initial state
∣∣Ψi

〉
will then evolve accordingly:∣∣Ψi(t)

〉
= e−iHt

∣∣Ψi(0)
〉
≡ e−iHt

∣∣Ψi

〉
. (64)

In order to see the Rabi oscillations in the population of
∣∣Ψi

〉
, we would like to project

the propagated state
∣∣Ψi(t)

〉
back on the initial state

∣∣Ψi

〉
. Thus, the time evolution of the

population in
∣∣Ψi

〉
is given by

PΨ(t) =
∣∣〈Ψi

∣∣Ψi(t)
〉∣∣2. (65)

Next, we expand the initial state in the eigenbasis of the driven system,

∣∣Ψi(0)
〉

=
∑
n

αn
∣∣n〉, (66)

where the extension coefficients αn’s are the overlaps between the initial state and the eigen-
states of the driven system: 〈

n
∣∣Ψi

〉
= αn. (67)

Plugging this extension in Eqn. (64), we obtain,∣∣Ψi(t)
〉

= e−iHt
∑
n

αn
∣∣n〉 =

∑
n

e−iεntαn
∣∣n〉. (68)

Thus, the evolution of the
∣∣Ψi

〉
population can be calculated to be∣∣〈Ψi

∣∣Ψi(t)
〉∣∣2 =

∑
n

∣∣αn∣∣4 + 2
∑
n>m

∣∣αn∣∣2∣∣αm∣∣2 cos ((εn − εm)t) , (69)

where
∣∣αn∣∣2’s represent the percentage of the initial state population distributed among the

eigenstates
∣∣n〉 once the perturbation is turned on, and εn and εm are the energies of the

eigenstates of the driven system which overlaps with the initial state
∣∣Ψi

〉
.

Eqn. (69) gives us direct access to the fidelity and the strength of any transition induced
by the external drive. The fidelity of the transition between

∣∣Ψi

〉
and another unperturbed

eigenstate18 is simply given by

18The compositions of these eigenstates cannot be known without treating the full Hamiltonian. However,
we note that in the case of full Rabi oscillations where

∣∣αn

∣∣2 = 1/2,
∣∣αm

∣∣2 = 0 or ±1/
√

2 for m 6= n. One can

also see the factor |αn|2 |αm|2 as the square of the coherence between the two eigenstates of the driven system
mediated through the initial state

∣∣Ψi

〉
.
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Fidelity = 2× 2
∣∣αn∣∣2∣∣αm∣∣2, (70)

where
∣∣αn∣∣ and

∣∣αm∣∣ are the two largest overlaps between the initial state
∣∣Ψi

〉
and the

eigenstates of the driven system. The strength of the transition is given by the difference in
energy between the eigenstates

∣∣n〉 and
∣∣m〉.
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