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1 Introduction

An important result of quantum mechanics – the adiabatic theorem [1] – states that a
system with a Hamiltonian slowly varying in time1 follows the instantaneous eigenstate
of this Hamiltonian (i.e. if the system is in an eigenstate of the initial Hamiltonian, it will
also be in an eigenstate of the Hamiltonian at any later time). However, the theorem does
not specify the phase of the eigenstate. As noted by Berry [2], during a cyclic adiabatic
evolution of the Hamiltonian, an eigenstate accumulates a non-trivial geometric phase

1This is of course a rather vague statement. As a rule of thumb, the evolution of the Hamiltonian
can be considered adiabatic if the rate of change of its eigenvectors is much slower than the differences
between its eigenenergies.
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in addition to the dynamical phase given by the time integral of its eigenenergy. This
geometric phase only depends on the trajectory followed by the Hamiltonian in the space
of hermitian operators and not on the total duration of the evolution. Moreover, it is
expected to be relatively stable under perturbations of the Hamiltonian [3].

These properties make geometric phase a promising resource for quantum information
processing. Quantum gates based on adiabatic evolution could provide better fidelities
than simple dynamical gates. Obviously, as a first step towards building such geometric
quantum gate it is necessary to observe geometric phase in a quantum bit and study its
properties until all relevant phenomena are well-understood (e.g. the influence of higher
qubit levels, the microwave cavity or other elements of the qubit environment such as free
electromagnetic modes whose coupling to the qubit causes its relaxation and dephasing
etc.).

An experiment aimed at measuring the geometric phase in a transmon superconduct-
ing qubit has been recently performed by Simon Berger at the Quantum Device Lab
of the ETH Zurich. The results have shown an unexpected deviation from theoretical
predictions.

The aim of this semester paper is to explain the observed deviation theoretically.

2 Description of the experiment

The qubit used in this experiment is a transmon superconducting qubit [4] embedded in
a transmission line resonator. It can be approximated as a weakly anharmonic oscillator
operated in a regime where all transitions except between the two lowest levels can be
neglected. This approximation results in the usual model of a cavity QED system [5]
described by the well known Jaynes-Cummings Hamiltonian.

The qubit and the resonator are far detuned from each other (i.e. the detuning
ωr −ωq is much larger than the coupling g between the resonator and the qubit). In this
so-called dispersive limit, the Hamiltonian can be transformed into a form where these
two subsystems are effectively decoupled except for a Stark shift of their energy levels.
Also a drive signal at the input of the resonator translates into a direct drive of the qubit.

The qubit can then be considered as a simple two-level system. In a frame corotating
at the external drive frequency around the z-axis, such system can be thought of as a spin
1/2 in a magnetic field whose z-component is the detuning between the qubit and drive
frequency and whose x and y-components are the two quadratures of the drive signal.

In this experiment, the amplitude of the drive was adiabatically increased at con-
stant detuning and then kept constant while the phase shift was increased from 0 to 2π,
thus making the vector of the effective magnetic field trace a conical path with a given
opening angle. Finally, the drive amplitude was decreased back to zero. As a result of
this sequence, the ground and excited state of the qubit acquire phases consisting of a
dynamical and geometric contribution. The dynamical phase was eliminated by means
of a spin echo technique – the adiabatic sequence was performed twice, each time with a
different orientation of the path. The change of direction of the path leaves the dynamical
phase invariant while changing the sign of the geometric phase – therefore the spin echo
sequence results in the ground and excited state being phase-shifted with respect to each
other by twice the difference between their geometric phases.
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If the system is initially prepared in a superposition state of the ground and excited
state then the phase difference resulting from this procedure can be determined by to-
mography of the final state.

Should the geometric phase be simply equal to half the solid angle A subtended by
the path as derived by Berry [2] for a two-level system, then the phase φ measured by
the spin echo experiment would be given by φ = 2A. However, the real experimental
results clearly exhibit a deviation from this linear dependence, as can be seen in Figure
1 in a plot of the measured phase as a function of the solid angle for detuning equal to
−50 MHz. Here the solid line is the theoretical dependence φ = 2A while the dots are
the experimental results.
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Figure 1: The phase measured for detuning −50 MHz as a function of the solid angle compared with

the theoretical prediction for an ideal 2-level system (a) and the difference between them (b).

In the following we will study two effects which could possibly lead to a deviation of
the geometric phase from Berry’s two-level result and compare the obtained theoretical
predictions with experimental data.

We should note that the geometric phase has now been measured many times for
different parameters of the system during several measurement sessions and there are
many data sets available to compare our theories with. However, the data are not always
perfectly consistent which suggests that there are still some aspects to the measurements
yet to be understood.

Since this text is not intended to serve as a comprehensive overview of the obtained
experimental results, we only present comparisons of our theoretical predictions with a
small subset of the measurements. Our choice of this subset is to some degree arbitrary.
Generally, we attempted to choose data sets not deviating significantly from what we saw
as a “typical” result and containing as little noise as possible.

A much more detailed description of the experiment can be found in Simon Berger’s
master thesis.

3 Corrections due to higher qubit levels

The first effect that we consider as a possible cause of the observed deviation is the
presence of higher qubit levels. This explanation seems reasonable because any effect
the higher levels might have on the geometric phase could be especially pronounced in a
transmon qubit due to its low anharmonicity compared to other superconducting qubit
designs. Moreover, an experiment very similar to the one described here has been used
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to measure the geometric phase in a Cooper pair box [6] with results significantly closer
to the theoretically predicted linear dependence on solid angle. One of the differences
between the two experiments which might explain the different results is, among others,
the different relative anharmonicity of the qubits. A closer look at the differences and
similarities of the two experiments could provide a helpful insight into why the deviation
of the experimental results from theoretical predictions is so much larger for a transmon
qubit than for a Cooper pair box.

3.1 Geometric phase in a multilevel system following a conical

path

Let us consider a general Hamiltonian of the tridiagonal form

Ĥ(ϕ) = D̂ + (Σ̂+e−iϕ + h.c.),

where D̂ is diagonal in some basis consisting of vectors |0〉, |1〉, . . . while 〈i|Σ̂+|j〉 is only
non-zero if i = j + 1. The Hamiltonian of a multilevel qubit belongs into this class of
operators. In a frame corotating with the drive frequency ωd it is equal to

1

~
Ĥ(ϕ) =

∑

n

(nδ + αn)|n〉〈n| + 1

2

∑

n

(Ωgn,n+1e
−iϕ|n + 1〉〈n| + h.c.). (1)

Here the anharmonicity αn is defined as ωn = nωq + αn with α0 = α1 = 0 and the
detuning δ as ωq − ωd. The constants gn,n+1 express coupling strengths between levels n
and n + 1 relative to the 0 ↔ 1 coupling (i.e. g01 = 1). For a weakly anharmonic qubit
[4] they can be approximated as gn,n+1 =

√
n + 1.

The drive amplitude Ω and the phase ϕ are related to the two drive quadratures by
Ωx = Ω cosϕ and Ωy = Ω sinϕ. Therefore – in terms of our analogy with the spin 1/2
in a magnetic field – if the phase ϕ runs from 0 to 2π then the effective magnetic field
traces a conical path with an opening angle θ (see Figure 2) given by cos θ = δ/

√
δ2 + Ω2

enclosing a solid angle A = 2π(1 − cos θ).

θ

excited state

ground state

z

Figure 2: Trajectories followed by the ground and the excited state of the qubit on the Bloch sphere

during the adiabatic sequence.
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To calculate corrections due to the higher levels we will make use of the fact that
the dependence of the Hamiltonian on ϕ can be expressed in terms of a simple unitary
transformation. Let us define an operator

N̂ =
∑

n

n|n〉〈n|.

The Hamiltonian can then be expressed as

Ĥ(ϕ) = e−iϕN̂Ĥ(0)eiϕN̂ .

Therefore if |Φ〉 is an eigenvector of Ĥ(0) then |Φ(ϕ)〉 = e−iϕN̂ |Φ〉 is the corresponding
eigenvector of Ĥ(ϕ).

Hence if the parameter ϕ of the Hamiltonian is adiabatically varied from 0 to 2π, the
geometric phase accumulated by the eigenvector |Φ〉 is given by [2]

γΦ = i

∫ 2π

0

〈Φ(ϕ)| d

dϕ
|Φ(ϕ)〉dϕ = 2π〈Φ|N̂ |Φ〉. (2)

We can check that this relation indeed gives the correct result for a conical path in an
ideal two-level system. In this case the operator N̂ is equal to (1 + σ̂z)/2 and equation
(2) simplifies to

γΦ = 2π〈Φ|1+ σ̂z

2
|Φ〉 = π(1 ± cos θ), (3)

where the sign ± corresponds to the positive and negative eigenvalue of Ĥ(0) respectively.
This expression differs from Berry’s result only by an unobservable multiple of 2π.

3.2 Perturbative calculation of the higher levels correction

The following section describes a calculation of the lowest order perturbative correction to
the geometric phase caused by the presence of higer qubit levels. It proceeds as a rather
straightforward application of the non-degenerate perturbation theory and is included
here for completeness.

Since we want to calculate the correction to the two-level geometric phase we split the
Hamiltonian Ĥ(0) into a block diagonal part

1

~
Ĥ0 =

∑

n

(nδ + αn)|n〉〈n| + 1

2
(Ω|1〉〈0| + h.c.),

which preserves the coupling between the two lowest levels but keeps all the higher levels
decoupled, and a perturbation2

1

~
V̂ =

1

2

∑

n≥1

(Ωgn,n+1|n + 1〉〈n| + h.c.),

2In this case the matrix elements of V̂ and Ĥ0 are comparable in magnitude which could cast doubts
on whether V̂ can be treated as a perturbation. In fact, the relevant quantities which determine if

perturbative treatment is justifiable are 〈Φ(0)
i |V̂ |Φ(0)

j 〉/(E
(0)
i −E

(0)
j ) (see definitions given below). These

are indeed much smaller than 1 if |δ|, |Ω| ≪ ‖α2|, which we further assume to be true.
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which includes the omitted couplings. This decomposition can be illustrated in matrix
form as (the black dots represent non-zero matrix elements)
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The eigenvectors of the unperturbed Hamiltonian Ĥ0 are

|Φ(0)
− 〉 = cos

θ

2
|0〉 − sin

θ

2
|1〉,

|Φ(0)
+ 〉 = cos

θ

2
|1〉 + sin

θ

2
|0〉,

|Φ(0)
n 〉 = |n〉 for n ≥ 2

and the corresponding eigenvalues

E
(0)
− = −~

√

δ2 + Ω2 sin2 θ

2
,

E
(0)
+ = ~

√

δ2 + Ω2 cos2
θ

2
,

E(0)
n = ~(nδ + αn) for n ≥ 2.

We would like to calculate the geometric phase for a conical path

γn = 2π〈Φn|N̂ |Φn〉

up to second order in V̂ . Substituting the perturbation series for |Φn〉 gives us

1

2π
γn = 〈Φ(0)

n |N̂ |Φ(0)
n 〉 + 2Re 〈Φ(0)

n |N̂ |Φ(1)
n 〉 +

〈Φ(1)
n |N̂ |Φ(1)

n 〉 + 2Re 〈Φ(0)
n |N̂ |Φ(2)

n 〉 + O(V̂ 3).

The first term on the right-hand side is just the two-level geometric phase from (3)

with the sign − for n = − and + for n = +. We will denote it by γ
(0)
n . For n ≥ 2 equation

(2) yields just a multiple of 2π so we can define γ
(0)
n for such n to be zero.

The second term is equal to zero for the following reasons: For n ≥ 2 it is simply

proportional to Re 〈Φ(0)
n |Φ(1)

n 〉 which needs to be zero due to orthogonality of |Φn〉. For

n = ± the first order correction |Φ(1)
n 〉 is proportional to |Φ(0)

2 〉 (since V̂ only couples

|Φ(0)
± 〉 to |Φ(0)

2 〉) but the matrix elements 〈Φ(0)
± |N̂ |Φ(0)

2 〉 are zero.
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The first and second order corrections to the eigenvectors are

|Φ(1)
n 〉 =

∑

m 6=n

Vmn

Emn

|Φ(0)
m 〉, (4.a)

|Φ(2)
n 〉 =

∑

k,m 6=n

VkmVmn

EknEmn

|Φ(0)
k 〉 −

∑

k 6=n

VknVnn

E2
kn

|Φ(0)
k 〉 − 1

2

∑

k 6=n

VnkVkn

E2
kn

|Φ(0)
n 〉 (4.b)

where

Vij = 〈Φ(0)
i |V̂ |Φ(0)

j 〉,
Eij = E

(0)
j − E

(0)
i .

In our case the second term in equation (4.b) will not contribute because Vnn = 0 for all
n.

We can then express our correction3 to the geometric phase as

1

2π
∆γn ≡ 1

2π
(γn − γ(0)

n ) =
∑

k,m 6=n

VnkNkmVmn

EmnEkn

+ 2Re
∑

k,m 6=n

NnkVkmVmn

EknEmn

−
∑

k 6=n

NnnVnkVkn

E2
kn

.

Here we have denoted the matrix elements of N̂ by Nij analogously to Vij . Let us

now choose n = − or n = + and denote the sign opposite to n by n. Then since V̂ only

couples |Φ(0)
± 〉 to |Φ(0)

2 〉 our expression simplifies to

1

2π
∆γn =

Vn2(2 − Nnn)V2n

E2
2n

+ 2Re
NnnVn2V2n

EnnE2n

.

After substituting for Vn2, Vn2, Nnn and Nnn we obtain

1

2π
∆γ− =

~
2Ω2|g12|2
4E2

2−

(

sin2 θ

2
+

2E2− + E+−

E+−
sin2 θ

2
cos2

θ

2

)

,

1

2π
∆γ+ =

~
2Ω2|g12|2
4E2

2+

(

cos2
θ

2
+

2E2+ + E−+

E−+
sin2 θ

2
cos2

θ

2

)

,

which can be further recast into the form

1

2π
∆γ− =

k|g12|2 sin2 θ

4

2k(1 − cos θ) + (2k + (3k + 2) cos θ) sin2 θ

(k + (3k + 2) cos θ)2
, (5.a)

1

2π
∆γ+ =

k|g12|2 sin2 θ

4

2k(1 + cos θ) + (2k − (3k + 2) cos θ) sin2 θ

(k − (3k + 2) cos θ)2
, (5.b)

3For the sake of brevity, we will further omit the O(V̂ 3)-symbol from our expressions.
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where k = δ/α2 is the ratio between detuning and anharmonicity.
Expanding this result to first order in the parameter k gives us

1

2π
∆γ− ≈ δ|g12|2

8α2

sin4 θ

cos θ
,

1

2π
∆γ+ ≈ −δ|g12|2

8α2

sin4 θ

cos θ
,

which agrees with the perturbative correction obtained by Stefano Pugnetti [7] using
a different way of splitting the original Hamiltonian into Ĥ0 and V̂ . This alternative
way is based on a rotation which diagonalizes the Hamiltonian in the two-level subspace
H2. The transformed Hamiltonian is then split into a diagonal unperturbed part which
is degenerate in H2 and the remaining perturbation which is traceless and off-diagonal
outside of H2.

In both of these approaches, the off-diagonal elements of the perturbation in the
eigenbasis of the unperturbed Hamiltonian are proportional to Ω whereas the eigenenergy
differences are comparable in size with α2 (if |δ| ≪ |α2|). Therefore in the limit |δ|, |Ω| ≪
|α2| both perturbations can be considered “small” and both perturbative results should
approach the exact value in this limit. The two approaches are therefore in this sense
equivalent.

a) b)
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excited state

ground state

|Φ+〉

|Φ−〉

z
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z

Figure 3: A Bloch sphere picture of the driven qubit eigenstates |Φ−〉 and |Φ+〉 and their adiabatic evo-

lution from the ground and the excited state, respectively, for (a) positive detuning and vice versa for (b)

negative detuning. The state |Φ+〉 is the one corresponding to the higher eigenvalue, i.e. its corresponding

point on the Bloch sphere is given by the effective “magnetic field” ~B (whereas the point correspoding to

the state |Φ−〉 is given by − ~B). The sign of the detuning determines whether the initial vector ~B points

towards the ground state (if δ < 0) or the excited state (if δ > 0) and therefore (since eigenenergies of a

general smoothly evolving hamiltonian do not cross) which of these states adiabatically evolves into |Φ+〉.

As mentioned above, the quantity measured in the actual experiment was twice the
difference between the geometric phases acquired by the ground and excited state of the
qubit. If θ < π/2 then δ > 0 and as the qubit drive is adiabatically increased from zero
to Ω, the ground (excited) state evolves into |Φ−〉 (|Φ+〉) and vice versa for θ > π/2 (see
Figure 3). Therefore

∆φ ≡ 2(∆γg − ∆γe) ≈ ±πδ|g12|2
α2

sin4 θ

cos θ
, (6)
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where the sign + or − is chosen if θ < π/2 or θ > π/2. Equivalently, if we restrict the
opening angle to the interval [0, π/2] (i.e. replace θ by π/2 − θ if θ > π/2) we can omit
the sign ± in the previous equation.

We can see that the relative size of the geometric phase correction due to higher
qubit levels is roughly of the order δ/α2. This effect therefore becomes important if the
detunings is comparable with the anharmonicity. The highest value of the ratio δ/α used
in the experiment was approximately 1/6.

To reduce the correction due to higer qubit levels, one has to keep the qubit detuning
δ much lower than α2. However, in order to satisfy the adiabaticity condition, the total
duration T of the adiabatic sequence has to be much longer than the typical Rabi period
which is of the order 2π/δ. To maintain good coherence throughout the experiment, the
total time T needs to be shorter than the coherence time τ of the qubit. Moreover, the
anharmonicity of a transmon qubit is much lower than its g − e transition frequency. In
summary, we can write these conditions as

2π/τ ≪ 2π/T ≪ |δ| ≪ |α2| ≪ ωq.

This places constraints on the quantity ωqτ which needs to be relatively high (our is of
the order 104 to 105) if geometric phase dependence close to that expected for an ideal
two-level system is to be observed.

In other words, the quality of the qubit (quantified by the number of coherent oscil-
lation cycles that the qubit can undergo before it loses coherence) has to be sufficiently
high. It would be interesting to compare this constraint with constraints placed on the
qubit quality by the circuit design, materials and manufacturing processes used in its
making etc.

3.3 Comparison with numerical calculations and experimental re-

sults

To check the validity of our perturbative results, we performed a series of numerical
calculations and simulations. First, we diagonalized the system’s Hamiltonian (truncated
at some finite number of qubit and resonator levels) numerically to calculate the geometric
phases directly from equation (2). Furthermore, we directly simulated the qubit evolution
during the experiment (except for the final state tomography) to make sure that other
aspects of the measurement such as the spin echo sequence, non-adiabatic effects etc. do
not play a significant role4.

We tried to perform the simulations both by solving the Schrödinger equation (unitary
dynamics) and the quantum master equation [8] taking into account qubit decay (non-
unitary dynamics), only to find out that these phenomena have a negligible effect on the
results. Describing the system by a pure state therefore seemed to be sufficient for our
purposes.

Figure 4 shows a comparison of the corrections due to higher qubit levels as obtained
using the perturbative result (5.a) and (5.b) with results of the numerical calculations

4More precisely – although non-adiabatic effects are observable in the simulations (especially for lower
detunings), they do not seem to cause a systematic shift of the theoretically predicted value of the phase
but only oscillations around this value.
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mentioned above. For negative detunings (Fig. (c), (d)) the correction is positive while
negative corrections are obtained for positive detunings (Fig. (a), (c)).
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Figure 4: Corrections to the phase φ due to higher qubit levels: Comparison of the perturbative result in

equations (5.a) and (5.b) (red line) with the results of numerical diagonalization of the Hamiltonian (blue

line) and simulation of the qubit evolution during the experiment (blue points) for different values of the

detuning δ. Calculations were performed for a three-level qubit with anharmonicity α2/2π = −340 MHz

and an 800 ns long measurement sequence. Non-adiabatic effects are visible in (d).

We can see that simulations of the system’s evolution produce results which are in good
agreement with predictions of the general relation (2). We believe that the differences
(prominent especially for detuning δ/2π = −30 MHz) are caused by non-adiabatic effects.
The perturbative correction due to higher qubit levels expressed in equations (5.a) and
(5.b) also agrees quite well with both the simulation and numerical diagonalization results.

We have also compared the results obtained by numerical diagonalization for various
numbers of qubit levels. This comparison showed that it is sufficient to consider a three-
level qubit because the phase deviation calculated for higher numbers of levels differ from
the three-level result by less than two percent (see Figure 5). Such difference cannot be
resolved in our comparisons with experimental data which show other, more significant
deviations.
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Figure 5: Relative difference between theoretical predictions for the deviation of the measured phase

obtained by numerical diagonalization of the Hamiltonian with 3 and 10 qubit levels. The calculation

was performed for detuning δ/2π = 50 MHz.

When we compare the above theoretical predictions obtained by including effects of
higher qubit levels with experimental data, we see a systematic discrepancy between
those two. The predicted and measured deviation of the geometric phase from the simple
two-level linear dependence seem to have the same sign but different magnitude.

Figure 6 shows two experimental data sets in comparison with the results predicted
by theory.

a) δ/2π = −50 MHz b) δ/2π = 50 MHz
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Figure 6: Comparison of the correction to the geometric phase due to higher qubit levels (solid line)

with experimental results (points) for (a) positive and (b) negative detuning.

In our first attempt to explain this discrepancy, we considered the possibility that
some yet unknown effect causes a shift in the two key parameters of the model – the
anharmonicity α2 and the relative coupling g12 between the second and the third level of
the qubit – but otherwise leaves the functional dependence (5.a) and (5.b) of the measured
phase on the solid angle unchanged.

However, as illustrated in Figure 7, comparison of experimental data obtained for
different qubit detunings shows that no shift in α2 and g12 can account for the differences
between theory and experiment in all the data sets at the same time. Therefore, we need
to modify our theory in some other way.
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Figure 7: Density plots showing sums of squared deviations of the measured data from numerical diago-

nalization results as functions of the anharmonicity α2 and the relative coupling g12 between the second

and the third qubit level. The plots below show the calculated and the measured values explicitely for

three arbitrarily chosen parameter values, marked in the density plots above by coloured points. Compar-

ison of the results for (a) negative and (b) positive detuning suggests that this simple theoretical model

does not agree with experimental data for a fixed value of the two parameters.

4 Corrections due to qubit-resonator interactions

After considering several possible explanations of this disagreement between our theory
and the experiment, we started to study potential effects of interactions between the qubit
and the microwave cavity on the geometric phase.

It turns out that there is an effect capable of producing deviations in the geometric
phase of the same order of magnitude (for our parameters of the sample) as the correction
due to higher qubit levels discussed above. This effect can be naively understood as a
change of the effective opening angle caused by the cavity-induced AC Stark shift of the
qubit. As the drive strength increases, the mean photon population of the off-resonantly
driven resonator grows which in turn pushes the qubit frequency farther away from the
resonator frequency. In our case the latter is higher which means that this effect tends
to decrease the qubit-drive detuning. This translates to larger solid angles and therefore
higher geometric phases if the detuning is positive and vice versa.

This unfortunately means that the effect of qubit-resonator interactions on the ge-
ometric phase is exactly opposite to what we would need to explain our experimental
results. This is of course no reason to neglect this effect. In the next section we will
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derive the resonator-induced correction to the geometric phase using perturbation the-
ory in the dispersive limit. To this end, we will treat the qubit as a two-level system
which will greatly simplify the calculations and allow us to see the effect of the cavity and
its dependence on the parameters of the system separately from the higher qubit level
contribution.

4.1 The dispersive cavity QED Hamiltonian

If the qubit and the resonator are far detuned from each other (i.e. the qubit and resonator
frequencies ωq, ωr satisfy |ωq −ωr| ≫ g where g is the qubit-resonator coupling strength),
the Jaynes-Cummings Hamiltonian [9] in the corotating frame

Ĥ = ~δrâ
†â +

1

2
~ε(â + â†) +

1

2
~δqσ̂z + ~g(σ̂eg â + â†σ̂ge)

(where δq and δr are again the detunings of the qubit and the resonator from the drive
frequency, ε is the input signal driving the resonator and σ̂ij for i, j ∈ {g, e} denote

operators |i〉〈j|) can be unitarily transformed by Ûdisp = exp(g(σ̂eg â− â†σ̂ge)/(ωq − ωr))
which effectively eliminates terms corresponding to energy exchange between the two
subsystems.

Keeping only terms up to second order in g and neglecting higher levels of the qubit,
the dispersive Hamiltonian has the form

Ĥdisp = ÛdispĤÛ †
disp = ~

(

δr +
g2

ωr − ωq

)

â†â +
1

2
~ε(â + â†)+ (7)

1

2
~

(

δq −
g2

ωr − ωq

)

σ̂z − 1

2

g

ωr − ωq

~εσ̂x−

2~g2

ωr − ωq

â†âσ̂ee +
1

4
~ε

(
g

ωr − ωq

)2

(â + â†)σ̂z .

Here the first two lines represent the Hamiltonian of effectively decoupled resonator
and qubit. Note that they already include the Lamb shift and the dispersive shift of the
resonator frequency. The renormalized detunings

δr
q = δq −

g2

ωr − ωq

,

δr
r = δr +

g2

ωr − ωq

are therefore quantities that are actually measured in an experiment as opposed to the
bare detunings δr and δq which are not directly accessible to a measurement (the same
holds for frequencies ωr and ωq).

The third line includes ac Stark shifts [10] which appear whenever one of the subsys-
tems is in an excited state. Furthermore, it includes a qubit-dependent correction of the
coupling between the resonator and the external drive (this term is usually not included
in the dispersive Hamiltonian but it turns out that in our case it needs to be considered
as well).
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4.2 Perturbative calculation of the resonator-induced correction

The qubit-resonator Hamiltonian (7) has again a form which allows us to extract the
dependence on the drive phase ϕ by means of a rotation exp(−iϕN̂) where this time

N̂ = â†â +
∑

n

n|n〉q〈n|q.

The geometric phases of its eigenstates are then again given by the expectation values of
this operator multiplied by 2π, cf. equation (2).

The first two lines in equation (7) (let us denote them by Ĥ0) can be exactly diago-
nalized (up to an overall energy shift) by rotating the qubit state around the y-axis and
displacing the resonator state by the unitary operation ÛR = exp(ε(â†− â)/2δr

r +iθσ̂y/2):

ÛRĤ0Û
†
R = ~δr

r â†â +
1

2
~∆r

qσ̂z ,

where δr
q is determined by δr

q = ∆r
q cos θ and − g

ωr−ωq

ε = ∆r
q sin θ.

The eigenstates of Ĥ0 and their corresponding eigenenergies are therefore

|n, s〉 ≡ Û †
R|n〉 ⊗ |s〉 = exp

(
ε

2δr
r

(â − â†)

)

|n〉 ⊗ exp

(

− i

2
θσ̂y

)

|s〉,

En,s = ~δr
rn ± 1

2
~∆r

q,

where n ∈ {0, 1, . . .}, s ∈ {g, e} and the signs + and − in the expression for the energy
correspond to s = e and s = g respectively.

The expectation value of N̂ in first order of the perturbation

V̂ = − 2~g2

ωr − ωq

â†âσ̂ee +
1

4
~ε

(
g

ωr − ωq

)2

(â + â†)σ̂z

is given by

〈N̂〉n,s = 〈n, s|N̂ |n, s〉 + 2 Re
∑

(n′,s′) 6=(n,s)

〈n, s|N̂ |n′, s′〉〈n′, s′|V̂ |n, s〉
En,s − En′,s′

.

The matrix element of N̂ is only non-zero if n′ = n or s′ = s. Therefore

〈N̂〉n,s = 〈n, s|N̂ |n, s〉 + 2Re
X

n′ 6=n

〈n, s|N̂ |n′, s〉〈n′, s|V̂ |n, s〉
~δr

r (n − n′)
+ 2Re

〈n, s|N̂ |n, s′〉〈n, s′|V̂ |n, s〉
±~∆r

q

= n +

„

ε

2δr
r

«2

+
1 ± cos θ

2
− ε

δr
r

Re
X

n′ 6=n

〈n|(â + â†)|n′〉〈n′, s|V̂ |n, s〉
~δr

r (n − n′)
∓ Re

〈n, s′|V̂ |n, s〉
~∆r

q

sin θ

= n +

„

ε

2δr
r

«2

+
1 ± cos θ

2
− ε

~(δr
r )2

Re (
√

n〈n − 1, s|V̂ |n, s〉 −
√

n + 1〈n + 1, s|V̂ |n, s〉)

∓Re
〈n, s′|V̂ |n, s〉

~∆r
q

sin θ

= n +

„

ε

2δr
r

«2

+
1 ± cos θ

2
+

ε2g2

(δr
r )3(ωr − ωq)

„

1 ± cos θ

2
± 1

4

δr
r

ωr − ωq

cos θ

«

∓ g2

∆r
q(δr

r )2(ωr − ωq)
sin2 θ

„

n(δr
r )2 +

1

4
ε2

„

1 +
δr
r

ωr − ωq

««

.
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From here we obtain the following expression for the geometric phase difference γ|n,g〉−
γ|n,e〉

γ|n,g〉 − γ|n,e〉

2π
= − cos θ − ε2g2

(δr
r)3(ωr − ωq)

cos θ

(

1 +
1

2

δr
r

ωr − ωq

)

+

1

∆r
q(δ

r
r)2(ωr − ωq)

sin2 θ

(

2ng2(δr
r)2 +

1

2
ε2g2

(

1 +
δr
r

ωr − ωq

))

Considering that εg = −(ωr − ωq)δ
r
q tan θ and ∆r

q = δr
q/ cos θ, we get for n = 0

∆γ|0,g〉 − ∆γ|0,e〉

2π
=

(ωr − ωq)δ
r
q

(δr
r)2

sin2 θ

cos θ

[
1

2
sin2 θ

(

1 +
δr
r

ωr − ωq

)

− (8)

δr
q

δr
r

(

1 +
1

2

δr
r

ωr − ωq

)]

.

4.3 Comparison with numerical calculations

Once again, we performed simulations aimed at checking the validity of the perturbative
result (8) for the resonator induced correction to the measured phase. This time the model
included only two qubit levels and the system was described by the full Jaynes-Cummings
Hamiltonian. The results of this simulation are shown in Figure 8.

0.5 1.0 1.5 2.0 2.5 3.0
solid angle

0.1

0.2

0.3

0.4

phase deviation

Figure 8: Corrections to the geometric phase due to qubit-resonator interactions for a two-level qubit:

Comparison of the perturbative result in equation (8) (red line) with the results of numerical diagonaliza-

tion of the Hamiltonian (blue line) and simulation of the qubit-resonator evolution during the experiment

(blue points) for detuning δ/2π = 50 MHz. The simulation was performed for four resonator levels and

a 600 ns long measurement sequence.

Apparently, in this case the agreement between theory and experiment is not as good
as for the previously discussed higher qubit level correction. However, the perturbative
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result is still useful in that it can provide a good insight into how different parameters of
the system influence the resonator-induced correction.

To determine whether using four resonator levels in our simulations is sufficient, we
compared the results obtained for 4 and 10 levels and found that they differed by less than
four percent (see Figure 9). This indicates that unless we are interested in opening angles
closer to π/2 or detunings significantly higher than 50 MHz, describing the resonant cavity
by a four-level system should indeed be sufficient.
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relative phase difference @%D

Figure 9: Relative difference between theoretical predictions for the deviation of the measured phase

obtained by numerical diagonalization of the Jaynes-Cummings Hamiltonian with 4 and 10 resonator

levels (and a two-level qubit). The calculation was performed for detuning δ/2π = 50 MHz.

Finally, we considered a model including higher qubit levels as well as qubit-resonator
interactions. We performed the same simulations as in the previous cases and compared
them with results obtained by simply summing the two types of corrections in equations
(5.a), (5.b) and (8). The comparison is presented in Figure 10.
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-0.4

-0.2

phase deviation

Figure 10: Corrections to the geometric phase due to higher qubit levels and qubit-resonator interac-

tions: Comparison of the sum of the perturbative results (5.a,5.b) and (8) (red line) with the results of

numerical diagonalization of the Hamiltonian (blue line) and simulation of the qubit-resonator evolution
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during the experiment (blue points) for detuning δ/2π = 50 MHz. The simulation was performed for 3

qubit levels, 4 resonator levels and a 600 ns long measurement sequence.

This comparison suggests that lowest order perturbation theory can only be used to
describe both effects – due to higher qubit levels and qubit-resonator interactions – with
relatively limited precision. For this reason, we decided to use numerical calculations in-
stead of our perturbative results for further comparisons between theory and experiment.

5 Numerical calculations and their comparison with

experimental results

We have performed numerical calculations of the geometric phase for each of the experi-
mental data sets to compare with. But as the perturbative results already indicated, the
correction due to higher qubit levels is too small and the resonator-induced correction
even has the wrong sign. The resulting agreement is not very good (see Figure 11).

a) δr
q/2π = −50 MHz b) δr

q/2π = 50 MHz
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Figure 11: Comparison of two experimental data sets with numerical calculations taking into account

higher qubit levels and interaction between the qubit and the resonator.

We then started to consider possible explanations for this discrepancy. It seems that
there might be some unwanted interactions which are not included in the model of a mul-
tilevel qubit coupled to one resonator mode. For example, other modes of the resonator
could also play a role. Or the qubit might not be an ideal anharmonic oscillator but could
have some additional degrees of freedom.

In general, the presence of a transition with a frequency lower than the qubit frequency
would cause a shift of the geometric phase in the “correct” direction (by the Stark shift
mechanism described above).

The simplest way in which we can extend our model is to add another 2-level system
(fluctuator) coupled to the qubit. We tried to estimate how the geometric phase is altered
by the presence of such 2-level system. The results of the calculations show (see Figure 12)
that its effect can be quite pronounced if the frequencies of the qubit and the fluctuator
are close to each other but since we consider the fluctuator coupling to be relatively weak,
its influence becomes much smaller when the qubit and the fluctuator are far detuned
from each other.
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ωr
q/2π = 5500 MHz ωr

q/2π = 5540 MHz ωr
q/2π = 5570 MHz
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Figure 12: Results of numerical calculations of the geometric phase deviation from the linear dependence

for a 3-level qubit (blue line), a 2-level qubit coupled to a resonator with frequency ωr
r/2π = 6950 MHz

and coupling strength g/2π = 115 MHz (red line), a 3-level qubit coupled to a resonator (violet line)

and a 3-level qubit coupled to a resonator and another 2-level system (fluctuator) with frequency

ωr
f
/2π = 5690 MHz and coupling strength gf/2π = 5 MHz (green line). These parameters of the fluctu-

ator are indicated by a spectroscopy measurement which shows an avoided crossing of unclear origin at

approximately 5.69 GHz. The calculations are performed for three different qubit frequencies ωr
q and for

detuning δr
q/2π = −50 MHz. The corresponding experimental data points are included for comparison.

With increasing drive strength, the frequency of the qubit is getting closer to the
frequency of the fluctuator. The presence of the avoided crossing modifies (in our case
increases) the geometric phase.

However, this finding also points to an unpleasant feature of our numerical calculations
based on diagonalization of the Hamiltonian. This approach obviously yields results valid
for the ideally adiabatic case when the Hamiltonian is being changed slowly enough so that
the eigenstates can follow all the avoided crossings. But as is the case for our potential 2-
level fluctuator, the coupling strengths of any additional systems coupling to the qubit are
expected to be relatively small. In reality, the experimental sequence is probably not slow
enough to maintain adiabaticity at all avoided crossings. The numerical calculation then
shows an abrupt change in the geometric phase whenever such “experimentally invisible”
close avoided crossing occurs (see Figure 13).
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Figure 13: Result of a numerical calculation of the geometric phase deviation for a 3-level qubit with

frequency ωr
q/2π = 5540 MHz coupled to a resonator and a 2-level system with frequency ωr

f
/2π =

5690 MHz. The detuning was δr
q/2π = −50 MHz. The abrupt change in the geometric phase is caused

by an avoided crossing between energy levels of the qubit and the fluctuator.
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6 Conclusions

We studied how the geometric phase in a superconducting transmon qubit coupled to a
resonant cavity differs from that of an ideal two-level system [2]. We derived a simple
expression for the geometric phase accumulated by a system following a conical path (2)
and used it to calculate corrections due to higher qubit levels and due to qubit-resonator
interactions to lowest order in perturbation theory. We found that these corrections are
roughly proportional to the ratios δq/α (qubit detuning to anharmonicity) and δq/δr

(qubit detuning to resonator detuning), respectively.
We also tried to use numerical calculations of the discussed effects to explain the

deviation of the experimentally measured geometric phases from the ideal two-level values.
So far, we have not been able to produce a satisfactory quantitative match between the
theoretical predictions and experimental data. Some measurements of the qubit relaxation
time and the transmission spectrum of the resonator suggest that there might be some
unwanted additional degrees of freedom whose coupling to the qubit obscures the results.

Whether this is true or not might become clearer after more measurements are made
with a new simpler sample.
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