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In this thesis we measured the scattering matrix data of coupled lumped-element resonators with
periodic boundary condition by performing dipstick measurement. We fitted scattering matrix data
with Mathematica model function to understand how each capacitances of circuit capacitors varies
as a function of design parameters. We found the recipe to fabricate capacitor with certain value of
capacitance, which is very important while designing any kind of quantum simulation experiment
using superconducting circuits. Furthermore, we observed asymmetry of shunt capacitances. The
reason of asymmetry is presence of a transmission line and geometry difference among shunt capac-
itors. In conclusion, we understood how capacitor design parameters affect the capacitance. This is
important because we want to control design parameters to fabricate a specific circuit that can be
used as quantum simulators.



ACKNOWLEDGEMENT

As an exchange student from other university, performing physics experiment at ETH
and writing thesis was extremely valuable experience. I would like to thank Prof. Andreas
Wallraff who gave me the chance to work in Quntum Device Labaratory. Also, I would like
to thank Dr. Anton Potocnik, supervisor of my project at ETH. He taught me procedure of
dipstick measurement and gave me valuable feedback regarding data analysis. I also want
to thank Mr. Samuel Gyger. He gave me lot of advice about model function fitting.



INTRODUCTION

Quantum mechanics is a mathematical framework for the construction of physical theories
that describes a microscopic scale world. The rules of quantum mechanics are simple but
quite counter-intuitive since we live in macroscopic world. Scietists of past centuries studied
how to apply quantum mechanical effects to real microscopic world. The scientists are
trying to take advantage of characteristics of quantum mechanics such as entanglement and
superposition in order to design quantum computers can solve much complicated problems
compare to classical computers. This domain of knowledge is called quantum information
theory [1].

Simulating quantum mechanics of large system is a difficult task. Instead, simulating
partial quantum mechanical system is less difficult [4]. Thus, recently physicists are designing
simple quantum simulators with lumped element resonators consist of circuit elements such
as capacitors and nonlinear inductors [2]. Understanding how design parameters of the
lumped elements affects its physical quantity precisely is important task to build quantum
devices. In this thesis we will focus on characterizing capacitors, especially capacitors of
circuits with periodic boundary condition. Previously, the research of characterizing linear
array resonators is already done [2]. In this thesis, we will measure the capacitances of
capacitors following similar way. We will perform dipstick measurement to obtain scattering
matrix elements and analyze the results with theory [3].

THEORY

Lumped-element Resonators

In our experiment, we used circular circuit of lumped-element resonators. The lumped-
element resonators we have used consist of resistor with resistance R, and inductor with
inductance L, and capacitor with capacitance C. Each resonator contains mentioned three
components which are connected in parallel [6]. In our circuit resonators are connected
leading to a circular circuit structure. Resonators are coupled with coupling capacitances.
These capacitors are called coupling capacitor and denoted by C; while capacitor in each
resonators are called shunt capacitor. Furthermore, we used transmission lines to measure
reflection and transmission coefficients of the structure. Each transmission lines contains
coupling capacitor which is denoted by C,. The impedence of transmission line is Z-. Fig.
1 shows the circuit representation of our system with four resonators. This circuit is called
quatromer. In general, the circuit may contain N resonators. Since there are a number
of resonators in our circuit, we denoted each shunt capacitor as C;. i is an integer from
1 to N counting resonators in counterclockwise manner. Each inductors and resistors are
also denoted as L; and C; respectively with lowercase index ¢. By our construction the
circuit also contains N coupling capacitors. We denoted each coupling capacitor between
ith capacitor and i + 1th capacitor as C'y;. The coupling capacitor between Nth capacitor
and 1st capacitor would be C;y. The coupling capacitors of transmission lines would be
denoted in the same way Cl;.

Lagrangian and Hamiltonian Formalism

We can employ circuit quantumelectrodynamics to analyze lumped-element circuits with
several resonators. Let us assume there are IV resonators and coupling capacitors in circuit
without any transmission lines. Then Lagrangian of the system would be given as

1o . 1
L= 5<I>TC<I> — 5<I>TL-1<I> (1)
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FIG. 1. Right picture is a optical micrograph of circular quatromer and left picture is its circuit
diagram.

and Hamiltonian of the system would be given as
1 - o1
H= 5(,,ch—lQ + §<I>TL_1<I> (2)

where ® is a vector of flux nodes, L is a square diagonal matrix of inductance, C' is a square
matrix of shunt capacitors and coupling capacitors. @ is a vector of charges [7]. We can
evaluate Hamiltonian of the system with canonical commutation relation [¢;, qﬁ}] = —ihdy;
and introducing creation and annihilation operators G;" and d;. Then our Hamiltonian
becomes

N
H= Zhwiddei + Z hJij (ddej + Ciidjf) (3)

i=1 <ij>

-1 L. W), .
form where w; = /(C~1);(L71);; and J;; = % W Furthermore, if we apply

input-output theory, we can theoretically derive scattering matrix parameters [8].

Degeneracies and Dark Modes

If one measure the reflection coefficients of circular quatromer at extremely low temper-
ature, one would expect to see four resonance frequencies because there are four resonators
in the system circuit. One can simply calculate resonance frequencies by plotting abso-
lute value of reflection coefficients as a function of frequency. Absolute value of reflection
coefficients are about one, but at resonance frequency, this value becomes smaller. Inter-
estingly we observe only three resonances. For instance, if one sets all four values of shunt
capacitances, inductances, coupling capacitances and resistances to be the same, one would
observe only three resonances.

This can be seen either by theoretical calculation or by performing a dipstick measure-
ment. This phenomenon occurs because of degeneracy of two modes. One can calculate
eigenstates and eigenvalues of circular quatromer system by solving eigenvalue problem of
Hamiltonian. Since a matrix representation of Hamiltonian is 4 by 4 matrix, there exist 4



eigenvalues and eigenvectors. For aforementioned perfectly symmetric system, two eigenval-
ues are the same.

However, what have been described above is not the only case with three resonances.
By theoretical calculation, one can find out if only diagonally pairwise symmetry is kept, a
disappearence of one resonance can be still observed. Let us assume a transmission line is
connected to Cy capacitor only and all inductance L, resistance R and coupling capacitance
Cj; are same. Then diagonally pairwise symmetery means C; = C3 and Cy; = C4. Since
the symmetry is broken, there are no degenerate eigenvalues. However one resonance would
still be missing in the reflection type measurement. We call this mode a dark mode. The
reason why we can not observe dark mode can be explained by calculating eigenstates of
Hamiltonian. When there exists a diagonal symmetry, dark mode has zero current ampli-
tude at L, C resonator which is coupled to transmission line [9]. To be more specific, we
do not need diagonally pairwise symmetry to obtain a dark mode. What we need is merely
C5 = C4 conditon where transmission line connected to C;. Value of C; and C3 will not
affect required folding symmetry. That is why we can still observe dark mode in the presence
of transmission line. The presence of transmission line changes local geometry which brakes
the symmetry..

EXPERIMENT
Dipstick Measurement

We performed dipstick measurement in order to measure the scattering matrix parame-
ters. We placed the sample to the bottom of the sample carrying stick at room temperature.
This stick is connected to the VNA, vector network analyzer. VNA device measures the scat-
tering matrix parameters. We performed measurement at liquid helium temperture where
the sample is superconducting. To achieve liquid helium temperature sample is submerged
to liquid helium dewar.

First of all, we need to calibrate the VNA. Calibration procedure was done using Rosen-
berg calibration kit. This calibration kit contains four componenets, short, load, open and
through connectors.

Once the sample and cables are connected to the stick, we opened the helium dewar and
slowly push the dipstick into the dewar. We had to move the stick very slowly to maintain
maximal pressure inside the helium dewar. While pushing the stick we carefully observed
the VNA monitor. When superconductivity occurs, we submerged the stick deeper to place
our sample in the center of the dewar. Then we saved the data of scattering matrix param-
eters. After saving, we pulled the stick out. When superconductivity vanishes, we save the
data of scattering matrix parameters again to correct the measurements later.

Model Function Fitting

We analyzed our experiment data with Mathematica program. We load the data of the
scattering matrix elements. Then we use the model function that we programmed using
ABCD matrix formalism. We analyzed each lumped element with ABCD matrix. We con-
verted parallel ABCD matrices to Y matrices and added them, then reconverted Y matrix
to ABCD matrix to obtain total ABCD matrix that describes whole circular quatromer
circuit. For example, we can calculate total ABCD matrix of parallel connected circuit with
following equation [10].

Mo = M(Y (M) + Y (M2)) (4)

where M; and My are ABCD matrices of each circuit parts, and two circuit parts are
connected parallelly. Y function converts ABCD matrix to Y matrix and M function converts
Y matrix to ABCD matrix. On the other hand, we can calculate total ABCD matrix of series
connected circuit by simply multiplying two ABCD matrices.



We double checked the validity of the model function with AWR circuit simulator. In
order to extract capacitances of coupling capacitors and shunt capacitors, our goal was to
find out best combination of capacitors that generates the same scattering matrix parameter
function as experiment results. We assumed all inductances are fixed to the same value. First,
we tried to find the proper set of capacitances by trial and error method. At this stage we
tried to make our model function graph and experiment graph to be similar as possible
by changing capacitance parameter by hand. Then we used ”NonLinearFit” Mathematica
function to extract the capacitances by minimizing the error between the model function
result and the experiment result with least square method. As shown in Fig. 2, blue dots
are experiment data and a red line is Mathematica fitting function. Experiment data and
model function are in good agreement.
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FIG. 2. A graph of a scattering matrix parameter (reflection coefficient). Blue dots are experimental
data and a red line is the fitting function.

RESULTS AND ANALYSIS
cQJ

A CQJ is a sample with 6 cirular quatromers with all the same design parameters except
for the coupling capacitance C;. We varied the number of fingers of coupling capacitance
from 1 to 9. We measured the reflection coefficient via a transmission line. We successfully
obtained capacitances of shunt capacitors and coupling capacitances with mathematica
model function method. We found out there exists folding symmetry of shunt capacitors
since we observe only three resonances instead of four. This indicates Co = Cj even without
fitting. And from the fitting result, we also observed that C; # Cs. For example, the results
of one circular quatromer shunt capacitance extraction are shown in Table I for 19 fingers
capacitor. Note that all capacitors were designed identical. There are two reasons for this
asymmetry of experimental result.

TABLE I. Design parameter extraction result of CQ.
C11230.7 {F

C; 2345 fF

C3[232.1 fF

'C4[234.5 fF

Cy|10.9 fF

1.7 nH

131.6 k2

There are two kinds of shunt capacitors in circular quatromer. The fingers of C'; and Cjy



are alligned in vertical direction. So we will call this capacitors as vertical capacitors. Cs
and Cj are horizontal capacitors as shown in Fig. 1. We zoomed in each capacitors and
found out finger-gap ratio, the ratio of width of capacitor finger and capacitor gap, of the
vertical capacitors and horizontal capacitors are different. This is not an intentional effect
but origined from a problem at a fabrication step. With the theoretical capacitance formula
using elliptical integral, we could calculate how the finger-gap ratio affects capacitace. We
found out there are 5% difference, which is about 12 fF. Here I used the former experimental
result of shunt capacitor with linear array of lumped elements which is C' = 55 + 10x (the
number of fingers) (fF). Thus expected value of each capacitors is about 245 fF, which gives
similar value as fitting results. The second reason is a presence of transmission line. Since
transmission line is connected to C only, it may affected the capacitance of C;. We con-
firmed this fact with Maxwell program simulation. Shunt capacitance with no transmission
line was 238.6 fF and shunt capacitance with transmission line with ratio 0.2 was 220.7 fF.
The ratio 0.2 means the length ratio of the finger of coupling capacitor Cy to one finger of
shunt capacitor is 0.2. These are two reasons why Cy # Cs3. However, there is still folding
symmetry (Ce = Cy) so we can still observe dark mode.

We also extracted coupling capacitance C; as a function of the number of fingers of cou-
pling capacitor. The formula is C; = 2.9+ 4.4x (the number of fingers-1) (fF). The previous
formula obtained from linear array of lumped elements was C' = 4.6 + 4.7x (the number of
fingers-1) (fF) [2]. They are in agreement.
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FIG. 3. Coupling capacitance C; as a function of finger number. Blue line is a linear fit to the data
which is C; = 2.9 4 4.4x (the number of fingers-1) (fF).

CQK

A CQK is a sample with six circular quatromers with all design parameters the same
except for the coupling capacitance Cy,. We varied the coupling capacitance by changing
the length of the coupling capacitor finger relative to a shunt capacitor finger length. We
varied this ratio from 0.01 to 2 and with dipstick measurements we we observed a linear
behavior of a coupling capacitor as a function of the relative length of C) shown in Fig.
4. The formula was C,; = 13.1x(ratio) (fF). Numerical simulation using Maxwell program
give Cy; = 12.8x(ratio) (fF) which is in fairly good agreement. For strongly coupled circuler
quatromers such as ratio=0.75, 1, 2 circuits of CQK, we observed unexpected additional
resonance peaks. For instance, we observed five resonances instead of three for the sample
with ratio 2. We verified that this is not a measurement problem by repeating the mea-
surements and adding wirebonds. Finally, we built the same sample again and repeated



the measurement, however we still could not get rid of unexpected resonanances. Thus we
conclude that it is an intrinsic problem of the sample itself. So we will have to solve this
problem by investigating the circuits further with laser scanning microscopy.
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FIG. 4. Coupling capacitance C as a function of finger number. Blue line is a linear fit to the data
yielding C\. = 13.1x(the number of fingers) (fF).

cQc

A CQC is a sample with six circular quatromers with all the same design parameters
except the shunt capacitance C; (i=1, 2, 3, 4). We varied the shunt capacitance by changing
the number of shunt capacitors fingers. Using dipstick measurement and fitting the data we
obtained shunt capacitance as a function of the number of fingers of C;. The linear fit to the
data gives C1 = 46 + 9.3x (the number of fingers) (fF), Cy = Cy = 62 + 8.7 x(the number of
fingers) (fF), C5 = 62 4 8.5 (the number of fingers) (fF). The formula of Cy and C3 were
very similar and a capacitance of C; was slightly smaller than the capacitance of Cs, C3, Cy,
which indicates that presence of a tranmission line decreased the capacitance of C7. The
previous formula obtained from linear array of lumped elements was C' = 55 + 10x (the
number of fingers) (fF). Since the order of standard error is about 10 fF, the previous
expremental results and new experimental results are in agreement.

CQL

A CQL is a sample of circular quatromer with four transmission lines connected to each
resonators instead of one transmission line as was the case for previous samples. Sample fig-
ure is shown in Fig. 7. We obtained nine graphs of scattering matrix elements (four reflection
coefficients and five transmission coefficients) as shown in Fig. 6. We found the combination
of capacitances that fit all nine scattering parameters as a function of frequency. The result
is shown in Table II.

We found out angular dependency of the coupling capacitor C; also exists, so that ca-
pacitances of the up-right direction coupling capacitance (Cj1) and the up-left direction
coupling capacitance (Cjz) were different. Also, we are surely confident that this extrac-
tion results are very accurate because these results explains all nine graphs. The result is
unexpected because all four shunt capacitance should be the same in principle, or at least
C1 and Cj should be same but there is no diagonally pairwise symmetry. All four shunt
capacitances are different. A plausible explanation is related to assymmetry of transmission
lines placement. As one can recognize from the figure, the geometry of transmissinon lines
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FIG. 5. Shunt capacitance C; (i=1, 2, 3, 4) as a function of finger number. Blue line is a linear fit
to the data.

TABLE II. Design parameter extraction result of CQL.

Cy |237.7 fF
Cy [248.0 fF
Cs |246.4 fF
Cy 2175 fF
Cj1]13.4 fF
C12(16.0 fF
L [1.7nH
‘R [131.6 kQ

are assymmetric. Hence in order to get a good symmetry, we should design a new sample
with exactly same shape and geometry of all four transmission lines.

CTL

A CTL is a sample of circular trimer with four transmission lines connected to each
resonators instead of one transmission line. We obtained six graphs of scattering matrix
elements (three reflection coefficients and three transmission coefficients) and found the
combination of capacitances that could fit all six graphs. The result is shown in Table III.

TABLE III. Shunt capacitance and coupling capacitor extraction result of CTL.
Cy229.1 fF
C2 2322 fF
C3[232.2 fF
C;]16.2 fF
L [1.7nH
131.6 kQ2

:U‘h

We observe that all three shunt capacitances are again not the same, which is not a surprising
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FIG. 6. Nine graphs of scattering matrix elements (four reflection coefficients and five transmission
coefficients). Blue dots are experiment data, green and red lines are fitting function.
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FIG. 7. Right picture is a optical micrograph of the CQL sample and left picture is its circuit
diagram.

result because of different capacitor orientation and transmission lines geometries. However,
we observed that Cy and C3 were same. This is because geometry of Cy and C3 are symmetric
as shown in Fig. 8. Based on these measurements we can draw the same conclusions as for
previous samples.
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FIG. 8. Six graphs of scattering matrix elements (three reflection coefficients and three transmission
coeflicients). Blue dots are experiment data, green and red lines are fitting function.

CONCLUSION

In this thesis we studied lumped element resonators with periodic boundary conditions.
We performed dipstick measurement to obtain scattering matrix parameter data. We ex-
tracted capacitances of circuit capacitors by model fitting method. Most of experimental
results of circular quatromer show only three resonances with the fourth being dark.

For the CQJ samples, we found a dependency of coupling capacitances as a function
of coupling capacitor finger number. The previous formula obtained from linear array of
lumped elements and new formula are in good agreement.

For the CQK samples, we found a dependency of coupling capacitances of transmission
lines as a function of coupling capacitor finger number. The formula obtained by MXWL
simulation and new formula are in good agreement.

For the CQC samples, we found a dependency of shunt capacitances. The previous for-
mulae obtained from linear array of lumped elements and new formulae are in agree.

For the CQL and CTL samples, we observed asymmetry since the arrangement of four
transmission lines are not fully symmetric. In order to get a good symmetry of shunt ca-
pacitors, we should design a new sample with exactly the same shape and geometry of four
transmission lines.

To sum up, we successed to extract capacitances from scattering matrix parameters and
we obtained the formulae to calculate capacitances. Capacitances Cy, C, and C; are linear
function of designed parameters, which agrees well with simulation or previous experimental
results. However, there is mode splitting for stronger coupling circuits of the CQK sample.
We will have to investigate further to explain those phenomena. We also found designing full
symmetry of circular quatromer is extremely difficult. Thus we have to develope accurate
tool to build capacitors in order to study exotic quantum physics. Eventually, we will be
able to apply quantum simulator to study condenced matter physics, quantum chemistry,
cosmology or even biology [5].
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