
Lead Coupling Effects in Double
Quantum Dots

Semester Thesis in the group of Prof. Dr. A. Wallraff
QUDEV, ETHZ

Natascha S. Hedrich

Tuesday 8th December, 2015

Advisors: Anna Stockklauser

Department of Physics, ETH Zürich
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Chapter 1

Introduction

In recent years, the application of microwave measurement techniques to
quantum dots has opened up new avenues for transport measurements [1, 2].
The use of microwave resonators in superconducting circuits is important in
quantum information processing. These resonators can be coupled to qubits,
allowing for qubit preparation, manipulation and readout [3]. In particular,
we can couple the resonator to a quantum dot.

A quantum dot is a semiconductor nanostructure, providing a confining po-
tential for electrons in three dimensions. Quantum dots (QDs) have proven
to be an ideal tool for studying single electron transport [4]. Sometimes
called ”artificial atoms”, QDs have well defined energy levels due to the
strong confinement. They can be formed in several ways, including self-
assembly due to lattice mismatch in the semiconductor materials, or through
metallic gates deposited on the surface of a semiconductor heterostructure.
The latter is the form of quantum dot that will be the focus of the discussion.
Furthermore, we can couple two quantum dots to form a double quantum
dot (DQD). There have been proposals for using such DQDs in quantum in-
formation to realize various critical components, such as a CNOT gate [5, 6].
As with single QDs, a property of interest in DQDs is the single electron
transport. The electrons must tunnel through potential barriers formed be-
tween two gates in order to move from the source to drain. In particular
circumstances, in doing so, the electrons will emit a photon. These photons,
when emitted into the resonator, can be measured allowing us to obtain
more information about the electron transport.

As with all quantum systems, DQDs suffer from decoherence, meaning that
the energy levels within the dots are broadened. However, this broadening
can also be due to coupling to the source and drain [7, 8]. In the following
discussion, we want to examine more closely the effect of this coupling on
both the quantum state broadening as well as the dephasing, that is, the
rate at which we lose information about the phase of our system. We will
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1. Introduction

begin in Section 2 by discussing DQDs in more detail. We will examine
the structure, the various forms of transport and finally, the broadening
of the energy levels. In Section 3, we will discuss the experimental setup
and how we ensured well-defined coupled quantum dots. We will then
continue by describing the various detection methods in Section 4. Three
measurement techniques are of particular interest as they allow us to extract
important transport parameters - the lever arm, inter-dot tunnel coupling
and emission linewidth. Finally, in Section 5, we discuss our results and
show the relationship between the coupling to source and drain and the
dephasing as well as quantum dot broadening.

2



Chapter 2

Coupled Quantum Dots

Quantum dots are very useful tools in studying single-electron transport
[4]. These semiconductor nanostructures can be manufactured using vary-
ing methods, but those of interest in this discussion are DQDs, having a
form similar to that shown in Figure 2.1. Metallic gates are deposited on a

Figure 2.1: Scanning electron micrograph of the gate-defined quantum dot used in the remainder
of the study. Here, the DQD is formed using the 6 gates to the left (RSG, LPG, CG, RPG, LSG
and SDB clockwise from left). The QPC gate allows us to determine the number of electrons in
the quantum dot, but is not required in the experiments discussed here. This image is modified
from [9]

semiconductor, most often a GaAs/AlGaAs heterostructure, with an embed-
ded 2D electron gas. By applying negative voltages to the gates, the 2DEG
below the gate is depleted, leading to a pinching of the electron flow in the
2DEG between two gates. To form these DQDs, we need 6 gates - two side
gates (RSG and LSG), two plunger gates (LPG and RPG) a center gate (CG)
and a source-drain barrier (SDB). Note that we also have a quantum point
contact (QPC), which is shown in Figure 2.1. However, we will ignore it for
our discussion, as we do not need it. The left QD is defined by the LSG,
LPG, CG and SDB and similarly for the right QD. The RSG and LSG along
with the SDB control the tunnel coupling rate to the drain and source re-
spectively. Furthermore, CG, and to a lesser extent, SDB control the tunnel
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2. Coupled Quantum Dots

coupling between the two dots. In order to better understand what is meant
by the tunnel coupling, we can represent the DQD as two potential wells
with source and drain as a continuum of states up to a finite chemical poten-
tial µS and µD respectively as shown in Figure 2.2. The difference between

Figure 2.2: A schematic showing the coupled, or double quantum dot (DQD) as two potential
wells. The source and drain chemical potentials are given by µS and µD respectively, the dot
levels by µ1 and µ2 and the detuning between the dot levels by δ. The tunnel couplings are given
by ΓL, ΓR and t/h for the left lead, right lead and inter-dot couplings respectively. This figure
has been modified from [9].

these chemical potentials is given by the applied bias voltage Vbias. Further-
more, the difference between the energy levels within the dots is given by δ,
the detuning. Due to the three dimensional confinement, there are discrete
energy levels in the two potential wells [4]. These levels can be occupied
by electrons, and adjusted by varying the voltages on the plunger gates for
the right or left dot. Electrons must then tunnel through all three potential
barriers in order to pass from source to drain. The tunnel coupling (both to
the leads, ΓL and ΓR and the inter-dot coupling rate t/h) then determines
the rate at which electrons can tunnel through the barriers.

One very important characteristic of QD transport is Coulomb blockade.
This is the process in which tunnelling into a QD state is prevented due
to Coulomb repulsion from electrons already occupying the QD. Another
electron can only enter the QD if enough energy is supplied to overcome
the Coulomb repulsion. This energy is known as the charging energy. In
the regime where the bias voltage is much smaller than the charging energy,
we would expect to have only single electron transport as there would be no
additional states available to the electron.

Now let us consider transport in two configurations; the first being zero bias.
In double quantum dots at zero bias, transport is only allowed at particular
points known as triple points. This configuration is shown in Figure 2.3.
Note that in the stability diagram, the lines form hexagons, which is typi-
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cal of DQDs [10]. At these points, all of the energy levels are degenerate,

Figure 2.3: In this schematic, we increase Vg1 (VLPG) and Vg2 (VRPG) in the direction of the
arrows. In doing so, we vary the energy levels of the two dots. Note that we only expect to have
transport when all energy levels are degenerate, which only occurs at the two points denoted by
the black and white circles (electron and hole transport respectively). The notation used here,
µ1(n, m), refers to the energy required to add the nth electron to the left dot with m electrons
in the right dot and vice versa for µ2. This figure is taken from [10].

allowing an electron to tunnel through both QDs. There are two kinds of
triple points, which are differentiated by the transport direction. We denote
a state with N1 electrons in the first dot and N2 electrons in the second dot
as follows: (N1, N2). In this way, the triple points correspond to either hole
transport

(N1 + 1, N2 + 1)→ (N1 + 1, N2)→ (N1, N2 + 1)→ (N1 + 1, N2 + 1),

or conversely electron transport

(N1, N2)→ (N1 + 1, N2)→ (N1, N2 + 1)→ (N1, N2)

processes [10].
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2. Coupled Quantum Dots

If we then consider the second situation, at finite bias, instead of two trans-
port points, we find two triangular transport regions, also known as finite-
bias triangles (FBTs) as shown in Figure 2.4. Applying bias shifts the source

Figure 2.4: A schematic similar to Figure 2.3, but with a finite bias applied. In this case,
transport occurs as long as the dot levels sit within the bias window. Thus we obtain triangular
transport regions. This diagram is taken from [10].

and drain levels, opening up a bias window. In order to ensure that we
only have one available state per dot, we choose a bias voltage that is much
smaller than the charging energy. When the electron states in both dots sit
within this bias window, transport can occur. Thus, the boundary conditions
can be written as follows:

−|e|V = µ1(1, 0), µ1 = µ2 and µ2(0, 1) = µR = 0,

[10] where µL, µ1, µ2 and µR are the chemical potentials of the left lead, left
dot, right dot and right lead respectively.

There are several ways now in which electrons can tunnel from one lead
to the other, two of which are shown in Figure 2.5. The first which we’ll
consider is elastic transport, in which the two energy levels in the dots are
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Figure 2.5: Schematic representations of two modes of transport in DQDs. When the dot levels
are degenerate, the electron can tunnel elastically from source to drain. When the detuning
is non-zero however, the electron must either absorb or emit a particle; often, a photon. This
diagram is taken from [12].

degenerate. In this form of transport we can only have current along the
bottom side of the triangle where the detuning is zero. Nonetheless, one
still finds transport within the entire triangle due to non-resonant processes
such as inelastic tunnelling. Due to interactions between the dots and the
environment, the electron may absorb or emit a particle such as a phonon
or photon and tunnel from source to drain [11, 12]. We are interested in
the case where the electron emits a photon. In this case, the current is
accompanied by the emission of photons with energies proportional to the
detuning between the two dots. It is clear that for positive detuning, where
the left dot energy level is higher than that in the right, we should expect an
emission signal. However, we see a signal not only for positive, or forward,
detuning, but also for negative, or reverse, detuning. This is due to the
hybridization of the states in the two quantum dots as shown in Figure 2.6
[9].

Due to the inter-dot tunnel coupling, the left and right dot states hybridize,
leading to an energy splitting. This energy splitting can be seen easily by
considering a general Hamiltonian Ho and adding a tunnel coupling T.

Let |φ1〉 and |φ2〉 be eigenvectors of the Hamiltonian Ho with energies E1
and E2. Now suppose we introduce a tunnel coupling in the form of an
off-diagonal matrix [10]:

T =
[

0 t12
t21 0

]
.

The new eigenvalues will then be a superposition:
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2. Coupled Quantum Dots

Figure 2.6: A schematic of the forward and reverse detuning cases. In forward detuning, the
electron tunnels from the higher left level to the lower right level by emitting, for example, a
photon. In the reverse detuning, due to the hybridization, there is still a finite excited state
population in the left dot, allowing for the electron to tunnel by emitting a photon. The diagram
is adapted from [9].

|ΨA〉 = α |φ1〉+ β |φ2〉
|ΨB〉 = α̃ |φ1〉+ β̃ |φ2〉

If we now calculate the new eigenenergies, we will need to diagonalize a
matrix of the form

[
EA − E1 t12

t21 EA − E2

]
,

and similarly for EB. In this way, we obtain the energies of the hybridized
states:

EB,A =
E1 + E2

2
±
√

1
4
(E1 − E2)2 + |t12|2. (2.1)

The hybridization then leads further to a non-zero excited state population
in both dots. We can consider two hybridized states |e〉 and |g〉 correspond-
ing to a system with an extra electron in the anti-bonding and bonding states
respectively. These states can be written as

|e〉 = cos(
θ

2
) |L〉+ sin(

θ

2
) |R〉 (2.2)

and

|g〉 = sin(
θ

2
) |L〉+ cos(

θ

2
) |R〉 (2.3)
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where θ is given by tan θ = 2t
δ and |L〉 and |R〉 are the left and right dot

states respectively [9]. Thus, there is a probability, α = cos2(θ/2), of the
electron entering the left dot and tunnelling into the right dot by emitting a
photon. However, the signal that we see should be much smaller due to the
reduced probability. It is from this emission signal that we will later obtain
the broadening of the quantum states within the dots.

If we want to measure the emission signal, we need to find a way to detect
the emitted photons. This is best done if we couple the DQD to a resonator.
In this way, the DQD emits into the resonator when the quantum dot tran-
sition is resonant with the resonator frequency, allowing us to collect and
measure these photons. However, we need to note that we do not actually
have infinitely sharp quantum states but rather, they are broadened. This
means that we do not only see a signal when our quantum dot transition
is resonant with the resonator, but also within a finite range of frequencies
around resonance condition. If we assume Lorentzian broadening of the
bare levels, we find the emission power resulting from the hybridized states
to be the convolution of the two states and has the form:

P(δ/h) = A(δ)
Γ/2

(νq(δ)− νo)2 + (Γ/2)2 , (2.4)

where A(δ) depends on the excited state population, νq is the hybridized
transition frequency and νo the resonator frequency [7]. The situation is
shown graphically in Figure 2.7.

Figure 2.7: Here we see a graphical representation of the broadening of the hybridized states in
the DQD on the left. If we assume Lorentzian broadening with a FWHM of Γ/2 as on the right,
we expect to see emission even away from resonance, that is, where νq 6= νo. The schematic is
taken from [13].

There are several reasons for this broadening to occur. One contribution is
charge decoherence (γ), that is, fluctuations in the surrounding 2DEG and
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2. Coupled Quantum Dots

potential background [8]. Another contribution, and that which we chose
to focus on, is the coupling to the leads (determined by ΓL and ΓR). The
goal of the remainder of this semester thesis is to explore the impact the
lead coupling has on the level broadening as well as the dephasing (γφ) of
our system; the rate at which we lose phase information. To do so, we will
first need to examine the experimental setup and measurement techniques
in more detail.
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Chapter 3

Setup

3.1 Experimental Setup

In this experiment, we performed our measurements on a gate-defined quan-
tum dot shown in Figure 2.1, whose gates are deposited on top of a GaAs/Al-
GaAs heterostructure. The heterostructure leads to a 2DEG, which sits ap-
proximately 90 nm below the surface and which can be depleted by applying
negative voltages to the gates as discussed in previous section. The DQD is
then coupled to a 200-nm-thick Al coplanar waveguide resonator as shown
in Figure 3.1. This coupling allows us to measure the emission signal as the
microwave photons resulting from inelastic tunnelling processes can be emit-
ted into the resonator. The physical coupling is achieved by extending the
center conductor of the resonator to form the LPG. The resonator has a bare
resonance frequency of νo = 6.952 GHz, which determines the frequency at
which we can measure an emission signal. The setup sits within a dilution
refrigerator at approximately 20 mK.

There are several possibilities for measuring a signal in this setup. The first is
to measure the current between source and drain directly (DC). We also have
an RF signal νr which we can apply to the resonator. By mixing the signal
from the resonator with a local oscillator, we can use a heterodyne detection
scheme to measure the two quadratures, thereby obtaining amplitude and
phase of the signal. This can be seen from the following expression:

Aeiφ = I + iQ (3.1)

The third possibility is to measure photons emitted from the DQD into the
resonator directly. In this case, the signal is very small, and so we amplify
it using a quantum-limited Josephson parametric amplifier (JPA) and high
electron mobility transistor (HEMT).
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3. Setup

Figure 3.1: A circuit-style diagram showing the DQD, resonator and measurement equipment
used in the experiments described in this thesis. The DQD, coupled capacitively via CLPG to the
resonator, along with the Josephson parametric amplifier (JPA) sit within a dilution refrigerator
at approximately 20 mK. The signal is then further amplified using a HEMT, detected using a
heterodyne scheme and processed using a field-programmable gate array (FPGA). An additional
RF microwave signal (νr) can also be applied to the resonator. The diagram is taken from [9].

3.2 Dot Formation

Before being able to perform transport measurements, one must make sure
that the system actually forms two well-coupled quantum dots. This is best
determined through DC measurements. As mentioned in Section 2, a DQD
has a stability diagram that looks hexagonal. A single quantum dot on the
other hand, will exhibit regions of stability that form parallel lines when
plotting the LPG and RPG voltages against each other. It is this graphical
hint that we can us to tune the DQD.

By adjusting the RSG and LSG, we are able to pinch off one side of either
quantum dot, and by adjusting SDB and CG, one can manipulate the side
shared between the two dots. For a given configuration, we can scan LPG
and RPG, thereby allowing us to see the transition between the single dot
and double dot regimes, as shown in Figure 3.2. As these measurements are
done at finite bias, we choose a set of FBTs that indicate a nearly symmetric
double dot. Due to a strange configuration of the RSG, we have a slight
asymmetry, as indicated by the brighter transport regions on one side of the
hexagon. This asymmetry can also be seen in the RF measurements. By
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3.2. Dot Formation

Figure 3.2: Here we see a measured stability diagram of the DQD. The current was measured
while varying VRPG and VLPG at a finite bias. One can clearly see that near the top right (small
VLPG and VRPG, we find rather straight lines, indicating one large dot. Towards the center, we
see nice hexagons form. However, the regime we are interested in is the bottom left, where we
can see the individual FBTs.

adjusting RSG, we are able to achieve a symmetric double dot.
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Chapter 4

Measurement of Experimental
Parameters

Having understood the various methods of electron transport in double
quantum dots, it is important to be able to extract the descriptive parameters
from measurements. In terms of transport parameters, those of particular
interest are the lever arm values (αR and αL), the inter-dot coupling (t) and
the emission resonance linewidth (Γ).

We chose to perform a series of measurements in which we changed the
coupling to the leads while keeping the inter-dot tunnel coupling constant.
This way, we could attribute any change in our system to the varying lead
coupling.

To determine which voltages to use for a measurement series, we found one
configuration in which the DQD seemed to be symmetric (VSDB= -85.5 mV,
VRSG = -11.0 mV). We then increased VSDB by 2mV, and adjusted VRSG until
the dot was once again symmetric, leading us to VRSG = -14.0 mV. This gave
us an idea of how to vary the values of VSDB and VRSG in order to ensure
symmetric dots. Between successive steps of our measurement series, we
thus varied VSDB by a multiple of 0.2 mV and VRSG by a multiple of 0.3 mV.
The other LSG was set to VLSG = -90.0 mV. We then performed two of these
measurement series; once to determine the effect of lead coupling on the
emission linewidth, and once to determine the effect of the lead coupling on
the dephasing of our system.

4.1 Lever Arm

As mentioned in the previous chapter, in order to study the transport through
the DQD, we have several methods at our disposal. If we measure the cur-
rent flowing between source and drain at a bias Vbias = -200 µV, we obtain
the FBTs. We thus varied the VRPG and VLPG voltages, thereby adjusting the
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4.1. Lever Arm

quantum dot levels with respect to each other. As long as these levels still
sit within the bias window, we see a current.

We can then use the FBTs to extract the lever arm values. The lever arms (α)
allow us to convert between gate voltage and energy and will be required in
later measurements. They are given by the following expressions:

α1δVg1 = |eV|, α2δVg2 = |eV|, (4.1)

where δVg1 and δVg2 are the dimensions of the FBT as shown in Figure 4.1
[10].

Figure 4.1: A measured set of FBTs. We measured the current between source and drain at a
finite bias (Vbias = -200 µV) while varying VLPG and VRPG. The relevant dimensions required
to obtain the lever arms are indicated with dark blue arrows.

Our initial FBT measurement was performed at VSDB = −87.5 mV, VC =
−20.0 mV and VRSG = −14.0 mV. From here, we can use the equation above
to extract lever arm values of

Left Triangle α1 = 0.132 α2 = 0.155
Right Triangle α1 = 0.116 α2 = 0.160
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4. Measurement of Experimental Parameters

We will find later that for fitting purposes it is best to approximate a single
value of the lever arm.

4.2 Inter-dot Tunnel Coupling

The second measurement that is critical for analysing the emission data is
to determine the inter-dot tunnel coupling. As mentioned, we want to make
sure that this particular coupling remains constant. In order to perform this
measurement, we apply an RF microwave tone at a frequency νr equal to the
bare cavity frequency, νo, of the resonator. These RF measurements are per-
formed at zero bias meaning that electrons can only tunnel elastically when
all energy levels are degenerate, i.e. along the bottom edge of the FBT. At
this point, due to the coupling between the DQD and the resonator, a charge
shift in the DQD leads to a frequency shift in the RF signal, which manifests
itself as a phase shift. This can be explained in terms of a dipole coupling
between the dot and resonator [14]. We are able to, through heterodyne
detection, determine both the amplitude and phase of the signal.

At each measurement point, we then made such an RF measurement by
measuring the phase shift in the resonator while varying VLPG and VRPG as
shown in Figure 4.2a. Again, the phase shift only occurs along the bottom

Figure 4.2: The phase shift of the resonator signal obtained through heterodyne detection. (a)
We see the phase shift occurs along the line connecting the two FBTs. (b) Along the ε axis, the
quantum dot levels are varied evenly and remain degenerate. We measure the frequency shift
along the δ axis, where the detuning between the dot levels is varied.

edge of the two FBTs, that is, along the line connecting the two triple points,
due to the energy level degeneracy. This is known as the energy axis, as
the dot levels energies are being adjusted evenly. Ultimately however, we
want to measure the frequency shift. This is done by measuring along the
detuning axis, perpendicular to the energy axis, as shown in Figure 4.2b.
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4.2. Inter-dot Tunnel Coupling

Along this axis, we change the detuning between the two dot levels, and so
expect a frequency shift as we approach zero detuning.

In order to extract the interesting parameters, we need to model this fre-
quency shift. This can be achieved by modelling the coupling between
our DQD (two-level system) and resonator (harmonic oscillator) using the
Jaynes-Cummings Hamiltonian

H = hνo(n̂ +
1
2
) +

hνq

2
σ̂z + h̄g sin θ(â†σ̂− + âσ̂+), (4.2)

where νq =
√

δ2 + 4t2 and sin θ = 2t/
√

δ2 + 4t2 [14]. Note that νo is the
bare resonator frequency and g is the resonator-dot coupling. By solving
the master equation, one can obtain the steady state of the system, and so
model the frequency shift as a function of detuning as shown in Figure 4.3.
As part of this model we also need to give the lever arm values. However, in
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Figure 4.3: We see here the shift in the resonance frequency as a function of the detuning
between the quantum dot levels. The dots represent the data, measured along the detuning axis
in the center of the phase shift. The solid line is the Jaynes-Cummings model with a coupling
g/2π =11.5 MHz, dephasing γφ/2π =100 MHz and inter-dot tunnel coupling 2t/h = 6.48
GHz.

this case, we only use a single lever arm, and so, rather than using the value
extracted earlier, we use a value producing a satisfactory fit to the data, (α =
0.093). From this model, we can also extract the values for t, g, and γφ, the
dephasing, which lead to good agreement.

By adjusting the value of VC, we were able also adjust the value of t. This
process of measuring and modelling was repeated until the desired inter-dot
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4. Measurement of Experimental Parameters

tunnel coupling (6.9 GHz for the first series and 6.1 GHz for the second) was
obtained.

4.3 Emission Linewidth

The last form of measurement that we performed is to measure the photon
signal emitted by the DQD directly. Note that in this case, the RF microwave
tone was turned off and a finite bias, Vbias = -200 µV, was applied. From the
FBT measurements described earlier, we perform a series of measurements
along a line passing through the lower triangle, parallel to the detuning axis
as shown in Figure 4.4. At each point, corresponding to a different detuning

Figure 4.4: A measured set of FBTs as in Figure 4.1. Here, we show the axis along which we
perform the FBT measurements in light blue. At each point, we measure an average of 20 PSDs
alternating between bias on and bias off.

value, we measure the power spectral density (PSD), which is the Fourier
transform of the first-order auto-correlation function [15]

S = FT((I + iQ) ∗ (I + iQ)). (4.3)

Due to our signal being very small, we use the amplifiers described briefly in
Chapter 3. Furthermore, we average over twenty measurements alternating
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4.3. Emission Linewidth

between a finite bias (corresponding to signal) and zero bias (no signal),
which we subtract in order to increase the visibility of the signal.

If we then integrate the PSD, we obtain the emission power as a function of
detuning, as shown in Figure 4.5. Note that we see two resonances near each
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Figure 4.5: An emission power measurement showing the emission power as a function of
detuning. We clearly see two peaks centered around zero detuning. These two have been fitted
separately using a Gaussian form (in dashed grey), the sum being shown in orange. To the
right, at large detunings, we see another peak belonging to an excited state. Note that this
measurement was performed at an inter-dot tunnel coupling of 2t/h = 6.65 GHz.

other and another towards larger detuning values. If we recall, we expect to
see an emission signal when the qubit transition frequency νq =

√
δ2 + 4t2 is

resonant with the resonator frequency νo. Thus, we should see an emission
signal at two detunings: δ = ±

√
ν2

o − 4t2, corresponding to forward and
reverse detuning respectively. The first two resonances that we see, centered
around zero detuning, are exactly these corresponding to the two detunings.
Note also that the resonance at negative (reverse) detuning is much smaller,
due to the hybridization. The third resonance, towards large detuning is
due to an excited state, also seen in Figure 4.4 near the triangle peak.

From these emission power measurements, we can extract the linewidths,
giving us the broadening of the quantum dot states. We have two methods
at our disposal in order to fit the two resonances. The first possibility is
fitting each resonances individually with a Gaussian as shown in Figure
4.6a. The second possibility is to use Equation 2.4 as shown in Figure 4.6b.
If we replace νq =

√
4t2 + δ2/h,
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4. Measurement of Experimental Parameters

Figure 4.6: An emission power measurement at 2t/h =6.92 GHz showing the emission power as
a function of detuning. Note that the lead coupling at this point is determined by the current at
zero detuning, which is 160 pA in this case. We have fitted the data points using two methods.
(a) We fit the resonances individually using a Gaussian. The individual Gaussians are shown in
dashed grey and the sum is shown in orange. (b) We fit the two resonances at the same time
using Equation 4.4.

P(δ/h) = A(δ)
Γ/2

(
√

4t2 + δ2/h− νo)2 + (Γ/2)2
, (4.4)

we find that our Lorentzian form is not a true Lorentzian as a function of
detuning due to the δ2 term. Thus, though the linewidth is not given by Γ,
it is still closely related, making Γ a very useful parameter. The Gaussian fit
on the other hand does give an actual linewidth.

At each point in the measurement series, we first perform an RF measure-
ment to ensure that 2t/h ≈ 6.9 GHz. Then we obtain the emission power
and perform the fits to obtain the emission linewidth as a function of the
lead coupling. Note that we aren’t actually measuring this lead coupling
directly. Instead, we consider the current. There are two contributions; elas-
tic and inelastic current. At a zero detuning, around which the emission
signal is centered, the elastic current dominates. We can describe it using
the following Lorentzian form:

Iel =
e4(t/h)2ΓRΓL

4(t/h)2(2ΓL + ΓR) + 4(δ/h)2ΓL + ΓLΓ2
R

(4.5)

When t � ΓL ≈ ΓR, the current is limited by the tunnelling to and from
the leads, not between the dots. In this limiting regime, we find that the
current is proportional to the lead coupling. We start off in this regime,
and move into one where t ≈ ΓL ≈ ΓR. In this regime, we still find that
the proportionality roughly holds. Thus, we can examine how our system
behaves as a function of current, which is then effectively its behaviour as a
function of lead coupling.
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Chapter 5

Results

Having described the various measurement techniques, we can examine the
effect of the lead coupling on the dephasing and emission linewidth in more
detail.

5.1 Dephasing

As discussed in the previous chapter, we performed a series of measure-
ments at an inter-dot tunnel coupling 2t/h of 6.1 GHz. At each successive
measurement, we decreased the values of VSDB and VRSG. In doing so, we
decreased the tunnel coupling to the leads, and thus, the current. Using the
Jaynes-Cummings model, we can examine the behaviour of the dephasing
γφ/2π as a function of current. This is shown in Figure 5.1.

In this Figure, we plot the dephasing as a function of the maximum current
observed in the FBT measurement. At each point in this measurement we
keep the inter-dot coupling constant at 2t/h = 6.1 GHz. For currents above
100 pA, the resonator-dot coupling is given by g/2π = 12 GHz and below,
g/2π = 10 GHz. This yields better agreement between measurement and
theory. The physical motivation is as follows. As we decrease VSDB, we
expect the surface area of our dot to become smaller, thereby reducing the
capacitive coupling.

What we see is that for currents below 500 pA, the lead coupling seems to
have very little effect on the dephasing, which varies slightly around γφ/2π
= 150 MHz. At large currents (large lead tunnel couplings), we find that the
dephasing increases very quickly. This is likely due to the fact that at such
large couplings, the barrier between lead and dot is very small, leading to
poorly defined dots, and thus, very large decoherences.

Furthermore, we can also look at the current as a function VSDB as shown
in Figure 5.2. The figure shows a log plot of the current as a function of

21



5. Results
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Figure 5.1: Here we see the dephasing γφ of our system, as obtained from the Jaynes-Cummings
model, as a function of the maximum current between source and drain. For currents below 500
pA, the dephasing is varies slightly around 150 MHz. Above this point though, it increases very
quickly. The error bars (± 50 MHz below 500 pA and ± 100 MHz above) were determined to
be appropriate based on visual agreement between model and data. The blue line acts as a guide
to the eye.

Figure 5.2: This figure shows the current between source and drain on a log scale as a function
of VSDB. As VSDB determines the potential barrier height and width, we expect that the current
should increase exponentially with the voltage. The red points give the experimental data, and
the blue is an exponential fit.

VSDB. As this voltage determines the width and height of the potential
barrier that the electrons must tunnel through, we would expect the current
to increase exponentially with VSDB. What we see is that (starting with
a very negative voltage and increasing towards zero), the current indeed
increases exponentially with the voltage up to VSDB ≈ -86 mV. At this point,
the behavior changes suddenly, and while it appears to be exponential again,
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5.2. Emission Linewidth

it has very different parameters. The reason for this is unclear, but it could
be that the gate response isn’t quite what we expect.

5.2 Emission Linewidth

Finally, we want to examine how the emission linewidth described in Section
4 changes with respect to the lead coupling, as evidenced by its behaviour
as a function of current. As mentioned, we performed a series of PSD mea-
surements at a constant inter-dot tunnel coupling of 2t/h ≈ 6.9 GHz and
integrated to get the emission signal. Note that the inter-dot tunnel cou-
pling was measured at zero bias, as shown in Figure 4.2. However, at the
point at which we measure, and due to applying the bias while measuring
the emission linewidth, the actual inter-dot tunnel coupling shifts slightly
to smaller values. However, as we remain consistent in these measurements,
the coupling should be still be the same between all the measurements.

Using the Gaussian fit, we fitted the two peaks centered around zero de-
tuning separately and plotted the value of the FWHM of the Gaussian as a
function of the current at zero detuning. Similarly, we used the Lorentzian
fit to obtain a value for Γ, and we also plotted Γ as a function of the current
at zero detuning. These plots are shown in Figure 5.3. Thus, each point in
this figure corresponds to a curve fit as shown in Figure 4.6

Here, we can see very clearly that the linewidth, as given by the FWHM of
the Gaussian fits, as well as the value of Γ, which is related to the linewidth,
are proportional to current. For small currents we were somewhat limited
in our ability to resolve the two peaks, making the fitting very difficult.
Nonetheless, the trend is very clear, and thus, increased current, correspond-
ing to increased lead coupling, leads to increased qubit level broadening.
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5. Results

Figure 5.3: Here we see the results of the emission power peak fits. We plot the quantum dot
broadening in terms of (a) the Lorentzian Γ and (b) The Gaussian FWHM as a function of the
current. The light blue points are the fits obtained for various VSDB and VRSG configurations.
The linear fit, given by the dark blue line, is forced through 0.
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Chapter 6

Summary

In this thesis, we have discussed gate-defined double quantum dots both
in terms of structure, as well as transport properties. This transport was
discussed both in the absence and presence of a bias between source and
drain. We saw that for zero bias, we expect transport only when all energy
states are degenerate, whereas at a finite bias, we observe finite-bias trian-
gles; triangular regions of electron transport. We discussed both elastic and
inelastic tunnelling, and how inelastic tunnelling leads to an emission signal
from which we can extract the width of the quantum dot energy levels.

Furthermore, we examined the various methods, DC, RF microwave and
emission signal, which we can use to quantify some aspect of the single-
electron transport. From these measurements, we showed how we can
extract the lever arm, inter-dot tunnel coupling, dephasing and emission
linewidth. We continued by examining the effect the coupling to the leads
has on the dephasing and emission linewidth by varying VSDB and VRSG
while maintaining a constant inter-dot tunnel coupling.

What we found was that the dephasing is independent of the coupling to the
leads up to a coupling corresponding to a current of approximately 500 pA,
where the dots seem to be ill-defined. We assume that the lead coupling
varies exponentially with VSDB. However, at VSDB ≈ -86 mV, there is a
change in the exponential behaviour, indicating that this assumption may
only be true up to a certain point. Nonetheless, in this regime, the current
should still be proportional to the lead coupling. Finally, we measured the
emission linewidth using both Gaussian and Lorentzian fits, and found that
the quantum dot broadening increases linearly with current. That is, the
quantum dot linewidth is proportional to the coupling to the source and
drain.
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