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Abstract: 
Quantum State Tomography (QST) has been performed on a superconducting Qubit. The 
Qubit consists of a Cooper pair box (CPB) coupled to a microwave resonator. Operations 
on the Qubit’s ground state, excited state and two superposition states can be performed 
by applying microwave pulses. The effects of pulses have been analyzed by mapping the 
Qubit’s projection on the exited state as a function of pulse length and pulse amplitude. 
This enables us to do QST using only three pulses, the minimal amount in number. In the 
analysis a calibration procedure takes into account that the pulses are not known perfectly 
and corrects that for the further analysis. This QST process has been used to traces the 
Bloch vector in a Ramsey experiment.  
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1 Qubit  

 

For the first time it is possible to create and manipulate devices which behave totally 

quantum mechanically. The ability to do so opens a broad avenue of exciting experiments 

in cavity QED. Superconducting Qubits coupled to a resonator can be addressed by 

microwave pulses. Over the last years experiments using superconducting Qubits could 

reproduce results found previously on other systems. It is not unlikely that 

superconducting Qubits will become one day a system that can be scaled up most easily. 

However, today superconducting Qubits are still in their initial phase.  

 

In the experiment a superconducting Qubit called cooper pair box (CPB) was used. 

Cooper pairs are confined to the CPB. The CPB’s energy levels are discrete and depend 

on the number of Cooper pairs on it and the magnetic field. The transition frequencies are 

in the microwave range. Therefore the CPB is sometime also called an artificial atom. 

The energy levels are not equidistant, which has the advantage that only one particular 

transition is addressed directly. Cooper pairs can tunnel from a cooper pair reservoir to 

the island through Josephson junctions. An energy level’s fine tuning can be done by a 

gate voltage applied to the CPB. As it will be seen the measurements are performed at a 

particular point.  

The CPB is placed in a cavity with a certain resonance frequency which is detuned from 

the CPB’s transition frequency. The electromagnetic field in the cavity induces a dipole 
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interaction with the CPB (~10’000 times larger than the dipole moment of an alkali atom) 

by moving its Cooper pairs. This couples to the electromagnetic field and induces by 

absorbing a photon a transitions form the ground state to the excited state and vice versa. 

The transition rate can be controlled by the detuning.  

Since a photon interacts with the CPB, it picks up a phase. This is a good method for 

readout.  

 

First a brief technical description of the system will be given. The system’s Hamiltonian 

is derived and it is seen that it describes a two level system. The knowledge of the 

Hamiltonian is important in the discussion on the coupling of the two level system to the 

cavity.  

 

In a second part the coupling of the CPB to the cavity is discussed. Rabi oscillations are 

discussed and it is explained how the readout process is realized [6]. The advantage of 

measuring the phase rather than the amplitude is also discussed.  

 

In these two chapters it is shown that four of the DiVincenzo criteria: unitary operations 

on the system, preparation of an initial state, readout process and long coherence of the 

system are fulfilled. Only the scaling up ability will not be mentioned.  
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1.1 Cooper pair box  

 

The circuit was designed in a way that it consists of a capacitance and a CPB, embedded 

in a cavity (Fig. 1.1). The cavity is similar to a two dimensional coax cable (see next 

section). A CPB is placed in the cavity. The CPB is a superconducting island connected 

to ground by two Josephson junctions.  

A Josephson junction is a connection of two superconducting material by an insulator. 

Cooper pairs can tunnel coherently through the insulator. This restriction on the cooper 

pairs phase and the fact that the island, the Josephson junctions and the ground form a 

loop yield to restriction on tunneling current as a function on the external magnetic field 

(see SQUID [7]).  

 

a)   b)  
Fig. 1.1 a) Schematic picture of the cavity. The blue areas are conducting. The analogy to a 
planar coax cable is pictured by the attached circuit diagram. The gap in the middle line is a capacitance 
which acts as a mirror (analogue to bad connected coax cable).  

  b) Schematic picture of a Cooper pair Box (CPB) the Josephson junctions are yellow 
marked. The red coil gives a condition for the phase. A gate Vg give the possibility to control the classical 
amount of induced charge and change therefore the energy difference between the two levels.  
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As shown in Fig. 1.1 there is a captive coupling between the CPB and the gate. The 

induced charge on the CPB can classically be calculated by eVCn ggg = , where gV  is 

the gate voltage and gC  is the capacity. Further reading can be found in [9].  

In quantum mechanics the number of cooper pairs in the CPB is an integer N.  

Therefore the Hamiltonian for the electrostatic case can be written as [1]  

 

 ( )24 gcel nNEH −=   

 

where ( )( )jgc CCeE += 22  is the electrostatic charging energy, with jC  the Josephson 

capacity.  

For this arrangement it can be seen that the energy spectrum consists of non equidistant 

discrete energy levels, in the basis of cooper pair numbers N. This nonlinearity is crucial 

for treatment of a two level system.  

As a function of the gate voltage the CPB’s energy is quadratic and degenerate (at least 

for the case where the Josephson junction Hamiltonian (see below) is neglected) if gn  is 

an integer (Fig. 1.2).  

 

For the tunneling process of cooper pairs through the Josephson junction the Hamiltonian  
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can be found [1]. Here EJ is the sum of the Josephson energies, d the fractional difference 

between the Josephson energies, 0Φ  the flux quantum, Φ  the magnetic flux through the 

loop and n  the number of cooper pairs in the CPB.  

 

 

a)      b) 

�

��
�

� �� �

 
Fig. 1.2  a) Shows calculation for the energy diagram for a CPB in function of the applied gate 
voltage. A periodicity of even integers of ng(e) can be seen due to the discrete number of Cooper pairs. A 
energy level splitting at the degenerated points occurs from a transition between the n and n+1 Cooper 
pairs on the CPB.  

  b) Shows the plot for the energy levels of a two level system as calculated below.  

 

The Hamiltonian Jel HHH +=  in the charge basis can only be solved numerically. 

Transforming basis n  to the continuous phase basis θ  the eigenvalue problem can be 

solved analytically [1] (Fig. 1.2 a)).  

As it will be seen later on, the Jaynes Cummings Hamiltonian (JCH) describes a two 

level system in an external electromagnetic field. The JCH is in the charge basis. 

Therefore the Hamiltonian for the CPB will be solved in the charge basis. For 

simplification only the first two levels are take in to consideration. This simplification is 

justified because the experiments are operating at low temperatures ( mK20≈ ) much 

lower then the energy level splitting.  
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If the basis ( )T100 ≅  and ( )T011 ≅  is used, the Hamiltonian can be written as  
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The eigenvalues and eigenfunctions can be calculated analytically  
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and an energy diagram like Fig. 1.2 b) results.  

 

This energy level splitting is similar to the energy level splitting in a quantum mechanical 

double well potential. In a quantum mechanical double well potential an large energy 

level splitting occurs if the energy barrier between the two wells is low and vice versa.  

In the case of the CPB the energy barrier can easily be adjusted by varying ng.  

 

Two simple cases can be seen. In the point ng=0 the Eigenfunctions are given by 0  and 

1 , where the assumption EC>>EJ was made. For ng=1 the Eigenfunction are 10 ϕie+  

and 10 ϕie− . The fix phase ϕie  is of no interest because we have in the beginning a 

rotational degree of freedom around the z_axis.  
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During the experiment one would like to keep the system at a particular detuning 

frequency. Therefore the energy level difference has to stay constant.  

Fluctuations in the gate charge can occur and will change the ng and the detuning 

frequency. The lowest sensitivity in a change of ng is at ng even integer of e and the noise 

is therefore in second order of ng. Therefore the operations point is chosen as ng odd 

integer of e.  
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1.2 Coupling to cavity  

 

As we have seen in the previous section the CPB can be treated as a two level system. 

Dipole interaction between the CPB’s island and the electromagnetic field in the cavity 

allows interactions at a rate g between the CPB and the cavity.  

The CPB in a cavity is a system where a photon can (theoretically) turn into an excited 

state of the CPB and vice versa. However in this chapter, it will be proved that for our 

experiment (large detuning) the probability for such a transition will vanish.  

 

Additionally the two level system can decay at a rate ⊥γ  into a mode not captured by the 

resonator. The cavity has also a finite lose which allows photons to escape by a rate κ . 

The ⊥γ  decay is the reason why the system is dissipative. However the dissipative 

processes are on a time scale of us, while the operation will be on timescales of 10 ns.  

 

 
Fig. 1.3  Schematic of a cavity and a two level system. The two level system couples to the cavity’s 
electromagnetic field at the rate g. Decoherence is caused by the decay into modes which are not captured 
by the cavity or by photons being transmitted through the mirrors.   
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Neglecting dissipative processes the Hamiltonian for such a process is called Jaynes 

Cummings Hamiltonian (JCH)  
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A good derivation can be found in [1] or standard books on quantum mechanic.  

The coupling constant is r
r
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+
= , with 4.0=ξ , n number of 

nodes. rε / rµ  are the relative electric/magnetic permeability and α  is the fine structure 

constant. The resonator frequency, transition frequency of the Qubit is rω , aω  

respectively.  

The first term represents the photon energy stored in the resonator, the second describes 

the energy of the two level system. The third term consists of a creation of a photon and a 

transition from the CPB’s excited- to its ground state −σ†a , a absorption of a photon and 

a transition from the CPB’s ground - to its excited state +σa  respectively.  

 

First the system’s evolution will be discussed.  

The evolution of ψ  is given by of the Schrödinger equation’s solution 

ψ�
�

�
�
�

�− t
iH

Exp JC

�
. If the canonic basis neng 2, ≅ , 121, +≅− nene  is used the matrix 

representation of HJC can be written in block diagonal form  
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(For algebraic reasons it is convenient to use a finite basis. This can also be justified by a 

finite energy that is available.)  

 

Solving the Schrödinger equation gives  
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An analogy between the propagator above and the propagator for neutrinos can be seen 

( where the propagator in the Basis ene ≅1  and µne ≅2  is given as 

( ) [ ] ( ) ( ) ( ) [ ] ( ) ( )
( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) �

�
�

�
�
�
�

�

−−−
+−

θθθθθθ
θθθθθθ

22

22

sincos2sincos2sincos

sincos2sincossin2cos

iEtExpiEtExp

iEtExpiEtExp , where θ  is 

the mixing angle and 22
emmE −= µ , with 1=�  and 1=c ) . Therefore oscillations between 

ng,  and 1, −ne  are similar like oscillations from one neutrino flavor to another. And 

the detuning is analogous to the mixing angle.  
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The probability that a photon induced a transition from the CPB’s ground state to its 

exited state is given by  
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In ∆  this is a modulated Lorentzian function. Indeed the cross section goes to zero with 

( )( ) �
�
��

�
� ∆+

2
41 ng  (with ∆<<g  and small n).  

 

If a photon interacts with the CPB it will change its phase, even if it does not get 

absorbed. The propagator’s �
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 first element describes the process where the 

CPB stays in its ground state. This process has a probability given by  
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For detuning ∆<<g  this is much larger and goes to one for large detuning.  

 

According to Schuster the Eigenstates for this Hamiltonian can be written as  
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Where the angle �
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2

1θ  is a measure for the hybridization.  

 

Now that we showed that how the system behaves, we have to discuss how the 

measurements can be done.  

 

If the case of strong detuning arg ωω −=∆<< ˆ  (dispersive limes) is assumed the JCH 

can be approximated by series expansions in 
∆
g

 [1] by  
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One can see the stark shift zaa
g σ†

2

∆
�  depending on the photon number and the lamb 

shift z

g σ
∆2

2

�  due to interaction with the vacuum field. Extensive discussion on an atom 

in an electromagnetic field can be found in [2] or [1].  

 

Due to the stark- and lamb shift a frequency different of �
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� +
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1
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n
g

 can be obtained 

between ground- and excited state.  

 

This is now used to detect if the system is in its ground or excited state.  
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The electric field’s amplitude in the resonator vs. the frequency has a Lorenzian shape 

with the maximum at different frequencies (stark-/lamb shift) depending on the CPB’s 

state (Fig. 1.4 a)).  

Analogue to classical mechanics the phase has than an arctan shape with a similar shift 

(Fig. 1.4 b)). The derivation can be found in books on quantum electronics.  

It can be shown that the resonance width κ  and frequency shift for our particular 

experiment result in a nearly indistinguishable signal for the ground and excited state.  

The difference in the phase on the other hand is much larger (Fig. 1.5).  

An extended discussion can be found in [8].  

 

 
 
Fig. 1.4  a) Shows the electromagnetic field’s amplitude in the resonator. It follows a Lorenzian 
function. The ground, excited state are indicated by blue, red color respectively.   
  b) Shows the arctan function for the field’s phase.  

 

 

Two possibilities how the readout process can be realized were discussed and the 

advantage of phase readout was shown.  

rω  rω  
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Due to relaxation from the excited to the ground state the response follows an 

exponential.  

 

 
Fig. 1.5  Typical raw data from a measurement. Left shows the response if the phase is measured, 
right shows the response if the amplitude is measured. It can easily be seen that the response is much larger 
if the phase is measured.  

 

Indeed one measurement would only gives one of the two Eigenvalues for the response. 

However an averaging over different measurements yield to the desired expectation 

value.  

Repeating the measurement several times and taking the average gives the expected 

exponential decay (Fig. 1.5). One can see that the signal noise ratio in the amplitude 

measurement is very small.  

This gives the possibility to determine the projection on the excited state as we will see in 

Chap. Experiments.  
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2 Quantum State Tomography  

 

In quantum computation it is important to exactly determine an arbitrary state 

10 ba +=ψ .  

A measurement projects ψ  on a particular state given by the experimental setup. The 

state ψ  can be prepared several times and therefore the experiment can be repeated 

many times.  

This allows us to determine exactly one component of the Bloch vector but also gives a 

total uncertainty for the other two components. This is completely analog to spins in 

quantum mechanics.  

However the state ψ  can theoretically be determined arbitrary exactly by using 

quantum state tomography (QST). QST determines in three different experiments the 

projection on three different axis. With this information the state ψ  can be determined.  

Instead of measuring the projection on different axis the Bloch vector can be rotated and 

than be projected always on the same axis.  

 

In the first section an intuitive geometrical approach to QST will be given. The 

discussion will be a quite graphical explanation of QST’s principles. Therefore this kind 

of approach will give us some intuitions to see solutions in QST, especially if the 

rotations axis are perpendicular to each other (i.e. ( ) ijji RRTr δ2= , with Ri operations on 

the state). This will be important when the results of the 2D mapping for serial and 
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parallel pulse sequences will be discussed. A theoretical paper addressing this topic can 

be fond in [5].  

 

On the other hand this treatment is not appropriate to perform calculations. For that 

reason the problem will be handled mathematically in the second section. This will then 

be the fundament for the simulations, our measurements, the QST with 3 points and the 

Ramsey experiment. The advantage of easy mathematical treatment will be paid by 

loosing the graphical argumentation.  

 

 

2.1 Intuitive Approach to Quantum State Tomography  

 

As showed previous our qubit is realized by a two level system. The qubit’s state is then 

given by 10 ba +=ψ , where 1 ,0  are orthonormal Eigenstates of the Hamiltonian. 

Using normalization condition the restriction 
22

1 ba +=  can be found.  

A point (a,b)∈C2 fulfill this condition if and only if (iff) it lies on the complex unit circle 

1
CS . A reasonable parameterization is given by ϕδδ θθ iii eebea �

�

�
�
�

�=�
�

�
�
�

�=
2

sin ,
2

cos , where 

ϕ  is the polar angle, θ  is the azimutal angle and δ  is a global phase. Due to the fact that 

only scalar products are measured in physics the global phase is of no interest and can be 

suppressed. This reduction gives now the unitary sphere 2
ℜS  as a new co-domain. It’s 
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elements are called Bloch vectors. The Bloch vectors can be parameterized by 

( ) ( ) ( ) ( ) ( )ϕθϕθθ sinsin  ,cossin  ,cos === yxz rrr .  

The advantage of the Bloch vector picture will become clear when we discuss operations 

on the qubit.  

 

If dephasing processes are not taken into consideration all operations O on the qubit are 

in SU(2). The isomorphism SU(2) ≅ SO(3)/1 can be found in standard textbook on 

quantum mechanics. This gives the possibility to see an operation on the qubit as a simple 

rotation of its Bloch vector in 3ℜ , where the Eigenstates of O are equal to the rotations 

axis.  

The advantage is clear: abstract operations in the special unitary space became now 

simple rotations in the three dimensional space.  

 

The task in QST is to fully determine the state ψ , which can be prepared as often as we 

like. If a measurement is done ψ  project into a particular state (in our case it would be 

11 ), which is given by the experimental setup. Repeating that measurement several 

times and building the average, approximates the expectation value  

 

 ( ) ( )
2

1

2

cos1
    

2
sin1011

 Trigo.
2222 z

z

r
bbap

−=−=�
�

�
�
�

�==+== θθψ ,  

 

where pz is the average of the experiments.  
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This measurement gives a perfect knowledge (only limited by the number of performed 

measurements) of the rz component. This results in a total uncertainty of the x_ and 

y_component (see Fig.2.1).  

 

Due to the fact that the state ψ  can be prepared several times, another measurement 

series can be done. This time an operation which rotates the Bloch vector around the 

y_axis by 
2

π
 is performed before doing the measurements. This means that the Bloch 

vector ( )Tzyx rrr  transforms to ( )Txyz rrr − . If the rotated Bloch vector is now 

projected into the state 11  and the experiment repeated several times, the expectation 

value becomes 
2

1
  x

x

r
p

+= .  

If now rotations around the x_axis were done, it will be possible to determine the ry 

component by 
2

1
  y

y

r
p

−
= .  

a)        b)  
Fig. 2.1  a) Shows the Bloch vectors projection on the z_axis, which is given by the measurement. 
The uncertainty is pictured by the dashed circle.  

 b) Projection of the Bloch vector on the z_axis (red line) after a ( )Y2π _pulse (yellow 

circle) is applied.  
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2.2 Physical Approach to State Tomography  

 

Doing QST in 2
ℜS  maybe geometrical simple but it uses difficult mathematics if one 

wants to do any calculations. However if rotations were done in SU(2), the mathematics 

will keeps quite simple. For that reason density matrixes and the Von Neumann equation 

will be introduced.  

 

The concept of density matrixes ρ  was introduced by J. von Neumann and is a quite 

simple description of a quantum mechanical state ψ . In standard quantum mechanic 

books [2] one can find the definition of a density matrix by  

 

 [ ] ( )ρφρφφϕϕφφφ

ϕφφφφϕϕϕ

ATrApA

ApApA

l
l

ll
ji

ijijk
kl

kl

klji
jkklliij

ji
jiij

===

==

���

��

,,

,,,,

      
 

 

where { } { }ii ϕφ   ,  are two orthonormal basis’s, A  the observable A’s expectation 

value, jiij aap *=̂  with ai defined as �=
i

iia ϕψ  and the density matrix is defined as 

�=
ji

ijijp
,

ˆ ϕϕρ . Further the property 1 jj φφ=  was used.  

The density matrix ρ  has the nice properties:  

 Hermitian: †ρρ =   

 Unity trace: ( ) 1=ρTr   
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The two states of our experiment are label as ��
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1

0
ˆ1  ,

0

1
ˆ0 . The matrix ρ  fulfills 

the condition of a density matrix iff it can be written as ( )σρ �� ⋅+= r1
2

1
. Where r

�
 is the 

Bloch vector and ( )Tzyx σσσσ ,,=̂�
 is a vector consisting of Pauli spin matrices.  

 

Form the density matrix it is just a small step to the von Neumann equation, which is the 

analogon to the Schrödinger equation for the wave function. The derivation of the Von 

Neumann equation is given by [2]  
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The von Neumann equation [ ]ρρ ,Hi t =∂�  is a system of coupled linear differential 

equation first order and can by solved analytically for time constant Hamiltonians.  

 

A solution for the Von Neumann equation is ( ) ( ) ��


��

�
��


��

�−= t
iH

Expt
iH

Expt
��

0ρρ . This can 

easily be proved by inserting in the Von Neumann equation and using the commutation 

relations for ��


��

�
t

iH
Exp

�
 and H.  
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Now the goal is to determine the density matrixes ρ  on an arbitrary state, if the 

Hamiltonian is known. In the experiments H can be written as a function of parameters 

determined by the experimental setups (see experiments on QST with 3 measurement 

points).  

 

As discussed before operations { }3iO  were performed on ρ  before doing measurements. 

The operations { }3iO  are linear independent and in SU(2).  

The generators su(2) of SU(2) are given be the Pauli spin matrixes ��
�

�
��
�

�
=

01

10
xσ , 

��
�

�
��
�

� −
=

0

0

i

i
yσ  and ��

�

�
��
�

�

−
=

10

01
zσ . This fact allow to write the operations as 

[ ]σ�� ⋅= jj riExpO , where 3ℜ∈jr
�

.  

In Chap. Used Qubit the Hamiltonian for the Qubit was derived in the previous section 

and can be written as y
y

x
x

zH σσσ
222

Ω
+Ω+∆= . The Hamiltonian is a linear 

combination of Pauli spin matrixes and is therefore in su(2). The operator ��


��

�
t

iH
Exp

�
 is 

therefore in SU(2). Of course this has to be the case because the Hamiltonian, as it is 

written down, does not include dephasing processes.  

 

The expectation value by for the projection into the state 11 , after the rotation Oj is 

given by [3]  

 

 ( ) ( )ρρ jjjjj OOTrOOTrp 1111 †† ==   
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One can easily see that rotating the state ψ  by 
�

Ht
 is equal to rotating the state 11  by 

�

Ht− . It is the same if the projection on three different axis is measured or if the state is 

rotated by three different rotations before measuring.  

 

A system of linear equations results for an arbitrary density matrix ρ , given rotations 

{ }3iO  and the measured expectations values { }3ip . The solution of the system gives the 

density matrix ρ .  

 

To clarify the concept the same example as in the section before will be given. We start 

with an arbitrary density matrix ( )σρ �� ⋅+= r1
2

1
 and do QST using rotations x

tH σπ
4

1 =
�

, 

y

tH σπ
4

2 =
�

 and 03 =H . The measurement will do a projection onto the state 

2

1
11 zσ−= .  

The relation [ ] ( ) ( )r
r

r
irriExp

�
�

��
���

sin1cos
σσ ⋅−=⋅−  will be used.  

 

For x

tH σπ
4

1 =
�

 can be found  
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For y

tH σπ
4

2 =
�

 can be found  
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For 03 =
�

tH
 can be found  
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Of course this is the same result as found previously.  
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3 Experimental setups  

 

Here we will discuss how the theoretical ideas from Chap Used Qubit are implemented in 

the experimental setup. This will be of some interest when we address some experimental 

properties as the mixers nonlinearity and the chosen pulse sequences.  

 

 
Fig. 3.1  Schematically picture of the used circuit. The Cooper pair box (CPB) is attached to the 
gate Cg. The cavity is defined by the capacities Cin and Cout. This can also be found in Fig.  . The 
microwave generators are set in the picture’s lower left corner. The analyzer is placed in the picture’s 
lower right corner.  

 

The operations on the Qubit are performed by microwaves at frequency Sω , created by a 

microwave generator.  

The used microwaves for Qubit operations had either 6 dBm or 13 dBm power. This high 

power is needed because the system is strongly detuned (see chapter coupling to cavity). 
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The operation is given by the microwave pulse’s amplitude integrated over the time and 

the pulse’s phase, e.g. microwave pulses for rotation around the x axis are 90° phase 

shifted to pulses for rotation around the y axis.  

The pulse shape is controlled on a 1 ns time scale by two properties a mixer and the 

possibility to turn the microwave generator on/of. As we will see in the discussion on the 

mixer’s property it is crucial to turn the microwave generator off if no operation pulse 

should by performed.  

The mixer’s input is a microwave pulse with 6 dBm or 13 dBm power as well as two dc 

voltages ( )YXP VVV ,= . The mixers output is a microwave pulse with new phase and new 

amplitude. The output microwave’s phase ϕ  is given by XY VV=ϕtan  and the output 

pulse’s amplitude by 22
YX

mix
S VVP +∝ . In Chap. Experiments it will be seen that the 

mixer behaves not linear and a calibration has to be done.  

 

To set the gate charge ng on an odd electron number integer a dc gate voltage was 

applied.  

 

The microwaves as well as the gate voltage undergo two filters, at 4 K and 20 mK, to 

suppress thermal noise.  
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The cavity, with a frequency RFω , is a coplanar waveguide. The cavity’s “mirrors” are 

two capacities inC  and OutC , which determine the transmissions rate κ . This is similar to 

a coax cable with bad contact where the signal is reflected.  

 

For readout another microwave generator emits microwaves at the resonator frequency 

GHzRF  42573.5=ω . To justify the assumption (small photon number n) made in Chap. 

Used Qubit the RF power was in the range of -31 to -26 dBm (10 to 30 photons in the 

cavity).  

In the most experiment RF was pulsed, which means that the RF microwave generator 

was only turned on during the measurement process.  

To ensure that no signal (especially thermal noise) accesses the cavity through the 

readout line a circulator is connected after the cavity at 100 mK and 20 mK. A signal can 

only pass a circulator in one direction.  

The signal for readout passes then a chain of amplifier at 4 K and room temperature.  

The signal has too high frequency to be analyzed, therefore it is mixed down with a LO 

generator to decrease the frequency by a beat process (10 MHz).  

The signal is then, before digital registered, again amplified.  
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4 Experiments  

 

The goal in the performed experiments was to prove that QST is possible and to develop 

a method that can be applied later in different experiments. For that reason the 

experiments were divided in three tasks.  

 

In the first section the aim was to demonstrate that QST for the used system works in 

principle.  

For totally four different prepared states the response was measured as a function of 1681 

(=41x41) different rotations. This allowed to map a two dimensional plot (2DP) for the 

response of the Qubit as a function of the applied microwave pulses.  

In a first part the tomography pulses were aligned in serial.  

In a second part measurements have been done on parallel pulse sequences.  

 

The method used in the first section is not appropriated to determine a state in a 

reasonable time. Therefore a method was developed which only uses three operations to 

determine the complete quantum state. Three operations are the minimal number needed 

to describe an arbitrary quantum state. The analysis process was done in such a way that 

the only restriction to the operations is that they are linear independent.  
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In the third section QST, using three operators, was performed in a Ramsey experiment. 

The Bloch vector rotates around the z_axis with the detuning frequency. Due to 

dephasing process the Bloch vector shrinks monotonously. The experimental data for that 

experiment were quite bad, but it still shows that the experiment works in principle.  

 

All Mathematica programs that have been used for analysis can be found on the QUDEV 

server Q:\USERS\Peter Maurer\Tomography\.  

 

 

4.1 Dephasing processes  

 

From experiments in a second experiment [4] it is known that the Qubit has a dephasing 

time nsT 6502 ≈  and sT µ2*
2 ≈ . The relaxations time ( ) sT µ641 −≈  (with (30-10) 

photons in the cavity).  
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The tomography pulses are on a time scale of 10 ns to 20 ns. This is much smaller then 

the dephasing time. Simulations show that dephasing can be neglected (Fig. 4.1).  

 

 
Fig. 4.1  Shows the absolute value of the difference for the response for a simulation with 
dephasing and without dephasing starting in the ground state. On can see that the difference is smaller 
then 0.6%.  

Therefore and for the fact that the system of equation, to calibrate the tomography pulse 

would become very complicated, the effect of dephasing during QST will be neglected in 

the whole experiments.  
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4.2 Serial pulse sequence  

 

Here QST in serial sequence have been done because it was simple and proofs that QST 

works in principle.  

To our knowledge this has never been published so far. However the serial sequence does 

not have any advantage compared to parallel sequence (which is probably the reason why 

nobody mentioned it).  

 

4.2.1 Simulation  

 

To perform operations on the Qubit two microwave pulses were applied in serial. In the 

experiment the pulses amplitude was kept constant, only the pulses length was varied. 

Further the assumption was made that the Eigen vectors of the operations are 

perpendicular to each other and that dephasing processes can be neglected (operations 

pulses t<20 ns).  

This procedure is given by the two Hamiltonians  

 

 x
x

zxH σσ
22

Ω
+∆=  and y

y
zyH σσ

22

Ω
+∆=   

 

as discussed previously.  
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The formula derived in Chap. QST can be used to calculate the response  
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These calculations were performed for the states 0=ρ , 1 , ( ) 210 + and 

( ) 210 i+ .  

 

 
Fig. 4.2  Shows  simulation of the response for a) the ground state 0 , b) the superposed state 

( ) 210 + , c) the superposed state ( ) 210 i+  and d) the excited state 1 .   
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The checkerboard pattern for the cases 0=ρ , 1  and ( ) 210 +  can be easily 

verified by using the Bloch vector picture.  

In the other case ( ) 210 i+=ρ  is an Eigen state of the operation jyH . Therefore 

only the rotations performed by j
xH  change ρ . This yields to the stripe pattern above.  

 

 

4.2.2 Results  

 

The checkerboard pattern expected from the simulation was reproduced by the 

measurement (Fig. 4.3). This demonstrates that state tomography works in principle.  

The contrast variation in the pattern can be explained by the fact that the measurement 

was mapped with constant �txΩ . Between different measured sequence files 

fluctuations in ng may occur, which results in change of contrast.  
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Fig. 4.3  Shows QST on the ground state. The scaling for the response is in arbitrary units.  

 

The setups for the measurements were:  

For the measurement the operations pulses were applied in serial with fix amplitude. The 

maximal pulse length was 20 ns for each pulse. The spec. power was 6 dBm at 400 mV 

for rotations clockwise and -400 mV for rotations counterclockwise. A possible non 

linearity of the microwave pulse mixer was not taken into consideration. The 

spectroscopy frequency was adjusted at 3.702 GHz.  

The RF power was -33 dBm.  

100 ns spare time were inserted between the pulse and the recorded measurement. This is 

done to ensure that the measured signal is not affected by the operations pulse.  

The microwave generator can be turned off/on with a response time of 75 ns and the 

power raises over 2 ns. Therefore the backup pulse starts 77 ns earlier and is enlarged by 

2 ns.  

A schematically plot of the pulse sequence is given in Fig. 4.4.  

 

 

Fig. 4.4  Shows the parallel pulse sequence. The pulses have fix amplitude but vary in their length.  
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4.2.3 Response  

 

As mentioned in Chap. The used Qubit the response is Poisson distributed.  

For the resonators response a differential equation can be found. This was implemented 

in a Mathematica by A. Blais.  

As a measure for the projection of the Qubit into the state 11  the normalized scalar 

product between the measured response ( )ntr~  and the theoretical response ( )ntr  can be 

used  

 

 

( )( ) ( )

( )�

�

∈

∈
−

=

Tt
n

Tt
nBasen

j

n

n

tr

trrtr

p
2

~~

.  

 

Where T is the set of the measured times and Baser~  is the offset determined by taking the 

average for responses at times larger than 37 us (one can assume that Qubit is in its 

ground state). This is justified by the assumption that T1 is smaller then 6 us.  

 

 
Fig. 4.5  Shows an example for the response. The visibility is lower then 1,because the measured 
response is lower than the expected one. The normalized scalar product between the experiment (red) and 
the theory (blue) is a measure for the population.  
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4.2.4 Pattern files  

 

The mixer’s input dc voltages XV  and YV  are each controlled a 10 bit canals. The 

measurement program interpolated and indices automatically 1024 equidistant voltages 

between min
XV  and max

XV , min
YV  and max

YV  respectively.  

 

The bit pattern for the voltages XV  and YV are given by the pattern files in Fig. 4.6.  

This pattern files are connected in one sequence file. Therefore in a sequence file the 

x_pulse length varies form 0 to 20 ns for -400 mV and 400 mV amplitude where the y 

pulse length remains constant.  

For averaging each sequence file was measured ten thousand times.  

After the measurement, it was manually verified if the signal has been lost during the 

measurement process, due to shifts in ng. If that was the case the measurement was 

repeated. Otherwise the next sequence file with another y_pulse length was loaded.  

 

 
Fig. 4.6  Shows the used pattern files. The first two determine the operation pulses’ amplitude 
(black -400 mV, grey 0, white 400 mV) and the pulse length. The third turns the microwave generator 
one/off.  
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4.3 Parallel pulse sequence  

 

A more standard used procedure for doing QST is in applying x and y pulses in parallel.  

 

4.3.1 Simulation  

 

The same assumptions as in the simulation on serial pulse sequences (no dephasing and 

orthogonal operations) were made.  

 

The Hamiltonian is then given by  

 

 y
y

x
x

zH σσσ
222

Ω
+

Ω
+∆= .  

 

The response is determined by  

 

 �
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1
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Due to the non commutation relation of xσ  and yσ  it can be easily seen that serial and 

parallel pulse sequences are different.  
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These calculations were performed for the states 0=ρ , 1 , ( ) 210 + and 

( ) 210 i+ .  

 

   
Fig. 4.7  Shows simulation of the response for a) the ground state 0 , b) the superposed state 

( ) 210 + , c) the superposed state ( ) 210 i+  and d) the excited state 1 .   

 

The central symmetry for 0=ρ  and 1  can be verified by arguing that the 

measurement setup defines the z_axis. But the system has still rotation symmetry and the 

result only depends on the magnitude of the rotation and not of the phase.  

For the example the prepared states ( ) 210 +=ρ and ( ) 210 i+  have not the 

symmetry mentioned before.  
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4.3.2 Results  

 

If a calibration for the mixer (see calibration) is used the measurement are in good 

agreement with the simulation (Fig. 4.8). Again change in the contrast between different 

measurements yield form fluctuations in ng.  

As discussed previously the ground and excited state have rotations symmetry around the 

z axis. Therefore the projection on the z axis depends only on the rotation’s angle and not 

on the rotation’s axis orientation in the x-y plane. This can be seen in both cases.  

The rotation’s symmetry around the z axis is broken for the superposed state. Therefore 

the response is not rotations symmetric. The superposed states ( ) 210 +  (Fig. 4.8 c) 

and ( ) 210 i+  (Fig. 4.8 b) are eigenstates for all rotations around the x axis, for all 

rotations around the y axis respectively. This can be seen by the line of constant response 

intersecting the plot.  
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Fig. 4.8  Shows measurement of the response for a) the ground state 0 , b) the superposed state 

( ) 210 i+ , c) the superposed state ( ) 210 +  and d) the excited state 1 . This is in good contradiction 

with the simulations. The scaling for the response is in arbitrary units.  

 

The setups for the measurements were:  

The operations pulses were applied in parallel with varying amplitude. The pulse length 

was 10 ns. The spec. power was 13 dBm with mixer voltages varying from -400 mV to 

400 mV. The spectroscopy frequency was adjusted at 3.704 GHz.  
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The RF power was -26 dBm (30 photons in the cavity).  

Between the pulse and the measurement 100 ns spare time were inserted.  

The measurements were performed in pulsed mode.  

The other settings were the same as before.  

 

 

 
Fig. 4.9  Shows the parallel pulse sequence. The pulses have fix length but vary in their amplitude. 
The first pulse prepare the state and the second is for tomography.   

 

 

4.3.3 Calibration  

 

Unfortunately the mixer was used outside of its specific fabrication’s range. Therefore 

the output is not linear to the input voltage. This means that the properties XY VV=ϕtan  

and 22
YX

mix
S VVP +∝  given in Chap. experimental setups do not hold exactly.  

To record a calibration curve the mixer’s output power was measured in function of the 

voltages XV  and yV  for 6 dBm and 13 dBm power (Fig. 4.10).  
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However the used analyzer only allowed determining the power, to measure the 

microwaves phase a vector analyzer would need to be used.  

Knowing the phase is crucial for calibration. Because the phase could not be measured 

the assumed was made that the phase does not change ( .constVV XY ≈ ). 

This assumption allows to calculate the voltage which has to be applied to receive the 

desired output power under the condition XY VV=ϕtan .  

 

 
Fig. 4.10  Shows the mixer’s output for 13 dBm input microwave power left and 6 dBm right. In an 
ideal case this would be equidistant concentric circles.  

 

The advantage of the calibration can immediately be seen in Fig. 4.11 where the same 

measurement was done without and with calibration. The calibrations curve’s shape can 

be recognized in the shape of the QST measurement.  
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Fig. 4.11  Shows the same measurement without and with calibration left/right. The left 
measurement has the same asymmetry as the mixer’s output in Fig. 4.10. The right one demonstrates the 
ability to get rid of this effect. The scaling for the response is in arbitrary units.  

 

 

4.3.4 Pattern files  

 

The bit pattern for the voltages XV  and YV are given by the pattern files in Fig. 4.12.  

This pattern files are connected in one sequence file. Therefore in a sequence file the 

x_pulse length remains constant where the amplitude varies for -400 mV to 400 mV. The 

y_pulse’s amplitude stays constant.  

Each sequence file was measured ten thousand times and then averaged.  

The decision process on using the measurement was the same as in the measurements on 

serial pulses.  
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Fig. 4.12   Shows the used pattern files. The first two determine the operation pulses’ amplitude. In 
the pattern file the first pulse is to prepare the state and the second for tomography (one tomography pulse 
varies from negative to positive where the other remains the same) The pulse length is constant 10 ns. The 
third turns the microwave generator one.  

 

4.4 Quantum state tomography using three operations  

 

For QST’s application it is unsatisfying to determine for each state a whole 2 dimensional 

plot. As shown in Chap. Quantum state tomography indeed only three operations are 

necessary. The QST method derived here will be able to reconstruct a quantum state even 

if the used operations are completely unknown.  

The only restriction is that the operations are linear independent. As discussed later the 

measurements will be more accurate if the operations are close to orthogonal.  
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4.4.1 Results  

 

To demonstrate that this simplified method for QST works the states 1 , 

( ) 210 + and ( ) 210 i+  were be prepared and determined.  

 

The states were prepared with the same imperfect 2π  pulses as used for the QST. This 

does not matter because it will be taken into account that the pulses are not perfect.  
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Fig. 4.13   Shows the measured density matrixes by using QST for three different prepared states. 
State a) is prepared in the excited state |1>. State b) is not exactly in the desired superposed state |0>+|1> 
(probable the amplitude for preparation was little to high). The prepared state c) is very close to the 
desired state |0>+i|1>. The error bars give the standard deviation.  

 

One can immediately recognize the different states. The ( )X2π _pulses vary significantly 

from the desired value. This justifies why the operations pulse have to be treated as 

unknown.  

 

It is worth to mention that the accuracy in the diagonal element is much smaller then in 

the off diagonal element. The explanation is that the diagonal element is measured 

without applying any pulses where the off diagonal elements need tomography pulses to 

be determined. Since the tomography pulses have to be measured first and they have a 

extra accuracy.  

However it makes sense to measure the tomography pulse firsts because it is convenient 

not to adjust always the 2π  pulses before measuring.  

Another argument is that otherwise the error could not be calculated.  
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The error bars in the density matrix marks the standard deviation.  

Rabi oscillation measurements are always attached to QST measurements (see Visibility). 

If the assumption is made that the measurement for the Rabi points have the same 

accuracy as the QST measurements (this makes sense because there is no different in the 

process), the measurements from the Rabi oscillation can be used to calculate the 

standard deviation for the QST process.  

 

 ( )�
=

−=
N

j

theory
jj pp

N 0

21
var  

 

Where var is the variance, pj is the projection on the excited state and pj
theroy is the 

theoretical projection for a Rabi experiment (see Visibility).  

This variance gives the accuracy for the measurement process. It can be used to 

determine the accuracy in the operation pulses and to find the error in the QST process.  

To calculate the accuracy in the operation pulses an analytical error calculation was made 

using the variance, estimated above. Unfortunately the analysis also involves numerical 

solving of an equation system. At this point the error propagation was estimated by 

solving the equation system with the lowest and highest possible values.  

In all other cases the error propagation was treated analytically.  
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The accuracy can be tested in another way by repeating the measurement several times. 

The results are plotted in Fig. 4.14 as Bloch vectors.  

This allows calculating the standard deviation in the polar and azimutal angle.  

 

 
Fig. 4.14   Shows states measured by QST. One can see that they are spread. The standard 
deviations are calculated for azimutal and polar angles.  

 

The accuracy is here less than 10°. This is consistent with the calculations done above.  

 

The setups for the measurements were:  

For the measurement the operations pulses were applied in parallel. The amplitude of the 

2π  pulses was adjusted. These pulses were not exact 2π . The maximal pulse length 

was 10 ns for each pulse. The spec. power was 13 dBm at a mixer voltage of 450 mV. The 

spectroscopy frequency was adjusted at 3.709 GHz.  

The RF power was -26 dBm (30 photons in the cavity).  

Between the pulse and the measurement were 100 ns spare time inserted.  

A schematically plot of the pulse sequence is given in Fig. 4.15.  
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The underground was determined by projecting 0  on the state 11  and then averaging 

the response.  

 

The exited state 1  was prepared by a 10 ns pulse with ( )01.0  ,23.0 −  V amplitude. The 

superposed state ( ) 210 +  was generated by a 10 ns pulse with ( )01.0  ,13.0 −  V 

amplitude. The other superposed state ( ) 210 i+  was prepared by a 10 ns pulse with 

( ).150  02.0−  V amplitude.  

 

 

 
Fig. 4.15 Shows the parallel pulse sequence. The pulses have fix length but vary in their amplitude. 
The first pulse prepare the state and the second is for tomography. 

 

4.4.2 Calibrations  

 

A proper calibration is crucial for state tomography.  

A calibration for the tomography pulses is implemented into the analysis process and 

allows also doing QST if the tomography pulses are not perpendicular and not 2π .  
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As important as the knowledge of the tomography pulses is the knowledge of the 

visibility. If the visibility is not corrected one would guess a wrong projection on the 

z_axis.  

 

4.4.2.1 Calibrating the tomography pulses  

 

As tomography pulses the identity, a ( )X2π _pulse and a ( )Y2π _pulse were used.  

 

As showed by the experiment above (Fig. 4.13) the 2π  pulses are not perfect. We also 

expect that the PV  voltage used to create a 2π  pulse may change over time.  

These make it necessary to find a process to do QST with unknown pulses. This is done 

by calibrating the tomography pulses during the analysis process.  

 

For simplicity we will first discuss the calibration in the Bloch vector picture and then 

use the density matrixes for calculations.  

We assume that the identity is perfect and can be realized easily by not applying any 

pulse. This defines the z_axis.  

Now it is known that the ( )X2π _pulse is imperfect. That means the actual orientation of 

the rotation axis and amplitude is not known exactly. However the polar angle, does only 

give us a global phase, which is of no interest. If the ( )X2π _pulse is applied on the 
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ground state and then projected on the 11  state, the azimual angle can be calculated 

immediately. The ( )X2π _pulse is now known.  

For the ( )Y2π _pulse the situation is trickier, because the polar phase is now also of 

relevance. This time two parameters are to measure, the azimutal and the polar angle. The 

azimutal angle can be determined by the same way as before. The polar angle can be 

measured by applying a ( )Y2π _pulse on the ground state followed by a ( )X2π _pulse 

and then projected on the 11  state. The ( )Y2π _pulse is now also known.  

 

 
Fig. 4.16 Shows the parallel pulse sequence. The pulses have fix length but vary in their amplitude. 
Both pulses are for calibration. 

 

Using density matrixes the problem can be reformulated as determining the Hamiltonians 
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missing because the global phase is not of interest.  

Applying the x_pulse followed by the measurement gives  
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.calibr
xp  is given by the measurement. This is an equation for 

�2

tx
xΩ

 which can be solved 

analytically.  

 

The other Hamiltonian consists of two unknown components. Therefore two equations 

have to be found.  

 

The first measurement is analogue to the one before  
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and the second is given by  
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The equations system (I, II) can be solved.  

(I) can be rephrase as function of 
�2

ty
yΩ

 and insert it in (II). This must then be solved 

numerically.  

 

Now the problem of not orthogonal pulses has been eliminated.  

 



 56 

4.4.4 Visibility  

 

The visibility has a direct influence on the result in QST. If the visibility was not 

corrected, the calibrations on the pulse as well as the QST it self would be completely 

wrong. If the visibility is low, one would calculate that the projection is small and 

calculate a wrong state.  

 

Therefore the visibility is corrected by performing Rabi oscillations. Then a cosine 

function is fitted to the data. The Rabi points are then multiplied by a constant so that the 

amplitude becomes one (Fig. 4.17).  

 

 
Fig. 4.17 Shows the measured population in a experiment. The red line is a fitted cosine. This is 
used to estimate the error bar as well as to determine the visibility.  

 

4.4.5 Pattern files  

 

A sequence file consists of three parts first the four calibrations pulses, second three 

tomography pulses and thirdly thirty pulses for Rabi oscillation.  
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Fig. 4.18 Shows the used pattern files. The first two determine the operation pulses’ amplitude. The 
pattern file has four pulse for calibration, three for tomography and thirty for Rabi. The pulse length is 
constant 10 ns. The third turns the microwave generator one/off.  

 

This pattern files are in one sequence file.  

The first pattern is to determine the underground, the next three are for the pulse 

calibration and the following three are for tomography.  

The last thirty are to perform Rabi oscillations. Therefore in a sequence file for Rabi 

oscillations the x_pulse length remains constant where the amplitude varies for -0.02 mV 

to 450 mV.  

Each sequence file was measured ten thousand times and then averaged.  

Again Peter Leek’s program was used to adjust ng.  

The decision process on using the measurement was the same as in the measurements on 

serial pulses.  
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4.5 Ramsey  

 

To show an application of QST Ramsey experiments were performed. A similar 

experiment can be found in [3] with a much better accuracy. Probably this group invested 

more time in doing the experiment and they created the pulse with a different microwave 

generator.  

An expanded treatment of Ramsey experiment can be found in Lars’ Semesterarbeit [4].  

 

In this experiment we apply first a preparations pulse, which brings the Qubit in the super 

posited state ( ) 210 + . Then QST is done after a variable time between the 

preparations pulse and the tomography. Due to the detuning the Bloch vector will process 

around the z_axis. This can be pictured by QST.  

 

4.5.1 Results  

 

Unfortunately the Qubit was jumping very much that day and only a half experiment 

could be performed. However this experiment shows that QST works in principle.  
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Fig. 4.19 Shows the movement of the Bloch vector. Left is the measurement and right is a 

simulation ( ns500011 =γ , ns5001=φγ  and GHz005.0=∆ ). The error bars are shown for the first twenty 

measurement.  

 

From theory one would expect a helix.  

In the measurement the Bloch vector turns around the z_axis in one direction, caused by 

the detuning and decreases, due to dephasing processes.  

The measured helix is strongly squeezed. This can come from a bad calibration in the 

measurement pulses, which is not surprising because the analysis had to be done with low 

statistics. The signal follows a Poisson distribution in sample size therefore the lower 

sample size enlarged the error bar by a factor of ~1.5. The instability of the Qubit might 

also enlarge the error bars additionally.  

These facts are indicated by the size of the error bars. Here the relative error is approx. 

50%, where it has been before at approx. 10%.  

Anyway one can see that a helix predicted by theory could be fitted into the error bars as 

show in Fig. 4.20 (not a big surprise with this error bars).  
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Fig. 4.20 The simulated trajectory can be placed into the error bars as shown for the first twenty 
measurement.  

 

It is likely that the results look much nicer, if the experiment is redone when the Qubit is 

calmer.  

 

The setups for the measurements were:  

For this measurement the operations pulses were applied in parallel. The pulses were set 

to 2π  pulses by adjusting the amplitudes as usual were not exact 2π . The pulse length 

was 10 ns for each pulse. The spec. power was 13 dBm at 450 mV. The spectroscopy 

frequency was adjusted at 3.704 GHz.  

The RF power was -26 dBm (30 photons in the cavity).  

The time between the preparation pulse and the tomography pulse was increased in 25 ns 

steps [4].  
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A schematically plot of the pulse sequence is given in Fig. 4.21.  

The underground was determined by projecting 0  on the state 11  and then averaging 

the response.  

 

 
Fig. 4.21  Shows the parallel pulse sequence. The pulses have fix length but vary in their amplitude. 
The first pulse prepare the state and the second is for tomography. The time length between the pulses vary 
in 25 ns steps.  

 

 

4.5.2 Pattern files  

 

A sequence file contributes again of three different parts first the four calibrations pulses, 

second 40 times three tomography pulses with different times between the pulses and 

thirdly thirty pulses for Rabi oscillation.  
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Fig. 4.22  Shows the used pattern files. The first two determine the operation pulses’ amplitude. The 
pattern file has forty times four pulse for calibration, three for tomography and thirty for Rabi. The pulse 
length is constant 10 ns. The third turns the microwave generator one/off.  

 

This pattern files are in one sequence file.  

The three times forty pulses are used for the Ramsey experiment. The time between the 

preparation pulse and the tomography pulse increases in 25 ns time steps.  

The sequence file should have been measured ten times and then averaged. However the 

Qubit jumped a lot and it was only possible to record a measurement where we could 

average five thousand times.  
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