
Matija Karalic

Characterization of Coupled
Microwave Resonator Arrays

Semester Thesis

Quantum Device Lab
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Abstract

In circuit quantum electrodynamics, superconducting circuits consisting of linear chains of
capacitively coupled microwave resonators can be used to realize controlled photon-qubit
interactions. For this thesis, I measured and analyzed transmission and reflection in such
arrays, focusing on characterizing the coupled resonators. In particular, a system of two
coupled resonators without qubits was investigated in detail and the experimental results
interpreted based on classical microwave transmission line theory as well as quantum-
mechanical input/output theory. I determined characteristic quantities which describe
the coupled resonator system, such as resonance frequencies, hopping rates and decay
rates, and which form the foundation of understanding more complex phenomena such
as the aforementioned photon-qubit interactions that will be implemented in the future.
The studied systems are the basis of an ongoing investigation with the goal of detecting
Majorana-like modes of light in an optical system.
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Chapter 1

Introduction

The coupled resonators studied in this thesis are an experimental realization of circuit
quantum electrodynamics (QED). Accordingly, the first section of this chapter briefly
introduces the concepts of circuit QED. The section thereafter gives some background
information on Majorana fermions and the idea of using circuit QED, or more precisely,
linear chains of coupled resonators, to measure Majorana-like modes of light. The final
section explains the structure of the investigated samples.

1.1 Circuit QED

Circuit QED is a field of physics which explores the interaction of light and matter in a
circuit environment [1]. In the simplest case, a single photon trapped in a superconducting
resonator couples to a superconducting quantum two-level system, also referred to as qubit.
This situation is depicted in Figure 1.1. The photon-qubit coupling is an electric-dipole
interaction. A promising field of application for circuit QED is quantum information
processing [2].

Note that in the rest of this report, the terms resonator and cavity are used interchange-
ably.

1.1.1 The qubit

The qubit represents an artificial atom-like system with two distinct energy levels. The
energy difference between the two levels has a corresponding frequency in the microwave
range, typically amounting to several GHz. The qubits used at the Quantum Device
Lab are based on superconducting Josephson junctions. Examples include charge, flux
and phase qubits. Transmons [3] are a newer type of charge qubits with particularly
advantageous properties with respect to sensitivity to noise and scalability.

1.1.2 The resonator

Apart from the qubit, the other crucial part of the system illustrated in Figure 1.1 is the
superconducting microwave resonator. It is realized in the form of a several millimeters
long coplanar waveguide (CPW) resonator, which is weakly capacitively coupled to exter-
nal transmission lines, here via gap capacitors. The capacitors play the role of partially
transmitting mirrors, in analogy to a Fabry-Pérot interferometer.

1
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Figure 1.1: Experimental realization of circuit QED. A photon trapped in a capacitively
coupled CPW resonator couples to a qubit. Cin/out denotes the input/output coupling
capacitors, which are assumed to be identical. The resonator mode shown corresponds to
the first harmonic: λ = l, where λ is the photon wavelength and l the resonator length. Not
shown are the complete transmission lines leading to respectively away from the resonator.
Adapted from Ref. [2].

CPWs have several favorable characteristics with regards to circuit QED such as pre-
cisely controllable impedance and large electric fields, meaning stronger photon-qubit
coupling [4]. They are fabricated with conventional microfabrication techniques such as
photolithography. Because all measurements are taken at low temperatures where the
CPW is in a superconducting state, photon losses in the resonator due to absorption are
expected to be small.

The coupling to the outside is necessary because the photon-qubit system is studied by
measuring the microwave transmission and reflection through the resonator [5]. Even in
the absence of a qubit, transmission and reflection measurements can be used to determine
important properties of the resonator such as resonance frequencies and photon decay rates
due to input/output coupling.

Figure 1.2 shows a simplified equivalent microwave engineering representation of the ca-
pacitively coupled CPW resonator without a qubit. The CPW resonator is modeled as
a transmission line, which is capacitively coupled to external input/output transmission
lines.

Figure 1.2: Equivalent representation of the system from Figure 1.1, qubit excluded. The
lower line may be assumed to be grounded. The dots on either side indicate the external
transmission lines.
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1.1.3 The photon-qubit system

When the qubit transition frequency is equal to the cavity resonance frequency, the photon
and qubit states get mixed together. The result is superposition states that are combi-
nations of photon and qubit states. In the strong coupling regime, the qubit coherently
emits and reabsorbs the photon in a phenomenon known as vacuum Rabi oscillation (see,
for example, Ref. [6] for more information). The strong coupling regime occurs when the
rate of photon emission and reabsorption dominates compared to the photon and qubit
loss rates.

1.1.4 Coupled resonator arrays

Coupled resonator arrays are an extension of the system shown in Figure 1.1. Instead of a
single resonator with one qubit, they may contain many coupled resonators, each poten-
tially with its own qubit. Like the input/output coupling, the coupling between resonators
may also be capacitive. The simplest geometry for realizing an array of coupled resonators
is a linear chain, as was the case in my samples. However, researchers have already success-
fully fabricated two-dimensional honeycomb-like arrays of coupled resonators [7]. Coupled
resonator arrays offer the possibility of simulating complex quantum systems in a compar-
atively accessible fashion [8, 9].

1.2 Majorana fermions

Majorana fermions are fermionic particles which are their own antiparticles. In a recent
publication by a group at the Institute for Quantum Electronics at ETH Zurich, the au-
thors suggested a way of experimentally observing Majorana-like modes of light in an
optical system [10]. This approach is interesting because, so far, research in Majorana
fermions has almost exclusively been conducted in condensed-matter systems such as su-
perfluids and superconductors.

The idea put forward by the authors is based on a one-dimensional chain of coupled
cavities, see Figure 1.3. Photons can hop between adjacent cavities. The Majorana-like
modes arise due to so-called p-wave photon pairing and can be detected by second order
photon cross-correlation measurements at the ends of the chain. Photon bunching is
expected to occur as a consequence of the formation of Majorana-like modes.

Additionally, the authors argued that circuit QED is well-suited for implementing their
proposal. A linear chain of capacitively coupled microwave resonators with qubits is a
favorable realization of the system in Figure 1.3. The number of resonators N should be
large.

Figure 1.3: Linear chain of N coupled cavities together with a simplified mode. According
to Ref. [10].
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The Quantum Device Lab at ETH Zurich has decided to pursue the possibility of detecting
Majorana-like modes of light using circuit QED. For this purpose, a mask incorporating
several coupled CPW resonator systems has been designed [11], and the first wafer fabri-
cated.

1.3 Designed and fabricated samples

The goal of this project was to characterize the coupled resonator systems produced as part
of the investigation into Majorana-like modes of light described in the previous section.
Let us briefly look at the previously designed and fabricated samples. They ranged from
those with N = 1 to such with N = 4. I concentrated mostly on two samples with N = 2,
although I also performed measurements on a sample with N = 4. Figure 1.4 shows a
section of the mask corresponding to a sample consisting of two coupled CPW resonators.
Such samples are also known as dimers. The symmetric input/output as well as the
resonator-resonator coupling are achieved by means of interlocking finger capacitors. The
central coupling capacitor enables photons to move from one resonator to the other.
The substrate is a sapphire wafer coated with niobium (white areas in Figure 1.4), which
is selectively removed using photolithography (blue areas). The aluminium qubits are
written into the designated areas in a separate process using electron beam lithography.
Also present are flux lines, charge lines and airbridges. The flux lines are CPWs that can
carry a small current which generates magnetic flux in order to tune the qubit transition
frequency. The charge lines are CPWs which couple capacitively to the qubit and enable its
external excitation using microwave radiation. The airbridges are short, superconducting
wires which connect the non-contiguous outside planes of the CPW resonators to each
other and so provide a well-defined electrical ground.
Note that resonator chains with N ≤ 4 do not have a sufficient number of coupled res-
onators so as to be able to detect Majorana-like modes of light. Chains with N ≈ 10
are more suited for this purpose. Nevertheless, the shorter chains provide a good starting
point for exploring systems of coupled resonators.
The samples studied during this thesis did not contain any qubits. The focus was just on
the coupled resonators. Research into transmon qubit integration is ongoing [12].
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Figure 1.4: Mask cutout of dimer M25 B1. Cin/out denotes the identical input/output
coupling capacitors and Cin/out the middle capacitor. The resonators are highlighted in
red. Inset shows a close-up view of the middle capacitor showing the interlocking fingers.
Adapted from Ref. [11].



Chapter 2

Theory of transmission and
reflection in coupled resonators

This chapter presents a theoretical analysis of transmission and reflection in linear chains
of coupled resonators. It begins with a section detailing the way microwave transmission
and reflection are measured. Following that, a section is devoted to determining the
fundamental resonance frequencies and corresponding modes of a single resonator and of
two coupled resonators (dimer). Lastly, two sections explain how to find and interpret
complete transmission and reflection spectra from different viewpoints—once using the
macroscopic approach of ABCD matrices and once using the microscopic approach of
input/output theory.

Most of the terminology and theory in this chapter follow microwave engineering con-
ventions; thus the book Microwave Engineering from D. M. Pozar [13] was used as a
reference.

2.1 Scattering parameters

A linear chain consisting of any number of coupled microwave resonators can be seen as a
two-port network. External input/output transmission lines at the ends of the chain con-
nect the coupled resonator system to the outside and enable its excitation with microwave
radiation. Because the single resonator length scales are comparable to the excitation
wavelengths (in the millimeter range for microwaves), a description in terms of incident
and reflected voltage and current waves is particularly favorable. This description is the
basis of transmission line theory. Its justification comes about from solving the telegra-
pher’s equations, which are derived from Maxwell’s equations.

As mentioned in Section 1.1.2, an individual resonator can be thought of as a piece of
transmission line. In this thesis, we are dealing with CPW resonators, but this observation
is true for any other kind of microwave resonator such as microstrip.

Figure 2.1 illustrates a linear chain consisting of an arbitrary number of coupled resonators.
The two-port network abstraction allows an intuitive way of looking at the transmission
and reflection through this system. The two-by-two scattering matrix S relates the voltage
waves incident on the ports of the network to those reflected from the ports:(

V −
1

V −
2

)
=

(
S11 S12

S21 S22

)(
V +
1

V +
2

)
, (2.1)

6
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Figure 2.1: A linear chain of coupled resonators viewed as a two-port network.

where V +
i is the amplitude of the voltage wave incident on port i and V −

i is the amplitude
of the voltage wave reflected from port i. The elements Sij of S are called scattering
parameters and are generally complex numbers. Sij is determined by driving port j
with an incident wave of amplitude V +

j and measuring the reflected wave amplitude V −
i

coming out of port i. Meanwhile, the port not being driven, in this case necessarily port i,
is terminated in a matched load, meaning that there is no incident wave on it. The matrix
S completely characterizes the transmission and reflection of the system.
It is possible to prove that, in any reciprocal network, S12 = S21. A reciprocal network is
a network which contains no active devices, ferrites or plasmas. In a symmetric network,
S11 = S22. In a perfectly lossless network, |S2

11| + |S2
21| = 1 and |S2

22| + |S2
12| = 1, these

relations being a consequence of energy conservation.
The coupled resonators that I studied were, by design, both reciprocal and symmetric
(see, e.g., Figure 1.4). In reality, the reciprocity condition is indeed fulfilled. However,
complete symmetry is impossible because of fabrication tolerances and because the samples
are manually glued and wire-bonded to a separate substrate medium and these wires
naturally vary in position and length. Similarly, even though all measurements are done
at low temperatures where the resonators are superconducting, some losses are still present.
Intrinsic resonator losses include resistive, dielectric and radiative losses [14].
In practice, a widespread way of measuring the scattering parameters is by means of a
network analyzer.

2.2 Derivation of resonance frequencies

A system of coupled microwave resonators exhibits resonance frequencies, of which there
are infinitely many. On resonance, there is maximum transmission and minimum reflec-
tion. Off resonance, the transmission vanishes and only reflection occurs. It is possible to
derive these frequencies by considering slightly simplified models. This is done below, be-
ginning with the single resonator. Note that we are mainly interested in the fundamental
modes and not in the higher harmonics.

2.2.1 Single resonator

The model of the single resonator considered here consists of a lossless, isolated transmis-
sion line resonator, see Figure 2.2a. It is also known as an open-circuited λ/2 line. It
is isolated in the sense that there is no input/output coupling. Therefore, the situation
is like that depicted in Figure 1.2, where the input/output capacitive coupling has been
ignored. This approximation is particularly valid when the capacitance corresponding to
the ideally identical input/output capacitors is small (i.e., the coupling is weak). In the
investigated samples, this capacitance was on the order of femtofarads. Thus, the picture
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Figure 2.2: Equivalent representation of a single resonator, (a), and of a dimer, (b). δl
denotes half of the spatial extent of the coupling capacitor.

of the isolated resonator is reasonable and the results derived in the following are expected
to be relevant for the experimental findings. The assumption regarding no losses is just
for convenience when looking at the mode waveforms; the resonance frequencies remain
the same if losses are considered.
In reality, truly isolated resonators are impractical. In principle however, they could be
excited by illuminating them with microwave radiation of a frequency corresponding to a
resonance frequency.

Derivation in terms of incident and reflected waves

The voltage and current waves on the resonator of length l can be written in terms of
incident and reflected components:

V = V +e−iβx + V −eiβx (2.2)

I =
V +

Z0
e−iβx − V −

Z0
eiβx, (2.3)

where V + is the incident voltage wave amplitude, V − the reflected voltage wave amplitude,
β the phase constant and Z0 the characteristic impedance. The open boundary conditions
dictate that the current be zero at positions x = 0 and x = l. From this, it follows that
V + = V − and e−iβl − eiβl = 0. The last expression is equivalent to

sinβl = 0. (2.4)

Equation 2.4 is the resonance condition. The solutions are given by βl = nπ, where n is
an integer. The fundamental mode (n = 1) is described by βl = π or, equivalently, λ = 2l,

as expected. The associated fundamental frequency f0 is given by f0 =
c

2l
√
ϵeff

, where c

is the speed of light in vacuum and ϵeff the effective electric permittivity. ϵeff depends
on the geometry of the resonator.
Figure 2.3 illustrates the voltage V and current I waveforms of the fundamental mode.

2.2.2 Dimer

All the assumptions discussed for the single resonator also apply to the case of two capac-
itively coupled resonators. Additionally, the two resonators of length l are assumed to be
completely identical. See Figure 2.2b.
We will see that the presence of the central coupling capacitor leads to a splitting of the
eigenfrequencies previously found for the single resonator. The capacitance Cm influences
the strength of the splitting.
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Figure 2.3: Single resonator fundamental mode voltage and current (dashed) waveforms.

Derivation in terms of incident and reflected waves

Now, each resonator has its own voltage and current waves:

V1 = V +
1 e−iβx + V −

1 eiβx, V2 = V +
2 e−iβ(x−l) + V −

2 eiβ(x−l) (2.5)

I1 =
V +
1

Z0
e−iβx − V −

1

Z0
eiβx, I2 =

V +
2

Z0
e−iβ(x−l) − V −

2

Z0
eiβ(x−l). (2.6)

Note that in this derivation, the transmission lines, i.e., the resonators, are distributed
elements, whereas the coupling capacitor is a lumped element. From this viewpoint, the
coupling capacitor has no spatial extent. This is hinted at in Figure 2.2b by means of
the infinitesimal length segment δl. The left resonator extends from x = 0 to x = l and
the right from x = l to x = 2l (i.e., δl → 0). The voltage and current waves are only
strictly defined on the transmission lines. The phase of the waves on the right resonator
is arbitrarily chosen such that it is zero at x = l.
The open boundary conditions demand that

I1(x = 0) = 0 (2.7)

and
I2(x = 2l) = 0. (2.8)

The new condition is that the current is continuous at the point x = l:

I1(x = l) = I2(x = l). (2.9)

The impedance Zm = (iωCm)−1 of the capacitor connects this current to the voltage
difference at the inner ends of the resonators:

V1(x = l)− V2(x = l) = ZmI1(x = l). (2.10)

From Equation 2.7, it follows that
V +
1 = V −

1 (2.11)

and from Equation 2.8
V −
2 = V +

2 e−i2βl. (2.12)

It turns out that the single resonator resonance frequencies, given by βl = nπ, are also
resonance frequencies of this coupled resonator system, independent of the value of Cm.
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For n = 1, meaning βl = π, it follows from Equation 2.12 that V +
2 = V −

2 . The current at
position x = l is equal to zero and therefore V1(x = l) = V2(x = l). From this, it follows
that V +

2 = −V +
1 . With a given incident amplitude V +

1 , all the other amplitudes are known
and the voltage and current waveforms can be visualized, see upper part of Figure 2.4.
This n = 1 mode of frequency f0 looks like the first harmonic mode of a resonator of
length 2l. It has a current node at position x = l and thus does not feel the coupling
capacitor. In this context, it is plausible that the corresponding resonance frequency be
independent of Cm.
The derivation of the other resonance frequencies (βl ̸= nπ) is a bit more involved. In-
serting Equation 2.12 into Equation 2.9 leads to

V +
2 = −V +

1 eiβl. (2.13)

Using 2.11, Equation 2.10 takes the form

2V +
1 cosβl − (V +

2 + V −
2 ) = −Zm

V +
1

Z0
2i sinβl. (2.14)

The term V +
2 + V −

2 can be rewritten in terms of V +
1 using Equations 2.12 and 2.13:

V +
2 + V −

2 = −V +
1 2 cosβl. (2.15)

Inserting the above into Equation 2.14, dividing both sides by V +
1 and simplifying gives

ω

tanβl
= − 1

2Z0Cm
, (2.16)

where Zm = (iωCm)−1 has been used. Equation 2.16 is the resonance condition describing
the other set of resonance frequencies. In the perfect coupling limit Cm → ∞, the right
hand side is zero and the solutions are given by βl = (2n − 1)/2π, n integer. For n = 1,
the solution is, in terms of wavelength, λ = 4l = 2(2l), therefore corresponding to the
fundamental mode of a resonator of length 2l. This makes sense because the perfect
coupling essentially means the two individual resonators of length l can be thought of as
being one large resonator of length 2l.
The more relevant case is when the coupling is weak. The solutions to Equation 2.16
then lie around the resonance frequencies found earlier (βl = nπ). Each single resonator
resonance frequency splits into two frequencies. To be more precise, for each resonance
frequency βl = nπ with some integer n, there is another resonance frequency located
slightly below it. Consider now the splitting of the fundamental resonance frequency
w0 = 2πf0, i.e., assume that λ = 2l at ω = ω0 and set ω = ω0 +∆ω, ∆ω ≪ ω0. Then,

βl = π +
π∆ω

ω0
(2.17)

and

tanβl = tan
π∆ω

ω
≈ π∆ω

ω0
. (2.18)

Inserting the above into Equation 2.16, observing that ωω0 = (ω0 + ∆ω)ω0 ≈ ω2
0 and

solving for ∆ω gives the final result:

∆ω ≈ −2Z0Cm

π
ω2
0 (2.19)



Chapter 2. Theory of transmission and reflection in coupled resonators 11

To summarize, in the weak coupling limit the single resonator fundamental resonance
frequency f0 splits into two fundamental resonance frequencies in the case of two coupled
resonators. One of the two frequencies is pinned to f0, independent of the value of Cm. The
second is located slightly below the first (minus sign in Equation 2.19) and the splitting ∆ω
is directly proportional to Cm. This result is valid when Cm ≪ (ω0Z0)

−1 (weak coupling).
In the investigated dimers, (ω0Z0)

−1 was several hundred femtofarads, much larger than
the design values for Cm.
The voltage and current waveforms of the two fundamental dimer modes are sketched out
in Figure 2.4.

Derivation in terms of RLC resonance

The previous results can also be derived in an alternative, maybe more straightforward
fashion by considering that at resonance, the total input impedance/admittance of the
coupled resonator system is purely real. Figure 2.5 shows the equivalent circuit of the
dimer from Figure 2.2b. Each resonator is replaced by an effective input impedance. It is
given by

Zr = −iZ0/ tanβl. (2.20)

Equation 2.20 is the input impedance of an open-circuited (load impedance Zl → ∞),
lossless line of length l. The total admittance Ytot of the circuit is then

Ytot = 1/(Zr) + 1/(Zr + (iωCm)−1). (2.21)

Ytot is strictly imaginary. This is a consequence of the fact that the resonators are assumed
to be lossless. Setting Ytot = 0 and rearranging gives

ω

tanβl
= − 1

2Z0Cm
, (2.22)

the same expression from before. To check the validity of the other set of solutions,
consider that Zr → ∞ for βl = nπ. Then, Ytot is automatically zero.
If losses are not neglected, then in the above derivation β is replaced by γ = α+ iβ, where
γ and α are the propagation and attenuation constants, respectively.

2.2.3 Extension to higher-order systems

An intuitive explanation of the splitting arises when one thinks of the resonators as one-
dimensional harmonic oscillators. In a chain of n spring-coupled masses for example
(coupling at ends to stationary walls), there are n resonance frequencies, whereas each in-
dividual mass spring-coupled to a wall only had one. Therefore, in a system of n coupled
resonators, each single resonator resonance frequency splits into n frequencies. Simulations
in Microwave Office under weak input/output and resonator-resonator coupling conditions
suggest that of the n fundamental resonance frequencies, the highest is always pinned, i.e.,
independent of Cm, where all the coupling capacitors are assumed to be identical. Ad-
ditionally, this frequency is practically identical to f0, the single resonator fundamental
resonance frequency. Indeed, one can convince oneself that the single resonator fundamen-
tal mode is also an eigenmode of a system with n resonators, n ≥ 2, where it effectively
assumes the role of the (n − 1)th harmonic and exhibits current nodes at integer multi-
ples of the length l, thus again motivating the apparent independence of this resonance
frequency from Cm.
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Figure 2.4: Dimer fundamental mode voltage and current (dashed) waveforms. Top mode
corresponds to resonance frequency f0, bottom to resonance frequency f0 −∆f .

2.3 ABCD matrices

ABCD matrices, also known as transmission matrices, offer a very convenient way for
calculating complete transmission and reflection spectra in two-port networks [13]. This
approach originates from microwave engineering and is macroscopic in nature, meaning
it describes the coupled resonators in terms of macroscopic quantities like lengths and
capacitances.

The ABCD matrix for a two-port network is defined with regards to total voltage and
current amplitudes: (

V1

I1

)
=

(
A B
C D

)(
V2

I2

)
, (2.23)

where V1,2 = V +
1,2 + V −

1,2 and I1,2 = I+1,2 − I−1,2, see Figure 2.1.

The sign conventions for the voltages V1,2 and currents I1,2 are such that the total ABCD
matrix of a cascade connection of two-ports is equal to the product of the ABCD matrices
corresponding to the individual two-ports. Concretely, to find the total ABCD matrix of
the dimer illustrated in Figure 2.6, it suffices to multiply, from left to right, the matrix
MCin/out

associated with the input capacitor with the matrix Mr associated with the first
transmission line and so on:

Mtot = MCin/out
MrMCm · · · (2.24)
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Figure 2.5: Equivalent circuit representation of the dimer.

The extension to longer chains is obvious. MCin/out
is given by

MCin/out
=

(
1 Zin/out

0 1

)
=

(
1 (iωCin/out)

−1

0 1

)
(2.25)

and MCm analogously. Mr is given by

MCin/out
=

(
cosh γl Z0 sinh γl

1/Z0 sinh γl cosh γl

)
α→0
=

(
cosβl Z0i sinβl

1/Z0i sinβl cosβl

)
(2.26)

Once Mtot is known, it can be converted into the equivalent scattering matrix. For exam-
ple:

S21 =
2

A+B/Z0 + CZ0 +D
, (2.27)

where A, B, C and D are the elements of Mtot.

I implemented the ABCD matrix calculation of transmission and reflection spectra of
coupled resonators in MATLAB. Reassuringly enough, the results for various resonator
configurations were the same as those obtained in Microwave Office. Assuming identical
input/output capacitors, coupling capacitors and resonators and that Z0 = 50Ω, as per
design of the resonators, the input parameters I used for the model were Cin/out, Cm,
αl and ω0, where ω0 is again the single resonator fundamental resonance frequency. By
setting these values roughly according to those specified by the design, I could simulate
the transmission and reflection in chains of an arbitrary number of coupled resonators.
Alternatively, when such spectra are supplied by measurements, one can fit them and
extract the abovementioned parameters. It is of course possible to use more parameters

Figure 2.6: Equivalent representation of a dimer, this time incorporating input/output
coupling.
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and account for asymmetries in the system, parasitic elements etc., but this is only recom-
mended for simulations and not for fitting because increasing the parameter space makes
the fitting increasingly difficult.

By varying one input parameter and keeping the rest constant, it is possible to assess its
influence on the transmission and reflection. Figure 2.7 depicts the fundamental resonances
of |S11| for three different center capacitors. The rightmost dip is actually three curves
superimposed on top of each other, demonstrating the pinning phenomenon discussed
earlier. Additionally, the splitting ∆f is described well by Equation 2.19, see Table 2.1.
As expected, the discrepancy between the simulated and calculated values increases for
increasing Cm because Equation 2.19 was derived under the assumption of weak coupling.
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Figure 2.7: Simulated |S11| using ABCD matrices in MATLAB in a dimer for three dif-
ferent values of the capacitance Cm. Other parameters: Cin/out = 6.6 fF, αl = 8.68 · 10−5,
f0 = 7.2GHz. These parameters roughly correspond to those given by the design. The
rightmost dip consists of three curves all lying on top of each other. The fundamental
resonances are shown.

Table 2.1: Comparison of simulated (Figure 2.7) and calculated (Equation 2.19) splitting
∆f in a dimer for different values of Cm.

Cm Simulated ∆f Calculated ∆f Relative Error

6.6 fF 67.2MHz 68.4MHz 1.8 %
14 fF 140.8MHz 145.2MHz 3.1 %
22 fF 218.4MHz 228.1MHz 4.4 %

In Figure 2.7, the rightmost resonance frequency is pinned, but not exactly to f0. The
simulation indicates it is pinned slightly below f0. The reason for this is the input/output
coupling. Stronger input/output coupling, i.e, larger values of Cin/out, lower the upper
resonance frequency more with respect to f0.

If the input/output capacitors are chosen to be asymmetric, then two things happen.
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First, the transmission at resonance is not unity, or equivalently the reflection is not zero,
even if the resonators are lossless, meaning α = 0. An explanation for this phenomenon
is given in Ref. [14] for the case of a single resonator: the amount of power flowing out
is equal to the amount of power flowing in, in equilibrium. Say the input capacitor is
the smaller of the two. If that is the case, the input rate will not be sufficient to sustain
the internal voltage, it being drained at a faster rate by the output. To compensate, the
input must be driven with a higher amplitude. Because there are no losses, according to
energy conservation the rest of the input power is reflected. Second, asymmetry in the
input/output coupling results in S11 ̸= S22. Not only that, but the previously symmetric
dips of ℜS11, |S11| become asymmetric. The same is true for ℜS22, |S22|. See Figure 2.8.
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Figure 2.8: Simulated |S11| and |S22| (dashed) in a dimer for the situation of asymmetric
input/output coupling. Cin = 6.6 fF, Cout = 8 fF, Cm = 6.6 fF, αl = 8.68 · 10−5, f0 =
7.2GHz.

2.4 Input/output theory

Input/output theory is a quantum mechanical description of coupled optical cavities. It
considers coupled cavity dynamics in terms of microscopic decay and hopping rates. For
more information on input/output theory, consult Ref. [15].
Figure 2.9 depicts a dimer in the input/output formulation. a, b (a†, b†) are commutating
single cavity annihilation (creation) operators. ain, bin (aout, bout) are input (output)
field operators. These operators take into account that the resonators are coupled to the
outside. J is the photon hopping rate due to the resonator-resonator coupling, mediated
in practice by the coupling capacitor.
The Hamiltonian of the system is, considering only fundamental excitations,

H = ω0a
†a+ ω0b

†b+ Ja†b+ Jb†a, (2.28)

where ω0 is once again the single resonator fundamental resonance frequency. The res-
onators are assumed to be identical. The first two terms of H correspond to each resonator
individually. The last two terms describe photon hopping from the right resonator to the
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left and vice versa. In this case, the cavity dynamics are described by the following differ-
ential equations [15]:

ȧ = − i

~
[a,H]− κ

2
a+

√
κain − γ

2
a (2.29)

ḃ = − i

~
[b,H]− κ

2
b+

√
κbin − γ

2
b, (2.30)

where κ is the decay rate due to input/output coupling and γ comprises all other de-
cay mechanisms which represent photon losses not due to input/output coupling. The
boundary conditions are

ain + aout =
√
κv (2.31)

bin + bout =
√
κv. (2.32)

The commutators in Equations 2.29 and 2.30 are

1

~
[a,H] = ω0a+ Jb,

1

~
[b,H] = ω0b+ Ja. (2.33)

The strategy now is to write each field operator as a sum of a classical part and a quantum
part, see Ref. [16]. Then, the trick is to only consider the classical part, which is just a
complex number. Therefore, for the subsequent derivation all operators in the above
equations are treated as complex numbers. With this simplification in mind and adopting
harmonic time dependence ∂/∂t → −iω, the scattering parameters can be derived. In
particular, we have that

S11 =
aout
ain

∣∣∣∣
bin≈0

. (2.34)

Skipping all the tedious intermediate steps which contain no additional assumptions, but
only consist of manipulating the above equations, the final result is

S11 =
γ2 − 4iγ∆ω − 4∆ω2 − κ2 + 4J2

4J2 + (γ − 2i∆ω + κ)2
, (2.35)

with ∆ω = ω−ω0. In the case of symmetric cavities assumed here, S22 = S11. Figure 2.10
illustrates ℜS11 as well as ℑS11 and Figure 2.11 |S11|. The two fundamental resonance
frequencies are symmetrically split around ω0. ℜS11 and |S11| are symmetric and ℑ(S11)
is antisymmetric around ω0. The splitting is equal to 2J . In the lossless case, γ = 0 and
ℜS11, |S11| go to zero on resonance.

Equation 2.35 tells us that the two dips in ℜS11 are Lorentzians as long as they are
distinct and not merged together. This means that, in practice, the decay rates κ and γ
can be found by fitting the dips from the experimental measurements with Lorentzians.
I took a slightly indirect approach and did not fit the dips, but inverted ℜS11 so that

Figure 2.9: Dimer model as considered in input/output theory.
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Figure 2.10: ℜS11 (top) and ℑS11 (bottom), from Equation 2.35. Parameters as follows:
J/2π = 341MHz, κ/2π = 16MHz and γ/2π = 11MHz.

the dips became peaks and the baseline was at zero and not at one (mathematically, I
multiplied ℜS11 with −1 and added 1). Executing this procedure for the spectrum from
Figure 2.10, the result is pictured in Figure 2.12. The peaks are true Lorentzians and no
approximations to Equation 2.35 have been made. γ and κ are given by

γ = (1−max) · FWHM (2.36)

and

κ = max · FWHM (2.37)

max is the maximum and FWHM the full width at half maximum of either of the
symmetric Lorentzian peaks in the inverted ℜS11. For the quality factor Q = f/∆f ,

Q ∝ 1

FWHM
=

1

κ+ γ
(2.38)

Qualitatively speaking, the two resonances are distinct and not merged when their sepa-
ration is much larger than their widths: 2J ≫ FWHM , i.e., 2J ≫ κ+ γ.

Using Equation 2.19, we arrive to the important result that the microscopic hopping rate
J determining the splitting is related to the macroscopic coupling capacitance by

2J = |∆ω| ≈ 2Z0Cm

π
ω2
0 (2.39)

There are two main reasons why it is better to look at reflection instead of transmission.
The first is that measured spectra may need to be post-corrected so that the baseline is
at the correct position, see Section 4.1.2. The baseline of S11, S22 is at one, but that of
S12, S21 at zero. Therefore, in the case of S11, S22 a simple rescaling, i.e., multiplication
by a constant factor, is sufficient, whereas as for S12, S21 it is not quite clear how to
best proceed with the baseline correction. The other reason lies in the fact that reflection
measurements give more information about the physical system. Due to the reciprocity



18 2.4. Input/output theory

∆ω

- 0.2

0.2

0.4

0.6

0.8

1.0

|S11|

Figure 2.11: |S11|, from Equation 2.35. Parameters same as in Figure 2.10.

theorem, see Section 2.1 and Chapter 4 for the experimental confirmation, S12 = S21 in
our samples, independent of any fabrication faults, parasitic elements and so on. However,
S11 = S22 only if the system is symmetric. So by comparing S11 and S22, information
about the sample (a)symmetry can be extracted.
According to Ref. [14], the quality factor Q is inversely proportional to the mode index.
This is one reason why the fundamental modes are more practically relevant than the
higher harmonics. In Ref. [14] an expression which connects Cin/out and κ is given, similar
to Equation 2.39:

ω0Cin/outZ0 =
√

κ/ω0. (2.40)

The model presented above may be expanded. For example, assuming that the input/out-
put coupling is asymmetric, there are then two decay rates κa and κb. S11 becomes

S11 =
4J2 + (γ − 2i∆w − κa)(γ − 2i∆w + κb)

4J2 + (γ − 2i∆w + κa)(γ − 2i∆w + κb)
, (2.41)

and S22

S22 =
4J2 + (γ − 2i∆w + κa)(γ − 2i∆w − κb)

4J2 + (γ − 2i∆w + κa)(γ − 2i∆w + κb)
, (2.42)

so once again S11 ̸= S22, see Figure 2.13. Note that the splitting in |S11| and |S22| is still
symmetric around ω0.
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Figure 2.12: Inverted ℜS11 from Figure 2.10. By fitting the peaks with Lorentzians,
information about the system is obtained.
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Figure 2.13: |S11| and |S22| (dashed). Parameters as follows: J/2π = 341MHz, κa/2π =
80MHz, κb/2π = 16MHz and γ/2π = 11MHz.



Chapter 3

Experimental setup

The first part of this chapter briefly describes the experimental setup used to perform
transmission and reflection measurements on the coupled resonators. The second part
explains the calibration procedure. The usefulness of the calibration is discussed in Chap-
ter 4.

3.1 Dipstick setup

The setup which I employed had already been in use at the Quantum Device Lab for a
long time and consisted of the well-known dipstick technique. Therefore, this section is
purposefully kept concise. For more information, see for example [17].

The samples I measured were provided to me by my supervisor. They stemmed from
the first and so far only wafer fabricated according to the design created in a previous
thesis [11], see Section 1.3. The investigated samples were M25 A2, M25 B1 and M25
M1, where M25 denotes the mask number, and A2 and B1 were dimers differing solely in
the central coupling capacitor. These two samples had 11 ports. M1 was a sample with
N = 4 and 16 ports, the higher number of ports reflecting the presence of additional flux
and charge lines.

For each sample, I soldered two connectors onto a circular AD1000 custom printed circuit
board. These were the input/output ports. The other ports were left unconnected. Then,
my supervisor glued and wire-bonded the sample onto the circuit board. The circuit board
was then placed into the protective copper sample holder which was located at the bottom
end of the dipstick. The microwave network analyzer N5230C from Agilent Technologies
was hooked up to two ports at the top end of the dipstick. Stainless steel coaxial cables
running through the hollow dipstick connected these ports to the corresponding sample
input/output ports. All these cables were designed to have a characteristic impedance of
50Ω.

In the case of the samples M25 A2 and M25 B1, the dipstick was lowered directly into a
43 liter wide-neck dewar containing liquid helium at a temperature of roughly 4K, well
below the niobium critical temperature of 9.2K. It is important to lower the dipstick
slowly and step by step so as to allow it to cool gradually, as opposed to lowering it
quickly and causing the helium to evaporate in large quantities. An O-ring served to
fix the dipstick at a desired depth. The position where the sample became immersed in
the liquid helium was clearly observable by looking for a sudden change in the sample
transmission and/or reflection, as measured in real-time by the network analyzer. All

20
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measurements were performed with the dipstick inserted as far into the dewar as possible,
i.e., with the sample holder at the very bottom of the dewar. Once the measurements
were completed, the dipstick was taken out. Again, the dipstick was raised slowly in order
to allow it to heat gradually. If it is taken out straight away, a lot of ice forms from the
water vapor in the air. This is dangerous because the ice located in small cracks in the
solder can lead to the cracks becoming larger, ultimately destroying electrical contacts.
Even when the dipstick is slowly taken out of the dewar over a period of 20-30 minutes,
some ice is still formed. To melt such ice on the sample holder, a hair-dryer blowing cool
air was used.

For the larger sample M25 M1, a different dipstick with larger sample holder was necessary.
The dewar employed for measuring the dimers did not have a neck of sufficient diameter
to accommodate this sample holder, so a special custom dewar was installed. This dewar,
packing a series of thin, circular metal disks serving as heat radiation shielding, needed to
be filled with liquid helium from a standard dewar before it could be used. Prior to filling
with liquid helium, the custom dewar was first cooled with liquid hydrogen. The actual
liquid helium transfer proceeded with more difficulty than expected, failing completely the
first time. All the other steps were the same as in the case of the 43 liter wide-neck dewar.

Transmission and reflection were measured over frequency in real-time with the network
analyzer in the form of two-port scattering parameters. At any desired time, the momen-
tary scattering parameters could be saved for later analysis, either as real and imaginary
parts (.csv format) or magnitude, in dB, and phase, in degrees (.s2p format). Measure-
ments with different settings for calibration, input power and time averaging were con-
ducted. Interpolation was set to on, the number of points to 20000 and the IF bandwidth
to 200 kHz, unless explicitly stated otherwise. Averaging was useful at low input powers
where the signal-to-noise ratio (SNR) was decreased. The averaging process eliminates
noise, but is more time consuming.

3.2 Calibration

Calibration was done prior to mounting the sample into the sample holder. The reason for
calibration is that the device under test (DUT) is just the sample with the coupled res-
onators. For instance, the cables connecting the network analyzer to the dipstick and the
cables in the dipstick leading to the sample should not be part of the measurement. Cali-
bration ideally enables the network analyzer to remove the influence of the aforementioned
cables and any intermediate connectors on the measured transmission and reflection.

The calibration took place at the bottom end of the dipstick with the lower sample holder
plate bearing the circuit board removed. Note that because the sample is attached to
the printed circuit board, it is impossible to move the reference plane completely to the
sample. The connectors and waveguides on the printed circuit board unavoidably influence
the measured transmission and reflection.

When no calibration is done, then in the simplest case S11 and S22 will obtain a frequency-
dependent phase factor if one takes into account the cables connecting the DUT to the
network analyzer. Therefore, the simplest case refers to a shift in reference plane for each
port n = 1, 2 by a length ln of transmission line representing the cables connecting port n
to the network analyzer [13]:

S′
nn = e−i2θnSnn, (3.1)
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where Snn is the reflection coefficient for port n for the original reference plane, located
at zn = 0 (directly at the DUT) and S′

nn the new reflection coefficient for the reference
plane at zn = ln (at the network analyzer). The reference plane for each port n is moved
over a length of transmission line ln from zn = 0 to zn = ln due to the cables connecting
the DUT to the network analyzer. Because θn = βnln ∝ ω, the phase offset is directly
proportional to frequency. This fact is important for the manual post-correction explained
in Chapter 4. S12 and S21 remain unchanged.
Two different calibration techniques were tried: electronic calibration (ECal) and cali-
bration with a kit. The electronic calibration did not seem to work, seemingly producing
even worse measurements. Calibration with a kit consisting of SHORT, OPEN and LOAD
(matched impedance, i.e., 50Ω) devices as well as a THRU connector produced a notice-
able improvement in the measurements. Ideally, the calibration should be undertaken at
liquid helium temperatures, meaning an individual terminating device or THRU connector
is attached, the dipstick lowered, the calibration performed, the dipstick raised, then the
next calibration step and so on. Because there are seven steps in total (SHORT, OPEN
and LOAD twice for each port, once THRU connecting both ports), this would take the
better part of a day. Instead, the calibration was done at room temperature. There exist
ways for in situ cryogenic calibration which take much less time, see e.g. Ref. [18], but
these were not pursued.
When going through the various calibration steps, it is important to know what kind of
network analyzer output to expect because it can easily happen that the calibration device
is not inserted properly. Refer to Table 3.1 for a summary of the ideal cases for port 1,
where port 2 is left as-is (unterminated) except in the case of THRU when both ports are
connected. β1 and l1 denote phase constant and total cable length for port 1. The situation
for port 2 is completely analogous. Figure 3.1 depicts a measurement of the phase of S11

during calibration with SHORT (top set of points) and OPEN (bottom set of points)
devices. Frequencies below 1GHz were not measured; the dotted lines were extrapolated
from the available data points above 1GHz. As the figure indicates, arg(S11) decreases
linearly with frequency and differs by exactly π for SHORT and OPEN, in agreement with
Table 3.1. Additionally, in both cases |S11| = 1 (not shown).

Table 3.1: Summary of expected scattering parameters during the calibration procedure.
For SHORT, arg(S11) = π − 2β1l1, while for OPEN, arg(S11) = −2β1l1 ∝ −f .

Step S11 S21

SHORT −e−i2β1l1 0
OPEN e−i2β1l1 0
LOAD 0 0
THRU 0 1
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Figure 3.1: Measurement of phase of S11 during calibration with SHORT (top set of
points) and OPEN (bottom set of points) devices.



Chapter 4

Results and discussion

In this chapter, the most important experimental results are presented and discussed.
The focus is, barring the final section, on the dimers M25 A2 and M25 B1. Only the
fundamental resonance frequencies are investigated. The chapter begins with a section
explaining the manual post-correction of the raw measurement data and the subsequent
fitting. The section thereafter summarizes the information gathered through the fitting.
An examination of the observed asymmetry in the scattering parameters follows, including
an analysis of potential causes for the asymmetry. Lastly, the final section concerns sample
M25 M1 with N = 4.

4.1 Measurements and fitting procedure

4.1.1 Uncalibrated and calibrated measurements

Consider first a typical uncalibrated measurement. Figures 4.1 and 4.2 show the real
parts, Figures 4.3 and 4.4 the magnitudes of the two-port scattering parameters. ℜS11

and ℜS22 oscillate strongly, masking the expected resonances. This is consistent with
Section 3.2 and Formula 3.1: the oscillations in ℜS11 and ℜS22 originate in large part
from the cables connecting the DUT to the network analyzer. Some oscillations are also
present in ℜS12 and ℜS21, albeit to a much lesser degree. Moving on to the magnitudes,
the resonances are clearly visible, although |S11| and |S22| show unexpected oscillatory
behavior. These oscillations are most likely standing waves due to reflections created by
impedance mismatches at intermediate connections (cables and connectors) between the
network analyzer and the DUT. This explanation is in accord with the fact that |S12| and
|S21| have no such oscillations when one remembers that Sij is measured with the port not
being driven, i.e., port i, terminated in a matched load, meaning there are no standing
waves in S12, S21. Lastly, note how the magnitudes of the scattering parameters are often
greater than one. This is physically impossible.
Deploying a calibration kit according to Section 3.2 to set up calibrated measurements
has profound consequences on the measured transmission and reflection, as Figures 4.5
and 4.6 as well as Figures 4.7 and 4.8 attest. Gone are obvious signs of oscillations. The
baselines of ℜS12 and ℜS21 are at zero, as anticipated. On the other hand, ℜS11 and ℜS22

are sloped and do not possess well-defined baselines.
The magnitudes of the scattering parameters look as expected, apart from two things.
First, despite the calibration, the baselines of |S11| and |S22| are greater than one. This
is because the calibration took place at room temperature, the measurements however
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Figure 4.1: Measured ℜS11 and ℜS22 for sample M25 B1. Settings as follows: no calibra-
tion, −2 dBm input power, averaging off.
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Figure 4.2: Measured ℜS12 and ℜS21 for sample M25 B1. Settings as in Figure 4.1.
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Figure 4.3: Measured |S11| and |S22| for sample M25 B1. Settings as in Figure 4.1.
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Figure 4.4: Measured |S12| and |S21| for sample M25 B1. Settings as in Figure 4.1.
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at liquid helium temperatures where losses are much smaller. For the network analyzer,
the smaller losses make it seem like the magnitudes of the scattering parameters can be
greater than one. Second, one expects S12 = S21 due to reciprocity. This is indeed given,
since ℜS12 = ℜS21 and |S12| = |S21|. Nevertheless, there is an asymmetry between the
two fundamental resonances in S12 and S21. One also expects S11 = S22 due to the
sample symmetry, yet the measurements indicate otherwise. There is a marked difference
between S11 and S22, reminiscent of Figure 2.8. Not only S11 ̸= S22, but again, when
considering just S11 or S22 alone, the two fundamental resonances are asymmetric. All
of these asymmetries also occur when no calibration is used, see once more Figures 4.3
and 4.4.

4.1.2 Post-correction and fitting

It turns out that the slopes in ℜS11 and ℜS22, as evident in Figure 4.5, occur because the
calibration is not perfect and fails to completely correct the phases of S11 and S22. There-
fore, manual post-correction was done on the measurements. The scattering parameters
Sii, i = 1, 2, were modified according to S′

ii = kS11e
i(ϕ+fp), where k is a real multiplicative

constant which shifts the baseline to one, ϕ a constant phase offset, f the frequency and
p a real number. Applying the post-correction to the measurements from Figure 4.5 leads
to Figure 4.9. Note that it still holds that S11 ̸= S22 and that, in both ℜS11 and ℜS22, the
fundamental resonances are asymmetric. |S11| and |S22| remain unchanged. A negative
aspect of the post-calibration is that it was done by hand each time. The phases were
corrected until the slopes in ℜS11 and ℜS22 were judged, by eye, to have disappeared as
much as possible. This inherently imprecise procedure degrades the reproducibility of the
extracted quantities and contributes to their variance, most notably because the fits can
sometimes be quite sensitive to changes in the post-correction.

After the post-correction, ℜS11 and ℜS22 were ready to be fitted using the model devel-
oped within the framework of input-output theory, see Section 2.4 and particularly Equa-
tions 2.36, 2.37, 2.38 and 2.39. The reason ℜS11 and ℜS22 were chosen for fitting is because
the analytical fitting function is particularly simple: it is a Lorentzian function as long as
the resonances are well-separated, something which was always fulfilled. Both resonances
in both ℜS11 and ℜS22 were inverted and fitted individually with the same function. J is
determined by the difference of the two resonance frequencies, J = 1

2(fres,2 − fres,1). The
single resonator fundamental resonance frequency, f0, is, according to Section 2.2, approx-
imately given by the right resonance frequency: f0 ≈ fres,2. As an example, Figure 4.10
depicts the final result of fitting the left resonance in ℜS22 from Figure 4.9. The extracted
quantities from this fit are fres,1 = 6.96GHz, κ/2π = 0.91MHz and γ/2π = 1.51MHz.

It is also possible to fit the measured scattering parameters with ABCD matrices. The
difference is that, with ABCD matrices, there do not exist simple analytical formulas
which can be used for fitting. For a given quantity such as |S11|, it is not possible to
isolate the resonances, but rather the whole spectrum is fitted at once. Because S11 ̸= S22

and the measured scattering parameters feature asymmetries, fitting with the parame-
ters Cin/out(assuming Cin = Cout), Cm, αl and ω0 fails because these parameters only
describe the ideal case of symmetric samples. Attempts at trying to introduce additional
parameters to better fit the measurements were not particularly successful. Introducing
more parameters increases the parameter space and makes the fitting procedure unstable
in the sense that it becomes very dependent on the initial guesses. When it does work,
some parameters, for example Cin/out or Cm, are often completely different than what is
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Figure 4.5: Measured ℜS11 and ℜS22 for sample M25 B1. Settings as follows: calibration
with kit, −2 dBm input power, averaging off.
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Figure 4.6: Measured ℜS12 and ℜS21 for sample M25 B1. Settings as in Figure 4.5.
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Figure 4.7: Measured |S11| and |S22| for sample M25 B1. Settings as in Figure 4.5.
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Figure 4.8: Measured |S12| and |S21| for sample M25 B1. Settings as in Figure 4.5.
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Figure 4.9: ℜS11 and ℜS22 from Figure 4.5 after post-correction. The dashed box indicates
the resonance dip fitted in Figure 4.10.

expected from the design. Setting constraints on the parameters alleviated this problem
a bit, but still did not produce stable, satisfactory fits. At a certain point I decided to
abandon the idea of using ABCD matrices to fit the measurements and concentrated on
fitting with input/output theory instead.

4.2 Extracted quantities

Before presenting the numerical results, it is worthwhile to reflect on whether the extracted
quantities κ and γ belonging to different resonances (left and right) and scattering param-
eters (ℜS11 and ℜS22) should all be treated on equal footing. The input/output theory
model for symmetrically coupled identical resonators indicates that they should. However,
the measurements, because of the asymmetric resonances and the fact that S11 ̸= S22, sig-
nify that such an approach is questionable. The best way to tackle this problem would
be to go back to input/output theory and try to develop a model which captures the
aforementioned, initially unexpected observations. Such an attempt was made, see Equa-
tions 2.41 and 2.42, but turned out to be a dead-end in the sense that it failed to fully
predict the observed asymmetry. A more promising idea is briefly discussed in Chapter 5.

4.2.1 Sample M25 A2

This was the first sample investigated. Inspection with an optical microscope showed that
the sample was contaminated in the form of a large splotch on one of the two resonators as
well as some dirt. Consequently, the observed asymmetry in the resonances was thought to
be caused by the contamination and it was decided to move on to the next sample, sample
M25 B1. Additionally, despite calibration the sample exhibited some strange behavior in
S22, see Figure 4.11b, which can probably be ascribed to the contamination. Therefore,
only the results from fitting ℜS11 are given.
Tables 4.1 and 4.2 contain all the extracted quantities. Each quantity is specified in the
following manner: (average) ± (standard deviation). The results encompass a total of
three measurements under the same settings (settings as in Figure 4.11). The only differ-
ence in the measurements was the frequency interval over which the scattering parameters
were measured.
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Figure 4.10: Example of fitting a resonance with a Lorentzian according to input/output
theory. Fitting interval is ±10MHz around the resonance frequency.

In the first table, the left and right resonances are treated separately. In the second
table, all resonances are considered at once, meaning that a single quantity κ/γ/Q can be
attributed to the sample.
The results show that the resonance frequencies fres and therefore also J and f0 practically
do not change at all from measurement to measurement. These values are very stable.
The same cannot be said for κ, γ and Q, especially in Table 4.2. This is not surprising
because, after Table 4.1, κ, γ and Q are rather different for the two resonances, reflecting
the observed asymmetry between them. Thus, when averaging over both resonances, as in
Table 4.2, the variances of the aforementioned quantities will increase compared to what
they were for each resonance individually. This phenomenon goes back to the remark at
the beginning of this section.

Table 4.1: Extracted quantities for sample M25 A2 from various measurements. Par.
refers to the fitted scattering parameter, Res. to the left or right resonance of the chosen
scattering parameter.

Par. Res. fres κ/2π γ/2π Q

ℜS11 left 7.117GHz± 0.22MHz 1.27± 0.01MHz 1.71± 0.09MHz 2391± 79

ℜS11 right 7.179GHz± 0.09MHz 2.31± 0.02MHz 1.46± 0.08MHz 1905± 48

Table 4.2: Extracted quantities for sample M25 A2 from various measurements, taking
both resonances from ℜS11 into account (no distinction between left and right resonances).

J/2π f0 κ/2π γ/2π Q

30.99± 0.08MHz 7.179GHz± 0.09MHz 1.79± 0.52MHz 1.59± 0.16MHz 2148± 252

Lastly, using the extracted average values of J , f0 and κ from Table 4.2 as well as Equa-
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Figure 4.11: Measured |S11| and |S22| for sample M25 A2. Settings as follows: calibration
with kit, −2 dBm input power, averaging off, IF bandwidth 600 kHz. Strangely, |S22| on
resonance is greater than off resonance, likely because of contamination.

tions 2.39 and 2.40, one can estimate Cin/out and Cm and compare them with the design
specifications. We calculate, assuming Z0 = 50Ω, Cin/out ≈ 7.00 fF and Cm ≈ 6.01 fF.
The design says that, approximately, Cin/out = Cm = 6.6 fF.

4.2.2 Sample M25 B1

This sample had, by design, a larger central coupling capacitor. Tables 4.3 and 4.4 contain
all the extracted quantities. All of the comments regarding these quantities stated for the
previous sample are valid here, too. The results incorporate four measurements, of which
one pair had the same settings as in Figure 4.5, the two measurements differing only in the
frequency interval considered. The other pair had the following settings: calibration with
kit, −50 dBm input power, averaging with factor 100. The two measurements comprising
this pair also only differed in the frequency interval considered.

Table 4.3: Extracted quantities for sample M25 B1 from various measurements. Par.
refers to the fitted scattering parameter, Res. to the left or right resonance of the chosen
scattering parameter.

Par. Res. fres κ/2π γ/2π Q

ℜS11 left 6.964GHz± 0.17MHz 1.42± 0.06MHz 1.15± 0.03MHz 2709± 87

ℜS11 right 7.190GHz± 0.14MHz 1.14± 0.06MHz 1.60± 0.03MHz 2623± 82

ℜS22 left 6.964GHz± 0.09MHz 0.89± 0.02MHz 1.52± 0.03MHz 2874± 10

ℜS22 right 7.190GHz± 0.27MHz 1.63± 0.10MHz 1.02± 0.04MHz 2723± 139

From Table 4.4 we calculate, assuming again Z0 = 50Ω, Cin/out ≈ 5.98 fF and Cm ≈
21.92 fF. The design says that, approximately, Cin/out = 6.6 and Cm = 22 fF.

Comparing the measured resonance frequencies from sample M25 A2 with those from
sample M25 B1, we see signs of the pinning phenomenon. The right resonance frequencies
differ by around 11MHz, the left by 153MHz. What this means is that, when the cen-
tral capacitor is increased, the resonance frequencies move further apart because the left
frequency moves down, but the right one stays more or less where it is.
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Table 4.4: Extracted quantities for sample M25 B1 from various measurements, taking
both resonances from ℜS11 as well as ℜS22 into account (no distinction between left and
right resonances).

J/2π f0 κ/2π γ/2π Q

113.33± 0.07MHz 7.190GHz± 0.21MHz 1.31± 0.28MHz 1.32± 0.26MHz 2712± 130

4.3 Discussion of asymmetry

For sample M25 B1, the fact that S11 ̸= S22 and the asymmetry in the resonances,
Figures 4.7 and 4.8, point towards an asymmetry in the sample. Why is the origin of
these occurrences very likely located on the sample or at least on the printed circuit board
carrying the sample and not elsewhere (network analyzer and dipstick cables, connectors)?
The reason is that I made a series of measurements where I rotated sample M25 B1, always
in the same direction, so that a different pair of cables through the dipstick were used each
time. Additionally, in a separate measurement I also exchanged the cables leading from
the network analyzer to the dipstick, effectively interchanging the ports. In the former
cases nothing changed regarding the asymmetry, whereas in the latter the resonances
swapped (in |S11|, the right resonance dipped below the left and vice versa in |S22|, so
that essentially S11 and S22 were exchanged). These observations are consistent with the
notion that the asymmetry originates from the sample.
In order to shed some light on what could cause the asymmetry, I ran some small simula-
tions in Microwave Office. Below is a list of potential causes:

� The two resonators have different resonance frequencies: this can happen because
the resonators have different geometries (lengths, widths) and/or effective electric
permittivities (geometry dependent). Then, the equivalent single resonator funda-
mental resonance frequencies are not the same for the two resonators. Simulations
show that length differences as small as 1% already have a significant impact and
reproduce the observed asymmetry very nicely.

� Unequal input/output coupling capacitors: Cin ̸= Cout. See Figure 2.8. Leads to
S11 ̸= S22. The asymmetry in the resonances (unequal dips) is more pronounced
when the central coupling capacitor is smaller. At Cm = 22 fF, not the likely source
because the input/output capacitors, set ideally to 6.6 fF, have to disagree on the
order of a femtofarad or more.

� Mismatches in the characteristic impedances: can be because the resonators are not
identical to each other or due to imperfections in the waveguides and connectors on
the printed circuit board. Not that likely because deviations on the order of several
ohms and above are required.

� Parasitic capacitors and inductors: variations in the number and/or geometry of the
bond wires connecting the sample to the printed circuit board could bring about
asymmetric parasitic capacitors and/or inductors. Alternatively, the parasitic com-
ponents could manifest themselves at the connectors. Asymmetric parasitic capac-
itors can be considered for by combining them with the input/output capacitors,
leading to the first point in this list. Similarly, parasitic inductors lead to S11 ̸= S22,
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but the resonances, when looking at say |S11| or |S22| individually, are not very asym-
metric. The influence is also rather weak, needing inductances of several nanohen-
ries. In comparison, in Ref. [14] it is stated that a bond wire has an approximate
inductance per unit length of 1 nH/mm.

In summary, differences in the resonance frequencies of the resonators appear to be the
most likely candidate for the observed phenomena. Of course, in reality, a combination of
diverse factors is probably to blame.

4.4 Brief look at N = 4 sample

Sample M25 M1 featured four coupled resonators. By design, the three capacitors cou-
pling the resonators to each other were the same. Figure 4.12a shows a measurement
of the transmission through the sample. Now, there are four fundamental resonance fre-
quencies. Note the strong asymmetry in the resonances. Figure 4.12b is a Microwave
Office simulation, where it was assumed that all resonators and coupling capacitors are
identical, i.e., the sample is completely symmetric. Additionally, S11 = S22, but again the
resonances are asymmetric. It seems that, in this case, the asymmetry in the resonances
is an inherent property of the sample.
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Figure 4.12: Measured, left, |S12| and simulated, right, |S12| for sample M25 M1. Mea-
surement settings as follows: calibration with kit, −4 dBm input power, averaging off.

Finally, simulations also confirm the pinning of the rightmost resonance frequency, inde-
pendent of the three coupling capacitors.



Chapter 5

Conclusion and outlook

In summary, during the course of this semester thesis I delved into the topic of coupled
microwave resonators. The focus was mostly on two samples, each having two coupled
resonators, but different central capacitors. From a theoretical standpoint, I tried to
understand how the resonances come about as well as how to describe the overall trans-
mission and reflection in the form of scattering parameters. I pursued two strategies: a
macroscopic description with ABCD matrices from classical microwave theory and a mi-
croscopic description rooted in input/output theory, a quantum mechanical approach to
understanding coupled optical resonators. Experimentally, I performed low-temperature
dipstick measurements to determine the scattering parameters. Once the measurements
were completed, the gathered data was analyzed and relevant quantities extracted. The
initially unexpected asymmetry present in the samples was scrutinized through further
measurements and several simulations in order to shed some light on its origins.
There are a lot of possibilities for expanding on this semester thesis. As part of the
overarching search for Majorana-like modes of light in coupled resonators at the Quantum
Device Lab, the next logical step would be the qubit integration. Additionally, samples
containing higher numbers of coupled resonators will probably need to be studied, both
theoretically and experimentally. The N = 4 sample which I briefly investigated seems
like a good starting point.
In the following, a list of untested, but potentially interesting ideas and improvements
regarding this thesis are presented. They were not implemented either due to time con-
straints or because I only become aware of them towards the very end of the thesis.

� Higher harmonics: examine the higher harmonics in the transmission and reflection.
Is it possible to obtain any useful information from them?

� Input/output theory: develop a simple model within input/output theory which
successfully predicts S11 ̸= S22 together with the observed asymmetry in the reso-
nances. It was suggested to me that the corresponding Hamiltonian, which should
replace the one given in Equation 2.28, is

H = ω1a
†a+ ω2b

†b+ Ja†b+ Jb†a, (5.1)

with ∆ = |ω2 − ω1| ≫ J . Here, ω1 and ω2 are the resonance frequencies of the left
and right resonator, respectively. These two resonators, which together comprise the
dimer, are assumed to be different, i.e., asymmetric, and therefore their resonance
frequencies are different.
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� Fitting in the complex plane: instead of fitting, say, ℜS11, fit S11 directly in the
complex plane. One advantage of such an approach is that the somewhat tedious
and inconsistent manual post-correction would not be necessary any more, at least
not in the form which I implemented.

� Terminate unused waveguides: present on the samples are flux and charge lines. In
my measurements, these lines were left unconnected. This could potentially produce
additional reflections, impacting the transmission and reflection through the coupled
resonators. To be on the safe side, all unused ports should be terminated in matched
50Ω loads to prevent reflections.
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Appendix A

Project file directory

All files are located on qudev in USERS\Matija\semester thesis. The table below lists the
foldes therein and their contents:

Table A.1: Project file directory.

Folder Content

doc papers and thesis relevant for the project
measurements measurement data acquired in the lab
mathematica code written in Mathematica; mostly related to input-output theory
matlab code writen in MATLAB; mostly related to ABCD matrix formalism
microwave office simulations in Microwave Office
report files pertaining to the report
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