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Abstract

In this thesis, time-dependent hamiltonian is simulated for CPHASE
gate to investigate its dependence to the gate adiabaticity parameter.
The CPHASE gate is implemented with the help of two superconduct-
ing transmon type qubits. Interaction between |11〉 and |20〉 states is
exploited to implement this gate. Rectangular magnetic flux pulse sent
to one of the qubit frequency bias is used to tune these two states to
resonance. For fast enough pulse rise time, the frequency of qubit is
shifted non-adiabatically to achieve the desired CPHASE gate opera-
tion. For practical reasons, the flux pulse is gaussian-convoluted. The
width σ of the gaussian characterizes the adiabaticity parameter of the
gate. Maximum attainable fidelity is estimated for different σ. The re-
sults in this thesis show that even at finite pulse rise times, good fideli-
ties are achieved. For σ of 1.78 ns, 3.57 ns, and 5.34 ns, it is shown that
fidelities above 99.9% is merely attainable. These adiabaticity parame-
ters correspond to the gate times of 61.9 ns, 66 ns and 72 ns respectively,
for coupling strength between |11〉 and |20〉 of 8.33MHz. Geometric
phase of 180◦ is observed for all the investigated adiabaticity param-
eters. In addition, non-adiabatic error is seen at strong non-adiabatic
regimes. In this regime, owing to the steep rise time of the flux pulse,
some of the population is lost to other states.

i



Contents

Contents ii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Single-qubit gates . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Two-qubit gates . . . . . . . . . . . . . . . . . . . . . . . 3

2 Quantum computing with superconducting circuits 5
2.1 Electric harmonic oscillator . . . . . . . . . . . . . . . . . . . . 5
2.2 The cooper-pair box qubit . . . . . . . . . . . . . . . . . . . . . 6

3 CPHASE gate implementation 10
3.1 Geometric phase . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Time dependent qubit detuning . . . . . . . . . . . . . . . . . . 12
3.3 Simulating the propagator with Dyson series . . . . . . . . . . 12
3.4 Identifying the gate parameters . . . . . . . . . . . . . . . . . . 14
3.5 Investigating the gate adiabaticity . . . . . . . . . . . . . . . . 17
3.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Non-adiabatic error 21

5 Conclusion 23

A Appendix 25
A.1 Simulation results in non-adiabatic regime . . . . . . . . . . . 25
A.2 Wolfram Mathematica framework for simulations . . . . . . . 26

Bibliography 27

ii



Chapter 1

Introduction

The basic unit of quantum information is called qubit. Unlike bits in clas-
sical computers, qubits can be in both state |0〉 and |1〉 at the same time.
Two qubits can be in states |00〉, |01〉, |10〉 and |11〉 at the same time. For
each additional qubits, the total number of states doubles. Although such
states cannot be measured directly, it is the natural existence of these kinds
of states that give quantum computers their ability to process large amounts
of data quicker than any classical computers. Quantum computers hold
remarkable promises to speed up one’s computational task on day-to-day
basis. It promises to aid researchers to solve complex problems like simula-
tions of large biological molecules or factoring large numbers using Shor’s
algorithm. In addition, blue print for provably secure cryptography tech-
niques exists that is only possible within the realm of quantum computers.
The following sections briefly describe the fundamental elements of quan-
tum computing, especially the idea universal quantum gates.

1.1 Motivation

Quantum computing mainly involves three steps for qubits: initialization,
unitary evolution and readout. Manipulation of qubits defines the unitary
evolution of quantum information. Clasical computers are built of electri-
cal circuits, and it involves logic gates to manipulate the classical bits. In
quantum computers, qubit states are manipulated with the help of quan-
tum gates. Several quantum gates are applied in sequence to accomplish
the desired unitary evolution of the qubit states. However, there are sev-
eral possible unitary operators. Constructing a special gate for each of the
operations we would like to perform on our qubit state is time-consuming.
This is where the idea of universal set of quantum gates comes in handy.
Universal set of gates act as building blocks for other gates, and more com-
plex gates can be constructed using the elements from just this set. It is
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1.2. Quantum gates

Figure 1.1: A geometrical display of two-level quantum system.

easy to see from our basic quantum information processing lecture that the
gates CNOT, Hadamard H and Phase T gate make up the universal set of
quantum gates. Furthermore, CNOT gate is equivalent to CPHASE gate up
to local unitary operations. This is why CPHASE gate is a very useful two-
qubit gate in quantum computing. In the section below, the circuit diagram
and operation principle of some of the important single-qubit and two-qubit
gates are shown. To know more about the universal set of quantum gate, I
would like to refer readers to the textbook (Nielsen and Chuang, 2000).

1.2 Quantum gates

A qubit state is described by a vector |ψ〉 = a|0〉+ b|1〉, where a and b are
complex or real numbers such that |a|2 + |b|2 = 1. In classical computing,
the state of a bit can be determined with 100 % accuracy to be in state |0〉 or
|1〉. However, in quantum computing, the measurement of qubit in standard
basis will ”force” the qubit to be in state |0〉 or |1〉 with probabilities |a|2 and
|b|2, respectively. This observation lies at the heart of quantum mechanics,
and famously comes from the Copenhagen interpretation of quantum me-
chanics devised in the mid 1920s. The state of the qubit can be understood
better geometrically as shown in Figure 1.1. Qubit state can be written in
the following manner:

|ψ〉 = cos
θ

2
|0〉+ eiϕsin

θ

2
|1〉 (1.1)

where θ and ϕ are real numbers. The parameters θ and ϕ define a point
(sinθcosϕ, sinθsinϕ, cosθ) on the surface of a bloch sphere (Nielsen and Chuang,
2000).

2



1.2. Quantum gates

1.2.1 Single-qubit gates

Unitary operation on single qubit state is a rotation on the surface of a bloch
sphere. The set [Ĥ, T̂] can be used to construct arbitrary single-qubit gates.
The following shows the matrix representation of Ĥ and T̂:

Ĥ =
1√
2

[
1 1
1 −1

]
(1.2)

T̂ =

[
1 0
0 eiπ/4

]
(1.3)

Take for instance the following sequence of operation involving Ĥ and T̂:

Û = T̂ĤT̂Ĥ = e−iπ/8σ̂z e−iπ/8σ̂x

= cos2 π

8
I − isin

π

8
[cos

π

8
(σ̂x + σ̂z) + sin

π

8
σ̂y]

(1.4)

here Û describes rotation about the axes ~n=(cos π
8 , sin π

8 , cos π
8 ) by an angle θ

such that cos θ
2 = cos2 π

8 . When Û is sandwiched between two Ĥ operators,
the new unitary describes rotation around another axis ~m=(cos π

8 ,−sin π
8 , cos π

8 )

such that |m̂.n̂| < 1. Multiple use of Ĥ and T̂ accomplishes rotation around
two-non parallel axes ~m and ~n (Nielsen and Chuang, 2000). The next section
describes another element of universal quantum gates which is conditional
two-qubit gates.

1.2.2 Two-qubit gates

Two-qubit control operations are necessary in both classical and quantum
computing. One of the very basic control operations in quantum computing
is CNOT gate (where C stands for conditional). This gate consists of two
parts: control qubit and target qubit. In this gate, operation is turned on or
off depending on the state of the control qubit. For instance, if the control
qubit is excited, the operation flips the state of target qubit; if the control
qubit is not excited, the operation does nothing to the target qubit. The
circuit diagram and matrix representation in the computational basis for
CNOT gate is given below:

|1〉 • |1〉

|0〉 |1〉

ÛCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.5)

3



1.2. Quantum gates

CNOT gate along with single qubit unitaries form the elements of the univer-
sal set of quantum gates. Furthermore, this gate can be directly constructed
with the help of another important two qubit gate known as CPHASE gate.
CNOT gate can be constructed by applying Hadamard gate to the target
qubit, CPHASE gate to this new state and Hadamard gate again (Steffen,
2013). Below shows the circuit diagram and matrix representation for the
CPHASE gate:

|1〉 • |1〉
|1〉 • −|1〉

ÛCPHASE =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (1.6)

CPHASE gate flips the phase of the two-qubit state if both the qubits are ex-
cited. Unlike CNOT gate, CPHASE gate is symmetric. By exploiting the evo-
lution of population through the non-computational sub-system, CPHASE
gate is implemented by coupling between two qubit states: |11〉 and |20〉
(Strauch et al., 2003). During this closed evolution cycle through |20〉, |11〉
state picks up a geometric phase of 180◦. In addition, phases are shifted
from the lab reference frame because the flux pulse causes detuning of the
transition frequencies of the qubits. This additional phases qubits individ-
ually acquire is called dynamic phase, and should be compensated using
single-qubit rotations. More will be discussed about the implementation of
CPHASE gate in the later sections. The next section outlines basic elements
of quantum computer, realized in the architecture of superconducting cir-
cuits.
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Chapter 2

Quantum computing with
superconducting circuits

Under certain physical conditions, macroscopic objects show quantum me-
chanical behavior. Superconducting electronic circuits demonstrate quan-
tum mechanical properties if well-isolated from the environment. These cir-
cuits allow negligibly small dissipation. A superconducting circuit consists
of inductor and capacitor connected by a superconducting metallic wire.
This circuit functions like an artificial atom. The non-linearity in the en-
ergy levels of superconducting qubits comes by using a non-linear inductor
known as Josephson junction.

2.1 Electric harmonic oscillator

One of the simplest quantum circuits is an LC oscillator (Devoret, 1997). The
Hamiltonian of this quantum circuit can be written in the basis of Φ and q
as follows:

H(q, Φ) =
q2

2C
+

Φ2

2L
(2.1)

where C is the capacitance of capacitor and L is the inductance of inductor.
At this point, a parallel could be drawn with the regular harmonic oscillator
consisting of momentum p and position x degrees of freedom. In supercon-
ducting LC circuit, flux Φ behaves like canonical momentum p and charge
q behaves like its conjugate x. One can use canonical quantization to write
these conjugate variables in terms of quantum mechanical hermitian opera-
tors q̂ and Φ̂. These operators do not commute with each other, and now
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2.2. The cooper-pair box qubit

the Hamiltonian can be expressed in the following manner:

Ĥ = h̄ω(â† â +
1
2
) (2.2)

where ω = 1/
√

LC and a = (Φ̂ + iZq̂)/
√

2h̄Z with Z =
√

L/C. The energy
levels of the harmonic oscillator are evenly spaced. However, to make a
qubit, one needs to introduce anharmonicity in the spectrum, and hence be
able to isolate the two-levels from each other. This is done by introducing a
non-linear inductor known as Josephson junction in the circuit (Nakamura
et al., 1997). This is described in the next section.

2.2 The cooper-pair box qubit

A Josephson junction is an electronic device that is constructed of two su-
perconducting electrodes with a thin insulator in between. The spectrum of
superconducting oscillator described above is made non-linear by including
the Josephson junction as a non-linear inductor. It is the only non-linear res-
onator that experiences no energy dissipation. If the distance between two
superconducting electrodes is very small, the Cooper pairs present tunnel
through this gap thereby producing the current I. The following equations
describe the current flowing through and voltage across the Josephson junc-
tion (Tinkham, 1975):

I = I0sinδ (2.3)

V =
Φ0

2πδ̇
(2.4)

where I0 is critical current, Φ0 is the magnetic flux quantum and δ signifies
the phase difference between the two electrodes. Critical current is control-
lable, and depends on the geometry of the Josephson junction. It can be
changed by changing the area of the junction. From these Josephson equa-
tions follows the following relation for voltage and current:

V =
Φ0

2π I0

1
cosδ İ

. (2.5)

Here the voltage V is clearly non-linear in phase difference δ. In addition,
Φ0/2π I0 is quantified as specific Josephson inductance LJ0 , and the quantity
Φ0 I0/2π is called the Josephson energy EJ . This shows time-dependent
phase between two electrodes can be realized by biasing the junction with
voltage. Such circuit with AC Josephson junction is referred to as the Cooper
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2.2. The cooper-pair box qubit

island	
  

reservoir	
  

Φ	
  

Cg	
  

EJ	
   EC	
  

Figure 2.1: Circuit diagram of a CPB. The Cooper pairs tunnel into the
reservoir from the island carrying a certain amount of current (Dewes, 2012)

pair box (CPB) (Taylor et al., 1967). As can be seen in Figure 2.1, it is formed
of superconducting island which is connected by a Josephson junction to
a reservoir electrode (having capacitance Cg). The Copper pairs can tunnel
back and forth from island to the reservoir. The sate of the qubit is described
by the number of tunneled Cooper pairs into the reservoir.

The total electrostatic energy of CPB is given by:

Eel = (2e)2 (N − ng)2

2C∑
(2.6)

where N is the excess Cooper pairs in island, ng is the charge in gate capaci-
tor, C∑ = CJ + Cg, CJ is the Josephson capacitance, Cg is the reservoir (gate)
capacitance. The amount of Cooper pairs tunneling into the island can be
controlled by controlling the gate voltage applied to Cg. The total magnetic
energy of CPB is written as follows:

Emag = −EJcosδ. (2.7)

When two of these Josephson junction is present in the circuit, the so-called
SQUID (Superconducting Quantum Interference Device) is formed. If these
junctions have same Ej, a SQUID with single effective Josephson energy
Ej(Φ) = 2Ej|cos(πΦ/Φ0)| can be considered. Such SQUID allows one to
tune qubit frequency by influencing Ej(Φ) by applying magnetic flux Φ.
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2.2. The cooper-pair box qubit

More of SQUID can be understood from the book (Tinkham, 1975). The
Hamiltonian of CPB can then be written as follows:

Ĥ = (2e)2 (N̂ − ng)2

2C∑
− EJ(Φ)cosδ̂ (2.8)

with commutation for N̂ and δ̂ as [N̂, δ̂] = i. Further cosδ̂ can be written as
1
2 (e

iδ̂ + e−iδ̂). The quantity e±iδ̂ acts as the raising and lowering operator for
the number of cooper pairs on the island by one. This describes the tunnel-
ing of the cooper pairs across the Josephson junction. The Hamiltonian in
Equation 2.8 can now be expanded in the following manner:

Ĥ =
∞

∑
N=1

(Ec(N̂ − ng)
2|N〉〈N| −

Ej

2
(|N〉〈N + 1|+ |N + 1〉〈N|)). (2.9)

Figure 2.2 can be interpreted looking at such hamiltonian in charge repre-
sentation. In the absence of a Josephson coupling, the number of Cooper
pairs on island is fixed at N. This is the case when only capacitor is present
in the circuit. The energy then is parabolic in ng, as can be seen from the
dotted line. Turning on the Josephson energy EJ will lift the charge degener-
acy occurring at ng=0.5, 1.5, etc. leading to avoided crossing at these points.
In order to find the spectrum of CPB Hamiltonian, one needs to solve the
Schrodinger equation. One drawback of the hamiltonian in Equation 2.9 is
that it cannot be solved analytically. To receive a spectrum of Figure 2.2,
one needs to go to the phase representation of CPB hamiltonian. This hamil-
tonian is then exactly solvable in terms of Mathieu f unctions (Cottet, 2002).
Below shows the CPB hamiltonian in phase representation:

Ekψk(δ) = (Ec(−i
δ

∂δ
− ng)

2 − Ej(ϕ)cos(δ))ψk(δ) (2.10)

where ψk(δ) is the wave function in phase basis for kth excitation.

The readout of the state of superconducting qubit is done by coupling the
CPB to a superconducting LC oscillator (Wallraff et al., 2004). A Jaynes-
Cummings (JC) type hamiltonian can be realized in this architecture. The
cavity is the superconducting LC oscillator, and atom is the Cooper pair box.
Readout is done under the dispersive regime of driven JC hamiltonian.

Ĥ′ ≈ h̄(ωr +
g2

∆
σ̂z)â† â +

h̄
2
(ωa +

g2

∆
)σ̂z, (2.11)
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2.2. The cooper-pair box qubit

Figure 2.2: This shows the energy spectrum of CPB for excitations k=0,1 and
2 for Ej = EC (Baur, 2012)

where resonator-qubit coupling constant g = Cg/C∑2e/h̄
√

h̄ωr/2C, ωr is
the resonator frequency, Cg is the gate capacitance and C is the resonator
capacitance. Clearly in this dispersive JC regime, the weak microwave drive
applied to the resonator is on resonance to it at different frequencies de-
pending on whether qubit is at ground state or excited state. Looking at the
transmission spectrum of the coherent microwave drive, readout of the CPB
qubit is performed.

One important downside, though, of CPB is that it is sensitive to the sur-
rounding charge fluctuations. This can be overcome by making the spec-
trum of CPB less dependent to the gate charge. This is achieved at the
so-called transmon regime, Ej � EC. The decrease in the charge fluctuation
sensitivity of the qubit in the transmon regime comes at the cost of reduced
anharmonicity. However, qubit anharmonicity decreases relatively slowly
in comparison to the exponential decrease in the charge noise sensitivity of
the transmon qubit. Thus, the transmon qubit still sufficiently demonstrates
relatively large anharmonicity. (Koch et al., 2007).
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Chapter 3

CPHASE gate implementation

Two-qutrits are considered in the simulation of the CPHASE gate. The hamil-
tonian is composed of bare Ĥbare and interaction Ĥint parts:

Ĥ = Ĥbare + Ĥint. (3.1)

The interaction Hamiltonian for the coupled qutrits looks as follows:

Ĥint = J[(|0〉〈1|A +
√

2|1〉〈2|A)⊗ (|1〉〈0|B +
√

2|2〉〈1|B) + h.c]. (3.2)

The relevant coupling term for the implementation of CPHASE gate is given
below:

Ĥint = J0(|20〉〈11|+ |11〉〈20|). (3.3)

Ĥbare part of the Hamiltonian describes the two-qutrit system in the absence
of exchange coupling J. Energy spectrum of this part can be tuned by send-
ing a magnetic flux pulse through one or both of the qutrit frequency biases.
At first, the qutrit frequencies are set at the so-called parking frequencies.
At the parking frequency, the exchange interaction between two-qutrits is
strongly suppressed. In this simulation, quirt A is parked at 5.37GHz with
anharmonicity of 0.3GHz, and qutrit B is parked at 4.81GHz with anhar-
monicity of 0.3GHz. J0 is about 8.33MHz.

3.1 Geometric phase

One way of implementing two-qubit CPHASE gate is to tune the frequency
of one of the qubit along the adiabatic trajectory that shifts |11〉 state very
close to the avoided crossing with |20〉 state. Doing so |11〉 state acquires
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3.1. Geometric phase

Figure 3.1: The trajectory of this quantum system is represented by a closed
loop on Bloch sphere. The solid angle Ω swept around the bloch sphere
is proportional to the geometric phase the quantum system acquires. This
geometric phase is also known as Berry phase (Berry, 1984).

state-dependent relative phase shift that is dynamic in nature. The adiabatic
trajectory is optimized such that as minimal population as possible leaks
into the |20〉 state, thereby giving a phase shift of -1 (Martinis and Geller,
2014). A different way to implement two-qubit gates is to manipulate the
evolution of quantum system geometrically. This is supposedly more robust
against noise in the control parameters. If the evolution of quantum system
is cyclic, the system returns to its original state picking up a geometric phase.
Figure 3.1 demonstrates cyclic evolution of some quantum system on a Bloch
sphere. In this example, magnetic field induces transition of the quantum
system.

In this thesis, the CPHASE gate is implemented geometrically by exploiting
the avoided crossing between states |20〉 and |11〉. It involves exciting the
quantum state non-adiabatically out of the computational sub-system and
back again by applying magnetic flux pulse to one of the qubits. This closed
evolution of qubits around a Bloch sphere induces geometric phase shift of
-1 for certain pulse parameters. A time-dependent magnetic flux pulse tunes
|20〉 and |11〉 states to resonance, and subsequently the population of |11〉
state undergoes oscillation. In this simulation, to tune the qubit frequency, a
rectangular pulse is sent to the qutrit A frequency bias through a Gaussian
filter of width σ. This pulse introduces time-dependent detuning of qubit A,
thereby bringing |20〉 and |11〉 to resonance. The next section briefly outlines
the parameters and shape of this detuning flux pulse.
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3.2. Time dependent qubit detuning
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Figure 3.2: Time-dependent detuning. The interaction length is the flat re-
gion of the pulse. For infinitely non-adiabatic pulse, for interaction length
of 1/2J0 and resonance, a CPHASE gate is executed.

3.2 Time dependent qubit detuning

The pulse that detunes qutrit A consists of two parameters, qutrit detuning δ
and length tlen, in addition to the adiabaticity parameter. The detuning pulse
profile is shown in Figure 3.2. The pulse length tlen is defined as the full-
width at half minimum (FWHM). This pulse is constructed by convoluting
a rectangular pulse with a Gaussian of a certain standard deviation σ. σ
represents the adiabaticity parameter. In this simulation, the frequency of
only qubit A is tuned in time with this flux pulse. The energy spectrum
of two-qutrit states |20〉 and |11〉 are shown in Figure 3.3. To achieve the
CPHASE gate operation, the pulse amplitude and length is chosen such
that population evolves through a non-computational sub-system. Evolution
through this closed loop leads to state |11〉 picking up geometric phase of
180◦ for specific pulse parameters. In addition, clearly the Hamiltonian in
Equation 3.1 is time-dependent because frequency of one of the qubits is
changing in time. The next section presents a method to numerically solve
this time-dependent Schrodinger equation using the so-called Dyson series
to achieve the simulated CPHASE propagator Ûsim.

3.3 Simulating the propagator with Dyson series

As discussed above, the two-qutrit system Hamiltonian is time-dependent.
Thus, to get the CPHASE propagator, one needs numerically evaluate matrix
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3.3. Simulating the propagator with Dyson series
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Figure 3.3: Spectrum of energy levels for |20〉 and |11〉 states. Only qubit A
is detuned in time.

of this form:

Ûsim = e−
∫ t′

0 Ĥ(t′)dt′ , (3.4)

but clearly Ĥ(t) do not commute at different times, and therefore

eĤ(ta)eĤ(tb) 6= eĤ(ta)+Ĥ(tb). (3.5)

First the approximate solution for the propagator Ûsim can simply be written
in the integral form:

Ûsim(t) = I −
∫ t

0
Ĥ(t′)Ûsim(t′)dt′. (3.6)

Iterating the Equation 3.6 for a fixed simulation window of t leads to the
following series:

Ûsim(t) = I − i
∫ t

0
Ĥ(t′)dt′ + (−i)2

∫ t

0
dt′′

∫ t′

0
Ĥ(t′)Ĥ(t′′)dt′ + ...

+(−i)n
∫ t

0
dt′′...

∫ tn

0
Ĥ(t′)...Ĥ(tn)dtn.

(3.7)

The series in equation 3.7 is known as the Dyson series. Here the opera-
tors are time-ordered. However, to avoid solving complicated higher dimen-
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3.4. Identifying the gate parameters

sional integrals, this series is approximated as the product of propagator at
small time slices:

Ûsim(t) =
N

∏
n=0

e−iĤ(ndt′)dt′ , (3.8)

where N = t/dt′ − 1. Practically, the simulation window t is split into
smaller pieces, and the product of propagators at these smaller time pieces
is evaluated. To increase the accuracy, one should use many number N of
terms in the product. In the simulation of CPHASE gate, the simulation
window was fixed at 180 ns, and about 750 terms in the product in Equation
3.8 was used. The results received from this approximation was compared
to the built-in differential equation solver on Wol f ram Mathematica known
as NDSolve. The calculations for population, phase and fidelity agree up to
the fourth decimal place in the worst case. Simulating CPHASE gate with
Dyson series as opposed to NDSolve is more efficient computationally. In
fact, the former is almost ten times faster as compared to the later. This
is very advantageous as it makes simulation of high resolution CPHASE
gate possible. Accurate identification of the pulse parameters to execute
CPHASE gate is done by sweeping through several δ and tlen points. The
next section illustrates how to identify these pulse parameters for executing
good-fidelity CPHASE gate.

3.4 Identifying the gate parameters

In this thesis, the simulation of CPHASE gate is focused for the Qudev
lab gate scheme, which uses the adiabaticity parameter σ of 1.78 ns. As
mentioned above, this quantity is defined as the standard deviation of the
Gaussian filter. In addition, to understand if adiabaticity plays a role in
the fidelity of CPHASE gate, other adiabaticities are also investigated. 2-
dimensional plots are created for population, geometric phase and fidelity,
sweeping through 1250 of δ points and 140 of tlen points. In this thesis,
fidelity of the CPHASE gate was calculated using the following definition
(Pedersen, 2008):

FCPHASE =
|Tr[Û†

idealÛsim]|2 + Tr[Û†
idealÛideal ]

20
. (3.9)

Here Ûsim refers to the propagator constructed out of hamiltonian in Equa-
tion 3.1, and Ûideal refers to the ideal CPHASE gate from Equation 1.6. The
above-definition of fidelity is explicitly used because in the implementation
of CPHASE gate population moves through non-computational states. In
addition, one needs to project Ûsim into the computational subspace of two
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3.4. Identifying the gate parameters

qubits to calculate the fidelities for different δ and tlen. Figure 3.5 shows the
fidelity landscape for σ = 1.78 ns. Fidelity above 99.9% can be seen for this
adiabaticity parameter.

To accurately estimate the optimal CPHASE gate parameters, the final pop-
ulation of |11〉 state under the operation of Ûsim is computed for several δ
and tlen points. The simulated population landscape looks like the so-called
Chevron pattern. As can be seen on Figure 3.4 (a), the population oscillates
at the smallest frequency when |20〉 and |11〉 states are on resonance, at
about δ = −0.2555GHz. In addition, the fidelity contour at 99% is overlaid
onto the density plot of the population. At the adiabaticity parameter σ of
1.78 ns, the shortest CPHASE gate length is found at about 61.9 ns. Other
solutions also occur but at longer pulse length, as illustrated by other 99%
fidelity contours. The population landscape also looks asymmetric about
resonance. This is due to the finite rise time of flux pulse, and has been
confirmed experimentally using the setup presented in the next section. Fig-
ure 3.9. shows experimental demonstration of the Chevron pattern. Qubit
populations are extracted by looking at the transmission spectrum of the
qubit which is coupled with the resonator. Although one should keep in
mind that accurately estimating the population experimentally is limited by
various factors such as inaccuracy in single-qubit rotations as well as low
frequency noise in measurement instruments (Dahlberg, 2016).

Identifying the exact gate parameters with population landscape has one
major downside. The Chevron pattern shows the maximum population is
received back to the computational subsystem at other δ points also. But
the phase of 180 ◦ is only achieved for a specific δ’s. To overcome this prob-
lem, one needs to look at the geometric phase landscape. The geometric
phase |11〉 state picks up is measured in two parts. Two Ramsey-type mea-
surements are performed. At first, qubit B is excited while qubit A is in
superposition state: 1√

2
(|0〉+ |1〉)⊗ |1〉. Second, qubit B is in ground state

while qubit A is in superposition state: 1√
2
(|0〉+ |1〉)⊗ |0〉. Now, when qubit

A is tuned to qubit B with the help of flux pulse, state-dependent geometric
phase is picked up by the superposition state of the latter case. The relative
phase is then measured between these two cases. This will give us the ge-
ometric phase landscape of Figure 3.4 (b). The geometric phase landscape
looks tilted about resonance as some conditional dynamic phase is picked
up by qubits during the pulse rise time. In addition, qubits A and B also
individually pick up some dynamic phases, ϕA and ϕB respectively. The
phases of two qubits are shifted from the rotating frame of parking frequen-
cies, νA and νB by amount ϕA,B =

∫ t
0 (ν

parking
A,B − νA,B(t′))dt′. This shift needs

to be compensated by applying single qubit operators such as σz.
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3.4. Identifying the gate parameters

(a) Pobability amplitude |11〉 (b) Geometric phase

Figure 3.4: The intersection of two grid lines at tCPHASE and δCPHASE identify
the optimal gate parameters.

Figure 3.5: Simulated fidelity landscape for Ûsim operation. This shows the
fastest parameter set resulting in CPHASE operation. The maxima occurs
when most of the population is received back to |11〉 subsystem while at the
same time picking up geometric phase of -1.
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3.5. Investigating the gate adiabaticity

3.5 Investigating the gate adiabaticity

Other values of adiabaticity parameters where also investigated. In addi-
tion to the configuration standard in the lab with σ=1.78 ns, Figure 3.6 and
Figure 3.7 shows population and geometric phase landscape for two more
adiabaticity parameters, at 3.57 ns and 5.34 ns. Two contours on top of these
landscapes are indicating fidelities of 99.8% and 99.9%. As can be observed,
adiabaticity of gate in this range doesn’t affect the maximal attainable fi-
delity. All three landscapes show that high fidelity over 99.9% is possible
at all these adiabaticity parameters. This is a useful finding considering im-
practicality in attaining strong non-adiabatic regimes in the outputting of
flux pulse. The AWG has a resolution of about 0.8 ns in time, and thus the
sampling rate around the edges of flux pulse is limited by this resolution.
Furthermore, it can be seen that as σ gets larger, more and more popula-
tion is received back to the computational subsystem at the optimal gate
parameters. But this comes at the cost of ever increasing gate execution
time. Besides, maximum for population doesn’t necessarily occur at the op-
timal gate parameters. The geometric phase of 180◦ is received at optimal
gate parameters for all these adiabaticities. Again, the geometric phase land-
scape is tilted more and more with increasing adiabaticity parameter due
to the fact that some conditional phase is picked by the qubits during the
ever-increasing pulse rise time.
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3.6. Experimental results

(a) Population σ=1.78 ns (b) Population σ=3.57 ns (c) Population σ=5.34 ns

Figure 3.6: Population landscape of |11〉 state for different adiabaticity pa-
rameters σ. Roughly 99.5% of population is received back to the sub-system.
For all these adiabaticities, fidelities higher than 99.9% is attainable.

(a) Phase σ=1.78 ns (b) Phase σ=3.57 ns (c) Phase σ=5.34 ns

Figure 3.7: Geometric phase landscape for the two-qubit state for different
adiabaticity parameters σ. Geometric phase of -1 is achieved for all the
investigated adiabaticities. The landscape looks increasingly tilted due to
some conditional dynamic phases picked up during the gate time.

3.6 Experimental results

To compare the simulation results, the experiments in this thesis were per-
formed with the help of setup shown in Figure 3.8. Four transom type qubits
can be seen in the setup. These qubits have lifetime on the order of few µs.
Qubits are capacitively coupled to coplanar transmission line resonators for
the purpose of readout. Due to the strong qubit-resonator coupling, the
qubit-state-dependent resonator frequency shift is induced even when qubit
frequency is far detuned from the resonator. The readout of the qubit state
is performed in the dispersive-regime, as discussed in Section 2.2 (Wallraff
et al., 2004). Because the transmitted signal is very weak, it is amplified
using a quantum limited Josephson Parametric Dimer (JPD). Furthermore,
voltage bias lines and flux lines can be seen for qubits in the sample. Flux
lines are used to detune the qubits from their parking position. This is impor-

18



3.6. Experimental results

Figure 3.8: Four transmon-type qubit quantum processor are coupled to
resonators R1 through R4. Red ports allow readout of the signals through
resonators R1 and R3. The blue and green ports indicate flux biases and
microwave drive lines. These ports are required to perform single and two-
qbit operations (Salathe et al., 2015).

tant for two-qubit conditional gate implementation when sudden switching
of interaction between qubits is needed.

Time-resolved measurement of signal transmitted through the resonator is
required to perform the qubit readout. The noise present in the transmitted
signal is further reduced by repeating the experiments several times. This
transmitted signal can be decomposed into the so called in-phase I and
quadrature Q components. These components depend non-linearly on the
dispersive shift operator of resonator frequency, and is different for qubits
in ground state or excited state. More details on the readout of qubits can
be read from (Steffen, 2013) and (Baur, 2012).

To experimentally estimate the optimum pulse parameters to implement the
CPHASE gate, the Chevron pattern is measured. At first, the qubits are
excited to |11〉 state using π-pulse. Then the flux pulse with varying ampli-
tude and length is applied to one of the qubits to tune qubit A to qubit B.
This gives the 2-D Chevron landscape as shown in Figure 3.9. At resonance,
the population in |11〉 state undergoes oscillation at the smallest frequency,
given by J0 coupling. For pulse length near 1/2J0, at resonance, the popula-
tion comes back to |11〉 state picking up a geometric phase of−1 In addition,
qubits also pick up some dynamic phases, and this is compensated by the
short pulse seen at the beginning of the flux pulse in Figure 3.10.

19



3.6. Experimental results

(a) Pobability amplitude |11〉 (b) Geometric phase

Figure 3.9: Experimental measurements demonstrating population oscillat-
ing between states |11〉 and |20〉. As expected from the simulation, the
Chevron pattern is asymmetric about the resonance..

Figure 3.10: Pulse sequence for the experimental implementation of
CPHASE gate. The flux pulse is used to tune |11〉 and |20〉 states to reso-
nance, while π-pulses are applied to excite the qubits. (Heinsoo, 2013)
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Chapter 4

Non-adiabatic error

The fact that flux pulse is suddenly switched on means the so-called non-
adiabatic error will be present. Non-adiabatic error, in this thesis is loosely
characterized as the amount of population that does not come back to the
|11〉 state during the gate time. This irreversible population leakage is ob-
served because of the non-unitary evolution of the qubits system as the pop-
ulation is escaping into other qubits energy states (or degrees of freedom)
which one has no control over. The probability of non-adiabatic population
leakage into other higher level states of the qubits is given by the well-known
Landau-Zener theory. More about Landau-Zener theory could be better un-
derstood from the article (Martinis and Geller, 2014). In Figure 4.1. the
non-adiabatic error is more visible at smaller σ than the one investigated for
the 2-dimensional landscapes above. Therefore, only σ’s below 0.2 ns was
looked in this section.

As can be seen in the population leakage plot in Figure 4.1, the non-adiabatic
error gets exponentially larger, as the adiabatic parameter σ gets smaller. In
addition, as seen in Figure 4.2, Fidelity decreases as the pulse is switched on
faster. To get these plots, 84 different σ were swept through. FindMaximum
optimizer of Wol f ram Mathematica was employed on the fidelity landscapes
corresponding to each of the values of σ. The expression of fidelity in Equa-
tion 3.9 was taken, and the optimum pulse parameters that maximizes the
fidelity was obtained. Because of the faster convergence rate, NewtonMethod
was used as a method for the optimizer. For maximum accuracy, optimizer
was provided with a guess value for δ and tlen. The guess value for the
next σ parameter was taken as the optimized value of the previous σ. The
fidelity maximum was obtained for the simulated σ values. Hence, popula-
tion leakage was calculated using the optimized results for δ and tlen for all
the adiabaticity parameters under investigation.
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Figure 4.1: Population leakage increases exponentially as the pulse is
switched on faster.

Figure 4.2: Maximum fidelity decreases exponentially with decreasing adia-
baticity parameter. At σ=0.2 ns fidelity as high as 99.99% can be achieved.
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Chapter 5

Conclusion

In this thesis possibility of simulations of high fidelity CPHASE gate was
shown in the regime between adiabatic and non-adiabatic limit. The Qudev
lab CPHASE gate scheme uses adiabaticity parameter σ of 1.78 ns. At this
parameter, gate fidelities above 99.9% are attainable in the simulation. But it
should be noticed that in the time-dependent hamiltonian other factors like
T1 was not accounted. As infinite adiabaticity is impossible due to limited
bandwidth of the signal generation electronics, the simulation of flux pulse
is done by convoluting rectangular pulse with a Gaussian. Given the time de-
pendent nature of Hamiltonian, numerical integration of Schrodinger equa-
tion was performed. To identify the exact parameters of the flux pulse in the
implementation of the CPHASE gate, Chevron pattern was constructed for
the probability amplitude of |11〉 state. In addition, one also needs to look
at the geometric phase landscape to have control over additional degree of
freedom. For parameters used in lab, optimal gate pulse amplitude and
length giving fidelity of 99.9% were δ = −0.255GHz and tlen = 61.9 ns. Fur-
thermore, strong non-adiabatic regime was also investigated. For σ below
0.2 ns non-adiabatic error was discovered. Meaning, less and less population
was received back to the computational sub-system during the gate time be-
low σ = 0.2 ns. In this regime, sudden switching of the pulse leads to more
population escaping into other states of the system.
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Appendix A

Appendix

A.1 Simulation results in non-adiabatic regime

(a) Pobability amplitude (b) Geometric phase

Figure A.1: The landscapes was created at σ = 0.05 ns. This is to con-
firm the validity of the simulation results by comparison to the previous
work (Heinsoo, 2013). At non-adiabatic regimes, both the population and
geometric phase landscapes look increasingly symmetric about resonance
δ=−0.2555GHz.
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A.2. Wolfram Mathematica framework for simulations

A.2 Wolfram Mathematica framework for simulations

The magnetic flux pulse was constructed by convoluting the square pulse
with gaussian of certain standard deviation σ. Internal function of Wol f ram
Mathematica called UnitBox was used to model the rectangular pulse. The
parameters that manipulates the shape of the pulse is also given under
f pulseparams.

gaussian [ \ [ Sigma ] ] := PDF[ NormalDistr ibution [ 0 , \ [ Sigma ] ] , t ] ;
pulse = Simpl i fy [

Convolve [ \ [ Delta ] UnitBox [ ( t − o f f s e t ) / ( len ) ] , gaussian [ \ [ Sigma ] ] ,
t , t 2 ] , Assumptions −> { len > 0 } ] ;

fpulseparams = { o f f s e t −> 52 + 3\ [ Sigma ] , \ [ Sigma ] −> 1 . 7 8 ,
t 2 −> t } ;

Following function is implemented for computing the propagator numeri-
cally for the time-dependent hamiltonian h . Below t f inal represents the
total simulation window and n represents the total number of iterations per-
formed of Equation 3.8.

propagator [ h , t i n i t , t f i n a l , n ] :=
Module [{ dt = N[ ( t f i n a l − t i n i t )/n ] ,

recuEq = I d e n t i t y M a t r i x [ Length@h [ 0 ] ] } ,
Do[ recuEq = MatrixExp[− I ∗h [ t ]∗ dt ] . recuEq , { t , t i n i t , t f i n a l − dt ,

dt } ] ;
recuEq ]

Following function returns the probability amplitude of the |11〉 state.

population [ \ [ Delta ] , Subscr ip t [ t , len ] ] :=
Abs [ Ket [ 1 1 ] \ [ Conjugate ] . ( propagator [

h [ # , \ [ Delta ] , Subscr ip t [ t , len ] ] &, 0 , 120 , 6 0 0 ] ) . Ket [ 1 1 ] ] ˆ 2 ;
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