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Abstract: Recent developments in superconducting circuits o�er new possibilities
for quantum simulation based on cavity quantum electrodynamics. For example one-
dimensional arrays of coupled non-linear resonators allow to investigate interesting prop-
erties of phase transitions in quantum many-body systems. In this thesis I will describe
the design of a superconducting "transmon" arti�cial two-level system for non-linear cir-
cuit QED resonator arrays. Based on electrostatic simulations, the resonator-transmon
interaction is estimated and adjusted for a Dimer sample fabrication. Furthermore, the
implementation of a potential in-situ tunable resonator-resonator coupling element is
discussed.
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Chapter 1

Introduction

Understanding correlated quantum many-body systems is one of the most challenging
tasks in condensed matter physics. Although the fundamental interactions are often well
known, the description of macroscopic systems is extremely di�cult. Accessing the mi-
croscopic properties of such systems experimentally is very challenging due to the short
time- and length scales involved. In 1966, Richard P. Feynman proposed to use well-
controlled quantum systems in order to simulate strongly correlated large scale systems
[Feynman82]. Following the ideas of Feynman, many applications to simulate complex
quantum matter were developed theoretically, e.g. Refs. [Fisher89; Zohar13]. Experimen-
tal implementations of quantum simulators so far include cold atoms in optical lattices
[Greiner02] and trapped ion systems [Barreiro11]. In recent years, new concepts for
photon-based quantum simulators were proposed [Greentree06; Hartmann06]. The idea
is to use coupled non-linear resonators in the context of cavity quantum electrodynamics
(cavity QED) [Walther06]. Although photons in cavity QED systems have a bosonic na-
ture, it is possible to simulate correlated fermionic problems with so called Bose-Hubbard
models [Gersch62]. The Bose-Hubbard model is the bosonic counter part to the fermionic
Hubbard model originated in solid-state systems [Hubbard63]. It describes the physics of
interacting bosons in arrays or lattices and allows a mapping to the Hubbard model. The
�rst experimental observation of quantum phase transitions with cold atoms [Greiner02]
and entanglement generation [Romero-Isart07] makes the Bose-Hubbard model a corner-
stone of quantum simulation with bosons. In the past years, solid-state versions of cavity
QED systems became more and more popular. The ability to control macroscopic sized
systems which behave quantum mechanically opens new possibilities. Especially circuit
QED systems, where superconducting microwave resonators are coupled to arti�cial two-
level systems [Wallra�04], seem to provide a interesting platform for quantum simulation
[Houck12]. Therefore, I will now motivate quantum simulation with cavity QED systems.
For simplicity, I limit myself to the description of one dimensional cavity arrays. Higher
dimensional structures can be modeled by complex 2D lattices [Dimitris10; Schmidt12]
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1.1 Quantum simulation with cavity QED systems

In cQED, a single mode of light in a resonator cavity can be described by a quantized
harmonic oscillator Hamiltonian H = ~ω0â

†â, where ~ denotes the reduced Planck con-
stant, ω0 the cavity resonance frequency and â† the photon creation operator obeying
the bosonic commutation relation [â, â†] = 1. Implementations of such harmonic sys-
tems may be interesting for quantum information propagation [Plenio04]. For quantum
simulation as discussed here, a su�cient anharmonicity in the energy level spectrum is
required. The simplest con�guration for such a non-linear cQED system is a single mode
of light in a cavity interacting with a two-level system, also called quantum bit (qubit).
By using dipole and rotating wave approximations, the interaction is described by the
Jaynes-Cummings Hamiltonian

HJC = ~ω0â
†â+

~
2
ωqσ̂z + ~g

(
â†σ̂− + âσ̂+

)
, (1.1)

where ωq the two-level system transition frequency and g the coupling constant [Jaynes63].
Note that σ̂z, σ̂± are the Pauli Spin - 1/2 notations for the ground state |g〉 and excited
state |e〉 of the two level system, given by σz = |e〉〈e|−|g〉〈g|, σ̂+ = |e〉〈g| and σ̂− = |g〉〈e|.
As the Jaynes-Cummings model is one of the key elements in modern quantum optics,
its applications are widely discussed [Walls94]. For resonant interactions between the
resonator and qubit system, interesting bosonic quasiparticles, so called polariton modes
are created by superposition of photon and qubit states [Yamamoto99].

The Jaynes-Cummings Hubbard model

By coupling many cavities (each with an on-site qubit) to a chain, a so called Jaynes-
Cummings Hubbard model (JCHM) can be realized. The interplay between coupling
and non-linearities from the individual cavities lead to interesting photon dynamics
[Schmidt09]. The cavity array can be modeled by a superposition of the individual JC
Hamiltonians and a nearest neighbor coupling J which gives

HJCHM =
N∑

i=1

HJC,i + J
N−1∑

i=1

(
â†i âi+1 + h.c.

)
, (1.2)

with the hermitian conjugate h.c. Potential applications for quantum simulation with
JCHM arise for large cavity arrays [Hartmann08; Schmidt12]. Furthermore, such systems
exhibit interesting polariton structures. In the limit of in�nitely many cavities, the single
Jaynes-Cummings polariton splitting evolves into a band structure [Nissen12].

The Bose-Hubbard model

As already mentioned, the basis for quantum simulation with bosonic systems is the Bose-
Hubbard model. In principle, there are so called polaritonic and photonic Bose-Hubbard
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systems which can be realize in cQED [Hartmann08]. The �rst systems are connected to
the JCHM in the strong coupling regime, as the low energy polariton modes will form an
e�ective Bose-Hubbard Hamiltonian [Leib10]. The derivation of such polariton models
however is very involved and will not be discuss further. On the other hand, photonic
Bose-Hubbard systems are conceptually simpler. For even stronger coupling between
qubit and resonator, the cavity array exhibits strong non-linearities [Imamo§lu97]. This
e�ect leads to either one or no photon in an individual cavity [Lang11]. In other words,
the photons in the individual cavities can be treated as spin-1/2 fermions. The resulting
Bose-Hubbard Hamiltonian reads

H = ~ω0

N∑

i=1

â†i âi + ~
U

2

N∑

i=1

â†i â
†
i âiâi + ~J

N−1∑

i=1

(
â†i âi+1 + h.c.

)
, (1.3)

where U denotes a Kerr non-linearity coe�cient. Practical realizations of such a Bose-
Hubbard Hamiltonian would allow to investigate interesting dynamics of correlated quan-
tum many-body problems in condensed matter physics which are not accessible experi-
mentally [Correa13].

1.2 Thesis outline

The aim of this semester thesis is to design transmon qubits for an existing coplanar
microwave resonator array design [Korosec12]. This �rst chapter motivated quantum
simulation with one-dimensional cavity arrays in cavity QED. Chapter two covers the
framework for superconducting circuits with a review about microwave resonators and
quantum bits (qubits) in superconducting circuits. Based on the theory, I will discuss the
design of a transmon qubit in chapter three. A �rst step towards the implementation of a
non-linear cavity array consists of realizing a "dimer" sample. The so called dimer sample
consists of two coplanar microwave resonators coupled capacitively. Each resonator itself
is coupled to a transmon qubit to obtain a non-linear behavior. In the fourth chapter I
will propose an in-situ tunable resonator-resonator coupling element and discuss potential
applications. The idea of this tunable coupler is to place a modi�ed transmon design in
between two resonators which mediates a dispersive coupling. Finally, I will conclude
my semester thesis and give an outlook for observing "Majorana-like Modes of Light in
a One-Dimensional Array of Nonlinear Cavities" [Bardyn12].
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Chapter 2

QED in superconducting circuits

In this chapter I will introduce the theoretical framework for quantum electrodynamics in
superconducting circuits (circuit QED). The �rst three sections summarize coplanar mi-
crowave resonators, superconducting qubits and their interaction. More detailed reviews
for circuit QED can be found in [Devoret04a; Devoret07; Girvin09]. A �nal discussion
about the relevant parameters for a two-cavity array (dimer) implementation concludes
this chapter.

2.1 Coplanar waveguide resonators

The cavities considered in this thesis are realized as 1D coplanar waveguide (CPW)
resonators in superconducting circuits [Göppl08]. Geometrically, a CPW is formed by
a center conductor on a substrate, separated by a gap from the ground plane as shown
in Fig. 2.1 (a) and (b). The waveguide characteristics are determined by the gap size,
conductor and substrate properties [Gevorgian95]. A resonator is obtained by limiting
the CPW to an optical length l, see Fig. 2.1 (c). The wavelength λ of the fundamental
resonance mode is then given by 2l. Other waveguides can be coupled capacitively to the
resonator by a broad variety of coupling geometries.

In general, a CPW resonator can be modeled by a simple harmonic LC oscillator,
where L represents the inductance and C the capacitance. The angular resonance fre-
quency of the fundamental mode is ω0 = 1/

√
LC. Detailed discussions based on classical

models can be found in [Pozar93]. A quantum mechanical treatment of such a CPW
resonator is obtained by circuit quantization [Devoret97], in which the quantized conju-
gate variables are charge q̂ and �ux φ̂, obeying the commutation relation [φ̂, q̂] = i~. By
re-expressing q̂ and φ̂ with the bosonic creation- and annihilation operator â† and â, the
resonator Hamiltonian reduces to

Hres =
q̂2

2C
+
φ̂2

2L
= ~ω0

(
â†â+

1

2

)
, (2.1)

where Z0 =
√
L/C the characteristic impedance and â = (φ̂ + iZq̂)/

√
2~Z the bosonic

annihilation operator. Based on the quantum mechanical treatment, the spectroscopic

4



substrate

(a)

CPW

ground

ground

(b)

ground

ground

CPW resonator

l

(c)

Figure 2.1: (a) Cross section of the CPW structure with the sapphire substrate (blue)
and the Nb superconductor structures (gray). (b) Top view of the CPW structure. (c)
CPW resonator of length l, capacitively coupled to two coplanar waveguides.

transmission can be calculated by using quantized Langevin equations and input-output
theory [Walls94].

2.2 Arti�cial two-level systems

The physical realization of an arti�cial two level system requires non-linear elements
in order to make the energy spectrum anharmonic. In superconducting circuits, non-
dissipative Josephson junctions [Josephson62] provide a su�cient non-linearity. A schematic
illustration of a Josephson junction is shown in Fig. 2.2 (a). E�ective two-level systems
based on Josephson junctions were initially developed in the context quantum computa-
tion [Makhlin01]. Usually, the ground state |g〉 and the �rst excited state |e〉 represent
the two-level system. At low temperatures kBT � Ee − Eg, where kB is the Boltzmann
constant and Eg the energy of state |g〉, the qubit will be thermally in its ground state.
Microwave pulses applied to the resonator and qubit allow to manipulate and read-out
the qubit state [Govenius12].

Cooper pair box

The most simplest realization of an arti�cial two-level system in superconducting circuits
is the Cooper pair box (CPB) [Nakamura99]. The CPB qubit consists of two super-
conducting electrodes, coupled via Josephson junctions. Instead of using one Josephson
junction, where the Josephson energy EJ is �xed, we will use the concept of a SQUID
loop [Van Duzer81] which allows to tune EJ via the magnetic �ux φ through the loop
(Fig. 2.2 (b) according to

EJ(φ) = EJmax

∣∣∣∣cos
(

φ

πφ0

)∣∣∣∣ , (2.2)

where φ0 = 2e/h is the magnetic �ux quantum and EJmax the maximum Josephson
energy determined by the junction properties [Fink10]. Thus it is possible to adjust the
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Figure 2.2: (a) Single Josephson junction. SL and I indicate the superconducting and
insulating material, respectively. (b) A SQUID loop based on two Josephson junctions
where φ denotes the �ux through the junction area and sets the Josephson energy. (c)
E�ective schematic circuit for a voltage source Vg applied capacitively to a SQUID loop.
The crossed boxes denote the Josephson junctions.

Josephson energy in-situ by using DC-biased coils [Göppl09]. The CPB Hamiltonian
[Devoret04b] is given by

H = 4EC(n̂− ng)2 − EJcos(ϕ̂). (2.3)

Here, n̂ represents the number operator of Cooper pairs and φ̂ the gauge-invariant
phase operator between the two electrodes called island and reservoir. The o�set charge
ng = Qr/2e+CgVg/2e is composed of environmental charge on the island and the charge
induced by applying an external voltage Vg capacitively to the SQUID loop as shown in
Fig. 2.2 (c). The charging energy EC required to add an additional electron from the
voltage source Vg onto the island is

EC =
e2

2CΣ

, (2.4)

where CΣ = Cg + Cq is the total capacitance and Cq the SQUID loop capacitance. An
improvement of the CPB is the so called transmon qubit, developed by Koch et al.

[Koch07] which I will now discuss.

Transmon qubit

The major di�erence between the CPB and transmon is the Josephson to charging en-
ergy EJ/EC ratio. The standard CPB works in a regime of EJ/EC ∼ 1, see Fig. 2.3
(a), whereas for the transmon qubit EJ/EC � 1 holds. The energy level diagram is
then similar to Fig. 2.3 (c), where the individual energies Em obtained by second order
perturbation theory are
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Figure 2.3: Energy leves of the CPB design for (a) EJ/EC = 1, (b) EJ/EC = 5 and (c)
EJ/EC = 50. The Transmon qubit is designed to work in the regime of (c).

Em ≈ −EJ +
√

8ECEJ

(
m+

1

2

)
− EC

12

(
6m2 + 6m+ 3

)
. (2.5)

The charge sensitivity εm ≡ Em(ng = 1/2)−Em(ng = 0) of the energy levels Em is given
by

εm ∼ e−
√

8EJ/Ec . (2.6)

Thus, for typical transmon designs with EJ/EC � 1, the sensitivity to charge noise ng
is reduced signi�cantly compared to the standard CPB. This charge insensitivity results
in a reduced anharmonicity. The energy di�erence between the ground state |g〉 and the
�rst excited state |e〉 is given by Ege = Ee − Eg = ~ωq which leads to

~ωq =
√

8EJEC − EC (2.7)

2.3 Resonator - qubit coupling

By coupling a CPB or transmon qubit to a CPW resonator, solid state cavity QED
systems are realized [Wallra�04]. This interaction can be descirbed by the celebrated
Jaynes-Cummings model [Jaynes63]. In other words, the resonator - transmon coupling
can be approximated by dipole interaction [Blais04]. To study the interaction between
the transmon qubit and the resonator, we start with an e�ective Hamiltonian resulting
from circuit quantization:

H = 4EC(ˆ̂n− ng)2 − EJcos(ϕ̂) + ~ω0â
†â+ 2βeV 0

rmsn̂
(
â+ â†

)
(2.8)

The �rst and second term correspond to the transmon and resonator Hamiltonian, whereas
the third term represents the interaction. Re-writing equation (2.8) in the basis of un-
coupled transmon eigenstates |i〉 gives

H = ~ω0â
†â+

∑

i

Ei|i〉〈i|+ ~
∑

i,j

gij|i〉〈j|
(
â+ â†

)
. (2.9)
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with coupling energies ~gij = ~g∗ij = 2βeV 0
rms〈i|n̂|j〉. The root-mean-square voltage of

the local oscillator is V 0
rms = ω0

√
~Z0/π with Z0 = 50Ω. The parameter β = Cg/CΣ is

de�ned as the ratio between gate and total capacitance. For typical transmon designs
with EJ/EC � 1, only the nearest neighbor coupling (i = j ± 1) in the matrix element
〈i|n̂|j〉 is relevant. The perturbative approach to calculate the nearest neighbor matrix
elements is shown in appendix C of [Koch07] and gives

|〈j + 1|n̂|j〉| ≈
√
j + 1

2

(
EJ

8EC

)1/4

(2.10)

With a rotating wave approximation (RWA) it is possible to eliminate more terms of
equation (2.9) which yields to

H = ~ω0â
†â+

∑

i

Ei|i〉〈i|+ ~
∑

i

gi,i+1

(
|i+ 1〉〈i|â+ |i〉〈i+ 1|â†

)
. (2.11)

Finally, by using the Pauli Spin-1/2 notation σz = |e〉〈e| − |g〉〈g|, σ+ = |e〉〈g| and
σ− = |g〉〈e| we can re-write the e�ective Hamiltonian in the well known Jaynes-Cummings
form

H = ~ω0â
†â+

~
2
ωqσz + ~g

(
â†σ− + âσ+

)
, (2.12)

with coupling energies

~g ≡ ~g01 ≈ 2eβω0

√
~Z0

π

(
EJ

8EC

)1/4

. (2.13)

2.4 Towards cavity arrays in circuit QED

Now that the individual elements required for an experimental implementation of cou-
pled cavity arrays are now introduced, it is time do discuss the relevant scales of the
coupling rates. The Jaynes-Cumming Hubbard and Bose-Hubbard model for quantum
simulation motivated in the introduction both require to work in the strong coupling
regime [Wallra�04] with large cooperativity factors ξ, de�ned by

ξ ≡ g2

2κγ
� 1, (2.14)

where κ denotes the resonator decay rate and a γ spontaneous qubit decay rate due to
dissipation [Ithier05; Göppl08]. The initial work of designing a dimer cavity array was
done by [Korosec12]. The fundamental resonance frequency of the individual cavities is set
to be ω0/2π = 7GHz. By adjusting the capacitive coupling between the CPW resonators
and the open CPW transmission lines, the resonator decay rate was set to κ = 1 MHz

and the capacitive resonator-resonator coupling to J/2π = 30MHz. Current circuit QED
setups in the QUDEV lab at ETH Zurich [Ste�en13] can achieve transmon qubit decay
rates with an upper bound of γ/2π ≤ 1MHz. This leaves the discussion up to specify
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the resonator-qubit coupling g. In order to realize polaritonic or photonic Bose-Hubbard
models, the coupling strength is intended to be g/2π ∼ 130 MHz at EJ(φ) = EJmax.
Thus, g is tunable by changing the �ux through the SQUID loop from 0 ≤ g ≤ 130MHz.
This set of parameters g, κ, γ allows us to adjust 0.2 ≤ g/J ≤ 4.3 while keeping the
strong coupling regime 18 ≤ g2/2κγ ≤ 8450. The polaritonic Bose-Hubbard model
can be realized for ξ ∼ 102 whereas the photonic Hubbard model requires ξ ∼ 103 − 104

[Leib10]. Although ξ can be varied over a large range, the ratio g/J signi�cantly changes.
Therefore, it is desirable to have in-situ tunable J . A possible implementation scheme of
such a tunable resonator-resonator coupling is discussed in chapter 4.
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Chapter 3

Transmon qubit design

A crucial element for quantum simulation with coupled cavity arrays are non-linear ele-
ments. In circuit QED, this non-linearity is introduced by coupling a CPW resonator to
an arti�cial two-level system (transmon qubit) which allows to reach the strong coupling
regime [Wallra�04; Lang11]. In this chapter, I will focus on the transmon qubit design
and estimate the resonator-qubit coupling from electrostatic simulations. One goal of
the new transmon design are improved coherence times. To demonstrate the transmon
properties experimentally, a dimer sample was fabricated.

3.1 Design outline

The target is to design a transmon qubit with a coupling rate of g ∼ 130 MHz as dis-
cussed in section 2.4. For the �rst experiments with a dimer sample, a charging energy
of EC/h = 300 MHz, where h is Planck's constant is intended. Furthermore, high qubit
coherence times are desired to keep the spontaneous qubit decay rate γ below 1MHz.
Recent experiments in the Quantum Device Lab at ETH Zurich used large transmon de-
sign patterns to achieve qubit coherence times of up to 2µs [Ste�en13]. It is believed
that these coherence times are mainly limited by the small gaps between the resonator
and qubit electrodes. For similar transmon qubit designs with much larger gaps, co-
herence times of up to 9µs were reached [Chow12]. Thus, the idea behind the design
in this semester thesis is to use larger gaps between all the individual superconducting
elements [Chang13]. Moreover, I try to locally minimize the electric �eld strengths by
using rounded edges.

The maximum size of the transmon qubit is 150µm × 350µm, given by the resonator
mask [Korosec12]. The resulting qubit design with the geometric properties is shown
in Fig. 3.1. The next section describes how the transmon coupling rate g and charging
energy EC can be estimated based on electrostatic simulations. Intuitive instructions how
to modify the design towards desired g and EC values can be found in [Burkhard12].
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(a)

Parameter Value

Finger width 12µm
Finger length 95.2µm
Finger spacing 19.8µm

Ground / resonator spacing 10µm
Fillet radius 3µm
SQUID size 4µm× 5µm

(b)

Figure 3.1: (a) Design of the transmon qubit electrodes (yellow) with the resonator-,
charge- and �uxline (blue). (b) Geometric properties of the transmon qubit.

3.2 Electrostatic simulation

The electrostatic environment of the transmon is essential for g and EC according to
Eqs. (2.13) and (2.4), respectively. The complete capacitive environment [Koch07] can
be approximated as an e�ective capacitance network shown in Fig. 3.2. Based on this
model which contains the relevant capacitances, the total capacitance CΣ which the qubit
experiences is given by

CΣ =
(C12 + C24)(C13 + C14)

C12 + C13 + C24 + C34

+ C23 + CJ , (3.1)

where the qubit capacitance CJ is assumed to be 6 fF. The geometric factor in the coupling
rate is given by the capacitance ratio

β =
C12C34 − C13C24

(C12 + C24)(C13 + C34) + (C12 + C13 + C24 + C34)(C23 + CJ)
. (3.2)

derived in [Burkhard12]. Electrostatic simulations with Ansoft Maxwell 14 resulted in
a total capacitance of CΣ = 67.22 fF and a capacitance ratio of β = 0.122 . By as-
suming a resonator frequency of ω0/2π = 7GHz and a maximum Josephson energy of
EJ/h = 30GHz from the SQUID loop design and fabrication process, it is possible to
evaluate the resonator-qubit coupling g and the qubit charging energy EC with Eqs. (2.13)
and (2.4) as summarized in Tab. 3.1.

Speci�cation Simulation

g 130MHz 127MHz
EC 300MHz 290MHz

Table 3.1: Electrostatic simulation results for the transmon-resonator coupling rate g and
the charging energy EC
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Figure 3.2: (a) Reduced capacitive environment for a transmon qubit [Koch07]. CJ
denotes the intrinsic capacitance of the Josephson SQUID loop.

3.3 Dimer fabrication

In order to investigate the properties of the designed transmon experimentally, a dimer
sample including transmon qubits was fabricated in the FIRST cleanroom at ETH Zurich,
see Fig. 3.3. I will now shortly summarize the fabrication process [Fink10]. First, the
microwave coplanar waveguide resonator structures with feature sizes in the micrometer
range are realized with photo-lithography techniques. Therefore a 4-inch sapphire wafer,
sputtered with a 75 nm niobium (Nb) layer is coated with a photo resistive material. The
photo-lithography mask aligned to the waver is then illuminated with UV light. All areas
exposed the the UV light are �nally removed by chemical developing.

In the second process step, the transmon qubit electrodes and Josephson junctions
for the SQUID are deposited on the microchip. Since the Josephson junctions have much
smaller feature sizes of the order of a few nanometers, it is not possible to apply the same
photo-lithography techniques as for the CPW resonators. Instead, the Transmon qubits
are processed by an electron beam lithography (EBL). A special bilayer resist for EBL
is deposited on the sample which already contains the Nb resonator structures. With
an additional PMMA layer baked at 180 ◦C, the electron beam can write the designed
qubit mask onto the microchip. By depositing aluminum, letting it oxidize for a certain
time, and again depositing aluminum, the Josephson junctions are fabricated [Fink10].
As a last step, the resist is removed and the microchip is bonded to a printed circuit
board (PCB). The PCB contains connectors for superconducting cables, compatible to
the experimental setup of the cryogenic dilution refrigerator [Schmidlin08].

Unfortunately, the Dimer sample fabricated did not work as it was cooled down and
tested in the dilution refrigerator. We think that the Josephson junctions are not working
properly since spectroscopy measurements indicate only a resonator splitting similar to
dip-stick sample tests [Karalic13]. Thus I cannot show any interesting measurement
results concerning transmon coupling rates or coherence time improvements.

12



Figure 3.3: Microscope image of the fabricated transmon qubit. The bright colored
elements are the qubit electrodes (Al)
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Chapter 4

Proposal: Tunable resonator-resonator

coupling element

For capacitively coupled cavity arrays, the coupling rate J between the individual res-
onators is �xed. For realizing a polaritonic or bosonic Bose-Hubbard model, it is often
useful to adjust the coupling in-situ [Nissen12]. If an ideal two-level system (qubit) is
placed inbetween two cavities, an additional "quantum" coupling arises [Johnson11]. The
proposal of this chapter is to place a modi�ed transmom design inbetween two CPW res-
onators. This approach is similar to suggested �ux qubits for tunable coupling elements in
circuit QED [Mariantoni08]. Electrostatic simulations similar to section 3.2 are used for
a priori estimations of the relevant coupling rates. Implementing such a tunable coupling
element allows interesting applications like e.g. new qubit readout schemes [Sete13]. I will
start with reviewing the general theory for a two-level mediated cavity-cavity coupling.

4.1 Two cavity architecture

The aim of this section is to describe the dispersive coupling mediated by a two-level
system between two cavities [Johnson11]. For simplicity, the two cavities are assumed to
have equal resonance frequencies ω0. We can start with the Jaynes-Cummings Hamilto-
nian of the two individual resonators and consider a direct coupling J0 between the two
resonators, see Fig. 4.1. This yields a Hamiltonian

H = ~ω0

2∑

i=1

a†iai +
~
2
ωqσz +

2∑

i=1

~gi
(
aiσ

+ − a†iσ−
)

+ ~J0

(
a†1a2 + a†2a1

)
, (4.1)

where ωq is the qubit transition frequency and g1,2 cavity-qubit coupling rates. In the
dispersive regime,where the coupling coe�cients g1,2 are small compared to the cavity-
qubit detuning ∆ = ωq − ω0, i.e. g1,2/∆� 1, the e�ective Hamiltonian can be obtained
by a Schrie�er-Wol� method [Bravy11]. The procedure is similar to the dispersive limit
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cavity 1 cavity 2

two level
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0J

Figure 4.1: Schematic of the two-cavity architecture. Both cavities are coupled to one
two-level system by g1 and g2, respectively. The direct nearest neighbor coupling rate is
denoted by J0.

for one cavity-qubit system [Blais04]. The unitary operator Û can be written as

Û = exp

[∑

i

gi
∆i

(
aiσ

+ − a†iσ−
)]

, (4.2)

and the e�ective Hamiltonian is then given by a transformation H ′ = U †HU . For the
dispersive regime where g1,2/∆ � 1 holds, it is possible to approximate H ′ by a series
expansion up to coe�cients of order g2

1,2/∆
2 by using the Barker Campbell Hausdor�

relation (an explicit derivation is shown in appendix A):

H ′ ≈ ~ω0

2∑

i=1

a†iai +
~
2

[
ωq +

2∑

i=1

2g2
i

∆

(
a†iai +

1

2

)]
σz +

(
J0 +

g1g2

∆

)
(a†1a2 + a1a

†
2).

(4.3)

The second term can be identi�ed as the AC-Stark shifts from photons in each cavity and
the third term however contains the cavity-cavity coupling of interest. Whereas in the
initial Hamiltonian (4.1) only a direct coupling J0 occured, the e�ective Hamiltonian in
the dispersive regime (4.3) contains an additional qubit-mediated cavity-cavity coupling
rate. For realizing the two-level system with a transmon qubit described in section 2.2,
the coupling rates are

~gi ≈ 2eβiωi

√
~Z0

π

(
EJ

8EC

)1/4

. (4.4)

If the �ux φ through the transmon SQUID loop changes, the Josephson energy EJ and
detuning ∆ also change according to equations (2.2) and (2.7), respectively. Hence, for
the transmon in its ground state (σz = −1), we can tune the total coupling

J = J0 −
g1g2

∆
(4.5)

by changing the �ux φ through the transmon SQUID loop. In the following section, the
transmon design is introduced. With electrostatic simulations the individual components
of the total coupling J will be estimated for potential applications.
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Figure 4.2: (a) Tunable coupling transmon design coupled to two CPW resonators. (b)
Relevant equivalent circuit of the coupling transmon design. The source symbols Vg1 and
Vg2 indicate the microwave resonators.

4.2 Tunable coupler design

For a �rst proposal towards a tunable coupling element, I designed a modi�ed transmon
qubit as shown in Fig. 4.2 (a) for a resonator mask designed by [Korosec12]. The idea is
to couple each qubit electrode tightly to one resonator center-conductor. The resulting
equivalent circuit of the e�ective capacitance network is given in Fig. 4.2 (b). Note that
only the most important elements are considered since cross-capacitances are negligible
as shown in an electrostatic simulation. The total capacitance which the transmon qubit
experiences is given by

CΣ = Cs +
(Cg1 + Cs1)(Cg2 + Cs2)

Cg1 + Cg2 + Cs1 + Cs2
, (4.6)

and the capacitance ratios are

βi =
Cgi(Cg2 + Cs2)

(Cg1 + Cs1)(Cg2 + Cs2) + Cs(Cg1 + Cg2 + Cs1 + Cs2)
, (4.7)

for i = 1, 2, according to [Johnson11]. The initial transmon design from chapter 3 is mod-
i�ed by larger gaps to keep the island-ground capacitances Cs1 and Cs2 small. Also the
island-resonator capacitances Cg1 and Cg2 signi�cantly increased to get higher coupling
rates g1,2.

Electrostatic simulation

Based on the design of Fig. 4.2, the individual capacitance elements are obtained by an
electrostatic simulation with Ansoft Maxwell 14. Since Cs3 and the Josephson junction
capacitance CJ are in parallel, the combination simpli�es to Cs = CJ +Cs3. As in chapter
3, CJ = 6 fF is assumed. From the simulated capacitances summarized in Tab. 4.1,
the charging energy gets EC/h = 165.56 MHz by evaluating equations (4.6) and (2.4).
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Capacitance Simulated value

Cs1 28.89 fF
Cs2 30.22 fF
Cg1 10.62 fF
Cg2 9.83 fF
Cs 97.11 fF

Table 4.1: Capacitance simulation results of the coupling transmon design.

Z Z

)

0 1
Z1

( )

1Z
1
1 0

(

Figure 4.3: Two port network matrices for a series and shunt impedance Z

For an estimation of the resonator-qubit coupling rates, a maximum Josephson energy
of EJmax/h = 20 GHz is assumed. The calculations result in g1 = 507.46 MHz and
g2 = 463.81 MHz.

Direct capacitive coupling

The direct coupling J0 between the two resonators can be estimated by the capacitance of
Fig. 4.2 (b) with an ABCDmatrix impedance formalism [Pozar93]. The two-port matrices
for an series and shunt impedance are shown in Fig. 4.3. Applying this formalism to the
modi�ed transmon design, we get

(
A B

C D

)
=

(
1 1

iωCg1

0 1

)
.

(
1 0

1ωCs1 1

)
.

(
1 1

iωCs

0 1

)
.

(
1 0

iωCs2 1

)
.

(
1 1

iωCg2

0 1

)
(4.8)

The e�ective coupling capacitance Ccpl between the two resonators is obtained by iden-
tifying B ≡ 1/iωCcpl and algebraic manipulations:

Ccpl =
Cg1Cg2Cs

CsCs1 + Cg2(Cs + Cs1) + CsCs2 + Cs1Cs2 + Cg1(Cg2 + Cs + Cs2)
(4.9)

By evaluating this equation, a coupling of Ccpl = 1.09 fF is obtained.
In the next step, the coupling rates J0 associated with the direct capacitive coupling

Ccpl is estimated. Two identical resonators, with resonance frequencies ω0/2π = 7 GHz,
are coupled to an in- and output impedance of Z0 = 50 Ω as shown in Fig. 4.4. The indi-
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Figure 4.4: Transmission line resonator model of the Dimer. The transmission lines and
the input/output ports are matched to Z0 = 50 Ω.

vidual resonators are modeled by transmission lines of length l, described by coe�cients

t11 = cosh(iγl),

t12 = Z0 sinh(iγl),

t21 = 1/Z0 sinh(iγl),

t22 = cosh(iγl),

(4.10)

where γ = α + iβ. For simplicity, we consider lossless transmission lines with α = 0.
The propagation coe�cient βl = ωl/vph can be rewritten by the resonance condition
ω0 = πvph/l as

βl = π
ω

ω0

. (4.11)

For the coupling capacitances Cκ = 7.48 fF obtained from [Korosec12], the total ABCD
matrix according to Fig. 4.4 reads

(
A B

C D

)
=

(
1 −1

iωCκ

0 1

)
.

(
t11 t12

t21 t22

)
.

(
1 −1

iωCJ

0 1

)
.

(
t11 t12

t21 t22

)
.

(
1 −1

iωCκ

0 1

)
(4.12)

With the ABCD matrix model, the transmission spectrum is given by

S21 = 10 log

∣∣∣∣
2

A+B/Z0 + CZ0 +D

∣∣∣∣ dB (4.13)

Fig. 4.5 shows the transmission spectrum S21 as a function of ω/2π. The separation of
the two peaks is equal to 2J0 [Karalic13]. Thus, the estimated coupling energy due to
the direct capacitive couplingCcpl is J0/2π = 5.26 MHz.

4.3 Tunable coupling analysis

In this last section, I will discuss the tunability of the total coupling based on the elec-
trostatic simulations above. The total coupling J from the transformed Hamiltonian of
equation (4.3) is given by

J = J0 −
g1g2

∆
, (4.14)

if the transmon qubit is in the ground state, i.e. σz = −1. Fig. 4.6 shows a plot of
the total coupling as a function of the �ux φ through the transmon SQUID loop. Note
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Figure 4.5: Transmission spectrum S21 of the Dimer array according to Fig. 4.4. The
distance between the two peaks is given by 2J0

that at φ ∼ 0.5φ0/π the total transmission is zero. This turn o� point has interesting
applications discussed below. Moreover, the qubit dispersions g1,2/∆� 1 should hold in
order to justify the SW transformation of section 4.1. In Fig. 4.6 (b), the qubit dispersion
is given dependent on the �ux φ. The dispersive regime g1,2/∆� 1 is only reached above
φ > 0.34φ0/π. In fact, this could yield to problems for high coupling rates J since higher
order processes are in (4.3) are not suppressed substantially. In conclusion, the low order
approximation for the tunable coupling works only for 0� J/2π � 40 MHz.

The main application of the tunable coupling element is changing the g/J ratio for
a cavity array in-situ. Further possible applications of such a tunable coupling element
described in this chapter include cavity switches [Mariantoni08] and new qubit readout
schemes, where the coupling is adjusted dynamically [Sete13].
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Figure 4.6: (a) Total resonator-resonator coupling |J | and (b) resonator-qubit dispersion
dependent on the �ux φ through the SQUID loop.
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Conclusion

In summary, the purpose of this thesis was to design a transmon qubit for cavity ar-
rays in circuit QED. After a short motivation for quantum simulation with cavity QED
systems and a brief introduction to circuit QED theory, the transmon design properties
were investigated with electrostatic simulations. Moreover, in the new design I attempt
to improve qubit coherence times by increasing the gaps between the individual super-
conducting elements. Based on the design, a Dimer sample was fabricated. The last part
in this thesis focused on a in-situ tunable resonator-resonator coupling element, where
a two-level system inbetween two resonators can mediate a dispersive coupling. A �rst
approach towards an implementation by using a modi�ed transmon qubit as a two-level
system was discussed. The realization of a tunable coupling would allow to interesting
applications such as cavity switches and new qubit readout schemes.

Outlook: Majorana-like modes

In addition to the quantum simulation models introduced in the beginning, I would like
to outlook a recent theoretical proposal suggested the observation of Majorana-like modes
of light in a circuit QED cavity array [Bardyn12]. The starting point is a Bose-Hubbard
model which we can achieve with a cavity array in the strong coupling regime of the
individual resonator-qubit systems. In order to observe exotic non-Abelian properties, a
additional parametric drive element Hdrive to achieve a p-wave pairing is required:

Hdrive = −|∆|
N−1∑

i=1

(
ei(2ωpt+φ)âiâi+1 + h.c.

)
, (4.15)

where |∆|eiφ denotes a coherent pump drive with a frequency ωp. Recent proposals
suggested possible implementation schemes by embedding Josephson junctions or SQUID
loops inbetween coplanar microwave resonators [Peropadre13]. In conclusion, once a
parametric drive element is realized, the observation of such exotic particle statistics
would open new possibilities.
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Appendix A

Two-cavity architecture Hamiltonian

The derivation of the e�ective two-cavity architecture Hamiltonian described in section
section 4.1 involves commutator algebra. In the �rst section I will give an overview of
the most important steps concerning the Schrie�er-Wol� transformation. Section two
shows how to make such a transformation using the Mathematica Add-on by José Luis
Gómez-Munõz and Francisco Delgado.

A.1 Schrie�er-Wol� transformation

The bosonic commutation relations for the creation (annihilation) operator â†i (âi) de-
scribing the cavity �elds are

[â†i âi, âj] = −δij âj, and [â†i âi, â
†
j] = δij â

†
j. (A.1)

The two-level system is represented by the Pauli Spin 1/2 notation

[σ̂z, σ̂
±] = ±2σ̂±, and [σ̂+, σ̂−] = σ̂z, (A.2)

where σ̂± ≡ (σ̂x ± iσ̂y)/2. A new operator X̂i de�ned by

X̂i ≡ âiσ̂
+ + â†i σ̂

−, (A.3)

will simplify further calculations. The Jaynes-Cummings Hamiltonian H for the two-
cavity architecture as explained in section 4.1 is

H =
2∑

i=1

~ωiâ†i âi +
~
2
ωqσ̂z +

2∑

i=1

~gi
(
âi ˆ̂σ

+ − â†i ˆ̂σ−
)
. (A.4)

By using the unitary transformation

U = e
∑
i
gi
∆i
X̂i , (A.5)
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and the Barker-Campbell-Hausdor� relation

eX̂ Ŷ e−X̂ = Ŷ + [X̂, Ŷ ] +
1

2

[
X̂, [X̂, Ŷ ]

]
+ ... , (A.6)

it is possible to express H ′ = UHU † by

H ′ ≈ H +
2∑

i,j=1

~ωi
gj
∆j

[
X̂j, â

†
i âi

]
+

1

2

2∑

i,j,k=1

~ωi
gkgj

∆k∆j

[
X̂k,

[
X̂j, â

†
i âi

]]

+
~
4
ωq

2∑

j=1

gj
∆j

[
X̂i, σ̂z

]
+

~
2
ωq

2∑

i,j=1

gigj
∆i∆j

[
X̂j,

[
X̂i, σ̂z

]]
+

2∑

i,j=1

~gi
gj
∆j

[
X̂j, X̂i

]
,

(A.7)

where terms of higher order than g2
i /∆

2
i are neglected. The most important commutation

relations between â†i âi, σ̂z and X̂i in H ′ are given by

[X̂j, â
†
i âi] =

1

2
δij

(
âiσ̂

+ − â†i σ̂−
)
, (A.8)

[X̂i, σ̂z] = −âiσ̂+ + â†i σ̂
−, (A.9)

[X̂j, X̂i] =
(
â†i âj − â

†
j âi

)
σ̂z, (A.10)

[
X̂k, [X̂j, â

†
i âi]
]

= −δij
(
δik (1− σ̂z) + â†i âkσ̂z + â†kâiσ̂z

)
, (A.11)

[
X̂j, [X̂i, σ̂z]

]
= 2δij (1− σ̂z) + â†i âjσ̂z + â†j âiσ̂z. (A.12)

By using the relations (A.8) to (A.12), various terms cancel and the result reads

H ′ ≈
2∑

i=1

~ωiâ†i âi +
~
2

(
ωq +

2∑

i=1

g2
i

∆i

+
2∑

i=1

2g2
i

∆i

â†i âi

)
σ̂z +

2g1g2(∆1 + ∆2)

∆1∆2

(â†1â2 + â1â
†
2).

(A.13)

For two cavities with same resonance frequencies ω1 = ω2 ≡ ω0, the e�ective Hamiltonian
H ′ reduces to

H ′ ≈ ~ω0

2∑

i=1

â†i âi +
~
2

[
ωq +

2∑

i=1

2g2
i

∆

(
â†i âi +

1

2

)]
σ̂z +

g1g2

∆
(â†1â2 + â1â

†
2). (A.14)
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A.2 Commutator Algebra with Mathematica

The derivation of the two cavity Hamiltonian with the Schrie�er-Wol� transformation
described above is rather intense, even for simple con�gurations. Therefore, a Mathemat-

ica Add-on from José Luis Gómez-Munõz and Francisco Delgado is useful to simplify the
commutation relations. The packages and instructions can be found at
"http://homepage.cem.itesm.mx/lgomez/quantum/".

(*Initialization routine*)

Needs[�Quantum̀Notatioǹ�];

SetQuantumAliases[];

(*Field operator de�nitions*)

SetQuantumObject[a, σ̂];
[[
ai_, aj_

†]]
−:=KroneckerDelta[i, j];

[[
ai_, aj_

]]
− :=0;

[[
ai_
†, aj_

†]]
−:=0;

(*Pauli Algebra de�nitions*)

σ̂a:0|1|2|3
2:=σ̂0;

σ̂a:0|1|2|3
†:=σ̂a;

σ̂a:0|1|2|3 · σ̂0:=σ̂a;

σ̂0 · σ̂b:0|1|2|3:=σ̂b;

σ̂a:1|2|3 · σ̂b:1|2|3:=KroneckerDelta[a, b] ∗ σ̂0 + i ∗
∑3

c=1 Signature[{a, b, c}] ∗ σ̂c;
[[
σ̂0, σ̂b:0|1|2|3

]]
− :=0;

[[
σ̂a:1|2|3, σ̂b:1|2|3

]]
− :=2 ∗ i ∗

∑3
c=1 Signature[{a, b, c}] ∗ σ̂c;

[[
σ̂0, σ̂b:0|1|2|3

]]
+
:=2 ∗ σ̂b;

[[
σ̂a:1|2|3, σ̂b:1|2|3

]]
+
:=2 ∗KroneckerDelta[a, b] ∗ σ̂0;

σ̂+:=1
2 (σ̂1 + iσ̂2) ;

σ̂−:=1
2 (σ̂1 − iσ̂2) ;

[[
σ̂b:1|2|3, ai_

]]
− :=0;

[[
σ̂b:1|2|3, ai_

†]]
−:=0;

[[
ai_, σ̂b:1|2|3

]]
− :=0;

[[
ai_
†, σ̂b:1|2|3

]]
−:=0;
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After the initialization, de�ne the system Hamiltonian H and the unitary operator X.

Clear[H,X]

H =
∑2

i=1 ~ωiai† · ai + ~
2ωqσ̂3 +

∑2
i=1 ~gi

(
ai · σ̂+ + ai

† · σ̂−
)

;

X =
∑2

i=1
gi
∆i

(
ai · σ̂+ + ai

† · σ̂−
)

;

In the next step, the Barker-Campbell-Hausdor� relation for H ′ is evaluated for the cou-
pling between the two cavities, i.e. terms which exploit (a†1a2+a†2a1). The resulting cavity-
cavity coupling term equals the result of section A.1 and [Johnson11] for ∆1,2 = ωq−ω1,2.

Simplify[1/2Total[Simplify
[
Total/@Coe�cient

[
H + [[X,H]]− + 1

2 [[X, [[X,H]]−]]− ,

Permutations/@
{
a1
† · a2 · σ̂3, a2

† · a1 · σ̂3

}]]]]

−~g1g2(ω1+ω2−2ωq)

2∆1∆2
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Appendix B

Project �le directory

The folders explained in the following contain the relevant project �les which can be found at

"Q:\USERS\Lukas_Heinzle\dimer_thesis\". Note that sub-folders called "_dev\" contain old

backup �les.

Folder Contents

_lukas_korosec_data\ Database and documentation for the M25 resonator
mask design [Korosec12].

calculations\ Miscellaneous Mathematica �les, where
"two_cavity_Hamiltonian.nb" contains the calcu-
lation of appendix A.2.

Mask25_ebeam\ Electron beam lithography �les for sample fabrication.
Maxwell\ Electrostatic simulation �les for the transmon design

("mask25_cavity_transmon") and the tunable coupler
proposal ("mask25_tunable_transmon"). The Auto-
CAD design �les for sample fabrication are also in-
cluded.

misc\ Miscellaneous HFSS and Microwave o�ce simulation
�les.

papers\ Relevant articles, papers and theses.
pics\ Figures, images and graphs.
talks\ Quantum Device Lab Group seminar talk about "To-

wards quantum simulation with coupled cavity arrays".
thesis\ "v5_corr" contains the actual semester thesis documen-

tation.
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