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Abstract

A quantum computer works on the basis of superposition of two-
level systems (qubits). It performs certain tasks, for example factoriza-
tion of numbers, much faster than a normal computer. Should it one
day be possible to construct quantum computers with many qubits, a
possibility to perform computations is given using only teleportation
and single-qubit operations.

In this semester thesis a chip has been designed, on which the
quantum teleportation experiment can be performed. Other experi-
ments were designed to analyze the coupling between coplanar wave
guide resonators and to be able to easily test different realizations of
qubits.

As a last part of the thesis, different quantum bits were simulated.
This is done to get an idea about the characteristic quantities of the
different possible realizations of a qubit. Based on the already used
qubits, it was tried to improve their properties.
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1 Introduction

Quantum mechanics has become the most successful physical theory so far.
There is no experiment in contradiction with it. And further on, it is very
general: it describes the microscopic world in astonishing precision, but it
describes as well properties of the whole universe, see eg. [1]. If we want
to state something about a quantum mechanical system, we have to do this
using quantum information. It does not behave like classical information.
Imagine a classical system, in which there is an object in one of two possible
states, eg. a ball which is on the table or on the floor. Of course, these
two possibilities exclude each other. But in quantum mechanics, it can be
in both states at the same time - the ball can be on the floor and on the
table simultaneously. This is a superposition of states. Thus, the quantum
mechanical piece of information, the quantum bit, can not just exclusively
take the value 0 or 1, like the classical bit, but it can have both values at the
same time, compare eg. [2].

But why should we be interested in this kind of information? Using it and
computing with it enables us to perform calculations we would not be able to
do with classical computers. For example, using classical computers, it takes
an exponentially growing amount of computing time to factorize a number.
Many codes are based on this fact: If you have to factorize a large number,
you will have a huge amount of work to do. If no one is able to perform this
fast enough, the code is safe. But if we use quantum information, the amount
of time required to factorize a number will only grow polynomial with the
number (Shor’s factoring algorithm), see [4]. This would mean, that most of
the classical codes are not safe anymore.

Another interesting application is Grover’s search algorithm, which en-
ables one to search a (unordered) database in O(y/n) steps and using only
O(log(n)) storage space [5]. The fastest classical algorithm for this task is
the linear search, which needs O(n) steps. As well, several NP complete
problems could be solved much faster.

Such a quantum bit, a qubit, can be realized in different ways. One
approach is to use a macroscopic superconducting circuit on a chip to build
a quantum mechanical two level system. In the special setup which is used
here, this was first realized in [6]. For an implementation like this one, it is
possible to borrow fabrication techniques for conventional integrated circuits.



2 Theory

2.1 The Quantum Bit

Unlike a classical bit which is represented by either 0 or 1, a quantum bit lives
in a two dimensional Hilbert space. We can choose a basis of this space, for
example the two orthogonal and normalized state vectors |0) and |1). We will
think of |0) being the ground state, and |1) the excited state of our system.
As mentioned in section 1, these two states can be superposed. The condition
of normalization requires, that for any superposition state |¢) = «|0) + 3|1)
we have |a|? + || = 1. Since any global phase does not matter, we can just
look at the relative phase between o and (3, let’s call it ¢. We can also write

9) as
) = cos (5100 e cos (5 ) 1) 1)

with 0 <0 <7 and 0 < ¢ < 27. A geometrical representation of this would
be the 2-sphere. The state vector |0) is north pole, and the |1) is the south
pole. Any mixed state is represented by a point lying on the surface of the
sphere, see Fig. 1. Like this, the normalization condition is always fulfilled.

11)

Figure 1: Geometrical representation of the Bloch sphere, 1 is a mixed state.



2.2 Entanglement

If we have more than one quantum bit, the Hilbert space of the total system
is the tensor product of the individual system. If we have n qubits, the
dimension of the Hilbert space is 2". In this space exist state vectors, which
can not be described only having a product of the individual two dimensional
spaces. These non-separable vectors are said to be entangled states. These
entangled states will allow us to do a quantum Teleportation, cf section 2.9.

2.3 Josephson Junction

A Josephson junction is a non linear circuit element, which will be described
here briefly. It consists of two superconducting electrodes, separated by a
thin oxide layer, see Fig.2. This circuit element has the advantage, that it
has an anharmonic energy spectrum, enabling one to address two different
states separately - this is what we need to have in order to control a two level
system. Further on, a Josephson junction can be operated at arbitrarily low
temperatures. We will need this, since the energy required to go from the
state |0) to the state |1), namely hwg; has to be much larger than the thermal
fluctuation with typical energies of kgT. The qubits used have a transition
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Figure 2: a) A Josephson junction made of superconducting conductors. b)
Representation of a Josephson junction, the figure is taken from [3].
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frequency wgp; ~ 3-10 GHz. This means, that the temperature 7" has to be in
the order of 10 mK. Also, the Josephson junction works in a non-dissipative
way: it has no losses in energy when transporting an electronic signal over the
chip, and energy is contained in the qubit itself. The Josephson junction has
two characteristic quantities, the Josephson capacity C; and the Josephson



energy F; which is the potential energy stored in the junction when a super
current flows through it.

2.4 Cooper Pair Box

We are aiming to construct a charge qubit. A Cooper pair box is a prototype
of it. It conmsists of a superconducting electrode, the island, which is con-
nected to another superconducting electrode, the reservoir, via a Josephson
junction with C; and F;. One can think of the junction allowing Cooper
pairs to couple coherently between island and reservoir, with a capacitance
in parallel [7]. One can apply a gate voltage Vi such that Cooper pairs are
electrostatically induced to tunnel, compare Fig. 3.
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Figure 3: Schematic representation of a Cooper pair box. Island and reser-
voir are coupled with a Josephson junction, island and gate are coupled
capacitively. Figure from [8].

There is only one degree of freedom in the Cooper pair box, and this is
the number n of excess Cooper pairs on the island. A basis of the states of
the Cooper pair box is given by the eigenstates |n) of the associated operator
n. The Hamiltonian of the system consists of an electrostatic part and a part
describing the coherent tunneling of Cooper pairs through the junction. In
[10] is shown that the Hamiltonian is

HCPB = 4Eo(ﬁ — ng)2 — EJ COS(@) (2)
= 4Bo(h — g + LSt 1+ It D)) (3)



In this Hamiltonian, Ec = €?/2Cy, denotes the electrostatic charging energy
where Oy, = C; 4 Cyg is the total capacitance of the Cooper pair box. ng is
the dimensionless gate charge given by n, = C,V,/2e, and E; is the Joseph-
son energy mentioned above which is proportional to the area of the tunnel
junction.

We will run the Cooper pair box in the charge regime, where 4E- > FE;.
Fluctuations in the gate charge n, will lead to fluctuations of the transition
frequency wp; of the qubit. At the sweet spot (n, = 1/2), which is a degen-
eracy point, it immune against these fluctuations in first order, see Fig.4.
This allows longer coherence times.
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Figure 4: An energy level diagram of a Cooper pair box. The colored lines are
the ground state and first and second excited state of a CPB with F; = E¢.
The units are given in units of the transition energy. The sweet spot is at
ng = 1/2. Figure from [9].

2.5 Split Cooper Pair Box

For a better control of the qubits, a split Cooper pair box is used. The
difference to a normal CPB is that the junction between island and reservoir
is split into two junctions. These can have different Josephson energies £,
and E;, and different superconducting phases ¢; and 65 across them, compare
Fig. 5. By applying a gate voltage V, we can control n,. If we send a magnetic
flux ® through the loop, we can change the effective Josephson energy of the
split Cooper pair box and obtain, see [7],

)
Ef,ff = (Ey, + Ey,) cos (Wa) , (4)

0

where &g = h/2e denotes the flux quantum.
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Figure 5: Schematic representation of a split CPB. Island and reservoir are
connected with two junctions, each with it’s own Josephson energy and phase
difference. The effective E; can be tuned by applying a magnetic flux through

the split CPB. Figure from [9].

2.6 Transmon

A cooper pair box is sensitive to fluctuations in the gate charge ny, as men-
tioned above. But if we increase the ratio E;/E¢, the energy levels become
extremely flat. This again makes the transmission frequency of the qubit
immune to charge fluctuations. The drawback is some loss of anharmonicity.
But this is not too serious, since the flattening of the bands obeys an expo-
nential law in E;/FEc while the loss in anharmonicity only follows a weak
power law, [11], [12] (compare fig. 6). In order to decrease the charging en-
ergy FEco, we need to have a large capacitance between reservoir and island.
This can be done by enlarging the areas of both parts or making fingers. Such
Cooper pair boxes are called ”transmons” In section 4, some simulations of
transmons with different extensions will be presented. These simulations are
done in order to optimize the properties of the transmon. In Fig. 7, there is
a comparison between a normal CPB and the much larger transmon.

2.7 Transmission Line Resonator

A transmission line can be schematically represented as a two wire line.It
can be shown ([2], [7]) that it is equivalent to a RLC oscillating circuit. A
resonator can be made by opening the two ends of the transmission line
(for further explanations see [7]). Here, two types of resonance can occur.
The first is the so called A\/2 resonance. It occurs, when the length [ of
the resonator is an integer multiple of half the wavelength A of the wave
(l =n-A/2,n € N). This kind of resonance has a high impedance, and we
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Figure 6: Energy levels of a transmon (energy eigenvalues of the Hamiltonian
(3) ), with different E;/E¢ ratios. As in Fig. 4, the energy axis is given in
units of the transition energy Ey; at the sweet spot (n, = 1/2). Figure from
[11].

will use it in our circuit. The other kind of resonance occurs when the length
of the transmission line is an odd multiple of a quarter of the wavelength
(l=(2n+1)-A/4). In this case, we have a high admittance resonance. The
resonance frequency for the (here used) A/2 resonators is
nm
Won = —, 5

0,7‘L l\/m ( )
where L; and () are the inductance, respectively capacitance per unit length
of the two wires.

Capacitive Coupling is needed to drive the resonator.This is because it
can not be directly connected to another transmission line from the ”outside
world”, this would destroy the quality factor () of the resonator, and the
radiation would escape quickly. Therefore, we connect the resonator via
capacitors with small capacitance to the in- and output transmission lines.
This causes a large impedance mismatch. This causes the photons to be
reflected there like at a mirror, only a small amount of them will pass. The
coupling will shift the resonance frequency by adding an effective capacitance,
and it will influence the Q.
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Figure 7: Comparison between a split CPB and a transmon. Consider the
different length scales, from [7]

A Coplanar Wave Guide Resonator (CPW) is one possible realization
of a transmission line on a chip. It is the two dimensional version of the
coaxial cable. It has the ground in the same plane like the center pin, compare
Fig.8. The characteristic impedance is determined by the ratio a/b, the
substrate hight h and the dielectric constant of the substrate.

o

Figure 8: A conductor backed coplanar waveguide. The geometry determines
the impedance. Figure from [9].

2.8 Circuit Quantum Electrodynamics

Cavity Quantum Electrodynamics (CQED) describes the interaction
between atoms and photons with discrete modes in a cavity. A simple version
of this system is a two-level atom which couples to a cavity. The cavity
is described by a harmonic oscillator whose excitations are photons. This
system is described by the Jaynes-Cummings Hamiltonian H ¢, see [13].

Wa _
Hjc = hw,(a'a +1/2) + hro. + hg(a'o™ +ac™) + H,+H,  (6)
In this equation, the first term represents the electromagnetic field. Each
photon has there an energy hw,. The second term represents the atom to be

a spin-1/2 particle, which has a transition energy of fiw,. The third term is
due to the dipole interaction: an atom can emit (afo~) or absorb (act) a

11



photon to/from the field, with rate g. So, the coherent dynamics is described
with these three terms. The fourth term is the coupling of the cavity to the
continuum. This produces a cavity decay rate kK = w,/Q. The fifth term
describes the spontaneous decay of the excited state of the qubit, a photon
gets emitted into the environment. This is visualized in Fig. 9.

@) |

% ttransit

Figure 9: Representation of a cavity QED system. An atom (two-level sys-
tem) which has a spontaneous decay rate v passes a cavity with decay rate
k. During the time T},.q,s it is in the cavity, it interacts coherently with
a single mode of the electromagnetic field, which is trapped in between the
mirrors, with coupling strength g. Figure from [13].

If we have zero detuning A = w, — w, = 0 between atom and cavity,
the eigenstates of the Hamiltonian Hjc (without damping), see eq. 6, are
the maximally entangled atom-field states |£,0) = (| 1,1) £ | |, 0))/v2, [7].
Starting with an initial state | J,0) with an excited atom an no photons, it
will change to a photon and back again. This happens at the vacuum Rabi
frequency g/m. We can look at the excitation being half the time a photon
and half the time an excited state of the atom, the decay rate of |&,0) is
given by (k +v)/2. When it takes a long time for the atom to decay or the
photon to be lost, i.e. when many oscillations can be completed, the system
is in the strong coupling limit of cavity QED (g > x,7,1/Tiransit) [13], [7]-

CQED With Superconducting Circuits Not only optical system can
be used as cavity QED systems, but for instance also circuits. In this case,
the cavity is a one-dimensional transmission line resonator (compare section
2.7) and the artificial atom is a Cooper pair box (compare section 2.4). The
Cooper pair box then couples capacitively to the electromagnetic field of the
resonator. This situation is schematically represented in Fig. 10.

12



Figure 10: Schematic representation of a qubit in a superconducting circuit.
A cooper pair box, acting as qubit, is placed between the lines of a supercon-
ducting coplanar wave guide resonator. The CPB is capacitively coupled to
the center trace at the maximum voltage of the first harmonic of the standing
wave. This yields a strong electric dipole interaction between qubit and indi-
vidual photons of the resonator. The indicated lengths have to be considered
as an order of magnitude. Figure from [13].

2.9 Teleportation of a Quantum State

The first experiment designed, cf section 3.2, aims to implement a quantum
teleportation. Here, we will briefly discuss the basic idea of the quantum
teleportation.

Due to the No-Cloning-Theorem [14], it is not possible to copy a quantum
state: If we have a particle A in the state |p) we can not bring a particle B
in the same state |¢) as particle A without changing the state of the particle
A. But it is not forbidden to bring particle B into the state |p) and at the
same time changing the state of particle A. This would be a teleportation
of quantum information, a quantum teleportation. Note, that this differs
from swapping the states of the qubits. In the swap operation, the states
of two qubits are swapped, but for this, a quantum channel is needed. For
quantum teleportation, we only need to transmit classical information and
thus a classical channel is enough (provided that we have a third particle we
can use).

The naive ansatz is to measure the state |p) of particle A and bring
B into this state. This does of course not work, since |p) could be in a
superposition state, and if we measure |p) we will just measure an eigenstate
of the operator. This is not the whole information, and thus we are not able
to extract the whole quantum information out of |p) like this.

13



We need to have two two-level systems A and B which are maximally
entangled to each other. Alice has one of these, A, and Bob has the other,
B. Then, Alice wants to transmit the state |©)c = a|0)¢ + [|1)¢ of a two-
level system C' to Bob (only Alice has access to C, Bob has not), such that
after the transmission the state of B, |¢)p is the same as the state of C
before: |¢)p = «|0)p + (1) 5.

Let now the two-level systems A and B be in a maximally entangled state,
for example in the first of the four Bell states

|0F) A = 7 (004 ®|0)p+ [1)a®[1)B), (7)
|7 )ap = 7 ([0)a®@|0)p = [1)a®][1)B),
U ap = 7(\0> A® e+ [1H)a®|[0)p),

V™) ap = (|0>A @ [1)p—1)a®|0)5),

Sl -

where A belongs to Alice and B to Bob. So Alice has now two particles, A
and C. The total system writes now as

1
-7 (1004 ®[0)5 + [1)a® [1)p) ® (al0)c + B1)e) . (8)

where |U)c = a|0)¢ + B|1)¢ is the initial state of particle C'. Using that

’(I)+>AB ®|¥)e

0) ®10) = 7(|<1>+>+|<1> ), (9)
0) @ 1) = 7(|\If*>+r\1f )
1) ®[0) = 7(|\P+> 7).
'1>®'1>:E('®+>"‘D_>)’

we can write the state of the total system (8) as
[0 ) ap @ [¥)o :%(|¢+>AC ® (a]0)p + Bl1)B) + [27)ac @ (|0)s — Bl1)5)
(10)
+ [T ac ® (B0)5 + all)p) + [V )ac @ (Bl0)5 — all)5)),

which is just a basis change on Alice’s part of the system. Note that so far no
operation has been performed. The actual teleportation process starts when

14



Alice measures her two qubits in the Bell-basis (she projects (10) on to the
Bell-basis with the projection operators |®1)(®*| and analog for the other
states).The state (10) collapses under this measurement. This gives her one
of the following states (each with equal probability):

This now means that Alice’s two particles are now entangled to each other
(and are again in a Bell state), and the entanglement between A and B is
broken. In each possible outcome of the measurement, particle B is in a
state that resembles the original state |¢)c. Now we have to apply a unitary
operation on B such that B is in the desired state afterwards. Since Alice
has measured (10) in the Bell Basis, she knows in which of the four possible
states the particle B is in. Therefore, Alice has to transmit Bob in a classical
way this information (two Bits). Now Bob knows which operation he has to
perform, such that his particle has afterwards the desired state a|0) 5+ 3]0) p:

e If Alice’s result is |®T)4c, Bob already has the correct state, and he
does nothing.

o If Alice’s result is |®7) 4, Bob applies the third Pauli Matrix o3 on his
particle, and he gets the desired state as well.

o If Alice’s result is |U™) 4, Bob applies the first Pauli Matrix o7 on his
particle, and he is done again.

e If Alice’s result is |¥~) 4¢, Bob applies i times the second Pauli Matrix
on his particle, ioy, and he obtains the final result.

The scheme of this is shown in Fig. 11.

Note, that after the teleportation the states of the particles A and C
are just eigenstates of the measured operator. This means, that we do not
have a contradiction to the No-Cloning-Theorem. Also, no energy or mass
has been transported, and therefore teleportation is consistent with energy-
conservation. For each state one wants to teleport, Alice and Bob need
an entangled pair of particles. And for each teleportation, Alice needs to
transmit information over a classical channel. This can be intercepted, but
the information one gets from this does not help anything: the interceptor

15
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Figure 11: The scheme of a quantum teleportation. The state | > is tele-
ported from the first to the third qubit.

only knows which gate Bob has to apply, but he does not have the particle
and thus can not reproduce the desired state.

Of course, the two-level systems A, B and C also can be qubits. The
experiment will be implemented using qubits as two-level systems. Quantum
teleportation was first realized by Zeilinger et al. in 1997 with photons [15].

3 Designed Chips

In this section, the designed chips are presented, and also why they are
designed like this is presented. But first of all, it is described how designing
is done and what the different elements on a chip are.

3.1 Basics

The chip design is done in Mathematica. There, a two dimensional drawing
is made on which the elements of the chip are placed (in fact the graphic is on
a plane in three dimensional space, allowing us to mirror it). These elements
were already implemented as functions in a library, and they could just be
placed on the correct spot and with the correct orientation. This placing is
done by giving the functions as argument the coordinates.

The chip can be controlled via 8 pins on each side. One can send signals
for example signals into a resonator or a current through a flux line via these
pins.

There are many different objects which need to be placed on a chip,
compare Fig. 12. In the following, the different elements will be explained in
a bit more detail.

In Fig. 13 we can see two cut-outs of Fig. 12. The white parts will become
covered with a superconducting metal layer which is superconducting at low

16



Figure 12: The chip design of a quantum teleportation experiment. There are
two identical experiments on the same chip, such that the effort of measuring
one experiment is smaller.

enough temperatures. This will then be the ground of the chip. The parts
which are colored are not covered by a metal layer, and thus be insulating.
Fig. 12 shows the most important structures (colored) used on the chip:

e The light green and big structures in Fig. 13a are the gateways which
connect the pins with the flux lines and resonators. Via these pins,
currents can be controlled and sent on the chip.

e The red structures in Fig. 13a and 13b are the couplers. They capaci-
tively couple the control-current applied at the pins to the states in the
resonator. For the resonator, they act like mirrors in an optical cav-
ity: the wave is reflected at them. The finger-like structures (partially

17



(a) A cut-out of the left side, just below (b) A cut-out of the left side, in the top,
the middle of Fig. 12. of Fig. 12.

Figure 13: An augmentation of the structures on the chip. The different
elements are colored, color available online.

visible in Fig. 13a) are needed to adjust the capacitance. For further
information about the coupling, see [19].

e The blue structure is the place for the qubit. It can’t be fabricated in
the same way as the rest of the structures (they are fabricated with
photolitography) because the structures of the qubit are too small, but
with e-beam lithography. Therefore some space is spared out such that
in a later step of the fabrication process the exact shape of the qubit
can be imprinted.

e The yellow crosses help to find the exact placement of the qubit. This
is important, like this the e-beam lithography can be well adjusted.

e The green box in Fig. 13a is just a gap to separate the qubit from the
flux line. This reduces the magnetic flux through the qubit. In most
experiments this box wont be used.

e The orange, lengthy structures are the flux lines. They are connected
to at least one pin, allowing to send a current through them. In Fig. 13a
the flux line (the curvy line) is again lead to a pin, which is the better
better way to do it (in this case, no unwanted currents flow on the
ground). But if there are too few pins, one can just shorten the flux
line to ground, as it is done in Fig. 13b. There, the flux line comes from
a pin, goes along the qubit, and is shorted to ground (there is still a

18



little conducting band between qubit and the bulky part of the end of
the flux line connecting the flux line to ground).

e The violet structures are air bridges. They are really three dimen-
sional structures on the chip (which is absent of these entirely two
dimensional). They are used to connect the two sides of a wave guide.
This is done to avoid unwanted modes and to equilibrate potential of
the ground. In Fig. 13b it is used to get the connection of one resonator
above the other. The boxes around the bridges (not colored) are needed
for the fabrication process.

e The dark red CPWs (as well as the brown CPW in Fig. 13b) are copla-
nar waveguide resonators. They are used to couple two qubits. They
act as resonators because the photons in them are reflected at the
coupling capacitances (the red structures) [19]. The length of the res-
onators determines their resonance frequency. To adjust their length,
there are "wiggles” in the resonators (visible in Fig. 12).

e The squares in the corners of the chip (not visible in Fig. 13, but visible
in Fig. 12) are made to have reference points for the alignment during
the photo lithography process.

3.2 Teleportation of a Quantum State

One way to perform computations on qubits is given by only using telepor-
tation and single-qubit operations, see [16]. Performing a quantum telepor-
tation (compare section 2.9) on a chip is a relatively new experiment. For
this reasion, it has to be tested further on.

Here, we will put two identical (mirror-symmetric) experiments on one
chip, such that one can make two experiments with the effort of making
only one. This again means, that we have less pins to control the qubits.
Therefore, we will just use flux lines to alter the magnetic flux through the
qubit and thus changing its transition frequency, compare section 2.5. These
flux lines have the advantage that they do not necessarily need two pins for
the current to run, but the current can just flow to the ground of the chip.

For this experiment, two different designs were realized. The first design is
shown in Fig. 14, the second was already shown in Fig. 12. There is something
a bit special in this experiment: we have L-shaped qubits. This is because
we want to couple both resonators well with this qubit, but the coupling of
the resonators between each other should be as small as possible. Therefore,
the distances between the resonators are generally tried to be held as large
as possible. And as well the distances between flux lines and resonators (and
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Figure 14: An alternative chip design of a quantum teleportation experiment.
There are two identical experiments on the same chip, such that the effort
of measuring one experiment is smaller.

between two flux lines) are tried to be maximized. This is because coupling
could occur, resulting in unwanted modes in resonators. This of course would
disturb the experiment.

Out of these reasons, in the first design, compare Fig. 14, the flux lines are
relatively far away from the resonators. This is not really true for the upper
right corner, but for the left half it is nicely done. One possible drawback of
this design is that all the resonators are essentially parallel. This means, that
we potentially have a high coupling. There is a possibly problematic spot in
the upper right corner: the flux line is not guided back to a pin, but is just
shorted to ground. This could result in a noisy ground, possibly influencing
the resonator. But it is hoped that this won’t influence the resonator too
much, since there is a bridge over the resonator allowing the current to flow in

20



the area to the right. Also, there is no air bridge connecting the more central
(e.g. in the upper experiment the lower) resonator to the upper coupler and
the pin.This makes that resonator hardly couples with the qubit, because the
wave in the resonator will be reflected at the end with the missing bridge.
Therefore the resonator is not near enough to the qubit for the wave to
couple. Thus, the experiment is not expected to work. But this is not very
bad, since a second and more promising approach for this experiment was
designed.

In the second design (Fig. 12), the resonators of one experiment are or-
thogonal to each other. This reduces the coupling between them. The verti-
cal resonator is connected with an air bridge to its upper part. The flux line
there is again directly shorted to ground, but the current can flow away over
the many air bridges there. In the upper right corner, we have a flux line
going parallel to the feed line of the coupler for a relatively large distance.
This will not lead to bad results, because these two lines belong to different
experiments.

Note, that to reduce the effort, only one of the two experiments was really
designed. The rest was done by adding a rotated copy of the first experiment
to what was already designed. The rotation is performed around the axis
perpendicular to the plane of the chip in the middle of the chip.

3.3 Coupling of Resonators

Another interesting question is, how much the resonators couple to each
other. And whether it is possible, to realize a design related to the one pro-
posed in [20]. The idea there is to place the qubits like on a chess board. They
are connected with resonators which form a grid. This has the advantage,
that two qubits could communicate with each other only one intermediate
qubit. Of course, this is not a realistic design in near future, since it requires
a multilayer-chip. And this is with the fabrication methods of nowadays not
possible. None the less it is useful to know whether it could work out or not.

As shown in Fig. 15, 8 resonators are crossed in the middle. It is tried
to maximize the space between the resonators before they come together in
the middle, such that we can investigate the coupling at a crossing. This
is not so easy, since the resonator need to have a certain length. Therefore,
some of the resonators are placed diagonal. This allows a better usage of
the available space, and the resonators being less parallel, thus reducing the
coupling away from the middle.

The big crossing in the middle, magnified in Fig. 17, is done with the help
of air bridges. The resonators are that near together (in order to maximize
the coupling) that the air bridges might overlap. This means, that we do
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Figure 15: The chip designed to test the coupling between resonators. The
8 resonators are crossed in the middle using air bridges.

not have something like a series of bridges, but one large bridge with pillars.
Between the resonators, we have as well bridges, such that the ground in the
center can be equilibrated. These bridges are placed in each row and each
column, between the resonators. Although some more air bridges further
outside could be helpful, they are not implemented. This is because bridges
are relatively delicate to fabricate, and the less of them we have the lower is
the probability of fabrication mistakes.

3.4 Testing Device for Quantum Bits

A further chip is designed in order to be able to easily test different types of
qubits. The more qubits that can be tested on one chip, the less is the effort
per qubit. Again, we make the design mirror-symmetrical such that one can
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Figure 16: Magnification of the center of Fig.15. The connecting of the
resonators is done again with air bridges.

easily make two experiments. The chip is designed such that the length of
the resonators can be changed by just changing a variable. This makes the
design much more flexible.

The idea of this implementation is to test one qubit per time. For that, we
have one big feed line, lying horizontally. It is not ended with capacitances,
allowing to directly send the desired frequency through the line - of course
this reduces the quality of the wave, and we have a much higher noise. The
four resonators connecting the feed line with the qubits have each a different
length. Thus, they all have a different resonance frequency and can be con-
trolled independently. Because if we send the resonance frequency of say the
first resonator through the feed line, only in this resonator will be a standing
wave which then couples to the first qubit. In order to test the control of the
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Figure 17: The chip designed to be able to easily test many qubits at the
same time.

qubits, flux lines enable us to control the magnetic flux through the qubit.

Note also that the places spared out for the qubits are of different size.
This is because different types of qubits shall be tested. The simulation of
these is done in section 4.

3.5 A Mechanical Resonator near the Quantum Ground
State

Here, an estimation is made, whether or not it would be possible to make a
mechanical resonator which could be brought into it’s ground state of motion.
This has been implemented for example in [18]. But after a quick estimation,
one has to see that this won’t be that easy with the available technology:
making an air bridge with an adjusted size (one pillar of the air bridges is not
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build, so they form a structure like a spring board). In the following, we will
make estimations for the resonator. First, we will look at the capacitance
between the resonator and ground. We need a capacitance which is high
enough to couple reasonably well to a coplanar wave guide resonator in order
to freeze out the modes of the mechanical resonator. After that, we will look
at the frequency of the mechanical resonator. It should be in the Giga-Hertz
regime, such that it is in the range of the available apparatus.

We will now look at two different realizations of a quantum mechanical
harmonic resonator. First, we look at a membrane like realization [17]. By
integrating the resonator in an electric circuit, it is possible to cool out it’s
excitations. In [17] there is a technique used called sideband cooling. There,
a resonator is used, which alters a capacitance by motion. Using this, it can
be brought very near the ground state.

Figure 18: A 15-pum-diameter membrane in suspended 50 nm above a lower
layer. The capacitance is modulated by the motion of the membrane. Figure
from [17].

The idea is that a membrane (shown in Fig. 18) is suspended 50 nm above
a (super-) conducting layer. The motion of the membrane then influences the
capacitance between the membrane and the underlying layer. The membrane
would play the role of the quantum mechanical resonator. We now want to
estimate the capacitance between the layer and the the membrane. Like this,
we can get an idea about how big the capacitance would have to be, and how
big our resonator has to be in order to get it near the ground state. Since the
membrane has a diameter of 15 um and the distance between it an the layer
below is only 50 nm, we can expect that the formula of the plate capacitor
should yield appropriate results. The formula for the capacitance of a plate
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capacitor is
A

CZEOGR'E, (11)
where A is the surface of the capacitor and d is the distance between the
plates. Since in [17] a round membrane is used, we have with A = r?7 and
because we are in the vacuum (giving us eg ~ 1) that

2 7.5-1079)2
C = €0€ER * % ~ 8.85 - 1012%

Now we can estimate how big the surface has to be using the air bridges.
They have a length [ = 40 gm and are d = 2 pum above ground. Again we
set € to 1, and we get with Eq. (11) that

C-d _31-1071.2.10°F
T eoen 8.85 - 1012

~31-100" F=31fF. (12

A

~7-107" m*. (13)

This would mean that our plate capacitor has to have a width b of (A =10,
with [ = 40 pum being the length of an air bridge)

7-107°
4-10-°

This is not realistic to achieve, since an air bridge is about 10 pym wide.
This would mean that we need to place 18 air bridges at least next to each
other to get the same capacitance. Note that the assumption made in Eq. 14
is optimistic: we wont have that the whole 40 pm of the air bridge contribute
to the capacitance like calculated as a plate capacitor. If we use as the un-
derlying part a normal CPW (which is only 20 ym wide), only approximately
half of the air bridge length will contribute to the capacitance as computed,
the rest will contribute much less. Thus, we can speak of these 18 air bridges
being a lower limit for the required capacity.

An other problem appears if we consider the weight of the structure. In
[17] the mass of the membrane is stated as 48 pg. If we estimate the weight m
of our oscillator, we get with p4 = 2.7-10% g/m? and the height » = 800 nm
of an air bridge that

b= A/l ~ ~1.8-107* ~ 180 pm. (14)

m=V-py=hA -py~8-1077-7-107-2.7-10° ~ 15 ng. (15)

This means, that the structure created here would be about 300 times heavier
than the structure used in [17]. This again means that more energy would
be needed to be frozen out, which again means more difficulties.

In another paper [18] they use a 30 um broad, 170 nm long and 140 nm
thick nanomechanical resonator which is coupled to a superconducting mi-
crowave resonator (distance to this is 75 nm), compare Fig. 19. If we roughly
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Figure 19: A nanomechanical resonator which is coupled to a superconduct-
ing microwave resonator. Figure from [18].

estimate the capacitance between ground (the superconducting microwave
resonator) and the nanomechanical resonator in this case, using again the
formula (11) for a plate capacitor, we get a capacitance of

3-107%-1.7-1077

C ~885-107". —E 10 ~6.0-107" F = 0.6 F, (16)

where we set eg = 1. Now we compare with our resonator consisting of air
bridges. We want to have the same capacitance, again in the approximation
of a plate capacitor. An air bridge is [ = 40 pm long (we take this value
because we have it everywhere else, but it could be varied). With A =1-b
we can again determine the width b of the structure with

,_ Cd

l- EOER'

(17)

Again, we set eg = 1, and use that in our case we have that d = 2 ym and
get

6.0-10716.2.1076
©4-1075-8.85 - 1012
This means, that already one air bridge would be enough and that it would
be possible. But here we again assumed that the whole 40 pym of the air
bridge contribute equally to the capacitance relative to the resonator. Since
the width of the resonator is only about half of this, this is a strong over-
estimation. Also it has to be considered that our structures are more than 5
times thicker than the structures in [18]. This again leads to more difficulties
in freezing out the excited states.

Compared to the membrane in [17], the values in [18] are much nearer to
the ones that can be achieved here. Perhaps it would be possible to construct

b

= 3.4 pm. (18)
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a nanomechanical resonator with altered values for the air bridge: a much
smaller d would be required and a much thinner bridge would also be helpful.
Of course, diminishing the d will lead to difficulties in the fabrication process.
But the capacitance of the air bridge to the wave guide is not the only
thing we have to consider. It is also very important, that resonance frequency
of the structure is in the frequency range we can handle. This is about 2-
8 GHz, thus the same frequency range where all the resonance frequencies of
the resonators on the chips are (and the apparatus available runs). Therefore
the resonance frequency wy of the resonator has to be estimated. Since our
resonator is essentially a microscopic cantilever, we will use Stoney’s formula
(or also see [21]) to compute the resonance frequency wy of the resonator

Ewt3
== 1
o \/ 43me,’ (19)

where E is Young’s modulus, L the length of the air bridge, ¢ its thickness,w
its width and m,, its equivalent mass. We will approximate the equivalent
mass with the mass of the air bridge, and thus we can write

Ewt? Et?
— — = 20
0 \/ ABwtlp Al4p’ (20)

where p is the density of the material. It is now clear, that the resonance
frequency does not depend on the width of the resonator. If we use the
values we took to estimate the capacitance, t = 800nm and [ = 40 ym and
use that Young’s modulus for Al is £ = 69GPa and the density of Al is
p = 2700kg/m?3, we get that

Et? 69 - 109 - 8 10-7)?
Wy = =1.3-10° 2x/s. 21
’ \/4l4 \/ (4-10-%)". 2.7 103 o (2)

This value is much too low, being only in the MHz regime whereas it
should be in the order of GHz. In order to get to higher frequencies we can
either take other materials (which wont get us a factor of 10%) or increase
the thickness or decrease the length of the resonator. Since increasing the
thickness will make wy only to increase linearly, this is not very interesting.
Reducing the length will make wy to increase in quadratic order. If we want to
increase wy by a factor of 103, we have to reduce [ by a factor of /1000 ~ 31.6
resulting in a length [ ~ 1.3 um. Such a tiny length of course will diminish
the capacitance between resonator and the wave guide to a very low value.
And with such a low capacitance it wont be possible to cool the resonator
down into the ground state any more.
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It has to be noted that in [17] a technique called sideband-cooling is used.
This technique makes it possible to control an oscillator in the MHz regime
with a GHz apparatus. This means, that a mechanical resonator like this one
here could be brought into its ground state of motion, using sideband-cooling
and a GHz apparatus.

4 Transmon Simulations

To fabricate and measure each design of a Transmon is a big effort. It
is much easier to simulate them on a computer. Analyzing the important
quantities enables to exclude designs with unwanted properties. This reduces
the amount of Transmons to be produced and measured, thus saving costs
and work.

Simulating some Transmons and trying to improve their properties was
a task of this thesis too. To do so, the program Maxwell 14.0 by ANSYS
has been used. The qubit and it’s near surrounding on the chip has been
extracted from Mathematica and imported into Maxwell. There, the the sap-
phire substrate (this is where all the elements are placed on) has additionally
been created, compare Fig.20. After that, excitations could be assigned to
the different elements, and Maxwell calculated the capacities of the pieces
to each other. This is done with the method of finite elements. With these
values, all the important quantities can be calculated.

4.1 Important Quantities

Maxwell calculates the capacities between the different areas of the model.
These are the resonator, the ground, the reservoir, the island and the flux
line. Out of these, the three quantities can be calculated:

e The charging energy Ec = ¢2/2Cx, where Cy, is the capacitance be-
tween island and reservoir (compare section 2.4). We will in the fol-
lowing try to minimize F, given certain constrictions.

e The coupling g,.; between the resonator and the island. This quantity
is not as critical as E¢: it is normally large enough, and if it should be
lowered, one can simply move the qubit away from the resonator.

e The coupling g, between the reservoir and the flux line. This quan-
tity is not as important as F¢ either.
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Figure 20: A picture of a simulated Transmon. The upper green part is a
fluxline, and the central parts are the island (near the resonator) and the
reservoir (near the flux line). Below them there is a resonator and at the
right side we have the coupler. The light blue area is the aluminum ground
of the chip (this is a thin superconducting aluminum layer). The gray area
is the sapphire substrate on which everything is placed.

Additionally, the design should - as good as possible - minimize the elec-
tric field between the components. This is because strong electric fields are
suspected to have a negative effect on the coherence time.

Bringing two structures closer together enlarges the capacitance between
them. Thus, if we want a strong coupling between the resonator and island
(a large gr.s) we can move the resonator nearer to the island.

4.2 Minimizing E¢

If the reservoir and the island are separated only by a small distance, the
capacitance between them will be high. This again means, that F¢ is lowered.
But this is not the best thing one can do, because if two structures are
moved together, the electric field in between becomes stronger. Note that
the approximation of plate capacitors can not be used here, since the distance
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between the structures is big compared to the extension of the surfaces facing
cach other (the structures are only 200 nm thick). This means, that one has
to find a compromise between high capacitance and low electric field.

Trying to lower E¢ means to increase the capacitance between reservoir
and island. The most promising way to increase the capacitance between
reservoir and island is to increase their dimensions. This means, instead
of making the qubit with measures 300 times 60 pm, one can make them
twice as long to 600 times 60 pm (a qubit with such dimensions is shown in
Fig.21) and with that double the capacitance between island and reservoir.
The maximal magnitude of the electric field is not affected by this enlarging,
since the relevant parameters for it remain untouched.

EL[Y_per_meter]
9. 3681 +0B5
3. 8784 e+0E5
1. BB7Ae+0A5
6. 6587 e+0@4
2. 7598 +0aY
1. 1432e+084
4. 7369e+0@3
1.9627e+0@3
8. 1327 e+0@Z
3. 3698e+082
1.3963e+082
5. 78556+@81
2. 3972e+0@1
9. 9329e+080
4. 1157 e+080
1. 7854 e+0@0
7.8662e-081

Figure 21: A picture of a simulated qubit with a length of 600 pm. The gap
between island and reservoir is 3 um and the distance to ground is 5 pm
everywhere. The scale of the electric field is logarithmic.

Another method to increase the capacitance is to make a structure with
fingers. For example, the qubit shown in Fig.20 has such fingers. The dis-
advantage of these fingers is that they have many corners. And at corners,
we have a strong electric field (compare next section).
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4.3 Minimizing the Electric Field

As mentioned above, the simplest way to reduce the electric field between
components is to separate them by big distances. But this not only brings
down the electric field, but also the capacitance between the components.
This is not desired, since E¢- should be minimized.

Another idea to reduce the electric field is to avoid sharp edges in the
corners and make round corners instead. This is because at a sharp apex
the electric field is very strong (at a perfect apex we would have a diverging
electric field), compare for that [22, Chapter 3.4]. To look at this more
precise, a special simulation was done, compare Fig.22. In this simulation,

EL[Y_per_meter]

2, 2238e+806
1. 2585e+006
7. B322e+005
3, 9545e+885
2, 2238e+005

1. 2585 +EE5
7. B322e+EEY
3. 9545e+EEY
2. 2238e+EEY4
1. 25A5e+0AY
7.B322e+083
3. 9545e+083
2. 2235e+003
1. 25A5e+083
7.A32Ze+002
3. 9545e+082
2. 2235e+082

Figure 22: A picture of the simulated setup to determine the electric field
of circular and rectangular geometries. The scale of the electric field is loga-
rithmic.

the dimensions and the materials assigned to the structures are the same as in
the simulation of the qubits. The electric field is displayed with a logarithmic
magnitude plot. No big difference can be seen between the field strengths
of the circle and the square. This is due to the fact that the circle consist
of a polygon with some 24 edges. This is not smooth enough to make the
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difference really visible. Furthermore, if one zooms in to the edges of the
polygon, one can see that the electric field magnitude is dominated by these.
So, it is not really clear whether this method can bring a big advantage. The
qubit therefore has probably to be fabricated and tested for finding it out.

4.4 Results

The most important results found by simulating different qubits are listed
below.

e [t seems that the best way to both minimize the electric field and F¢
is to choose larger dimensions for the qubit.

e The round edges do not lower the magnitude of the electric field in the
simulations.

e The size of the gap between reservoir and island has the much lower
effect on the capacitance between them than the length of the qubit.

e Also, the effect of making fingers is rather small compared to choosing
larger dimensions.

e Both, g, and gy can be controlled easily by altering the distance
between the qubit and the resonator, respectively the flux line.

e Separating island and reservoir by a relatively big distance (at least 5
pm) from ground decreases the electric field without altering Ec.

5 Conclusion

The designs of three different experiments with superconducting quantum
bits were made. The first design was realized to perform a quantum tele-
portation. The second experiment aims to understand the coupling between
resonators more exact. And the third design is made to be able to study the
properties of different quantum bits.

After this, several different designs for qubits were simulated. The num-
bers for Eo and the magnitude plots of the electric field indicate, that a
long qubit (600 times 60 pm) should yields good results. Also, the qubit
should be without fingers and there should be a distance of 5 um separating
ground, island and reservoir. The distance between the components lowers
the amplitude of the electric field, and the larger dimension of the qubit im-
proves the capacitance between island and resonator. The influence of round
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corners could not be evaluated by simulation, but should be tested on really
fabricated qubits.

Neither the designed experiments nor the qubits were tested and mea-
sured yet. This of course makes it not possible to say whether the designs
were good or not.

6 Outlook

Of course, the designed experiments now need to be fabricated. After that,
one can measure the properties of the chips, and look whether the experi-
ments work or not.

For the simulations of the qubits, a more systematic approach is needed.
With that, it will be possible to understand better the dependences of the
interesting quantities on the parameters. At the moment, another semester
thesis is being done about exactly this subject.

7 Acknowledgment

I would like to thank Prof. A. Wallraff for making this semester project
possible. It was a great experience for me to make such an interesting project.
[ also would like to thank my supervisor Lars Steffen for his valuable guidance
and the rest of the group for the nice atmosphere.

References

[1] Lloyd, S. The computational universe: Quantum gravity from quantum
computation. quant-ph/ 0501135 (2005).

S

Fink, J. Master thesis, Universitat Wien, 2007.

=)

Devoret, M. H., Wallraff, A., and Martinis, J. M. Superconducting
qubits: A short review. cond-mat/ 0411174 (2004).

[4] Shor, P. W. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. Siam J. Sci. Statist. Comput.
26, 1484 (1997).

[5] Grover, L. K. A fast quantum mechanical algorithm for database search.
In STOC 1996: Proceedings of the twenty-eighth annual ACM sympo-
sium on Theory of computing, 212-219 (ACM Press, New York, NY,
USA, 1996).

34



[6]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Wallraff, A., Schuster, D. 1., Blais, A., Frunzio, L., Huang, R. S., Majer,
J., Kumar, S., Girvin, S. M., and Schoelkopf, R. J. Strong coupling
of a single photon to a superconducting qubit using circuit quantum
electrodynamics. Nature 431(7005), 162-167 (2004).

Steffen, L. Master thesis, ETH Ziirich, 2008.

L. Frunzio, A. Wallraff, D. Schuster, J. Majer, and R. Schoelkopf. Fabri-
cation and characterization of superconducting circuit QED devices for

quantum computation. IEEE Transactions On Applied Superconductiv-
ity, 15(2):860-863, June 2005.

D. I. Schuster. Circuit Quantum Electrodynamics. PhD thesis, Yale Uni-
versity, 2007.

Bouchiat, V., Vion, D., Joyez, P., Esteve, D., and Devoret, M. H. Quan-
tum coherence with a single Cooper pair. Physica Scripta T76, 165-170
(1998).

Koch, J., Yu, T. M., Gambetta, J., Houck, A. A., Schuster, D. I., Majer,
J., Blais, A., Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. In-
troducing the transmon: a new superconducting qubit from optimizing
the cooper pair box. cond-mat/ 0703002v1 (2007).

Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J.

Schoelkopf. Chargeinsensitive qubit design derived from the Cooper pair
box. Physical Review A, 76(4):042319, 2007.

A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf.
Cavity quantum electrodynamics for superconducting electrical cir-
cuits: An architecture for quantum computation. Physical Review A,
69(6):062320, June 2004.

W.K. Wootters and W.H. Zurek, A Single Quantum Cannot be Cloned,
Nature 299 (1982), pp. 802-803.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A.
Zeilinger. Experimental Quantum Teleportation, Nature 390, 6660, 575-
579 (1997).

Daniel Gottesman & Isaac L. Chuang. Demonstrating the viability of
universal quantum computation using teleportation and single-qubit op-
erations, Nature 402 , 390-393 (1999).

35



[17]

22]

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K.
Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert & R. W. Simmonds.
Sideband cooling of micromechanical motion to the quantum ground
state, Nature 475, 359-363 (2011).

T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk &
K. C. Schwab. Preparation and detection of a mechanical resonator near
the ground state of motion, Nature 463, 72-75 (2010).

M. Goppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink,
P. J. Leek, G. Puebla, L. Steffen, and A. Wallraff. Coplanar Waveguide
Resonators for Circuit Quantum Electrodynamics, J. Appl. Phys. 104,
113904 (2008).

F. Helmer, M. Mariantoni, A. G. Fowler, J. von Delft, E. Solano and F.
Marquardt. Cavity grid for scalable quantum computation with super-
conducting circuits, EPL 85 50007 (2009).

Clark T.-C. Nguyen and Roger T. Howe. An Integrated CMOS Microme-
chanical Resonator High-Q Oscillator, IEEE J. of Solid-State Circuits,
Vol. 34, No. 4 (April 1999).

J. D. Jackson, Klassische Elektrodynamik, 4. Auflage (de Gruyter,
2006).

36



