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Abstract

We introduce laser scanning microscopy as a tool to characterize su-
perconducting lumped-element microwave resonators and illustrate its
application in mapping the normal-mode structure of microwave pho-
tons inside a 9-site linear array of resonators. The laser light locally per-
turbs resonator frequencies and induces shifts in resonance frequencies,
which we determine by measuring the microwave transmission coeffi-
cient. From the magnitude of mode shifts, we can reconstruct spatial
current distribution of the normal modes. Furthermore, we compare
the data from laser scanning microscopy with a reconstruction of the
system parameters from scattering coefficients.
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Chapter 1

Introduction

Impressive experimental advances over the last two decades have turned
the idea of quantum simulation [1] into reality [2, 3, 4, 5, 6, 7]. The com-
petition between the different platforms isn’t, however, a ’winner takes all’
situation. Each platform has its own advantages and limitations, and differ-
ent approaches often tackle complementary aspects of quantum simulation.
What they have in common is their aim to solve problems that are compu-
tationally too demanding to be solved on classical computers, at least at the
moment [8].

One suggested physical realization of photon-based quantum simulation
consists of microwave photons inside large networks of superconducting
resonators and qubits. This architecture is particularly promising because of
the significant experimental progress in the field of circuit quantum electro-
dynamics (cQED) [9, 10, 11].

Previous work [12] [6] has shown the fundamental usefulness of laser scan-
ning microscopy for quantum engineering. Despite the small lattices size,
the exponential proliferation of Hilbert space dimension with increasing
photon number quickly approaches the computational limits of a classical
computer, rendering the system a quantum system in the rigorous sense.
However, measuring and probing many-body states in such lattices still re-
mains a significant experimental challenge [6].

In this work, we report measurements on a lumped-element superconduct-
ing microwave resonator arrays. Illuminating the resonator with optical
photons, we observe a decrease in its resonance frequency and an increase
in loss. We discuss characterization of normal-modes of a specific array’s
Hamiltonian. To compare results we have extracted design parameters from
the scattering matrix elements.
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Chapter 2

Modeling Coupled Lumped-Element
Resonators

An electrical circuit can be thought of as a discrete network of lumped el-
ements as long as the wavelength is large compared to the size of the cir-
cuit. The lumped-element model in this case is a simplified description of a
spatially-distributed electrical system which can describe its behavior when
certain conditions, as an inappreciable phase delay, are fulfilled. The model
approximates the circuit by separating it into abstract discrete elements, lead-
ing to electrical quantities without their spatial component. In the case of
a simple transmission line-based resonator this means that the main induc-
tance and capacitance can be assigned to different parts distributed over the
transmission line. These kinds of components offer practical advantages,
such as their compact size and wider bandwidth characteristics [13].

In the realm of microwave circuits, we need to consider transmission line the-
ory, as the design of microwave lumped-element circuits is based on small
sections of TEM (Transversal Electromagnetic) lines. In contrast to circuit
theory, where an electrical network is represented by idealized electrical
components with the same current and voltage over their physical dimen-
sions. In transmission line theory, we deal with a network of distributed
parameters [14].

Inductor

An inductor is a passive electrical component which stores and releases mag-
netic energy. We characterize inductors with their respective inductance,
which we can mathematically express as

v(t) = L
di(t)

dt
, (2.1)
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2.1. Impedance of RLC Circuit

where L is the inductance, v(t) the voltage and i(t) the current through the
circuit.

Rubio Abdal [14] states that the inductance can be engineered by changing
it per unit length if the transmission line by changing materials or geometry.

Capacitor

An ideal capacitor is an electric passive component which does not dissipate
energy and which stores and releases electrical energy. The electrical energy
is stored between two conductors separated by a dielectric. Capacitance is
defined as

C =
Q
V

, I = CV̇ (2.2)

where Q is the charge stored and V the voltage.

2.1 Impedance of RLC Circuit

We can consider each element as an element with appropriate impedance

ZC =
1

jωC
, ZL = jωL, ZR = R. (2.3)

The total impedance in parallel or serial configuration is given by Z−1 =
Z−1

1 + Z−1
2 or respectively Z = Z1 + Z2.

(a) (b) (c)

Figure 2.1: RLC Schematics. (a) Unloaded parallel RLC circuit. (b) Parallel RLC circuit
with a capacitive coupling Cκ to the load RL. (c) Norton equivalent of the capacitively
coupled RLC oscillator.

For the unloaded RLC depicted in Fig. 2.1a, we have
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2.2. Transfer Matrix Formalism

ω0 =
1√
LC

, (2.4)

Z =

√
L
C

, (2.5)

γ =
1

RC
=

ω0

Qint
. (2.6)

The Q-factor is defined as

Q = ω0
Energy Stored

Power Loss
=

ω0

γ
= ω0RC = R/Z. (2.7)

For a RLC resonator that is coupled to an external circuit (Fig. 2.1b) we use
Norton’s Theorem to transform to the Norton equivalent circuit (Fig. 2.1c) [13]:

C∗ =
Cκ

1 + (ω0CκRL)2 ≈ Cκ (2.8)

R∗ =
1 + (ω0CκRL)

2

ω2
0C2

κ RL
≈ 1

C2
κ RLω2

0
, (2.9)

such that the resonance frequency is ωr = 1/
√

LCΣ, where CΣ = C + C∗.

In the equivalent circuit, R∗ describes external losses due to coupling to the
load such as open transmission line. The external loss rate of the resonator
to circuit is κ = 1/(R∗CΣ) and the internal loss rate is γ = 1/(RCΣ). This
results in a loaded Q-factor of [14]

1
QL

=
1

Qint
+

1
Qext

=
γ

ωr
+

κ

ωr
. (2.10)

2.2 Transfer Matrix Formalism

We can extend this approach to describe large linear system of coupled
lumped- element resonators using ABCD (or transfer) matrix formalism.
With

(
Vin
Iin

)
=

(
A B
C D

)(
Vout
Iout

)
, (2.11)

we can represent the relation of voltage and current between the ports of a
two-port microwave circuit.
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2.2. Transfer Matrix Formalism

I1 I2

V1
+
–

V2
+
–

Port
1

Port
2

A
C

B
D

Figure 2.2: Two-Port Network [13]

To distinguish between parallel and serial components we write

MS =

(
1 Z
0 1

)
, MP =

(
1 0

Z−1 1

)
. (2.12)

The transfer matrix of one coupled RLC resonator is calculated by

McRLC = MS(Cκ) ·MP(R) ·MP(L) ·MP(C), (2.13)

which quickly gives rise to the generalization to several resonators coupled
to a transmission line

M =
n

∏
i=1

McRLC, i for n ∈N. (2.14)

The relation between impedance matrix of a two-port circuit to the transfer
matrix is given by

(
Z11 Z12
Z21 Z22

)
=

(
A/C (AD− BC)/C
1/C D/C

)
(2.15)

For impedance of a serial node:

A =
V1

V2

∣∣∣∣
I2=0

(2.16)

which implies that A = 1. And similarly, for the other matrix components:

B =
V1

I2

∣∣∣∣
V2=0

=
V1

V1/Z
= Z, (2.17)
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2.2. Transfer Matrix Formalism

C =
I2

V2

∣∣∣∣
I2=0

= 0, (2.18)

D =
I1

I2

∣∣∣∣
V2=0

= 1. (2.19)

Having the impedance of the system and knowing the characteristic impedance
of a transmission line, this is the characteristic impedance of the waveguides
used to couple to the resonator, typically 50 Ω - the reflection coefficient is

S11 =
V−1
V+

1

∣∣∣∣
V+

2 =0
= Γ(1)

∣∣∣∣
V+

2 =0
=

Z11 − ZC

Z11 + ZC
. (2.20)

We can find S21 by applying an incident wave at port 1, V+
1 , and measuring

the outcoming wave at port 2, V−2 . This is equivalent to the transmission
coefficient from port 1 to port 2:

S21 =
V−2
V+

1

∣∣∣∣
V+

2 =0
(2.21)

One could in principle write the reflection coefficient only in terms of the
ABCD matrix

Γ = S11 =
A + B/ZC − CZ0 − D
A + B/ZC + CZ0 + D

. (2.22)

with B = 0 and D = 0, since there are no currents flowing from the other
side.

For a two-port transmission geometry we can apply the same approach lead-
ing to

S21 =
2

A + B/ZC + CZC
. (2.23)
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2.3. Hamiltonian Description for Multiple Coupled Cavities

2.3 Hamiltonian Description for Multiple Coupled Cav-
ities

To start we will consider the Lagrangian of an electric circuit with N LC
parallel oscillators coupled to each other capacitively, with the mode flux
(Vi = φ̇i) as a coordinate.

With Input-Output Theory we have the means to calculate, together with
the Hamiltonian and intern/external loss rate, the scattering matrix of the
underlying isolated system.

For an arbitrary number of Resonators N with square tridiagonal capaci-
tance matrix C and diagonal inductance matrix L (inductance) we can write
the Lagrangian as

L =
1
2

Φ̇TCΦ̇︸ ︷︷ ︸
electric energy

− 1
2

ΦTL−1Φ︸ ︷︷ ︸
magnetic energy

, where Φ = (φ1, . . . , φN). (2.24)

Using Legendre transform and the canonically conjugate momenta Qi ≡ ∂L
∂Φ̇i

,
we find the Hamiltonian of the System

H =
1
2

QTC−1Q +
1
2

ΦTL−1Φ (2.25)

With the canonical commutator and by defining the second quantization’s
annihilation and creation operators, we find in rotating wave approximation

H = ∑
i

h̄ωi(âi
† âi + 1/2) + ∑

i 6=j
h̄Jij(âi

† âj + âj
† âi) (2.26)

where

Jij =
1
2

C−1
ij√

C−1
ii C−1

jj

√
ωiωj =

1
2

C−1
ij

√
Z−1

ii Z−1
jj , (2.27)

and

ωi =
√

C−1
ii L−1

ii . (2.28)
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2.3. Hamiltonian Description for Multiple Coupled Cavities

2.3.1 Eigenmodes and Eigenfrequencies

If we now choose some basis for H, we can write the Hamiltonian as

H = h̄A†HA (2.29)

with A = (â1, â2, . . . , âN) a vector, A† =
(
â†

1, â†
2, . . . , â†

N

)
a functional and

H =



ω1 J12 J13 . . . . . . J1N
J12 ω2 J23 J2N
...

...
. . .

Ji−1 i ωi Ji+1 i
...

. . .
...

J1N . . . . . . J1−N N ωN


. (2.30)

We then have as set of four nine-dimensional arrays parameters which com-
pletetly define our model of the coupled resonator array (CRA). With C, L
we can write the coupling matrix Jij and the cavity modes ωi. We note that
the Hamiltonian of our circuit has nearest neighbor coupling Ji,i+1 as well
as long range coupling Ji,i+k for 1 < k ≤ N − i. However, for solving the
eigenvalue problem of H the only numerically relevant terms are nearest
neighbor coupling.

2.3.2 Input-Output Formalism

The Heisenberg equation with coupling rate (external loss) κ and internal
loss γ can then be written as

ȧi = −
i
h̄
[ai,H]− κi

2
ai −

γi

2
ai +
√

κiain, i, (2.31)

which are called Langevin equations.

Sij =
√

κi
ai

ain, j
− ain, i

aout, i
(2.32)

Thus, together with the Input-Output relation [15]

âin + âout =
√

κâ (2.33)

the reflection coefficient for the single resonator is
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2.3. Hamiltonian Description for Multiple Coupled Cavities

S11 =
aout, 1

ain, 1
=
√

κ
a

ain
− 1 =

κ

i(ω−ω1) + (κ + γ)/2
− 1 (2.34)

and the transmission coefficient for the single resonator:

S12 =
aout, 1

ain, 2
=

κ

i(ω−ω1) + (κ + γ)/2
(2.35)

For an arbitrary number of resonators, we will have a system of N coupled
ordinary differential equations.

9



Chapter 3

Theory of Photo Response and Laser
Scanning Microscopy

Laser scanning microscopy makes it possible to gather local information
about photon occupancies in such lattices. For instance, it allows us to lo-
cally image normal modes in a microwave resonator array. When illumi-
nating a superconducting structure with a laser the cooper pairs break into
quasiparticles. In this experiment a Laser with 405 nm at 1 V which results
in 10 mW at the structure. This increases kinetic inductance and ohmic
losses R of the circuit [6].

In superconductors there exist two types of charge carriers:

• Cooper pairs. Free electrons binding together by photon-electron inter-
action. They can condense in a superconducting state where current
can flow dissipationless below the critical temperature TC,

• Quasiparticles. Free charge particles with renormalized mass. They
dissipate energy due to scattering with phonons.

Microwave power Prf, ab is absorbed by the quasiparticles, which can ex-
change energy with a bath of phonons with distribution n(Ω). The phonons
are also connected to a thermal bath and an effective hot phonon source that
accounts for optical absorption. The absorbed optical power Popt acts as an
additional phonon generating source term. The Fig. 3.1 shows the thermal
model of our system [7].

The total inductance of a superconducting circuit is then given by

L = Lkin + Lm, (3.1)

where Lkin is the kinetic inductance and Lm the geometric inductance. With
this model we derive using Kirchhoff’s laws the photo response of the sys-
tem with one resonator. The voltage equation is

10



quasiparticles
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qp excitation Prf,ab 

phonons

Iqp(E,fr) 
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Prf,ab 

thermal bath
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Popt hot phonons
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microwave 
drive

optical 
illumination

Figure 3.1: Diagram showing model for steady-state power flow in the quasiparticles
and phonons in a thin-film superconducting resonator under optical illumination [7]

.

VC + VLm + VLkin + VR = 0. (3.2)

By substituting VC = Q/C, VLm = Lm İ, VLkin = Lkin İ, and VR∗ = R∗ I, we
have

Q
C

+ Lm İ + Lkin İ + RI = 0 . (3.3)

Taking time derivative, we can write equation of motion as

Ï +
R

Lm + Lkin
İ +

1
(Lm + Lkin)C

I = Ï + γ İ + ω2
0 I = 0 . (3.4)

Comparing coefficients, we get the internal loss term

γ =
R

Lm + Kkin
(3.5)

and the resonant frequency

ν0 =
ω0

2π
=

1
2π
√

LC
(3.6)
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L

R

kin

Lm

C

Figure 3.2: The circuit model of an unloaded parallel superconducting lumped ele-
ment resonator. In the figure, C is capacitance, LM is geometric inductance, Lkin is
kinetic inductance, and R is effective resistance given by two-fluid model [12].

Under small laser perturbation, ∆Lkin and ∆R∗ are directly proportional to
laser power but independent of microwave power [16]:

∆ν0 = − 1
4π
√

C
∆Lkin

(Lm + Lk)3/2 , (3.7)

∆γ =
∆R

Lm + Lkin
. (3.8)

As Culbertson et al. [17] have pointed out, to measure a photo response the
laser must shine on the inductor (where current density J is high). We have

δν0, δγ ∝ J2, PL (3.9)

where PL is the laser power and current density J.

The approach used in this thesis for defining photo response is to measure
the distance in the IQ-Plane for ω0 an eigenfrequency and the points Γon,
Γoff ∈ C,

|Γon(ω0)− Γoff(ω0)| =
1
2

∣∣∣∣κ( 1
γ + κ

− 4
γ + δγ− 2iδω0 + κ

)∣∣∣∣ (3.10)
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Figure 3.3: An theoretical illustration of photo response in the IQ-Plane with values
close to our experimental setup. The graph in red is —Γon(ω)|, the graph in blue
—Γoff(ω)|.
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Chapter 4

Experimental Details

The Quantum Device Lab uses superconducting planar waveguides for mi-
crowaves as a framework for analog quantum simulations with photons. The
use of lumped-element resonators in circuit QED architecture is less com-
mon due to unwanted stray fields and parasitic element values which com-
plicate the design procedure. To solve the design problem, an iteration using
finite- element numerical simulations and fabricated device measurements
is usually employed in order to reach the desired properties. Although such
method has proven to be useful for smaller structures, it becomes computa-
tionally much harder in case of large number of elements, something that is
desired in complex classical and quantum circuits. Here we observe struc-
tures of nine lumped-element resonators.

The arctic cryostat (see Fig. 4.2), laser scanning microscope and microwave
spectroscopy setup used in this thesis was developed by G. Puebla-Hellmann
in his PhD thesis [18] and improved in later work [12] [19] [16].

A cryostat based on a pulse-tube cooler, using the exibility of a custom sys-
tem to implement a low-vibration setup referenced to an optical table was
used as the main setup. The name is inspired by its intended use: trAns-
port, Rf and optiCal Three kelvIn Cryostat (Arctic), although it is not a true
acronym [18].

Furthermore, the setup should feature fast cycle times and simple opera-
tion to allow a high sample throughput. To further increase the throughput
of the Arctic setup we used a helium Dewar and a dipstick - a rigid as-
sembly housing the microwave cables and supporting the sample depicted
in Fig. 4.1. This allows for quick measurement with a Agilent N5230 vec-
tor network analyzer and characterization of samples. Samples with the
best design characteristics will get analyzed further with scanning defect
microscopy.
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Figure 4.1: Sample holder which is attached to the end of the dipstick. The chip is
placed on the copper PCB (third component from the right) and fully enclosed in the
copper shielding. This shielding is then fully submerged into liquid helium [20].
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Sample Holder Bottom

Figure 4.2: Schematic of the general experimental setup in the Arctic cryostat [18]
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4.1. Design of Coupled Microwave Resonator Arrays

4.1 Design of Coupled Microwave Resonator Arrays

The planar lumped element resonators were fabricated using a standard pho-
tolithography procedure with a 1.6 µm thick AZ5241E photoresist. Devices
are structured on a 450 µm thick sapphire substrate sputtered with 150 nm
thick Nb layer. Coming from the design paradigm of Mask 66, characterized
with details in Tab. 4.1 and shown in Fig. 4.3a, 4.3b, the new features to ex-
perimentally test is a top-bottom (TB) symmetry, dummy resonators (D) on
the edge shown in Fig. 4.3.

Meander Inductor (L)
No. of turns 21

Turn length (h) 220 µm
Line width (w) 3 µm
Gap width (d) 3 µm

Table 4.1: Design details of the meandering inductors on the M92 chip series. Note
that the inductors in our design are in parallel, hence the total inductance of one
site is half of the inductance for a single inductor L ≈ 0.74 nH.

C Cκ Ct

Finger no. 36 (4 x 9) 5 9 / 10 / 11
Finger length 197 µm 98 µm 98 µm
Finger width 3 µm 2 µm 2 µm
Finger gap 3 µm 2 µm 2 µm

Table 4.2: Design details of the interdigital capacitors used for the M92 chip [14].

(a) M92 BR9: Bottom-Reflection-9 res-
onator array

(b) M92 BT9: Bottom-Transmission-9 res-
onator array

(c) M92 TBT9: Top-Bottom-Transmission-
9 resonator array

(d) M92 TBDT9: Top-Bottom-Dummy-
Transmission-9 resonator array

Figure 4.3: CAD-Design examples of major design paradigms of samples on Mask92

For measuring reflection and transmission of microwave photons through
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4.1. Design of Coupled Microwave Resonator Arrays

the structure the coupled resonator array is coupled to the high temperature
electronics and launchers with a coupling of capacitances Cκ. Between every
individual resonator in the array we have a finger capacitator with coupling
capacitances CJ [21].

Figure 4.4: The TBT9-array on the current mask M92. Specific features are the top-
bottom symmetry and two-finger coupling capacitators. Please notice that this is an
array without dummy resonator at the edge. The coupling capacitor has a lenght of
around 100 µm.

Geometrically, all resonators are nominally identical and equipped with two
features, inductors and capacitors. Meander inductors are a space efficient
way of reaching high capacitance. Interdigitated (finger) capacitors offer
the simplicity of an integrated capacitor without the need of a multilayer
fabrication process and with moderate capacitance values [14].

In Fig. 4.5 a false micrograph of the previous iteration Mask 66 is shown.
This design featured only one axis of symmetry. The new iteration Mask
92 as shown in the App. Fig.A introduces a top-bottom symmetry of the
meander inductors and shunt capacitors, which should lead to reduced
edge effects from edge currents that have to flow around the structure (see
Fig. 4.3b).

To reduce edge effects that result from microwave currents flowing from
the resonators at the edge to the ground, the design choice was to incor-
porate dummy resonators to have emptier neutral space between the edge
resonators and ground in one direction. A dummy resonator is an island
with no meander inductor or shunt capacitor as shown in Fig. 4.6 and 4.7.
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4.1. Design of Coupled Microwave Resonator Arrays

a

b

c

Ck

C L

Ck
*

C* L*

CJ

CJ
*

Lp Cp

LiC i

Figure 4.5: (a) False micrograph of designed lumped element coupled LC oscillator
array. Sapphire substrate is depicted in dark gray, all other structures are thin Nb
layer on top of the substrate. The structure on the left is the input and output trans-
mission line. In the first oscillator the interdigitated coupling capacitor (orange),
interdigitated shunt capacitor (red) and meander inductor (blue) are indicated. (b)
Lumped-element model with parasitic elements. (c) Effective lumped-element model
where element values are renormalized to compensate for parasitic contributions
(Courtesy of Anton Potočnik).

Figure 4.6: A CAD blueprint of a dummy resonator between top-bottom symmetric
resonator and a launcher to the right.
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4.2. Optical Setup

Figure 4.7: The TBDT9-array on the current mask M92. Specific features are the
top-bottom symmetry and two-finger coupling capacitators and dummy resonator
on the edges. The coupling capacitor has a length of around 100 µm.

4.2 Optical Setup

The setup consists of three parts, one part generating and regulating the
excitation laser, another distributing the laser into the fiber and detecting
reflection and possible emission and finally the low-temperature part, con-
sisting of the moving stage and the objective, all of which will be discussed
in the following [18].

The Fig. 4.8 shows a schematic overview of the optical setup. At the fiber
output, the light is split into two beams, one entering the fiber of the CFM
(confocal microscope), the second being used to determine the intensity of
the arriving light via a photo-detector. The intensity signal is then fed into
a PID controller connected to the AOM driver, creating a feedback loop.

An acousto-optic modulator (AOM) is used to control the laser intensity, al-
lowing the laser diodes to run at a constant current and leading to a stable
output spectrum, as the diodes are not frequency locked and the laser fre-
quency and width depend on the current. The AOM is based on the acousto-
optic effect, a scattering process between phonons and photons in an optical
crystal.

An Attocube piezoelectric positioning system allows for adjusting position
of the lense. It scans through x and y direction for changing position of
the laser over specific feature of the sample, whereas z-direction positioning
allows to focus the beam. The ASC500 and ANC350 are used to perform 2D
scan over the sample and are controlled with a software suite called Daisy.
We have to modes: The Scanner is designed for maximum range of 30 µm
× µm at cryogenic temperatures. It can resolve individual features of the
sample like single conductor lines. The Stepper mode achieves large scale
scans of 4 mm × 4mm.
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4.3. Microwave Setup
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Figure 4.8: The optical setup used in the experiments. Based on [22].

4.3 Microwave Setup

The Microwave signal is generated by two SMB100A low noise RF microwave
signal generators. One of them is directly connected to the sample in the
fridge. The other is connected to the LO port of an IQ mixer acting as LO
signal. The RF frequency and the LO frequency differ by ∆ f . After the
conversion with the IQ mixer, IQ quadratures have frequency ∆ f and are
measured by either the ASC500 or a FPGA (field-programmable gate array).
This second arm provides a phase reference to preserve the phase relation
between the local oscillator (LO) and the RF input. It is not preserved during
a frequency change at the signal generators. The signal from the RF gener-
ator is fed through a −20 dB attenuator, before being amplified in a down
conversion arm similar to the one amplifying the reflection signal from the
fridge. The signal is fed into input B at the FPGA. The red box denotes the
down-conversion arm that exists twice where the red symbols are the alter-
native connections for the second arm. A constant phase relation is achieved
by multiplying input A with complex conjugated input B.
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4.3. Microwave Setup
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Figure 4.9: The microwave setup used in the experiments. The red dashed box exists
twice. The second time as a reference arm, where it is connected with the red lines.
Based on [22].
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4.4. Signal Processing and Measurement of Photo Response

4.4 Signal Processing and Measurement of Photo Re-
sponse

There are two ways to measure Photo response with our setup. Subtracting
|Γon − Γoff| and calculating |PR| =

√
|PRI |2 + |PRQ|2 requires two measure-

ments to get meaningful photo response result. By using DiffMode in FPGA,
it is possible to perform the task in one measurement.

Voltage photo response is data proportional to ADV voltage at the FPGA.
Similarly, to measure a power photo response signal, it is required that the
AWG triggers the FGPA while being synchronized to laser intensity modu-
lation and measuring microwave power at the FGPA.

The Fig. 4.10 shows a screen shot in Cleansweep and schematic in FPGA
of the signal math control tap. In the tap, one can choose the definition of
signal a and b, the product of which is the output of the signal math section,
which are named sA and sB for signal from different ADCs. The decimator
following signal math processing allows one to discard some of the data in
a series of repeating measurement. The Correlator and Averager do the final
signal processing before it is written in to RAM.

Figure 4.10: Schematic of SignalMath v01 in Cleansweep, which controls how
FPGA proceeds I and Q quadratures from digital down-conversion. DDC is an
abbreviation of digital down-conversion [12].

The Fig. 4.11 shows the schematics of Correlator and Averager. In the Cor-
relator, the two signals from signal math section are first Fast Fourier trans-
formed, and then sB is converted to its complex conjugate. The two signals
are then multiplied at a multiplier. The Averager sums up the result of N
repeating measurements, where N is specified by averageLengthExp option
under the Correlator tap in Cleansweep. One can choose to turn on and
off some functions of the Correlator and Averager on the control panel in
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4.4. Signal Processing and Measurement of Photo Response

Cleansweep. dfactor and ZeroPadding are used to control decimator.

Figure 4.11: Schematic of correlator and averager [12].

When DiffMode is on, the FPGA flips the sign of the product of sA and
sB every other repetition, so that the summation in Averager is the sum of
differences between two adjacent measurements. DiffMode is the key to
measuring photo response by FPGA. When AveragingMode is on, sB is dis-
carded, and Averager calculates the average of N repetitions of sA, instead of
the summation. As we only have one input signal to FPGA, AveragingMode
is always on during the study. If there is input to the ADC 2, it is possible
to measure first order and second order correlation function. This is where
the name of the application Correlator comes from [12] [19].

Effectively, we are measuring the difference of microwave power when turn-
ing the laser on and off as the AWG triggers the FPGA while being synchro-
nized to laser intensity modulation and measuring microwave power at the
FPGA. This leads to the interpretation of this signal as power eigenmode of
the system as only those modes shift which are in the linear combination of
normal mode. Formally one can think of this operation as a transformation
from cavity modes to normal modes.

4.4.1 Photo Response Measurements

To map out the mode structure of our TBDT9-Array we have analyzed the
photo response of the circuit. Subsequent measurements with laser turned
on and laser turned off are taken by aligning the trigger of the FPGA with
the modulation of the laser intensity. The differential mode implemented
in the FPGA subtracts every other measurement taken by the FPGA and
returns the photo response as a result. Advantages are the single measure-
ment run that needs to be done and less influence of laser heating as claimed
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4.4. Signal Processing and Measurement of Photo Response

by Chen [12]. Disadvantages are a noisy phase measurement in the regions
with low amplitude, a lot of fitting parameters and a whole frequency sweep
for every changed laser parameter. We have fitted the photo response with
a composition of a Heaviside function and a gaussian (see App.) shown in
Fig. 4.12a
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(a) An Example of a power photo response
measurement where we have scanned the in-
ductor line of resonator 3 (R3) at mode 2
with the laser.
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(b) The 0.9 confidence band for a linear fit
of data for photo response signal is on of the
same mode as in (a).

Figure 4.12: Power Photo Response Measurement with FPGA in DiffMode.

For an upper bound of the error, we have calculated the standard error for
a linear fit of the noise, when the laser is on the inductor line and gener-
ates high values for photo response signal. As we are only interested in
in the amplitude of our signal, lower signal-to-noise ratio introduces higher
amount of uncertainty to our signal with high values for |dΓ| compared to
the noise floor.
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Chapter 5

Scientific Results

In this chapter, we present the results from laser scanning microscopy of our
samples from mask 92. The mask consists of samples with seven and more
resonators per array. In the first subsection, we discuss the dipstick measure-
ments performed on the four recent approaches to new design paradigms.
For the main part, we outline the concordance of our measurements of nor-
mal modes with theory and give insights for a next iteration of lumped-
element resonator arrays.

5.1 Dipstick Measurements

We have measured the scattering matrix Sij with the Agilent N5230 vec-
tor network analyzer (VNA) of multiple samples from Mask 92. The dip-
stick measurements where performed in liquid helium at a temperature of
about 4.2 K which is below the critical temperature of 9.2 K where niobium
is superconductive. We have calibrated the dipstick cables with a Rosen-
berger SMP Calibration Kit. The settings for the measurements shown in
Fig. 5.1 were IF = 10 kHz, 50 calculated and measured averages and 10’000
points resolution. For a more detailed manual of the measurement pro-
cess as sample assembly and calibration of the setup please read ”Low Fre-
quency Resonators on Superconducting Chips” by P. Lenggenhager and B.
Mitchell [23] [14].

As discussed in Ch. 2 we expect nine chip modes - one for every resonator in
the array. All design changes of the analyzed chips were attempts at gaining
more symmetric behavior of the structures. We can visually inspect that the
TBDT9-Array in Fig. 5.1 (d) is the ideal sample in this case as it behaves
most similar to the theoretical prediction for perfectly symmetrical arrays.
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5.1. Dipstick Measurements
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Figure 5.1: Reflection and Transmission coefficient of measured lumped-element
resonator arrays on the M92 Mask (see Fig. A.1 in the Appendix). In (a) the
reflection spectrum is shown as the structure is a reflection geometry.

An observation made with these measurements was that the transmission co-
efficient has much higher signal to noise ratio compared to the reflection co-
efficient. We concluded based on visual inspection of the coefficients shown
in 5.1, without extraction of design parameters (e.g. by fitting these results),
that the TBDT9-Array has the best undelaying design approach of the cur-
rent mask. We can’t expect fully symmetric behavior as there is still broken
symmetry between the to coupling launchers. Based on these arguments we
have chosen to further investigate the nature of symmetry breaking of the
M92 TBDT9-sample by fitting the normal modes and eigenfrequencies and
reconstruct the Hamiltonian of the chip.
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5.2. Fitting Parameters and Symmetry Breaking

5.2 Fitting Parameters and Symmetry Breaking

To extract the eigenvalues of the Hamiltonian of our system, a suitable ap-
proach is to measure and fit scattering parameters. In this thesis, we have
fitted the reflection coefficient using Input-Output theory from Section 2.3.2
around every maximum as well as fitting the whole transmission coefficient.

Fitting of the TBDT9-Modes

In Sec. 5.4 we have characterized the TBDT9-Array using laser scanning
microscopy using the eigenfrequencies shown in Tab. 5.1. The approach
taken is explained in detail in Subsec. 5.2.

ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9
8.966 9.000 9.055 9.123 9.199 9.280 9.355 9.414 9.443

Table 5.1: Eigenfrequencies νi (in GHz) for the Hamiltonian of the TBDT9-Array.
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(a) Absolute value and phase of the reflec-
tion coefficient for the mode ν1 as shown in
Table 5.1.
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(b) IQ-Plot in the complex plane of the re-
flection coefficient for the mode ν1 as shown
in Table 5.1.

Figure 5.2: An example of one of the nine fits performed on the reflection coefficient
of the TBDT9-Array measured in the Arctic lab. Plots of phase and imaginary- and
real part are in the Appendix.

Fitting Parameters

Since we measured not only single resonators but larger arrays of identical
resonators, our first approach was to extract the parameters from a fit of
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5.2. Fitting Parameters and Symmetry Breaking

multiple individual local peak spectra. It turns out that the residual function
does not have a unique local minimum in a neighborhood of consistent
values of our simulations or design. This makes it impossible to find a
unique set of S-parameters for the circuit. This observation makes numerical
fitting a difficult problem. To avoid fitting the 36 parameters to our system
we have made heuristic assumptions for our data:

We assume that our resonators couples stronger to the ground on the edges.
Instead of having central elements strongly corrected, we choose to fix cen-
tral elements of the coupling capacitances and allow larger variation for the
edges. For the shunt capacitances we don’t see any symmetry breaking and
don’t need to consider further adjustments of design parameters.

• Inductance was fixed to L = 0.8595 nH for all resonators.

• Inter-site coupling capacitance Cκ was perturbed on the edge to ac-
count for boundary effects like ground coupling or other parasitics.
With every component of

Cκ,i = 9.523 (1 + δi)1≤i≤10 fF (5.1)

is perturbed stronger for edge resonators with 0 ≤ δi ≤ 1 and δ5 ' 0.

• Resistance R was fixed to R = 0.15 Ω for all resonators.

• Shunt capacitance was set to |C| = 329.6 fF for every individual res-
onator where we perturbed every individual site by less than 1%.

Ci = 329.6 (1 + δi)1≤i≤9 fF (5.2)

As explained earlier, we wanted to understand how the broken symmetry
between the right and left launcher translates to S-parameters, Hamiltonian
or normal modes. A plausible approach, explained in Sec. 5.3 is to fit the
transmission coefficient of all modes and find the capacitances of the chip.
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5.3. Characterization with Transmission Coefficient

5.3 Characterization with Transmission Coefficient

With the theory developed in Ch. 2, we can experimentally attain the design
parameters with Input-Output Theory and transfer matrix formalism. We
have fitted the transmission coefficient which we measured in the Arctic Lab
using the ansatz for the fitting parameters discussed in the previous Section.
We were interested in the breaking of symmetry at the edges of coupling
capacitances while holding the central elements fixed.

As depicted in Fig. 5.4, this approach gives us a correction of the right
launcher coupling of approximately -25% for a possible next iteration of
lumped-element resonators.
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Figure 5.3: Transmission coefficient of TBDT9-Array as measured in the Arctic Lab.
The measured data is depicted in blue and the fit using Input-Output formalism in
red. For a depiction of the fitting parameters (see figure 5.4).

The δi-terms are negligible for all coupling capacities Cκ,i except for i = 2
(second from left) which has a small perturbation from symmetric state of
about +4% and the right launcher coupling with a large -25%. However, this
result is not completely unambiguous. As mentioned, there is not a unique
way of fitting the data, as the residual function does not have a unique
mimimum.
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5.4. Characterization with Laser Scanning Microscopy

4.19% fixed fixed fixed fixed fixed fixed 0.54%-0.07% -24.59%

-0.41% -0.07% 0.31% 0.24% 0.24% 0.29% 0.14% -0.10%-0.47%

Figure 5.4: Illustration of perturbations δi from symmetric case of shunt capaci-
tances Ci (blue) and coupling capacitances Cκ,i (red) of fit in Fig. 5.3. See Eq. 5.2
and 5.2 for definition of these parameters.

To further investigate the behavior of the TBDT9-Array, we chose to analyze
it with laser scanning microscopy. This method offers many more degrees
of freedom to measure and characterize the array.

5.4 Characterization with Laser Scanning Microscopy

We have discussed in Sec. 2.3 how to write the Hamiltonian of the CRA de-
pendent on inductive, capacitive and resistive parameters in detail. Solving
for eigenvalues, which correspond in this case to the resonant frequencies,
and for eigenvectors, in our case gives the normal modes.

The theoretical prediction for the Hamiltonian comes from the definitions of
the matrix J and the vector ω in Eq. 2.3. In the construction of the Hamilto-
nian, we neglect non-nearest neighbor coupling terms, Ji,j = 0 with i ≤ i + 2
as they fall of quickly and are numerically not relevant for the eigenvalue
problem. A thing to note is that we need to be careful which representa-
tion we choose, as in a non- symmetric case Ci,j 6= Cj,i it does not hold that
H = HT. We have measured all physical resonators in the TBDT9-Array at
all eigenfrequencies.

We have plotted mode structure with our sample with a fit using one resid-
ual function for all nine modes (as seen in Fig. 5.5).To avoid the problem of
gauging the FPGA’s power photo response measurements we have normal-
ized dΓ for both the measurement and fit. This approach is productive and
sufficient for arriving at indications how to improve the iterations of chips.
As we are measuring power, we have computed the square of every individ-
ual mode after solving the eigenvalue problem of the Hamiltonian for the
fitting function.

In Fig. 5.5, we fit normalized modes squared and we are minimizing the
Euclidean norm of every cavity mode of resonators R1 to R9. We can see
that this plot resembles the mode structure of nine coupled pendulas. The
biggest variation δi is at the right edge of the circuit (as seen in Fig. 5.6,
which couples much stronger to the ground. We again, find a lower coupling
capacitance Cκ for the right launcher of -15%. Like in the fit of transmission
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5.4. Characterization with Laser Scanning Microscopy

coefficient data, there is a second perturbation which is not negligible. A
possible explanation is that the residual converged to another minimum.

R1 R2 R3 R4 R5 R6 R7 R8 R9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

|dΓ|
Mode: 1

R1 R2 R3 R4 R5 R6 R7 R8 R9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

|dΓ|
Mode: 2

R1 R2 R3 R4 R5 R6 R7 R8 R9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

|dΓ|
Mode: 3

R1 R2 R3 R4 R5 R6 R7 R8 R9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

|dΓ|
Mode: 4

R1 R2 R3 R4 R5 R6 R7 R8 R9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

|dΓ|
Mode: 5

R1 R2 R3 R4 R5 R6 R7 R8 R9
0.0

0.1

0.2

0.3

0.4

0.5

|dΓ|
Mode: 6

R1 R2 R3 R4 R5 R6 R7 R8 R9
0.0

0.1

0.2

0.3

0.4

0.5

|dΓ|
Mode: 7

,

R1 R2 R3 R4 R5 R6 R7 R8 R9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|dΓ|
Mode: 8

R1 R2 R3 R4 R5 R6 R7 R8 R9
0.0

0.1

0.2

0.3

0.4

0.5

|dΓ|
Mode: 9

Figure 5.5: Photo response as a function of individual resonators. With bars depicted
in blue we see power photo response for every mode (resonant frequency) at all nine
resonators R1 to R9. The yellow bars show the fit of the data via construction of
Hamiltonian. The eigenmodes of the measurement and the fit are normalized. Center
coupling parameters where held fixed as shown in Table 5.6.
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Figure 5.6: Illustration of perturbations δi from symmetric case of shunt capaci-
tances Ci (blue) and coupling capacitances Cκ,i (red) of fit in Fig. 5.5. See Eq. 5.2
and 5.2 for definition of these parameters.
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Chapter 6

Discussion & Conclusion

In this thesis, we studied the mode structure and scattering matrix elements
of arrays of lumped-element resonators. We have established theoretical
predictions by analyzing the physics of the system, using the Lagrangian,
Hamiltonian and Input-Output formalism. Further have we introduced the
basic theory of photo response and laser scanning microscopy in Ch. 3.

In first assessment, we have identified using dipstick measurements which
design approaches on the current M92 Mask work best. Afterwards, we have
fitted the transmission coefficient on all modes using the Input-Output and
transfer matrix formalism. To further improve understanding of the chip
and the nature of symmetry breaking in the structure, we have used laser
scanning microscopy. Laser scanning microscopy provides ways to probe
and tune the properties of superconducting resonators. This technique will
provide key insight into local properties of these photon lattices when inter-
actions are strong, and an important tool for the study of nonequilibrium
quantum phase transitions and quantum simulation [6].

The setup proved useful in analyzing the nature of symmetry breaking. We
can conclude, that the symmetry is broken at the right launcher. Improve-
ment is still required, as error estimates are just upper bound estimates in
the current procedure. Furthermore, should the question be addressed, if
we can gain complete insight into the mode structure of a lumped element
resonator array by individually fitting the single Lorentzian. This would
provide much easier scaling to avoid the numerical complexity of fitting
scattering parameters of a many-site lattice.

In this thesis, we have demonstrated that laser scanning microscopy is a
valuable tool for analyzing superconducting photonic quantum simulators.
We have shown that the method works for non-trivial arrays. The next it-
eration should be arrays with increased coupling capacitances on the right
launcher.
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Appendix A

Appendix

All samples drawn on Wafer for the chip M92 can be seen. We have used
Mathematica to draw this CAD-model. Please zoom in to get a good look at
the Arrays.

Figure A.1: Wafer for the M92 Chip series.

Photo Response Measurements

To fit the photo response as measured with FPGA, we have used the follow-
ing function:
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f (x) =


A + Bx + o, |x− b| < w

2
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2 +x)2
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2
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2 +x)2

2c2 + Bx + o, x− b ≤ w
2

Fitting and Plotting of Individual TBDT9-Modes

Often, the Q-factor and resonance frequency ν0 are enough to characterize
the measured resonator. However, it is necessary to fit the complex reflection
coefficient obtained from Input-Output theory to extract the coupling and
loss rates.
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Figure A.2: An example of one of the nine fits performed on the reflection coefficient
of the TBDT9-Array measured in the Arctic lab.

In following Table, we have an experimental description of the TBDT9-Array
using Input-Output formalism.

ν0 (GHz) κ (MHz) γ (MHz) φ τ ∆φ Amplitude
8.966 0.156 1.106 127.162 -2.257 0.013 1.010
9.000 0.647 1.717 247.274 -4.373 0.046 1.026
9.054 1.516 2.498 63.604 -1.117 -0.031 0.998
9.123 2.608 2.959 155.659 -2.714 -0.056 1.038
9.199 2.685 2.758 253.169 -4.380 0.070 1.039
9.279 2.795 3.778 258.477 -4.430 -0.119 1.056
9.354 2.666 4.300 275.175 -4.682 0.056 1.065
9.414 1.688 1.935 305.559 -5.168 0.069 1.034
9.442 0.475 1.795 97.385 -1.642 0.024 1.008

Table A.1: All fitting parameters in Input-Output theory formalism for the TBDT9-
Array on Mask 92. For fitting and generating plots mostly standard functions from
the QUDEV library ”LumpedElements4.m” where used.
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