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Abstract

An already existing software suite has been extended by the functionality of determining
the coupling of a transmon qubit’s transition frequency to a coil or flux line via magnetic flux
penetrating its SQUID loop. This coupling can be used to tune the qubit transition frequency
in order to control the interaction with other qubits, resonators or drive lines. This thesis de-
scribes the implementation of functions which allow to perform automatic qubit and resonator
spectroscopy and which find values of the magnetic coupling parameters. Automated charac-
terization of qubits simplifies the scaling to higher number of qubits, which is a criterion for an
universal quantum computer.
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1 Introduction

The size of circuits in classical computers was subject to exponential decrease with time during
the last decades [Schaller, 1997]. However, if the decrease in size still follows the same law in the
future, then the size of the transistors inside a computer will soon reach the atomic length scale
and therefore quantum effects will come into play. In classical computers, in which information is
treated in units of bits, it is not clear how these quantum effects are to treat. However, there is an
approach in information theory, called quantum information theory, which generalizes the concept
of a bit to a qubit. Qubits are quantum mechanical two level systems. As all quantum systems, they
can exist in superposition between different states. This means we can find our system in one of the
classical states |0〉 or |1〉 but also in a superposition state |ψ〉 = α |0〉+β |1〉. When we measure this
state |ψ〉, we end up in |0〉 with probability |α|2 and in |1〉 with probability |β|2. This superposition
states can be used to manipulate different states simultaneously. A not-gate for example maps |0〉
to |1〉 and vice versa. The quantum not-gate maps the state |ψ〉 to α |1〉+ β |0〉. This example can
be gerneralized to an arbitrary function f which can be written in terms of gates and maps n bits
to n bits. If we want to evaluate the function f at any possible argument, we create a superposition
|ψn〉 = α1 |00 . . . 00〉+α2 |00 . . . 01〉+· · ·+α2n |11 . . . 11〉. Then we take the circuit which represents f
and let it act on |ψn〉. The resulting state is α1 |f(00 . . . 00)〉+α2 |f(00 . . . 01)〉+· · ·+α2n |f(11 . . . 11)〉,
this means we have calculated all possible values of f by applying the gate only once. Unfortunately,
the fundamental laws of quantum mechanics prevent us from reading out all the values at once. For
some specific tasks however, quantum algorithms have been found that make use of evaluating a
function at all its arguments, the most popular among them are the Deutsch-Josza [Deutsch and
Jozsa, 1992], Grover [Grover, 1996] and Shor [Shor, 1997] algorithm. The Shor algorithm, for
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example, is able to factor prime numbers in polynomial time, whereas the best known classical
algorithm needs exponential time. An interesting question is whether it is possible or not to find
such quantum mechanical two level systems and control them.

There are several approaches to realize quantum computers, such as trapped ions [Benhelm et al.,
2008], NMR systems [Gershenfeld and Chuang, 1997], photons [Knill et al., 2001], Nitrogen vacancy
centers in diamond [Neumann et al., 2010] or superconducting qubits [Clarke and Wilhelm, 2008].
This thesis focuses on a specific design of superconducting qubits called transmon qubits [Koch
et al., 2007]. Single qubit gates, for example the above mentioned not gate, can be perfomed by
applying microwave pulses to the qubit. To perform multiple qubit gates, the qubits need controlled
interaction with each other. The qubit interact if they are in resonance with each other. Therefore we
need a possibility to tune the qubits into resonance with each other in a controlled way. The transmon
qubits can be tuned by applying an external magnetic flux through the circuitry representing the
transmon qubit. After having built a qubit it is neccessary to characterize it such that precise control
is possible.

The characterization is an important step towards precise control of a transmon qubit. The charac-
terization itself is a time consuming process which has to be done for each new sample of a quantum
processor. Additionally, the characterization consists of several tasks that are similar for a lot of
different samples. Therefore it is desirable to have software which is able to perform the charac-
terisation automatically. In this work, several characterisation tasks were automated, for example
qubit spectroscopy to find the qubits current transition frequency. Another task that was automised
is the determination of the coupling of the external magnetic flux to the Transmon qubit. Further,
the developed software can, based on given frequencies, determine the experimental settings which
tune the qubits to these frequencies.

The automatization of qubit characterization is a necessary task on the way to achieve a scalable
quantum computer. Even for a small number of qubits, automated characterisation is faster than
manually finding the qubits parameter values. The repetitive character of such characterisation
tasks predestines them for automatization.

2 Superconducting Qubits

Superconducting circuits are macroscopic objects but show quantum effects [Nakamura et al., 1997],
for example they possess quantized energy levels. We are interested in using these circuits for
quantum information processing and therefore need an effective two level system. Quantizing one of
the simplest electrical circuits, the LC oscillator, leads to an harmonic system, that means a system
with infinitely many equally spaced energy levels [Baur, 2012]. One could now consider the first
two energy levels as being the |0〉 and |1〉 states of a qubit. These two states are then called our
computational subspace. However, because of the equal spacing of the energy levels this system is not
a well-behaving qubit. This can be seen if we try to excite the system. We apply an electromagnetic
pulse to excite the system from the ground state to the first excited state. During this process and
because of the equal seperation of all the adjacent energy levels, we will unintentionally excite the
system to a higher energy level. This would cause a loss of information due to the fact that the
system is not any longer in our computational subspace. To prevent loss of information we need a
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Figure 1: Circuit model of a CPB. The CPB consists of an island (orange), a reservoir (blue) and
two Josephson junctions in parallel with energies EJ,1 and EJ,2 forming a SQUID loop. The loop
is penetrated by a magnetic flux Φ. The SQUID loop is connected in series to a gate capacitor and
the circuit is biased with a voltage Vg. Adapted from [Baur, 2012].

system with anharmonic level spacings.

2.1 The Cooper Pair Box

A Cooper Pair Box (CPB) is a superconducting circuit which consist of two parallel Josephson junc-
tions which are together connected to a capacitor, as depicted in Figure 1. This circuit is then biased
with a voltage Vg. The voltage bias allows us to control the number of Cooper pairs on the island.
If we increase the voltage, Cooper pairs will tunnel from the reservoir to the island. The Josephson
junction consists of two superconductors separated by a non-superconducting material [Josephson,
1962]. Together, these Josephson junctions form a so called SQUID loop (Superconducting Quantum
Interference Device). This SQUID loop is very sensitive to magnetic flux [Zimmerman, 1977], which
is used to tune the qubit frequency as we will see later.

The Hamiltonian of the CPB can be found by quantizing the circuit in Figure 1 [Bouchiat et al.,
1998]. This Hamiltonian depends on the number of charges on the gate capacitor ng = −CgVg/2e,
the Josephson energy EJ(Φ) = Emax

J |cos(Φ/Φ0)| and the the charging energy EC = e2/2CΣ, where
CΣ is the total capacitance of the Cooper Pair Box. This Hamiltonian takes the form

ĤCPB = 4EC(N̂ − ng)2 − EJ cos δ̂ (1)

expressend in terms of the number operator N̂ , which gives the number of charges on the island, and
the phase operator δ̂ corresponding to the phase difference between the superconducting electrodes
of the Josephson junction. The Josephson energy depends on the magnetic flux which penetrates
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Figure 2: a) The first three energy levels of a Cooper Pair Box for EJ/EC = 0.5 The blue curve is
the ground state, the red one the first and the green one the second excited state. b) Shows the
same three states but for EJ/EC = 5. c) Shows the same three states for EJ/EC = 50. Adapted
from [Baur, 2012].

the SQUID loop. This depenency allows us to control the magnitude of the transition frequency
by generating a magnetic field near the CPB. Experimentally this can be done by using coils or
so called flux lines. A flux line is a conducting line on the quantum processor which passes by the
qubit. When a voltage is applied to the flux line, it generates a magnetic field. This magnetic field
is created for the purpose of tuning the transition frequency of the qubit. The same functionality
can be achieved by mounting coils near the quantum processor. In contrast to the coils, the flux
lines affect one qubit strongly and the other qubits weakly. In the following, most of the time only
coils are mentioned, for example, we call the relation between the qubit transition frequency and
the coils or flux lines qubit-coil coupling, but physically the coupling can be realized by using both
coils or flux lines.

The Schrödinger equation in terms of the phase difference δ follows directly from the Hamiltonian
if we use that the number operator and the phase operator are canonical conjugate variables. The
Schrödinger equation is given by

Ekψ(δ) =
[

4EC

(
−i ∂
∂δ
− ng

)2
− EJ(Φ) cos δ

]
ψ(δ). (2)

The solutions Ek of Equation 2 are the Mathieu functions [Cottet et al., 2002]. These solutions are
shown in Figure 2 for k = 0, 1, 2 and for different ratios of Josephson energy and charging energy.
The computational states |0〉 and |1〉 are the ground and the first excited state of the CPB and the
Hamiltonian takes the form

Ĥ = −1
2~ω01σ̂z (3)

in the computational basis. The transition frequency is ω01 = (E1 − E0)/~.

As we can see in Figure 2a, the slope of the eigenenergy changes if we vary ng. This behaviour has
a negative effect on the phase coherence. This issue becomes apparent when we look at the time
evolution of a superposition of ground and first excited state. They evolve like

e−iE0t/~ |0〉+ e−iE1t/~ |1〉 = e−iE0t/~(|0〉+ e−i(E1−E0)t/~ |1〉 (4)
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Figure 3: a) Exact (blue) and approximated (orange) solution for the transition frequency of the
CPB with ratio Emax

J /EC = 10. b) Error (ωexact
01 (Φ) − ωapprox

01 (Φ))/ωexact
01 (0) relative to the exact

maximum transition frequency for Emax
J /EC = 10 (orange) and Emax

J /EC = 100 (blue).

and if we have fluctuations in the charge on the capacitor, then the relative phase between the
ground and first excited state fluctuates too. Therefore we are interested in a transition frequency
which is approximately constant when varying the charge on the capacitor.

2.2 Transmon Qubit

We have seen that the sensitivity to charge noise is a big downside of the CPB. This issue can
be resolved by going to the transmon limit, that means building the qubit such that EJ/EC � 1.
In Figure 2 the effects of increasing this ratio is shown. We can see that the slope of the energy
dispersion becomes approximatively flat for large enough EJ/EC. An established way to get a high
ratio is to shunt a large capacitance to the Josephson junctions [Baur, 2012]. The tradeoff for the
lower charge noise sensitivity is a smaller anharmonicity of the energy levels.

In the transmon limit, the Mathieu functions can be approximated with a simple analytical expres-
sion for the transition frequency between the ground and the first excited state [Koch et al., 2007].
The transition frequency then takes the form

E01 ≈
√

8ECEmax
J | cos(πΦ/Φ0)| − EC. (5)

In Figure 3b the difference between the exact and approximated solution relative to the exact
maximal transition frequency is shown. The error of the approximation increases with increasing
EJ/EC ratio. For the case EJ/EC = 100 only in a narrow region around the minimal transition
frequency a significant error is present. Therefore it is reasonable to use the approximation in
Equation 5.
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2.3 Driving the Qubit

To drive the qubit we apply an AC gate voltage Vg(t) = VD cos(ωDt) (see Figure 2). This voltage
leads to an additional term in the Hamiltonian [Baur, 2012]. The total Hamiltonian is of the form

Ĥ ≈ 1
2~ω01σ̂z + ~Ω cos(ωDt)σ̂x (6)

for small driving strength, where Ω = 4ECCgVD sin θ/e~ and θ = arctan( EJ
4EC(1−2ng) ). Together with

the free time evolution we can perform arbitrary single qubit operations.

3 Coupling the Qubit to a Resonator

The design of a transmon qubit was described in the previous section. However, to get a fully
functional system for information processing, we need a way to read out the qubit state and to let
qubits interact with each other. The readout can be performed by turning on a small interaction
between the qubit and the environment. In the case of superconducting qubits this is achived by
coupling the qubit to a transmission line resonator [Wallraff et al., 2004]. This field is referred to as
circuit quantum electrodynamics (circuit QED).

3.1 Quantum Non-Demolition Readout

The coupled system consisting of the transmon qubit and the transmission line resonator can be
operated in different regimes [Koch et al., 2007]. In this thesis only the dispersive regime is discussed.
The frequency of the i-th transmon energy level is denoted with ωi and the transition frequency from
the i-th to the j-th level is ωi,j = ωi − ωj . The dispersive limit is reached when the detunings ∆i =
ωi,i+1−ωr between the transmon energy levels and the resonant frequency ωr of the transmission line
are large. This means that the coupling strength g01 between the resonator and the first transition
frequency is much smaller than the detunings g01 � |∆0|, |∆1|. In a two level approximation we get
the Hamiltonian [Koch et al., 2007]

Ĥdisp = 1
2~
(
ω01 + g2

01
∆0

)
σ̂z + ~(ω̃r + χσ̂z)â†â, (7)

where

χ ≈ g2
01EC

∆0(∆0 − EC) (8)

in the transmon limit. The resonator frequency is also shifted according to the relation

ω̃r = ωr −
g2

12
2(ω12 − ωr)

. (9)

The operators â† and â are the creation and annihilation operators of the photon mode inside the
transmission line resonators.
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Figure 4: Amplitude of the resonator transmission spectrum for the uncoupled resonator (solid black
lines), for the uncoupled resonator but with shifted frequency (dashed black lines), for the coupled
resonator with the qubit in the ground state (blue line) and in the excited state (red line). Adapted
from [Baur, 2012].

In Equation 7 we can see that the resonator frequency shifts depending on the state of the qubit.
This fact can be used to determine the qubit frequency as described later in Subsection 6.2. The
resonator frequency does not only depend on the state of the qubit, but also on the value of the
transition frequency of the qubit. A change in the qubit transition frequency modifies χ and therefore
changes the resonator frequency.

3.2 Qubit-Qubit Interaction

The interaction between two qubits can be achieved by coupling them to the same resonator [Blais
et al., 2004]. If both qubits are tuned into resonance with each other and are in the dispersive regime
with the resonator, the Hamiltonian describing the system is

Ĥ2q = 1
2~
(
ω01 + g2

01
∆0

)
(σ̂1
z + σ̂2

z) + ~[ω̃r + χ(σ̂1
z + σ̂2

z)]â†â+ ~
g2

01
∆0

(σ1
+σ

2
− + σ1

−σ
2
+), (10)

where the operators σiz and σi± act on qubit i. The evolution of the qubits corresponding to this
Hamiltonian in the frame rotating with ω01 is

U2q(t) =


1

cos
(
g2

01
∆ t
)

i sin
(
g2

01
∆ t
)

i sin
(
g2

01
∆ t
)

cos
(
g2

01
∆ t
)

1

 . (11)

For t = π∆/4g2
01 we get an

√
iswap gate which forms together with single qubit operations an

universal set of gates.

4 Four-Qubit Quantum Processor

One of the essential building blocks of classical and quantum computers is the processor. An es-
tablished description of the desired properties of a quantum processor is given by the DiVincenzo
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Figure 5: Sample used during this thesis. The qubits are labeled as QB1 - QB4, FL1 - FL4 are the
flux lines , RR1 - RR4 are the readout resonators, CR1 - CR3 are the coupling resonators, PF is the
Purcell filter and CL1 and CL2 are the charge lines. Image courtesy of Yves Salathé.

criteria [DiVincenzo, 2000]. DiVincenco proposed that a quantum computer primarily needs a scal-
able physical system with well characterized qubits. In this context, scalable means that we can
include more qubits without changing the architecture of the processor. This condition can be met
by the transmon qubits which are interconnected via resonators in a clever way. Further, DiVin-
cenzo demands the ability to perfom an universial set of quantum gates. A set of gates is called
universal if an arbitrary operation can be achieved by combining operations from this set. Such a
set is given by single qubit operations which allow to generate an arbitrary state α |0〉+β |1〉 starting
from |0〉 and an entangling two-qubit interaction, for example a cnot gate or the discussed

√
iswap

gate [Bremner et al., 2002]. A third criteria is the ability to read out the qubit state. A way to do
this is to use multiplexed readout [Chen et al., 2012]. The multiplexed readout is a method which is
compatible with the scalability requirement. There are two other criteria proposed by DiVincenzo
regarding the coherence time and the initialization of the qubit.

The quantum processor which was used during this thesis includes 4 qubits as shown on the optical
microscope photo of the sample in Figure 5. The flux lines are used to tune the qubit transition
frequencies. The qubits are connected together with the coupling resonators. This coupling generates
the interaction Hamiltonian in Equation 10 which allows us to perform two qubit gates on the coupled
qubits. Single qubit gates can be performed by using the charge lines.

The sample possesses four readout resonators which are coupled to a common Purcell filter. This
configuration allows multiplexed readout [Chen et al., 2012], which has the advantage that we need
only one readout circuit to measure the state of all qubits.
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Figure 6: Software Suite and data flow. Mathematica scripts are colored in red, Labview scripts in
green and files in blue. Adapted from [Heinsoo, 2013].

5 Software Suite

The experiment control software is a framework of Wolfram Mathematica and LabView scripts and
VI’s. A detailed description can be found in [Heinsoo, 2013,Ciorciaro, 2015]. The main LabView
components are QubitCalib and CleanSweep, see Figure 6. CleanSweep communicates with the
physical devices and QubitCalib performs automated calibration tasks. The file QubitCalib.ini
contains rather abstract parameters like paths to other configuration files and paths for data in-
and output and PatternConfig contains the parameters to generate pulses, e.g. puls length. The
Pulses files contain the information about already generated pulses. In the file AWG patterns
the waveforms, which are executed by the Arbitrary Wave Generators (AWGs), are stored. The
Wolfram Mathematica scripts are used to perform the analysis of the measurements and for pattern
gerneration for the next experiments.

The aim of the software suite is to allow us to perform advanced experiments which use compli-
cated pulse sequences and to save time by automating characterization and experiments. Until now,
new quantum processor samples had to be characterized manually, although the characterization
procedure consists of similar steps for different samples. As an example, determining the relation
between qubit transition frequency and magnetic flux, see Equation 5, consists of the same steps
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independent of the sample. First, we have to measure the qubit transition frequency for different
magnetic fluxes and then we determine the free parameters of the model describing this relation. In
the past, these two steps were performed manually by sweeping each coil or flux line voltage sepa-
rately. However, it would be much more time-efficient if we could use unsturctured data containing
the transition frequency and the corresponding voltages on the coils or flux lines. This procedure
is more time-efficient for the reason that we can use already existing data and we do not have to
generate data especially for the purpose of finding this coupling. In the past, the qubit transition
frequency was determined by analyzing the resonators transmission spectra by eye to find the res-
onances corresponding to the qubit frequency. This is another task which is time consuming when
perfomed manually and it is tidious in the case we want to do it many times. Because knowing the
qubit transition frequency is a basic tool to perform quantum information processing, it is inevitable
to automatize it to allow scalability of the system. During this work these two tasks of performing
qubit spectroscopy and determining the qubit-coil coupling were automated.

In Subsection 3.1 we have seen that the resonant frequency of the readout resonator shifts with the
qubit transition frequency. In order to perfom qubit spectoscopy, as described later in section 6,
we need to know the resonant frequency of the readout resonator. Therefore finding the qubit
transition frequency consists of two parts. First, we have to find the resonant frequency of the
resonator and then we can perform the qubit spectroscopy. Part of this work was to implement
Wolfram Mathematica functions to perform this tasks automatically and to determine the qubit-coil
coupling. The embedding of these functions into the software framework is part of an ongoing Master
thesis [Storz, 2016].

6 Qubit and Resonator Spectroscopy

The precise manipulation of a qubit is only possible if we have detailed knowledge about the param-
eters of the qubit. One of the most important parameters is the qubit transition frequency, because
only if we know the qubit transition frequency we can perform gates on the corresponding qubit. In
this chapter we discuss a method to find the qubit transition frequency via an automated procedure.

As we have seen in section 3, we get different transmission amplitudes of the resonator depending on
the qubit state and transition frequency. To find the qubit transition frequency ω01 we need to know
the resonator’s spectrum. Therefore, we first discuss the resonator spectroscopy and afterwards the
qubit spectroscopy.

6.1 Resonator Spectroscopy

On the sample we have four readout resonators, each of them coupled to a qubit. These resonators
are then coupled to a single Purcell filter to allow multiplexed readout as described in section 4.
Our goal is now to find the spectrum of this coupled system.

The transmitted amplitude of the readout resonator coupled to the Purcell filter can be modeled
by two driven coupled harmonic oscillators. However, such a model would possess six degrees of
freedom, namely the amplitude, the decay rate and the resonance frequency for the readout resonator
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Figure 7: Transmitted amplitude of the Purcell filter coupled to the readout resonator of qubit 1.
The blue dots represent the measured data, the blue dashed line shows the model function with guess
values for free parameters and the orange solid line shows the fit. The green solid line indicates the
frequency used to drive the Purcell filter for the subsequent qubit spectroscopy.

and for the Purcell filter. To reduce the complexity, we use here the Fano resonance, which has only
three degrees of freedom. Approximating driven coupled harmonic oscillators by the Fano resonance
is reasonable if one of the two oscillators possesses a much larger decay rate than the other. In our
case, the decay rate of the Purcell filter is larger than the decay rate of the readout resonator. The
model has the form

A(ω) = Ar
(qΓr/2 + ω − ωr)2

(Γr/2)2 + (ω − ωr)2 , (12)

where properties of the readout resonator are labeled with r. These properties are the decay rate
Γr, the amplitude Ar and the resonant frequency ωr. The properties of the Purcell filter determine
the value of the parameter q. We only fit the amplitude because we do not have phase information
recorded, as we did not have phase reference in the measurement.

The parameters describing the measured data best were found by minimizing residuals from the-
oretical model to the measured transmitted amplitude of the Purcell filter coupled to the readout
resonator. The spectroscopy result is shown in Figure 7. The Purcell filter determines the back-
ground. The peak and dip indicate the position of the readout resonators resonant frequency.

The resonator spectroscopy should be fully automated, therefore we need to calculate the guess
values from the measured data, depicted in Figure 7 as blue points, via an algorithmic procedure.
The guess for Ar is the mean of the transmitted amplitude with the highest frequency and the one
with the lowest frequency in the measured data set. Analyzing the extrema of the model gives us
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the frequencies ωmax and ωmin of the maximal and minimal transmitted amplitudes. They are

ωmax = Γr/2
q

+ ωr (13)

ωmin = ωr − qΓr/2. (14)

Inserting the maximum into the model gives us the equation

Amax := A(ωmax) = (q + 1/q)2

1 + 1/q (15)

which allows us to guess q. Further we can guess Γr and ωr via

Γr = 2ωmax − ωmin

q + 1/q (16)

ωr = ωmin + qΓr/2. (17)

The resulting parameters do not describe the experimental data with high accuracy. But for the
purpose of performing a subsequent qubit spectroscopy we are only interested in the drive frequency
with minimal amplitude. The result depicted in Figure 7 allows us to extract this frequency with a
sufficient accuracy for the qubit spectroscopy.

6.2 Qubit Spectroscopy

In order to find the qubit frequency, we first have to find the resonator frequency which is also
shifted when we tune the qubit, as discussed in section 3. We start by performing a resonator spec-
troscopy. Then the resonator is driven with a frequency which has a large difference in transmitted
amplitude compared to the nearby frequencies. In the case of the resonator spectrum in Figure 7
we would choose the drive frequency marked by the green line. The algorithm which performs the
qubit spectroscopy always chooses the frequency with minimal transmitted amplitude. The minimal
transmitted amplitude is chosen because it is more distinctive than the maximum in the most cases
and therefore numerically easier to find.

For the qubit spectroscopy itself we drive the resonator with the previously determined frequency.
The qubit is driven through the local drive line, as described in Subsection 2.3. The drive frequency
of the qubit is swept over a large range. When the qubit drive frequency hits the transition frequency
of the qubit, the qubit gets excited. This leads to a shift in the readout resonator frequency, and
therefore the transmitted amplitude through the resonator changes. We initially set the resonator
to a frequency with minimal transmission and thus the transmitted amplitude increases when the
qubit is excited. This leads to a peak in the transmitted amplitude of the readout line as a function
of the qubit drive frequency, as shown in Figure 8. This peak gives us the transition frequency of
the qubit, indicated by the vertical red line. If we drive the qubit with too high power, we will also
drive the 0↔ 2 transition. In Figure 8b we see two peaks, one is form the 0↔ 1 transition and the
other from the 0 ↔ 2 transition. Because two photons were absorbed at the 0 ↔ 2 transition, we
see the peak at the frequency ω02/2.
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Figure 8: Transmitted amplitude of the readout line coupled to the resonator of qubit 1 while the
frequency of the qubit drive is swept. The measured data is shown in blue, the model function
in green. The numerically determined qubit frequency is indicated by the vertical red line. a)
Spectroscopy for coil voltages (V1,V2) = (9.9V, 5.8V). b) Spectroscopy for coil voltages (V1,V2) =
(8.4V, −5.4V). A second peak is visible in this spectrum due to excitation of the qubit’s second
energy level.

6.3 Conclusion

In this section we presented a way to automatically determine the qubit frequency. We started by
performing a resonator spectroscopy. From the resonator spectrum we determined the resonator
drive frequency. This frequency is then used to perform a qubit spectroscopy from which we could
determine the qubit frequency. The knowledge of the qubit transition frequency is neccessary to
be able to accurately tune the qubit. Only when we are capable of finding the qubit frequency we
are able to perform quantum gates and therefore processing quantum information. Furthermore
accurate automated qubit spectroscopy is a fundamental building block if we want to automatize
more complicated tasks, for example finding the coupling of the qubit to a magnetic field or preparing
the qubits in a Bell state.
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7 Coupling to the Magnetic Field

Sending pulsed magnetic fields through the qubit’s SQUID-loop is a tool that is used to perform two
qubit gates [DiCarlo et al., 2009]. To use this tool in experiments, the qubit-coil/flux line coupling
has to be known. In this section I would like to present an automated way to determine the coupling
of the qubit to coils or flux lines. This coupling is mediated by the magnetic flux generated by coils
or flux lines. The flux acts on the transition frecuency via the SQUID loop. In general we consider
a sample with nq qubits and nc coils or flux lines. We can apply a voltage to all of the coils or flux
lines. We can describe the voltage settings for the coils as a vector V = (V1, V2, . . . , Vnc)> and the
flux penetrating the SQUID loops can be written as Φ = (Φ1,Φ2, . . . ,Φnq

)>. The flux through the
SQUID loop depends linearly on the voltages V. We can write this relation in the form

Φi = ki ·V + Φenv,i (18)

or

Φ = M ·V + Φenv, (19)

where i ∈ 1, 2 . . . , nq. The additional term Φenv = (Φenv,1,Φenv,2, . . . ,Φenv,nc
)> is a flux offset

caused by the environment and the vectors ki contain the geometric properties that relate the fluxes
through the SQUID loops to the coil or flux line voltages. The i-th row of the matrixM is the vector
ki. We define the vector ω01 = (ω01,1, ω01,2, . . . , ω01,nq

)> which contains the transition frequencies
of all qubits. Then we insert Equation 18 into Equation 5 and get

~ω01,i ≈

√
8ECEmax

J

∣∣∣∣cos
(
π

ki ·V + Φenv,i

Φ0

)∣∣∣∣− EC. (20)

The goal is to determine the parameters Emax
J , ki and Φenv. The remaining parameter EC can

be predicted from qubit design or measured using an independent method. The parameters are
extracted from a set of unstructured measurements. This allows us to use data even if it was
produced for other purposes, for example to check wether the qubit couples to the flux line or not.
In order to test our implemented procedure we measure the transition frequency ω(j)

01,i of qubit i at
random voltage configurations V(j) in a region around V = 0, where j enumerates the measurements.
From this data set {(ω(1)

01,i,V(1)), (ω(2)
01,i,V(2)), . . . } we determine the direction ni = ki/|ki|.

7.1 Determination of ki via Fourier transform

When the measured data contains more than one period of ω01,i(V), it is reasonable to use the Fourier
transform to determine the vectors ki. In general we will get unstructured data and therefore we
cannot use the discrete Fourier transform. Instead we use the transform

F [ω01,i] = 1
N

N∑
j=1

ω
(j)
01,ie

−2πik·V(j)
. (21)
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Before we transform the experimental data, we subtract the mean 〈ω(j)
01,i〉j to eliminate the k = 0

component in the Fourier space. Eliminating this component makes the later analysis simpler. The
position of the maximum of F [ω01,i] is the vector ki.

From the Fourier transform we get, besides the direction of the vector ki, also its length |ki|. We
can solve Equation 20 for the free parameters and get

Emax
J,i ≈

(~ωmax
01,i + EC)2

8EC
(22)

Φenv,i ≈ (kiVmax) mod Φ0. (23)

At the voltage Vmax we measured the largest transition frequency ωmax
01,i .

All measurements which were done during the thesis showed less than one period of ω01,i and
therefore the Fourier method was only tested on data from numerical simulation.

7.2 Determination of ni via parabola fit

We need another procedure to find ki if we have less than a period of ω01,i in our measurement data.
Then the Fourier transform is not relieable. In this case we approximate ωi(V) ≈ −(ai ·V+bi)2 +ci
in a first step. We fit this model to the data set {(ω(1)

01,i,V(1)), (ω(2)
01,i,V(2)), . . . } to find ai, bi and

ci. The direction ai/|ai| is then, up to experimental and numerical errors, the direction ni of the
vector ki. The parameters bi and ci give the position of the maximum of the parabola. We are
not interested in them, because later we fit the data to an accurate model and therefore get more
accurate coordinates for the maximal transition frequency.

From the fit of the parabola to the data we do not get a reliable guess for the length |ki| of the
vector ki. Thus, we must use a different way to approximate the free parameters. For Emax

J,i we use
the same guess value as for the Fourier transform method. The other guess values are

Φenv,i ≈
Φ0

π
arccos

(
(~ωzero

01,i + EC)2

8ECEmax
J

)
(24)

|ki| ≈
1

Vmin

[
Φ0

π
arccos

(
(~ωmin

01,i + EC)2

8ECEmax
J

)
− Φenv,i

]
(25)

where ωzero
01,i is the transition frequency that corresponds to the voltage setting V(j) with the smallest

magnitude |V(j)| used in the experiment. The smallest measured transition frequency is ωmin
01,i and

Vmin the corresponding voltage.

7.3 Parameter Extraction

Once we have ni we can project all vectors V(j) onto its direction. This means we use the map

(ω(j)
01,i,V

(j))→ (ω(j)
01,i, Ṽ

(j)
i ) (26)
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Figure 9: a) transition frequency ω01,1 of qubit 1 versus the voltage Ṽ1 . The blue dots represent
the measured data and the solid orange line the fit. The red points correspond to 0↔ 2 transitions.
b) Residuals of the fit to the data in a).

with Ṽ (j)
i = V(j) · ni. We end up with a two dimensional data set {(ω(1)

01,i, Ṽ
(1)
i ), (ω(2)

01,i, Ṽ
(2)
i ), . . . }.

We numerically minimize the residuals between this data and the exact model ω01,i(Φi) in terms of
Mathieu functions. Finally, we can extract the values of the parameters Emax

J,i , Φenv,i and |ki| from
the fitted model.

In Figure 9a there are several systematic outliers. These outliers come from qubit spectroscopies
where the qubit was driven with too high power. This led to excitations to the second energy
level. Before the residuals were minimized, these outliers were filtered out by hand. The residuals
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of the fit in Figure 9b lead to the conclusion that there is a model which describes the data more
accurately. For example, our model of the qubit transition frequency does not include the coupling to
the resonator and the possibility that the Josephson junctions have not exactly identical properties.

7.4 Voltages as Functions of the Qubit Transition Frequencies

For the purpose of setting the qubits to some frequency, we would like to know the function V(ω01)
which calculates the voltages we have to apply to the coils in order to tune the qubits to the
frequencies ω01. We first calculate the Moore-Penrose pseudoinverse M+ of the coupling matrix M .
This pseudoinverse M+ has the property that MM+ = 1 if the rows of M are linearly independent.
This condition should hold for the coupling matrix, because otherwise we could not tune the qubit
frequencies independently. We want to find the inverse function Φ(ω01) to the transition frequency.
Because the transition freqeuncy is periodic in the magnetic flux, we need to choose a flux range
on which the transition frequency is injective. It is sensible to choose this range close to the origin,
therefore we choose the range [0,Φ0/2]. The relation Φ(ω01) can approximately be obtained by
inverting Equation 5. A more accurate but more costly way to find Φ(ω01) is to solve ωexact

01 (Φ) =
ω01 for Φ, where ωexact

01 (Φ) is the exact solution in terms of Mathieu equations and ω01 is the vector
containing the transition frequencies we want to tune our qubits to.

7.5 Discussion

The described procedure allows us to determine the coupling of the qubit to the coils or flux lines.
However, to determine the qubit-coil coupling, taking the spectrum of the qubit and the resonator
must be done reasonably fast. In order to reliably determine the coupling of one qubit to one coil,
we need a fixed number of measurements. To determine the coupling of nq qubit to nc coils we will
need O(ncnq) measurements. One of the main goals of investigations on physical systems which can
be used as qubits is to find a way to scale up the number of qubits. For higher number of qubits
the determination of the qubit-coil coupling will take a considerable amount of time. Therefore, it
is sensible to look for a method which needs as few measurements as possible. The advantage of
the presented method is that it works with unstructured data. This means, we can use data from
measurements which were performed for a different purpose to find the qubit-coil coupling.

8 Adaptive Bayesian Experimental Design

In general when we perform an experiment, we want to extract as much new information as pos-
sible per measurement we take. The adaptive Bayesian experimental design is a tool to perform
experiments in a way such that the expected gain in our knowledge is maximized. This procedure
does choose the measurement settings for the upcoming measurement based on the previously taken
measurements. These settings are chosen such that they maximize an utility function. The utility
function describes how usefull the outcome of the measurement will be in the sense of information
that we gain about initially unknown parameters which describe the outcomes. In this chapter the
algorithm described in [Granade et al., 2012] is summarized.
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Figure 10: Overview of the algorithm. Adapted from [Granade et al., 2012].

Each experiment is described by an experiment configuration c, a list of parameters x we want to
determine and an outcome d. In our case we have x = (Emax

J ,Φenv,k1,k2, . . . ,knq
), dj = ω

(j)
01

and cj = V(j). Suppose we have perforemd already N experiments. Then we possess the sets
DN = {d1,d2 . . . ,dN} and CN = {c1, c2 . . . , cN} which contain all outcomes and all configurations
of these experiments. Our knowledge about the physics behind the experiment is represented by a
prior distribution Pr(x|DN ;CN ) and a likelihood-function Pr(dN+1|x;CN , cN+1;DN ).

An overview of the algorithm is shown in Figure 10. The first step in the algorithm is to calculate
the conditional utility U(cN+1; dN+1) and its expectation value over the possible outcomes of the
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next experiment

U(cN+1) = EdN+1|DN ;CN ,cN+1 [U(cN+1; dN+1)] (27)

conditioned on the old data and all configurations. This expected utility U(cN+1) is then maximized
to find the optimal configuration copt for the next experiment. New data dN+1 is generated by
performing the experiment with the optimal configuration. Then the likelihood function and the
prior distribution get updated with the new data and configurations, that means

Pr(dN+1|x;CN+1;DN )→ Pr(dN+2|x;CN+2;DN+1) (28)
Pr(x|DN ;CN )→ Pr(x|DN+1;CN+1) (29)

where cN+1 = copt. The same process is then iteratively repeated until some stop criterion is met,
for example a certain number of iterations. Then the estimated parameters are calculated by taking
the expectation value Ex|DN+1;CN+1 [x] with respect to the updated prior distribution.

The parameter space is usually continous and multidimensional. To avoid costly integrations over
it, the approximation

Pr(x|DN ;CN ) ≈
nx∑
k=1

wk(DN ;CN )δ(x− xk) (30)

is used where nx is the number of the so called particles xk. Following [Granade et al., 2012], we
update the weights wk by applying Bayes’ rule

wk(DN+1;CN+1) ∝ wk(DN ;CN ) Pr(DN+1|xk;CN+1). (31)

We normalize the wk s.t.
∑
k wk = 1. The utility function is the information gain

U(cN+1; dN+1) = Ex|DN+1;CN+1 [log Pr(x|DN+1;CN+1)]

≈
nx∑
k=1

wk log Pr(xk|DN+1;CN+1)

=
∑
k

wk log
(

Pr(dN+1|xk;DN ;CN+1) Pr(xk|DN ;CN+1)
Pr(dN+1|DN ;CN+1)

)
(32)

In [Lindley, 1956] this choice of utility function is motivated rigorously. To get an intuition why this
utility function is reasonable, we look at a simple case. Consider we have m different values for x
and we have taken no measurements. Further we should not have prior knowledge, meaning Pr(x)
is uniform. If there is someone who knows x and we want to ask for the value of it, we have to ask
log2m questions which can be answered with ’yes’ or ’no’. The information gain utility function is
in this case U =

∑
x Pr(x) log Pr(x) = − logm, which is proportional to the negative of the number

of questions we have to ask. This means the higher the utility, the less questions we have to ask
to find x. We can go a step further and assume we performed a measurement which told us that
only half of the m different values for x are possible, but still with uniform probabilities. This
new knowledge will reduce the number of questions we have to ask by one and the utility increases
accordingly. Therefore, the information gain utility can be used as a measure for the information
we possess about the parameter x. However, the utility function is not uniquely determined, there
are several measures for the usefulness of the experimental setting. Another possible choice is the
negative variance [Granade et al., 2012].
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Before calculating the expected utility, we notice that having an additional setting cN+1 does not
change our knowledge about the parameters, i.e. Pr(xk|DN ;CN+1) = Pr(xk|DN ;CN ). Terms pro-
portional to log Pr(xk|DN ;CN+1) can be neglected in the expected utility as we are only interested
in terms depending on cN+1. The utility is

U(cN+1) =
nx∑
k=1

wkEdN+1|DN ;CN+1 [log Pr(dN+1|xk;DN ;CN+1)]

− EdN+1|DN ;CN+1 [log Pr(dN+1|DN ;CN+1)]
= HdN+1|DN ;CN+1 [Pr(dN+1|DN ;CN+1)]

−
nx∑
k=1

wkHdN+1|DN ;CN+1 [Pr(dN+1|xk;DN ;CN+1)] (33)

where H denotes the entropy.

In our experiment the initial prior distribution is a product distribution
∏
i Pr(Emax

J,i ) Pr(ki) Pr(Φenv,i).
The distribution of Emax

J,i is a normal distribution around an estimated mean value. The ran-
dom variable Φenv,i is also normally distributed with mean at zero. The j-th component of the
i-th vector ki,j is normally distributed around zero if i is not equal to j and otherwise it is uni-
formly distibuted. The likelihood function takes the form Pr(ω01|Emax

J ,k1, . . . ,knq
,Φenv; V) =∏nq

i=1 Pr(ω01,i|Emax
J,i ,ki,Φenv,i; V). The factors are normal distributed Pr(ω01,i|Emax

J,i ,ki,Φenv,i; V) ∼
N (µi, σi) with the mean values µi = ω01,i(V) and a narrow widths σi due to experimental errors.
The approximation described in Equation 30 is done by sampling the set of Josephson energies, flux
offsets and coupling vectors. This means that the mean µi,k gets another index k to enumerate the
particles xk in the parameter space.

8.1 Discussion

Having all the initial distributions, we could apply the algorithm. However, we have a continuous
space of possible measurement outcomes d. This fact comes into play when we want to compute
the expected utility. The first term in Equation 33 takes the form

Hω(N+1)|DN ;CN+1 [Pr(ω(N+1)|DN ;CN+1)] =∫
dω01

nx∑
k=0

wk

nq∏
i=1

f(ω01,i|µi,k, σi) log

 nx∑
l=0

wl

nq∏
j=1

f(ω01,j |µj,l, σj)

 (34)

where f(ω01,i|µi,k, σi) is the probability density function of Pr(ω01,i|Emax
J,i ,ki,Φenv,i; V). This in-

tegral is not analytically solvable in contrast to the other terms in Equation 33. One approach
to solve it is to use Monte Carlo integration. This allows us to replace the integration by a sum-
mation. When we consider nx particles in the parameter space and nd particles in the space of
the measurement outcomes, we have to perform nx · nd operations to evaluate the expected utility
function at one specific configuration c. For a reasonable precision we need particle numbers of the
order of thousands in each space and therefore we need millions of operations to evaluate the utility
function once. We maximize the utility function to find the optimal configuration. This means we
have to evalutate the utility function serveral times. The implementation of the utility function for
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our experiment can be evaluated in tenths of seconds. Assuming that we get a reasonably good
configuration by evaluating only of the order of ten times, we can find the configuration on a time
scale of seconds. One should notice here that taking a nonoptimal configuration for the experiment
means that we have to measure at more different points to get the same accuracy for the estimated
parameter. Therefore there is a tradeoff between time used for computation and time used for taking
measurements.

For our experiment the utility function is still under development. We tried to approximate the inte-
grand of the utility function such that we can analytically solve the integral, but we did not succeed.
Then we implemented the Monte Carlo integration over the space of measurement outcomes. This
led to an utility function which does not converge as a function of the Monte Carlo particles nd.

In other experiments the adaptive Bayesian experiment design can be useful, especially when we
have only a few different possible measurement outcomes. This is for example the case if we would
like to find the decoherence time and therefore read out the qubit states at different times. In this
case we have only two possible measurement outcomes and therefore the evaluation of the expected
utility only takes time of the order of 2nx.

This is the first study of the adaptive Bayesian experimental design in the Quantum Device Lab.
However, there exist various experimental techniques for different tasks related to quantum infor-
mation processing based on the Bayesian approach. These techniques are interesting, as they try to
minimize the resources needed to perform certain tasks. A selection of potentially usefull techniques
for quantum information processing are accelerated randomized benchmarking [Granade and Fer-
rie, 2015], adaptive quantum tomography of two-qubit states [Struchalin et al., 2016] and quantum
model averaging [Ferrie, 2014].

9 Conclusion and Outlook

Previous to this work the Software suite was able to perform qubit and resonator spectroscopies.
However, the determination of the transition frequency and the resonant frequency had to be done
by hand. Now, the software is able to find them, provided the user tells the program a frequency
range which contains these frequencies. In addition, the software was extended with functionalities
which allow to automatically determine the coupling of the qubit transition frequency to a coil or
flux line via magnetic flux. The software can now use unstructured voltage configurations to find
the parameters describing the coupling.

A Bayesian approach to experimental design was studied with the aim to minimize the time needed to
determine the qubit-coil coupling. The core features of this design were implemented and tested. We
concluded that the implementation is not yet ready to be used for qubit characterization and needs
further improvement and testing. However, the study of this approach revealed some techniques
which might be useful for other tasks related to quantum computation.

In a future work on the software, one could implement the possiblity to determine the qubit-coil
coupling ’on the fly’. For this purpose we can imagine an experiment in which we would like to
tune the qubit transition frequency to some given value. We start by measuring our current qubit
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transition frequency. Then we change the voltages on the coils by a small amount and measure
again. Using these two measurements we do a linear approximation of the qubit-coil coupling. This
approximation gives us an estimate of how we have to tune the voltages to get closer to our desired
transition frequency. This procedure of measuring and approximating is repeated until we are in a
certain region around our desired transition frequency. After the iterative tuneup was performed,
we can use the collected data to find the qubit-coil coupling. The ability of the software to use
unstructured voltage configurations paves the way for adding such functionality.

A procedure which is often used, especially during the characterization of the processor sample, is
qubit spectroscopy. Therefore it is reasonable to optimize this procedure. A way to reduce time
consumption is to guess the qubit transition frequency based on the already collected data. For
example if we know the qubit transition frequency at a specific voltage configuration, then we can
assume that a small change in voltage leads to a small change in frequency. This means for small
voltage changes we have to look for the qubits transition frequency only in a small region around the
transition frequency for the previous voltage configuration. This would allow us to perform qubit
spectroscopy faster because we can decrease the frequency range we sweep over during spectoscopy.
The same could be done for the resonator spectroscopy.
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