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Abstract

The double pump Josephson parametric amplifier
is discussed and realized. A model based on the
differential equation for the node flux of a circuit
system is presented. In addition the experimental
setup used and the measurement method is sum-
marized. In the experiment similar amplification
characteristics as in the single pump case are ob-
tained. As well as a test of phasesensitive ampli-
fication with two pump drives is performed. The
double pump amplification is further analyzed on
its dependence on the frequency spacing of the two
pump drives.
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Chapter 1

Introduction

The Interaction of matter and light is a fundamental physical problem. The most elemen-
tary question is how one single photon interacts with only one atom. This problem can
be studied in different ways. One possibility is the so called Circuit Quantum Electrody-
namics (Circuit QED). In doing so neither a real atom nor electromagnetic waves in the
visible spectrum are used. Rather an artificial alternative system is studied. A quantum
mechanical system with two energy level for example realized as a Cooper-Pair-Box is used
as artificial atom. This is explored in a quasi one dimensional microwaves resonator. With
such a system strong interaction of light and matter can be studied. 2004 A. Wallraff et
al. first demonstrated this strong interaction in Yale [1].
A microwave photon has much less energy (factor ≈ 106) than a photon from the visible
spectrum. Thus it is much harder to detect a microwave photon. To detect microwave
signals gallium arsenide hetero-structures as MESFETS and mostly HEMTs (High elec-
tron mobility transistors) are used as amplifiers. To further improve the amplification an
ultra low noise amplifier to put in front of an HEMT is searched. A promising candidate
for such an low noise amplifier is the Josephson parametric amplifier.
In a typical parametric amplifier process an input signal is increased by energy transfer
from a pump drive. This energy transfer can also be realized by two pump drives with
two different frequencies. The goal of this semesterthesis is to realize amplification with
two frequencies and to analyze the advantages of the double pump amplifier.
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Chapter 2

Parametric amplifier

The damped driven harmonic oscillator is a well known physical problem. The damping
constant and the resonance frequency are characteristic parameters of it. If these parame-
ters become variable, for example a time depending damping constant, then a parametric
oscillator is obtained. This system also shows resonance phenomena and because of its
non-linearity frequency mixing may occur. Such a system can be used to amplify signals.
In a typical parametric amplifier process which is shown in figure 2.1 the incoming signal
with amplitude Ains interacts with a pump drive of amplitude Ainp [2]. The signals am-
plitude is increased due to an energy transfer from the pump drive and reflected back as
output with increased amplitude Aouts . Due to the energy transfer to the signal the pump
drive depletes. In this process a second wave at a different frequency is produced and
leaves the amplifier the so called idler.
The goal of this project is to realize this amplification process with two pump drives
instead of one.

Figure 2.1: Typical parametric amplifier process: Increase of signal amplitude due
to energy transfer from a pump drive and creation of the idler frequency. [2]
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4 Chapter 2. Parametric amplifier

2.1 Advantage of amplification with two pump drives

Parametric amplifiers are interesting to explore because they provide a possibility of ultra
low noise amplification. As already mentioned one way to realize a parametric amplifier
is with the help of two different pump frequencies.
Figures 2.2 and 2.3 show the schematics of typical noise power spectral densities for single
and double pumped amplifiers. The coordinate ∆ displays the difference of the frequency
to the resonance frequency. There is an overall offset colored transparently on both pic-
tures. This is the system noise, which is always present. Then there are sharp and high
peaks which correspond to the pump drives. Also the Lorenz shaped amplified signal
shown. With a filter, drawn in red, the data which is analyzed is chosen.
In figures 2.2 and 2.3 the example of phase sensitive amplification is shown. In a phase sen-
sitive measurement the pump and signal frequency lie exactly at the resonance frequency.
Also a symmetric filter is used such that the same amount of signal and idler quadratures
are measured. This gives the possibility of amplify the signal quadrature noiselessly with
the cost of attenuate the idler quadrature.
In the single pump case (figure 2.2) the pump drive lies in the region of the filter and
thus appears in the measured data. This is unwanted and can be avoided with two pump
drives. The detuning (frequency spacing) of the two pump frequencies is chosen such that
they lie at null-points of the filter (see figure 2.3). The pump drives are simply filtered
away and thus do not appear in the data. This is the main advantage of using two pump
drives.

Filter

SignalIdler

Pump

 Noise

Amplified signal

0

Figure 2.2: Noise spectral density
with a single pump drive: Shown are
the Pump,the amplified signal,the system
noise and the filter; The pump drive lies
in the region of the filter and thus ap-
pears in the measurement data; ∆ dis-
plays the difference to the resonance fre-
quency

Pump
Pump

Filter

Idler Signal Noise

0

Amplified Signal

Figure 2.3: Noise spectral density
with two pump drives: Shown are the
Pump drives, the amplified signal, the
system noise and the filter; The frequen-
cies of the two pump lie at a null-point of
the filter and do not appear in the mea-
surement data; ∆ displays the difference
to the resonance frequency



2.2. Realization of a parametric amplifier 5

2.2 Realization of a parametric amplifier

One version of a parametric oscillator is based on a current depending inductance L. In
the experiment a quasi one dimensional microwave resonator is used. The sample is shown
schematically in figure 2.4. Superconducting areas are shown in light blue, while the white
spaces indicate isolating parts. The isolating parts act as capacitance. In the end of the
sample is an array of superconducting interference devices (SQUIDs). They provide the
non linear inductance of the system.

superconducting

Capacity

SQUIDS

Current

B-field

Figure 2.4: Microwave resonator: blue parts are superconductive; white parts indicate
nonconducting areas, which act as capacitance; There is a SQUID array in the end. The
magnetic flux through the SQUIDs can be varied with a coil below the sample
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A SQUID is a superconducting ring with two small non-conducting barriers called Joseph-
son junctions. As consequence of the flux quantization through such a ring, the current
voltage characteristics is nonlinear. The relation is approximately sinusoidal and can be
expanded in a Taylor series:

I(t) = I0 sin(
2e

~
V ) ≈ 2e

~
I0V +

1

6
(
2e

~
)3I0V

3 (2.1)

Considering only the first two terms a SQUID can be approximately described as:

I =
1

L
V for any inductance (2.2)

L = Lj + δL for the SQUID with:

Lj =
2e

~
I0; δL =

1

6
Lj
I2

I2
0

Below these SQUIDS a coil is attached, which gives the possibility of changing the induc-
tance by a magnetic field. Changing the inductance implies a change of the resonance
frequency and thus a tunable amplifier.
In the superconducting regions a current is conducted to the sample. The current induces
electromagnetic fields in the non-conducting parts which again induce currents in the res-
onator. Therefor the current manages to overcome the non-conducting cap. The current
is reflected back and forth in the resonator and in each turn a certain amount leaves the
system at the capacity.
One important characteristics of such a parametric amplifier is the quality factor. The
quality factor is a measure of the damping, meaning the energy losses of the system. The
quality factor is defined as the resonance frequency times the ration between energy stored
in the system to the dissipated energy in one cycle:

QL := ωres
Stored Energy

Dissipated Energy
= ωres

n~ωres
Pout + Ploss

(2.3)

It is convenient to split up the quality factor in an internal- and an external part. The
internal quality factor revering to losses in the system while the external describes the
losses due to out coupling.

Qint = ωres
n~ωres
Ploss

(2.4)

Qext = ωres
n~ωres
Pout

1

QL

=
1

Qint

+
1

Qres
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2.3. Basic model of the parametric amplifier 7

2.3 Basic model of the parametric amplifier

The whole microwave resonator system can be described by a parallel LRC-circuit with
a non-linear inductance which is shown in figure 2.5 [2]. Indicated on the figure are the
different currents in the system: The two pump drives, the signal current and the noise.

Figure 2.5: Description of the microwave resonator by a parallel LRC-circuit:
with non-linear inductance Ej, the two pump currents IRF1 and IRF2, the signal current
Is and the noise current IN ; shown as well are the capacitance C and the resistance R [2]

Such a circuit can be described by a differential equation with only one degree of freedom,
the node flux. This variable is defined as the sum of branch fluxes connecting the node
with the defined ground node. One such branch flux is the integral over the time since −∞
of the instantaneous flux through the branch. For more details to the exact definitions and
the derivation of such an differential equation see the text [3]. The differential equation
for the circuit in figure 2.5 is given by:

Φ̈ + 2ΓΦ̇ + ω2
0(1 + λ(

2πΦ

Φ0

)2) =
1

C
(IRF1 cos(ω1t) + IRF2 cos(ω2t) + IN)[2] (2.5)

The second term describes the decay in the resonator with the damping constant Γ as
characteristic parameter. The non-linearity is put into the formula via the non-linearity
coefficient λ. For a SQUID this constant is λ = 1

6
. With the help of this constant the



8 Chapter 2. Parametric amplifier

formula can be extended to different non-linearity as for example an array of SQUIDs as
in our case. There are also two terms describing the pump drives with strengths IRF1,
IRF2 and frequencies ω1 and ω2. The last term considers the input signal.
To solve the differential equation an appropriate ansatz which contains the possible input
frequencies is inserted. Afterward harmonic balance for signal, idler an the two pump
frequencies is performed. In doing so several approximations are considered. A system of
equations is obtained. They are further simplified to linear equations under the stiff pump
approximation where back action is neglected and the total pump strength is assumed to
be constant. The output fields are calculated from the fields in the resonator with the
help of input output theory. More details to this calculation are found in the appendix.
The derivation are based on the work from A. Kamal, A Marblestone and M. Devoret in
the Physics Review B 79 [2].

2.4 Measurement setup and method

In principle the properties of the sample are investigated as follows: Microwave signals are
generated and conducted to the sample in the cryostat. They couple into the resonator
and are reflected back and forth. A part of the field in the resonator is coupled out and
analyzed.
The experimental setup is given in figure 2.7. Three generators are connected via mi-
crowave coaxial cables to the sample. Three generators are needed one to generate the
signal and the other two to drive the system when the double pump is tested. Their signal
are added together. Afterwards it is split up in two equal parts one as reference channel
and the other going to the sample in the vericold dilution refrigerator.
The temperature at the level of the sample can be cooled down to 20 mK. This low tem-
perature is needed to reach the quantum regime. If the thermal energy is smaller than the
energy quantum associated with the resonance frequencies of the resonator kbT ≤ ~ωres
then measurements in the quantum regime are possible.
The low temperature in the cryostat is cooled down in several temperature steps in each
step the wires connected to the sample should not transport more thermal energy than
the cryostat can cool down. For this reason special coaxial-cables out of stainless steel are
used in the cryostat. They are bad thermal conductors but also add more attenuation.
This attenuation would be too much for the weak output signal that’s why for the output
a special cable is used. In each step the components have to be thermalized this is done
with cooper wires attached to the different devices.
Before the signal reaches the cryostat different attenuators are built into the setup to
diminish the power enough such that the sample can not be damaged. To hold losses as
small as possible the measurement is done in reflection. This means that at the same
capacity where the signal couples into the resonator the reflected signal is measured. To
distinguish the incoming and the outgoing signal a circulator is used. The circulator has
three ports the incoming signal is always going to the next port in anticlockwise rotation.
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2.4. Measurement setup and method 9

To analyze the outgoing signal a IQ-mixer is used to down convert to smaller frequencies.
A IQ - mixer consist out of two mixers. A mixer combines two frequencies. The input
signal and a so called local oscillator signal. The output signal of a mixer contains other
frequencies like the sum and the difference of the input signals. With filters one can choose
the frequencyband which is useful for the further application. This is visualized in figure
2.6 on the left. In the case of a IQ mixer (figure 2.6 on the right) the local oscillator signal
is first split up in two parts. To one part a phase of 90◦ is added. The local oscillator
signals are then mixed with the split up radio frequency. Which yields two different signals
fi , fq leaving the IQ mixer. In this case the high RF frequency is converted to smaller
frequencies which are easier to analyze.
This so called I an Q quadratures are then amplified, digital to analogue converted and

Mixer

signal
frequency fe

Local oscillator
frequency flo

frequency mixture
fe+flo
|fe-flo|
others

IQ-Mixer

signal
frequency fi

Local oscillator
frequency flo +π/2 

RF

signal
frequency fq

Figure 2.6: Principle of a mixer and IQ-Mixer: A mixer combines two signals
and produces the sum and the difference of the two frequencies. A mixer can be used to
down convert frequencies to smaller ones, a IQ mixer consists of two mixers and can also
be used to down convert

analyzed with the help of a field-programmable gate array (FPGA). From the measured
quadratures one can conclude back to the properties of the resonator.
Data is measured for 25µs. This is done many times and the results are averaged. With
this technique one can get rid of the noise. Because of the length of the measurement
interval all frequencies which are no multiples of 40 kHz are averaged out. Thus the signal
frequency is chosen as multiples of 40 kHz. In contrast the pump drives and the idler are
chosen such that they are averaged out.
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Figure 2.7: Experimental Setup: Shown are the three generators connected via coax-
ial cables to the sample in the cryostat, to distinguish incoming and outgoing signals a
circulator is used, the data is amplified and analyzed in the field programmable gate array
FPGA
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Chapter 3

Measurement results and analysis

3.1 The sample: Tunability and quality factor

First the sample is characterized especially important is its tunability, the dependence
of the resonance frequency on the voltage of the coil. The range of possible resonance
frequencies shows how good the amplifier can be tuned. Only signals with a frequency
near the resonance frequency are amplified hence it is favorable to have a high tuneability.
To measure this effect a coherent signal is conducted to the resonator where the coil
generated a magnetic filed. The increase of the signals amplitude is measured. This is
done for different combinations of coil voltages and frequencies.
The results are given in figure 3.1. In blue the measurements results are displayed, plotted
in red is a model calculation. The model is in good agreement with the measurement
especially between -0.2 V to 0.15 V. resonance frequencies between 3 GHz to 6.8 GHz are
observed. From this data the quality factor is calculated via formula 2.4. The results are
given in figure 3.2. At zero voltage on the coil a quality factor of about 247 is found. At
this point the sample was designed to have a quality factor of 300.

3.2 Equivalence of single and double pump amplifi-

cation

The next task is to achieve typical amplification characteristics with one as well as with
two pump drive. It is also important to check whether it is possible to observe the same
results in both cases.
To do so the region around the resonance frequency is examined. The gain is measured for
different combinations of pump-powers and frequencies. In the case of one pump drive this
is done as showed in figure 3.3. The pictograph in figure 3.3 with the arrows illustrates
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12 Chapter 3. Measurement results and analysis
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the measurement technique. An arrow stands for a certain signal its height corresponds
qualitatively to its power and its horizontal location to the frequency. Black variables stay
constant during the measurement while purple ones are swept. The values of the constant
variables are given on the right. This means in figure 3.3 two signals are generated a much
stronger pump drive and a weak signal their frequency spacing stays constant at 10 kHz
during the measurement. The power of the pump and the frequency of both signals are
varied. Measured is the gain of the signals amplitude in the output.
The results are presented as density plot. Combinations of pump powers and frequencies
where amplification occurs are observed.
In a following measurement the pump frequency and power is fixed and the signal am-
plification in dependence of the signal frequency is measured. One such measurement is
showed in figure 3.4. In this measurement the pump power was fixed at -11.3 dBm, the
pump frequency was 6.1441 GHz and the power of the input signal -44 dBm. The data
shows the expected shape of a Lorenz function:

f(x) =
A ·Q2

e

4Q4
e ·

(ω0−x)2

ω2
0

+Q2
e

(3.1)

Where A corresponds to the maximal amplitude, Qe to the external quality factor which
determines the with of the function and ω0 is the central frequency. A fit to the Lorenz
function in formula 3.1 is performed and given in figure 3.4 in purple. From this fit also the
characteristic gain bandwidth product can be calculated. The gain bandwidth product is
defined as:

GBP =

√
Aω0

Qe

(3.2)
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3.2. Equivalence of single and double pump amplification 13

Figure 3.3: Single pump gain measurement: investigation of pump parameters for
signal amplification, given as density plot is the signal gain in dependence of the pump
parameters, the measurement technique is showed as pictograph where the constant param-
eters are indicated on the right

Figure 3.4: Signal amplification with one pump drive: The amplification shows
the typical Lorenz shape with a GBP of 29. MHz, data is plotted in blue while a fit to the
Lorenz function is given in purple, the pump power is fixed to -11.3 dBm while the pump
frequency is 6.1441 GHz
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Now qualitatively the same thing is tested with two pump drives. Amplification is ana-
lyzed in dependence of the pump parameters. Where the additional generator yields now
two additional degrees of freedom which result in a multiple of possible sweeping tech-
niques. Nevertheless a good amplification point to fix the pump drives was found:

Pump power 1 −14 dBm
Pump frequency 1 6.108 GHz
Pump power 2 −9.8 dBm
Pump frequency 2 6.158 GHz
Detuning 40 MHz

With this frequency spacing of the two pump drives at 40 MHz a gain bandwidth product
of 24.55 MHz is achieved. The measurement is given in figure 3.5 in blue the measurement
data is shown and again a fit to the Lorenz function is given in purple. Once more the
typical Lorenz shape is observed.
Thus it is possible to realize the double pump amplifier to observe expected amplification
characteristics which are similar to the single pump amplification.

Figure 3.5: Signal amplification with two pump drives: Again the amplification
shows the typical Lorenz shape now with a GBP of 24.55 MHz, data is plotted in blue while
a fit to the Lorenz function is given in purple, the pump powers are fixed to -14 dBm and
-9.8 dBm while the frequencies where 6.108 GHz and 6.158 GHz
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3.3 Test of phasesensitive amplification

In section 2.1 about the advantages of the double pump amplifier the phasesensitive ampli-
fication was named as possible field for further applications. In the measurements above
the advantage named in 2.1 did not show its benefit. The pump powers where simply
averaged out by the measurement technique. A test whether phasesensitive amplification
with two pump drives in general works is the next goal.
To observe this the two pump drives are fixed as well as the signal frequency and power.
The only parameter which is varied is the signals phase. The measurement is presented in
figure 3.6 the pumps are fixed as in the table above. In figure 3.6 one can observe a strong
dependence of the amplification on the phase which gives a positive feedback to our test.

Figure 3.6: Gain in dependence of the phase between signal and idler: Pump
powers and frequencies are fixed to the values given in the graphic as well as the signal
power and frequency is fixed. Amplification in dependence of the phase is observed
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3.4 Amplification independence of the detuning

Until now it was possible to realize the double pump amplifier and to show its proper oper-
ation. With this knowledge one can turn to further aspects of the double pump amplifier.
While amplifying with two pump drives the frequencies of the pumps are always separated
by a certain amount (detuning). When testing the double pump amplifier several ques-
tions arose: How does the amplification depend on this detuning? Is it possible to change
steadily from double pump to single pump amplification by decreasing the detuning to
zero?
A difficulty in the measurement technique where frequency dependent losses in the setup.
Because the two pumps are at different frequencies the cables and attenuators do not
absorb the same way at both values. This makes it difficult to achieve the same pump
strength of both pumps at the sample. How sensitive is the amplification process to such
asymmetries in pump strength?

1 2

Figure 3.7: Measurement technique: First measurement all frequencies have the same
detuning to each other, the signal is 10 kHz away from the center, All three frequencies
are swept together,in addition the two pump strength are varied simultaneously; Second
measurement the two pump frequencies and one pump power are fixed , varied are the
signals frequency as well as the second pump power
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To answer this questions experimentally first a measurement technique is developed and
defined. Most useful proved the two measurements shown in figure 3.7. In a first measure-
ment the characteristics of good pump drives is searched. To do so all three frequencies
have the same detuning to each other and are varied simultaneously. The signal is 10 kHz
away from the center. While sweeping the frequencies the two pump powers are changed
in the same way. This measurement is somehow analogue to the one shown in figure 3.3.
In a second step the pump drives are fixed and only the signals frequency is varied. But in
contrast to earlier measurement only one pump power is fixed the other one is swept. This
gives the possibility to observe how sensitive the amplification depends on inequalities of
the input power.
This two measurements were performed with several different detunings. In figure 3.8 the
measurement with a detuning of 4 MHz is presented. The top picture shows the results
from the first measurement. Amplification is observed on a diagonal looking similar to
the measurement in figure 3.3. Below a picture of the second measurement is found. The
power region were amplification is observed is about 0.8 dBm. One scan from this mea-
surement should again give a Lorenz curve. This is shown in the bottom picture. No
Lorenz curve is observed in this picture.
The measurements were also performed with 60 MHz of detuning. The results are given
in figure 3.9. Here the first measurement does not show similarities to figure 3.3. In the
second picture it is seen that amplification occurs now over a region of 3 - 4 dBm. Which
can eventually be explained by a smaller percentage of power coupling into the resonator.
Because the pump is detuned more from the resonance frequency. One scan of measure-
ment 2 looks like a Lorenz curve.
In total it was observed that for high detunings the first measurement gave results which
were difficult to interpret. But when once the pump was fixed it was possible to observe
Lorenz curves. Also the power region of the second pump were amplification occurred
increased with the detuning. At small detunings the first measurement gave always a
picture of a ”long diagonal”. While power regions were small and it was really hard to
tune the experimental setup such that Lorenz curves could be observed.
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Figure 3.8: Detuning of 4 MHz: Top picture mes 1: Amplification on a diagonal,
middle mes 2: Region of 0.8 dBm were amplification occurs, bottom one scan of mes 2:
does not show a Lorenz curve
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Figure 3.9: Detuning of 60 MHz: top picture mes 1: Difficult to interpret, middle
mes 2: Region of 3 - 4 dBm were amplification occurs, bottom one scan of mes 2: shows
a Lorenz curve
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Conclusion and outlook

It was possible to realize the double pump amplifier and produce similar amplification
as in the single pump case. Also phase sensitive amplification was tested with two pump
drives and showed positive results. To further analyze the double pump and the amplifica-
tion in dependence of the detuning a measurement technique was developed. To sweep all
frequencies simultaneously and with constant frequency spacing seemed most convenient
as starting point. In a second measurement the frequencies of the two pump drives are
fixed. In contrast to the single pump case only one pump power is fixed. This seemed
reasonable to explore the effects of the individual pump drive powers. The amplification
was examined in dependence of different constant detunings. It was found that the first
measurement showed more expected behavior for small detunings. But it was difficult to
fix the pump drives to achieve nice signal gain curves. The power region where the am-
plification in the second measurement occurred increased for bigger detunings. As well as
the overall pump strength. Both effects were explained by the fact that less power couples
into the resonator for bigger detunings.
In the extent of a semester project the double pump amplifier was studied and some of
its characteristics were measured. The next step in analysis of the double pump ampli-
fier would be to confirm first the results found in this project and then to enlarge them.
Interesting points to measure are for example the boarder between double pump amplifi-
cation and single pump amplification. It would be instructive to show that it is possible
to change steadily from the double pump to the single pump by decreasing the detuning.
Also the difficulties with the different pump strength should be analyzed further and the
amount of power coupling into the resonator at a particular detuning should be compared
with the expectations. There are also more delicate aspect which could be analyzed. The
soft pump regime as discussed in [2] could be explored. When all characteristics and
advantages of the double pump amplifier are known, then one could decide weather an
additional generator is worth to do amplification.
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Appendix A

Basic model of the parametric
amplifier

The whole microwave resonator system can be described by a parallel LRC-circuit with a
non-linear inductance. Such a circuit can be described by a differential equation with only
one degree of freedom, the node flux. This variable is defined as the sum of branch fluxes
connecting the node with the defined ground node. One such branch flux is the integral
over the time since −∞ of the instantaneous flux through the branch. For more details
to the exact definition and the derivation of such an differential equation see the text [3].
The differential equation for the circuit in figure 2.5 is given by:

Φ̈ + 2ΓΦ̇ + ω2
0(1 + λ(

2πΦ

Φ0

)2) =
1

C
(IRF1 cos(ω1t) + IRF2 cos(ω2t) + IN)[2] (A.1)

The second term describes the decay in the resonator with the damping constant Γ as
characterisitc parameter. The nonlinearity is put into the formula via the nonlinearity
coefficent λ. For a SQUID this constant is λ = 1

6
. With the help of this constant the

formula can be extended to different non linearity as for example an array of SQUIDS as
in our case. Then there are two terms describing the pump drives with strengths IRF1,
IRF2 and frequencies ω1 and ω2. The last term considers the input signal.
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22 Appendix A. Basic model of the parametric amplifier

To sum up the different parameters in the equation are:

Φ : node Flux (A.2)

IRF1, IRF2 : pump drives

IN : Incoherent signal input

Γ =
1

RC
: Damping constant

ω0 =
1√
LjC

: natural resonance frequency

λ : non linearity coefficient

Lj =
~

2eI0

: linear Inductance

δLj = λLjI
2/I2

0 : non linear inductance

Equation A.2: Summary of the relevant quantities

The differential equation is changed to dimensionless coordinates with the substitution
φ = 2πΦ/Φ0 and νin = INR2π/Φ0.

φ̈+ 2Γφ̇+ ω2
0φ(1 + λφ2)− ω2

0

I2
RF1

I2
0

cos(ω1t) + ω2
0

I2
RF1

I2
0

cos(ω2t) = 2λνin) (A.3)

Equation A.3: Dimensionless DGL

This differential equation is approximately solved with an appropriate ansatz given in
formula A.4. The solution can contain all possible frequencies this is given in the first
term of the ansatz. It contains noise as well as the signal and the idler. In the stiff
pump approximation where pumping with high power is assumed, ω1 and ω2 as well as the
possible self-oscillation frequency ωg = ω1+ω2

2
are the dominant frequencies of the system.

χ[ω],Y,Z,Ξ are the coefficients of the different frequencies.

ϕ(t) =

∫ ∞
−∞

χ[ω]e−iωt dω + Ξe−iωgt + Y e−iω1t + Ze−iωgt + c.c. (A.4)

Equation A.4: Ansatz, c.c. refers to the complex conjugated terms

Useful for a clear calculation is also the quantity given in formula A.5. This term shows
the depletion of the pump drives via the internal coupling which can be seen from formula
A.7. This is why Π is usually refereed to as back action factor.

Π =

〈∫ ∞
−∞

∫ ∞
−∞

χ[ωa]χ[ωb] dωa dωbδ(ωa + ωb + 2ωg)

〉
(A.5)

Equation A.5: Back Action Factor
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The basic coupling between the internal coordinates are given by:

ωI = 2ωg − ωs where ωg =
ω1 + ω2

2
(A.6)

Equation A.6: Coupling of the frequencies

Now the ansatz is inserted into the differential equation and harmonic balance for ωs, ωI , ωg, ω1

and ω2 is performed. This means the coefficients before the exponential term for one fre-
quency are equated. In doing harmonic balance also several approximations are performed:
All fast oscillations are neglected (e.g. 2ω1), Y and Z are considered to be much bigger
than the other coefficients especially Π and terms only performing a re normalization are
disregarded. To perform this calculation ϕ3 has to be calculated. This is done in equation
A.7. Together with the other terms in the dimensionless DGL and in performing harmonic
balance a system of 10 equations is obtained.

ϕ3 = + e−iωst (χ[ωs](3χ[ωs]χ[ω−s] + 6χ[ωI ]χ[ω−I ] + 6ΞΞ∗ + 6Y Y ∗ (A.7)

+ 6ZZ∗) + 6χ[−ωI ]Y Z + 6Πχ∗[ωI ] + 6χ∗[ωI ]χ
2)

+ e−iωI t χ[ωI ](3χ[ωI ]χ[ω−I ] + 6χ[ωs]χ[ω−s] + 6ΞΞ∗ + 6Y Y ∗

+ 6ZZ∗) + 6χ[−ωs]Y Z + 6Πχ∗[ωs] + 6χ∗[ωs]χ
2)

+ e−iωgt (Ξ(6χ[ωs]χ[ω−s] + 6χ[ωI ]χ[ω−I ] + 3ΞΞ∗ + 6Y Y ∗

+ 6ZZ∗) + 6Ξ∗Y Z + 6Ξ∗χ[ωs]χ[ωI ]

+ e−iω2t (Z(6χ[ωs]χ[ω−s] + 6χ[ωI ]χ[ω−I ] + 6ΞΞ∗ + 6Y Y ∗

+ 3ZZ∗) + 6ΠY ∗ + 3Ξ2Y ∗

+ e−iω1t (Z(6χ[ωs]χ[ω−s] + 6χ[ωI ]χ[ω−I ] + 6ΞΞ∗ + 3Y Y ∗

+ 6ZZ∗) + 6ΠZ∗ + 3Ξ2Z∗

+ c.c.

+ f.o.

ϕ3 ≈ + e−iωst 6χ[−ωI ]Y Z
+ e−iωI t 6χ[−ωs]Y Z
+ e−iωgt 6Ξ∗Y Z

+ e−iω2t 6ΠY ∗ + 3Ξ2Y ∗

+ e−iω1t 6ΠZ∗ + 3Ξ2Z∗

+ c.c.

Equation A.7: Calculation and approximation of ϕ3, f.o.: fast oscillating terms



24 Appendix A. Basic model of the parametric amplifier

(−ω2
s − 2iΓωs + ω2

0)χ[ωs] + λω2
0(6χ[−ωI ]Y Z) = 2Γνin[ωs] (A.8)

(−ω2
I − 2iΓωI + ω2

0)χ[ωI ] + λω2
0(6χ[−ωs]Y Z) = 2Γνin[ωI ] (A.9)

(−ω2
1 − 2iΓω1 + ω2

0)Y + λω2
0(6ΠZ∗ + 3Ξ2Z∗) =

ω2
0IRF1

2I0

(A.10)

(−ω2
2 − 2iΓω2 + ω2

0)Y + λω2
0(6ΠY ∗ + 3Ξ2Y ∗) =

ω2
0IRF2

2I0

(A.11)

(−ω2
g − 2iΓωg + ω2

0)Ξ + λω2
0(6Ξ∗Y Z) = 0 (A.12)

c.c.

Equation A.8-A.12: System of equations

Equation A.10 and A.11 and the corresponding c.c. equations are solved for the product
YZ. To do this calculation the high Q limit is assumed (Γ � Q). In addition only terms
linear in λ are considered (weak non linear limit). To make the approximate result more

readable the quantities γ and
∼
fi are defined.

γ =
2λ

(1 + ω1

ω0
)(1 + ω2

ω0
)

(A.13)

∼
fi =

IRFi

I0(1 + ωi

ω0
)|1− ωi

ω0
|

YZ =
∼
f1

∼
f2(−1 + γ(Π +

1

2
Ξ2)

Equation A.13: Pump strength and back action

The
∼
fi are essentially the pump strength and γ the renormalized non linearity. In formula

A.13 it is seen that the effect of back action onto the coefficients YZ depends on the
parameter λ. In the double pump analysis only the product of YZ is important not the
individual parameters. To analyse signal and idler gain a even stronger approximation is
done. Equation A.13 then becomes simply:

YZ = −
∼
f1

∼
f2 (A.14)

Equation A.14: Pump under stiff pump approximation

Now the approximated product YZ is inserted into equation A.11 and A.12 and the cor-
responding c.c. equation. The variables are changed to reduced de tunings: ∆ = ωs−ωg

Γ
,

Ω = ω0−ωg

Γ
. The equation are rearranged under the assumption ω0 ≈ ωs. A system of 4

linear equations for the coefficients χ is obtained.:
Ω−∆− 2i 0 0 −F

0 Ω + ∆− 2i −F 0
0 −F Ω−∆ + 2i 0
−F 0 0 Ω + ∆ + 2i

 =
2

ω0


χ[ωs]
χ[ωI ]
χ[−ωs]
χ[−ωI ]

 (A.15)
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Equation A.15: Linear system of equations for χ coefficients

Where the abbreviation F is: F =
∼
f1

∼
f26λω0

Γ
. This system can now easily be solved for the

χ coefficients. The χ coefficient describe the internal variables of the system. With the
help of input-output theory the relation between input and output field can be found:

âout[ω] = iχ[ω]− âin[ω] (A.16)

Equation A.16: Input output theory

From this calculation the output of a measurement in dependence of the different input
variables can be calculated and predicted.



Appendix B

Additional measurement results

B.1 Sample 1: Tunability and quality factor

The analysis of the double pump amplifier started with a first sample. But in few mea-
surements it was clear that this sample did not have the designed properties. Especially
the external quality factor was much lower than the sample was designed for. Thus only
few measurements were performed and a second sample was produced. Nevertheless some
results with this sample 1 are shown here.
The analogue measurement as presented in section 3.1 was performed also with sample 1.
The results are shown in figure B.1: the blue dots show the resonance frequencies extracted
from the reflection coefficient measurements and the red line is a fit to the theoretical cal-
culation. There occur several small local maxima. The first one occur because the flux
through the array of SQUIDs is not homogeneous. This was neglected in the description
of the SQUID array with one inductance.
From this measurement the external quality factor is calculated, see figure B.2. From fig-
ure B.2 one can conclude, that the quality factor is higher for lower resonance frequencies.
Hence the expectation is to observe a more predictable amplification behavior for lower
frequencies.

26
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B.2 Sample 1: Single pump measurements

To analyse sample 1 a collection of measurements analogue to the measurement in figure
3.3 were performed. Each measurement differes in the voltage on the coil meaning the res-
onance frequency. They are presented in figure B.3. For a quite high resonance frequency
as in the top picture the domain where amplification occurs is not well understood. This
is as expected because the quality factor is lower for higher resonance frequencies. The
pictures become clearer for higher B-fields. Nevertheless they have still sharp bends which
are not understood. The last picture which is again stranger already belongs to the next
maxima in figure B.1.
An optimal pump frequency and power is searched. A good working point is found for
a B-field of 0.87 V and a power of -9.6 dBm. The signal gain for different frequencies is
measured 10 times. All curves are shown in figure B.4.
The measurement is stable all curves lie nearly over each other. The curves have also the
typical lorenz shape as it should be. The ideal frequency is read out to be 5.54861 GHz.
Now the pump is fixed and the signal power and frequency is swept. A density plot is
shown in figure B.5. Then the measurement data from one scan is fit to a Lorenz function.
From the fit parameters the GBP is calculated. Here four different scans are shown with
the corresponding fits to Lorentz curves.
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Figure B.3: Gain Measurement with different resonance frequency: Resonance
frequency decreases from top to bottom
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Figure B.4: Repetition measurement to find pump frequency
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Figure B.5: Fixed single pump, signal gain
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B.3 Sample 1: Double pump measurements

To get a first overview the signal frequency is fixed at 10 kHz de tuned from the already
found resonance frequency. The two pump frequencies lie symmetric about this resonance
frequency and are swept simultaneously with growing distance. While the difference in
pump powers is kept constant at 4dB. The result from this measurement is shown in figure
B.7.
First it is seen that the picture is symmetric this should be the case because if the roles of
the generators are changed the situation is the same. When the distance from the pump
to the signal increases less power couples into the resonator that is why for higher power
amplification occurs at more distant frequencies. In the middle there is a lighter narrow
band. This occurs because the pump drives does not average out in the right way.
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Figure B.7: Test of the double pump amplifier
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B.4 Sample 2: Additional measurements

In the following additonal measurement traces to the measurements of section 3.2 are
presented. Figures B.8 and B.9 show singel pump measurements. In figures B.10 and B.11
double pump measurements are shown.
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Figure B.8: Fixed single pump, signal gain

Figure B.9: Fixed single pump, signal gain fitted to Lorentz function and
GBP calculation
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Figure B.10: Fixed double pump, signal gain

Figure B.11: Fixed double pump, signal gain fitted to Lorentz function and
GBP calculation
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Discussion of the measurement method

To analyze the double pump in a ordered and more extensive way. The first idea was
to perform a similar analysis as with sample 1. But the sweeping method with which
figure B.7 was obtained soon showed some difficulties and it was necessary to think about
better measurements techniques.
Two measurements with the old sweep technique where the signal frequency is held con-
stant while the detuning is increasing linearly and symmetric are shown in figure B.12. The
right pictures extends the power region of the left one and looks interesting. The problem
with this technique is the fact that if the power coupling into the resonator changes then
the resonance frequency changes too. Thus it is not sure that the signal is fixed near the
resonance frequency at an optimal position.
The idea is that simultaneous sweeping of all frequencies with constant detunings is a
better way. As second parameter both pump powers are swept. For this kind of measure-
ments it is expected that in a certain range there is always one ideal power belonging to one
paricular frequency where amplification is strongest. The result of such a measurement is
shown in figure B.13. This picture shows that at least in this region the expectation does
hold. This kind of measurement also provides a possibility to analyze different constant
detunings, which is also an interesting new degree of freedom of the double pump. Also
this kind of sweeping is somehow the double pump analog of the gain measurement in the
single pump case.
One difficulty with this measurement is to generate exactly the same pump powers with
the two generator. This is difficult because the two generators are connected with differ-
ent cables especially they differ in length. The difference in attenuation because of the
cable length can be measured and compensated in the double pump measurement. More
complicated is the fact that there also occur frequency dependent loses, which are not
explained yet. Thus when the frequency is swept the power difference at the sample of the
two generators varies in their size. Thus it is reasonable to fix the two pump frequencies
and one pump power and then to sweep the second pump power and the signal frequency.
In this measurement the influence of the power difference of the two generators can be
seen. In the end the pump can be fixed totally and the signal gain can be analyzed. To
sum up a good analysis of the double pump and its different detuning can be the following:

Double pump measurement method

1. simultaneous sweep of the two pump and the signal frequency together with varying
pump power.

2. fix pump frequencies and one pump power, sweep signal frequency and second pump
power.

3. fix pump, sweep signal power and frequency.
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Figure B.12: Problems with the intuitive sweeping method
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Additional Measurement results to Section 3.4
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Figure B.14: Detuning of 20 MHz, top picture mes 1, middle mes 2, bottom one
scan of mes 2
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Figure B.15: Detuning of 100 MHz, top picture mes 1, middle mes 2, bottom one
scan of mes 2
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