
Semester Thesis

Temperature Dependent

Measurements of Undercoupled

Coplanar NbTiN-Resonators

Dominik Waldburger
Spring Semester 2012

Supervisor
Tobias Thiele

Prof. Dr. Andreas Wallraff



Abstract

For the semester thesis two different sample-holder were designed.
One is used to perform temperature dependent measurements of copla-
nar NbTiN-resonators, the other is used to couple Rydberg atoms to mi-
crowave chips. The properties of four undercoupled NbTiN-resonators
were characterized as function of temperature. The critical temperature
of NbTiN, the relative dielectric constant and the Q-factor of the res-
onators were studied analyzing the transmission spectrum of supercon-
ducting waveguides measured with a vector network analyzer.
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1 Introduction

In the context of my semester project I joined the Quantum Device Lab and
assisted Tobias Thiele in the ”Hybrid Cavity Quantum Electrodynamics with
Atoms and Circuits” project.

1.1 Hybrid System

The idea of a hybrid quantum system is to use the individual strengths of
different quantum systems by coupling them coherently. In this experiment
Rydberg atoms shall be coupled to microwave photons generated in quasi-one-
dimensional coplanar microwave resonators. The long coherence time of the
Rydberg atoms is thought to be used as a storage for quantum information
generated e.g. in a Circuit Quantum Electrodynamics setup which is used for
quantum computation. This hybrid system could be used as a quantum-RAM
in a future quantum computer. Figure 1 shows the schematic of the hybrid
system [1].

Figure 1: Schematic of a coplanar microwave resonator (blue) coupled to a
superconducting qubit (green) and Rydberg atoms (orange) passing over the
chip [1].

1.2 Coplanar Wave Guide

A coplanar wave guide consists of a thin (150 nm) center-conductor separated
by gaps from metallic ground planes on a thick (508 µm) dielectric substrate.
The waveguide has an effective dielectric constant εeff (1), different from the
relative dielectric constant εr, depending on the geometry of the waveguide.
The effective dielectric constant of a wave guide with the structure (Figure 1)
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can be computed with conformal mapping techniques.

εeff =
1 + εr ·KK

1 +KK
KK =

K(k′) ·K(k2)

K(k) ·K(k′2)
(1)

k =
W

W + 2S
k′ =

√
1− k2

k2 =
tanh(π · h · S/4)

tanh(π · h · (S + 2W )/4)
k′2 =

√
1− k2

2

With K(k) the complete elliptic integral of the first kind, h the height of the
dielectric substrate, S the width of the center-conductor and W it’s separation
from the ground plain.
The electrical circuit of a coplanar transmission line resonator in Figure 2a) can
be transformed close to a resonance mode n to an equivalent circuit shown in
Figure 2b) by the following identities [2].

(a) (b)

Figure 2: Schematic representation of a coplanar waveguide resonator. The
circuit in Figure (a) and (b) have the same properties [2].
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2Lll

n2π2
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1√
LnC

(2)
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1 + ω2
nC

2
κR

2
L

ω2
nC

2
κR

2
L
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Cll

2
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Cκ
1 + ω2

nC
2
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L

The variable α describes the attenuation constant and a finite Cκ shifts the
angular frequency ω∗n = 1√

Ln(C+2C∗)
of the resonator.

For a perfect isolated and lossless resonator (Cκ →∞, Rl → 0) the transmission
spectrum is discrete with the following frequencies.

νn = n · c

2l
√
εeff

=
1

2π
√
LnC

(3)

The resonances of real resonators are Lorentzian shaped and it’s quality fac-
tor (4) is the quotient of the resonance frequency ν0 and the full width half
maximum δν.

L(ν) = A0 ·
δν

δν2/4 + (ν − ν0)2
Q =

ν0

δν
(4)
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The Q-factor of a perfect isolated and lossless resonator can be decomposed
into an external (Qext) and an internal Q-factor (Qint). The quotient g (5) of
Qint and Qext characterizes the resonator. A resonator with g > 1 is called
overcoupled, with g < 1 undercoupled and g = 1 defines critical coupling.

1

Q
=

1

Qint
+

1

Qext
g =

Qint

Qext
(5)

Qint = ωnRC =
nπ

2αl
Qext =

ωnR
∗C

2

The inductance per unit length Ll (6) consist of a magnetic Lml and kinetic
part Lkl . The magnetic inductance Lml results from the geometry of the copla-
nar waveguide. In superconducting material appears the additional kinetic
inductance Lkl caused by the inertia of free quasi particles. The kinetic induc-
tance Lkl depends on the geometry of the coplanar waveguide as well as the
London penetration depth λ(T ) (7). The London penetration depth is the only
source of the temperature dependence of the resonance frequency ωn(T ). The
dependences were given as follows [3]:

Ll = Lml + LkL (6)

Lml =
µ0

4

K(k′)

K(k)
Lkl =

µ0 · λ2

t ·W
g(S,W, t)

λ(T ) =

√
ρ(Tc)

Tc · (1− (T/Tc)4)
· 1.05 · 10−3 (7)

g(S,W, t) =
1

2 · k2 ·K2(k)

(
log

(
4W

t

)
+ k · log

(
4d

t

)
+

2d′

d
log

(
S

d′

))

d = W + 2S d′ = W + S
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1.3 Rydberg

Rydberg atoms are exited atoms which a high principal quantum number n;
such that the outer-shell electrons are far away from the nucleus. The electrons
are loosely bound and their binding energy scales with n−2.

En = − Ry
(n− δl)2

(8)

For a non hydrogen atom a correction δl called the quantum defect is non-zero.
It is small for high angular momentum l and can be on the order of 1 or more
for low l states.
Rydberg atoms have strong dipole moments (9). Due to this they are easily
polarizable and there is a strong energy shift caused by external electric fields;
the so called stark effect. −→

d = e · 〈−→r 〉 ∝ n2 (9)

The energy difference ∆E between neighboring states scales with n−3 corre-
sponding to frequencies in the millimeter- to microwave range for n > 25. The
lifetime t of Rydberg atoms have a n3 dependence for low l states and a n5 for
the l = n− 1 state. For n = 60 and l = 59 a coherence time τ ≈ 70 ms can be
reached [4].

E ∝ n−2

−→
d ∝ n2

∆E ∝ n3

t ∝ n3, n5

Rydberg atoms are ideal to couple to microwave resonators because of:

a) the transition frequency in the microwave range,

b) the large dipole moment favors the coupling to microwave resonators,

c) their life time is very long compared to the microwave resonators.
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2 Experimental Setup

The experimental setup is based on the one described in [5]. It consists of a pulse
tube cooler with two thermal shield in an ultra-high vacuum chamber. Figure 3
and 4 show the schematics and a picture of the experiment. A cold pulse of
metastable helium atoms flies from the source chamber (a) through a skimmer
into the experimental regime (b). There they interact with the microwaves on
the chips on the sample-holder (7). Finally they are detected at an MCP (c).

Figure 3: Schematics of the experimental setup. 1. Pulse tube cooler, 2. 40 K-
stage, 3. 40 K-shield, 4. Top sample-holder, 5. 4 K-stage, 6. 4 K-shield and 7.
sample-holder & electrode stack.
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Figure 4: Picture of the experimental setup. The experiment is half open and
the copper 40 K-shield is visible.

2.1 Pulse Tube Cooler & Shield

For the experiment the Cryomech PT415 Remote Motor pulse tube refrigera-
tion system with the Cryomech CP1000 helium compressor is used. The pulse
tube cooler has two cooling stages to which the two thermal copper shields are
attached. A sample-cooldown is shown in Figure 5. The 4 K-stage and the
top sample-holder reach a temperature of about 3 K and the 40 K-stage and
40 K-shield 32 K.
Even in the steady state there are still temperature fluctuations. The oscilla-
tions follow the frequency of the pump sound of the pulse tube cooler. With
magnets and an acceleration sensor magnetic or vibrational influences were ex-
cluded. So the oscillation is an effect of the small temperature fluctuations due
to the pumping of the pulse tube cooler, that have a strong effect because of
good thermal coupling. The temperature oscillations are in the amplitude of
100 mK and illustrated in Figure 6.
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Figure 5: Cooldown of the 17.02.2012. 4 K-stage (blue), top sample-holder
(green), 40 K-stage (olive) and 40 K-shield (magenta).
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Figure 6: Temperature oscillations of the pulse tube cooler in the steady state.
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2.2 Temperature Controller & Sensor System

For the temperature measurement, silicon diode sensors LakeShore DT-670C-
Cu are used [6]. The sensors are placed on the 40 K-stage and -shield, on the
4 K-stage and on the top sample-holder, designed in this thesis.
The temperature controller LakeShore Model 340 [6] controls the temperature
with a proportional-integral-derivative PID controller (10).

PHeater = P

(
e+ I

ˆ
e · dt+D

de

dt

)
(10)

The variable e = Ts − Tc describes the current error where Ts is the set-point
and Tc the current temperature, P is the proportional, I the integral and D
the derivative term.
The temperature controller has two feedback heater loops and can readout up
to eight temperature sensors. Heater loop 1 has a maximum power output of
10 Watt and loop 2 has a maximum of 1 Watt with a 100 Ω heat resistance.
Because of the good coupling the temperature of the sample-holder respond
very fast and the new temperature stabilizes within a minute. Figure 7 shows
the temperature characteristics during temperature regulation.
The D-parameter is set to zero because otherwise the temperature overshoots
too much. The following setting for the PID-parameters were used:

P I D

800 500 0

2.3 Microwave Setup

To study the properties of the transmission spectrum of the superconducting
waveguide a vector network analyzer (VNA) ZVK Vector Network Analyzers
produced by Rhode und Schwartz is used. The VNA sweeps the frequency over
a range from 10 MHz to 40 GHz and measures S-parameters with a maximum
of 1600 points per sweep and a minimal resolution of 10 Hz. The measurements
can be averaged point- or sweep-wise. The number of measurements, over with
the average is taken, can be set by the average factor. An output power of
−10 dB is used.
The microwave signal is guided with two 50 Ω coax-cables between the VNA
and the vacuum-chamber. In the vacuum-chamber there are semi-rigid coax
cables connected to the PCB on the top sample-holder. From room temperature
stainless steel semi-rigid coax cables are connected to 10 dB attenuators, which
are then connected to the sample-holder with copper cables. The attenuators
are connected to the cold head (4 K) and thermalize the center conductor of
the coax cable.
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Figure 7: Temperature regulation of the top sample-holder. The target tem-
perature is achieved after few oscillations.

2.4 Sample-holder

The goal of the new sample-holder is to achieve good thermal coupling to the
4 K stage in order to achieve minimum temperature. As material oxygen-free
high thermal conductivity (OFHC) copper is chosen because of high thermal
conductivity also at low temperatures. Figure 16 shows the temperature de-
pendence of the thermal conductivity compared to other materials. To avoid
reduction of the cooling power created in joints, the sample-holder arm (a) is
made of one single piece. The PCB (b) holding the NbTiN chip is clamped
onto the copper using a bridge (c). The plates (d) restrict the atoms to 1 mm
above the chip The sample-holder is compatible with the straight and diagonal
PCB designs.
The sample-holder is produced in the physics workshop of ETH Zurich and gold
coated by Collini AG in Dübendorf for better reflectivity.
Building in the sample-holder it was detected that it touches an electrode. So
one edge had to be milled out.
The following Figures 8 - 11 show the schematic and pictures of the sample-
holder.
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a)

b)
c)d)

2 cm

Figure 8: CAD drawing of the sample-holder. (a) the sample-holder arm, (b)
the PCB, (c) the sample-holder arm and (d) shielding plates.
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1 cm

Figure 9: Picture of the sample-holder, side-view.(a) the sample-holder arm,
(b) the PCB, (c) the sample-holder arm and (d) shielding plates.

Figure 10: Picture of the sample-holder, top-view. (b1) shows the PCB with
the NbTiN chip (b2).
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Figure 11: Picture of the sample-holder build in to the experiment. (a) cold
head, (b) electrode stack with 7 electrodes, (c) hole for the atoms and (d)
sample-holder.
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2.5 Top Sample-holder

For temperature dependent measurements an additional sample-holder with a
heater is required. The aim is to vary the temperature from 4 to 15 K, because
the critical temperature of the superconducting material on the chips (NbTiN)
is about 13.1 K. This should be done by dissipating 1 Watt in the heater. For
this the chip must be thermally isolated so that the heating power of 1 Watt is
enough, but it should not be too isolated to achieve an acceptable cooling time.
Figure 12 and 13 show the design of the sample-holder. The heater consists of
silk-isolated manganin resistance-wire with a resistance of 100 Ω adjusted to
achieve the maximum heating power of 1 Watt.

1 cm

Figure 12: Front-side of the top sample-holder. 1. PCB with Chip, 2. Coaxial
Print Connectors for the straight and diagonal chip design, 3. heating-wire, 4.
thermal isolator, 5. thermalization of sensor and 6. socket.

13



1.

2.

3.

4.

1 cm

Figure 13: Back-side of the top sample-holder. 1. thermal isolator, 2. temper-
ature sensor, 3. thermalization of sensor and 4. socket.

To estimate the dimension of isolation the following assumptions illustrated in
Figure 14 and 15 are taken:

a) The only temperature gradient is over the isolating material.

b) The temperature drop over the isolating material ranges from 4 K on the
cooling plate side to the wanted temperature on the chip and heater side.

c) The heat flow through the cables is neglected.

d) For the radiation from the 40 K-shield to the sample-holder blackbody ra-
diation (11) is assumed and from the design we can neglect effects on the
sides if the sample-holder and only the front- and backside are taken into
account.
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4 K 15 K

40 K-Shield

4-K Stage ChipIsolator

Thermal-
Radiation

Figure 14: Schematic of the model for the calculation.

PdΩdA =
8π5k4

B

15c2h3
T 4 dΩ

4π
dA cosϑ (11)

Where T is the temperature, dΩ the solid angle and dA cosϑ the surface element
under the angle ϑ.
As simplification the 40 K-shield and the sample-holder were considered as
parallel planes. The thermal radiation form the 40 K-shield to the sample-
holder is calculated by (12) and is 0.15 ·10−3 Watt. The variables are illustrated
in Figure 15 and have the following values.

P =
8π5k4

B

15c2h3
T 4

ˆ w

−w

ˆ h2

−h1

A

4π

(
d12

(x2 + y2 + d12)2
+

d22

(x2 + y2 + d22)2

)
dxdy

(12)

T w h1 h2 A d1 d2

40 K 6.3 cm 4.1 cm ∞ cm 8 cm2 1.1 cm 12.3 cm
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h2

Figure 15: The sample-holder-plane with area A (red) is enclosed between the
two 40 K-shield-planes (black).

The Fourier’s law (13) is used to calculated the heat flow through the isolating
material. The isolating material has a non-trivial shape as pictured in Figure 13,
so the Fourier’s law cannot be applied directly. By approximation the mean of
the heat flow through the area on the 4 K-shield’s side and the chip’s side is
used. The temperature dependence of the thermal conductivity k(T ) is taken
from [7] and illustrated in Figure 16. In the beginning we decided for 304
stainless steel as isolation material.

∂Q

∂t
= −k(T )

"

S

−→
∇T ·

−→
dA (13)

In the experiment the 4 K-stage reaches a temperature of 2.8 K, but the chip
only 6.7 K. This equates to a external heat flux of 27.9 · 10−3 Watt instead of
0.15 · 10−3 Watt estimated from the thermal radiation of the 40 K-shield. This
mismatch could be caused by:

a) The thermal conductivity can vary about 50% at low temperature due to
slight material differences [7].

b) Through junctions the cooling power is reduced.

c) The radiation of the 40 K-shield-side-plates and the heat flux through the
cables are neglected.
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To reach a lower temperature of the chip the isolating part is replaced with a
replica made of OFHC copper. So a minimum temperature of 2.8 K and with
1 Watt heating power a maximum temperature of 9.4 K is reached. To exceed
the critical temperature of the superconducting material the heater is powered
with the limit of 10 Watt.

Figure 16: Thermal conductivity of various materials [7].
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2.6 Chips

Four different chips named G5A2, G6O2, W1C1 and V1C2 were studied. The
W1C1 and the V1C2 are a newer generation of chips than the G5A2 and the
G6O2 which were characterized by Raphael Barmettler [8].
In our experiment the conducting material is Niobium Titanium Nitride (NbTiN)
with a critical temperature Tc ≈ 13.1 K. Sapphire is used as dielectric substrate
with a dielectric constant εr ≈ 10.
In Figure 18 - 20 show the PCB and chip of W1C1. The dimension and prop-
erties of the four chips are given as followed.

Chip Capacity [fF] Length [mm]

G5A2 3.3 7.196

G6O2 0 (through) 8.969

W1C1 0.5 12.365

V1C2 1 12.488

S W t h

160 µm 80 µm 0.15 µm 508µm

Figure 17: Characteristic of the coplanar waveguide [9].
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Figure 18: Schema of the PCB C1. The superconducting chip of Figure 19 is
glued to the violet rectangle.

Figure 19: Schema of the superconducting NbTIN chip W1.

Figure 20: Picture of the bondings connecting the center conductor and the
ground of the chip and the PCB.
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3 Measurements & Results

3.1 Power Dependence of a Resonance

The first resonance peak of the G5A2 is measured for various power of the
microwave signal. As illustrated in Figure 21 there is no change in the shape of
the resonance and therefore no saturation effects. For the further measurement
a power of −10 dBm is used.

8.370 8.375 8.380 8.385 8.390 8.395 8.400

-60

-55

-50

-45

Frequency @GhzD

T
ra

ns
m

is
si

on
@d

B
D
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Figure 21: The first resonance of G5A2 measured with −10 dBm (red) overlaps
exactly the one with −30 dBm (blue).
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3.2 Temperature Dependence of the Transmission

The chip G6O2 is used to explore the temperature dependence of the trans-
mission over the hole spectrum (10 MHz to 40 GHz) and from 3.5 to 15 K
visualized in Figure 22. The visible resonances are unwanted and results from
the PCB. The transmissions are fitted with the following function containing
the temperature dependent fit-parameters a(T ) and b(T ). The function is cho-
sen according to the loss in coax cables described in [10]. The -20 dB derives
from the two 10 dB attenuators.

s21(ν, T ) = −a(T ) · νb(T ) − 20 dB (14)

Figure 23 and 24 show the temperature dependence of the fit-parameters a(T )
and b(T ) fitted with a Heaviside-function. A clear step at Tc = 13.(1) K is
visible.

Figure 22: Dependence of the transmission as a function of the temperature
and the frequency (G6O2).
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Figure 23: Temperature dependence of the fit-parameter a(T ).
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Figure 24: Temperature dependence of the fit-parameter b(T ).
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3.3 Critical Temperature of the Superconducting Material

With a DC-resistance and a time-correlated temperature measurement the crit-
ical temperature of the superconducting material is determined. For each resis-
tance data-point the corresponding temperature at the time of the resistance
measurement is taken. For this purpose the temperature measurement is fitted
with spline interpolation. The used Mathematica code is printed in the ap-
pendix B.
Figure 25 shows the step of resistance at the critical temperature. The re-
sistance is fitted with the Fermi-Dirac-distribution (15). With A = 114.4 Ω,
B = 34.1 Ω, C = 0.01 and the critical temperature Tc is within the range from
12.95 to 13.05 K. The width of the transition can be accounted to temperature
fluctuation as well as an offset from external magnetic fields.

R(T ) = A− B

e(T−Tc)/C + 1
(15)
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Figure 25: Temperature dependence of the resistance.
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3.4 Temperature Dependence of the Resonances

3.4.1 Measurement

For the chips G5A2, W1C1 and V1C2 the resonances were measured for different
temperatures from 2.8 to 12 K. The measurement is averaged either sweep- or
point-wise with an average-factor of 20.

3.4.2 Fit of the Resonances

The measurement recorded in dB is first transformed back and fitted with a
Lorentz-function (Equation 16). For an approximation of the quality of the
fitting a second fit performed in dB (Equation 17) is done leading to a different
weighting. The Mathematica code for the fits is in the appendix B. Figure 26
shows an example of a fit. The center frequency ν0 and the Q-factor of the
resonance is extracted from the fit. The plots of ν0 and the Q-factor of the
different chips are in the appendix A.

L(ν) =
A

2π ·Q · ν0

1

( νν0 − 1)2 + 1
4( 1
Q)2

(16)

LdB (ν) = 10 · log10(L(ν)) (17)
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Figure 26: Fit of the Lorentz-function (red) and the Lorentz-dB-function (or-
ange). Sweep-wise average.
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3.4.3 Oscillations & Separation

By the measurement of the W1C1 chip oscillation of its frequency were ob-
served. Therefore further measurements of V1C2 were averaged point-wise. To
separated a left and right limiting curve, first the upper and lower parts of the
oscillation are taken. And then split at the maximum, top-left and bottom-
right points are jointed to the left and the bottom-left and the top-right to the
right curve. The data points of the right curve are used for the fit with the
Lorentz-function. Figure 27 shows the result of the separation and the fit. The
Mathematica code of the separation is in the appendix B.

5.1600 5.1605 5.1610 5.1615 5.1620
-60

-55

-50

-45

-40

-35

-30

-25

Frequency @GhzD

T
ra

ns
m

is
si

on
@d

B
D

W1C1 - 1. Resonance - 3 K

Figure 27: Separation and the fit of the oscillations. Measurement points (blue),
left curve (violet), right curve (green), Lorentz-Fit (red), Lorentz-Fit-dBm (or-
ange). Point-wise average.
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3.4.4 G5A2 (critical coupled resonator, ν0 = 8.385 GHZ)

The G5A2 is measured with sweep-wise average. The first resonance of G5A2 in-
terferes with a temperature-invariant, stationary resonance shown in Figure 28.
Resulting in a faulty Q-factor for 6.5 to 10 K. The temperature dependence of
the ν0 and the Q-factor for the 1st to 4th resonance are in the appendix A.

3.4.5 W1C1 (undercoupled resonator, ν0 = 5.161 GHz)

A double resonance is observed for the third resonance of W1C1 and illustrated
in Figure 29. The temperature dependence of the ν0 and the Q-factor for the
1st to 4th resonance are in the appendix A.

3.4.6 V1C2 (undercoupled resonator, ν0 = 5.053 GHz)

The temperature dependence of the ν0 and the Q-factor for the 1st, 2nd, 4th

and 6th resonance are in the appendix A. The 3rd and 5th resonances are not
visible and assumed to be double-resonances as the 3rd of W1C1. This could
be a consequence of the asymmetric chip design (Figure 19) as a similar effect
is observed for even resonances with symmetric chip designs.
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Figure 28: Interference of the first resonance with a temperature-invariant res-
onance. The colors indicate the different temperatures from 6.5 (blue) to 10 K
(yellow).
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Figure 29: The double resonance of the third resonance.
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3.5 Temperature Dependence of Quality Factor

According to [11] the Q-factor saturates at low temperatures. Therefore the Q-
factor of W1C1 and V1C2 are fitted by (18) with the fit-parameters A, B and
the saturated Q-factor Qsat at T=0. The plots of the fits are in the appendix
A.

Q(T ) =
Qsat

exp
(
−T−1−A

B

)
+ 1

(18)

The saturated Q-Factor Qsat is fitted with the following fit-functions (19) de-
pendent of the resonance mode n, Figure 30 and 31. The 3rd resonance of
W1C1 is the mentioned double-resonance and is skipped form the fitting.

Qsat(n) = a · e−b·n Qsat(n) = c · n−d Qsat(n) = e · (n− f)2 (19)

The coupling ratio g (20) is computed with Q(n) and Qext for G5A2 (Figure 32
and 33) and for W1C1 & V1C2 (Figure 34 and 35). Qext is a function of the
frequency ν, the resonator capacity Cκ and length l (5). The coupling ratio of
G5A2 crosses the critical coupling g = 1 at the 2nd resonance. The chips W1C1
and V1C2 are undercoupled with g < 0.25 < 1.

g =
Q(n)

Qext(ν, Cκ, l)−Q(n)
(20)
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Figure 30: Qsat(n) of W1C1 with quadratic decay (red), exponential decay
(violet) and quadratic function (blue). Fit: a = 101200, b = 0.6943, c = 50820,
d = 1.213, e = 3274 and f = 4.907.
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Figure 31: Qsat(n) of V1C2 with quadratic decay (red), exponential decay
(violet) and quadratic function (blue). Fit: a = 65830, b = 0.4498, c = 42730,
d = .9353, e = 1078 and f = 7.174.
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Figure 32: Frequency dependence of the external Q-factor (curve) and Q
(points) of G5A2.
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Figure 33: Dependence of the coupling ratio g of G5A2.
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Figure 34: Frequency dependence of the external Q-factor (curve) and Q
(points) of W1C1 (blue) and V1C2 (red).
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Figure 35: Dependence of the coupling ratio g of W1C1 (blue) and V1C2 (red).
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3.6 Temperature Dependence of Resonance Frequency

The temperature dependence of the ν0(T )/ν0(T0) is fitted with the function
(21). Thereby all resonance mode can be fitted together, each with the same
weight.

ν0(T )

ν0(T0)
=

√
Ll(T0)

Ll(T )
(21)

The fitting-parameter are the resistance at the critical temperature ρ(Tc) and
the critical temperature Tc. The G5A2 (Figure 37) is fitted separately because
it does not match with the W1C1 and V1C2 witch are a newer generation of
chips (Figure 38). An upward shift for higher resonance modes was observed.
To receive a value for the relative dielectric constant εr the first resonance
of each chip is fitted with (3) and showed in the appendix A. The following
values for the fit-parameters are found. The relative dielectric constant for all
resonances and chips are shown in Figure 36.

Chip Tc [K] ρ(Tc) [µΩm] εr
G6A2 13.062 1.049 10.33

W1C1
13.116 0.936

9.21
V1C2 9.43
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Figure 36: The frequency dependence of the relative dielectric constant εr of
G5A2 (red), W1C1 (blue) and V1C2 (violet).
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Figure 37: Fit of ν0(T )/ν0(T0) of G5A2. • : 1st, � : 2nd and � : 3rd resonance.
Tc = 13.0622 K and ρ(Tc) = 1.04937 · 10−6 Ω
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Figure 38: Fit of ν0(T )/ν0(T0) of W1C1 (blue: • : 1st, � : 2nd, � : 3rd and
N : 4th resonance) and V1C2 (red: • : 1st, � : 2nd and � : 4th resonance).
Tc = 13.1156 K and ρ(Tc) = 9.36451 · 10−7 Ω.
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4 Summary

• With the fit of the transmission a sharp step in the fit-parameter at the
critical temperature is visible. The DC-resistance measurement gives a
preciser value of the critical temperature.

• Odd resonances, except the first, seem to be double-resonances or are not
visible. This could be a result of the asymmetric resonator geometry.

• The Q-factor of the undercoupled resonators saturates for low tempera-
ture and decays rather exponential than quadratic. A unphysical quadratic
function gives a good fit.

• The fit of ν0(T ) results in reasonable values for Tc, ρ(Tc) and εr.

5 Outlook

In the further process of the experiment, the top sample-holder is better isolated
with additional sapphire disks to reduce the influence of the temperature oscil-
lations. Thereby the minimum temperature rises. To achieve a lower minimum
temperature a shield is added which protects the sample-holder from thermal
radiation.
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Figure 39: G5A2 - Temperature dependence of the Q-factor. 1. Resonance.
Sweep-wise. Fit: Qsat = 2855.04, A = 0.15001 K−1 and B = 0.0275384 K−1.
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Figure 40: G5A2 - Temperature dependence of ν0. 1. Resonance. Sweep-wise.
Tc = 13.0622 K and ρ(Tc) = 1.04937 · 10−6 Ω fix. Fit: εr = 10.3298.
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Figure 41: G5A2 - Temperature dependence of the Q-factor. 2. Resonance.
Sweep-wise. Fit: Qsat = 2463.34, A = 0.145408 K−1 and B = 0.031305 K−1.
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Figure 42: G5A2 - Temperature dependence of ν0. 2. Resonance. Sweep-wise.
Tc = 13.0622 K and ρ(Tc) = 1.04937 · 10−6 Ω fix. Fit: εr = 10.3259.
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Figure 43: G5A2 - Temperature dependence of the Q-factor. 3. Resonance.
Sweep-wise. Fit: Qsat = 2357.17, A = 0.158666 K−1 and B = 0.0427454 K−1.
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Figure 44: G5A2 - Temperature dependence of ν0. 3. Resonance. Sweep-wise.
Tc = 13.0622 K and ρ(Tc) = 1.04937 · 10−6 Ω fix. Fit: εr = 10.495.
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Figure 45: W1C1 - Temperature dependence of the Q-factor. 1. Resonance.
Sweep-wise. Fit: Qsat = 49279.8, A = 0.247434 K−1 and B = 0.0465549 K−1.
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Figure 46: W1C1 - Temperature dependence of ν0. 1. Resonance. Sweep-wise.
Tc = 13.1156 K and ρ(Tc) = 9.36451 · 10−7 Ω fix. Fit: εr = 9.2114.
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Figure 47: W1C1 - Temperature dependence of the Q-factor. 2. Resonance.
Sweep-wise. Fit: Qsat = 29050.6, A = 0.205825 K−1 and B = 0.0308466 K−1.
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Figure 48: W1C1 - Temperature dependence of ν0. 2. Resonance. Sweep-wise.
Tc = 13.1156 K and ρ(Tc) = 9.36451 · 10−7 Ω fix. Fit: εr = 9.25434.
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Figure 49: W1C1 - Temperature dependence of the Q-factor. 3. Resonance.
Sweep-wise. Fit: Qsat = 2512.62, A = 0.150792 K−1 and B = 0.0320404 K−1.
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Figure 50: W1C1 - Temperature dependence of ν0. 3. Resonance. Sweep-wise.
Tc = 13.1156 K and ρ(Tc) = 9.36451 · 10−7 Ω fix. Fit: εr = 9.27931.
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Figure 51: W1C1 - Temperature dependence of the Q-factor. 4. Resonance.
Sweep-wise. Fit: Qsat = 1209.72, A = 0.107178 K−1 and B = 0.107178 K−1.
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Figure 52: W1C1 - Temperature dependence of ν0. 4. Resonance. Sweep-wise.
Tc = 13.1156 K and ρ(Tc) = 9.36451 · 10−7 Ω fix. Fit: εr = 9.44357.
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Figure 53: V1C1 - Temperature dependence of the Q-factor. Resonance. Point-
wise. Fit: Qsat = 40301.3, A = 0.191062 K−1 and B = 0.0335186 K−1.
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Figure 54: V1C1 - Temperature dependence of ν0. 1. Resonance. Point-wise.
Tc = 13.1156 K and ρ(Tc) = 9.36451 · 10−7 Ω fix. Fit: εr = 9.42955.
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Figure 55: V1C1 - Temperature dependence of the Q-factor. Resonance. Point-
wise. Fit: Qsat = 30136.5, A = 0.205885 K−1 and B = 0.0374986 K−1.
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Figure 56: V1C1 - Temperature dependence of ν0. 2. Resonance. Point-wise.
Tc = 13.1156 K and ρ(Tc) = 9.36451 · 10−7 Ω fix. Fit: εr = 9.43454.
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Figure 57: V1C1 - Temperature dependence of the Q-factor. 4. Resonance.
Point-wise. Fit: Qsat = 10572.4, A = 0.209129 K−1 and B = 0.0425901 K−1.
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Figure 58: V1C1 - Temperature dependence of ν0. 4. Resonance. Point-wise.
Tc = 13.1156 K and ρ(Tc) = 9.36451 · 10−7 Ω fix. Fit: εr = 9.50597.
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Figure 59: V1C1 - Temperature dependence of the Q-factor. 6. Resonance.
Point-wise. Fit: Qsat = 831.318, A = 0.112215 K−1 and B = 0.0240747 K−1.
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Figure 60: V1C1 - Temperature dependence of ν0. 6. Resonance. Point-wise.
Tc = 13.1156 K and ρ(Tc) = 9.36451 · 10−7 Ω fix. Fit: εr = 9.65802.
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B Mathematica Codes

Function to convert the time-stamp of LabView to Mathematica:

ConvertDate [ data ] :=
MapThread [ Join [{#1} , #2] &, {MapThread [

DateList [ S t r i ngJo in [#1 , ” ” , #2]] &, {data [ [ All , 1 ] ] ,
data [ [ All , 2 ] ] } ] , data [ [ All , Range [ 3 , Length [ data [ [ 1 ] ] ] ] ] ] } ]

ConvertData=ConvertDate [{{ ”2012/02/17” , ” 1 8 : 5 7 : 3 3 . 1 9 ” , . . . } , . . . } ]
{ { { 2 0 1 2 , 2 , 1 7 , 1 8 , 5 7 , 3 3 . 1 9 ‘ } , . . . } , . . . }
DateLis tPlot [ ConvertData ]

Function to saparate the left and the right curve:

s epa ra t i on [ data ] :=
Module [{ step , length , i , k1 , k2 , min , max , j , d a t a l e f t , da ta r i gh t

} ,
s t ep = 16 ;
l ength = Length [ data ] ;
For [ i = 1 ; k1 = 1 ; k2 = 1 ; min = {{0 , 0} , {0 , 0}} ;
max = {{0 , −1000} , {0 , −1000}};
datamax = Table [ Table [−1000 , { i , 1 , 2} ] , { j , 1 , l ength } ] ;
datamin = Table [ Table [ 0 , { i , 1 , 2} ] , { j , 1 , l ength } ] ; ,
i <= length ,
i++,
min [ [Mod[ i , 2 ] ] ] = {0 , 0} ; max [ [Mod[ i , 2 ] ] ] = {0 , −1000};
For [ j = −Ce i l i n g [ s tep /2 ] , j <= Floor [ s tep /2 ] , j++,
I f [ 1 <= i + j <= length ,
I f [ data [ [ i + j , 2 ] ] >= max [ [Mod[ i , 2 ] , 2 ] ] ,
max [ [Mod[ i , 2 ] ] ] = data [ [ i + j ] ] ] ;
I f [ data [ [ i + j , 2 ] ] <= min [ [Mod[ i , 2 ] , 2 ] ] ,
min [ [Mod[ i , 2 ] ] ] = data [ [ i + j ] ] ] ;
]

] ;
I f [ i == 1 ,
datamax [ [ 1 ] ] = max [ [ 1 ] ] ; datamin [ [ 1 ] ] = min [ [ 1 ] ] ,
I f [max [ [Mod[ i + 1 , 2 ] , 2 ] ] != max [ [Mod[ i , 2 ] , 2 ] ] , k1++;
datamax [ [ k1 ] ] = max [ [Mod[ i , 2 ] ] ] ] ;
I f [ min [ [Mod[ i + 1 , 2 ] , 2 ] ] != min [ [Mod[ i , 2 ] , 2 ] ] , k2++;
datamin [ [ k2 ] ] = min [ [Mod[ i , 2 ] ] ] ]

]
] ;

datamax = Take [ datamax , k1 ] ;
datamin = Take [ datamin , k2 ] ;
pmin = Pos i t i on [ datamin [ [ All , 2 ] ] , Max [ datamin [ [ All , 2 ] ] ] ]

[ [ 1 , 1 ] ] ;
d a t a l e f t =
Join [ S e l e c t [ datamax [ [ Al l ] ] , # [ [ 1 ] ] < datamin [ [ pmin , 1 ] ] &] ,
datamin [ [ pmin ; ; ] ] ] ;

da ta r i gh t =
Join [ datamin [ [ 1 ; ; pmin ] ] ,
S e l e c t [ datamax [ [ Al l ] ] , # [ [ 1 ] ] > datamin [ [ pmin , 1 ] ] &] ]

]
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Function to fit the resonance from Raphael [8]:

FitLorentz [ data ] := Module [{ dbList , dataMax , threedb , th reedbL i s t
, Qstart , f i tData , f i tparams } ,

(∗ de f i n e l o r e n t z i a n func t i on which i s to be f i t t e d to data ∗)
Lfunc = at t /(2 Pi Q v0 ) 1/( ( x/v0 − 1) ˆ2 + 1/4 (1/Q) ˆ2) ;
(∗ c r e a t e data l i s t in normal s c a l e ∗)
f i tData =
Table [{ data [ [ i , 1 ] ] , 10ˆ( data [ [ i , 2 ] ] / 1 0 ) } , { i , Length [ data ] } ] ;

(∗ f i nd s t a r t parameters ∗)
(∗ c r e a t e S l i s t ∗)
dbList = Table [ f i tData [ [ i ] ] [ [ 2 ] ] , { i , f i tData // Length } ] ;
(∗ a s t a r t & v s t a r t from maximum ∗)
dataMax = f i tData [ [ F i r s t [ F i r s t [ Po s i t i on [ f i tData , Max [ dbList

] ] ] ] ] ] ;
(∗ f i nd Q, s t a r t by g e t t i n g a l l va lue s above three db ∗)
threedb = dataMax [ [ 2 ] ] / 2 ;
th r eedbL i s t = Cases [ dbList , x ?(#1 > threedb &) ] ;
(∗ f i r s t and l a s t element w i l l r e s u l t in de l t a omega ∗)
Qstart = dataMax [ [ 1 ] ] / ( data [ [ F i r s t [ F i r s t [ Po s i t i on [ dbList ,

th r eedbL i s t // Last ] ] ] ] ] [ [ 1 ] ] − data [ [ F i r s t [ F i r s t [
Po s i t i on [ dbList , th r eedbL i s t // F i r s t ] ] ] ] ] [ [ 1 ] ] ) ;

(∗ s e t s t a r t i n g parameters ∗)
f i tparams = {{ att , ( Pi∗dataMax [ [ 1 ] ] ∗ dataMax [ [ 2 ] ] ) /(

2∗Qstart ) } , {v0 , dataMax [ [ 1 ] ] } , {Q, Qstart }} ;
FindFit [ f i tData , Lfunc , f i tparams , x , Prec i s i onGoa l −> 15 ,
AccuracyGoal −> 3 ]

]

Modified function to fit in dB:

FitLorentzdB [ data ] := Module [{ dbList , dataMax , threedb ,
threedbLis t ,
Qstart , f i tData , f i tparams } ,

LfuncdB =
10∗Log [ 10 , a t t /(2 Pi Q v0 ) 1/( ( x/v0 − 1) ˆ2 + 1/4 (1/Q) ˆ2) ] ;

f i tData =
Table [{ data [ [ i , 1 ] ] , 10ˆ( data [ [ i , 2 ] ] / 1 0 ) } , { i , Length [ data ] } ] ;

dbList = Table [ f i tData [ [ i ] ] [ [ 2 ] ] , { i , f i tData // Length } ] ;
dataMax = f i tData [ [ F i r s t [ F i r s t [ Po s i t i on [ f i tData , Max [ dbList

] ] ] ] ] ] ;
threedb = dataMax [ [ 2 ] ] / 2 ;
th r eedbL i s t = Cases [ dbList , x ?(#1 > threedb &) ] ;
Qstart = dataMax [ [ 1 ] ] / ( data [ [ F i r s t [ F i r s t [ Po s i t i on [ dbList ,

th r eedbL i s t // Last ] ] ] ] ] [ [ 1 ] ] − data [ [ F i r s t [ F i r s t [
Po s i t i on [ dbList , th r eedbL i s t // F i r s t ] ] ] ] ] [ [ 1 ] ] ) ;

f i tparams = {{ att , ( Pi∗dataMax [ [ 1 ] ] ∗ dataMax [ [ 2 ] ] ) /(
2∗Qstart ) } , {v0 , dataMax [ [ 1 ] ] } , {Q, Qstart }} ;

FindFit [ data , LfuncdB , f i tparams , x , Prec i s i onGoa l −> 15 ,
AccuracyGoal −> 3 ]

]
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