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Abstract

The interest in engineering HF- and VHF-band (3 to 300 MHz) superconduct-
ing resonators is motivated by the potential low-loss character of quantum
optical devices in this frequency regime. Required to utilize resonators in
this frequency regime is an active cooling technique that is well known in
the field of optomechanics. In principle, technologies exist to simulate an all-
electrical optomechanic-like interaction between a microwave resonator and a
low-frequency resonator. However, the development of a space-efficient low-
frequency resonator is needed.

Several different geometries for achieving space-efficient low frequency res-
onators on superconducting chips have been considered and compared. An
optimized lumped element design, called a pack arranged resonator, a simple
parallel non-grounded LC resonator, is proposed and was fabricated, measured
and compared to low frequency resonators of the established coplanar waveguide
type. The frequency range 300 MHz to 6 GHz was investigated.

In the investigated frequency range the design accuracy of the simple LC
resonator model is determined to be sufficient for frequency in that the maximal
errors were on the order of 10%, however, a systematic and consistent mismatch
in the coupling rate has been observed. This could be explained by additional
capacitance to ground. The loss rate is found to be decreasing with decreasing
frequency according to a power law, whereas no clear trend is identifiable in the
case of CPW resonators. The spectra of spurious modes, which most likely are
due to self resonance phenomena, show a large gap between the fundamental
resonance and the first spurious mode.

In addition, a satisfactory design accuracy in fundamental frequency, cou-
pling capacitance and higher order modes in the case of coplanar waveguide
resonators in the frequency range of 200 MHz to 1.5 GHz is demonstrated.
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Chapter 1

Introduction

A new frequency range (3 to 300 MHz) of superconducting resonators offers po-
tential for quantum optical devices with longer photon lifetimes. Beyond design
challenges concerning size constraints of such devices, the transition energy of
these low-frequency (LF) resonators is comparable to the thermal occupation of
a dilution refrigerator. Therefore, an active cooling technique, well known in the
field of optomechanics, must be engineered to operate LF resonators with low
thermal excitation. In principle, technologies exist to realize an all-electrical
optomechanic-like interaction between a microwave and a low-frequency res-
onator. In this chapter, we briefly discuss why low frequency resonators are
appealing to QuDev and relevant experiments for which their properties can be
used, including the optomechanic-like interaction.

1.1 Low Frequency Resonators

Low frequency resonators do have some advantages in circuit quantum elec-
trodynamics. A recent experiment exploring multimode strong coupling [4]
required a low-frequency resonator to couple a qubit to many nondegenerate
cavity modes, for example. They are expected to be less lossy, as resistivity
from quasiparticles in superconductors scales as ρSC ∝ ω2 [18], and can there-
fore be useful as selective filters. They can also be coupled to systems that
require low frequencies. They could enable longer storage of quantum infor-
mation and are good candidates for a hybrid setup for quantum computation,
where different qubit realizations are used for storing and processing tasks (e.g.
Transmon qubits for processing and nuclear spin states for storing information).
Lower loss devices could also be achieved because of the availability of low-noise
electronics in this frequency regime. However, resonators of lower frequency
usually require very large structures composed of small structures, which may
pose some problems. The goal of this work is to consider different possible
designs of low frequency resonators and propose one particular design. Some
initial investigation on this design is done and compared to the more established
coplanar waveguide resonator with particular interest in the sub-GHz frequency
range.

An additional problem when using low frequency resonators for quantum
computation is the fact they are more easily thermally excited; to put them in

1
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Figure 1.1: Schematic of an optomechanical system. The optical cavity’s res-
onance ωopt is shifted by the displacement x̂ of the mechanically compliant
mirror of mass m and frquency ωmech. This coupling and the frequency differ-
ence between each oscillator are what mathematically identify optomechanical
systems.

the ground state, lower temperatures are required. For fundamental transition
frequencies of a few hundred Megahertz the ground state temperature is around
5 mK, below the temperature of a usual dilution cryostat (Tcryo ≈ 20 mK). As
an alternative to a more elaborate external cooling, active cooling methods are
a viable solution (see section 1.2).

1.2 Optomechanics Analogy

Microwave-frequency resonators have transition energies orders of magnitude
greater than the thermal energy of their environment in a dilution cryostat.
Because of this, microwave resonators can be externally cooled to their ground
state. As stated above, this is no longer true once the transition energies are
in the VHF-band of hundreds of Megahertz. Thus, to take advantage of the
benefits for such low-frequency resonators outlined in section 1.1, we must have
the ability to actively cool them to their ground-state. In the trapped ion
community, experimental methods to cool the mechanical modes of the atomic
center-of-mass motion of the ions is necessary due to ambient temperatures
higher than the fundamental transition energy of the atomic motion [20]. This
method is known as sideband cooling and has been done on mechanical systems
with comparable frequency to our interest using microwave resonators [17].

Sideband cooling utilizes a particular coupling between a high-frequency and
a low-frequency resonator. The classic example, seen in figure 1.1, consists of an
optical cavity with one mirror that is mechanically compliant. The displacement
of the mirror changes the resonance frequency of the cavity because the cavity
length is inversely proportional to its frequency. This gives a Hamiltonian which
can be written as [1]

Ĥ = Ĥmech + ~ (ωopt + gomx̂) n̂, (1.1)

where n̂ is the number of photons in the cavity and gom =
∂ωopt

∂x is the optome-
chanical coupling obtained by a first-order Taylor expansion of ωopt(x).

2
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Figure 1.2: An example circuit schematic for an all-electrical optomechanically-
coupled device. In blue is a microwave CPW resonator terminated with a
SQUID loop to ground. This is coupled inductively with mutual inductance
M to the radio-frequency (RF) lumped-element resonator in red.

This type of coupling can also be engineered between two superconducting
resonators [8]. A circuit schematic of the device design is shown in figure 1.2. It
consists of a high-frequency (HF) oscillator with a SQUID loop contributing to
its inductance. Note that the HF oscillator is a transmission-line resonator in
the figure. This need not be the case–alternative geometries are also possible,
such as a lumped element device. The mutual inductance M between the loop
and the low-frequency mechanical-like resonator realizes the coupling between
amplitude φ̂ = MÎ of the LF resonator and the HF resonator, as the flux
through the SQUID loop changes its inductance, and therefore the resonant
frequency of the device.

1.2.1 Sideband Cooling an RF Resonator

As mentioned above, a device such as depicted in figures 1.1 or 1.2 can be used
to actively cool the LF resonator in the system. A schematic of sideband cooling
is shown in figure 1.3. The basic process is as follows: one applies a drive to the
system ωd, and this drive produces sidebands ωd ± Ωm in the output on either
side of the drive tone spaced by the mechanical resonance Ωm. These are the
Stokes (−) and anti-Stokes (+) sidebands. By choosing the drive frequency to
be below the HF resonator resonance by Ωm, the cavity filters the Stokes peak,
and passes the anti-Stokes peak. As given in the figure, the scattering rates
Γ± to the Stokes (−) and anti-Stokes (+) sidebands become asymmetric, with
Γ+ � Γ−. This asymmetry results in upconversion of drive photons, whose
energy is derived from the motion of the mechanical oscillator. This constitutes
an active cooling mechanism of the resonator, and experiments have been done
to observe the quantum asymmetry of these peaks for mesoscopic mechanical
oscillators by cooling in this way [14].

3



Figure 1.3: Schematic of sideband cooling. The drive ωd produces sideband
resonances spaced by the mechanical resonances at ±Ωm. When detuning the
drive by Ωm, the anti-Stokes sideband is retained while the cavity scatters pho-
tons to the anti-Stokes band at rate Γ+ and to the Stokes band at rate Γ−.
This asymmetry in energy scattering extracts excitations from the mechanics,
thereby cooling it. Figure edited from [17].
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Chapter 2

Theoretical Considerations

In this chapter the theoretical considerations regarding different resonator types
as well as the models used to describe, optimize and design them are presented.
This includes aspects relevant for the choice of certain design parameters as
well as those that are necessary to determine the geometrical for given physical
design parameters.

There are several different types of planar resonators, such as coplanar
waveguide (CPW), lumped element (LE) and spiral resonators. In this chap-
ter first two are introduced, compared and described in detail. Furthermore
some estimates for how suitable they could be as low frequency resonators are
presented. The circuits in consideration are based on superconducting transmis-
sion lines placed on chips. The main criteria for selecting the optimal resonator
types are space-efficiency, simplicity with respect to fabrication and compatibil-
ity with existing experimental setups at the Quantum Device Lab (QuDev) at
ETHZ1.

2.1 Resonator

2.1.1 Quantum LC Oscillator

The electrical circuit shown in figure 2.1, that is an LC oscillator circuit, is
considered. With respect to the position variable q the Lagrangian is

L =
1

2
Lq̇2 − 1

2

q2

C
= L (q, q̇). (2.1)

The conjugate momentum to q is

∂L

∂q̇
= Lq̇ = LI = Φ. (2.2)

The Legendre transform then gives the Hamiltonian

H (q,Φ) = Φ · Φ

L
−L

(
q,

Φ

L

)
=

1

2L
Φ2 +

1

2C
q2. (2.3)

1The laboratory in which this investigation was conducted.
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Figure 2.1: A circuit with an inductance L and capacitance C is an LC oscillator.
The flux through the inductor is denoted by Φ, the charge on the capacitor plates
±q and the current flowing through the circuit by I = q̇.

The LC oscillator can then be quantized using second quantization, that is q,Φ
are replaced by operators q̂, Φ̂ that satisfy the canonical commutator relation[
q̂, Φ̂

]
= i~ and the creation and annihilation operators

â =

√
Z

2~
q̂ + i

√
1

2~Z
Φ̂, (2.4a)

â† =

√
Z

2~
q̂ − i

√
1

2~Z
Φ̂. (2.4b)

with the oscillator impedance Z =
√

L
C . They satisfy the necessary commutator

relation
[
â, â†

]
= 1. Defining the number operator n̂ := â†â and expressing

impedance with resonance frequency Z = ω0L allows the Hamiltonian to be
written as

H = ~ω0

(
n̂+

1

2

)
, (2.5)

which is recognized as the Hamiltonian of the usual quantum harmonic oscillator
with frequency ω0.

The operators for charge and flux can be written using equation (2.4) as

q̂ =

√
~

2Z

(
â+ â†

)
, (2.6a)

Φ̂ = −i
√

~Z
2

(
â− â†

)
, (2.6b)

which allows the calculation of the ground-state uncertainties

∆q̂ =
√
〈0|q̂2|0〉 − 〈0|q̂|0〉2 =

√
2~
Z

= qZPF, (2.7a)

∆Φ̂ =

√
〈0|Φ̂2|0〉 − 〈0|Φ̂2|0〉2 =

√
2~Z = ΦZPF, (2.7b)

which are sometimes called zero-point fluctuations.

2.2 Coplanar Waveguide Resonators

2.2.1 Fundamental Frequency and Spectrum

A coplanar waveguide resonator (CPW), which is based on a simple stripline,
can be considered as a quasi-one-dimensional transmission line cavity. In the

6



transmission line of length l standing waves form and the fundamental frequency
of the λ/2-waves is given by [7]

f0 =
c
√
εeff

1

2l
, (2.8)

which can trivially be found via l = λ0/2 for two-ended resonators, and the
phase velocity vph = c/

√
εeff, where c is the speed of light and εeff the effec-

tive permittivity of the CPW line. The effective permittivity depends on the
geometry of the stripline (see section 2.2.2). These resonators, due to their
quasi-one-dimensional boundary conditions, admit higher-order resonances in
intervals of the fundamental frequency, with each additional mode containing
an another field node along the structure.

The most important parameter for CPW resonators is their length. As
the fundamental frequency scales linearly with the inverse of the length, long
transmission lines are required in order to achieve low frequencies. Because a
straight line leads to a very inefficient use of the available chip area, the stripline
is usually arranged in a meandering fashion. If the distance between neighboring
segments is large enough the additional effects can be neglected. From that it
follows that the area required scales with the inverse of the frequency. However,
due to the space between the turns, this leads to a suboptimal use of the available
area, which in turn has the consequence that low frequency CPW resonators
get quite large.

2.2.2 Effective Permittivity

To accurately predict the fundamental frequency and higher modes of CPW
resonators, it is sufficient to know the effective permittivity of the stripline (in
addition to the length).

The effective permittivity of a single-layered unshielded stripline can be cal-
culated analytically using conformal mapping techniques [6]

εeff = 1 +
ε1 − 1

2

K(k1)

K(k′1)

K(k′0)

K(k0)
, (2.9)

where ε1 is the electrical permittivity of the substrate, K(k) gives the complete
elliptic integral of the first kind and the arguments are given by

k0 =
w

w + 2s
, (2.10)

k1 =
sinh

(
πw
4h

)
sinh

(
π(w+2s)

4h

) (2.11)

and k′ =
√

1− k2 for k = k0, k1. The geometrical parameters w, s and h
are defined in figure 2.2. This also allows the calculation of the capacitance
per unit length Cl, the inductance per unit length Ll (using the expression

7
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Figure 2.2: Cross section of the transmission line used in the CPW resonator.
The niobium conductor (brown) of thickness t is on top the sapphire substrate
of height h and electrical permittivity ε1. The conductor has a width w and
distance s to the ground plane on each side. The transmission line parameters
a and b are related to the other parameters by w = 2a and s = b− a.

vph = 1/
√
LlCl [12]) and the characteristic impedance Z0 [15]

Cl = 4ε0εeff
K(k0)

K(k′0)
, (2.12)

Ll =
εeff

c2Cl
=
µ0

4

K(k′0)

K(k0)
, (2.13)

Z0 =

√
Ll
Cl

=
1

4

√
µ0

ε0εeff

K(k′0)

K(k0)
. (2.14)

The parameters for the chips used in the experiments at QuDev were the
following: t = 150 nm, h = 500µm, w = 10µm and s = 4.5µm. Given these
dimensions, it is clear that t � h, and so the effective permittivity is approxi-
mated by the limit case h→∞. This results in a constant effective permittivity:
For h→∞ it follows that k1 → w/(w + 2s) = k0 and hence

εeff =
1 + ε1

2
. (2.15)

The substrate used for the fabricated chips is sapphire Al2O3 and the super-
conductor is niobium. The relative permittivity of sapphire is anisotropic with
εxy = 9.3 and εz = 11.3 at T = 20 K [10]. Considering the weak temperature
dependence right above T = 20 K, one can assume that those values give reason-
able estimates even for lower temperatures. Furthermore, it has to be assumed
that the values are valid for frequencies in the range of several hundred mega-
hertz even though the measurements of the effective permittivity were done in
the range of 20 GHz.

For an anisotropic relative permittivity and height of a substrate an equiv-
alent isotropic relative permittivity εeq and equivalent substrate height heq can
be defined. They are given by [19] (for θ = 0 and εxy = ε⊥, εz = ε‖):

εeq =
√
εxyεz, heq = h

√
εxy
εz

(2.16)

Estimating the effective permittivity using equations (2.9) and (2.16) and
the values given above, gives εeff = 5.63 compared to the value

εeff = 5.67, (2.17)

8



which has previously been used for the design of CPW resonators with the same
transmission line geometry and had been obtained from a Sonnet simulation.
The calculated value deviates from the simulated value by less than 1%. Using
the measured value for the effective permittivity and equations (2.12), (2.13)
and (2.14) one obtains the numerical values Cl = 1.58 · 10−10 F m−1, Ll =
4.00 · 10−7 H m−1 and Z0 = 50.4 Ω. To investigate the effect of gap width w,
conductor width w on the effective permittivity and to decide whether they
are relevant, each parameter was varied separately and the required length for a
given fundamental frequency f0 = 500 MHz was calculated using equations (2.8),
(2.9) and (2.16). The plots in figure 2.3 show that the influence is insignificant.
For ease of fabrication and for simplicity s, w, h are therefore chosen to take the
standard values, which allows the use of previously fitted values for εeff.

2.2.3 Design Optimization

It has been shown in the previous section that there is only one significant free
parameter of the one-dimensional geometry, the length l of the resonator; hence,
the optimization in this respect is simple. Figure 2.5 shows the fundamental
frequency as a function of length, as given by equation (2.8) for the effective
permittivity (2.17). However, as mentioned before, the arrangement of the 1-D
transmission line on the chip surface is highly relevant with respect to space
efficiency. A meandering structure (as shown in figure 2.4) has proven very
successful in the past and was therefore used as main geometry (an alternative
geometry, the Hilbert curve, was considered in the mask design, see 3.1.1).

Given a certain rectangular bounding box described by (∆x,∆y), the length
of a meandering resonator with turning radius r filling that box is given by

l = 2N(l′ + πr) + 2

(
l′

2
+ πr

)
, (2.18)

where N =
⌊

∆x
4r

⌋
−1 is the number of meander turns and l′ = ∆y−2

(
r + w

2 + s
)

the length of one straight segment. Figure 2.6 shows the fundamental frequency
as achieved by filling the rectangle with a meandering CPW resonator according
to equation (2.18).

2.2.4 Coupling and Quality Factor

Coplanar waveguide half-wavelength (λ/2) resonators are measured in trans-
mission, hence they need to be coupled to the outside electronics on both ends
(as shown in figure 2.4). For symmetric coupling, that is if both coupling ca-
pacitors have the same capacitance Cκ, then the coupled CPW resonator can
be described in distributed element representation by the load RL, the coupling
capacitances Cκ, the resistance per length Rl, the inductance per length Ll,
the capacitance to ground per length Cl and the length l [7]. Figure 2.7 shows
the corresponding circuit diagram in distributed element representation. Induc-
tance and capacitance per unit length can be calculated using equations (2.12)
and (2.13).

When analyzing our measurements of these devices, the quality factors and
coupling rates are of interest. The loaded quality factor QL in terms of induc-
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Figure 2.3: Dependence of the required length l of a CPW resonator for a
given frequency of f0 = 500 MHz as a function of (a) the gap width s, (b)
the conductor width w and (c) the substrate height h. Shown is the relative
difference from l0 = 126.400 mm, which is obtained for the standard values
(s = 4.5µm, w = 10µm, h = 500µm). One can conclude that these parameters
have negligible influence on the length.
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Figure 2.4: Meandering CPW resonator with both ends capacitively coupled.
The conductor is shown in white and the sapphire substrate in dark blue.
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Figure 2.5: Fundamental frequency f0 of a coplanar waveguide resonator as a
function of the resonator length. The effective permittivity εeff = 5.67 was taken
from a previous Sonnet simulation but agrees with the theoretical prediction
within of less than 1%.

11



Figure 2.6: Considering a rectangular area with sides ∆x and ∆y, a CPW res-
onator in rectangular meander arrangement with turning radius r = 50µm (for
the rounded meander turns) filling that area. Frequencies well below 500 MHz
can be achieved.

tances and capacitances is given in [7] by the relations

QL =
QintQext

Qint +Qext
, (2.19a)

Qint = nω0
ClZ0

2α
= nω0γ

−1, (2.19b)

Qext =
nω0R

∗C

2
=
nω0C

2

(
1 + (nω0CκRL)

2

n2ω2
0C

2
κRL

)
=

C

2nω0C2
κRL

(
1 + (nω0CκRL)

2
)
. (2.19c)

One can see Qint is linear in the resonance frequency ω0 = 2πf0 and mode num-
ber n, scaled by capacitance per length Cl, the CPW characteristic impedance
Z0, and the attenuation constant of the CPW line α, all of which are geometri-
cal or material parameters. Together, these constitute the internal energy decay
rate γ as given in equation (2.19b). The external quality factor Qext is governed
by the total line capacitance C = Cll/2, the coupling capacitance Cκ and the
impedance of the feed line RL. The coupling rate, defined in equation (2.46), is
simply the ratio of ω0 and Qext. This model is used in section 5.2.2 to charac-
terize the CPW resonators.
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Figure 2.7: Distributed element representation of a symmetrically coupled trans-
mission line resonator. The resistance, inductance and capacitance per length
are denoted by Rl, Ll, Cl, the coupling capacitance by Cκ and the load by RL.

2.3 Lumped Element Resonators

2.3.1 Basic Circuit Elements

Lumped element resonators are circuits that can successfully be described by
a lumped element model. In reality the electrical quantities in distributed ele-
ments are dependent on the position; the lumped element model approximates
the circuit by separating the circuit into abstract discrete elements, which leads
to the electrical quantities losing their dependence on position. In the case of a
simple transmission line based resonator this means that the main inductance
and capacitance can be assigned to different parts of the transmission line.

For given substrate, metallic layers and transmission line properties, the
physical quantities relevant for the circuit are determined by the geometry. The
resonance frequency of an LC resonator is given by (see section 2.1.1)

ω0 =
1√
LC

, (2.20)

hence the relevant quantities are the inductance L and the capacitance C.
In reality inductive elements have a certain capacitance and capacitive ele-

ments a certain inductance; those effects are called parasitics and lead to correc-
tions to the physical quantities: As shown in figures 2.9 and 2.11 the combination
of original circuit element and parasitic element can be reinterpreted as just one
circuit element with frequency-dependent effective inductance or capacitance,
respectively. The effective circuit is equivalent to the original (figure 2.1) with
L and C replaced by Leff and Ceff; hence, the effective frequency is given by

ω∗0 =
1√

LeffCeff

, (2.21)

where the expressions for the effective capacitance and inductance Leff, Ceff are
derived in the succeeding paragraphs.
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(a) Meander (b) Rectangular

(c) Octagonal
(d) Circular

Figure 2.8: Two-dimensional inductor types [2]: (a) meander, (b) rectangular,
(c) circular and (d) octagonal. Both, meander and rectangular configurations,
have the advantage of an simple layout with the meander inductor additionally
having a lower eddy current resistance; on the other hand they have low induc-
tance and self resonance frequency. For the spiral resonators the more vertices
there are (with circular counting as infinite) the more difficult the layout is and
the higher the inductance and self resonance frequency [2].

Inductance

There are several realizations of two dimensional planar inductors, including
a small section of a strip conductor, circular or rectangular loops, circular or
rectangular spirals and meander inductors [2]. Meander inductors are easy to
design and fabricate.

For inductor configuration both the self-inductance of the single conduc-
tive segments, which describe the effect of an induced voltage by the changing
current, as well as the mutual inductance of two segments in proximity, which
induce voltages in each other, have to be considered. The mutual inductance
depends strongly on the geometrical arrangement.

As mentioned above, the effective inductance can be modeled as a para-
sitic capacitance in parallel to the inductance. The parasitic capacitance comes
from the capacitance between segments but also between each segment and the
ground. By considering the total impedance of the equivalent circuit shown in
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L

Cp

⇒ Leff

Figure 2.9: Equivalent circuit of an inductive element with inductance L and
parallel parasitic capacitance Cp. By calculating the total impedance of this
circuit the effective inductance Leff can be determined.

figure 2.9 one finds [2]

iωLeff = Zind =

(
1

ZL
+

1

ZC

)−1

=

(
1

iωL
+ iωCp

)−1

=
iωL

1− ω2LCp
=

iωL

1− (ω/ωp)2
(2.22)

with the self resonance frequency of the inductor ωp := 1/
√
LCp, which results

in the effective inductance

Leff =
L

1− (ω/ωp)2
. (2.23)

Capacitance

For capacitors there are basically three categories: microstrip, interdigital and
metal-insulator-metal (MIM) capacitors (see figure 2.10). Microstrip capacitors
are just segments of open-circuited microstrip sections, whereas interdigital ca-
pacitors utilize the capacitance between the fingers to increase the capacitance.
In contrast to the other two categories, MIM capacitors require a multilevel
process for fabrication [2]. Interdigital capacitors have proven to be a good
candidate due to the simple fabrication and still relatively high achievable ca-
pacitance.

Similar to the case of inductors, interdigital capacitors have a small parasitic
inductance due to finite length of the fingers. This can be modeled as effective
capacitance, considering a parasitic inductance in series to the capacitance (fig-
ure 2.11 shows the equivalent circuit), which is due to the inductance of the
conducting segments [2]

1

iωCeff
= Zcap = ZC + ZL =

1

iωC
+ iωLp

=
1− ω2CLp

iωC
=

1− (ω/ωp)
2

iωC
(2.24)
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(a) Microstrip (b) Interdigital (c) MIM

Figure 2.10: Three categories of monolithic capacitors [2]. They differ in ease of
fabrication and achievable capacitance value per unit area: (a) A single open-
circuited microstrip section provides low capacitance. (b) Interdigital capacitors
provide intermediate capacitance combined with easy fabrication. (c) MIM
(metal-insulator-metal) capacitors require a multilevel fabrication process but
give high capacitance per area.

C
Ls

⇒
Ceff

Figure 2.11: Equivalent circuit of a capacitive element with capacitance C and
series parasitic inductance Ls. By calculating the total impedance of this circuit
the effective capacitance Ceff can be determined.

with the self resonance frequency of the capacitor ωs = 1/
√
LpC, which gives

the effective capacitance as

Ceff =
C

1− (ω/ωs)2
. (2.25)

2.3.2 Meander Inductor

Stojanović et al. investigated different expressions for the calculation of in-
ductance of meander inductors [16]. For optimal performance in optimization
processes they generated a great number of values using analytical models and
used fitting techniques to obtain an expression for the total inductance of a
meander inductor in monomial form:

Lmon = 0.00266 · a0.0603 · h0.4429 ·N0.954 · d0.606 · w−0.173, (2.26)

where N is the number of long segments, the meaning of the layout dimensions
a, h, d, w, which are given in µm, are defined in figure 2.12, and Lmon is given
in nH. According to their investigation this expression gives maximally up to
12 percent relative error and also agrees with previously measured values.

The area taken up by the inductor is trivially given by

AL = (2a+ (n+ 1)d)(w + h), (2.27)

where the meaning of the parameters can be seen in figure 2.12.
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Figure 2.12: Meander inductor with layout dimensions a, h, d, w for N = 3. The
conductor is shown in black, insulator in white [16].

2.3.3 Interdigital Capacitor

To estimate the capacitance of interdigital capacitors, two methods were used: a
simple scaling relation based on parallel plate capacitors as well as a more elab-
orate expression that takes into account the microstrip structure. Figure 2.13
shows a schematic of such an interdigital capacitor with the relevant dimensions.
For the simple scaling relation the capacitor is approximated as a parallel plate
capacitor whose capacitance is given by

C =
εA

d
∝ l

d
, (2.28)

where ε is the permittivity, A = l · t the area of the plates of dimensions l, t
and d the separation between the plates; if there are N fingers, the number of
parallel plate capacitors with dimensions l, t is (N − 1), hence

C ≈ 10 fF · (N − 1)
l

200µm

3µm

d
= (N − 1)

l

d
· 0.15 fF, (2.29)

where the constant 10 fF was determined by fitting the capacitance, obtained
from simulations using the Maxwell software, as a function of N for constant
l = 200µm and d = 3µm.

A general expression for the total series capacitance of an interdigital capac-
itor is given by [2]

C =
εeff

18π

K(k)

K(k′)
(N − 1)l, (2.30)

where K is the complete elliptic integral of the first kind with argument

k = tan2

(
πw

4(w + d)

)
, k′ =

√
1− k2 (2.31)

and the effective permittivity of the microstrip of width w on a substrate of
height h is given by [2]

εeff =
ε1 + 1

2
+
ε1 − 1

2

 1√
1 + 12 hw

+ 0.041
(

1− w

h

)2

 (2.32)

for w ≤ h with accuracy better than 1%. This reproduces the same dependence
on N and l as in the simple scaling relation.
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l

w

d

Figure 2.13: Schematic representation of an interdigital capacitor (finger capac-
itor) and the relevant dimensions: length of one finger l, separation of fingers
d, width of a finger w as well as the number of fingers N (counting fingers from
both sides). The conductor is shown in grey, the insulator in white.

The area of the capacitor is trivially given by

AC = (l + d)(wN + d(N − 1)). (2.33)

2.3.4 Design Optimization

Before finding optimal design parameters some practical limitations, especially
concerning fabrication have to be considered: All the structures should have a
size of at least 3µm, due to the resolution of the photolitography process (except
for the height of the niobium layer, which still is 150 nm). This constrains the
optimization.

An optimization of the inductance per area over the parameter space h, d, w
(see figure 2.12) for different number of turns, for different given values of in-
ductance and for a given area which is then filled up by the inductor yields
the minimally allowed values, that is h = 6µm, d = 6µm and w = 3µm (this
holds for arbitrary given number of turns, inductance or area). For those op-
timal values figure 2.14 shows the dependence of the inductance per area for
given area. For large areas (and similarly for large values of inductance, if that
is fixed) the density decreases just very slightly. The effect of the turn length
h is rather large (see figure 2.15) and for l' 3µm the density decreases with
increasing finger length.

The optimization of the capacitance per area over the parameter space l, d, w
(see figure 2.13) for a given area which is then filled up by the capacitor yields
the minimum allowed values d = 3µm and w = 3µm (independent of the given
area). For constant w, d, h equation (2.30) gives C ∝ (N−1)l ≈ Nl (for N � 1)
and equation (2.33) AC ≈ l(w + d)N ∝ Nl (for N � 1 and l � d, where the
latter is satisfied for the optimal values). The condition N � 1 is satisfied for
large areas if l is fixed. It follows that the capacitance per area saturates for
large area:

C

A
≈ εeff

18π

K(k)

K(k′)

1

w + d
= const. (2.34)

The optimal finger length is more interesting: The simultaneous optimization
given above yields a strong dependence of the optimal finger length on the
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Figure 2.14: Inductance per area L/A of a meander inductor with optimal
parameters h = 6µm, d = 6µm and w = 3µm (see figure 2.12) for given (a)
area A or (b) inductance L. Both dependencies show a similar behavior: The
density increases sharply for small values, then decreases first rapidly and then
slowly.
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Figure 2.15: The inductance per area L/A of a meander inductor as a function
of the length h of a meander turn. As expected, considering the result of the
optimization, the density decreases with increasing length.
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Figure 2.16: The simultaneous optimization of the capacitance per area for fixed
area with respect to the parameters l, d, w results in a dependence of the optimal
value for l on the area A.

given area (see figure 2.16), however considering the actual dependence as given
by equation (2.34) it is obvious that even though small areas have a relevant
optimum, for large areas the effect of the finger length on the capacitance density
is negligible.

Because the dependence of the optimal inductance and capacitance density
on the available area is insignificant for large areas, one can conclude that there
is no clear preference for a specific division of the area between capacitor and
inductor. The achievable resonance frequency f0 as function of the inductor and
capacitor area is shown in figure 2.17. The plot shows that on a total area of
about 2 mm2 frequencies in the range of 200 MHz can be achieved. To check, the
resonance frequency f0 was also minimized directly over the whole parameter
space hind, dind, wind, lcap, dcap, wcap for given inductor and capacitor area. The
result was again independent of the actual value of the two areas and yielded,
as expected, the minimum allowed value of 3µm for hind, dind, wind, dcap and
wcap (up to a numerical tolerance of 2%).

Because the simple scaling relation from equation (2.29) was fitted to data
originating from capacitors with d = w = 3µm and because the dependence on
l and N is the same as in the model described by equation (2.30), it can be used
instead. This simplification allows faster computation and, due to the fitting of
the parameter, has been shown to be consistent with the specific chip type and
fabrication methods.
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Figure 2.17: Achievable resonance frequency f0 = ω0

2π according to equation
(2.20) as a function of the inductor area AL and the capacitor area AC for turn
length hind = 50µm and finger length l = 500µm. Those values were chosen
for reasons of practicality.

2.3.5 Lumped Element Circuit Model

Unloaded RLC Oscillator

The basic circuit model of an LC oscillator is shown in figure 2.1. Losses can be
modeled as a resistor in parallel (see figure 2.18). The voltage drops over the
different elements are given by

VR = RIR, VL = LİL, VC =
QC
C

(2.35)

and using Kirchhoff’s voltage law for the left and right loop

VR − VL = 0, VL − VC = 0, (2.36)

which gives V := VL = VC = VR. Furthermore, IC = Q̇C and with Kirchhoff’s
current law

0 = IR + IL + IC (2.37)

or after differentiating once

0 = ˙IR + ˙IL + ˙IC =
V̇

R
+
V

L
+ CV̈ , (2.38)

which can be rewritten as

V̈ +
V̇

RC
+

V

LC
= 0 = V̈ + γV̇ + ω2

0V (2.39)
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LVL
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CVC
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Figure 2.18: Circuit diagram of an RLC parallel oscillator with resistance R,
inductance L and capacitance C.

with loss rate γ := 1
RC and the resonance frequency ω0 = 1√

LC
. Equation

(2.39) is the equation of motion of a damped harmonic oscillator with resonance
frequency ω0.

Loaded RLC Oscillator

In order to allow reflection measurements, the resonator has to be coupled to
the transmission line and outside electronics. In our case this can be done
capacitively. Furthermore, the RLC circuit couples capacitively to the ground by
the parasitic capacitance Cg, which is given by the insulating border between the
circuit elements and the ground plane. There is also a parasitic capacitance Cg,p
to ground parallel to the resonator. Figure 2.19 shows the complete equivalent
circuit.

From a geometrical perspective (see chapter 3) it can be expected that the
values of the parasitic capacitances are much smaller than the capacitance C
of the main capacitor, which then leads to a comparatively small and negligible
frequency shift. In that range of values, an increase in Cg or Cg,p are seen to
have reduce the coupling. The effect on both the frequency and the coupling
rate can be seen when analyzing the impedance of the circuit as a function of fre-
quency and varying the parasitic capacitances. Matching the two capacitances
to ground to actual geometrical features of the design (proposed in section 3.2.4
and shown in figure 3.7) shows that the parallel capacitance basically gives the
capacitance of the island (the place where the coupling capacitor connects to
both the main capacitor as well as the inductor) to ground. Due to the point-
like character of the island, Cg,p can be assumed to be much smaller than Cg.
The parallel parasitic capacitance is therefore neglected in the following ana-
lytic analysis, however it should be stressed that its qualitative effect in the
considered range of values is the same as the one of the series capacitance.

When neglecting Cg,p as justified above, the total impedance of that circuit
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is given by

Z(ω) = Zload︸ ︷︷ ︸
=RL

+ Zκ︸︷︷︸
= 1
iωCκ

+

(
1

ZL
+

1

ZC
+

1

R

)−1

︸ ︷︷ ︸
= iωL

1−(ω/ω0)2+iωL/R

+ Zg︸︷︷︸
= 1
iωCg

(2.40)

=
iωL

1− (ω/ω0)2 + iωL/R
+

(Cg + Cκ)

iωCgCκ
+RL. (2.41)

This can be rewritten as

Z(ω) =
iωL

1− (ω/ω0)2 + iωL/R
+

1

iωC̃κ
+RL (2.42)

with

C̃κ =
CgCκ
Cg + Cκ

. (2.43)

The effective circuit is shown in figure 2.20. In the overcoupled case (R→∞)
this allows the calculation of the coupling rate via an equivalent circuit as shown
in figure 2.18 and the corresponding equation of motion according to [3] (in the
approximation C̃κ � C, which is satisfied for the assumptions described above)

κ ≈ C̃κ
2
RL

C2L
. (2.44)

For the design process, however, no capacitance to ground has been accounted
for, hence

κdesigned ≈ C2
κRL
C2L

. (2.45)

From that the external quality factor, which describes the interaction with the
load, can be calculated:

Qext =
ω0

κ
=

2πf0

κ
. (2.46)

The undercoupled case (Cκ →∞) allows the calculation of the internal loss as
given above

γ =
1

RC
(2.47)

and the internal quality factor

Qint =
ω0

γ
=

2πf0

γ
. (2.48)

If the two loss rates γ and κ are comparable, the resonator is usually said to be
critically coupled.

2.4 Microwave Network Analysis

This section summarizes the basics concerning microwave network analysis as
used later in this work. A more in-depth introduction to this topic is given for
example in [12].
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Cκ

LR C

Cg

Cg,p

Figure 2.19: Lumped element circuit diagram for a loaded RLC parallel res-
onator. The inductance L and capacitance C make up the main part of the
resonator, losses are modelled by the resistance R and the resonator is capac-
itively coupled to the load RL via the capacitance Cκ. Additionally, the RLC
circuit part couples capacitively to the ground by the parasitic capacitances Cg
and Cg,p.

RL

C̃κ

LR C

Figure 2.20: Simplified lumped element circuit diagram for a loaded RLC par-
allel resonator. The inductance L and capacitance C make up the main part
of the resonator, losses are modelled by the resistance R and the resonator is
capacitively coupled to the load RL via the effective capacitance C̃κ which ac-
counts for the capacitative coupling to ground shown in figure 2.19 in the case
of Cg,p → 0.
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Figure 2.21: Multiport network. Each port gives an input signal with amplitude
V +
n and an output signal with amplitude V −n .

2.4.1 Multiport Network

A multiport, more specific an N -port, microwave network is characterized by
N ports numbered by n = 1, 2, . . . , N and each port gives an input signal with
amplitude V +

n and an output signal with amplitude V −n (see figure 2.21). The
total voltage at each port is therefore given by Vn = V +

n +V −n . Analogously we
can define the input I+

n and output I−n as well as total current In = I+
n − I−n at

each port.
The voltage and current amplitudes are related to each other by the internal

structure of the network. In terms of just input and output signals this relation
is described by the impedance matrix, where each matrixelement is defined by

Zij =
Vi
Ij

∣∣∣∣
Ik=0 for k 6=j

, (2.49)

and hence 
V1

V2

...
VN

 =


Z11 Z12 · · · Z1N

Z21 Z22 · · · Z2N

...
...

. . .
...

ZN1 ZN2 · · · ZNN


︸ ︷︷ ︸

=Z


I1
I2
...
IN

 . (2.50)

2.4.2 Scattering Matrix

The scattering matrix gives a complete description of the network in terms of
input and output at its N ports. In matrix notation it can be defined by

V −1
V −2

...
V −N

 =


S11 S12 · · · S1N

S21 S22 · · · S2N

...
...

. . .
...

SN1 SN2 · · · SNN


︸ ︷︷ ︸

=S


V +

1

V +
2
...
V +
N

 . (2.51)
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A single matrix element is therefore given by

Sij =
V −i
V +
j

∣∣∣∣∣
V +
k =0 for k 6=j

, (2.52)

which also gives the measuring instruction of that matrix element: Sij is deter-
mined by driving only port j with input signal of amplitude V +

j and measuring

the reflected signal amplitude V −i at port i.
The relation to the impedance matrix Z is given by [12]

S = (Z + 1)−1(Z − 1) ⇔ Z = (1+ S)(1− S)−1. (2.53)
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Chapter 3

Mask Design

This chapter gives an overview over the resonator designs that have been fabri-
cated. The coplanar waveguide design is the standard meandering arrangement
of a transmission line and has previously been studied. The design used for
the lumped element resonators, however, has been newly developed and imple-
mented on this scale. The different components of that design are discussed in
more detail. The relevant parameters and properties of the resonators that have
been fabricated are summarized in section 3.3.

3.1 Coplanar Waveguide Resonators

The design used for the coplanar waveguide resonators is shown in figure 2.4
and has already been used extensively [7, 15]. Using equation (2.18) the length
of the resonator was calculated given the bounding box and turning radius. For
the microstrip the standard parameters a = 5µm and b = 9.5µm, which yield
w = 10µm and s = 4.5µm (see figure 2.2), have been used.

3.1.1 Hilbert Curve Geometry

The Hilbert curve is a space-filling curve whose length grows exponentially with
the order of the curve while being bounded by the same rectangle. Figure 3.1
shows a CPW resonator on a size 1 chip with Hilbert curve like arrangement of
the transmission line instead of the usual meander arrangement.

3.1.2 Launchers and Coupling Capacitors

To allow for transmission measurements the coplanar waveguide resonator is
coupled capacitively to the outside (cables) via two launchers (see figure 3.2
for the dimensions). In order to achieve a constant external Q-factor Qext the
required coupling capacitance Cκ was determined for given L and C of the
resonator and from that the required and optimal finger length lc and number
of fingers was estimated. Figure 3.3 shows a close-up of the interdigital coupling
capacitor.
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Figure 3.1: Hilbert curve geometry for a CPW resonator. This design results in
a resonance frequency of f0 = 2.10 GHz. The conductor is shown in white and
the sapphire substrate in dark blue.

wl

bl

lltllctc

Figure 3.2: The launcher and coupling capacitor at one end of a CPW resonator.
The width of the launcher was chosen wl = 150µm while the ratio between con-
ductor with and total width was kept the same as in the case of the tranmission
line, that is bl

al
= b

a = 9.5
5 with al = wl/2. The length of the other pieces were as

follows: launcher ll = 250µm, launcher taper tl = 250µm and capacitor taper
tc = 100µm. The gap size between the capacitor fingers was chosen to be 3µm.
The conductor is shown in white.

Figure 3.3: Coupling capacitor at one end of a CPW resonator; an interdigital
capacitor is used. See figure 3.2 for the dimensions. The conductor is shown in
white.
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3.2 Lumped Element Resonators

For the lumped element resonators several different geometries were considered:
different types of inductors and capacitors as well as different arrangements of
them on a chip. Meander inductors and interdigital capacitors were chosen as
basic elements of the new geometry. However, the established arrangement was
impractical for achieving low frequencies due to not being very scalable. The
main goals the new arrangement had to satisfy was efficient space usage on the
chip (that is low achievable frequency for a given area) as well as being easily
scalable. The latter requires a design that takes some input parameters and
adapts to those.

3.2.1 Supermeander Inductor

In order to efficiently use the space on the chip with given aspect ratio, an
additional level of meandering was introduced into the meander inductor: so
called superturns, as shown in figure 3.4. This allows much longer inductors
without needing very long and narrow chips. For consistency in the arrangement
both ends of the inductor are on the same side; this however requires that there
is a connecting straight line if the number of superturns is odd (see figure 3.4b).

The geometrical parameters for a single superturn are as shown in figure 2.12.
In addition to that spacing parameters had to be introduced: the borders on
top Bt = 10µm, bottom Bb = 10µm and on the sides Bs = 20µm as well as
the (horizontal) separation between the superturns Sst = 10µm and the line
connecting two of them Ss = 10µm. Figure 3.4a shows those parameters on
simple design examples.

In the design process the box size and geometrical parameters are given and
from that the number of turns and superturns is calculated. The separation be-
tween the superturns is then adapted in order to achieve a symmetric structure,
thereby adhering to the given minimal value.

3.2.2 Interdigital Capacitor

The design of the interdigital capacitor is as shown in figure 3.5 and described
in section 2.3.3. Borders were added on top, bottom and on the sides on which
the inductor is connected. The separation between capacitor and inductor was
chosen to be Sci = 10µm. The two connections (from both inducting parts)
are on the same side in order to be able to easily connect the capacitor to the
inductor (see section 3.2.4).

For given geometrical parameters the number of fingers is determined by the
box height which is an input parameter for the design process as well.

3.2.3 Coupling Capacitor and Launcher

The lumped element resonator properties are determined by measuring the re-
flection coefficient, which requires coupling to the transmission line and outside
electronics. Similarly to the case of the coplanar waveguide the launcher con-
nects to an interdigital coupling capacitor (see figure 3.6). The launcher param-
eters were chosen according to the standard values used in the lab: al = 75µm,
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Bt

Sst

Bb

Ss

Bs

(a) Design for even number of superturns.

Sst

Sst

2

(b) Design for odd number of superturns.

Figure 3.4: The supermeander inductor combines traditional meander turns
with additional turns of the whole structure, so called superturns. For the
calculation of the inductance the mutual inductance between superturns is ne-
glected, which is reasonable given the fairly large separation between them. For
an even number of turns (a) the design is trivial, however for an odd number
of turns (b) an additional conducting part has to be added in order to be able
to consistently connect to the capacitor on the left hand side; this additional
piece is ignored in the calculation of the inductance due to its negligible length
compared to the length of the whole inductor. The conductor is shown in white
and the sapphire substrate in dark blue.
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Bt

Bb

Sci

lcap

Figure 3.5: Interdigital capacitor used in the LE resonator. The finger and gap
width were chosen to be wcap = dcap = 3µm. The finger length is denoted by
lcap. The conductor is shown in white.

al/bl = 5/9.5, launcher length ll = 250µm, launcher taper length tl = 250µm,
distance between launcher and coupling capacitor dl = 200µm

3.2.4 Arrangement: Compact Resonator

The arrangement was inspired by the compact resonator design from [5]. Con-
necting the inductor directly to the capacitor is the most space efficient ar-
rangement. Because both elements were designed such that the connections are
on the same side, the connecting is straightforward. The equivalent lumped
element circuit diagram is shown in figure 2.19.

For given geometrical parameters (conductor width w, meander inductor
parameters dind, hind (see figure 2.12), capacitor parameters lcap, dcap (see fig-
ure 2.13), border sizes and launcher configuration and a given box size ∆x,∆y,
first the capacitor is added such that it fills the box in y-direction (by calculat-
ing the number of fingers) and then the supermeander inductor such that it fills
the remaining box (by choosing the number of turns and superturns).

3.3 Mask and Chips

In this section it is described what devices have been designed, why and how the
geometrical parameters were determined from given physical ones. Three chip
sizes were used; without subtracting the border widths their layout dimensions
are: chip length lchip = 7 mm and chip widths wchip 1 = 2 mm, wchip 2 = 4.3 mm,
wchip 3 = 6.6 mm.
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al

bl

ll tl tc

dl

lf

Figure 3.6: Launcher and coupling capacitor structure for lumped element res-
onators. The parameters are as follows: launcher transmission line dimensions
(see figure 2.2) al = 75µm, al/bl = 5/9.5, launcher length ll = 250µm, launcher
taper length tl = 250µm, distance between launcher and coupling capacitor
dl = 200µm, coupling capacitor tapers length tc and coupling capacitor finger
length fl. The conductor is shown in white.

∆x

∆y

Figure 3.7: Pack arrangement for lumped element resonators consisting of a
supermeander inductor and interdigital capacitor. Launcher, coupling capacitor,
main capacitor and inductor are all packed closely, which allows efficient use of
the available space. The conductor is shown in white.
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3.3.1 CPW Resonators

For the CPW resonators three different studies were considered: variation of
length, variation of turning radius and Hilbert curve geometry. See table 3.1.
In the main study the length and therefore the frequency was varied while keep-
ing all the other geometrical parameters constant. The designed fundamental
frequencies range from 1.56 GHz down to 202 MHz. Because this design has
already been well understood, the main goal was to investigate the behavior of
those CPW resonators at low frequencies; this was done for the already estab-
lished values for the other parameters, such as a, b and turning radius. For all
the designs the external quality factor was chosen to be Qext = 50000. For a
frequency of 3.02 GHz the turning radius was then varied from 50µm to 150µm
and the Hilbert curve design was compared to a meander design of the same
length and frequency.

Name Chip l [mm] f0 [GHz] κ [MHz] Qext r [µm]

LFCPW01 1 40 1.56 0.0314 10000 50
LFCPW02 1 40 1.56 0.0314 10000 50
LFCPW03 1 65.775 0.951 0.0191 10000 50
LFCPW04 2 100 0.626 0.0126 10000 50
LFCPW05 2 187.675 0.333 0.0067 10000 50
LFCPW06 3 309.575 0.202 0.0041 10000 50

LFCPW07 1 20.754 3.02 0.0606 10000 150
LFCPW08 1 20.754 3.02 0.0606 10000 100
LFCPW09 1 20.754 3.02 0.0606 10000 50

LFCPW10 1 30 2.1 0.00761 275953 -
LFCPW11 1 30 2.1 0.21 10000 50

Table 3.1: Summary of all CPW designs that were fabricated. The parameters
are: resonator length l, fundamental mode f0, coupling κ, external quality factor
Qext and turning radius r. The number in the column denotes the chip size as
described at the beginning of section 3.3. The resonators 1 and 2 differ solely
by the arrangement: 1 fills in x-direction, whereas 2 in y. (Note: Not all of
those designs have been measured, see section 4.3.1.)

3.3.2 LE Resonators

The names and relevant parameters of all lumped element resonator designs are
summarized in table 3.2. There are two studies: the variation of frequency (in
the range 300 MHz to 6 GHz) and external quality factor (102 to 105) at fixed
impedance Z = 170 Ω and the variation of impedance (from 50 Ω to 300 Ω) at
fixed frequency f0 = 3 GHZ and for external quality factors of 103 to 105.

Due to the smaller size of the lumped element resonators two could be placed
on each chip; usually a (large) low frequency resonator was paired with a (small)
high frequency resonator to keep the distance between their ends as small as
possible. Figure 3.8 shows an example of such an arrangement for the case of a
300 MHz and a 6 GHz resonator. Only size 1 chips were used.
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Figure 3.8: Example for the arrangement of two lumped element resonators on a
size 1 chip (7 mm×2 mm). At place 1 (left hand side) there is a 6 GHz resonator
and at place 2 a 300 MHz. The conductor is shown in white and the sapphire
substrate in dark blue.

Resonator Name f0 [GHz] Qext Z [Ω] lcap [µm]

LFLEM01 01 6 105 170 100
LFLEM02 02 6 104 170 100
LFLEM03 03 6 103 170 100
LFLEM04 04 6 102 170 100
LFLEM05 05 3 105 170 150
LFLEM06 06 3 104 170 150
LFLEM07 07 3 103 170 150
LFLEM08 08 3 102 170 150
LFLEM05 09 1 105 170 200
LFLEM06 10 1 104 170 200
LFLEM07 11 1 103 170 200
LFLEM08 12 1 102 170 200
LFLEM01 13 0.3 105 170 500
LFLEM02 14 0.3 104 170 500
LFLES01 14 0.3 104 170 500
LFLEM03 15 0.3 103 170 500
LFLEM04 16 0.3 102 170 500

LFLEM09 17 3 105 50 200
LFLEM09 18 3 105 100 150
LFLEM10 19 3 105 300 100
LFLEM10 20 3 104 50 200
LFLEM11 21 3 104 100 150
LFLEM11 22 3 104 300 100
LFLEM12 23 3 103 50 200
LFLEM12 24 3 103 100 150
LFLEM13 25 3 103 300 100
LFLEM13 26 3 104 400 100

Table 3.2: Summary of all LE designs that were fabricated. The designed
resonance frequency is denoted by f0, the external quality factor by Qext, the
impedance by Z and the length of the fingers of the capacitor by lcap. (Note:
Not all of those designs have been measured, see section 4.3.1.)
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Design According to Physical Parameters

In order to be able to design the resonators according to given physical param-
eters, that is with given frequency and impedance, instead of given geometrical
parameters, estimation routines were implemented. For given frequency f0,
impedance Z and external quality factor Qext appropriate geometrical parame-
ters have to be found for the layout. For that most of the geometrical parameters
have to be previously specified; the box size (∆x,∆y), the number of fingers in
the capacitor, the number of turns and superturns of the inductor and the sep-
aration between superturns are determined from the given physical parameters.
Additionally, a maximum box size and minimum separation between superturns
have to be specified.

The main routine proceeds as follows:

1. Inductance L and capacitance C are determined from f0 (equation (2.20))
and Z =

√
L/C.

2. Given the required value C the expression for the capacitance (equation
(2.30)) is solved for the number of fingers Ncap.

3. The number of fingers Ncap determines the box height ∆y.

4. The number of superturns Nsuper is found by filling the box in y-direction
with superturns.

5. With the required inductance L the expression for the inductance (equa-
tion (2.26)) is solved for the number of turns Nind, which then gives the
box width ∆x.

6. The separation between superturns is adapted from the minimum value
in order to counter rounding effects and make sure that the inductor does
fill the box in y-direction.

After that the coupling parameters have to be determined:

7. The expression for the external Q-factor is solved for the coupling capac-
itance Cκ (see equations (2.46) and (2.45)).

8. To determine the geometrical parameters that result in Cκ several different
methods have been implemented (based again on equation (2.30)):

(a) Solving for the number of fingers

(b) Solving for the finger length

(c) Solving for the the gap between the fingers

(d) First solving for the number of fingers and then solving for the finger
length in order to counter rounding effects (used for the fabricated
designs)

3.4 Fabrication Process

The fabrication of the chips is done by photolitography; this requires a mask
containing transparent and opaque areas for the structures. In order to fabricate
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Figure 3.9: Digital graphics data showing all the chips with resonators on the
wafer. The basic size of a chip is 2 mm× 7 mm and the sizes of the larger chips
are chosen such that they match the height of 2 or 3 size 1 chips including a
spacing of 300µm for dicing. This results in the previously mentioned heights
of 4.3 mm and 6.6 mm.

the mask digital graphics data describing it has to be produced. This is done
with Mathematica which results in graphics data describing lines separating
conducting from insulating parts. The graphics objects containing the data for
each chip and the structures on it are joined and arranged on the (still digital)
wafer (see figure 3.9). The data is then exported in the DXF file format which in
turn is repaired (by joining open ends) and converted to the GDSII file format
using the LinkCAD software.

The mask was produced at IBM and the photolitography done in the FIRST
cleanroom at ETH Zurich. The basic steps of photolitography are the following
(see figure 3.10): A resist is applied to the sapphire wafer of thickness 500µm
which is coated with a 150 nm thick layer of niobium (a), then the mask is
pressed against it and exposed (b). The transparent areas in the mask allow
exposure of the underlying areas on the wafer which results in the resist there
becoming soluble. This is utilized and first the resist is removed (c) and then
the niobium below etched away (d). The remaining resist is removed as well
leaving the finished wafer with conducting niobium structures matching the
opaque structures on the mask (e). In the last step the wafer has to be diced,
that is cut, to produce single chips [15].
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(a) (b) (c) (d)

(e)

Figure 3.10: Fabrication of the wafer by photolitography [15]. The sapphire
substrate is shown in grey, the niobium layer in brown and the resist in red. (a)
Resist layer is applied. (b) Exposure. (c) Development. (d) Etching. (e) Resist
stripping.

37



Chapter 4

Experiment

As described in sections 2.4 and 2.4.2 the resonators can be characterized by
the scattering matrix measurements. In our experiment, we are interested pri-
marily in reflection (transmission) coefficients for the lumped-element (coplanar
waveguide) resonators. These parameters are measured directly using an Agi-
lent N5230 vector network analyzer (VNA). To induce the superconducting state
in our niobium-based (Tc = 9.2K) devices, the chips are immersed in a bath of
liquid 4He using a dipstick, a rigid assembly housing the microwave cables and
supporting the sample. See figure 4.1 for a typical dipstick measurement setup
at QuDev.

4.1 Sample Assembly

The microwave cabling running through the dipstick must be electrically con-
nected to the resonators. The coaxial cable is connected to a coplanar waveguide
on a copper-patterned printed circuit board (PCB) via an SMP launcher. The
launchers are soldered to the PCBs using solder paste, a heat gun, toothpicks,
and a thermally insulating work surface, such as a wooden plate. The solder
paste is applied to the PCB ground and signal attachment sites, with great care
taken not to create a short between them. The launchers are then placed onto
the PCB, and heat is applied with the heat gun to activate the solder paste.
Here, care must also be taken not to damage the copper by applying too much
heat. This process is relatively quick when the PCB is isolated from thermally
conductive materials. Each launcher-PCB connection must then be tested with
a multimeter to verify the soldering was successful. See figure 4.2 to see an
assembled sample.

Once the niobium-patterned sapphire chips are fabricated, they are wire-
bonded to its corresponding PCB using the wire-bonder at FIRST. This process
was not performed by the authors. See 4.3 for an example of wire bonds. Then,
the samples are fastened to a copper base, and a copper PCB cover is placed over
the sample (see figure 4.2) to prevent the chip from coupling to modes in the
sample mount, and is fastened again. Then, after calibrating the vector network
analyzer at the connection point of the sample ((c) in figure 4.1) using the
Rosenberger SMP calibration kit (DUT: SMP Qudev, Male) ((d) in figure 4.1)
the device is placed in the dipstick sample mount.
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(a)

(b)

(d)

(c)

(e)

Figure 4.1: Main components of a dipstick measurement. (a) The VNA drives
and measures the response of the load between any of its 4 ports (b) The dipstick
(c) The sample box mount, where the coaxial cables connect to the launchers
on the sample (d) The calibration kit used in the experiment (e) the 4He dewar.

(a)

(b)

(c)

bulletlauncher

Figure 4.2: Images of samples in preparation for dipstick measurements. (a)
PCB cover, shielding the resonator from spurious modes in the dipstick mount.
(b) A “size 2” chip and PCB on the copper bottom plate of the dipstick mount.
Only two of the launchers are connected to the chip. The launchers do not yet
have bullets inserted. (c) Two “size 1” chips on a PCB, with bullets installed
on the launchers. Note the shape of the bottom copper plate for orienting the
sample.
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4.2 Calibration

After choosing which VNA port corresponds to which PCB port (mapped via
4 of the 8 ports in the dipstick), the VNA must be calibrated. This is done
using the short-open-load-reciprocal-thru (SOLR) method [9]. After choosing
the desired IF bandwidth, number of points, input power, averaging factor
and maximum frequency range, each port is measured with 3 standards and
a through connection with one other port. Ideally, this calibration compensates
for unwanted background spectra resulting from the cable setup, provided the
calibration parameters are not changed.

For our experiment, the calibration of the VNA was done at the sample
mount on the dipstick, rather than at the dipstick input port which connects
to the VNA. This calibration is not experimentally ideal, because the thermal
environment of the cables is not the same during experiment as during calibra-
tion. However, this is arguably closer than not calibrating the dipstick cables at
all [13]. Naturally though, a background spectrum will be present in addition to
the spectrum of the device under test (DUT) due to the change in attenuation
constant of the cables. A way to distinguish between signal and background in
reflection measurements that we performed was to measure after raising the dip-
stick so that the sample is slightly warmer. The change in resonance of the sam-
ples due to different kinetic inductance [13] allows one to view a frequency band
without the resonance feature, while the background spectrum from the cables
is largely unchanged. Then, we can renormalize the signal as compared to this
measured background spectrum, enabling clearer characterization of the DUT.
Background measurements were performed for the fundamental resonances of
all lumped element devices. This is not useful with transmission measurements,
as the signal-to-noise ratio is smaller, and so the thermal noise resulting from a
change in bath temperature at a different dewar depth substantially alters the
background spectrum.

4.3 Dipstick Measurement

With the sample in place, the helium dewar is prepared by connecting its boil-
off line to the (open) recovery line and its level measured to be sure there is
sufficient helium. Then, the neck is opened, and the dipstick is fastened to the
neck via a KF flange. While we monitored the pressure gauge (a change of more
than 0.3 bar is too high), the dipstick thermalized in the liquid helium, boiling
off some into the recovery line. After a few minutes of slow submersion, much
of the dipstick reached thermal equilibrium with the bath, and the dipstick was
submerged more quickly without risk of too much pressure in the dewar. The
dipstick is carefully submerged until the bottom is felt, at which point it is lifted
slightly. It is important to place the dipstick in the dewar in a systematic way,
such that we are confident the temperature of the sample is not too different
between different trials.

Measurements of the sample via the VNA are straightforward. The samples
with two “size 1” chips on the PCB form four-port microwave networks (fig-
ure 4.2), with 4 (2) resonators on two chips for the LE (CPW) devices. The
CPW resonators on larger chips form two-port networks. Using the notation
given by equation (2.52), the LE resonators were measured by probing Sii with
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the VNA port 1 ≤ i ≤ 4, while the necessary transmission measurement Sij ,
1 ≤ i, j ≤ 4 for CPW devices depends on how the VNA is connected to the
dipstick input. One must then keep track of which VNA port corresponds to
which port on the PCB, and then select the desired scattering matrix element
to be recorded by the VNA. Typical parameters used in the experiment are an
IF bandwidth of 50 kHz, 32000 points, −30 dBm power, and average factor of
20 and are kept constant after calibration.

4.3.1 Devices Measured

In total, seventy six devices were fabricated on Mask 43, with three duplicates
of each unique device (and one with four, in fact). Of these, only about half
of the 36 unique resonators were measured. However, from our measurements
we can characterize both geometries as the fundamental resonance is decreased,
and for the lumped-element model, as the impedance is varied. To study the de-
vice behavior with varying fundamental resonance, we measured (see tables 3.1
and 3.2 for associated parameters) devices LFCPW: 02, 03, 04, 05, and 06 for the
coplanar geometry, and for the lumped element, LFLEM: 01 01, 01 13, 02 02,
02 14, 03 03, 03 15, 04 04, 04 16, 07 07, 07 11, 08 08, and 08 12. Additionally,
devices LFLEM12 23, and LFLEM12 24 were measured. Two measured chips
are pictured in figure 4.3.

4.3.2 Raw Spectra

Measuring the appropriate S-parameters over a broad spectrum is relevant for
designing resonators and anticipating their properties. In particular, the pres-
ence of higher-order resonances is relevant to how effective these devices would
be when coupled to other resonators and qubits. In this section, we present
examples of raw measurements over the maximum calibrated frequency range
provided by the VNA.

Coplanar-Waveguide Resonators

The coplanar waveguide resonators were measured in transmission. Though
the behavior of CPW resonators is well-understood [7], QuDev has not fabri-
cated CPW resonators at such low frequencies. The full-spectrum measurements
(300 kHz to 18 GHz) follow the pattern of resonators with an inductive spectrum
underneath. Note the point density is not as high in the fundamental resonance
accompanying plot. This is not an issue, as point density can be lower for fitting
transmission peaks. The details of fitting CPW transmission and LE reflection
resonances is given in section 5.1.1.

Lumped Element Resonators

Measurements of the reflection coefficient for each resonator are carried out
between 300 kHz and 18 GHz in segments of 4 GHz, resulting in a sampling
interval of 0.125 MHz. Two examples of raw measurements from the VNA are
shown in figures 4.6 and 4.7.

These data show a few higher-order modes for the 6 GHz resonator, as com-
pared with the many modes present for the 300 MHz resonator. Further, it
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100µm
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(a)

(b)

(c)

Figure 4.3: Image of a chip with two LE resonators. White is niobium, blue
(gray) is sapphire. (a) The 6 GHz lumped-element resonator. (b) The “size 1”
chip housing LFLEM 04 (left) and LFLEM 16 (right). Note the wire bonds
connecting the chip to the PCB. (c) The 300 MHz resonator, at 1/20 of the
fundamental resonance of (a), and 15 times the area.

.
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Figure 4.4: Transmission coefficient spectrum for CPW resonator LFCPW04.
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Figure 4.5: Transmission coefficient spectrum for CPW resonator LFCPW06.
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Figure 4.6: Measurement of reflection coeffiecient Γ spectrum for lumped-
element resonator LFLEM04 04. See table 3.2 for design parameters. Note
the zoom-in plot is a separate measurement trace to achieve a higher point
density.
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Figure 4.7: Reflection coefficient Γ spectrum for lumped-element resonator
LFLEM04 16.
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shows the accuracy to which our model in section 2.3.5 estimated the funda-
mental resonance frequencies. More detailed analysis is left for chapter 5. Note
that S11 for these devices extends beyond 0 dB substantially. For these raw
measurements, the background was not removed. It is sensible the reflection
coefficient would be above 1 because the attenuation constant of the cables at
4.2 K is less than at room temperature. Further, note that the accompanying
plots of the fundamental resonance have a much smaller point density so that
the resonances can be clearly resolved when fitting, and that the background is
removed when fitting these fundamental resonances in section 5.1.2.
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Chapter 5

Data Analysis and Results

After gathering raw data for the scattering matrix elements Sij(f) of the differ-
ent resonators as a function of frequency using the VNA, the data is imported
into Mathematica and analyzed in order to extract the values of the physical
properties characterizing the resonators. Those properties are given by the res-
onance peaks in the data (see figures 4.6, 4.7, 4.4 and 4.5). Measurements have
been done of the full spectra with high enough point density (see section 4.3.2)
allowing the data close to the resonances to be fitted according to physical mod-
els of resonances (see equation (5.1) for the transmission measurements of the
CPW devices and (5.8) for the reflection measurements of the LE devices). This
process and the results obtained from it are discussed in detail in this chapter.

5.1 Fitting Procedures

As the CPW resonators have been measured in transmission compared to reflec-
tion for the LE resonators, the fitting procedures are different, even though the
underlying physical models (for the near-resonance behavior) are both based on
a lumped element description. The fitting procedures give the following results
(for each resonance/mode):

• Resonance frequency f0

• Loaded quality factor QL

• Coupling rate κ (just for LE)

• Loss rate γ (just for LE).

An overview of all the results and comparison to design parameters is shown in
table 5.2 for the LE and table 5.1 for the CPW resonators.

5.1.1 Coplanar Waveguide Resonators

The transmission coefficient for CPW resonators can be fully described by the
transmission matrix method [12], but near resonance, it can be described with
a lumped-element model. It was with this model that the data was fit. A
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capacitively-coupled CPW resonator has a transmission spectrum S21 near res-
onance described by

S21 = eiφ

 A

1 + 4Q2
L

(
f
f0
− 1
)2 + x0 − i

 2AQL

(
f
f0
− 1
)

1 + 4Q2
L

(
f
f0
− 1
)2 + y0


 , (5.1)

where f0 is the resonance frequency, QL is the loaded quality factor, and
A = κ/(κ + γ) ∈ R is the ratio of coupling rate to total (coupling and en-
vironmental) loss rate. The parameters x0 and y0 are a complex offset to S21

at DC, similar to the offset described in section 5.1.2. The QuDev Mathematica
library “WaveguideCavityCoaxFunctions.nb” implements functions to fit data
to this model using the Mathematica function NonlinearModelFit .

To obtain an accurate fit, it is important to include data at least 3 dB on both
sides of the resonance. Because the cavity is measured in transmission, ampli-
tude information is usually sufficient to estimate QL and f0. A good calibration
(see section 4.2) is necessary to accurately estimate T0 and thus distinguish
Qint and Qext. As the dipstick measurement procedure does not provide a suf-
ficient calibration, only QL and f0 are extracted from the transmission spectra.
Methods used to estimate Qint and Qext for CPW resonators are described in
section 5.2.2.

A key difference between fitting in transmission and reflection is two-fold:
first, phase noise away from resonance is greater in transmission because the am-
plitudes are nearer the noise floor of the network, resulting in less reliable phase
fits [11]. Second, the suppressed amplitude information away from resonance in
transmission makes fitting |S| more reliable than in reflection. This is because
in reflection, the background amplitude is above the noise floor away from res-
onance. Though amplitude is most informative in transmission, estimates from
fitting a complex Lorentzian as in equation 5.1 yields comparable values of phys-
ical parameters as fitting only amplitude, but additionally give phase and circle
comparisons to data, as seen in figure 5.1. Note that amplitude information is
effected more significantly by the changing temperature of the environment in
transmission. So contrary to reflection measurements, carrying out background
measurements in transmission (as done for reflection measurements described
in section 4.2) is not useful.

5.1.2 Lumped Element

From the measured frequency range the range to be processed by the fitting
algorithm is manually selected in order to give a reasonable fit result. This is
not a trivial task because the physical model for the reflection coefficient is only
valid close to the resonance, however, given that they match the model, more
points result in better fits.

The fitting procedure is the one used in [13] which is based on [11]. In this
subsection the procedure is explained and demonstrated on an example mea-
surement of the resonator LFLEM04 16 which is designed to have a frequency
of 300 MHz at an impedance of Z = 170 Ω (see table 3.2).

For doing the actual fitting in the steps described below to the corresponding
data the Mathematica function NonlinearModelFit is used which returns the
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Figure 5.1: Complex Lorentzian fit (black line) of S21 data (points) using equa-
tion 5.1 for coplanar waveguide LFCPW02. (a) |S21|2 on log-scale, (b) Arg[S21]
and (c) Polar Plot of S21.

50



fit parameters as well as error estimates. For the first resonance of each device,
which has been measured with high point density, the background is subtracted
as described section 4.2, otherwise Sii(f) as used in the following sections is
assumed to be the raw data.

Circle Fit

The plot of imaginary versus real part of the reflection coefficient results in a
circle with center on the real axis. In the ideal case the circle would intersect
the real axis at zero and at the resonance (corresponding to the largest absolute
value). The circle can alternatively be represented with the origin as center (this
is done in the first two steps of this fitting procedure). In reality two corrections
have to be introduced: first a rotation, that is a phase shift, due to a difference
in the reference planes of measurement and coupling and second a translation
due to crosstalk [11]. Those two corrections are determined using this first step
in the fitting procedure. The data

{Re(Sii(f)), Im(Sii(f))} (5.2)

is therefore fitted using the model

fcirc[x0, y0, R](x, y) = (x− x0)2 + (y − y0)2 −R2. (5.3)

Starting values are determined by simple geometric estimations. Figure 5.2
shows the data and circle fit.

As mentioned above the physical models used apply only near resonances,
hence data close to the resonance is weighted more. In order to achieve that, the
reference point, which lies opposite to the one corresponding to the resonance,
is determined: It can be approximately found by finding the point between
the first and last datapoint, as it can be assumed that Sii changes slowly with
frequency far away from a resonance. The weights are then chosen as the fourth
power of the distance from the reference point [11].

The fit parameters x0, y0 and R including error estimates as well as the
reference point are found in this step.

Phase Fit

Using the results from the first step the data is corrected (see discussion above
and figure 5.3): The circle is shifted such that the center lies at the origin and
then rotated such that the reference point lies on the positive real axis. This
gives the corrected reflection coefficient

S̃ii(f) = e−iφrot(Sii(f)− (x0 + iy0)). (5.4)

Additionally, any 2π-jumps in phase are removed in order to obtain smooth
phase data.

The argument of the corrected reflection coefficient Arg(S̃ii(f)) is fitted ac-
cording to the model

φ[φ0, τ, f0, QL](f) = −φ0 − τf − 2 arctan

(
2QL

(
1− f

f0

))
(5.5)
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Figure 5.2: Imaginary versus real part and circle fit (equation (5.3)) of the
complex reflection coefficient Sii(f). The origin and radius are determined from
the fit.
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Figure 5.3: Process of data correction shown at an example measurement
(LFLEM07 11). A plot showing imaginary versus real part of the reflection co-
efficient for (a) raw data in blue, (b) data and circle fit (red) (see section 5.1.2).
The reference point is shown in green. First the data is translated to the center
(c) and then rotated (d) such that the reference point lies on the positive real
axis.
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Figure 5.4: Phase data and fit according to equation (5.5) of the corrected
complex reflection coefficient.

and using φ0 = τ = 0, f0 = argminf {Sii(f)} and QL = f0/FWHM as starting
values. See figure 5.4 for a plot of data and fit function. From the fit parameters
estimates for the external and internal quality factor can be extracted:

Qext =
QL
|R|

, (5.6)

Qint =
1

1
QL
− 1

Qext

, (5.7)

where R is the radius from the circle fit. However, due to the calibration problem
discussed in section 4.2, the obtained values for coupling and loss rate might
not be accurate [13].

Complex Lorentzian Fit

In order to obtain more accurate values for the coupling and loss rate, the
effect of the non-cryogenic calibration is taken into account by considering a
normalization as well as an offset term. Based on input-output theory the
following expression for the reflection coefficient can be found [13]

SIO
11 [A, κ, f0, QL](f) = −A

(
κ

f0
2QL
− i(f − f0)

− 1

)
. (5.8)

This expression is fitted to the rotated complex reflection data, resulting in the
amplitude A, the coupling rate κ, the resonance frequency f0, the loaded quality
factor QL and the loss rate

γ

2π
=

f0

QL
− κ

2π
. (5.9)

54



0.3315 0.3320 0.3325 0.3330 0.3335 0.3340 0.3345

-0.2

-0.1

0.0

0.1

0.2

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

0.3315 0.3320 0.3325 0.3330 0.3335 0.3340 0.3345
-1.0

-0.5

0.0

0.5

1.0

0.3315 0.3320 0.3325 0.3330 0.3335 0.3340 0.3345

-1.0

-0.5

0.0

0.5

1.0

Figure 5.5: Complex Lorentzian fit based on equation (5.8) done on the corrected
data. This fit can be used to extract coupling and loss rates. The plots show
example data (blue points) and fit functions (red lines) for (a) the absolute
part, (b) polar representation, (c) real and (d) imaginary part of the complex
reflection coefficient.

5.2 Further Analysis and Post Processing

After analyzing all the measured resonator spectra by fitting the separate res-
onances, the properties which characterize the resonators are compared for the
different resonators. That is the dependence on the parameters which have been
varied in the designs is investigated. The fundamental mode characterizes the
basic properties of the resonator, that is frequency, coupling and losses. How-
ever, the behavior for higher frequencies is also important; therefore, the higher
order resonances and their spacing is also analyzed. All those results are pre-
sented in this section. A more detailed discussion follows in the next chapter in
section 6.1.

5.2.1 Lumped Element

The first step is a comparison of designed and the corresponding measured
quantities: frequency f0 (figure 5.6) and coupling rate κ (figure 5.8). Data
from all the measured resonators except for number 15 is shown (see table 3.2
and section 4.3.1). One can conclude that the frequency of the fundamental
resonance can be predicted accurately enough for design purposes, the linear fit
function shown in the figure is given by

fmeas
0 = 1.010(8) · fdes

0 (5.10)
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First Mode Second Mode

Name fd
0 [GHz] fm

0 [GHz] Qm
L fm

1 [GHz] Qm
L,1

LFCPW02 1.56 1.55829 6510 3.11568 3390
LFCPW03 0.951 0.948113 6550 1.89626 3670
LFCPW04 0.626 0.622419 6180 1.2459 4090
LFCPW05 0.333 0.170292 4000 0.510925 3230
LFCPW06 0.202 0.20133 4180 0.402756 3920

Table 5.1: Fit Results for the coplanar waveguide resonators, analogous to ta-
ble 5.2. The fit parameters fm0 and QmL for the first two modes are given.
Note the discrepancy in fd0 and fm0 for LFCPW05. This device was found to
have a fabrication defect which split the fundamental mode in two by half:
fm1 − fm0 = 340 [MHz] ≈ fd0 .
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Design Values First Mode Second Mode

Nr. fd
0 [GHz] Qd

ext fm
0 [GHz] Qm

L κm [MHz] γm [MHz] fm
1 [GHz] Qm

L,1

01 5.96 100000 5.97828 2430 0.0602(2) 2.399(8)
02 5.96 10000 5.9492 2210 0.2301(5) 2.4646(9)
03 5.96 1000 5.94297 1530 1.4485(2) 2.4420(4)
04 5.96 100 5.91581 490 9.9146(6) 2.1801(9) 12.1712 10
05 3.02 100000 3.20404 4010 0.0224(2) 0.776(1)
06 3.02 10000 3.20261 3510 0.11575(2) 0.7956(2)
07 3.02 1000 3.18766 2100 0.74184(1) 0.7737(2) 16.9591 280
08 3.02 100 3.15713 570 4.8780(5) 0.6969(5) 16.1426 390
09 0.998 100000 1.10395 9360 0.00563(7) 0.1124(1)
10 0.998 10000 1.10185 7610 0.03144(1) 0.11343(9)
11 0.998 1000 1.09715 3280 0.22426(5) 0.1098(2) 7.56996 130
12 0.998 100 1.09025 790 1.27318(5) 0.10609(7) 7.32793 40
13 0.302 100000 0.337752 22240 0.001158(9) 0.0140(1) 2.8955 2370
14 0.302 10000 0.33689 13560 0.00849(2) 0.01635(1) 4.68878 840
15 0.302 1000 0.33565 190 0.0763(4) 1.736(5) 2.80457 100
16 0.302 100 0.333265 1020 0.31263(3) 0.01338(3) 2.74931 20
23 2.85 1000 2.6564 3020 0.38996(4) 0.4884(2)
24 2.99 1000 3.10253 2320 0.62647(4) 0.7086(2)

Table 5.2: Fit results for the lumped element resonators given by their number (see table 3.2). The values for the frequency fm
0 , coupling

κm and loss rate γm, where the superscript m denotes experimental values, obtained from fitting the resonances in the reflection spectrum
are compared to the design values for frequency fd

0 and external quality factor Qd
ext (the superscript d standing for “designed”). The

coupling and loss rate of the first mode of resonator 15 are to be considered unphysical, as there was some kind of measurement problem
for that mode (see discussion in section 5.2.1).
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and has a coefficient of determination

R2 = 0.999066. (5.11)

Figure 5.7 shows the relative difference between measured and designed fre-
quency as a function of designed frequency. One can see that the error is on the
order of magnitude of 10% for the low frequency resonators and decreases for
higher frequencies. This is still acceptable for design accuracy, as the accuracy
of the design equations is in that range. The fact that the relative error increases
with decreasing frequency might pose a problem for even lower frequencies, but
can probably avoided when using a more accurate prediction model.

The measured coupling rate does show a linear dependence on the designed
one, however it is smaller by about a factor of approximately 5 to 6, which can
be seen from the slope of the linear fit function given by

κmeas

2π
= 0.180(3) · κ

des

2π
+ 0.02(5) MHz (5.12)

with coefficient of determination R2 = 0.996528.
The dependence of loss rate and loaded quality factor on the resonance fre-

quency of the resonator is shown in figures 5.9 and 5.10. The loss rate increases
with increasing frequency and is not significantly dependent on the external
quality factor, which is made clear by the fact that there are just clusters for
each frequency even though data from all the measured resonators except for
number 15 is shown (see table 3.2 and section 4.3.1). Two phenomenological fit
models are proposed and compared: a power fit

γmeas

2π
=
(
0.27(3) GHz−1 · fdes

0

)1.86(8)
MHz + 0.00(3) MHz (5.13)

and an exponential fit

γmeas

2π
= 0.5(1) MHz · e0.29(3) GHz−1·fdes

0 − 0.6(1) MHz; (5.14)

and are seen to be in very good agreement with the data. The logarithmic
plot (figure 5.9b) suggests that the power law fits better to the data, however
statistical measures (see table 5.3 for a comparison of those for the two different
models) such as the Bayesian information criterion show that even though it is
slightly better this is not conclusive enough to rule out the exponential model.

As can be expected from the above described behavior and the relationships

1

QL
=

1

Qext
+

1

Qint
(5.15)

and
γ

2π
=

f0

Qint
, (5.16)

the loaded quality factor decreases with increasing frequency and with decreas-
ing external quality factor.

The relations given by equations (5.15) and (5.16) are verified by plotting
and fitting the inverse of the directly measured loaded quality factor versus
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Figure 5.6: Comparison of measured and designed frequency f0 of the LE res-
onators. The red line is a linear fit, the confidence band is shown in light red.
This shows that the frequency of the first resonance can be predicted accurately
enough for design purposes.
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Figure 5.7: Relative difference between measured and designed frequency as a
function of designed frequency. One can see that the relative errors increase
with decreasing frequency. However, the errors are at most in the order of 10%,
which is what can be expected from the accuracy of the design equations.

59



0 10 20 30 40 50
0

2

4

6

8

10

Figure 5.8: Comparison of measured and designed coupling rate κ of the LE
resonators. The red line is a linear fit, the confidence band is shown in light red.
The axes scaling makes clear that there is a significant (systematic) mismatch
between designed and measured coupling rate.

Statistical Measures

Fit Model R2 BIC AIC

(af0)b + c 0.9981 −40.01 −43.35
aebf0 + c 0.9979 −38.13 −41.46

Table 5.3: Statistical measures for the two fit models of the loss rate as a
function of measured frequency. The coefficient of determination R2 shows how
well both models agree with the data and the Akaike (AIC) and Bayesian (BIC)
Information Criterion suggest that the power law is slightly better (their values
being smaller for that model); however, due to the small difference, no conclusive
evidence against the exponential law can be identified.
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Figure 5.9: Measured loss rate γ (from the Lorentzian fit given by equation (5.8))
of LE resonators with different frequency f0 and designed external quality factor
Qext. As expected, the loss rate can be seen to be largely independent of the
external quality factor and increases with increasing frequency. Two different
fit models have been proposed and are shown in the plot: an power law (yellow)
and an exponential law (green).
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Fit Parameters

f0 [GHz] a b γ
2π

[MHz]

0.3 0.092(2) 0.5(1) · 10−4 0.016(3)
1 0.113(5) 1.4(3) · 10−4 0.14(3)
3 0.151(6) 2.6(3) · 10−4 0.78(8)
6 0.160(5) 4.5(3) · 10−4 2.7(2)

Table 5.4: Resulting fit parameters and error estimates for the fit model 1
QL

=
a

Qext
+ b. The fact that a is not equal to 1 is consistent with the mismatch of

measured and designed coupling rate κ (see figure 5.8). The parameter b can
be interpreted as the inverse of the internal quality factor, hence γ

2π = f0 · b.

the inverse of the designed external quality factor for resonators of different
frequencies as shown in figure 5.11a. The fit model has the form

1

QL
=

a

Qext
+ b (5.17)

and the fit parameters found for the resonators of different frequency f0 are
shown in table 5.4. Equation (5.16) allows the calculation of the loss rate from
the fit parameters; the values obtained like that agree with the values extracted
via single-resonance fitting as demonstrated by figure 5.11b. The systematic
mismatch between designed and measured coupling rate as shown in figure 5.8
is not a problem for this method, because the relationship between measured
and designed inverse external quality factor turns is linear according to that
plot and the mismatch is taken account of by the additional fit parameter a,
which would not be necessary otherwise (ideally it holds that a = 1). This
method of determining the loss rate is therefore not completely independent
from the Complex Lorentzian fit, but the overlap is very small (basically just
the conclusion κm ∝ κd). It still allows a consistency check for γ and even for
the mismatch in coupling rate as shown in table 5.4.

Figures 5.12 concerns the higher order modes. Those are modes that are ac-
tually not expected from the simple lumped element model, but are still present
as spurious modes. The terms higher order modes, higher order resonances and
spurious modes are used interchangeably in the context of lumped element de-
vices in this text. The modes are numbered according to frequency in ascending
order starting with n = 1 for the fundamental resonance; this leads to a differ-
ent interpretation of the mode number n than in the case of coplanar waveguide
resonators, where the mode number has actual physical meaning. The term
mode number is used throughout this text. Comparing the behavior of those
for the 1 GHz and the 300 MHz resonators one can see that for high coupling,
that is external quality factors of 100 and 1000, the effect of the external qual-
ity factor on the first few higher order modes is very small. Only when going
higher in mode number or external quality factor can significant deviations be
seen; however, no clear trend is identifiable. The spectrum of the device with
Qext = 105 shows a step-like behavior, where two modes are very close together
and every second matches the corresponding mode of the Qext = 104 device.

Concerning the quality factor of higher order modes, at first no clear trend
can be observed. However, the ratio of the standard deviation and mean of the
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Figure 5.10: Measured loaded quality factor QL as a function of the frequency
f0 for LE resonators with different designed external quality factors Qext.

set of loaded quality factors across mode number for a given resonator√
Var ({QL,n}n>1)

〈{QL,n}n>1〉
, (5.18)

as shown in figure 5.13, shows a clearly decreasing trend with increasing external
quality factor for the 300 MHz resonator. This could imply interesting behavior
of Qint as a function of mode number and might be helpful in identifying the
spurious modes.

At this point resonator 15 (LFLEM03 15) is discussed. As previously men-
tioned its data has been excluded from all plots concerning coupling or loss rate
(or derived quantities). The reason for that is that there was some kind of mea-
surement problem in the measurement of the first mode (see figure 5.14), which
resulted in the complex Lorentzian fit giving unreasonable values for anything
but the frequency. A problem like that was not encountered in any of the other
measurements not even for the higher order resonances of the same device. The
other fit results of this devices should still be treated with care, however the
produced error in the frequency seems to be comparably small.
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(a) Measured QL as a function of designed Qext. Linear fits according to equation
(5.15) are shown in the respective colors including confidence bands.
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(b) Extracting the offset in the fits (see table 5.4) shown in (a) the loss rate can be
found (yellow). Those results seem to agree quite well with the values found directly
by fitting single resonances (blue).

Figure 5.11: Loaded quality factor and loss rate for LE resonators with different
frequency f0.
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Figure 5.12: Frequency versus mode number for LE resonators with different
designed fundamental frequency and external quality factor. The behavior is
quite different for the 0.3 GHz resonator compared to the 1 GHz, not only as
a function of mode number but also considering how relevant the external Q
factor is. See table 3.2 for the resonator names and numbers corresponding to
the data points shown in these plots.
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Figure 5.13: Relative standard deviation of the loaded quality factors√
Var({QL,n})/〈{QL,n}〉 for LE resonators with different designed fundamental

frequency and external quality factors. (excluding the fundamental resonance).
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Figure 5.14: Fits of the fundamental resonance of resonator 15 showing the
measurement problem.
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Figure 5.15: Comparison of measured and designed fundamental frequency f0

of the CPW resonators. The red line is a linear fit as given in equation (5.19),
the confidence band is shown in light red. Similar to figure 5.6, CPW resonators
are accurately designed to low fundamental resonances.

5.2.2 Coplanar Waveguide

As in the previous section, the data analysis to characterize the CPW resonators
is three-fold. First we consider the design efficacy of the fundamental resonance
frequency f0. The measured frequency fmeas

0 is plotted against the designed
frequency fdes

0 in figure 5.15. The linear fit fmeas
0 = a · fdes

0 plotted in the figure
is

fmeas
0 = 0.9979(9) · fdes

0 , (5.19)

and has a coefficient of determination

R2 = 0.999998, (5.20)

demonstrating a high accuracy in the design of CPW resonators even to low
frequencies at QuDev. As this geometry has been used extensively in cQED,
this is expected. Note however that LFCPW05 is excluded from figure 5.15
due to an error in fabrication which split the fundamental mode in two (see
table 5.1).

The second physical parameter to understand in these devices is the loaded
quality factor QL and its dependence on f0. The physical model for QL is
obtained using the following relations given in equations (2.19). Note that
in the experiments, the feed line and resonator line impedances were equal
(RL = Z0 = 50 Ω).

Because Qext was designed to be constant for all devices at the fundamental
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Figure 5.16: The loaded quality factor QL for the fundamental resonance f0 for
the measured CPW devices. The fit (line) corresponds to the function deter-
mined in equation (5.22).

mode (n = 1), one can compare QL for each device’s f0 to a simplified model:

Q−1
L = Q−1

int +Q−1
ext =

γ

ω0
+A,

QL =
f0

γ/2π +Af0
. (5.21)

It should be stressed that α is presumed to vary insignificantly in this narrow
frequency range for this analysis. This is justified by comparison with the next
analysis (see 5.6) which relaxes this assumption. The resulting function when
fitting the data to equation (5.21) is

QL (f0)
meas

=
fmeas

0

20(2) kHz + 1.36(4) · 10−4fmeas
0

, (5.22)

where the fit parameters are in linear rather than angular units, and is plotted
in figures 5.16. The difference between the model and the data in figure 5.16
shows that assuming constant Qext between devices is not a perfect description
(fit residuals were on the order of 5%). This disagreement is reasonably within
the precision of designing Qext for a CPW resonator.

The third step in further analysis of the CPW resonators is to consider the
higher-order modes (HOMs). As these resonators are distributed-element, effec-
tively 1-D resonators, their HOMs are rather simple: fn = n ·f0. The resonance
fn of several HOMs measured for each device is plotted against mode number n
in figure 5.17. Linear fits to these data sets are given in table 5.5. In contrast to
the previous analysis, extracting γ for each device does not assume α to be fre-
quency independent. The measurements agree quite well, with the exception of
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Fit fn = m · n
Name f0 [GHz] m [GHz]

LFCPW02 1.56 1.5579(2)
LFCPW03 0.951 0.94784(9)
LFCPW04 0.626 0.6211(2)
LFCPW06 0.202 0.20068(6)

Table 5.5: Fit values of the HOM behavior of the CPW resonators. The data are
consistent with the 1-D distributed-element resonator model of these devices.

Fit Parameters

Name Cκ [fF] γ/2π [kHz]

LFCPW03 33.8(5) 20(5)
LFCPW04 47.9(3) 30(2)
LFCPW06 135.5(7) 29(1)

Table 5.6: Fit values of QL(fn) corresponding to equation (5.23b) for two of the
CPW resonators.

the fundamental frequency for LFCPW05 (see table 5.1). Interestingly, despite
the fabrication error, scaling with mode number is consistent with the designed
fd0 . However, the measured fm0 is about half of fd0 . This can also be observed
in table 5.5 which gives the values of the linear fit fn = m · n.

Using the HOM data for a resonator, and the physical model given in equa-
tions (2.19), it is possible to estimate Qint by fitting QL(fn) despite poor cali-
bration if one assumes to know C. We rewrite equations 2.19 as

Qint =
fn

(γ/2π)
,

Qext =
πRL · C

(
1 + (πRLCκ)

2
f2
n

)
(πRLCκ)

2
fn

(5.23a)

⇒ QL =
πRL · C

(
1 + (πRLCκ)

2
f2
n

)
(πRLCκ)

2

 1

fn + (γ/2π)
πRL·C(1+(πRLCκ)2f2

n)
(πRLCκ)2fn

 ,

(5.23b)

where Cκ and γ are fit and C = C``/2 is estimated for each device using
equation (2.12). This was done for three devices for which sufficient HOM data
had been obtained, with the fits and data shown in figure 5.18. Parameter values
corresponding to the fit plots can be found in table 5.6. It is notable that the
fit Cκ from this data agree with estimates of Cκ to within 13%, and γ, which is
assumed constant, agrees within 50% between devices and with the result from
the fit used earlier to produce figure 5.16.
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Figure 5.17: Higher order mode frequencies versus mode number n for all CPW
devices. The colored lines show theoretical models; parameters from linear fits
(not plotted) are given in table 5.5.

70



0 2 4 6 8
0

2000

4000

6000

8000

10000

Figure 5.18: Loaded quality factor as a function of resonance frequency fn for
mode n. Green is LFCPW06, purple is LFCPW03, and blue is LFCPW04. The
fits correspond to the fit function (5.23b).
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Chapter 6

Discussion and Outlook

6.1 Discussion

In this section the results presented in chapter 5 (tables 5.2 and 5.1 and sec-
tion 5.2) are discussed in more detail. The properties of resonators with compact
resonator design are compared to those of the established CPW resonator de-
sign.

6.1.1 Design Accuracy

Generally, the design accuracy for the fundamental frequency is satisfactory
for guiding future designs. For the coplanar waveguide designs this had been
expected, as they are well understood and established. However, the established
design routines of the lab have usually been used for resonators of a very different
order of magnitude in frequency. Referring to figure 5.15 and the fit given by
equation (5.19) with coefficient of determination in equation (5.20) one can
conclude that the routines work well, even for very large CPW resonators such
as LFCPW06.

For the lumped element resonators it is of greater importance that the sim-
ple model used in the description, a basic LC resonator (see section 5.15), even
though any capacitance to ground has been neglected, and the estimation formu-
lae for inductance and capacitance as described in section 2.3 give such accurate
predictions in the investigated frequency range. The typical deviations were on
the order of 10% (see figure 5.7), which is also the highest accuracy that can
be expected from the estimation formulae used. This results in a good match
as shown in figure 5.6 and demonstrated by the coefficient of determination
(equation (5.11)) for the linear fit (5.10).

The design of the coupling rate for the LE resonators do not agree with the
measured rates being consistently smaller than the designed ones by a factor of
approximately 5. As discussed in section 2.3.5, the actual circuit model includes
additional capacitances to ground. Either the model with Cg and Cg,p numeri-
cally used or the simpler model with just the series capacitance to ground can
explain a possible decrease in effective coupling. In the simple analytical model
the actual measured coupling rate κ̃ can be seen to be reduced to approximately
κ/5, where κ ∝ C2

κ (see equation (2.45)) is the coupling rate expected from just
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Cκ, if Cg is of the order of magnitude of Cκ, which is consistent with the as-
sumptions made above (see equation (2.43)). This and the fact that the design
accuracy of the frequency is quite high justifies that Cg � C. A geometrical
model to predict Cg and Cg,p is a next step to design the pack-arranged lumped
element resonator more accurately.

6.1.2 Quality Factor and Loss

The loaded quality factor QL as a function of the fundamental frequency shows
very different behaviors for lumped element and coplanar waveguide resonators.
While it decreases with increasing frequency in the case of the former, it in-
creases for the latter as predicted by equation (5.21). For direct comparison see
figure 6.1, which overlays the measured CPW data in table 5.6 onto figure 5.11.

For the lumped element resonators the loss rate has been consistently ex-
tracted in two different ways and a phenomenologically motivated power law
has successfully been fitted to the obtained values. The main observation is
that in contrast to the coplanar waveguide geometry, where no clear trend in
the loss rate as a function of frequency is observed (which is most likely due to
the small frequency range investigated the overcoupling to the devices), the loss
rate decreases with decreasing frequency, giving insight into the question about
loss rate as a function of frequency that was posed in chapter 1. It is interesting
to note that the exponent is rather close to 2, which is what is expected in the
case of quasiparticle-dominated loss. Experiments to study the loss rate γ at
lower temperatures would shed more light on its origins for these devices.

6.1.3 Higher Order Resonances (Full Spectra)

The spectrum of higher order (or spurious) modes is an interesting and impor-
tant aspect of any resonator, especially from a practical point of view. Com-
paring the spectra of low frequency lumped element and coplanar waveguide
resonators in figures 4.7 and 4.5, it is quite clear that, for cases where only the
fundamental mode is relevant and the higher order ones introduce problems,
the lumped element resonator seems to provide the better spectrum. Shown
in figure 6.2 is the scaling of the spurious modes for the lumped element de-
vices relative to their fundamental resonances. This visualization highlights the
mode structure as frequency and coupling is varied. It suggests that the scal-
ing of the next spurious mode becomes smaller as the fundamental resonance
is increased for these devices. Additionally, some modes appear missing for
the same resonators with different couplings. In these cases, the data did not
suggest strongly enough that a mode was present, either because it could not
be fit or very weak coupling to such modes, making them difficult to identify.
Referring to table 5.2 and figure 6.2, one can see that usually the first higher
order mode is around 5 to 8 times the fundamental frequency for resonators with
f0 in the range of 300 MHz to 3 GHz. This is certainly a much larger spacing
than in the spectra of CPW resonators, where the modes are equally spaced in
steps of the fundamental frequency, which leads to spacings of the order of a few
hundred Megahertz for low frequency resonators. This dense mode spacing is
not ideal for single-mode optomechanical coupling. However, the fact that the
spectrum of lumped element resonators is not yet understood leads to problems
as those higher order modes cannot yet be predicted. The understanding of the
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Figure 6.1: Loss rate γ versus f0, both LE and CPW
Overlay of figure 5.11 with the CPW loss rate data obtained from the fits shown
in figure 5.18

CPW spectrum, on the other hand, is well-established. The equal spacing of
the higher order modes in CPW resonators has been verified and is shown in
figure 5.17. The higher order resonances in the lumped element resonators are
most likely spurious modes caused by parts of the circuit resonating at their
respective self resonance frequency, which needs more investigation for actually
identifying them. An alternative way to look at them would be by identifying
the paired modes as a single split mode. The spectra have also been checked
for common modes that could possibly have originated from other parts of the
setup, such as the PCB or PCB shield. However, no pair of modes fi, fj was
found to match the following criteria:

• the resonators are on the same PCB,

• ∆f = |fi − fj | < 〈FWHM〉i,j

• ∆FWHM = |FWHMi − FWHMj | < 1
10 〈FWHM〉i,j

An interesting feature that has been observed in lumped element resonators
is the behavior of the loaded quality factor as a function of mode number and
external quality factor: Looking at the relative standard deviation, that is the
ratio of the standard deviation to the average, while excluding the fundamental
mode, a clear trend of decreasing fluctuation can be identified (see figure 5.13).
For the coplanar waveguide resonators on the other hand the established re-
lationship [7] of decreasing quality factor with resonance mode number was
verified to acceptable agreement (see figure 5.18).
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Figure 6.2: The spurious mode spacing for the lumped element devices relative
to their fundamental resonance. The points are stacked according to frequency
and coupling.
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6.2 Outlook

In order to decide whether the lumped element design type considered in this
work (see section 3.2.4) can be useful, some open questions have yet to be an-
swered. The effects of non-grounding have to be investigated further, in partic-
ular its effect on both the coupling rate and the frequency has to be understood
in more detail. Otherwise the open questions concern their properties at fre-
quencies greater than their fundamental resonance; the spurious resonances and
their origins are not well understood in this thesis and require additional exper-
imental and theoretical investigation. However, there are also some questions
concerning the effect of the non-grounding on the frequency and to what degree
the neglected coupling between superturns introduces inaccuracies or additional
features. The results presented indicate a power law for the loss rate as a func-
tion of fundamental frequency. This has to be verified further and possible
theoretical explanations have to be discussed. The observed behavior of the
variance of the loaded quality factor as a function of coupling too is still to be
explained.

6.2.1 Coupling and Optomechanics Analogy

The lumped element design has been done with the possibility in mind of cou-
pling the resonator inductively to a microwave resonator in the fashion shown
in figure 1.2. The part of the supermeander inductor (see section 3.2.1) pointing
towards the outside of the compact resonator (see section 3.2.4) is implemented
in a flexible way and allows adding structures for inductive coupling at those
places.

Though there are theoretical proposals to optomechanically couple two copla-
nar waveguide resonators [8], the lumped element designs offer more space ef-
ficiency and possibly higher magnetic field localization for inductive coupling.
Furthermore, the LE resonators are better-suited for low-frequency mechanical
oscillator analogues over CPW devices due to their higher spacing between the
fundamental resonance and spurious modes.

Because we are interested in high zero-point-fluctuations of the flux φ̂ =
MÎ through the squid loop from the low-frequency resonator to achieve strong
optomechanical coupling, it is of interest to maximize the current fluctuations
IrZPF = Φr

ZPF/Lr in the LF resonator. The largest that the mutual inductance
M can be is M =

√
LµLr, so the maximum flux fluctuations in the HF resonator

(denoted by the index µ for microwave) from the LF resonator (denoted by the
index r for radio) is given by

ΦµZPF=MIr
ZPF

=
√
LµLr

Φr
ZPF

Lr

=

√
Lµ2~Zr

Lr
=
√

2~Lµωr.

Future setups with LF resonators which will be actively cooled optomechanically
must take this coupling into account for design considerations.
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6.2.2 Next Steps

As a first step further design investigations are necessary: The open questions
mentioned above have to be answered. Further experiments and theoretical
considerations are necessary to either prevent, compensate or account for the
effects of non grounding on frequency and coupling rate.

There are several different possibilities on how to proceed: The resonator
can just be grounded in parallel to Cg, however, in that case the effect of Cg,p
on the frequency is not negligible anymore as can be seen from analysis of the
impedance of that circuit. In that case Cg,p would have to be decreased in
order to justify neglecting it. Alternatively, it can be tried to minimize Cg,p
while estimating Cg from geometrical parameters. Further studies where the
geometrical parameters are varied instead of the physical ones could be helpful
in understanding further effects of non-grounding, coupling between superturns
and other special geometrical features of the proposed design.

In order to understand the spurious modes, simulations or laser spectroscopy
could be useful in addition to standard network analysis experiments. Addi-
tionally, the fabricated devices that have not been measured can be used to do
further experiments that can help understand the design.

Before deciding for lumped element or coplanar waveguide, one could also try
out the Hilbert curve design, which is already manufactured, too. The following
studies are ready to be done using the fabricated but not measured devices

• LE: systematic impedance and coupling study (Z ∈ {50, 100, 170, 300}Ω
and Qext ∈ {103, 104, 105})

• CPW: variation of turning radius (r ∈ {50, 100, 150}µm)

• CPW: Hilbert curve design

A next step would implement a Hamiltonian analogous to the one of Optome-
chanics, that is a parametric coupling of a low to a high frequency resonator.
This could be done by terminating the high frequency resonator with a Joseph-
son junction which can then be coupled inductively to the inductor of the low
frequency resonator (see figure 1.2). The proposed design is optimized for this
type of coupling, because it provides good access to the inductor. In a last step,
resonator cooling could be done, as explained in section 1.2.1.
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