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Abstract

As shown in many measurements and publications in the Quantum Device Lab at ETH Zurich

and elsewhere, devices based on superconducting Josephson Junctions are excellent candidates

for qubits in a quantum information processing (QIP) architecture. To perform actual QIP

conventional measurement methods based on averaging over thousands of experiment repetitions

need to be replaced by a so-called single shot readout. This type of readout determines the qubit

state for one single realization of the experiment.

In this semester thesis we developed a FPGA-based (Field Programmable Gate Array ) platform

to perform these kind of measurements. The design of the platform was driven by two main

concerns. Firstly, short coherence times (∼ 1µs) require a minimal measurement and decision

time (� 1µs). Secondly, the high noise levels have to be accounted for by optimal signal

processing of the measurement data. As a demonstration of the functionality we present the

implementation of an averaging measurement, which can easily be extended to more complex

algorithms.

Furthermore we discuss the theoretical aspects of optimal readout schemes, based on the tech-

nical capabilities of the new measurement platform. Two schemes are proposed and analyzed in

their capability to extract maximum information from the qubit.
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1 Introduction and History

The development in the understanding of quantum mechanics together with new possibilities in

material control, cooling, optics, and high performance computing opened up a new research

area, called quantum information processing (QIP).

The idea behind QIP can be stated shortly, like Richard Feynman did for the probably first

time. Trying to simulate the behavior of quantum systems one can observe, that this problem

becomes exponential hard when taking larger systems into consideration. Thus it cannot be

treated efficiently on classical computers. Thinking the other way around one could suppose

now, that quantum systems must have inherently huge computing capabilities. Exactly this was

confirmed by Shor in 1995 [1] finding an algorithm for prime factorization which is fundamentally

different and faster than any classical algorithm.

Motivated by the promise of unlimited computing power the research community started the

investigation for the principal elements of quantum computation. In the center of the efforts

they put the so called qubit - an abstract model of a quantum system in analogy to the classical

bit. It can be seen as the simplest kind of ”memory” in a quantum computer and helps to

formulate consistently arbitrary computations.

The aspiration today lies in the implementation of a device which behaves like a qubit1. The

different present technologies led to a variety of approaches, like ion traps, optical or supercon-

ducting devices.

Especially the latter are regarded to be suitable to make quantum computing reality. Their

advantage is good scalability - easy and cheap production of many thousand units. This is one

of the primary issues for any applicable implementation, since complexity of real world problems

and the need for internal error correction might boosts the required number qubits to the order

of millions.

Today there exist several basic implementations of superconducting qubits which yielded promis-

ing results. All of the required criteria have been meet in some way albeit not in the same

implementations. Improving performance and pushing restrictions are the main issues in the

experimental part of research and present an enormous technological challenge.

One of the necessary criteria for QIP devices is a viable single shot readout. This is a mea-

surement method which allows to determine the state of the qubit in a single realization of the

experiment. This is in contrary to methods which rely on extensive averaging over repetitions of

the experiment. In the following I present as the result of my semester thesis our approach to

perform single shot readout on the superconducting qubits in the Quantum Device Lab at ETH

1This is stated more specifically in the set of the 5+2 DiVincenzo criteria.
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1 Introduction and History

Zurich.
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2 Physics Primer

For the investigation of the interaction of light and matter one often considers an atom coupled

to an optical cavity, which is described theoretically by the theory of cavity quantum electrody-

namics. The electrical circuits which are considered in this thesis behaves in very similar ways

although they have little in common in terms of their physical representation. Using electrical

circuit elements such as capacitors, inductors and Josephson Junctions made from supercon-

ducting materials one can create artificial atoms and cavities and study their interaction, which

is known as cavity QED. This becomes possible at very low temperatures, where superconductors

exhibit coherent electronic states on mesoscopic length scales.

The system under consideration consists of two main parts. In the center a piece of a coplanar

waveguide made from niobium forms a high quality resonator (Fig. (2.1)). This resonator is

coupled capacitively to an input and an output line to control and measure the system. Further,

a cooper pair box is coupled to this resonator and introduces a non-linear part to the system. This

setup is somewhat equivalent to the systems used in cavity quantum electrodynamics, where one

conventionally considers a cavity (here resonator) whose photons interact with an atom (here

cooper pair box).

Figure 2.1: Schematic of the circuit quantum electrodynamics setup. A cooper pair box (green) is embedded into

a superconducting coplanar waveguide resonator (blue).

2.1 Quantum description of the circuit

To be able to study the quantum mechanical behavior of the circuit QED system one has minimize

the loss and the thermal excitations in the system. Therefore the circuits are cooled down to
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2 Physics Primer

20mK in a dilution refrigerator. At these temperatures the niobium becomes superconducting

reducing the loss in the system and thermal excitations become so weak, that the electrical

resonator will be found in its quantum mechanical ground state.

In this regime the resonator and the cooper pair box are then correctly described by discrete

energy spectra. The resonator energy is given by the Hamiltonian

Hres = ~ωr (a†a +
1

2
) (2.1)

where a is the annihilation operator for photons in the resonator, ωr the resonator frequency.

The cooper pair box can be approximated as a two level system with a ground state and an

exited state which has ~ωa more energy. The Hamiltonian of the cooper pair box is then

Hatom =
~ωa

2
σz (2.2)

σz being the Pauli z-matrix. Finally the coupling between the two systems is given by the term

Hint = ~g(a†σ− + σ+a) (2.3)

which describes how an excitation in the qubit can be transformed into a photon and vice versa

with a rate given by the coupling constant g.

Putting these three terms together one ends up with the so-called Jaynes-Cummings Hamiltonian

which is more thoroughly discussed in [2].

H = ~ωr (a†a +
1

2
) +
~ωa

2
σz + ~g(a†σ− + σ+a) (2.4)

2.2 Dispersive Limit

This description can be simplified in the case of the dispersive limit where the two characteristic

frequencies are very different, that is ∆ = ωa − ωr > g. One can introduce then the interaction

as a second order perturbation [3] and find

Hef f =
~
2

(
ωa +

g2

∆

)
σz + ~

(
ωr +

g2

∆
σz

)
a†a. (2.5)

From the second term we can see now in comparison with Eq. 2.1 that the system effectively

behaves like a resonator, whose frequency depends on the qubit state measured by σz . If we

write the state of the qubit as q ∈ 0, 1 the resonance frequency is

ω′r = ωr (2q − 1)g2/∆. (2.6)

This qubit dependent frequency shift will provide the basis for the readout schemes we will

consider.
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2.2 Dispersive Limit

A complete summary of the physical theory and the experimental setup used in the quantum

device lab at ETH Zurich can be found in [3].
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3 Goal

To perform quantum information algorithms in these kind of systems one has to be able to

prepare, manipulate and read out states of one or more qubits. In the current experiments this

is done by measuring the shift in the resonance frequency as shown in the last section. Since

the detected signal is small and significant noise is present in the measurement system one has

to repeat the experiment and average the outcome, so that one finds the expectation value of

the qubit state.

For the implementation of an algorithm this is not sufficient, where it is necessary to determine

the qubit state for a single realization of an experiment. This type of single shot read out is

not implemented in the current setup and therefore the goal of this semester thesis was the

specification and possible implementation of a signal processing platform to be used for this type

of readout.

~

~

RF Source

( )ins t

Downconversion
& Sampling

Resonator & Qubit

DSP

ADC

FPGA [k]outs  

( )n t

G

Figure 3.1: Schematics of the signal processing aspects of the qubit experiment.

For an overview of the readout process we consider Fig. (3.1) which shows a simplified schematic

of the experiment setup. The goal is to read out the state of the qubit q ∈ {0, 1}, where q = 0

corresponds to a measurement where the qubit is in the ground state and q = 1 where it is in

the excited state. For the measurement a radio frequency (RF) signal sin(t) is applied to the

resonator/qubit system. This RF signal interacts with the qubit and the system responds with a

signal which allows to identify the qubit state. After amplification, down conversion and sampling
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3.1 Restrictions

the signal sout [n] is analyzed by a digital signal processing (DSP) device which estimates q as

q̂(sout).

The task which has to be solved to create a working readout scheme is therefore:

• 1. Design a measurement signal sin(t). Find a signal form which extracts maximum infor-

mation about the qubit state. Find a trade off between measurement time and power.

• 2. Design a signal processing algorithm which estimates q̂(sout). Find a design which is

implementable in hardware. Determine estimator parameters which minimize error proba-

bility.

Neither of these tasks are trivial due to a set of restrictions which apply to the experiment setup.

These ultimately restrict the maximal signal to noise ratio (SNR) in the analyzed signal sout

and as such our ability to estimate the measured qubit state q.

3.1 Restrictions

The first restriction we introduce demands that the readout should not to alter the qubit state.

This is the assumption of a quantum non-demolition measurement. Therefore the readout signal

should not introduce excitation or relaxation of the qubit which would falsify the measurement.

It was found [2] that therefore the power Pmeas of the measurement signal sin is bound by a

maximum power Pmax .

Pmeas < Pmax (3.1)

Furthermore the qubit in the exited state is subjected to spontaneous decay. This decay is

characterized by a typical time T1 after which the exited state is relaxed to the ground state.

Thus the time T during which the qubit is measured can not exceed this time significantly, since

in most experiments no additional information can be obtained.

T . T1 (3.2)

Finally the noise power in the measured signal is dominated by the first amplifier in the signal

processing chain. In our case this is an high-mobility electron transistor (HEMT) operated at 4K

ambient temperature. To this date no other setup is available to produce less intrinsic thermal

noise and as such the noise power Pnoise has to be assumed to be fixed.

Pnoise = 4kbTnoise where Tnoise & 4K (3.3)

Putting these ideas together we expect the SNR to have the following dependencies and bound

SNR ∝
√
T · Pmeas/Pnoise <

√
T1 · Pmax/Pnoise . (3.4)
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4 Theoretical Considerations

In this chapter we present the details on the physics and engineering aspects of the dispersive

qubit measurement protocol.

4.1 System Model

As shown in section 2 the model for the qubit resonator system is given by the James Cumming

Hamiltonian

H = ~ωr (a†a +
1

2
) +
~ωa

2
σz + ~g(a†σ− + σ+a) (4.1)

where ωr is the bare resonance frequency of the resonator, ωa the qubit transition frequency, g

the coupling constant and σ the pauli-matrices.

In the dispersive limit where ∆ = ωa − ωr > g this describes a resonator which has a resonance

frequency shifted depending on the qubit state as in (Fig. (4.1))

ω′r = ωr (2q − 1)g2/∆. (4.2)

where the quantum mechanical treatment of the qubit is replaced by the outcome q of the

measurement operator q = (σz + 1)/2.

0
rω

2
T

0T

0L

(a)

0

rω

φ2
π

2
π−

(b)

Figure 4.1: Transfer function of the resonator in the dispersive limit. a) Amplitude for bare resonator (dashed),

with qubit in ground state (red) and excited state (blue). b) Phase shift with colors as in (a)

The transfer function for a linear resonator with resonance frequency ω0 is given by

Gω0,Q(ω) =
iω

(+ω2
0 − ω2 + ω0

Q iω)
(4.3)
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4.2 Qubit Lifetime

where Q is the quality factor of the resonator. The transfer function of the resonator qubit

system can thus be written as:

Fq(ω) = G
ωr+(2q−1)∗ g2

∆
,Q

(4.4)

(4.5)

This transfer function will be used later in the simulations.

4.2 Qubit Lifetime

Besides the noise in the signal a second source of uncertainty which has to be considered is

the energy relaxation of an excited qubit. This process is one of the fundamental limits in all

existing qubit implementations and is due to coupling to the environement. In this way a qubit in

the exited state looses its energy to some uncontroled environemental degree of freedom. This

effect can be included by introducing a lifetime of the qubit L as a random variable

L ∼ EXP(T1). (4.6)

The qubit state for a single shot can then be written depending on the prepared qubit state q0:

q(t) = q0It<L (4.7)

where It<L is the characteristic function of the interval [0, L].

For the following readout schemes it is assumend, that the measurement time T is restricted

like

T ≤ T1 or T ∼ T1 (4.8)

This is because longer measurement times bring small or no additional information on the qubit

state. Also for any information processing applications requires the readout process to be faster

than the typical lifetime of a qubit. The qubit decay is therefore treated as a pertubation to the

ideal cases discussed below. For these cases optimal solutions are known, so we are left with

close-to-optimal solutions.
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5 Estimators

To design a measurement strategy for the qubit readout we have to solve two tasks. First an

input signal has to be choosen, such that it extracts information about the qubit state. The

output signal can be written as

sout(t) = n(t) + Sq{sin}(t) = n(t) + sq(t) (5.1)

(5.2)

where n(t) is a Gaussian noise process and Sq{sin}(t) is the answer of the system with the qubit

in state q. Secondly one has to find an estimator q̂, which extracts the qubit state from the

measured signal.

En(t) (q̂(sout)) = q (5.3)

The difficulty in solving these two tasks lies in its interdependence. We will discuss different

approaches in the following.

5.1 Bayesian Estimator

One approach is to choose a readout signal sin and then find the optimal Bayesian estimator -

the estimator which minimizes a-posteriori risk function - like the mean squared error - for the

resulting measurement signals. We write

The optimal Bayesian estimator for a minimal square error is then written as

q̂(sout) = En(t) (q | sout) (5.4)

In theory this can be solved for any given input signal.

Although an optimal estimator can be found in this way, no criteria on the quality of the input

signals are given. This is for example, if the signals for the different qubit states are very similar it

is difficult to distinguish them, despite the fact that this is done optimally. Therefore additional

considerations have to be taken to assure that the input signal optimaly extracts information

from the system.

The very general approach of a bayesian estimator can also be impractical, because it might

demand sophisticated nummerical treatment, which is not suited and slow in digital hardware.
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5.2 Digital Modulation Theory

5.2 Digital Modulation Theory

A more practical approach is based on digital modulation theory - the theory of the transmission

of information through noisy channels. A thorough introduction can be found in [4].

Receiver

Demodulator Detector

Sender

Source Modulator

( )n t

Figure 5.1: Schematics of a sender/receiver pair.

As seen in Fig. (5.1) the experiment setup can be seen as a sender/receiver pair transmitting

one bit of information through an additive white gaussian noise (AWGN) channel. In this picture

the sender emits a signal s0(t) or s1(t) depending on the qubit state and the input signal.

The receiver then estimates from the noisy signal which of both was sent. This picture is

useful, because this problem is successfully treated in digital modulation theory and is known to

implement in hardware.

In the following we will use the sampled representation of the . It is common to consider sampled

instead of continuous signals which shall be defined as

s[k ] = s(kTs) (5.5)

where Ts is the sampling period. It is assumend throughout that the sampling rate is sufficient

in all cases to accommodate for the relevant frequencies. As a mathematical tool we introduce

a scalar product between such signals as

〈s0|s1〉 =
1

N

N∑
k=0

s0[k ]s∗1 [k ] (5.6)

Based on this notion two sets of signals (modulations) are known [4] to allow optimal transmission

of binary information through an AWGN channel.

Antipodal signals Orthogonal signals (5.7)

〈s0|s1〉 = �1 〈s0|s1〉 = 0 (5.8)

We will treat both cases at the same time now, since the strategies involved are very similar. In

each case it is known [4] that there exists an optimal receiver which consists of a demodulator

and a detector. The demodulator calculates a score Λ for antipodal (left) and orthogonal (right)

signals as

Λ = 〈sout |s0〉 Λ = 〈sout |s0〉

(
〈sout |s0〉
〈sout |s1〉

)
. (5.9)
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5 Estimators

The detector then makes an estimation based on the minimal distance of the score to one of

two points as depicted in Fig. (5.2)ab. This is written as

q̂ = arg min
q∈{0,1}

‖Λ� λq‖. (5.10)

The points λq represent the score which would be obtained in a measurement in the absence

of noise with the qubit in state q. Thus the estimator simply chooses the state whose score is

closest to the measured score.

 0q =

 1q =

Λ

0s

1s0
(a)

 0q = 1q = Λ

0s1s 0
(b)

Figure 5.2: a) Complex vector space (C2) of the score Λ for orthogonal signals. The detector decides depending

on the closer distance of the score to one of the reference points. This corresponds to the threshold line (dashed).

b) Same for antipodal signals with one dimension (C) . Note that this one dimensional complex vector space

corresponds to the complex plane.

The basic computational effort in this type of receiver is the calculation of the score. This

is given by Eq. 5.6 and can be implemented using multiplication and accumulation operations

(MAC). This special operation is available in modern DSP hardware and thus fast and cheap.

We consider now the two readout schemes, the One Tone Scheme which is already in use, the

Two Tone Scheme which is newly proposed.

5.2.1 One Tone Measurement Scheme

A simple choice for the input signal is an harmonic signal with the bare resonance frequency of

the resonator ωr

sin(t) = ARF · e iωr t . (5.11)

From Fig. (5.3a) we see that for both qubit states the transmission T0 through the resonator is

equal and therefore contains no information on the qubit state. In contrast the phase is shifted

by ±∆φ depending on the qubit state. That is, the information on the qubit state is encoded

purely in the phase of the measured signal. This received/measured signal is

sout [n] = ARFT0G · e i(ωr�ωLO)(nTs)±i∆φ + Ñ (5.12)

where G is the gain of the amplifier and Ñ its thermal noise.
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5.2 Digital Modulation Theory

0
rω0ω 1ω

2
T

0T

0L

( )ins ω

(a)

0

rω0ω 1ω

φ2
π

2
π−

φ∆

(b)

Figure 5.3: Transfer function as in Fig. (4.1) with indication of the input signal as a dirac pulse at the frequency

ωr .

This is equivalent to a binary modulation with the two signals

s0[n] = e i(ωr−ωLO)(nTs)+i∆φ (5.13)

s1[n] = e i(ωr−ωLO)(nTs)−i∆φ. (5.14)

For ∆φ ∼ π
2 it is easy to check that these signals become antipodal

〈s0|s1〉 = e i2∆φ ∼ −1. (5.15)

For this case the optimal estimator can be implemented as shown above by calculating the score

Λ = 〈sout |s0〉 =
1

N

N∑
k=0

sout [k ]s∗0 [k ]. (5.16)

Subsequently the euclidean distance to two reference points λ0, λ1 is calculated

λ0 = 〈s0|s0〉 = 1 and λ1 = 〈s1|s0〉 = −1 (5.17)

which allows to estimate q

q̂(Λ) =

{
0 |λ0 − Λ| < |λ1 − Λ|
1 else

. (5.18)

If the signals are not strictly antipodal this method is not necessarily optimal. Still for phase

shifts close to π
2 it can be assumed to be a close-to-optimal solution. Note that in this case

λ1 6= −1 as in Fig. (6.4).

Finally I want to point out a detail which is generally true for information encoding in the phase

of a signal, which is the fact that the global phase has to be known to extract any information.

In our case this does not pose any problem (in contrary to e.g. mobile communication) since in

the whole measurement setup the global phase is controlled and known. As we will see this is

not the case for the Two Tone Scheme, where the global phase is not necessary for the receiver.
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5 Estimators

5.2.2 Two Tone Measurement Scheme

In the second readout scheme the input signal shall consists of a superposition of two harmonic

signals

sin(t) = ARF (e iω0t + e iω1t). (5.19)

Fig. (5.4) shows, that depending on the qubit state one of the two components is much more

attenuated than the other. We assume L1 � L0 so that the attenuated frequency component

is small enough to be neglected. The measured signal becomes

sout [n] = ARFL0 · e i(ωq�ωLO)(nTs) + Ñ. (5.20)

Where L0 is the insertion loss of the resonator. Note that the phase shift is 0 in both cases and

the information on the qubit state is encoded only in the freqency ωq.

0
rω0ω 1ω

2
T

0T

0L

( )ins ω

1L

(a)

0

rω0ω 1ω

φ2
π

2
π−

φ∆

(b)

Figure 5.4: a) b)

This is again equivalent to a binary modulation with the two signals

s0[n] = e i(ω0�ωLO)(nTs) (5.21)

s1[n] = e i(ω1�ωLO)(nTs). (5.22)

In Fig. (5.5) the value of |〈s0|s1〉| is plotted in dependence of the measurement time T . The

signal are exactly orthogonal for

T = m ·
2π

ω1 � ω0
m ∈ 1, 2, . . . (5.23)

Also for longer measurement times the signals are approximately orthogonal. This is

T > 5 ·
2π

ω1 � ω0
: |〈s0|s1〉| ∼ 0 (5.24)

In these cases it is thus reasonably to use demodulator/detector as a good estimator.
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5.2 Digital Modulation Theory

0
0

1

Measurement Time: T2π
ω∆

‹s0|s1›

Figure 5.5: Correlation of the resulting signals in the two tone scheme. For certain measurement times and in the

limit for long measurement times the signals are orthogonal

The score to be calculated is

Λ =

(
〈sout |s0〉
〈sout |s1〉

)
. (5.25)

The reference points are

λ0 =

(
〈s0|s0〉
〈s0|s1〉

)
=

(
1

0

)
(5.26)

λ1 =

(
〈s1|s0〉
〈s1|s1〉

)
=

(
0

1

)
. (5.27)

The estimation is

q̂(Λ) =

{
0 ‖λ0 − Λ‖ < ‖λ1 − Λ‖
1 else

. (5.28)

Again in the case of near orthogonal signals the reference point λ1 will differ from

(
0

1

)
.
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6 Results

Preceding the hardware implementation the designated readout schemes were investigated in

simulations. This helped to understand the influence of signal processing on the SNR in a quan-

titative manner. This includes the understanding of mixers, amplifiers and low-pass filters in the

analog signal chain. Secondly the simulation should generate meaningful synthetic measurement

data which could be used to test estimation algorithms.

6.1 Simulation

The simulations were done in Simulink/MATLAB (Fig. (6.1)) and focused on the signal process-

ing aspects of the problem. Therefore the physics of the resonator qubit system was simplified.

Depending on the state of the qubit the resonator was modeled with a linear filter as in Eq. 4.4.

The qubit state is initialized by the experiment control to 1 or 0. Afterwards it decays to 0 after

a random life time which is exponentially distributed. On a change of the qubit state the filter

implementing the resonator is simply swapped. This does not take into account transient effects

in the resonator due to qubit decay which might be relevant.

Figure 6.1: Simulation Scheme in Simulink/MATLAB.

The experiment control and the RF source were designed similar to the real experiment setup.

The experiment control would repeat the same experiment continuously, that is preparing a

certain qubit state, turning on the measurement signal for a timespan T .

16



6.2 One Tone Detection Algorithm

In the RF source a carrier frequency (ωRF ) and a modulation frequency (ωmod) could be con-

figured to generate either one tone (ωmod = 0Hz) or two tone (ωmod 6= 0Hz) signals. In the

two tone case, both frequency components are separated by 2ωmod .

Furthermore a local oscillator (LO) signal is provided for down-conversion of the output signal.

The resulting intermediate frequency (IF=ωRF − ωLO) of the output signal can be tuned, such

that homodyne (IF=0Hz) or heterodyne (IF>0Hz) detection is possible.

The thermal noise of the HEMT amplifier was modeled by an additive source of Gaussian white

noise. The noise is parameterized by its variance σ2 which is determined by the bandwidth ∆f

of the signal processing chain and the equivalent noise temperature Teq = 4K of the amplifier.

σ2 = 4kbTeqZ0∆f (6.1)

where kb is the Boltzmann constant.

Finally an analog-digital converter (ADC) is simulated by integrating over the sampling time,

which was normally chosen to be Ts = 10ns = (100MHz)−1. The ADC samples both quadra-

tures (real and imaginary part). The output signal which is used for estimation is then

sout [k ] = I[k ] + iQ[k ]. (6.2)

To define the SNR the output signal can be written in terms of the system response and the

amplifier noise

sout = G · Sq{sin}+ Ñ. (6.3)

The theoretical SNR and the measured SNR are defined as

SNR =

〈
G2 · Sq{sin}2

〉〈
Ñ2
〉 . (6.4)

6.2 One Tone Detection Algorithm

For the one tone readout scheme with homodyne detection the RF source is configured with the

following parameters:

ωRF = ωr ωmod = 0Hz ωLO = ωRF = ωr . (6.5)

In Fig. (6.2) a typical result of a one tone readout is shown. The qubit was exited three times

(Fig. (6.2)b) and decayed during the measurement of T = 2µs (Fig. (6.2)a). In Fig. (6.2)c

both quadratures are shown without noise. This component of the output signal carries the

information and is expected to be a constant, since IF = ωRF − ωLO = 0Hz .

The strong overshoot and the following oscillations result from the transient behavior of the

resonator which is exited off resonance. These transients are emphasized through the high
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quality factor of the resonator and have a similar timescale as the qubit lifetime. Equivalently

one sees the decay of the resonator energy after the measurement signal was switched off.

From the design of the simulation the qubit decay does not result in further transient behavior.

Although this might be incorrect we neglect this problem for now.

In comparison Fig. (6.2)d shows the same signal with a typical noise level (SNR=-10dB). This

figure is to illustrate that estimation has to be carefully designed.

Figure 6.2: Typical simulation results for a one tone readout scheme. a) Indicates the time window during which

the readout signal is applied. b) Shows the internal state of the qubit. c) Quadratures I and Q without noise after

down conversion and sampling as they are available to the FPGA. d) Same as above but with a signal to noise

ration of -10dB.

To test the detection algorithm described in section 5.2.1 a set of measurements was generated

(Fig. (6.3)). For both qubit states 28 measurements, as well as the two noise-free reference

signals s0 and s1 were generated. Note that the reference signals can be equally extracted by

real measurement through extensive averaging of noisy data.

The score of the demodulation Λ is shown in the complex plane in Fig. (6.4). As expected for

antipodal signals the scores with preparation q=0(q=1) cluster around +1(-1).

The theoretical noise-free score (λ0, λ1 big triangles) is calculated for both cases which is in

good agreement with the average scores (< Λ0 >,< Λ1 >, black triangles). These noise-free

(or averaged) scores define a threshold line (dashed lines), which is the decision rule for the

detector. This is here, scores left(right) of the threshold line are estimated q̂ = 0(q̂ = 1).

Without further quantitative error analysis, the simulations show that this estimation algorithm

gives correct results. We know its performance becomes optimal in the case of antipodal signals.
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Figure 6.3: Simulation results of the resonator response for qubit in the ground state (red) and in the excited

state (blue). Top: single simulated response, with SNR=0.054 out of 28 simulated responses. Middle: Average

of 28 traces. Bottom: Ideal response without noise.

This assumption is good for long qubit lifetimes (T1 � T ) and large phase shifts (∆φ ∼ π/2) in

the resonator.

For shorter qubit lifetimes Fig. (6.4) shows that the average score of q=1 measurements <

Λ1 >(green triangles) move towards < Λ0 >. This renders the intrinsic difficulty of determining

the prepared qubit state, when the qubit decays very fast. In any case though it is possible to

determine a good threshold line from the measurement of < Λ0 >,< Λ1 >.

6.3 Two Tone Scheme Simulations

For the two tone readout scheme the RF source was configured like

ωRF = ωr ωmod =
ω1 − ω0

2
ωLO = ωRF − ωmod = ωr −

ω1 − ω0

2
(6.6)

For these settings one expects a signal with frequency ω1−ω0 for an exited qubit and a 0Hz signal

for a qubit in ground state. This is found in a typical result (Fig. (6.5)). Transient behavior

of the resonator is visible as the exponential loading in the beginning of each measurement.

Overshoot is not visible, because the resonator is driven at its resonance frequency.

The estimation algorithm for this type of measurement is in principle similar to the case of the

one tone scheme and was not further investigated.
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Figure 6.4: Scores calculated from the 28 simulated resonator responses in the complex plane (blue: q=1, red:

q=0). Threshold lines (solid: theoretical, dashed: extracted from data) divide the plane in two decision areas

(left: q̂ = 1, right: q̂ = 0).

6.3.1 Test Measurements on generating a two tone signal

To show that two tone measurements are feasible the experiment in Fig. (6.6) was conducted.

First the generation of a two tone signal was demonstrated using a common RF-mixer using a

RF-source with frequency ωRF and a modulation source with ∆ω = 1MHz .

An exemplary output spectrum of the mixer (Fig. (6.6b)) shows clearly the two desired tones.

The different side tones which are present result from impreciseness of the mixer. By careful

biasing of the mixer a suppression of > 37dB was achieved, which is considered sufficient for

our application.

Secondly it was shown that a detuned resonator suppresses one of the tones sufficiently to make

a distinction possible. A superconducting Nb resonator ωr = 6.210GHz in liquid Helium was

used. To imitate the situation of a detuned resonator one can choose:

ωRF = ωr + ∆ω h resonator with qubit in ground state (6.7)

ωRF = ωr − ∆ω h resonator with qubit in exited state (6.8)

The measurement results in Fig. (6.7) show that in both cases the second largest tone is ∼ 7dB

smaller than the largest one.
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6.3 Two Tone Scheme Simulations

Figure 6.5: Typical simulation results for a two tone readout scheme. a) Indicates the time window during which

the readout signal is applied. b) Shows the internal state of the qubit. c) Quadratures I and Q without noise after

down conversion and sampling as they are available to the FPGA.

RF Source

Resonator

Measurement
~RFω

~ω∆

Spectrum
Analyzer

(a)

16:38:12  7 Nov 2007

Bad, missing or unformatted disk

Mkr © CF

Mkr © CF Step

Mkr © Start

Mkr © Stop

Mkr 

∆

 © Span

Mkr © Ref Lvl

Marker ©

Ref -18 dBm Atten 5 dB
Mkr3  6.001017 GHz

-37.23 dBm 
Peak
Log
10
dB/

W1 S2
S3 FC

AA

Center 6 GHz
Res BW 30 kHz VBW 30 kHz

Span 5 MHz
Sweep 9.533 ms (500 pts)

1 3

1R

Marker
6.001017034 GHz
-37.23 dBm 

(b)

Figure 6.6: a) Experiment schematics b) Measurement at the output of the RF source, featuring the two desired

tones as well as small parasitic components.
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Figure 6.7: a) Experiment schematics b) Measurement at the output of the RF source, featuring the two desired

tones as well as small parasitic components.
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7 Hardware Implementation

7.1 Platform
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Figure 7.1: Xilinx XtremeDSP Development Kit IV.

For the implementation we chose the Xilinx XtremeDSP Development Kit IV as a hardware

platform. The hardware (Fig. (7.1)) is based on the Virtex4 FPGA, which is a high performance

Field Programmable Gate Array. This device can be programmed on a hardware level, which

allows highly specialized and extremely fast logical operation.

7.1.1 Specifications

The FPGA is supported by a set of additional special purpose hardware as analog-digital-

converters (ADC), digital-analog-converters (DAC), memory (ZBT-RAM), facilities to generate

clock signals, on board LEDs and multipurpose input output connections (IOPINs):

The two ADCs (Fig. (7.2)) feature a maximum sampling rate of 105MSPS which allows to

sample signals up to 52.5 MHz. The voltage range of ± 1V is resolved with 14-bit.

The two DACs (Fig. (7.3)) are not presently used but offer the possibility of generating analog

signals with 160MSPS in a range of ± 1V with 14-bit resolution.
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7.1 Platform

In the ZBT-RAM (Fig. (7.4)) which is organized in 2 banks with 32-bit words up to 2x8 MB

can be stored. The connection to the RAM can be used at 100MHz which is to read or write

one word per bank and cycle.

The 4 LEDs can be used as required e.g. to signal the state of the FPGA application or for

debug purposes.
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Figure 7.2: Xilinx XtremeDSP Development Kit IV.

 
 
 
 

Xilinx Virtex-4 
User FPGA 

 
(XC4VSX35-

10FF668) 
 

 
 

DAC 
AD9772A 

Data [0:13] 

Mode [0:1] 

Divide [0:1] 

PLL Lock 

Analog 
Data 

Clock Feedback LVPECL clock 

CLK FPGA 
Virtex-II 

FPGA 
(XC2V80-
4CS144) 

Figure 7.3: Xilinx XtremeDSP Development Kit IV.
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7 Hardware Implementation

7.1.2 Hardware Design Flow - Design Time

To program the FPGA hardware with the desired signal processing algorithms a chain of software

tools is necessary, as depicted in Fig. 19. There is multiple ways to succeed in this task. The

design flow which is presented here is specific to our solution. The different steps are presented

from the design of the signal processing algorithm to the final startup procedure of the hardware.

To reduce the labor to change or add new algorithms the algorithmic part of the programming

is separated from the technical parts. These parts including memory control or communication

with the host computer are modified rarely and therefore encapsulated.

The algorithm is designed through the graphical interface Simulink in MATLAB. This interface

provides all necessary logical blocks, high level blocks (e.g. FFT) as well as building blocks to

access hardware resources (e.g. ADCs or memory). This part is compiled using Xilinx System

Generator into a netlist (ngc file). This netlist describes the hardware layout (wiring) of the

FPGA to achieve the desired functionality.

This netlist of the DSP algorithm is embedded into a wrapper, which provides access to the

external hardware (Fig. 21). The wrapper is written in VHDL - a hardware description language

which is industry standard. It contains a default configuration of a memory controller, a clock

manager and a boot loader. The netlist and the wrapper can be combined into a complete

hardware configuration file for the FPGA (bit file) with Xilinx ISE Studio.

FPGA Virtex4 SX35

RAM A

RAM B

ADC 1&2

DAC 1&2

LEDs

RAM
ControllerClock

Manager

Bootloader

DSP

Clock

Reset

Figure 7.5: Application architecture contains a signal processing core (DSP) designed in Simulink, which is

embedded in a wrapper written in VHDL to handle various hardware issues.

7.1.3 System Architecture - Run Time

To run and operate the FPGA board the DIME framework by Nallatech can be used to access

the FPGA board, configure (i.e. load a hardware design) the FPGA with a certain design and

communicate between host computer and FPGA. During the runtime the whole system is like in
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7.2 Practical Issues

Fig. 22. It is important to note, that the host computer and the FPGA board are independent

entities which run different programs. On the FPGA a hardware design is running, whereas on

the host computer some software is active which can communicate with the FPGA over the PCI

bus.

The DIME framework is accessible in multiple ways. The easiest one is by scripts which typically

look like in Fig. 23. It is straight forward to open the board, load a hardware design and run

it. For more complex interfaces, where one wants to communicate or extract data from the

hardware, a C/C++ interface is available.

To avoid the development of complex protocols between host and FPGA used this C++ interface

to extract the RAM on the hardware. This tool zbt readwrite.exe was implemented in C++

based on an example given by Xilinx. It could be used to extract results after the hardware

design finished running. This is a generic scheme and can be used for any hardware design which

does not need direct interaction with the host computer.

A more sophisticated design would include direct access to the PCI bus on the FPGA board.

Over this bus it is possible to implement communication schemes with the host computer. This

was not done in this project and is left for future work.

7.2 Practical Issues

7.2.1 RAM Access

At present time the RAM can be extracted after the run of any hardware design. To read the

complete content of the RAM to a file foo.ramdata one calls from a command line:

zbt˙readwrite.exe -r foo.ramdata

or to extract only a section of the RAM it is possible to specify a starting address (here 1000),

the number of words to read (here 20) and the RAM bank which is used (here A):

zbt˙readwrite.exe -r foo.ramdata A-1000+20

Equally the program can be used to write a certain bar.ramdata to the RAM with

zbt˙readwrite.exe -w bar.ramdata

where the length and position of the data is specified in the bar.ramdata file.

Besides the Virtex4 FPGA on which the main hardware design runs the board features a small

Virtex2 FPGA which is intended to handle the synchronization of the different hardware elements

on the board. This so called clock FPGA has two sources of clock signals - programmable on

board clocks and an external clock. These clocks can be used as references to generate new

clock signals by multiplication (faster) or division (slower).
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Figure 7.6: Schematics of the RAM readout process.

These clocks then have to be distributed to all the hardware elements - Virtex4 FPGA, ADCs,

DACs, RAM. To assure that all elements run synchronous the physical traveling times of the

clock signals have to be compensated. This is achieved through deskewing, where the clock

phase is shifted through designated wire loops such that synchronicity is ensured.

The clock design with clock generation, deskewing and distribution has to be designed in a

similar design flow as for the main FPGA. For the application in a lab environment a clock design

pl clock.bit was developed. This design generates a 100MHz system clock out of the 10MHz

phase lock signal which is commonly used to synchronize all the electronic equipment. The

system clock is deskewed and distributed to all the hardware elements on the board. In this

way a synchronous design is achieved where data travels with constant speed through the signal

processing pipeline.

7.2.2 Boot Loader

To start up the DSP algorithm correctly a boot loader part was integrated in the wrapper. When

turning on the FPGA one has to wait to start the application until reset signals are turned off

and clock signals are locked (stable). If this is not respected unpredictable results will occur.

When reset is turned off and the clock for the DSP algorithm is locked the boot loader will turn

on the ram controller. In the following cycle the DSP algorithm is started. This assures that

wrapper is in a defined state when the algorithm starts.
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7.3 Example - The Averager

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

library UNISIM;
use UNISIM.VComponents.all;

entity bootloader is
port(

rstl_ext: in std_logic;
clk_lock : in std_logic;
user_clk : in std_logic;

app_stopped : in std_logic := '0';

app_ce_clr : out std_logic;
cenl : out std_logic;
gst_rstl : out std_logic

);
end bootloader;

(a) VHDL interface of the

boot loader.

(b) Schematics of the clock implementation

pl clock.bit.

Figure 7.7:

FPGA

V2 XC80

Hardware

10MHz Reference

Onboard
Clocks

Figure 7.8: Schematic of the clocking architecture on the FPGA board. Clock inputs lines (green) are sources for

the clock generation in the clock FPGA (green). Clock output lines (red) are designed such that the system clock

is available in all devices without timeshift. The clock for the RAM (yellow) is deskewed by reference lines.

7.3 Example - The Averager

As an example to test the system we implemented a so called averager, which is already present

in the current measurement setup in a different hardware module. The averager records mea-

surements during N repetitions of an experiment and calculates the average over the repetitions.

Thereby the SNR of the measurement can be improved as
√
N. This is because the noise is

assumed to be Gaussian and therefore averages out.

The schematics of our averager can be seen in Fig. (7.9). It features two channels and was

tested for up to 200000 repetitions. The inset shows how the actual averaging is implemented

using a Dual Port RAM module. The Dual Port RAM allows to simultaneously read an old value

of a sample and write a new value back.
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7 Hardware Implementation

Figure 7.9: Schematics of the averager application in Simulink. Inset: The content of the averager box performing

the actual averaging. Bottom left: Generation of the synthetic signals for simulation

7.3.1 Simulation

Before performing real experiments the Simulink environment can be used to test the algorithm in

a simulation. The signal which is synthesized for the simulation can be seen in Fig. (??) (violet).

This signal is mixed with Gaussian noise (yellow) and is feed to the averager. Additionally a

signal has to be provided which defines the time window for the measurement Fig. (7.10a).

The results in Fig. (7.10b) show that after 100 repetitions the averager was able to improve

the SNR and recover the original signal. Below the address signal (Fig. (??))shows how the

measured signal is distributed in the Dual Port RAM module.

7.3.2 Experiment

To show that the averager works we performed a verification experiment. As the input to the

averager we programmed an arbitrary waveform generator such, that it generates square pulses

of random length with an average length of 1000ns, as shown in Fig. (7.11a). The measurement

result in Fig. (7.11b) shows correctly the average of such a random signal, which is an exponential

decay with a characteristic time scale of 1000ns. The irregularities in the signal are not due to

noise or problems in the implementation but are due to the limited randomness (100 different

lengths) of the input signal.
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7.3 Example - The Averager

(a) Simulated input for the averager. Top: Defines

the the begin and end of the averaging window.

Bottom: Original input signal (violet) and the

same signal with Gaussian noise (yellow).

(b) Simulated output of the averager. Top: Signal stored

in the Dual Port RAM and provided as the output of

the averager. Bottom: The address in the RAM of

the values shown above.

Figure 7.10: Simulation of the averager.
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Figure 7.11: Input and Output of the averager test measurement.
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7 Hardware Implementation

Figure 7.12: Experiment setup to test averager application on hardware with real signals.
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