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Abstract

In quantum computing, the capability to do accurate operations on the system being
used, is an important ingredient. To test the accuracy of these operations, the state of
the system has to be determined. This can be accomplished by coupling the system to
a resonator, since the resonator frequency of the resonator will depend on the state of
the system. The main focus of this project has been to investigate different methods
of extracting information about the state of the system from the changes in a signal
transmitted through the resonator.

The readout of the state of the system is done by comparing the signal response of
the resonator with reference signals. The reference signals are the responses given when
the system is set to some specific states. This analysis need to be robust to various
errors in the preparation of these specific states. We have investigated two different
approaches to compensate for the specific error of thermal excitation of the system.

We tested these readout methods in our experimental setup were we use supercon-
ducting qubits coupled to resonators. The results we found fluctuated during different
runs, which prevented us to achieve the accuracy needed for readout. We believe that
the main reason for this is low frequency noise in our instruments.
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1 Introduction

The field of quantum information science has great potential for producing useful applica-
tions [Stajic 13] but also to provide deeper understanding of nature [Hensen 15]. Applications
include cryptography, computation, simulation and more. But there is still quite some work
to be done before we have a universal quantum computer at our hands. To have a more
clear goal of what is needed for achieving quantum computing, D. P. DiVincenzo stated five
criteria that need to be fulfilled [DiVincenzo 97]. Later he also added two which are required
for quantum communication:

• Quantum Computing
– Well-defined qubits
– Initialization to a pure state
– Universal set of quantum gates
– Qubit-specific measurement
– Long Coherence times

• Quantum Communication
– Interconvert stationary and flying qubits
– Transmission of flying qubits

Many different physical realizations of a qubit are currently being researched. These include
trapped ions, NV-centers and superconducting qubits, where the latter is used in our experi-
mental setup. Superconducting qubits have been shown to fulfill the Divincenzo criteria and
they make a promising candidate for the building block of quantum computers [Devoret 04].
In the remaining part of this section I will explain how quantum computing is done with
superconducting qubits and in particular using transmons. We will not cover all details here
but the interested reader can for example refer to [Steffen 13] for a more in depth discussion.

1.1 Cooper pair box

A superconducting qubit can be realized by using a Cooper pair box, which is schematically
illustrated in Figure 1. In the Cooper pair box a capacitor Cg and two parallel Josephons
junctions EJ,1 and EJ,2 are connected to a voltage source Vg. The Josephsons junctions
consist of two superconducting electrodes with an insulating layer in between. The part
in between the capacitor and the Josephsons junctions consists of a superconducting island
(orange) where electrons pair up and make what are called Cooper pairs [Bardeen 57]. When
a voltage is applied over the Josephsons junctions these cooper pairs can tunnel through the
insulating layer and there will then be either an excess or a shortage of Cooper pairs on the
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Figure 1: Circuit illustration with a Cooper pair box consisting of two Josephons
junctions with Josephson energies EJ,1 and EJ,2 which are connected to a voltage
source Vg via a capacitor Cg. Figure adapted from [Baur 12].

island. Due to the tunneling of Cooper pairs through the Josephson junctions, the junctions
will effectively act as nonlinear inductors. The Cooper pair box acts as an artificial atom
with a Hamiltonian given by

H(ng) =
∞∑

n=−∞

(
4EC(n− ng)2 |n〉 〈n| − EJ

2 (|n〉 〈n+ 1|+ |n+ 1〉 〈n|)
)
, (1.1)

where n is the number of excess Cooper pairs on the island, ng = −CgVg/(2e) is the charge on
the gate capacitor in units of 2e, EJ is the Josephson energy and EC is the charging energy
which describe how much energy is needed to add a Cooper pair to the island [Baur 12]. Both
ng and EJ can be controlled externally, by varying the gate voltage Vg and the magnetic flux
Φ through the cooper pair box and respectively.

1.2 Single qubit rotations

By considering only the two lowest energy levels of the Cooper pair box with dynamics
described by the Hamiltonian in (1.1), we effectively have a superconducting qubit. To
manipulate the state of the qubit we can apply an oscillating voltage on the gate, such that
Vg = V DC

g + VD cos(ωDt). The Hamiltonian of the driven qubit is given by

H ≈ 1
2ωegσz + Ω cos(ωDt)σx (1.2)

where ωeg is the transition frequency between the ground and excited state, Ω depends on
the amplitude and phase of the drive signal and σz, σx are the Pauli operators [Baur 12]. The
state of the qubit can therefore be manipulated by applying voltage-pulses on the gate.
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1.3 Readout and interactions

The superconducting qubit is coupled to an electromagnetic field in a resonator consisting
of a planar waveguide. This is done for a number of reasons. Firstly this allows for non-
demolition readout of the state of the qubit. The coupling between the resonator and the
qubit will shift the resonance frequency of the resonator, either to a higher or to a lower value,
dependent on the state of the qubit. Through spectroscopy on the resonator, the state of the
qubit can be determined. Another reason for the resonator is that it allows for interactions
between multiple qubits, which can be used for two-qubit manipulations. The resonator can
also improve the decay time of the qubit, which determines how long the qubit can stay in
the excited state without spontaneously decaying to the ground state. This is because the
resonator restrict the possible modes of the electromagnetic field due to its finite length. The
qubit is therefore only coupled to a discrete set of modes and does not decay as easily.

1.4 Superconducting chip with four qubits

In our setup we use a chip with four superconducting qubits coupled via four resonators
as shown in Figure 2. All resonators are used for interactions between the qubits but only
resonator R1 and R3 are used for readout by measuring transmission through the red ports.
Each qubit is coupled to a flux bias line and a microwave drive line, coloured blue and green
respectively. These lines are used to perform operations on the state of the qubits.
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Figure 2: Four-qubit-chip with resonators coupled to the qubits R1-R4. Trans-
mission and readout of signals through the resonators R1 and R3 are done via the
red ports. The blue and green ports are flux bias lines and microwave drive lines
used to do operations on the qubits. Figure adapted from [Salathé 15].
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2 Theory

In this section I describe the theoretical aspect of how information of the state of the qubit
can be extracted from signals transmitted through the resonator, which is coupled to the
qubit. To extract this information the transmission signal will be decomposed into inphase
and quadrature components.

2.1 Signal quadratures

Any signal s(t) can be decomposed as follows

s(t) = I(t) cos(ωIFt) +Q(t) sin(ωIFt). (2.1)

where the I and Q are called the inphase and quadrature components. The quadrature
components can be found by multiplying the original signal with cos(ωIFt)/2 and sin(ωIFt)/2
respectively, which gives

s(t) cos(ωIFt)/2 = I(t) + I(t) cos(2ωIFt) +Q(t) sin(2ωIFt) (2.2)
s(t) sin(ωIFt)/2 = Q(t)−Q(t) cos(2ωIFt) + I(t) sin(2ωIFt) (2.3)

The factors I(t) and Q(t) are found by running the signals in (2.2) and (2.3) through a low
pass filter.

2.2 From signal response to populations

In this section I explain how the transmission signal quadratures of a resonator coupled to
the qubit can be used to determine the state populations of the qubit.
Assume we have a set of eigenstates {|ψi〉}i, for example {|g〉 , |e〉 , |f〉} in the case of a
qutrit. These states will give rise to a set of transmission signals which I call the reference
traces. In the IQ-plane these reference traces are parametrized by time and I denote them{
~Θψi(t)

}
i
. For an arbitrary state with density matrix ρ, there will be a set of probabilities

{pψi}i associated with the different measurement outcomes corresponding to the eigenstates
{|ψi〉}i. This set of probabilities are also commonly called the populations of the state. For
an average readout, the trace in the IQ-plane corresponding to the state ρ will be given by
a weighted sum of the reference traces where the coefficients are the populations,

~Θρ(t) =
∑
i

pψi
~Θψi(t). (2.4)
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In practice the value of the traces will only be known for a discrete set of time values {tk}k.
To find the set of populations that solve equation (2.4), both components of the traces at
each timepoint can be treated as independent variables. Given n timepoints, this will give
rise to a system of 2n linear equations which usually will be much larger than the number
of populations. This overdetermined system of 2n equations can be solved with the method
of least squares. To write this system of equation in matrix-form I denote θρ as the in-
phase components at each timepoint concatenated with the quadrature components. The
populations can then be found by solving the following problem

Mp′ = θρ for p′ψi ≥ 0,
∑
i

p′ψi = 1, (2.5)

which stated as a least squares problem can be written

min
p′
ψi

||Mp′ − θρ||22 for p′ψi ≥ 0,
∑
i

p′ψi = 1, (2.6)

where M is a matrix which columns are the concatenated reference traces θψi and p′ is a
vector with the variables p′ψi . The two constraints of non-negativity and normalization are
needed for the solution to be a true probability distribution.

2.2.1 Least squares problem with constraints

There has been a number of articles written on methods for solving non-negative least squares,
starting with the work of Lawson and Hanson in 1974 [Lawson 74]. In this project we have
implemented a method called Fast-Combinatorial-Non-Negative-Least-Squares (FCNNLS),
first presented by Benthem and Keenan [Van Benthem 04]. This method is in particular fast
when simultaneously solving multiple systems of equations which only differ by their right
hand sides. The method have been implemented in Mathematica during this project and the
code can be found in appendix A.
What usually is done to solve a least squares problem with a linear equality constraint, as
the one for normalization in equation (2.6), is to add a Lagrange multiplier. The system of
equations then get one more equation and one more variable. Since the FCNNLS-method
forces all variables to be non-negative, including the Lagrange multiplier, this cannot be done
in this case. What might be possible is to modify the non-negative least squares method to
be able to choose which variables should be under the non-negativity constraint. Instead
we can add the normalization equality as an equation to the system of equations with some
weight w. Effectively we add one row to M , which is (w, .., w) and one element w in θρ at
the corresponding position. The weight will normally be 5-10 times the sum of the average
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of the absolute value of each row. The problem reduces to
 (w, .., w)

M

 p′ =
 w

θρ

 for p′ψi ≥ 0, (2.7)

which we can solve with the method FCNNLS.
To check that the results we get by adding a weighted equation are correct, these have been
compared with the results from a more powerful optimization function called JOptimizer.
This is a package for Java which can be imported by using Mathematicas JLink, also this
code can be found in appendix A.

2.3 Extracting reference traces from thermally excited states

If the qudit1 receive thermal excitation from the environment, it is hard to prepare the qudit
in its eigenstates. For example if the ground state is intended to be prepared by initially not
driving the qudit at all, the state of the qudit will be a mixed state given by

ρgth = (1−
∞∑
i=1

pi) |0〉 〈0|+
∞∑
i=1

pi |i〉 〈i| (2.8)

where pi is given by

pi = exp
(
− ~ω0i

kBTeff

)
(2.9)

where ~ is the reduced Planck constant, ω0i is the transition frequency between the ener-
gylevels 0 and i, kB is the Boltzmann constant and Teff is the effective temperature. For
sufficiently small anharmonicity2 the transition frequencies are approximately ω0i ≈ iω01 so
the populations can be estimated by

pi ≈ (p1)i. (2.10)

If the eigenstates cannot be prepared, the reference traces have to be found in some other
way rather than using the resonator response from the eigenstates directly. In the sections
below we present two possible methods for extracting the reference traces even though there
is thermal excitation in the setup.

1A unit of quantum information in a d-level quantum system.
2Anharmonicity can be defined as ω12 − ω01.
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2.3.1 From superposition states

In this section I describe how superposition states can be used to extract reference traces in
the presence of thermal excitation for the case of a qutrit. To suppress effects of noise, we
use traces that are the average of normally 60 000 experiment repetitions. From (2.4) and
due to thermal excitation our thermally excited ground trace will be given by

θgth = (1− pe − pf )θg + peθe + pfθf . (2.11)

where the subscripts of the traces denote which state they correspond to. To prepare equal
superposition states we can apply the following three operations to the thermally excited
ground state

Xge(π/2) → θg+e = (1− pf )
2 (θg + θe) + pfθf (2.12)

Xef (π)Xge(π/2) → θg+f = (1− pf )
2 (θg + θf ) + pfθe (2.13)

Xge(π)Xef (π)Xge(π/2) → θe+f = (1− pf )
2 (θe + θf ) + pfθg, (2.14)

where Xij(ϕ) means a rotation by ϕ around the X-axis of the Bloch sphere for the energy
levels i and j. The rotations are written as operators, so the order in which they are applied
should be read from right to left in the above notation. Given these traces we can estimate
the real ground trace by the following combination

θg+e + θg+f − θe+f = θg + pf (θe + θf − 2θg). (2.15)

Since pf can be assumed to be very small and in particular a lot smaller than pe, this is a
much better estimate of the ground trace than the one given in (2.11). The same can be
done with the other two eigenstates with the following combinations

θg+e − θg+f + θe+f = θe + pf (θg + θf − 2θe) (2.16)
−θg+e + θg+f + θe+f = θf + pf (θg + θe − 2θf ), (2.17)

for the e and f levels correspondingly. Populations obtained from experimental data using
this method can be found in section 3.2.

2.3.2 From single-shot readout

In a single-shot measurement the state of the qudit gets projected to the eigenstate corre-
sponding to the measurement outcome. The reason why single-shot traces cannot be used
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as reference traces directly is that these are in general very noisy. To suppress the noise,
the traces could be averaged over many experimental repetitions. The problem is that, for
example for a thermally excited ground state, a fraction of the single-shot traces will corre-
spond an excited state. A solution to this is to determine what eigenstates the single-shot
traces corresponds to. The traces not corresponding to the eigenstate which reference trace
we wish to find, can be removed and not be included in the averaging.
To determine which state a single-shot trace correspond to, we integrate out time such that
the trace gets mapped to a point in the IQ-plane. In the rest of this section we will only
consider the ground and first excited state by assuming that pf � 1.
The integrated traces mainly get mapped to two areas in the IQ-plane, which is due to the
projective measurement, see Figure 3. For example, a trace with an integrated point close
to the middle of the red area, will with high probability be a ground trace. Therefore the
ground and excited traces can be classified and averaged over separately, into reference traces
with lower noise.
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I [a.u.]

Q
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g-thermal

e-thermal

Figure 3: Integrated values for single-shot traces measured for thermally excited
ground state in red and after a π-pulse in blue.

The benefit of this method is that it does not matter what state the qubit was in before
the measurement. If we find two distinct gatherings of integrated traces we can classify the
traces and average over the ones corresponding to the relevant eigenstate. Reference traces
extracted using this method on experimental data can be found in section 3.3.
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2.4 State Tomography

To completely characterize an arbitrary state of a qudit, its density matrix should be deter-
mined. The populations of the state in the eigenstates is then not sufficient. For example
the populations of a qubit is described by one real number, since the two populations are
constrained to be normalized. However, its density matrix should be a normalized hermitian
matrix of dimension 2 and therefore described by 3 real numbers.
If we do not assume normalization the density matrix of an arbitrary qubit state can be
written,

ρ =
3∑
i=0

αiσi, (2.18)

where σ0 is the identity and σi for i = 1, 2, 3 are the Pauli matrices. So to completely
characterize the state of a qubit, it is sufficient to determine the coefficients αi. These
coefficients can be found from the populations of the state itself and the states prepared by
initially performing the rotations Xge(−π/2), Yge(−π/2) and Xge(π). For derivation of this
and further discussion on state tomography, refer to for example [Maurer 08].
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3 Results
In this section I present experimental result from applying the methods for extracting pop-
ulations of the state of a qudit, from signals transmitted through the resonator, introduced
in section 2. First I present results for solving equation (2.5) by using NNLS in section 3.1,
which gives the populations of a state, if correct reference traces are provided. In section 3.3
I continue with results for extracting reference traces by using superposition states and lastly
by using single-shot traces in section 3.3.

3.1 Extracting populations from transmission signal

In section 2.2 and equation (2.4) I stated that the trace from a superposition state will be
a combination of the reference traces. The experimental results in Figure 4 agree with this
in the case of a qutrit and the superposition state being |g〉 + |e〉. In the figure we see that
all traces start at the origin when the measurement begins. This means that there is no
transmission signal. When the measurement starts, the quadrature points move away from
the origin and draw curvy traces. These shapes show the characteristic dynamical features
of a driven harmonic oscillator. After some time the traces settle and more slowly approach
a common point, this is the squiggly part of the traces in the figure. This approach to a
common point is due to the decay, from the excited states to the ground, of the qubit.
The purple trace, which is a combination of the reference traces as in equation (2.4) with
the populations given in Figure 4b, completely covers the green which is the superposition
trace found experimentally. A decomposition this good is impossible for most curves in the
plane. Therefore we can be confident that our assumptions in section 2.2 are correct. In this
particular case I have not taken into account thermal excitation, which is not necessary for
the equal superposition state. This is because this state is symmetric in the two relevant
eigenstates. Furthermore, the prepared e-state is the thermally excited ground state with the
populations in the g and e levels swapped. Therefore the decomposition of the equal super-
position state will give populations (pg, pe, pf ) ≈ (0.5, 0.5, 0), independently of the thermal
excitation in the reference traces.
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Figure 4: Quadrature components of a signal transmitted through the resonator
coupled to the transmon when this was in four different states (a). The dashed
trace is a combination of the traces from the eigenstates using the populations
in (b), which are found by decomposing the equal superposition trace (green) in
terms of the traces from the eigenstates.

3.2 From superposition traces

In this section I present experimental results from using the method presented in section 2.3.1
to extract reference traces corresponding to the eigenstates. In Figure 5, traces from the three
first thermally excited energy levels of the transmon are shown. We have used traces from
prepared superposition states and the method in section 2.3.1 to extract reference traces,
shown as dashed traces in Figure 5. These extracted traces are plotted in the same figure.
These traces also show the same dynamics as discussed in the previous section. Specifically
they have the dynamics of a driven resonator coupled to a system that decays.
When we used this method on experimental data we found two problems. One of the problems
can be seen in Figure 5: the trace from the thermally excited ground state is just outside the
extracted trace. This should not be the case. The trace from an arbitrary state should be
given as a combination of the reference traces, with non-negative coefficients which sum up to
one3. The |g〉-thermal trace does not satisfy these constraints, if the extracted traces are used
as reference traces. The second problem was that the traces fluctuated almost on the order of
the thermal population during different runs, even though we made large amount of averages.

3Populations in the energylevels above the first three can be neglected, at the temperature and accuracy
we currently have.
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The extracted trace was sometimes outside the trace from the thermally excited ground and
sometimes inside. Figure 12 in appendix B illustrate these fluctuations by showing the traces
from nine experimental repetitions.
Finding the reason to why we see these inconsistencies, is still an unsolved problem. There
are a couple of possible issues in our experimental setup that could give rise to these faulty
outcomes and which need to be investigated. Firstly the single qubit rotations we use to
prepare our states might lack the needed accuracy. Since our method crucially depend on
that we prepare equal superposition states, inaccurate single qubit rotations can lead to a
problem. Another problem might be that we have low frequency noise in the instruments
we use in our experimental setup. The frequency might be such that the noise matters on
the timescale we use for averaging but is perhaps not low enough to be compensated by
calibration measurements.
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Figure 5: Solid curves show quadrature components of signals transmitted
through the resonator coupled to the transmon for the first three energy levels
in presence of thermal excitation. The dashed curves are extracted traces from
superposition traces.

Since we had these inconsistencies we wanted to try our method in a setting where the
accuracy was not as crucial. What we did was to essentially introduce artificial thermal
excitation by initially rotating our states by π

5 around the Y -axis of the Bloch sphere. Because
we prepared all states by performing rotations around the X-axis, this initial rotation around
the Y -axis essentially acts as sin2(π/10) ≈ 9.5 % extra thermal excitation. In Figure 6 we
show the traces we measure when we apply this artificial thermal excitation plus the traces
we extract from superposition states. By using the extracted as references traces in our
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analysis we can calculated the populations of the artificial thermal traces in terms of these
reference traces.
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Figure 6: Same setting as in Figure 5 but during all state preparations an initial
π/5-pulse around the Y -axis was applied.

The computed total thermal excitation was found to be approximatley 11 %, see Figure 7.
The total thermal excitation should be the real thermal excitation plus the artificial and
since we expect the real thermal excitation to be 5− 6 %, what we found is to low.
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Figure 7: Populations of the three solid traces in Figure 6 in terms of the three
dashed.

3.3 From single-shot traces

Here I present experimental results from using the method presented in section 2.3.2 to
extract references traces corresponding to the eigenstates. In Figure 3 we saw that the points
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from the integrated traces gather in two regions in the IQ-plane which correspond to getting
a measurement outcome g or e respectively. The coordinate system in the IQ-plane has been
rotated such that the separation between these regions is mainly in one quadrature. This
allow us to look at these points in a histogram over this quadrature, as shown in Figure 8.
The red histogram is bimodal with a higher peak to the left and a smaller to the right. The
smaller is due to the thermal excitation. We can see a similar shape for the blue histogram
but mirrored. This is because the |e〉-thermal state is prepared by swapping the pg and
pe populations of the thermally excited ground state. What also can be seen for the blue
histogram is a slight tail on the left side of the higher peak. This is due to decay from the
excited state to the ground. In the histogram we have also specified two intervals in red
and blue. Traces with an integrated point inside for example the red interval are with high
probability traces corresponding to the eigenstate |g〉 and the same for the blue interval and
the state |e〉.
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Figure 8: Histogram of the data points in Figure 3 along the I quadrature.

In Figure 9 I show the traces we find when we average over the traces in the red and blue
regions in Figure 8 respectively. Also included in Figure 9 are the traces from the thermally
excited g and e states. Notice that the |g〉-extracted trace is further from the |e〉 traces than
the |g〉-thermal. This is what we expect and the problem we had with the data in Figure 5
regarding this, is not present here. Another thing to note is that the |e〉-extracted trace will
not compensate for decay. The reason for this is that we do not include the tail of the blue
histogram in our averaging.
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Figure 9: Quadrature components of averaged traces. The solid curves are the
average of the red and blue sets of traces in Figure 8 respectively. The dashed
are the same but when only using the traces inside the red and blue intervals in
Figure 8.

Since the |e〉-extracted trace does not compensate for decay, we will be able to see the
decay when we compute the populations of a state. This can be seen in Figure 10, where
we used the extracted traces in Figure 9 as reference traces to calculate the populations
of the thermally excited states. The decay can be seen by comparing the pe population of
the |g〉-thermal state with the pg population of the |e〉-thermal state. Since their difference
is 8.10 % − 6.21 % = 1.89 %, we can see that we roughly have a 2 % decay during our
measurement.
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Figure 10: Populations of the two solid traces in Figure 9 in terms of the two
dashed.
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As discussed in section 2.4, we need to find the density matrix to fully characterize a state.
To do this, we need the populations in the eigenstates for the state itself and for the states we
get by performing the following rotations Xge(−π/2), Yge(−π/2) and Xge(π). We have done
this for the thermally excited ground state by decomposing the traces from the prepared
states in terms of the extracted reference traces in Figure 9. Using these populations we
could calculate the density matrix, which is illustrated in Figure 11.

Figure 11: Density matrix of the thermally excited ground state of the qubit.

In matrix-form the density matrix was found to be,

ρ ≈

 0.922 0.0
0.0 0.067

+ i

 0.0 −0.008
0.008 0.0

 . (3.1)

The density matrix we found is not normalized, that is Tr(ρ) < 1. This is because the
population in the g-state of the thermally excited e-state is larger than the population in the
e-state of the thermally excited g-state. Which in turn is due to decay, as pointed out earlier
in this section.
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4 Conclusion
In this project we have investigated how to extract state populations of a qubit from signals
transmitted through a resonator coupled to a qubit. We have looked at the quadratures of
the signal and used linear algebra to calculate the populations. Our method works well on
experimental data if one has access to correct reference traces, that is if we can find the
traces corresponding to the eigenstates. The two methods we have proposed to find correct
reference traces work theoretically but when we use them on experimental data we found
some problems and in particular a lack of sufficient accuracy. For the method where we
extract reference traces from superposition traces, we could clearly see fluctuations between
experimental repetitions. We did not however, have the same amount of data for the method
using single-shot traces, due to lack of time. This prevented us from investigate if fluctuations
is also a problem for single-shot method. Although we suspect this to be the case, it is
something that should be studied further. We believe that the origin of these problems
might be due to inaccurate single qubit rotations or low frequency noise in our instruments.
In future projects these problems should be investigated further, since these inconsistencies
between theory and experiment might be important in other aspects of our experimental
setup.
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A Mathematica code

A.1 FCNNLS

The Mathematica function fcnnls(M,A) (line 1-84) returns a matrix X. The i-th column
of X are the non-negative least-squares solution to the equation Mx = ai, where ai is the
i-th column of A. The function fcnnls uses a subfunction cssls (line 86-113) also presented
below. Both functions have been translated into Mathematica code from the MATLAB code
presented in a paper by Benthem and Keenan [Van Benthem 04].

1 f c n n l s [M_, A_] / ; Dimensions [M,1]== Dimensions [A, 1 ] :=
2 Module [ { nObs , lVar , pRHS, W, i t e r , maxiter , CtC , CtA , K, Pset ,
3 Psetindex , D, Fset , Hset , nHset , alpha , i , j , hIdx , negIdx ,
4 alphamin , minIdx , idx2zero , Jset , mx, mxidx } ,
5
6 {nObs , lVar } = Dimensions [M] ;
7 pRHS = Dimensions [A ] [ [ 2 ] ] ;
8 W = ConstantArray [ 0 , { lVar , pRHS } ] ;
9 i t e r = 0 ; maxiter = 3 lVar ;

10
11 (∗ Precompute p a r t s o f p s e u d o i n v e r s e ∗)
12 CtC = M\ [ Transpose ] .M; CtA = M\ [ Transpose ] . A;
13
14 (∗ Obtain the i n i t a l f e a s i b l e s o l u t i o n and c o r r e s p o n d i n g p a s s i v e s e t ∗)
15 K = c s s l s [ CtC , CtA , { } ] ;
16 Pset index = P o s i t i o n [K, _? P o s i t i v e ] ;
17 Pset = Normal [ SparseArray [ Pset index −> 1 ] ] ;
18 K = ReplacePart [K, P o s i t i o n [K, _? NonPosit ive ] −> 0 ] ;
19 D = K;
20 Fset = P o s i t i o n [ FreeQ [# , 0 ] & /@ ( Pset \ [ Transpose ] ) , F a l s e ] // F l a t t e n ;
21
22 (∗ Active s e t a l g o r i t m f o r NNLS main loop ∗)
23 While [ Length [ Fset ] > 0 ,
24 (∗ Solve f o r the p a s s i v e v a r i a b l e s ( u s e s s u b r o u t i n e below ) ∗)
25 K [ [ ; ; , Fset ] ] = c s s l s [ CtC , CtA [ [ ; ; , Fset ] ] , Pset [ [ ; ; , Fset ] ] ] ;
26
27 (∗ Find any i n f e a s i b l e s o l u t i o n s ∗)
28 Hset = Fset [ [ P o s i t i o n [ MemberQ[# , _? Negative ] & /@ (K [ [ ; ; , Fset ] ] \ [ Transpose ] ) , True ] // F l a t t e n ] ] ;
29
30 I f [ Length [ Hset ] > 0 ,
31 nHset = Length [ Hset ] ;
32 alpha = ConstantArray [ 0 , { lVar , nHset } ] ;
33
34 While [ Length [ Hset ] > 0 && ( i t e r < maxiter ) ,
35 i t e r ++;
36 alpha [ [ ; ; , ; ; ] ] = I n f i n i t y ;
37
38 (∗ Find i n d i c e s o f n e g a t i v e v a r i a b l e s i n p a s s i v e s e t ∗)
39 hIdx = P o s i t i o n [ Pset [ [ ; ; , Hset ] ] , 1 ] \ [ I n t e r s e c t i o n ] P o s i t i o n [K [ [ ; ; , Hset ] ] , _? Negative ] ;
40 negIdx = Join [ { hIdx [ [ ; ; , 1 ] ] } , { Hset [ [ hIdx [ [ ; ; , 2 ] ] ] ] } ] \ [ Transpose ] ;
41 Table [
42 alpha [ [ hIdx [ [ i , 1 ] ] , hIdx [ [ i , 2 ] ] ] ] =
43 I f [ ( (D[ [ # [ [ 1 ] ] , # [ [ 2 ] ] ] ] − K[ [ # [ [ 1 ] ] , # [ [ 2 ] ] ] ] ) &[
44 negIdx [ [ 1 ] ] ] ) == 0 ,
45 I n f i n i t y , (D[ [ # [ [ 1 ] ] , # [ [ 2 ] ] ] ] / (D[ [ # [ [ 1 ] ] , # [ [ 2 ] ] ] ] −
46 K[ [ # [ [ 1 ] ] , # [ [ 2 ] ] ] ] ) ) &[ negIdx [ [ i ] ] ] ] ; , { i ,
47 Length [ negIdx ] } ] ;
48 {alphamin , minIdx} = Table [ { Min [ alpha [ [ ; ; , i ] ] ] , P o s i t i o n [ alpha [ [ ; ; , i ] ] , Min [ alpha [ [ ; ; , i

] ] ] ] [ [ 1 , 1 ] ] } , { i , nHset } ] \ [ Transpose ] ;
49 alpha = Table [ alphamin , { i , lVar } ] ;
50 D [ [ ; ; , Hset ] ] = D [ [ ; ; , Hset ] ] − alpha ∗(D [ [ ; ; , Hset ] ] − K [ [ ; ; , Hset ] ] ) ;
51 i d x 2 z e r o = Join [ { minIdx } , { Hset } ] \ [ Transpose ] ;
52 D = ReplacePart [D, i d x 2 z e r o −> 0 ] ;
53 Pset = ReplacePart [ Pset , i d x 2 z e r o −> 0 ] ;
54 K [ [ ; ; , Hset ] ] = c s s l s [ CtC , CtA [ [ ; ; , Hset ] ] , Pset [ [ ; ; , Hset ] ] ] ;
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55 Hset = P o s i t i o n [ MemberQ[# , _? Negative ] & /@ (K\ [ Transpose ] ) , True ] // F l a t t e n ;
56 nHset = Length [ Hset ] ;
57 ] ;
58 ] ;
59 (∗Make s u r e the s o l u t i o n has converged ∗)
60 I f [ i t e r == maxiter , (∗ Error ∗) i t e r ; ] ;
61
62 (∗ Check s o l u t i o n s f o r o p t i m a l i t y ∗)
63 W[ [ ; ; , Fset ] ] = CtA [ [ ; ; , Fset ] ] − CtC .K [ [ ; ; , Fset ] ] ;
64 J s e t =
65 P o s i t i o n [
66 FreeQ [# ,
67 F a l s e ] & /@ (Map[# <= 0 &,
68 Boole [ Map[# == 0 &, Pset [ [ ; ; , Fset ] ] , {−1}]]∗
69 W[ [ ; ; , Fset ] ] , {−1}]\[ Transpose ] ) , True ] // F l a t t e n ;
70 Fset = Complement [ Fset , Fset [ [ J s e t ] ] ] ;
71
72 (∗ For non−optimal s o l u t i o n s , add the a p p r o p r i a t e v a r i a b l e to Pset ∗)
73
74 I f [ Length [ Fset ] > 0 ,
75 mx = Boole [ Map[# == 0 &, Pset [ [ ; ; , Fset ] ] , {−1}]]∗W[ [ ; ; , Fset ] ] ;
76 mxidx =
77 Table [ P o s i t i o n [mx [ [ ; ; , i ] ] , Max [mx [ [ ; ; , i ] ] ] ] [ [ 1 ] ] , { i ,
78 Dimensions [mx ] [ [ 2 ] ] } ] // F l a t t e n ;
79 Pset = ReplacePart [ Pset , Join [ { mxidx } , { Fset } ] \ [ Transpose ] −> 1 ] ;
80 D [ [ ; ; , Fset ] ] = K [ [ ; ; , Fset ] ] ;
81 ] ;
82 ] ;
83 K
84 ] ;
85
86 c s s l s [ CtC_List , CtA_List , Pset_List ] :=
87 Module [ {K, lVar , pRHS, codedPset , s o r t e d P s e t , s o r t e d E s e t , breaks ,
88 breakIdx , c o l s 2 s o l v e , vars , v a r s i n d e x } ,
89
90 K = ConstantArray [ 0 , Dimensions [ CtA ] ] ;
91
92 I f [ Pset == {} | | FreeQ [ Pset , 0 ] ,
93
94 K = I n v e r s e [ CtC ] . CtA ; ,
95
96 { lVar , pRHS} = Dimensions [ Pset ] ;
97 codedPset = 2^ Range [ lVar − 1 , 0 , −1]. Pset ;
98 s o r t e d P s e t = Sort [ codedPset ] ;
99 s o r t e d E s e t = Ordering [ codedPset ] ;

100 breaks = D i f f e r e n c e s [ s o r t e d P s e t ] ;
101 breakIdx = Join [ { 0 } , P o s i t i o n [ breaks , _? P o s i t i v e ] // Flatten , {pRHS } ] ;
102
103 Do [
104 c o l s 2 s o l v e = s o r t e d E s e t [ [ Range [ breakIdx [ [ k ] ] + 1 , breakIdx [ [ k + 1 ] ] ] ] ] ;
105 v a r s = Pset [ [ ; ; , s o r t e d E s e t [ [ breakIdx [ [ k ] ] + 1 ] ] ] ] ;
106 v a r s i n d e x = P o s i t i o n [ vars , 1 ] // F l a t t e n ;
107 K [ [ vars index , c o l s 2 s o l v e ] ] = PseudoInverse [ CtC [ [ vars index , v a r s i n d e x ] ] ] . CtA [ [ vars index ,

c o l s 2 s o l v e ] ] ;
108 , {k , Length [ breakIdx ] − 1 } ] ;
109
110 ] ;
111
112 K
113 ] ;
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A.2 Using JOptimizer in Mathematica

The Mathematica funtion nonnegLSJava(M, b) (line 51-66) returns a vector which is the
least-squares solution to the equationMx = b. Options can be given to the function such that
the solution is both non-negative and normalized by setting positive -> True and normalized
-> True. Normalized means that the elements of the solution sum up to one, ∑i xi = 1. The
function nonnegLSJava transform the least-squares problem into a quadratic programming
problem and then calls a function qpJava (line 11-47) to solve this. The function qpJava uti-
lizes a Java-package called JOptimizer4. To use Java-packages these have to be implemented
to Mathematica through the JLink (line 1-7). Furthermore, the JOptimizer uses four other
Java-packages called commons-math, commons-logging, commongs-lang and Colt.

1 Needs [ " JLink ‘ " ] ;
2 I n s t a l l J a v a [ ] ;
3 J a v a p a c k a g e s d i r = "Q: \ \USERS\\ Axel \\ Java \\ Javapackages " ;
4 f i l e s = { " \\ j o p t i m i z e r −3 . 4 . 0 . j a r " , " \\commons−math3−3.5. j a r " ,
5 " \\commons−l o g g i n g −1.2. j a r " , " \\ c o l t . j a r " ,
6 " \\commons−lang3 −3.4. j a r " } ;
7 AddToClassPath [ S t r i n g J o i n [ Javapackagesdir , #]] & /@ f i l e s ;
8
9 Options [ qpJava ] = { t o l F e a s −> 10.^−12 , t o l −> 10.^−12 ,

10 p o s i t i v −> True , normal ized −> True } ;
11 qpJava [P_, q_ , Aeq_ , beq_ , Gineq_ , cineq_ , initPoint_ ,
12 OptionsPattern [ ] ] := JavaBlock [
13 Module [ { nrOfVar , o b j e c t f u n c , or , ineq , opt } ,
14 nrOfVar = Dimensions [ P ] [ [ 2 ] ] ;
15
16 o b j e c t f u n c =
17 JavaNew [ "com . j o p t i m i z e r . f u n c t i o n s . \
18 PDQuadraticMult ivariateRealFunction " , P, q , 0 ] ;
19
20 or = JavaNew [ " com . j o p t i m i z e r . o p t i m i z e r s . OptimizationRequest " ] ;
21 or@setF0 [ o b j e c t f u n c ] ;
22 o r @ s e t I n i t i a l P o i n t [ i n i t P o i n t ] ;
23 I f [ OptionValue [ normal ized ] ,
24 or@setA [ Aeq ] ;
25 or@setB [ beq ] ;
26 ] ;
27 or@setToleranceFeas [ OptionValue [ t o l F e a s ] ] ;
28 or@setTolerance [ OptionValue [ t o l ] ] ;
29 I f [ OptionValue [ p o s i t i v ] ,
30 LoadJavaClass [ " java . lang . r e f l e c t . Array " ] ;
31 i n e q =
32 JavaNew [ " [ Lcom . j o p t i m i z e r . f u n c t i o n s . \
33 L i n e a r M u l t i v a r i a t e R e a l F u n c t i o n ; " , nrOfVar ] ;
34 Do [ Array ‘ s e t [ ineq , i − 1 ,
35 JavaNew [ "com . j o p t i m i z e r . f u n c t i o n s . \
36 L i n e a r M u l t i v a r i a t e R e a l F u n c t i o n " , Gineq [ [ i ] ] , c i n e q [ [ i ] ] ] ] ; , { i ,
37 nrOfVar } ] ;
38 or@setFi [ i n e q ] ;
39 ] ;
40
41 opt = JavaNew [ "com . j o p t i m i z e r . o p t i m i z e r s . JOptimizer " ] ;
42 opt@setOptimizationRequest [ or ] ;
43 opt@optimize [ ] ;
44
45 opt@getOptimizationResponse [ ] @getSolut ion [ ]
46 ]
47 ]
48
49 Options [ nonnegLSJava ] = { t o l F e a s −> 10.^−12 , t o l −> 10.^−12 ,

4Documentation about JOptimizer can be found under http://www.joptimizer.com/
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50 p o s i t i v −> True , normal ized −> True } ;
51 nonnegLSJava [M_, b_, OptionsPattern [ ] ] :=
52 Module [ {P, q , nrOfVar , Aeq , beq , Gineq , cineq , i n i t P o i n t } ,
53 P = 2 M\ [ Transpose ] .M // N;
54 q = −2 M\ [ Transpose ] . b // N;
55 nrOfVar = Dimensions [M] [ [ 2 ] ] ;
56 Aeq = ConstantArray [ 1 , {1 , nrOfVar } ] // N;
57 beq = {1} // N;
58 Gineq = −I d e n t i t y M a t r i x [ nrOfVar ] // N;
59 c i n e q = ConstantArray [ 0 , nrOfVar ] // N;
60 i n i t P o i n t = ConstantArray [ 1 / nrOfVar , nrOfVar ] // N;
61
62 qpJava [ P, q , Aeq , beq , Gineq , cineq , i n i t P o i n t ,
63 t o l F e a s −> OptionValue [ t o l F e a s ] , t o l −> OptionValue [ t o l ] ,
64 p o s i t i v −> OptionValue [ p o s i t i v ] ,
65 normal ized −> OptionValue [ normal ized ] ]
66 ]
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B Fluctuations
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Figure 12: Nine experimental repetitions to illustrate fluctuating results. Solid
curves show quadrature components of signals transmitted through the resonator
coupled to the transmon for the first three energy levels in presence of thermal
excitation. The dashed curves are extracted traces from superposition traces.
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