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Abstract

The aim of this brief project is to explore the theoretically claimed

resilience of quantum gates based on the Berry phase to open system

e↵ects such as noise. This has been done by simulating the gate in

the presence of gaussian white noise first, and implementing it in an

experiment subsequently. Particular attention has been paid to the

numerical creation of noise. As an ultimate step, the results of both

simulation and experimental measurement have been compared to the

theory. We noticed a very good agreement in the average phase both

in the presence and in the absence of noise for both simulation and

experiment. A more limited agreement with theoretical predictions is

displayed by other quantities (e.g. visibility).
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1 Introduction

In recent years, physicists have been trying to develop methods to implement
a completely new concept of computation based on quantum e↵ects such as
entanglement or spin. This would allow, besides the application of quantum
algorithms such as the Grover search algorithm, which are expected to solve
so-called NP problems in polynomial time, a deeper understanding of the
fundamental laws of quantum mechanics and the possibility of more faithful
quantum mechanics simulations.

On the other hand, an hypothetical quantum computer should satisfy
some requirements, as mentioned in the famous 5 + 2 DiVincenzo criteria
[1]. Various possible architectures for quantum gates have been proposed
(e.g. superconducting circuits [2], ion traps [3], semiconductor quantum dots
[4], NMR [1]). Each of them displays di↵erent features, making them more or
less promising with respect to the one or to the other of these requirements.

In particular, each of these architectures has to guarantee a long coherence
time of the quantum system in order to be able to perform operations, and
still read out the result of the computation. One of the most important
elements triggering the decoherence of the qubit is of course its interaction
with the environment inducing noise.

It is usually very di�cult to avoid such fluctuations, in particular in the
case of a possibly wide application of these quantum devices and to use them
in non ideal situations, i.e. di↵erent from those of experimental laboratories.
It is therefore desirable for a quantum device to be resilient to open system
e↵ects.

A quantum gate claiming to display this feature is the quantum gate
based on Berry phase [5]. The fundamental idea of this gate is to use the
geometric rather than the dynamic phase of the qubits’ quantum state to
perform computations. In fact the Berry phase is only dependent on the
path followed by the Hamiltonian of the system and not on the time needed
to complete it, and is therefore claimed to be only slightly a↵ected by noise.

Our purposes in this brief project are to explore both theoretically (by
means of theoretical investigations and simulations) and experimentally (by
physically applying noise) the response of the gate to di↵erent kinds of noise.
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2 Theory

In this section we explore in a purely theoretical way how the Berry phase of
a spin-1/2 particle is a↵ected by fluctuations in the control parameters, with
the control parameters varying cyclically in the parameter space.

2.1 Fundamental concept

As mentioned in the introduction, the geometric phase gates are believed to
be a very interesting candidate for noise-resilient quantum gates. In short,
for the example of a spin-1/2 particle in a magnetic field B varying cyclically
and adiabatically, this is due to the fact that the geometric phase has a
geometric nature, i.e. its magnitude is not determined by the dynamics of the
system (neither by energy nor by evolution time) but purely by the solid angle
subtended to the evolution path in the parameter space. In particular, in
the case of the magnetic field B precessing around the z-axis with precession
angle #, for a full precession cycle the geometric phase gained by the quantum
state |0i is given by:

�0
g

= �⇡(1� cos#) (1)

The dynamic phase can be easily calculated by integrating the Larmor
frequency over time. This has however not been done because it can cleverly
be cancelled out with experimental methods explained in Section 4.

2.2 Berry phase in a classical fluctuating field

After a generic investigation of the phenomenon we will now study in detail
how some experimentally relevant parameter of a spin-1/2 particle are af-
fected by the presence of a classical fluctuating field. In particular, we will
explore the parameters of Berry phase and visibility, where the latter is de-
fined as the length of the Bloch vector describing the system. The formulas
describing the evolution of such parameters formulas will the be extremely
useful for e.g. measurement predictions and comparison with actual measure-
ment results.
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2.2.1 Assumptions

In this theoretical analysis, we are making the following assumptions on the
experimental situation. All these assumptions except the third one coincide
with those made in Ref. [6].

1. Adiabaticity of the drive: the magnetic field B is varied adiabat-
ically, i.e. slowly with respect to the Larmor frequency, so that the
instantaneous energy eigenstates follow the direction of B.

2. Noise power: the noise intensity is assumed to be much smaller than
the control field B0 itself. This allows us to linearize most of the equa-
tions concerning the noise field.

3. Noise direction: the fluctuations of the drive field are assumed to
be only on the z direction. The x and y components of noise are not
a↵ected by noise. This is the only assumption which has not been made
in Ref. [6].

4. Adiabaticity of the fluctuating field: we assume that the fluctua-
tions are adiabatic.

5. Noise spectrum: the noise has been assumed to be part of an Ornstein-
Uhlenbeck (OU) process. In particular, this means that it is a Gaussian
process, it is Markovian with a Lorentzian spectrum. Further explana-
tions for these assumptions are given below.

In particular, according to Ref. [6], by assuming that the noise is describe
by an OU Process, is must display the following features:

• Gaussian Power Spectrum

The total noise per bandwidth unit which adds to the drive must be
Gaussian distributed with expectation value 0 and standard deviation
�3.

• Lorenzian Frequency Spectrum

In frequency space, the fourier spectrum of the noise must be Lorenzian
distributed around the average frequency f3 of the field with bandwidth
�3.
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Figure 1: Sketch of the e↵ect of noise on the state evolution in the Bloch
sphere [6].

• Markovian Process

A Markovian process is a memoryless process. This means that the
noise at a given time is not influenced by the precedent one.

2.2.2 Theoretical expectations

Under the assumptions listed above, we can compute the e↵ect of such a
noise on the geometric phase and on the visibility of the system by following
the steps described in Ref.[?]. First, we write the Hamiltonian of the system:

H(t) =
1

2
B

T

(t) · � (2)

where � = (�
x

, �
y

, �
z

), �
i

are the Pauli operators, and B

T

(t) is the total
applied magnetic field, which can be expressed as a sum of the drive field in
the absence of noise B0 and the noise field K

B

T

= B0 +K (3)

with K = K~e
z

because of the assumption made on the direction of the noise
field. The Hamiltonian of the system can therefore be explicitly rewritten:

H(t) =
1

2
[� ·B0(t) + �

z

K(t)] (4)
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In the absence of noise (K = 0), B
T

= B0 and the geometric phase acquired
by the system over the course of a cycle is given by:

�0
B

=

I
Ad� = ⇡ cos(#) (5)

whereA = h"
n

|r
�

| "
n

i is called Berry connection, | "
n

i are the eigenstates of
the system depending on the direction of B and � are the control parameters,
in this case the direction of B, and therefore the angles (#,'). It can be
proven that the # component of A vanishes, we will therefore restrict our
analysis to the A

'

component of the connection. In the case of non vanishing
noise (K 6= 0) we get for the Berry phase

�
B

= �0
B

+
⇡

T

Z
T

0


K

z

B0
� B0z

B3
0

B0 ·K
�
dt (6)

From this expression it can be shown that the probability distribution of �
B

is a Gaussian distribution as well, whose mean value is the noiseless Berry
phase �0

B

and whose standard deviation is

�2
�

= 2�2
z

✓
⇡ sin2 #0

TB0

◆2 
�T � 1 + e��T

�2

�
, (7)

where B0 = |B0|, #0 is the polar angle of the path without noise and T is the
period of one cycle. Furthermore, the variance of the dynamical phase can
be computed, and its e↵ects on the coherence of the system (the length of
the Bloch vector after having been averaged over the expected distribution of
results) have to be taken into account with the ones coming from the variance
of the geometric phase. It can be seen that the coherence of system after a
time T is shrunk by a factor exp(�2�2

↵

), where �
↵

is given by:

�2
↵

= 2
�2
z

B2
0

✓
⇡ sin2 #0

T
+B0 cos#0

◆2 
�T � 1 + e��T

�2

�
(8)

In the RHS of equation (8), we recognize two terms, one being of geometrical
nature (/ 1/T ) and the other of dynamical (/ B0 / !

Bohr

). In the adia-
batic regime we assumed before (T � 1/B0), the first term is much smaller
than the second. We can therefore conclude that the main contribution to
dephasing has dynamical rather than geometrical origin.

7



3 Simulations

After having studied the e↵ects of noise on the geometric phase of a spin-1/2
particle we are ready to simulate the e↵ects of noise on the geometric phase
acquired by the transmon, a solid state qubit embedded in a transmission
line.

For our purposes, the behavior of the transmon/resonator system is very
similar to the one of an atom interacting with an external EM field (for this
reason it is also called artificial atom). This system is therefore not exactly
equal to the one studied in section 2 because of the presence, in addition
to the ground and excited state, of higher energy levels. However, if kept
between the ground and first excited state, we expect its response to noise
to be very close to the one predicted above for a spin-1/2 particle.

3.1 Simulation code

The program chosen to run the simulations is Mathematica and the source
file has been written by slightly modifying an already existing simulation of
the Berry phase of the transmon without noise.

With this simulation, we want to describe our experimental setup as
closely as possible. In fact, the program describes a spin-echo experiment,
where the qubit is manipulated as shown in Fig. 2: after the Hamiltonian of
the system has run his cyclic path, a ⇡-pulse is applied and the Hamiltonian
runs the same path but this times backwards. In this way, the dynamical
phase is cancelled out, whereas the geometric phase is doubled.

In principle, the simulation solves the Schrödingier Equation of the system
in the rotating frame, where the Hamiltonian is given by:

H(t) =
1

2
� ·B

T

(t) =
1

2
[� ·B0(t) + �

z

K(t)] (9)

where in the case of the transmon qubit we have:

B

T

(t) =

0

@
⌦

x

⌦
y

�

1

A (10)

with � = !
q

� !
d

the detuning between the frequency of the qubit !
q

and
the frequency of the drive !

d

, (⌦
x

,⌦
y

) = ⌦(sin(�), cos(�)) are the I and Q
quadratures of the drive, with ⌦ the drive amplitude and � the drive phase.
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It is easy to notice that the Hamiltonian of this system is analogous to the
one describing a spin-1/2 particle in an external magnetic field as described
in Eq. 2.

The simulation program allows us to control all relevant parameters: de-
tuning, pulse duration, drive amplitude, direction of the path of the Hamil-
tonian (clockwise,anti-clockwise), adiabaticity, and the noise.

In order to simulate the response of our system to the application of
noise we have to apply a fluctuating field to the z-component of B

T

. In
our frame this is equivalent to keeping ⌦ fixed and shifting the detuning
around an average value �0. Because of the assumption of low frequency
of the noise, we can approximate it to be constant over a pulse sequence.
Our problem reduces therefore to applying a random normally distributed
constant detuning to the average detuning �0.

Figure 2: Sketch of the applied pulse sequence. In this figure it is displayed
how noise is applied to the system: the detuning in the absence of noise �0

(dashed red line) is shifted for every experiment by a random value so that
the final detuning � is given by the red continuous line.

In fact, the implemented noise generation method can be summarized as
follows: first, a sample of constant detuning pulses with detuning frequency
�0 was created. Then, a normal distributed random number with expecta-
tion value 0 and variance �3 (normal (o, �3) distribution) was generated for
every element of the sample and a constant function with that value was
added to the original detuning pulse.

The Berry phases acquired by the qubit for geometric spin-echo pulse
sequences with fixed drive amplitude and the detuning pulses of the sample
were then computed and collected in an histogram. This has been done to
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check wether the distribution of the geometric phase was a normal distribu-
tion as theoretically expected.

The same process has then been applied repetitively for increasing drive
amplitudes, in order to verify the consistence with the theoretical prediction
on the visibility as a function of the drive field intensity. In fact the solid
angle subtended to the path is closely related to the drive field intensity via

A = 2⇡

 
1� cos

 
arctan

 p
⌦2

x

+ ⌦2
y

�

!!!
,

where A is the sought for solid angle and
p

⌦2
x

+ ⌦2
y

is the drive amplitude.

3.2 Application of noise to the 2-level system

Here, simulations have been written in order to reproduce the results of
Ref. [6] and to predict the response of a 2-level system to external fluctuating
fields.

Di↵erent sample sizes and di↵erent drive amplitude ranges have been used
for the simulations. It is fundamental to use samples of su�cient size in order
get statistically relevant results.

3.2.1 Noise symmetry

Besides its power distribution, the application of noise undergoes some fur-
ther restrictions:

• Symmetry in the geometric sequence

During the application of the geometric sequence, the same noise de-
tuning has to be applied for both forward and reverse direction for the
spin-echo experiment. In fact, by adding di↵erent noises to the de-
tuning pulses before and after the spin-echo pi-pulse, the Hamiltonian
would not follow exactly the same path backwards as he did onwards,
and we would therefore get two di↵erent geometric phases for the two
paths, whose sum is no more linked to the geometric phase we are
interested in.

• Symmetry among the samples

Creating a fixed list of noise values, which is reused for every ampli-
tude at the beginning of the experiment leads to more regular results.
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This could be avoided by considering much larger samples, but this
would dramatically increase the computational cost of the process and
therefore the time needed to perform it.

The resulting geometric phase acquired by the system in the presence of
normally distributed constant detunings is shown in the histograms in Fig. 3.

K 

Figure 3: Distribution of applied noise detuning values and resulting phase
for repeated geometric sequence experiment with noise power of 2 · 5⇡ MHz
(equivalent to an FMDev value of 16 MHz) restricted to the first two levels.
Expected curve also plotted. Despite a good agreement between the expected
and actual curve of applied values of noise, the resulting phases are normally
distributed around the expected value, but the variance does not agree with
the theoretical one. The dimension of the sample is of 1000 elements.

The resulting phases and visibilities for sweeping amplitudes are also
shown in Fig. 4 for di↵erent noise variances.

An important remark is that according to Ref.[7], because of the par-
ticular type of measurement (spin-echo) �

↵

has to be scaled by a factor of
4.

3.3 Application of noise to the 3-level system

For the control parameters used in the experimental setup, approximating
the transmon by a 2-level system is not justified. This is due to the increased
ratio of Josephson energy to charging energy of the transmon, which brings
the frequency of the first transition (from ground to first excited state) near
to the one of the second transition (first to second excited state). Thus, our
system is occasionally excited to the second excited state and , even though
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Figure 4: Geometric phase and visibility resulting form the average of re-
peated numerical solution of the Schrödingier equation restricted to the first
two levels with �0 = �2⇡ 50 and normally distributed noise values as a
function of the solid angle described by the path of the Hamiltonian. For the
visibilities, the length of the averaged Bloch vector (red) and its projection
on the x-y plane (blue) have been plotted. A good agreement is displayed
with theoretically expected curves [5, 6] (shown by continuous lines).
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our computational subspace is spanned by the lowest two energy levels, we
have to take the third energy level of the artificial atom into consideration.
Therefore we extend our simulation to a 3 level system. In practice, we only
had to increase the number of levels of the quantum system from 2 to 3,
adapting the definitions of the Pauli matrices �

x

, �
y

, �
z

to a 3-dimensional
space.

Some of the results of the simulation are plotted in Fig. 5.
The resulting phases and visibilities as a function of solid angle are also

shown for di↵erent noise variances. Compared to the 2-level simulations, the
results for the 3-level system are less precise for large solid angles and have
a much greater computational cost.

3.4 Simulation of noise

Some attempts to simulate non-constant noise have been made, in order to
be closer to the experiment.

3.4.1 Lorentzian noise

In order to create noise described by an OU process, we begin by distribut-
ing some random Lorentzian distributed points in the frequency space with
expected value f3 and bandwidth �3, each of these points representing the
frequency of a mode of the future noise function. As a second step, we have
assigned to each of those points a real normal (0, �3) distributed random
number, where 0 is the expected value of the normal distribution and �3 is
its standard deviation. The assigned number represents in our simulation
the amplitude of the mode whose frequency was chosen in the previous step.
We now want to assign a random phase to the mode, and this has been done
by multiplying the amplitude value by a complex random number uniformly
distributed on the unit circle. As a last step, an inverse Fourier transform has
been applied to the generated points, and the resulting function is the wanted
noise function. Such a function and its power distribution are displayed in
Fig. 6.

3.4.2 White noise

We aim in this section to create a function displaying the features of bandwidth-
limited Gaussian white noise, i.e. a constant but low-pass filtered spectral
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Figure 5: Geometric phase and visibility resulting form the average of re-
peated numerical solution of the Schrödingier equation extended to the third
level with �0 = �2⇡ 50 and normally distributed noise values as a function
of the solid angle. For the visibility, the length of the averaged Bloch vector
(red) and its projection on the x-y plane (blue) have been plotted. A good
agreement is displayed with theoretically expected curves [5, 6] (shown by
continuous lines). For a more precise prediction of the geometric phase, the
theory has to be extended to the third level of the system as in Ref. [8].
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Figure 6: Noise Function with Lorentzian spectrum. The power distribution
of the created function is also shown with the expected one (blue continuous
line: normal (0, �3) distribution).

density and a Gaussian power distribution (the distribution of the values
assumed by the noise function should be normal with expected value 0 and
standard deviation �3). To this end we divide the time interval of our interest
(the one for which we want to create a noise function) into constant steps,
whose length is half of the minimum period of the noise oscillation (maximum
frequency component of the noise). To each of those points, a normal (0,�3)
number is assigned. These random numbers are intended to be the “peaks”
of our noise function, which is the given by a spline interpolating function
connecting all of them. A resulting function and its power distribution are
displayed in Fig. 7.

3.5 Discussion of the simulation results

The simulations restricted to the lowest two levels have shown a very good
agreement with the theoretically expected values in the case of very low
frequency noise (constant during every sample). In particular, the phase of
the qubit as a function of solid angle fits very well to Berry’s theory. There
are some discrepancies between theoretical and simulated visibilities. These
are probably due to the non-vanishing adiabaticity of the simulation.

Including the third level of the qubit in our simulations, we see that the
role of statistics becomes more relevant: the resulting phases and visibilities
are more widely distributed and we have to average more. The phase of the
qubit as a function of solid angle agrees with the theoretical values up to
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Figure 7: Noise Function with white bandwidth-limited spectrum. The power
distribution of the created function is also shown with the expected one (blue
continuous line: normal (0, �3) distribution).

threshold value (around A ⇡ 1.5 sr in Fig. 5), as well as the visibility of the
qubit. We then notice deviations from the expected values. They are due to
the presence of the higher levels.

A comparison between simulations and expected values therefore shows
that even slight variations from the theoretical assumptions, e.g. adiabaticity
or noise distributions, lead to discrepancies between theory and simulations.
Moreover, we see that for small noise powers, many samples are needed in
order to perform relevant comparison between theory and simulations.
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4 Experimental measurements

In order to verify experimentally the theoretical expectations and the simula-
tion results, we carry out measurements of the geometric phase of a transmon
exposed to noise.

A simplified circuit diagram of the experimental setup is displayed in
Fig. 8 below. For detailed explanation we refer to Refs.[8, 9].

Figure 8: Scheme of the measurement circuit [8]. Noise is applied only in
z-direction which in our system corresponds to a detuning fluctuating around
an average value �0. Concretely, this has been done by connecting a low-pass
filtered arbitrary wave generator (AWG) that outputs white gaussian noise
to the frequency modulation port of the signal generator used to produce the
o↵-resonant pulses.

4.1 Qubit calibrations

In a first part of the experiment, we calibrated the experimental setup in
order to measure the geometric phase and to observe its response to noise.
The calibration procedure can be summarized as follows:

• Resonance frequency
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The transition frequency !01 between the ground and first excited state
of the qubit has to be found. The DC o↵sets for the IQ-mixer sending
the resonant pulses have to be calibrated. Here, !01 = 5.112 GHz.

• Calibration of ⇡-pulses

The amplitude of the resonant ⇡ pulses has to be calibrated on x and
y quadratures.

• Amplification

After mixing, the microwave pulses are amplified before being sent to
the qubit. Calibration of the amplifier has to be performed.

4.1.1 Calibration check

To verify the calibration, we measured the resonator response after preparing
the qubit in the excited state |1i and fitted the results to the cavity-Bloch
equations. The results of those measurements for two di↵erent numbers of
averages are shown in Fig. 9.

4.2 Experimental parameters

The parameters of the geometric sequence used to perform our measurements
are listed in Tab. 1.

Parameter Experimental parameters Simulation parameters

Drive range ⌦ {0, 3, ..., 90} MHz {0, 5, ..., 150} MHz
Detuning �0 �35 MHz {�35,�50} MHz
Resonance freq. !01 5.112 GHz 30 MHz
⇡ pulse length 20 ns 10 ns
Averages ⇠ 2⇥ 106 103

Noise power {0, 1, ..., 16} MHz {0, 8, 16, 32} MHz

Table 1: Characteristic values of the listed parameters for both simulation
and experiment.

As mentioned in section 3.1 we directly measure the geometric phase be-
cause the dynamic phase of the qubit is cancelled out with the spin-echo
method. The complete state of the qubit was determined with state tomog-
raphy.
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4.3 Noise apparatus

Experimentally, the application of noise to the z-component of the Hamilto-
nian of our system, is achieved by adding noise to the average detuning �0.
To implement this in the experiment, the low-pass filtered output of an AWG
has been connected to the modulation port of the signal generator for the
o↵-resonant pulses. Three di↵erent filters have been used in our experiment,
with cuto↵ frequencies of 400 kHz, 500 kHz and 1 MHz. Keeping the AWG
output power fixed, at the modulation port of the signal generator the ampli-
tude of the noise pulses was scaled (the pulses were amplified) in order to set
the power of the noise sent to the qubit. In this way we produced gaussian
white noise at fixed power with the AWG, whose maximum frequency was
set by the low-pass filter and whose power was scaled before being added to
the average detuning �0.

The measurements are then carried out by measuring the geometric phase
as a function of the solid angle first, and remeasuring it while applying a range
of noises sweeping the FM modulated deviation of the signal generator.

4.4 Data analysis and results

The measurements of the experiment, voltage time traces, are stored and an-
alyzed to extract the qubit populations. Another Mathematica program then
compares the results from di↵erent noise amplitudes, plotting the visibility as
a function of solid angle for every noise amplitude and comparing it to theory.
A fitting of the experimental results with the theoretical curves have been
performed to deduce from the best fitting curve the values of applied noise
power according to Eq.8 without dynamic term. Because of the bad fits, this
process has actually been applied only to values of visibilities corresponding
to drive amplitudes below a certain threshold (usually ⌦

threshold

/2⇡ ⇡ 40
MHz). It is worth noticing that the visibility at zero drive amplitude is 1
for the simulated system, whereas experimental measurements display visi-
bilities around 0.8. This is due to the finite lifetime of the qubit, which is
assumed to be infinite in the simulations. We normalize the visibility di-
viding visibility results for di↵erent noises by the visibility measured for the
same probe without noise. So the visibility at zero drive is 1.

During the analysis process, we have found out that averaging over 2 ⇥
106 sample yielded to imprecise results. The number of averages per qubit
population measurement has then been doubled to 4⇥ 106.
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Figure 9: Population measurements for di↵erent numbers of averages done by
measuring the output voltages of the I and Q quadratures (blue and orange
points respectively) at the end of the resonator. It can be noticed they the
spread of the measurements is much bigger in the first plot (2⇥106 averages)
than in the second (4 ⇥ 106 averages). The fitting of the measurements to
the cavity-Bloch equations is also shown (continuous lines).

Figure 10: Experimental geometric phase measurements as a function of solid
angle are shown in the plot on the left both in the presence (blue crosses)
and in the absence (red points) of noise (FMDev = 16 MHz). No noticeable
di↵erence can be seen in the two cases. In the figure on the right a comparison
of the average geometric phase in the presence of noise (FMDev = 16 MHz)
for theory extended to the third level (green continuous line), simulations
(blue points) and experiment (red points). We see a good agreement in all
three cases.

In Figs. 11, 12 and 13, experimental visibility measurements and fit-
ting curves ignoring points corresponding to drive amplitudes larger than a
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threshold value ⌦
threshold

(indicated by a red line in the plots) are displayed
for the di↵erent low-pass filter implemented (respectively 400 kHz, 500 kHz
and 1MHz). The fitting curves are exp(��2

↵

/2), where �
↵

is given by Eq. 8
and the fitted parameters are �3 and �3.
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Figure 11: Visibility measurements for noise with 400kHz filter (2⇥106 aver-
ages) for di↵erent drive noise intensities (FMDev is respectively 16 MHz and
8 MHz). A fitting curve is plotted in the first image, whereas in the second
the points are so scattered with respect to the oscillation of the function that
no fit has been found. From the fitting curve, the applied noise power can
be deduced and compared with the actually applied one as in Fig. 14.
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Figure 12: Visibility measurements for noise with 500 kHz filter (4 ⇥ 106

averages) for di↵erent drive noise intensities (FMDev is respectively 16 MHz
and 12 MHz). Fitting curves are plotted as well.
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Figure 13: Visibility measurements for noise with 1 MHz filter (4 ⇥ 106

averages) for di↵erent drive noise intensities (FMDev is respectively 16 MHz
and 12 MHz). Fitting curves are plotted as well.
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Figure 14: Comparison between the actually applied noise power and the
one, which was deduced from the theoretical curves fitting the experimental
results of the visibility varying �3 and �3. Errors of the deductions are also
shown. We can notice a good agreement of the actual and deduced noise
power in the interval �

exp

2 [8, 15] MHz.
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4.5 Discussion of the experimental results

As in the simulations, we confirmed experimentally the importance of aver-
aging over more samples in order to balance the e↵ects of the intrinsic noise
a↵ecting our experiment (hindering us from single-shot measurements) and
to reduce the scatter in the measured visibilities. The agreement with theory
of the experimental results is good only in some ranges of noise power and
drive amplitude:

• For small noise powers (FMDev  6 MHz) the decrease in visibility is
small and the scatter in the measured visibilities is too large to make
fits.

• For too big amplitudes a sensible discrepancy with theoretical expec-
tations can be seen in every experimental plot. In fact, it can be seen
that a fit of only the measurements corresponding to drive amplitude
smaller than a given value display a good agreement up to the fitting
threshold and a strong disagreement above it. Fittings to all exper-
imental values did not work and have therefore not been displayed.
Reasons for this disagreement could be the non-Lorenzian form of ex-
perimental noise, as well as the possible role played by the strength of
the drive amplitude ⌦.

On the other hand, the average of the experimentally measured geomet-
ric phases as a function of drive amplitude agrees well with the averaged
geometric phase resulting from simulations extended to three levels.

Comparison between the deduced noise powers and the actually applied
ones (Fig. [?]) show that the fitting of a limited sample of experimental points
leads to realistic deductions only for an interval of noise powers.
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5 Conclusions and outlook

In this thesis the resilience to white gaussian noise of a Berry phase mea-
sured on a transmon has been both simulated and experimentally tested.
As expected, the Berry phase is not sensibly a↵ected by the presence of an
external fluctuating field.

Furthermore, measurements of the geometric phase and visibility of the
system have been compared to the theoretical predictions for a two levels
quantum system. Those predictions have been found to be appropriate for
experimental parameters in the intervals FMDev 2 [8, 15] MHz (correspond-
ing approximately to �

exp

2 [2.6 · 2⇡, 4.8 · 2⇡]) and ⌦/2⇡ . 50 MHz. Outside
those intervals of noise power and drive amplitude, discrepancies between
theory and experiment appear.

In the future, the models of noise studied in this project could be de-
veloped to describe the experimental noise more accurately, leading to an
understanding of the causes of the discrepancies between theory and experi-
ment and possibly to a theory ruled by more realistic assumptions.
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