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Abstract

The coupling of superconducting qubits to coplanar transmission line res-
onators has proven to be a fertile system to study the fundamental aspects
of light-matter interaction.

A major advantage of this particular physical implementation is that
the system’s key parameters that govern the interaction can be designed
in advance and fabrication is achieved under highly controllable conditions.
Moreover coupling constants can be realized with very high accuracy, which
allows to observe collective effects so far difficult to observe other system.
Especially those experiments are challenging, which require almost identical
coupling of multiple qubits to a single mode of the field. At the same
time coupling constants can be varied over several orders of magnitude,
which offers the possibility to perform and compare measurements in various
distinct parameter regimes.

In this thesis I will present how the collective dynamics in a strongly
coupled circuit QED system is explored to efficiently generate maximally
entangled multi-particle states. Thereby we explicitly take advantage of the
fact that the simultaneous interaction of multiple two-level systems with a
single mode of the field leads to a significant enhancement of the interaction.

The strong coupling allows for a coherent exchange of excitations between
two-level systems and the microwave field. For weak coupling in contrast,
the resonator simply acts as a controlled dissipation channel. As a conse-
quence any radiation that is emitted during collective dissipative processes
may be guided efficiently to a detection system, where it can be fully charac-
terized. Moreover experiments strongly benefit from the ability to observe
and compare collective decay dynamics for different, well-defined initial
states. Therefore superradiance, an effect mostly studied in large atomic
ensembles, has been studied in this thesis from a new and unforeseen quan-
tum mechanical point of view.

The results presented in this thesis indicate a promising path for future
investigations, where coherent and furthermore dissipative photon-atom in-
teractions may shed light on the essential concepts of quantum mechanics
and where collective dynamics may work as a key resource for practical
applications in the field of quantum information technology.
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Zusammenfassung

Die Kopplung von supraleitenden Qubits mit koplanaren Mikrowellenres-
onatoren hat sich als erkenntnisreiches System fiir die Untersuchung der ele-
mentaren Wechselwirkungsbeziehungen zwischen Licht und Materie gezeigt.

Ein grosser Vorteil dieser speziellen physikalischen Implementierung ist,
dass viele Kerngrossen, die die Wechselwirkung bestimmen, im Vorfeld ge-
plant und unter kontrollierten Bedingungen fabriziert werden kénnen. Ins-
besondere, die hohe Prazession, mit der die Kopplungskonstanten realisiert
werden kénnen, erlaubt die Beobachtung von kollektiven Effekten, wie sie in
vergleichbaren Systemen nur schwer realisierbar sind. Davon sind insbeson-
dere solche Experimente betroffen, bei denen nahezu identische Kopplung
mehrerer Qubits an eine einzelne Feldmode verlangt wird. Gleichzeitig
erlaubt die Tatsache, dass die Kopplungskonstanten iiber viele Grossenord-
nungen variiert werden kénnen, kollektive Dynamiken in unterschiedlichen
Parameterkonfigurationen zu messen und miteinander zu vergleichen.

In dieser Arbeit werde ich aufzeigen, wie die kollektive resonante Dy-
namik in einem stark gekoppelten supraleitenden Schaltkreissystem genutzt
werden kann um effizient maximal verschrinkte Vielteilchenzustinde zu
generieren. Dabei ist entscheidend, dass eine gleichzeitige Wechselwirkung
mehrerer Zwei-Niveau-Systeme mit derselben Feldmode, mit einer signifikan-
ten und nachweisbaren Beschleunigung der Wechselwirkung einhergeht.

Waiéhrend eine starke Kopplung den kohérenten Austausch von Anregung
zwischen dem Zwei-Niveau-System und dem Mikrowellenfeld erlaubt, stellt
der Resonator bei schwacher Kopplung einen kontrollierten Zerfallskanal
dar. Dadurch ist es moglich, die wahrend der kollektiven dissipativen
Dynamik entstehende Strahlung praktisch verlustfrei an Detektoren weit-
erzuleiten und umfassend zu charakterisieren. Bei unseren Experimenten
haben wir dabei speziell von der Moglichkeit gebraucht gemacht, Zerfille
fiir verschiedene, wohl-definierte Ausgangszustdnde, miteinander zu vergle-
ichen. Dies hat dazu gefiihrt, dass der bisher hauptséichlich in grossen
atomaren Ensembles beobachtete Effekt der Superstrahlung unter bisher
ungeahnten quantenmechanischen Gesichtspunkten studiert und bewertet
werden konnte.

Die in dieser Arbeit beschriebenen Resultate weisen einen vielversprechen-
den Weg fiir zukiinftige Projekte auf, bei der sowohl eine kohérente als auch
eine dissipative Licht-Atom Wechselwirkung wesentliche quantenmechanis-



che Konzepte in Erscheinung treten ldsst und bei denen die involvierten
kollektiven dynamischen Prozesse im Zuge der Quanteninformationsverar-
beitung gezielt zur Anwendung kommen koénnten.
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Introduction

Since its development, starting around the beginning of the 20th century,
the theory of quantum electrodynamics has celebrated a remarkable story
of success. It’s key statements are recovered from the insight that light and
matter are constituted of elementary, inseparable entities, namely quanta.
However, evidence for a quantization of the electromagnetic field were first
obtained independently of the discretization that was applied to the atomic
model by a quantization of its energy states. The classical description of
electromagnetic fields is governed by the Maxwell equations, which are sim-
ple and elegant. Nevertheless they were doomed to fail when it came to the
description of certain effects, such as the black-body radiation. Its ade-
quate explanation was achieved by Planck’s quantum hypothesis (1900),
which together with Einstein’s description of the photoelectric effect (1905)
was one of the early models that were based on a quantized field with the
photon being its elementary particle. The key success of quantum me-
chanics, in the sense of a quantization of atomic energy states (Bohr 1913,
de Broglie 1924, Schrodinger 1926) lay in explaining the spectral emission
lines of simple elements such as Hydrogen and explaining only empirical
justified predictions as for example Rydberg’s formula. A more rigorous
treatment of both quantum mechanics and the quantization of electromag-
netic fields was then accomplished by the work of Born, Heisenberg, Jordan
(all in 1925) and finally Dirac (1927), by describing the field as an ensem-
ble of harmonic oscillators and including interactions with a single charged
particle such as an electron in an atom. His effort of also respecting the



1 Introduction

invariance principles of special relativity was further pursued by Richard
Feynman, Freeman Dyson, Julian Schwinger and Din-Itiro, finally giving
quantum electrodynamics its modern face [Schwinger58].

In retrospective this development has led to the situation, that today’s
scientists are equipped with one of the most stringently tested theories al-
lowing for highly precise predictions of experimental results. One of the
main concepts that constitute the difference between a classical and quan-
tum description of nature are state superposition and entanglement. The
first includes the fact that the outcome of measurements can only be de-
scribed statistically. The statistical character of measurement outcomes
becomes even more relevant when two conjugate variables are to be deter-
mined out of multiple instances of the same experiment. In such a situation
the Heisenberg inequality asserts a fundamental limit about the information
that can be obtained over the system. Entanglement furthermore implies
that multiple particles cannot be described independently as their quan-
tum states may be highly correlated. It was shown by Bell (1964), and
later proven experimentally by Aspet (1982), that the concept of entan-
glement required physicists to abandon the concept of locality. Due to its
striking and nonintuitive properties, quantum mechanics has also raised a
lot of discussion. Because of dealing with the fundamental feasibility and
limitations of experimental observations, quantum theory has always been
subject to an intense philosophical debate. It was therefore the declared
goal of experimental scientist to resolve all confusion performing tests in the
laboratory to only leave to philosophy what overreaches the mathematical
framework. Obtaining control over the elementary particles that constitute
light and matter, i.e. atoms and photons, therefore was a ground-breaking
advance, as also reflected by the nobel prize in physics being awarded to
Haroche and Wineland (2012) for their development of pioneering methods
pursuing this goal. The application of various experimental optical tech-
niques to single quantum systems has given rise to a research field known as
quantum optics and in particular cavity QED. Those experiments involve
a high level of technical intricacy and comprise a high number of practical
challenges. However their complexity can be broken down to the simple
mutual interaction of a two-level system with a harmonic oscillator. Two-
level systems generally offer the possibility to store digital information,
by either being in the ground |0) or the excited state |1). The similar-
ity to classical bits, combined with the possibility of being in a quantum



superposition between those two distinct states, led to the fact that the
two-level system is often refereed to as quantum bit or qubit. Up to today
a variety of qubit systems have been identified as suitable testbeds for the
fundamental aspects of quantum electrodynamics. Next to Rydberg atoms
[Saffman10, Harochel3] and ions [Héffner08, Duanl0, Monroel3] this in-
cludes quantum dots [Hanson07, Awschalom13], photonic systems [Kok07],
nuclear spins [Vandersypen04], electron spins in diamond [Bernien13| and
superconducting circuits [Clarke08, Devoret13], a system, in which super-
conducting qubits are coupled to on chip-transmission line resonators. The
fascination of the latter mentioned field awakes from the macroscopic di-
mensions of superconducting qubits, even visible by bare eyes. This remark-
able property hints at the possibility that there is no principle limit for the
size of quantum objects, which will act according to the laws of quantum
mechanics as long as they are well isolated from their environment. Further-
more another reason why circuit QED has made tremendous progress in the
last ten years is because experiments can be simply designed and prepared
using standard nano-fabrication methods. This makes the system not only
interesting for fundamental research in quantum optics, but also for scal-
able solid state quantum information processing. The atom like-behavior
combined with the fact of being manmade devices is why superconducting
qubits also became known as "artificial atoms.” One of the main advan-
tages of this system is the outstanding control over the number of coupled
two-level systems and furthermore over their individual coupling rates with
respect to the resonator’s field mode. Depending on the design, coupling
rates can be varied over several order of magnitudes, which allows to en-
ter various regimes, such as the strong or bad cavity limit of circuit QED.
At the same time the spread in coupling rates for multiple qubit’s is low
enough such that they might be considered equal, which finally makes the
circuit QED architecture an ideal toolbox for the investigation of collective
resonant effects.






Concepts of circuit quantum electrodynamics

2.1 Superconducting transmon qubits

The basic idea of superconducting qubits can be understood by imagining
them to be built up out of the most basic components that can be found
in any electronic circuit. By taking a capacitor C' and placing it in parallel
width an inductor L we end up with a simple parallel LC' resonator. By
carefully choosing C' and L and exposing the resonator to a sufficiently low
temperature 17" we may expect this circuit to behave quantum mechanically.
Nevertheless due to its harmonicity the energy of adding a quanta is inde-
pendent of the number of quanta already present in the system. To make
the resonator act as a qubit, it is therefore required to add some nonlin-
earity. This nonlinearity can be introduced by a Josephson junction. This
junction is a barrier between two superconductors through which electrons,
bound into Cooper pairs, can tunnel coherently [Clarke06]. All Cooper pairs
inside a superconductor are condensed into a macroscopic state described
by a single wavefunction. This gives rise to the two relevant quantum me-
chanical variables for the Josephson junction, which are the phase difference
between the wavefunctions for each of the two superconducting electrodes ¢
and the difference of Cooper pairs 7 across the junction. The phase and the
number difference can be associated with the Josephson coupling energy E;
respectively the charging energy E.. Today a large variety of different su-
perconducting electronic circuits, involving flux-, phase- and charge qubits
are explored experimentally [Clarke08]. The latter one is also known as a



2 Concepts of circuit quantum electrodynamics

Figure 2.1: (a) False color microscope image of a superconducting qubit
(orange) coupled to resonator (blue). (b) SEM image of the SQUID loop
consisting of two parallel junctions. (¢) SEM-image of a single junction.

Cooper pair box (CPB) and is of special interest for the work presented
in this thesis. A micrograph of such a device, here coupled to a resonator,
is shown in figure 2.1(a). In the heart of the device is a superconducting
island connected via a Josephson junction to a reservoir. Physically the
Josephson tunnel junction is fabricated from two superconducting layers,
typically Aluminum, which are separated by a very thin (only a few nm
thick) insulating oxide layer as shown in figures 2.1(c) and 2.2(a).
The Hamiltonian of the CPB is given by [Devoret97]

Hy, = 4Ec(h —ngy)* — Ejcos §. (2.1)



2.1 Superconducting transmon qubits
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Figure 2.2: (a) Schematic image of a Josephson tunnel junction. Island
(dark blue) and reservoir (light blue) are connected by a single oxide layer
(orange). (b) The electronic circuit symbol for the Josephson junction be-
fore further simplification is represented by a capacitance in parallel with
a nonlinear inductance. (c) Effective circuit diagram of a transmon qubit
with a SQUID loop.

Reservoir

It describes the effective circuit shown in figure 2.2(c). The first term
can be associated with the excess charges on the island and the second
term is the Josephson energy, i.e. the energy that is associated with the
tunneling of a Cooper pair across the junction. It can be understood as
a measure for the overlap of the Cooper pair wavefunctions of the two
electrodes. 7 = —§/(2e) denotes the number of Cooper pairs transferred
between the islands and QAS is the gauge-invariant phase difference between
the superconductors. ng, = Q,/2e + C4V,/2e is the offset charge, where Q.
is some environment induced charge and CyV is the induced charge due to
the voltage applied using an external source. Both n and fy are expressed
in units of 2e. The charging energy is given by

62

= 5on (2.2)

Ec
and represents the energy needed in order to put an additional electron on
the island. Cx, = Cj+ Cp+ Cj is the total capacitance between island and
reservoir. The Hamiltonian can either be solved analytically in the phase
basis using Mathieu functions or by diagonalization when it is written in a
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Figure 2.3: (a-c) Eigenenergies E,, (m=0,1,2,3) of the qubit Hamiltonian
as a function of the offset charge ny for different ratios of E;/Ec. The
energies are given in units of the transition energy Ey; at ng = 1/2. (d)
Anharmonicity in units of E¢ as a function of E;/FEc. (Image courtesy
[Koch07, Steffen13al).

truncated charge basis, i.e the basis of eigenstates |n) of the Cooper pair
number operator 7 [n) = n |n) [Bouchiat98]. It then reads

Hgpy =4EcY (n—ng)*In)(n| — E; > (In){n+1] + [n+ 1)(n]). (2.3)

n

The concrete choice of the truncation depends on the ratio of E;/E¢c and
on the specific eigenstates of interest. The major drawback of the CPB
is the energy dependence on the gate charge, which in the presence of
charge noise leads to dephasing and decay. The transmon (transmission
line shunted plasma oscillation qubit) [Koch07] differs from the CPB by



2.1 Superconducting transmon qubits

a larger additional capacitance Cp between island and reservoir, resulting
in a higher ratio of E;/Ec. The basic idea of the transmon is that an
increase of this ratio leads to an exponential suppression of charge noise,
while the anharmonicity decreases with a weak power law only. The gate
charge dependence for different ratios of E;/E¢ is illustrated in figure 2.3.
In the limit (E;/E¢) > 1 equation 2.1 can be treated by perturbation
theory and leads to the following gate charge independent energy of the
transmon state m:

1 E
En~—-E;+8EcE; (m+2) —T5(6m2+6m+3). (2.4)

The ground to excited state transition energy is then given by

E01 = E1 — EO ~ (\/ SEJEC — Ec) (2.5)

and the anharmonicity o = E.y — Ege & —1.2 E¢ (see figure 2.3(d)). The
residual sensitivity of a transmon qubit to charge noise can be quantified
by the charge dispersion €, = Ey,(ng = 1/2) — E,;,(ng = 0), which is given
by

4m+5 3
€m ~ (—1)’”E02 — \/z (2?0) e~ V8E)/Ec (2.6)
As can be seen from this equation the charge dispersion is exponentially
decreasing with \/E;/FEc. Note that even though the transmon is almost
insensitive to DC-electric fields it still couples to AC electric fields resonant
to transitions frequencies of the transmon. The choice of E;/FE¢ is a trade-
off between a low charge dispersion and a sufficiently high anharmonicity to
enable fast manipulations of individual transitions. The Josephson energy
of a single junction depends on its geometry and material properties. If
the junction is split into two spatially separated junctions forming a su-
perconducting loop (see figure 2.1), the total Josephson energy becomes
flux dependent and can by tuned by applying an external magnetic field
inducing a magnetic flux ¢ to the loop, such that
&)
oS %0

Ej(¢) = Epas : (2.7)
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2.2 Coplanar waveguide resonators

2.2.1 General description of transmission line resonators

Coplanar waveguide resonators (CPWR) are based on a geometry that re-
sembles a coaxial line with the ground in the same plane as the center
conductor (see figure 2.4(a), which then is capacitively coupled to input
and output lines either via a simple gap or a interdigitated capacitor. The
main advantages of a CPW construction is the avoidance of uncontrolled
stray inductances and capacitances even for frequencies up to 10 GHz and
beyond. The small lateral dimensions and the 1D-architecture ensure a
very small mode volume and thus a very strong coupling to any dipoles
exposed to the electric field. Moreover the impedance is mostly defined by
the geometry and the dielectric constant of the substrate. As can be shown
a coplanar waveguide resonator can be mapped to a simple harmonic oscil-
lator, which then can be described quantum mechanically.

The nominal frequency is determined by the CPWR’s effective length
on the chip and the phase velocity v,,. The resonance condition for the
fundamental standing wave harmonic mode reads

Ao = 'Uph/VO =2l with Uph = 1/vVLiCy = c/,/eeff. (2.8)

eeff ~ 6.1 is the effective permittivity of the CPW [Pozarll, Simons01].
C; and L; are the capacitance and inductance per unit length. All three
values depend on the substrate material and the dimensions as denoted in
figure 2.4b and can either be obtained analytically using conformal mapping
techniques [Simons01], or more accurately from experimental data as well
as from finite element electrostatic simulations. By using the first technique
the capacitance per unit length Cj results in [Simons01]

K (ko)

C) = 4€0€effK(k‘6)

(2.9)

K is the complete elliptic integral with modulus ky = % and k{ =

\/1— k3.

The characteristic impedance of the CPW is given by Zy = ,/él and
typically chosen to be 50€2. The CPWR can be represented by the model
in figure 2.5. Though many of its useful properties strongly rely on its

10
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Figure 2.4: Coplanar waveguide resonator geometry. (a) Top view of a
CPW resonator of length [ with a gap capacitor of size g. (b) Cross section
of a CPW resonator. The center conductor has a width w and is spaced
by two gaps of width s to the ground plane. The metallization is typically
etched Nb of thickness ¢ ~ 200nm patterned via standard single layer
photo-lithography. The substrate is Sapphire with a thickness of 500 um
and a relative permittivity of e; ~ 11.

distributed element character it is helpful to restrict the treatment to a
single mode, which then can be represented by a lumped element circuit
as shown in figure 2.5. This model qualifies for a later quantization of the
circuit and also simplifies the calculation of important properties such as
the Q-factor and the resonance frequency. Moreover it is very useful to gain
a qualitative understanding of parasitic effects.

Mapping the distributed element model to a lumped element model (ne-
glecting material losses) results in the following relations [G6ppl09):

C= % (2.10)
201
Ln="5 (2.11)

where n is the mode number and [ is the length of the resonator. The
resonance frequency of a simple lumped element LC-oscillator is given by

1 . .
wo = i Using the expressions for Zy, C, L, and wy we can express C

11



2 Concepts of circuit quantum electrodynamics

and L, as a function of Zy and wqy by

T
C = 2.12
220&)() ( )
270
L, = . 2.13
" n2rw ( )

wp = 271y is the nominal frequency of the fundamental mode (n = 1). Once
the LC circuit is embedded between two coupling capacitances its nominal
frequency is shifted due to the capacitive loading of C; and C, of the input
and output line. This shift is given by

Vp, _ 1
148 V(OO G

Vp

(2.14)

v, corresponds to the desired frequency and v, is the nominal frequency for
a certain mode. C; and C, determine the desired external quality factor.
Choosing C, > C; allows to gain a factor of two in the signal on the strongly
coupled resonator output port going to the detection line. The loaded @ is
given by [Goppl09, Pozarll]

1 1 1
= + .
QL Qint Qext

Here the internal quality factor @, is in the order of 10° and most of
our resonators are in the overcoupled regime (Qert < Qint), Where Qr
is governed by Q.+ and the loaded quality factor can be fully controlled
by the choice of the coupling capacitances. If we further assume a perfect
impedance match between the resonator and its feedlines, the quality factor
is given by

(2.15)

Q- (4m?3n2Z3C2 + 1) (4n?3n2Z3C2% +1) (2.16)
- 8mgnZ3 (C? (8m23n2Z3C2 4+ 1) + C2)’ '

and in case of Cy, C; < C with C given by equation 2.12 we get

Q=17 = 1
v 8ugnnZ3(CE + CF)

(2.17)

For example if we desire v, = 7GHz for n=2 (first harmonic), dv =
k/2m = 100 MHz, an asymmetry C, = 10C; and take an impedance of

12
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out Cout
Figure 2.5: (a) Distributed element representation of an asymmetrically
coupled transmission line resonator. The input/output ports are coupled
via Cjn/Cour. The impedance of the input and output line is Ry, and the
capacitance and inductance per unit length are C; and L;. (b) Parallel LCR

oscillator representation of the transmission line resonator. A single mode
can be modeled with an effective capacitance C and inductance L.

() Cm

50 (2, we can use the system of equations 2.12, 2.14, 2.17 to solve for capac-
itances C, = 10C; = 92.5fF and a nominal frequency of v,—o = 7.25 GHz,
which according to equations 2.12 and 2.13 corresponds to L,—s = 0.35nH
and C = 1.38pF. Using equation 2.8 this results in an effective length of
about 16.7mm. The transmitted amplitude is given by the transmission
coefficient Sp; and can either be obtained from calculations of the trans-
mission ABCD matrix [Goppl09] or be derived by input output formalism
[Eichler13]. Around the resonance frequency the transmission coefficient
|So1|% can be approximated by a Lorentzian line shape

Tror(v) = T ov? (2.18)
Lor =40 .
Lf + (v —u)?
here 2C;C, \2
Ty =4 (7012 - Cg) . (2.19)

Once the obtained LC' oscillator is described quantum mechanically its
energy is given by diagonalization of the Hamiltonian

A 1
H:hwo(*-i-

5 a'a) (2.20)

with wy = 27 f the angular resonance frequency, @ and a' the usual ladder
operators of a quantum harmonic oscillator.

13



2 Concepts of circuit quantum electrodynamics

2.2.2 Finite element simulations

Given the capacitance values of the input and output ports of the res-
onator we are able to calculate its expected Q-factor. However the question
remains, how a desired capacitance relates to a specific design of our used
multi-finger capacitors. This problem can be resolved by modeling the
capacitor in a finite element electrostatic solver like Ansoft Maxwell. A
model for a 2x14 finger output-capacitor C, is shown in figure 2.6 (a). The
same can be done for the input capacitance C;, though it can be normally
neglected because we chose C, > C;. Taking these values together with
the analytically calculated values L and C' of our analogue circuit, we are
able to predict the resonator’s linewidth. This can be done either by using
equation 2.17 or by simulating the circuit 2.5(b) in a commercial microwave
modeling software such as AWR Microwave Office. The simulated response
is shown in figure 2.6(b). Fitting to a Lorentzian curve results in a width of
90.9 MHz, which is consistent with the fact, that this finger-capacitor was
designed for a resonator with x/27r=100 MHz.

However the capacitance calculated with Ansoft Maxwell only gives the
DC-value of our design. It is therefore advantageous to compare this number
to one obtained by electrodynamic finite element solvers such as SONNET.
This software is able to calculate the scattering S-matrix in dependence on
frequency. In fact any N-port network can be complectly described by a
scattering S-matrix. Next to finite element simulations of specific geome-
tries this matrix can also be obtained experimentally by vector network
analyzer measurements. The scattering S-matrix can easily be converted
one-to-one into equivalent matrices like the ABCD-matrix, the impedance
Z-matrix or the admittance Y-matrix [Pozar93]. Though each of this ma-
trices provides a complete description, the specified circuit or element is
considered as a "black box” (see figure 2.7(a)). Therefore, to attribute
some meaningful physical attributes to the network it is useful to translate
these matrices into an equivalent circuit containing a few idealized com-
ponents (see figure 2.7(b)). For a two-port reciprocal network the most
complex equivalent circuit in the m-configuration can be obtained from the
Y-matrix as shown in figure 2.7(b). It consists of three LC R-elements be-
tween N1-GND, N2-GND and N1-N2, where the latter is the most relevant
for our simulations. Once the admittance of a single LC R-subcircuit is
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2.2 Coplanar waveguide resonators

(a) (b)

Power S21
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Frequency [GHz]

Figure 2.6: (a) 2x14-finger capacitor as modeled in ANSOFT Mazwell.
The substrate is Sapphire and the metallization is assumed to be lossless.
The calculation gives a value of 143fF. (b) Linewidth calculation using
AWR Microwave Office

known the specific parameters of the idealized elements are related by

Y . C + 1 + R2 iwL
= W -_— - .
Lok R, WI2+ R WL2+ R2

(2.21)

Given the complex admittance matrix Y for two closely separated frequen-
cies the values of all four components are fully determined.

If the number of fingers of the coupling capacitors is large it is expected
that it shows additionally an inductive behavior at GHz frequencies and
its effective capacitance derivates from DC-calculations. Our calculated S-
matrix response is mapped to a Y-matrix, which then is mapped to the 7-
equivalent circuit. For DC and low-frequency it is expected that the device
acts as if solely consisting of the capacitive elements as marked in green. As
frequencies increase it is necessary to introduce a single inductive element
between node 1 and 2. For even higher frequencies we also have to introduce
inductances to ground. We have calculated the capacitance between node 1
and 2 up to 12 GHz for a 2x14-finger device as required for low Q-resonators.
Figure 2.7(c) shows how the values relate to the DC-performance. The
effective capacitance is increasing with higher frequencies, which effectively
result in a lower Q) of the resonator. It can be seen that even for frequencies
of about 7GHz a correction of about 20 % needs to be taken into account
with respect to the static response of the device. The calculated DC-value
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Figure 2.7: (a) General matrix-representations for a two-port reciprocal
network. (b) Equivalent circuit in the m-configuration. The overall Y-
matrix can be decomposed into Y-matrices for the three different LCR
subcircuits. (c) Effective capacitance C'(v) as obtained from simulations by
SONNET for a 2x14-finger capacitor.

of 135 fF is comparable to the one obtained by Mazwell namely 143 fF. The
discrepancy might be due to a different geometry of the boundary box and
the fact that Mazwell does not take into account the anisotropy of sapphire.
Moreover both results still contain numerical errors.

2.3 The coupling of a qubit to a resonator

2.3.1 Jaynes Cummings model in circuit QED

The energy of the transmon qubit is related to the share of the voltage drop
across its junction. This voltage might as well be provided by the strong
electric field of the transmission line resonator. In fact the two-dimensional
architecture leads to a very strong spacial confinement of the field mode and
the resulting small mode volume gives rise to large coupling rates, which
allow for a coherent exchange of energy, faster than the both subsystem’s
decoherence rates. It is discussed here how the coupled system is described
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2.3 The coupling of a qubit to a resonator

in the relevant circuit QED parameters and how a precise expression for
the coupling rate g can be obtained. The transmon Hamiltonian (equation
2.1) can be written in the basis of its uncoupled eigenstates |7)

Hyy = Y wili) i, (2.22)

with fw; being the energy of state |¢). The Hamiltonian of the combined
system including the Hamiltonian of the resonator (equation 2.20) reads

H=h> wli)(i| + hwpala + 1Y gi;1i) (j|(a + a'), (2.23)
i i,J
where the zero point energy was omitted. The coupling energies are given
by
hgij = 2eBVims(iln|j) = hgj; (2.24)

with 7 the Cooper pair number operator, Vi.,,s = g“’ﬁ, wo the frequency
of the fundamental mode (n=1). C, is the resonator’s effective capacitance
(see equation 2.12), § is the splitting parameter and can be derived from
the effective transmon network. If we use the approximation E; < E¢,
i.e. (i|n|j) being dominated by nearest neighbor couplings, j =i £+ 1, and
further take advantage of the rotating wave approximation (justified by the
coupling energy being small compared to the qubit and resonator transition
frequencies) equation 2.23 can be written in the eigenbasis of the transmon
Hamiltonian and leads to the generalized Jaynes-Cummings Hamiltonian

H=hY" wli){i| + hwyala + (hzgi,myi)@ + 1]at + h.c.> . (2.25)
The coupling then is given by

2e hwon Jt1+1 [ Ejy >1/4
Jii+l nﬁ\/ 2C, \| 2 (SEC (226)

If we restrict our system to two levels the generalized Jaynes Cummings
Hamiltonian simplifies to the well known standard Jaynes-Cummings Hamil-
tonian

A hw,
H = hwala+ 70 +hg(ate_ + 6.a), (2.27)
—— ==
ﬁr ﬁa ﬁint
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2 Concepts of circuit quantum electrodynamics

consisting of the free field H,., the atomic H, and the interaction H;,; terms.
The coupling to mode n then is simply given by

hwon < E; )1/4
C. \8Ec¢ '

g:=go1 ~ ﬁ (2.28)
From equation 2.26 we see that the coupling increases for higher mode
numbers namely g ~ y/n. In fact knowledge about E; is not required for
the calculation as it can be expressed by using the relation

nwoy = \/ 8EJEC EC /h (2.29)

The fist experimental implementations of this Hamiltonian where achieved
by demonstrating the strong coupling of a single photon to a cooper pair
box [Wallraff04], the generation of single photons [Houck07] or the first
realization of a cavity bus architecture enabling the exchange of information
between two distinct qubits [Majer07].

The coupling of multiple two-level systems to a single mode is described
by the Tavis-Cummings Hamiltonian [Tavis68]

Hre = hwrala + Z ( w;6% + hg;(a's; + Aj&)) . (2.30)

This Hamiltonian comprises the nonlinear scaling of the coupling constant
with respect to the number of qubits, which is also discussed and exper-
imentally studied in [Fink10a]. For most of the experiments presented in
this thesis the transmon’s third level |3) is not exploited for any of the
preparations nor gates, still it is of relevance for some of the read-out and
calibration techniques.

2.3.2 Effective transmon network

So far it is not yet discussed how the parameter [ is obtained from the
geometry of the qubit, which consists of four basic structures: the ground
plane, the resonator, island and reservoir (see figure 2.8(a)). To resolve this
issue it is required to find the relation between the real transmon network,
shown in figure 2.8b, and the already introduced real capacitance network
as shown in figure 2.8c. The parameter 3 is given by

Cy

Bi=ct (2.31)
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2.3 The coupling of a qubit to a resonator

where Uy, = C; 4+ Cp+C;. The effective CY; is the sum of four capacitances
in parallel Cx,, = Cy + C'z + Ca3 + C; with Cj being the capacitance of
the Josephson junction and C; the capacitance of the transmon’s shunt
capacitor. The sum Cy = Cy + C} is obtained by replacing Ca3 and Cj
by a voltage source V and calculating the total capacitance Cy with Vj
being removed. Employing Kirchhoff’s rules [Burkhard12] this results in
the linear set of equations:

V= Vo + Vay,

V ="Via + Vi3,

V = Vig 4+ Via + Vay,
0=—Q12 — Qu4 + Q13,
0= Q11— Q21 + Q34.

We solve this equations for {V, Via, Vi3, Vau, Vaa} and use that Q;; = V;;C;;.
The total charge is given by

Q=Qi2+Qau=Qi3+ Q3 = %(Qw + Q24 + Q13 + Q34).

We then use the fact that C14, the capacitance between the millimeter-sized
resonator and ground, is large compared to all other involved capacitances
and we arrive at

Q  (Cr2+ C)(Cr13 + C34)

C = — = s
07V " Cia+Ciz+ Cou+ Csy

such that Cy is finally given by

(Cr2 + Ca4)(C13 + C34)
Cy = C Cj. 2.32
¥ 7 Cly+ Ci3 + Coy + Csy MR (2:32)

and the splitting parameter § = ‘%‘ = g—; comes down to [Burkhard12,
Steffen13a)

C12034 — C13C24

(Cr12 + C24)(C13 + C34) + (Cr2 + C13 + Cog + C34)(Caz + CJ()' )
2.33

8=
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2 Concepts of circuit quantum electrodynamics

2.3.3 Limitations of 7 due to capacitive gate line coupling

In practice the qubit and the resonator are mutually coupled as the qubit
state depends on the resonator voltage and vice-versa. However the qubit
might couple in a similar way to its charge gate line. Even if no intentional
voltage is applied on this lines their vacuum noise does have significant
influence on the qubit decoherence. It is possible to estimate a limit for
the qubit relaxation time given a certain charge line design. We therefore
perform a similar calculation as for the resonator coupling, but substitute
the resonator voltage with the charge line voltage. According to Fermi’s
Golden Rule, the relaxation rate for small gate voltage fluctuations is then

given by
OH
0]=|1
< oV >

Sy (w) = 2hwZ (2.35)

2
1
I =—

- Sy (w) (2.34)

where

is the voltage noise spectral density at the qubit transition frequency in the
low temperature limit [Schoelkopf02, Clerk10]. Like that the final expres-
sion for the qubit relaxation is given by

AhwZe® | Ey

r
! 12 2Fc

Bér (2.36)

where (¢, is the splitting parameter associated to the charge line. Another
way of expressing this relation is

4 2
1Ty =T = %. (2.37)

Here, gop, is now the coupling of the qubit to the charge line, calculated
using equation 2.24 where V,.,,s was replaced by 2hw?Z. The obtained
expression matches well to the expected expression for the decay into a
one-dimensional transmission line [Astafiev10].

2.3.4 Design aspects of a low g sample

The coupling rates can be varied by simply adjusting the parameter 8. It
can be seen from equation 2.33 that the symmetry of the transmon design
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2.4 Fabrication of superconducting devices

plays an important role. In fact even if the transmon is placed close to the
resonator on an antinode of its field, zero coupling can be obtained if island
and reservoir have the same capacitance to both resonator and ground. If
we want to design low g transmon qubits we thus use the symmetry of the
design as our key knob to obtain a certain small coupling rate. Therefore
we change the distance c¢ indicated in figure 2.8a. All capacitances in equa-
tion 2.33 are calculated by finite element electrostatic simulations in Ansoft
Mazwell. The resulting coupling g of the transmon qubit to the first har-
monic mode of the cavity as a function of ¢ is shown in figure 2.9a. Indeed
the obtained coupling rates are orders of magnitude lower than the typical
coupling rates of strong coupling circuit QED, which in contrast can be ob-
tained by a preferably asymmetric transmon design. As discussed, another
important characteristic of the transmon is the charging energy, which is
dominated by the capacitance between island and reservoir. We can tune
E. by changing the geometric parameter a (see figure 2.8a) without signifi-
cantly changing the symmetry and thus leaving g untouched. How specific
settings of a result in the simulated value for F, is shown in figure 2.9b.
Last but not least we have to take into account the qubit coupling to the
charge gate line. This value is aimed to be low in comparison to typical
expected intrinsic relaxation rates but still needs to be large enough to al-
low short microwave pulses without dissipating too much microwave power
into the cryogenic system. The gate line coupling can be changed by the
geometric parameter » and the simulated results are shown in figure 2.9c.

2.4 Fabrication of superconducting devices

The fabrication of the circuit QED building blocks discussed in this chapter
requires the ability to create micro- and nano-sized structures under clean
conditions. Therefore the superconducting circuits used in our experiments
are fabricated in the FIRST cleanroom facility for advanced micro- and
nanotechnology at ETH Zurich. The large structures, such as the resonator
and the qubit’s dedicated gatelines, are fabricated using photolithography.
For this purpose we use a commercially Nb sputtered 2-inch sapphire wafer
coated with a thin layer of photosensitive resist, e.g. Polymethylmethacry-
lat (PMMA). It is aligned with an externally ordered mask and exposed
with UV light. After development the niobium is etched using a reactive
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2 Concepts of circuit quantum electrodynamics

ion etcher RIE 76 from Ozford Instruments. A typical wafer comprises
up to 40 individual chips, which are separated using a dicing saw after a
special dicing protection has been spinned to protect the waver from small
sapphire debris. Both the initial photoresist and the protection layer are
removed using subsequent baths of Dimethylsulfoxid (DMSO), Aceton and
Isopropanol. Finally the chip is cleaned by an oxygen plasma. To fabricate
the qubits into their intended gap (see figure 2.1) electron beam lithogra-
phy is required as the resolution of our used UV photolithographic device
is insufficient to write structures such as the Josephson junction, which
are on the order of 100nm. This technique uses electrons accelerated to
30kV with a small enough de-Broglie wavelength, such that diffraction is
not the dominant limitation. Beam instability and insufficient collimation
limits the resolution to about 20nm. The used resist is a bi-layer resist,
where the bottom layer is P(MMA-MAA) pure and the top layer PMMA
950k pure 2:1 in Ethyl lactate. After exposure the development is done
using Methylisobutylketon (MIBK) in Isopropanol (1:3). To expose the
junction and in parallel the large transmon shunt capacitor we use a dou-
ble angle shadow evaporation technique inside a Plassys MEB 500, which
is a thin film physical vapor deposition system using electron beam evap-
oration of metals. After the Aluminum is evaporated the lift-off is done
either using Aceton or N-Methyl-2-pyrrolidon (NMP). The chip is then
glued and mounted into a printed circuit board. The transmission lines
on the microchip and those on the PCB are connected via Aluminum wire
bonds, placed manually onto the sample using a Westbond 747677E wire-
bonder. A more detailed discussion of the fabrication methods applied to
the circuit QED samples used for our experiments can be found in [Stef-
fen13a, Fink10a].

2.5 The Lindblad master equation

A versatile theoretical tool, which was used extensively throughout the
work of this thesis, in particular to describe the dynamics and steady state
solutions of the coupled system, is the von-Neumann equation, which is the
quantum mechanical analogue to the Lioville equation in classical statistical
mechanics. It reads

p(t) = —i[Ho, p(t)] (2.38)

22



2.5 The Lindblad master equation

and is used to describe the time evolution of the full quantum state of
the system expressed by the density operator p = Y pg |Vx) (Uk|, where
pr is the probability for measuring the pure state |¥j) inside a mixture.
Normalization requires Tr(p) = 1. Generally Tr(p?) < 1, which only gives
equality if p is describing a pure state. Hy is the Hamilton operator of the
system and in this thesis either represented by the Jaynes-Cummings or
Tavis-Cummings Hamiltonian. The expectation value for the measurement
of a general observable A is calculated by

(A) = Tr(pA) (2.39)

A more precise description of the dissipative dynamics of the quantum
mechanical system is provided by the Lindblad equation, which takes care of
the decoherence processes that go along with the dynamics. The evolution
is generally non-unitary and non-reversible because part of the information
is lost. In fact the Lindblad equation, which is also often simply referred to
as master equation, is the most general type of Markovian master equations
and allows to both include the qubit’s relaxation and its dephasing rates.
It is written as

1

5(0) =~ [Ho. (2.40)
+ g(2a,0aT —alap — pata) (2.41)
N . . . . . .
+3 %(zaz pot — ool p— polot) (2.42)
i
’y . .
+ 5 (020 = p) (2.43)

for N qubits coupled to a single mode of the cavity. For a single qubit and
under certain assumptions this equation can be solved analytically. Nev-
ertheless for the calculation of the collective dynamics numerical methods
were employed.
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(a) 1: Ground

4: Resonator

3:Island
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Figure 2.8: (a) Model of a transmon qubit coupled to a resonator as used
for finite element electrostatic simulations in Ansoft Mazwell. The design
aspects of this low g qubit are discussed in this chapter. (b) Full capaci-
tance network of the transmon coupled to CPW resonator. (Image courtesy
[Koch07])(c) Effective transmon network.
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Figure 2.9: (a/b) Dependence of the coupling g and the charging energy
E¢ on the two dimensions ¢ and a indicated in figure 2.8(a). (Note that
the coupling constant gets negative once f in 2.33 takes a negative value.)
(c) Charge line induced T1 as a function of the geometric dimension c.
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Measurement setup and principles

The quantum mechanical properties of qubits can only be revealed if they
are well isolated from their environment. However in order to carry out
experiments some degree of environmental coupling needs to be introduced
to the system if any information is to be extracted from it. A key challenge
therefore is to maintain the ability for state preparation and read out and at
the same time keep environmental influences such as high frequency noise,
magnetic noise and electric noise at a minimum, which affect the coherence
performance of the quantum system.

The energy of a single photon with a typical frequency of 7 GHz expressed
in temperature is 7' = hv/kp = 335mK. Allowing the qubit to be in the
ground state requires the ambient temperature to be well below this limit.
Dilution refrigerators are typically operated at a base temperature of about
20 mK, which would correspond to p = 5-1078 of the total population being
in the excited state.

As our experiments are performed at the single photon level, a very im-
portant aspect of the setup is the signal amplification. Even though most
of the used microwave equipment can be purchased commercially, its appli-
cation is more aimed on wireless transmission or radar applications, which
involves signals in the mW range, orders of magnitude higher than what is
dealt with in our experiments, typically about 10718 W.

In order to sample the microwave signal inside a GHz frequency range it
is required to down convert it to a frequency range, which can be digitized.
The same is true for the generation of microwave signals as for example used
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3 Measurement setup and principles

for state preparation. The typical bandwidth of our arbitrary waveform
generators is limited to 1 GHz, meaning that their signal needs to be up-
converted. A basic aspect of the used microwave-engineering practices is
analog and digital filtering of the signals to only the frequency range, which
contains the information related to the experiment.

3.1 Cryogenic setup

3.1.1 Dilution refrigerator

The cryostat used for the presented experiments in this thesis is a Triton200
dilution refrigerator from Ozxford Instruments. Without any thermal load
the base temperature of this system is specified to be 10 mK. The cryostat
uses two different cooling techniques. The 4 K stage is cooled by a pulse
tube cooler, which is based on a closed-loop refrigerant expansion cycle
of pure helium *He. The compressed refrigerant is periodically pumped
through two cold heads and thus removes part of the heat during each
cycle. To achieve mK temperatures a second cooling mechanism is used,
which is based on a mixture o 3He/*He. In the mixing chamber a 3He-
rich liquid helium phase floats on top of a *He-poor liquid helium phase.
The endothermic process of 3He evaporating from the concentrated phase
through the phase boundary into the dilute phase consumes energy. This
energy is thermally provided by the base plate, which as a consequence will
cool down. A more detailed discussion of the working principles of cryostats
can be found in [Pobell06, Enss05, White02]. The refrigerator consist of
several different stages, which are operated at different temperatures, their
name accordingly 50K, 4K, 900mK (or Still plate), 100 mK, 20 mK (or
base plate) (compare figure 3.1).

3.1.2 Aspects of cryogenic cabling

A typical circuit QED experiment requires microwave and DC cabling:
Charge gate lines to manipulate the qubit state, flux gate lines for fast
tuning of the qubit transition frequency, resonator input lines for the injec-
tion of coherent radiation, resonator output lines for signal detection and
DC bias lines to apply static magnetic fields using miniature coils. Each
refrigerator stage provides a certain cooling power, defined as energy that
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Figure 3.1: Schematic of the cryogenic microwave wiring: Resonator in-
and output lines (Rin, Rout), qubit charge- (C) and flux- (F) bias line.

can be dissipated per unit time while maintaining a specific temperature.
The 4K stage for example provides a cooling power of 300 mW and the base
plate is specified with 200 uW at 100 mK. This puts essential constraints
on the microwave and DC wiring of the fridge. A typical wiring diagram is
shown in figure 3.1. Each cable wired from room temperature to base plate
is causing a thermal load. For normal conducting metals there is strong
relation between the electrical and thermal conductivity. The first is nor-
mally requested to be high whereas the second needs to be preferably low
in cryogenic applications. The rate of heat flow per unit area resulting from
a temperature gradient between a cable of cross section A and length L is

given by
. A (T2
Q== XT)dT (3.1)
L Jr
where A is the thermal conductivity of the material used for the cable,
typically copper or stainless steel. Precise values can be found in [White02].
The electric damping is typically specified as attenuation per unit length,
which at a frequency of 7GHz for a Microcoax TP45 copper cable is -

1.7dB/m and for a Microcoax SSSS stainless steal cable is -10.8dB/m. To
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keep the refrigerator in thermal equilibrium it is requested that the heat
flows from a number of cables N arriving at a certain temperature stage is
much smaller than the cooling power P., i.e. 3. Q; < P,. The microwave
cables wired into our fridge are semi-rigid, which means they are a coaxial
form using a solid copper outer sheath. While the outer conductor of the
cable is naturally thermalized at the temperature stage it is attached to,
the inner conductor is preferably thermalized by using attenuators, which
comes at the price of a lower transmittance. This issue becomes especially
important for the resonator’s output line and we therefore decided to use
superconducting niobium-titanium cables [Pobell06].

Nevertheless even if the chip itself is sufficiently cold, the resonator (or
the qubit) itself might still be thermally populated by thermal noise, that
origins from higher temperature stages of the cryostat and propagates via
the coupled gate lines. The noise power spectrum from a thermal noise at
temperature T is equivalent to the 1D black body radiation spectrum and
given by

hw

hw

expFBT —1

S(w) = (3.2)
The final noise at the end of the gate line is given by the sum of the
thermal noise at each stage, attenuated by the attenuators between that
temperature and the end of the line. For a good estimate we may neglect
the heat gradient inside the cable and simply assume it to be of uniform
temperature corresponding to the warmest attenuator it is attached to.
This is a good assumption as the cable itself does not need to thermalize
with the black body radiation it is carrying. This is true in particular,
when the cables have low loss. The total noise spectral density at the end
of a line, which has N attenuator attached to N temperature stages is then
given by

N
Stotal(w) = Z A; - Sj (UJ), (33)
1<j
with j=1 referring to the coldest temperature stage. This theoretical frame-
work allows to predict the noise power that is seen by the qubit and the
resonator. In the latter case the spectral density can be related to the
expected mean number of thermal photons by

n= /T(w)StOml(w)dw (3.4)

30



3.2 RF frequency data acquisition

For a resonator input line as drawn in figure 3.1 the mean number of ther-
mal photons due to the thermal radiation inside the cable is n=0.0002 at
7GHz. In addition the thermal conductivity of this specific cable intro-
duces a heat load of 7.8 1078 W onto the base plate. Last but not least an
appropriate wiring will take into account the thermal expansion of the ca-
bles that happens every time the cryogenic system is warmed up or cooled
down. To reduce the stiffness of the cables it is advisable to introduce a
number of small bends between every two positions the cable is attached
at.

3.2 RF frequency data acquisition

The readout of quantum states and the observation of its dynamics requires
the time resolved measurement of single photons within a frequency range
of about 4-10 GHz. To get standard data acquisition techniques respond to
such small signals requires to amplify the signal over 12 orders of magnitude.
Once amplified the obtained signal is typically dominated by the thermal
amplifier noise added by the amplification chain if no parametric amplifiers
are used. To obtain sufficient signal to noise ratios the signal needs to be
averaged over 10° - 107 instances of the same experiment such that any
uncorrelated thermal noise is averaged out. The small bandwidth of the
resonator allows to down-convert the high frequency signal wrr to an inter-
mediate frequency of wip/27m=25 MHz by using a down-conversion board as
shown in figure 3.2, which is used to converts frequencies in the GHz range
to typically 25 MHz. The main component of this board is an IQ-mixer.
This device accomplishes a multiplication of the high frequency signal with
a local oscillator frequency of wip = wrr —wr,o leading to frequency compo-
nents at the desired 25 MHz. Before the signal enters the mixer it is filtered
and amplified by low noise amplifiers. After down-conversion the signal is
once more amplified by +30 dBm and low-pass filtered with an anti-aliasing
filter with a cut-off at 50 MHz. An analogue to digital converter then digi-
tizes the signal with a sampling rate of 0.1 GS/s, which then is recorded by
the attached field programmable gate array (FPGA) Virter 4. In contrast
to standard microprocessors used in home computers an FPGA allows for
highly parallel processing and thus is perfectly suited for fast and real-time
digital signal analysis. The complex amplitude S(t) = I(t) + iQ(t) of the
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Figure 3.2: (a) Picture of the down-conversion board with two amplifica-
tion and mixing lines. (b) Details of the microwave wiring and the used
components for the lower of the two lines.

32



3.3 State readout

itinerant microwave radiation is obtained by digital down-conversion of the
signal to DC by multiplying the detected signal A(t) cos(wir + ¢(t)) with a
sine and a cosine

I(t) = A(t)cos(wir + ¢(t)) cos(wrrt) (3.5)
I(t) = A(t)cos(wir + ¢(t)) sin(wrrt). (3.6)

This converts the signal from wyp to DC and 2wip. As we are only interested
in the DC component the upper sideband can be removed with a digital
low pass filter with any bandwidth smaller than wip.

3.3 State readout

3.3.1 Read out in the dispersive limit

If a detuned qubit is coupled to a cavity, its bare frequency is shifted
depending on whether the qubit is in its ground or excited state. This
dispersive shift can be understood in the dispersive limit of the Jaynes-
Cummings Hamiltonian. It provides versatile tool to read out quantum
states of single or multiple qubits. If the qubit is far detuned from the
resonator, that is |A| = |wg — wy| > g, the qubit and the resonator do
not exchange energy. Nevertheless they still influence each other by photon
mediated virtual interactions, leading to a rescaling of their bare energies.
The Jaynes-Cummings Hamiltonian (equation 2.27) can be approximated
using time dependent perturbation theory by expansion into powers of g/A.
This yields [Haroche92, Gerry05]

hwa

1
H ~ h(wr + XJZ)(aTa + *) + 5

2

o (3.7)

The induced level shift y for a two level system is given by ¢?/A. How-
ever the multi-level structure of the transmon in combination with its large
coupling leads to an even higher shift given by [Koch07]
2
g°Ec/h
XA ——— (3.8)
A(A — Ech)

In general both the qubit and the resonator eigenfrequencies are renor-
malized, which in the two level approximation leads to the new resonator
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Figure 3.3: (a) Pulsed transmission spectroscopy of the resonator with the
qubit either prepared in the ground or excited state. (b) Measured time
traces for two different initial qubit states.

frequency w, = w, = x (the sign depends on the qubit state) and the new
atomic transition frequency of w, = w, + 2x. The induced shift for the
atomic frequency of 4y per cavity photon is referred to as AC-stark shift. @,
and W, denote the bare eigenfrequencies of the two uncoupled subsystems.
The two different states of the cavity can be recorded by using time resolved
spectroscopy as shown in figure 3.3a. Here the signal is integrated after the
qubit is either flipped to the excited state or left in the ground state. The
qubit detuning for this measurement was A/21 = (w, — wy)/27m = (6.135-
7.027) GHz = 892 MHz, the coupling was g/27=55MHz and the charging
energy was Ec/h = 360 MHz, which would result in x /27 = 23 MHz, con-
sistent with the measured x /27 of 21 MHz. For a dispersive quantum non-
demolition (QND) measurement the dispersive shift of the resonator can
also be detected in the time domain [Wallraff05, Bianchetti09]. Starting at
a time t = 0 a continuous coherent microwave signal w;, is applied to the
resonator. The dispersive Hamiltonian (Eq. 3.7) can be supplemented by a
drive of frequency w,, and time dependent amplitude e, (t). Expressed in
a frame rotating at the measurement frequency it reads

1
Hm = §h/wa0'z + (hw'r‘ - hwm + hXO-Z)a’Ta + hem(t)(aT + CL). (39)
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3.3 State readout

The complex valued signal measured with the previously discussed detection
scheme (Sec. 3.2) is then given by [Bianchettil0]

S(t) = v/ Zhwmr(a(t)), (3.10)

which is proportional to the time evolution of the intracavity field. Z is
the characteristic impedance of the system. Similar to the transmission
spectrum (figure 3.3(a)), the dynamics of this signal depends on whether
the system is in the |g) or the |e) state. The two corresponding timetraces
are shown in figure 3.3(b). The area enclosed by the ground and excited
state response Ag can be compared to the one enclosed by the ground
state and any unknown quantum state A’. It can be shown by employing
the optical Bloch equations, that the population P. = ((o,) + 1)/2 for all
possible values of (o) is simply given by the ratio A’/Ay [Wallraff05]. In
more detail the expectation value of our repeated population measurement
can also be described by an observable M such that (M) = Tr(pM) where

(M) = ag [0) (0] +au |1) (1] (3.11)

g and o are the integrated timetraces of a ground and excited state.

In combination with single qubit rotations ﬁk, the expectation value of
M is ~
(M) = Tr(UfMUyp). (3.12)
Performing this type of measurement along three different rotation angles,
in practice chosen to be orthogonal, allows to infer the full information of
a single qubit quantum state.

The technique described can also be generalized to the joint read out of
multiple qubits [Filipp09, Leek09, DiCarlo09]. For example in the case of
two qubits coupled to a resonator the measurement operator reads

<M€> = Q0 ’00) <00‘ + ag1 ’01> <01| + a1 ‘10> <10’ + a11 ’11> <11‘ R (3.13)
which is equivalent to
(Me) = Bool + 01l © 6, + 106, ® [ + p116. @ 7. (3.14)

Each § is calibrated by measuring the averaged transmission signal for each
corresponding computational basis state. A single averaged measurement
trace of the transmitted signal then gives information about the joint qubit
state.
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Figure 3.4: (a/b) Pulsed transmission spectroscopy of the for different
powers of the coherent tone once with the qubit prepared in either |g) (a)
or |e) (b). The measured signal was integrated for 800 ns after the end of
the qubit manipulation. (c) Pulsed transmission spectroscopy for a power
of -17.2dBm. The signal is normalized to the |e) response. (d) Switching
probabilities for all three qubit basis states. The overall fidelity F is given
by 42.8 %.

3.3.2 High Power Read Out

In addition to the joint dispersive readout of the QND type another read
out scheme was used for the tomographic state reconstructions presented
in this thesis. It was shown that the nonlinearity of the Jaynes-Cummings
energy ladder can be used to obtain single shot readout of up to three qubits
[Reed10, DiCarlo10, Boissonneault10, Bishop10]. A detailed description of
the technique can also be found in [Bianchettil0]. The idea is as follows.
For high enough photon numbers n > n..; we expect the qubit-cavity
coupled system to act classical and the cavity maximum transmittance is
found at the bare cavity frequency. If the probe field is injected at time
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3.3 State readout

t = 0, after the qubit has been prepared in either |g) or |e), the power
at which the cavity starts acting purely classical depends on the initially
prepared state. In figure 3.4(a/b) we have integrated the transmittance
fromt = 0tot = 800ns and plotted it versus injected power and fre-
quency. As can be seen in figure 3.4(c) for a input power of -17.2dBm (this
number depends on the specific cabling configuration and does not neces-
sarily contain meaningful information) the cavity has switched to a bright
bare state only if the qubit was prepared in the excited state. However
if the qubit is prepared in the ground state, the cavity is in some bifur-
cation regime and shows a distorted shape. This allows to measure the
qubit state with a very high power, which effectively improves the signal
to noise ratio. The scheme can be generalized to multiple qubits, as long
as for all involved computational basis states the signal can be sufficiently
discriminated from the ground state response. The switching probabilities
are shown in figure 3.4(d). The overall fidelity of the multi-qubit read-out
can be defined by maximal separation between the probability-curve for the
state one is trying to detect and the least distinguishable state in this case
the |geg) state. This means that the overall fidelity is limited by the single
shot fidelity of that specific qubit, even though the other two single shot
fidelities are significantly higher, namely 85.5 for |gge) and 72.9 for |egg).
To increase the detection efficiency of multi-qubit quantum states is has
therefore proven helpful to map all states to be detected to the |ggg) state
and then measuring [DiCarlo10].

3.3.3 Fluorescence read out and parametric amplification

The readout in the bad cavity limit x > g > ~ requires a different method.
The standard dispersive read-out is based on state dependent frequency
shifts of the resonator, where the shift x is larger than the resonator’s
bandwidth k. To resolve a small shift of a much broader resonator therefore
would set unreasonable demands for the signal to noise. As the superradi-
ance experiments, presented in chapter 7, rely on the direct measurement
of emitted photons we have decided to use this method also to measure the
qubit population as explained in more detail below.

Single qubit rotations can be applied while the qubit is at a frequency
wp, off-resonant from the cavity. Once the qubit is tuned in resonance
wo = w, it will decay via the resonator into the detection line. As basically
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Figure 3.5: (a) Schematic of cryogenic circuitry of the Josephson paramet-
ric amplifier with C1-C4:circulators, D: directional coupler, Cn: Compen-
sation, P: Pump. (b) Experimental gain curve of the parametric amplifier
(dots) and Lorentzian fit (solid line) once tuned to the resonator frequency.
(¢) Measured power spectral density Sa relative to the pump frequency for
the parametric amplifier pump turned on (blue) and off (red). The spec-
tra are scaled such that the coherent peak at 6.25 MHz corresponds to the
number of photons emitted per Hz and per second from the resonator.

no more coherent exchange of excitation takes place between the qubit and
the cavity in the bad cavity regime, a general qubit state «|g) + S e) is
formed into a purely photonic state a |0) + $|1). This mapping is justified
because in the bad cavity limit the resonator mode can be adiabatically
eliminated and thus treated as a simple decay channel [Delantyl1]. Never-
theless this method requires the detection of fractions of single photons on
average and a parametric amplifier is needed to increase the signal to noise
ratio. A detailed discussion about parametric amplifiers can be found in
[Eichler13, Eichler14]. The basic principle of such a device is to exploit the
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3.3 State readout

nonlinearity of a A/4 resonator shunted to ground via an array of SQUIDs.
The inductance of each SQUID depends nonlinearly on the current flow-
ing through it. The amplification is achieved by pumping the amplifier at
a frequency and with a power such that the phase of the reflected signal
depends sensitively on the power. Any additional small signal at the input
will induce a large change in the reflected signal. As the critical current
of the SQUIDS depends on the magnetic flux penetrating their loop, it is
possible to match the amplification band to the frequency of the signal to
be amplified. The integration of the parametric amplifier into the setup
is shown in figure 3.5(a). The constant drive, referred to as pump tone,
is injected via a directional coupler. The signal to be amplified is passing
two circulators and then is directed to the parametric amplifier’s input via
the strongly coupled port of the directional coupler also used for injecting
the pump. Once the signal is amplified and reflected it is guided to the
standard signal output line by passing the second circulator again. The
reflected pump signal is suppressed by applying a cancelation tone to the
directional coupler, which cancels the reflected pump signal by destructive
interference once its phase and amplitude is well set by a room-temperature
displacer [Eichler13, Heinzle12, Steffen13a]. The flux tuning of the SQUID
array is realized applying a current to the miniature superconducting coil
mounted at the backside of the chip. To operate the amplifier reliably, care-
ful calibration is needed [Eichler13, Heinzle12, Govenius12]. The amplifier’s
performance can be quantified by its gain-bandwidth product as shown in
figure 3.5(b), which for the presented data was 160 MHz. This value is
expected to be constant, meaning amplification can be achieved either by
maintaining a high gain or a high bandwidth. For the read-out of the qubit
state with the methods used for this thesis a high bandwidth is secondary
and amplification is mainly required to improve the signal to noise ratio,
otherwise limited by the HEMT amplifier. It is therefore instructive to
characterize the system noise temperature as shown in figure 3.5(c). This
measurement is based on populating the cavity with a well-known aver-
age photon number n by injecting a coherent tone in the resonator input
line, once with the amplifier’s pump turned on or off. The coherent output
power is given by P = hwpesnik. A well-known average photon number
can only be prepared if one initially performs a single-photon calibration
discussed in chapter 4.3. The measured power spectral density Sa is then
scaled such that the height of the coherent peak relative to the noise offset
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Figure 3.6: (a) The intracavity field is prepared by a single qubit rotation
while the qubit is far off-resonant with the resonator and resides at its
bias frequency. Once the single qubit state is prepared the qubit is tuned
on resonance, such that its excitation can decay via the cavity into our
detection line. (b) Timetrace of a heterodyne (STS) measurement. (c)
Outcome of the fluorescence state mapping. The qubit population, inferred
from the time integrated photon number measurement of figure b, is shown
for a qubit preparation where Rabi pulses with linear increasing amplitude
were used.

is equal to nd f, where 0 f = 100 MHz/2048 ~ 49kHz is the bin size of the
specific power spectral density measurement. We then can interpret the
power spectral density as number of photons emitted from the cavity per
Hz and per second. The extracted system noise, in a frequency range close
to the coherent tone, was determined to be Nsystem 41 =~ 6 photons, which
gives an offset of 5 photons from the quantum limit, due to attenuation in
the cables and impedance mismatches.

To measure the intracavity photon number we extract (afa), which is
done in real-time on the FPGA by squaring individual time-traces before
averaging them [Eichler12, Bozyigit11].

In fact the heterodyne setup is used to extract the complex amplitude S(t)
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3.3 State readout

as discussed in chapter 3.2. The recorded signal consists of the experimental
signal plus thermal noise and can be written as

S(t) =a+ht (3.15)

To extract the photon number, ST is calculated in real time on the FPGA
and then averaged over ~ 10° instances of the same experiment. We then
get

(S8TS) = ((a" + h)(a + A1) (3.16)
= (a'a) + (a'h") + (ha) + (hhT) (3.17)
= (a'a) + (hh'), (3.18)

as our experimental signal is uncorrelated with the noise and averages out.
If we then record the constant noise floor (hh') in an OFF-measurement,
that is where no experimental signal is present, and subtract it from our
ON-measurements, we have direct access to the photon number in the cav-
ity assuming the thermal background of the resonator is constant within
the time of the two successive measurements. A power measurement is
shown in figure 3.6(b) where the qubit was prepared by Rabi-pulses, linear
increased in amplitude (see 3.6(a)), and then tuned into resonance with the
cavity. The signal was amplified by a parametric amplifier and a HEMT
amplifier. Figure 3.6(c) shows the time-integrated and renormalized signal,
which indicates that the presented fluorescence read-out indeed gives direct
information about the qubit population and in addition with single qubit
rotations, would allow to fully characterize its state.
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Spectroscopic Measurements

4.1 Theoretical description of transmittance
measurements

Once a sample is mounted in the cryostat, most parameters can be extracted
by well established spectroscopic measurements [Thompson92, Wallraff04,
Schuster07, Fink10a]. However for the data presented in this thesis, a useful
interpretation required a theoretical framework, which can be applied both
in the strong coupling as well as in the bad cavity limit as presented below.

Spectroscopy is based on measuring the transmittance 1" of some coherent
probe tone with variable frequency w and incident amplitude £(t) or power
Py = |E(t)e ™% respectively. The resonator frequency is w, and the
qubit frequency is w,. The probe frequency can be expressed in terms of
the detuning dw = w, — w,. Most relevant parameters such as the coupling
strength emerge clearly once the qubit is exactly on resonance with the
resonator and we therefore use a rotating frame w, = w, = 0. We start off
with the master equation 2.43 and the interaction Hamiltonian Hjy,; (see
equation 2.27) for a single two-level system coupled to a single mode in the
presence of a constant probe tone with amplitude £(¢):

e = Hi = hg(ale™ +67a) + £(t) (aTe—“w + aeitW) : (4.1)

The dynamics of an observable A is then determined by (A) = Tr[Ap],
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which for the field and atomic operators leads to [Scully97]
(@) = —iwr {a) —ig(o_) = 5 (a) + EeTr" (4.2)

(@) = —iwy (o) +ig (@) = (5 +7) (0-) (4.3)

where we used the weak drive limit, i.e .the approximation (o.a) ~ (a). As
we are looking for the steady state solution, the field number operators do
not depend on time and we can use the ansatz (a) = age™’, which leads to
the set of two coupled linear equations:

—lagw = —GLZH — lagwy — tag — 1gog (4.4)
. . . g
—iogw = —i0gWwge + 1gagog — og (’ch + ) , (4.5)
which can be solved to give

At 5i(5 —Ta) ~A+ L

T(5w) = Ty (4.6)

2
where we have defined A = \/92 — (- -+ 5)  and Iy = L + 4,
We can now approximate this general expression for the specific parameter
limits we are interested in.

4.1.1 Strong Coupling Limit

In the strong coupling limit, g > K, y1,7,, we get
2

l: (kK 1: (kK
T(w) =T |2 t3i(5-T2)  —g+35i(5-TI) (47)
3iCe+5)+éw+g 2i(T2a+5)+0w—yg
with the normalization
or 2
7= (T2ts) (4.8)

(li — 2F2)2 + 1692
Because the relevant variation in T occur at dw =~ =+g, we can further
simplify to
2 2
(T2 +5) (F2 + %)

T(éw) = — 3 ,
T2+ 5)"+(@w+g)?  (Ta+5)"+ (dw — g)?

(4.9)
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Figure 4.1: Transmission spectroscopy with the qubit tuned on the res-
onator frequency w, in the (a) strong coupling limit leading to two well
separated polariton peaks and (b) in the bad cavity limit where the qubit
leads to a narrow dip inside the broad resonator peak.

which represents two Lorentzian peaks with a width of I'yy = I's 4+ £/2 and
a separation of 2¢g. A fit of this function to the data is shown in figure
4.1(a). Here k/27 has been fixed to 474kHz as extracted from data with
detuned qubits. The coupling g/27 is 55.5 MHz and the polariton linewidth
is I'y=0.91 MHz. The individual determination of v; to 7y, requires time
resolved measurements as discussed in chapter 5.2.

4.1.2 Bad Cavity Limit

In the bad cavity limit, K > g > 71,7, equation 4.6 can be approximated

as
2

K/2 29% /K
ow+if : 2
w13 5w+z(l“g+gﬂr2>

T(dw) = , (4.10)

which can be interpreted as a narrow Lorentzian subtracted from a broad
Lorentzian. A fit of this function to the data is shown in figure 4.1. The
width of the broad Lorentzian peak is set by the cavity decay rate x/2m
while the narrow Lorentzian dip has a width of I'; = 2T’y + 4¢2/(k — 2I's).
The minimum transmission Ay on resonance (dw = 0) is given by

Ay =Ty/(Ty +T9) (4.11)
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Figure 4.2: (a) Transmission spectroscopy in the bad cavity limit in the
presence of noise introduced via the qubit’s flux gate line. (b) The ex-
tracted decoherence parameter is plotted versus applied noise amplitude
(black dots) and shows a linear dependence as indicated by the fit (red
solid line). The circles mark the corresponding responses shown in figure
(a). For a better visibility an offset has been introduced in T'/Tj.

where I',, = 492 /k is defined as the Purcell induced decay rate on resonance
in the bad cavity limit. Physically, the distinct shape of the measured spec-
trum is understood in terms of atom enhanced absorption [Rice88], which is
closely related to electromagnetically induced transparency [Fleischhauer05]
or cavity induced transparency [Rice96]. Intuitively, the coherent scattering
of the probe field detuned by the same frequency but with opposite sign
from the excited state doublet (|1+),|1—)) formed by the long-lived qubit
resonantly coupled to the bad cavity (Fig. 4.1(b, inset)) leads to the dip in
the spectrum due to destructive interference [Fleischhauer05]. It is worth
noting that the spectrum can also be fully explained by the linear response
of a driven resonator mode in the presence of dispersion and absorption
[Zhu90] and does not necessarily require a quantum mechanical treatment.
If the condition g > 71,7, is met, the transition at the center resonance
(equation 4.11) should drop to zero. The finite offset of equation 4.11 tells
us about the amount of decoherence still influencing the measurements. We
can study the dependence of this offset on the decoherence parameters by
artificially introducing noise onto the system by using the qubit’s flux gate
line. To model realistic uncorrelated environmental disturbances, the noise
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4.2 Flux dependence

was synthesized by an arbitrary waveform generator and numerically cre-
ated conforming to an Ornstein-Uhlenbeck process [Uhlenbeck30], which is
a stationary, gaussian and Markovian noise process. The spectral band-
width of the noise was chosen to be 30 MHz and its amplitude was linearly
increased. The transmission spectrum for various noise amplitudes is shown
in figure 4.2(a). With increasing noise amplitude the spectrum’s narrow dip
is broadened and reduced in amplitude and vanishes for even higher powers.
Fitting the resulting decoherence parameter I's with our model of equation
4.10 shows a linear dependence on the noise amplitude, as can be seen in
figure 4.2(b).

4.2 Flux dependence

The transmission spectrums can also be generalized to include a finite de-
tuning between the cavity and the qubit. This lifts the symmetry of the
spectrum and introduces the qubit frequency as an additional parameter
of the system. Without going into details it can be shown, that the split-
ting in the strong coupling limit, in the case of a qubit-cavity detuning
A = w, — wy is given by Q(A) = y/g? + A2, which is minimized for A = 0.
The bad cavity spectrum still consists of a broad peak and a narrow dip,
where the position of the dip is now shifted to the detuned qubit frequency.
Experimental data for both limits is shown in figure 4.3. Here the spectrum
was taken for several voltages applied to the largest of the three supercon-
ducting miniature coils mounted below the chip. A detailed study of the
near resonant spectrum for all qubits at multiple crossings with the res-
onator allows to extract the full transmon energy spectrum by fitting the
data to v(V) = \/8EcE | cos(mr(V — Vy)c)| — E¢ (compare equation 2.5),
where c is the linear coupling constant of the coil defined as ¢ = A¢/AV.
Figure 4.3(c) shows a fit to the data taken from the sample used for the
experiments described in chapter 7. Generally we fixed E¢ to the design
value as the electrostatic simulation gives a very reliable value with an un-
certainty in the order of about 5 percent. The extracted maximum FE; for
the two qubits then are Ejq,/h = (23.05, 19.13) GHz corresponding to
a maximum transition frequency of (8.19, 7.42) GHz. If we would like to
individually control N qubits we need to repeat this measurement for the
N different required coils. The obtained linear system of equations involves
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Figure 4.3: Experimentally obtained transmission spectroscopy for differ-
ent qubit-resonator detunings set by sweeping the coil voltage for (a) the
strong coupling limit and (b) for the bad cavity limit. The color bar is
given in units of uV. (c¢) Extracted flux dependence from fitting the near
resonant data points at four different crossings of two qubits through the
resonator. The shown data was taken in the bad cavity limit.
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N x N different coupling strengths and its solution can be represented by a
coil matrix [Bianchettil0, Fink10a]. In contrast to the bad cavity limit the
dispersive shift in the strong coupling regime allows to extract the qubit
transition frequency also if the qubit is far detuned from resonance. Here
qubit spectroscopy can be used, which has found various application in the
field of circuit QED and is described in more detail in [Schuster07, Fink10a].
The dispersive qubit spectroscopy is based an injecting a second microwave
tone Vspee, which is combined with the resonant resonator microwave tone
at v,. Whenever vy, is swept into resonance with a qubit transition the
resonator experiences a dispersive shift leading to a decrease of the trans-
mittance of the measurement signal at v, [Bianchettil0].

4.3 Photon number calibration

To put a figure of merit to the detection efficiency and to judge how well
our used detection scheme works on a single photon level, noise power
spectra (see figure 3.5) have proven to be a useful tool, if they are recorded
once with a well known number of intracavity photons and once with the
cavity in the vacuum state [Eichlerll, Eichler12]. However this requires
that the cavity can be either prepared in a Fock state or into a well-defined
coherent state. If we infer the detection efficiency from the first method,
we can’t discriminate insufficient detection efficiency from limitations in
the preparation of the Fock state. The latter method therefore is more
reliable, provided that we know how the intracavity photon number relates
to the power of a coherently injected microwave tone. This relation can
be obtained by a photon number calibration. Both in the strong coupling
as well as in the bad cavity limit, the mean number of cavity photons
can be extracted from spectroscopic measurements if they are recorded on
dependence of the coherent microwave power [Fink10b].

4.3.1 Strong coupling

In the strong coupling limit the photon number calibration can be done
by making use of the number dependent dispersive shift of the qubit also
known as AC stark effect [Schuster05], which is also discussed in chapter
2.3. Therefore dispersive qubit spectroscopy is performed in the presence
of a strong drive, such that 2y < Qpgu and the qubit line is broadened,
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Figure 4.4: (a) Photon number calibration in the strong coupling limit
by qubit spectroscopy for linear increasing measurement power. The data
was normalized on the incident amplitude. The fit results of the center
frequency for the broadened and shifted peak are indicated by the black
points.(b) Relation of the number of cavity photon number to the applied
cavity input power (black points) as inferred from a the linear fit (red line).

such that individual photon number split qubit lines can not be resolved
anymore. In addition to the broadening the qubit line is shifted as can
be seen in figure 4.4(a). As this shift is linear with the number of cavity
photons, namely v4.(0) + 2xn we have a direct access to n as a function of
applied drive power Qgqp;. This calibration relies on a prior determination
of the coupling constant g (see equation 3.8). From the data shown in figure
4.4(b) we can conclude that a mean number of one photon, n=1 corresponds
to a microwave power of 1.36 uW = -28.7 dBm at the RF generator output.

4.3.2 Bad cavity

In the bad cavity limit the presented AC Stark shift is not the method of
choice for the same reason qubit spectroscopy is hard to realize, because
X < k. Nevertheless for the coupled system we expect a nonlinear behavior
of the cavity’s photon population with respect to the applied drive power if
n < nert. For a purely classical, i.e. uncoupled system, the photon number
is expected to vary linearly with the coherent drive tone’s power (see figure
4.5(b)). Indeed the nonlinear response becomes apparent in the resonant
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spectrum as shown in figure 4.5(a). Here an increase in drive power leads
to a broadening of the dip and to a decrease of its depth with respect to
the broad Lorentzian peak dominated by k. We measure the transmission
amplitude (a) at the center of the dip as a function of coherent power, to
which the signal than is normalized (see figure 4.5(c)). The observed data
has an initial offset given by equation 4.11, respectively to its square root
as we measure transmission amplitude instead of transmission power. It
then asymptotically approaches the classical linear response. The initial
offset and the power at which our signal is within a certain range relative
to the classical value, here indicated as J, leads to two parameters, which
can be compared with a master equation simulation to finally obtain the
photon number calibration. For the master equation we use the expression
as discussed in chapter 2.5 and include system parameters independently
obtained from transmission spectroscopy. For our numerical simulation
we include four photonic levels and vary the drive amplitude £(¢) in the
nonlinear region of the response, i.e. up to a mean photon number of ~ 0.1.
Using this method we estimate a mean number of one photon n = 1 to
correspond to a power of 24.6 mW or 13.9dBm set at the output port of
our generator.
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Figure 4.5: (a) Transmission spectroscopy in the bad cavity limit for var-
ious coherent drive powers. For clarity the data is offset. (b) Comparison
between the classical (purple) and quantum response (red) for the probe
frequency at w,=7.061 GHz. The coupling of the qubit leads to a nonlin-
ear behavior, which can be used for the photon number calibration. (c)
Measured transmission amplitude (a) at w,=7.061 GHz normalized to the
amplitude of the drive. The experimental data (blue points) is scaled along
the x-and y axes by the fit parameters a and b to match the master equation
simulation (red). For a purely classical system the response would be flat
(dark red line). The discrepancy ¢ between classical and measured response
for a given coherent power allows to infer the mean cavity photon number
n.
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Single Qubit Manipulation and Dynamics

Once it comes down to resolve the time evolution of states or to exploit
their dynamics for the implementation of gates, individual control of the
qubit plays a crucial role. This involves both the ability to prepare arbitrary
single qubit states |¥) = «|0)+ 3 |1) but also to change the qubit transition
frequency on a timescale t < ¢ to tune it into resonance with either the
resonator or another qubit. Therefore the fidelity of single and multi-qubit
gates depends strongly on the quality of the applied pulses. In this chapter I
introduce the microwave setup used for this purpose and a possible method
for flux pulse optimization. 1 discuss the basic experiments, which are
subject to the time evolution of a single qubit coupled to a single mode
of the electromagnetic field. It is shown how the data can be used to
extract the key coherence parameters of the system, not fully accessible
using spectroscopic methods.

5.1 State preparation

The qubit state is controlled by a coherent microwave signal with frequency
wq near the qubit transition frequency w,. The state of the qubit depends
on the length of the pulse, its amplitude £(t), its phase ¢ and the microwave
frequency wy. In a frame rotating at the drive frequency wy the effective
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5 Single Qubit Manipulation and Dynamics

Hamiltonian for the qubit can be written as (A = 1)

_A G, + Ql:;(t) (cos(p)d + sin(p)dy) (5.1)

with Ay = wy — wg the detuning of the qubit transition frequency from
the drive and Qpg(t) o< £(t) the Rabi frequency. o,,0y,0, are the Pauli
spin-operators. For a fixed detuning A, and constant amplitude Q2 the
Hamiltonian is time independent and the general solution of the Schrodinger
equation ih%\lf = HVU is given by ¥(t) = ¥U(0)e . If we set our initial
state to be the ground state ¥(0) = |0) and look at the resulting state for a
resonant drive pulse of length 7, the evolution under equation 5.1 leads to

U(r) = a|0) + B[1) (5.2)
. Qpt . . Qpt
with a = ie /23" and B = /25" =2~ meaning that any arbitrary
state on the Bloch-sphere can be prepared. Rotations around the x-axis are
generated by 6, and the y-axis rotation is accomplished by 6,. By changing
the phase ¢ of the qubit drive, rotations around arbitrary axes lying on the
equator of the Bloch-sphere are realized. A finite detuning A, # 0 induces
rotations around the z-axis of the Bloch-sphere.
The population of the qubit is given by the probability of finding the
qubit in the upper state, which is given by |3|? of equation 5.2, namely
P(1) = cos? %. (5.3)
The upper and lower state population therefore is exchanged at a rate of
Qr. The final state depends on the product Q7 also known as pulse area,
implying that rotations can be controlled either by varying the amplitude
or the duration of the pulse. Moreover pulses do not need to be square
shaped, as long as the integrated area underneath is chosen in accordance
to the desired rotation. (Indeed due to the sharp edges it is likely bad
if square pulses are used.) The experimental reconstruction of the qubit
population versus applied drive power was already shown in figure 3.6.
Here a gaussian shaped pulse with a standard deviation of 10 ns truncated
to an overall duration of 40 ns was applied [Steffen03]. The data was fitted
using equation 5.3 and well reproduces the sinusoidal dependence. The
Rabi measurement is used to extract the amplitude for 7/2- and w-pulses,
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Figure 5.1: Schematic drawing of an up-conversion board used for qubit
manipulation. The signal is split and either goes into the cryostat or directly
to the down-conversion for mixer calibration.

needed to bring the qubit from the ground state either into a fully symmetric
superposition state or fully into the excited level. In general, for Rabi
experiments [Rabi37, Vion03] the used drive pulses are chosen to be short
with respect to the qubit’s decoherence times ; and <, as part of the
qubit’s population is already lost while the qubit is driven to the excited
state. Using the optical-Bloch equations [Bianchettil0] one can show that
in the limit of large driving fields (g > 71, v,) the population is described
by
1 1

P(QR) = 5~ 56_5(3“”%’) cos(QrT). (5.4)

Even though full qubit state control can be obtained by using just simple
square pulses, in practice it is more beneficial to use truncated gaussian
shaped pulses, as they have small fourier components at frequencies close to
the anharmonicity « of the qubit. Nevertheless the width 20 of the gaussian
pulses is chosen to be short to overcome decoherence as mentioned above.
As a consequence, once the pulse bandwidth B = 1/270 is on the order of a,
a temporary population of the transmon state |2) might become a problem.
Therefore, to maintain our ability to use short pulses, we use so-called
DRAG pulses [Motzoi09, Gambettalla], which have been implemented by
optimum pulse control and are designed to reduce the leakage into non-
computational states.

In practice it is hard to generate arbitrarily shaped pulses in the GHz
frequency range, as our commercial arbitrary waveform generators (AWGs)
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Figure 5.2: Time resolved measurements performed in the bad cavity limit
to extract the qubit’s relaxation I'y=1.7 us (a) and dephasing constants
I'y=2.7 us(b). The respective pulse schemes are also shown.

are limited to a sampling rate of a few GHz. Therefore typically up-
conversion techniques are used where a low frequency signal of typically
100 MHz is generated with desired shape and phase and then multiplied
with a high frequency microwave signal of a local oscillator by using an
IQ-mixer [Schmidlin09, Baurl2a]. The hardware implementation of such
an up-conversion board is shown in figure 5.1.

The drive tone can be applied to the qubit either via the resonator or by a
qubit dedicated charge gate line, allowing to address a single qubit without
affecting other qubits that may have a close-by transition frequency. A
typical charge gate line was shown in figure 2.1 and represents a CPW
transmission lines capacitively coupled to the qubit.

5.2 Extraction of decoherence parameters

The techniques discussed so far allow to perform the basic experiments,
which are needed to extract the main decoherence parameters of the sys-
tem, namely the qubit energy relaxation ; and the qubit pure dephasing
7, at the static bias frequency of the qubit. Those parameters are a key
benchmark of any quantum information device and their optimization has
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5.2 Extraction of decoherence parameters

dramatic input on the scalability of quantum systems and for further pur-
suing the ultimate goal of quantum information, which is the realization of
efficient quantum simulation and computing devices. The energy relaxation
~1 can be extracted from a 77 measurement, where the qubit is initially pre-
pared in a fully excited state |1) and then measured after a time ¢. The
resulting population P(t) can easily be calculated by the master equation
2.43 and reads

P(t) = e 1, (5.5)

The pulse sequence and experimental data for a bad cavity sample is shown
in figure 5.2(a). By fitting equation 5.5 we extract 77 = 1/~7 = 1.7 us which
is likely limited by microwave loss at surfaces and interfaces and might
be resolved by using different fabrication techniques [Changl3, Ristel3,
Barends14].

The pure dephasing 7, can be obtained from a Ramsey type measurement
[Ramsey50], which is mainly composed of two /2 pulses, separated by
a free evolution time of length ¢t. The population of the qubit can be
calculated analytically again by using the von-Neumann equation and is
given by [Bianchettil0]

P(t) = 5 + 5(cos(gt) + /) (5.6)

As can be seen the population oscillates as a function of the free evolution
time ¢ and at a frequency corresponding to the detuning A,. At the same
time the dephasing 7, leads to a damping and Tb = (y1/2 + 7,,) ! is the
timescale at which the off-diagonal elements of the qubit’s density matrix
vanish. The Ramsey measurement therefore allows to extract the pure
dephasing, given a T} measurement was executed before. In addition it can
be used to determine the qubit transition frequency with higher accuracy
than obtained from spectroscopic measurements. To better distinguish the
oscillation frequency due to a finite A, from a decay and to facilitate the
fitting, the initial detuning A, is set to about 2 MHz. Figure 5.2(a) shows
a Ramsey experiment performed in the bad cavity limit. The extracted
qubit detuning is A;=2.05 MHz and the 75 time is 2.9 us. The dephasing
of the qubit may arise due to charge noise, flux noise or critical current noise
[Vion02, Nakamura02, Koch07, Pashkin09] and their suppression requires
careful shielding and filtering of possible noise sources.
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5 Single Qubit Manipulation and Dynamics

5.3 Flux Pulse Control

As discussed in chapter 2.1 the qubit transition frequency depends on the
magnetic flux penetrating its SQUID loop. For the static bias of the qubits
superconducting miniature coils are used. Their magnetic field can be
changed on a timescale of milliseconds. However due to their large in-
ductance and the low pass filtering of the bias voltage, they can’t be used
to tune the qubit frequency on the nanosecond timescale, as required for
the experiments discussed in chapters 6 and 7. Therefore each qubit is
equipped with an on-chip flux bias line [DiCarlo09] as can be seen in fig-
ure 2.1, realized by a CPW transmission line passing near-by the qubit
SQUID loop. The aspects of various flux line designs are discussed in more
detail in [Baurl2a]. A careful design will take into account possible reflec-
tions of the current pulse and the capacitative coupling, which decreases
the qubit coherence similar as for the charge gate line presented in chapter
(2.3). The induced flux shift per applied voltage is determined by the mu-
tual inductance between the qubit SQUID loop and the flux line and can
be simulated by 3-D inductance extraction programs such as FastHenry
[Steiger13, Ott11, Groszkowskill, Fouriell, Kamon94].

To generate the current pulses we use the same AWG model as for the
Rabi Drive Pulses (Tektroniz AWGH5014) whose sampling rate is set to
1.0 GS/s. The signal is further filtered at the cryostat’s base plate (see
figure 3.1). Ideally the pulses seen by the qubit should be a perfect square
pulses. The quality of the experimental data critically relies on the ability
to control the shape of the flux pulses. However in practice the pulse is
already distorted by the AWG’s output itself but also by the various cables
and filters it passes through.

The first step towards a better control of the pulse is to infer the correc-
tions that have to be applied to the pulse pattern on the AWG, by mea-
suring the warm response of the setup [Bozyigitll] while the cryostat is
open and all cables are exposed to room-temperature environment. There-
fore a square pulse of length 7 is loaded on the AWG and recorded after it
passed the wiring to the last connector before the chip’s PCB board inside
the cryostat. The length 7 is chosen larger than the longest pulse that is
required for the experiment. The corrected pulse pattern f...- can than be
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Figure 5.3: (a) Square pulse pattern as initially loaded into the AWG.
(b) Measured response of the square pattern taken on a LeCroy WavePro
7000A oscilloscope. (c) Calculated corrected pulse pattern as loaded into
the AWG. (d) Result of the correction measured on the oscilloscope.

calculated by

FFT(fresp)
FFT(fideal)

where fresp is the measured pulse and figeq; is the desired square pulse.
This already allows to correct most of the imperfections concerning the ris-
ing edge of the pulse or long term drifts. The latter ones are mainly due
to temperature drifts of the AWG’s output amplifier. As those drifts do
not become apparent for short pulses, it is advantageous to measure the
response to a Heaviside step function instead of a Dirac delta function.
The effect of the warm correction is shown in figure 5.3(d), where the op-
timized pulse pattern was used as shown in 5.3(c), which was calculated
by measuring the response 5.3(b) with respect to a simple square pulse

-1
feorr = FFT™1 [( ) FFT( fideal)] (5.7)
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5 Single Qubit Manipulation and Dynamics

5.3(a). Nevertheless the optimization does not include pulse distortion that
is caused by impedance mismatches on the chip nor possible screening cur-
rents, which might flow on the superconducting Nb ground plane. Also the
overall system response might change once the cabling is cooled down to
low temperature.

Therefore the next optimization step is to measure the flux pulse as ef-
fectively seen by the qubit. Here we use a pulsed spectroscopy method
implemented in a bad cavity limit. This method is expected to work in
the strong coupling regime as well. The time resolved resonator transmis-
sion amplitude (a(t)) is measured for different probe frequencies w, of a
coherent tone with constant amplitude and phase inside a frequency win-
dow I, = [wr — A < wp < wy + A], where w, is the resonator’s center
frequency. A is typically chosen such that A ~ k. While the transmis-
sion (a(t)) is recorded, the optimized warm pulse is injected through the
qubit flux gate line, such that the unexcited ground state qubit is tuned
somewhere into the frequency window I, which brings the system out of
its equilibrium. The response of this perturbation depends on the precise
shape of the flux pulse. However it also depends on the resonator linewidth
k, the qubit-resonator coupling rate g and the bias frequency of the qubit
wp. Therefore the obtained response does not directly reflect the pulse shape
because the perturbation still involves some complicated dynamics of the
system. A typical measured response, normalized to the response at t = 0, is
shown in figure 5.4(a) for g/27=3.8 MHz, x/27=43 MHz, wq/27=8.2 GHz
and w,/27=7.061 GHz. The dynamic response for a specific slice of fre-
quency wy/27="7.86 GHz is shown in figure 5.4(b).

However, even though the flux pulse shape is not directly visible in the
measurement, once the system parameters are known it is possible to cal-
culate the expected ideal system response by using a simulation as shown
in figure 5.4(c/d). The master equation used for the simulation is given
by equation 2.43 and the Hamiltonian is of the standard Jaynes-Cummings

type
. I . .
H(t) = hordlat Swa(t)d:+hg(a'6-+6..a) +€(1) (afe ™ + ae™), (5.8)
except that we have now included a constant drive with amplitude E(t)

and a time dependent qubit transition frequency wg(t). This implies that
we cannot restrict the calculation to the steady state case to obtain ana-
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Figure 5.4: (a) Normalized measurement of the time resolved transmission
amplitude (a(t)) while a ground state qubit is tuned into the spectroscopic
region. (b) Cut for a frequency of 7.086 GHz. The sudden presence of the
qubit disturbs the steady state of the system and causes damped oscilla-
tions. (c¢/d) Numerical simulation of the response obtained from a master
equation simulation. (e) Vertical cut of the transmission spectrum at times
Ous and 1us. If no qubit is present (¢ = Ops) the response is flat due
to the normalization. (f) In the raw data (before normalization) the re-
sponse will either reflect the uncoupled resonator at ¢ = 0 us or include the
characteristic dip caused by the qubit.
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5 Single Qubit Manipulation and Dynamics

lytic results as done in chapter 4.1, implying the von Neumann differential
equation has to be solved numerically.

By comparing the expected ideal system response to the measured one
we are able to infer the corrections that will lead to an improved version of
the effective flux pulse shape. For each frequency w, we therefore extract
the point at which the dynamic response for the first time crosses a certain
value, for example given by the steady state response to which the oscillation
will have damped by the end of the flux pulse. The determination of this
point in time is indicated in figure 5.4(a) and 5.4(b) by a red point for
both the experimental and the numerical data. The damped response is
shown in 5.4(e) where the close to steady state frequency slice t = 1 us is
normalized to a slice (¢ = 0 us) where no qubit is present. The two slices
before normalization are shown in figure 5.4(f). Here the qubit is tuned to
a frequency wy, which if w; = w, could well fit to the spectra explained in
chapter 4.1 or in the case of w; # w, to a more general expression.

If the applied flux pulse was a perfect square pulse experiment and nu-
merics should coincide. To better judge the difference the extracted points
are renormalized on the frequency scale. Therefore we first translate the
frequency w into a flux ¢(w) by using equation 2.7 and then set ¢(wy)=0
and ¢(wi)=1. The result is shown in figure 5.5(a). The noticeable mismatch
indicates that the flux pulse shape as seen by the qubit is not ideal.

Finally we can use the difference to calculate a correction similar to what
was done for the warm correction. In fact we may regard the observed trace
as the real flux pulse shape additionally filtered to f;op by the Jaynes-
Cummings dynamics of the system. We then calculate a correction by

FFT(fjcp) * FFT(fSetup)
FFT(fjcp) * FFT(fIdeal)

The advantage of this method is clearly seen as the system dynamics can-
cels out. The substitution of the system dynamics by a simple linear filter,
is legitimate as long as the response is expected to have a purely classical
origin, i.e. no quantum nonlinearities are considered. As long as the probe
power is low, the resonator and the qubit act as two coupled harmonic os-
cillators and therefore this condition is well met. The calculated optimized
pulse for the data of figure 5.5(a) is shown in figure 5.5(b).

This pulse still does not represent the final result of the optimization.
In the bad cavity limit we are only able to experimentally observe the

-1
feorr = FFT™! [( ) FFT(prpuedﬂ. (5.9)

62



5.3 Flux Pulse Control

@) . . . . . . ) N ©
10 j
w Numerics | ; m Old Pattern 0251 w—Iteration 1 |
e Numerics Il 1 103 - mmmm New Pattern | mm |teration 4
\ m— Experiment | | :
08 \ i ' 0.20
5 06 ! E SECAES
e =102t = =
& £ c
] S
i 099 & g 010}
9 04 \ g S
\ <0t
0ds 005 |
02 v
0.00
0 04 08 1.00 [
0.0 j
L L L L L i 7O~05 L L L L L L
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Time [us] Time [us] Time [us]

Figure 5.5: (a) Relative difference between the measured and the simu-
lated response inferred from the fitted black line in figure 5.4. The red
part shows the part of the trace for which no experimental data could be
obtained. (b) Corrected pulse pattern (green) in comparison to the uncor-
rected one (red). Residual correction after the first and the fourth iteration
of the optimization procedure. The sharp steps reflect the discretization of
the frequency sweep and correspond to 100 kHz.

pulse response inside the frequency window I because the signal is strongly
attenuated once w, is outside the resonator’s bandwidth. Therefore we
assume that the response outside this window coincides with the numerical
response (see red line in figure 5.5(a)). The fact that the full response of
the pulse is not accessible means that it is not possible to get a perfectly
optimized pulse out of one dataset but a number of iterations are required.
The reason why this strategy then in the end proved to be successful relies
on the fact that any imperfection at the early part of the pulse leads also
to a slight mismatch in the observable part of the pulse, provided it has
already been freed from imperfections during previous iteration steps.
After four iterations the mismatch between experiment and numerics
has been reduced by one order of magnitude with respect to the warm
optimization procedure (see figure 5.5(b)). The presented method is limited

63



5 Single Qubit Manipulation and Dynamics

by the resolution of the probe frequency w, and by the bandwidth of the
detection setup. For the presented case those values were 100 kHz and 10 ns.
Therefore using a higher detection bandwidth would allow to optimize the
pulse shape not only for pulses of a length ~1 us but also for pulses in the
order of 100 ns.

As mentioned before, the method is also expected to work in the strong
coupling regime, even without the need of iterating the measurement. The
same measurement can be used and the dispersive shift would be recorded
while the qubit is pulsed to some intermediate frequency between its bias
point and the resonator.

5.4 Dynamic Qubit-resonator interaction

5.4.1 Coherent exchange of excitations: Strong coupling limit

The ability to prepare or analyze the state of our qubit allows us to study
how specific states evolve while interacting with a single mode of the res-
onator once in or close to resonance. This atom-field interaction became
already apparent in spectroscopy-like measurement, but directly resolving
the dynamics will give the quantum nature of this fascinating interplay
between matter and light further prominence. A main feature of strong
coupling cavity quantum electrodynamics is the exchange of excitation be-
tween the qubit and the cavity, which is either revealed by sideband oscil-
lations, first observed in circuit QED by [Chiorescu04] or by vacuum Rabi
oscillations in the resonant case [Hotheinz08]. This oscillations are the time
domain equivalent to the vacuum Rabi splitting occurring in the frequency
domain measurements of chapter 4. If the system is first prepared in the
separable state |0) ® |e), meaning the resonator is initially empty and the
qubit is excited, then as soon as the Jaynes-Cummings interaction is turned
on, the excitation of the two systems coherently oscillates with the vacuum
Rabi oscillation frequency Qr = /(29)? + A?, where A = w, — w, is the
detuning between qubit and resonator. As long as the coupling g domi-
nates over the dissipative terms x and 1 the population of the cavity P,
respectively the qubit P, for the resonant case A = 0 can be simplified to

P,(t) = cos*(Qpt) (5.10)
P,(t) = sin?*(Qgt). (5.11)

64



5.4 Dynamic Qubit-resonator interaction

—
Q
-~

(b) _

Pulse Amplitude [V]

0.10 0.15 0.20 0.25 0.30

C Time [ns] Frequency [GHz]
© : ‘ ; (d)
1.0
c 0.8k 4 TT-Pulse Read Out
s Qubit
©
2 06 | 8.12GHz —W(.— - AN
g 04’ - & L
- . < >
g o. 1 Cavity
7.02 GHz
0. ] >
0 10 20 30 40 t "

Time [ns]

Figure 5.6: (a) Vacuum Rabi oscillation for different qubit-resonator de-
tuning. (b) Fit (red) of the extracted oscillation frequency (black) to a
square root function. (c) Qubit population for zero qubit-resonator detun-
ing (black) and fit to a sinusoidal function (red). (d) Experimental pulse
scheme used to obtain the data.

The initial state preparation takes place in a regime where the cavity and
the qubit do not hybridize, A > g. Just after the initialization the Jaynes-
Cummings interaction is switched on for a time 7 by tuning the qubit
with a flux pulse in a regime where A ~ g. Once the qubit is back at
its bias frequency a dispersive read out can be performed by injection of a
coherent read out tone (see figure 5.6(d)). The vacuum Rabi oscillation is
shown in figure 5.6(a) versus detuning A, where the oscillation frequency
was extracted by a fit to equation 5.11. As can be seen in figure 5.6(b)
the oscillation frequencies agree well to a square root like dependence. The
lowest frequency is obtained when the qubit and the resonator are on res-
onance, i.e. A = 0 and it was extracted to be g/27r=54.4 MHz (see figure
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5.6(c)), which is compatible with the spectroscopically obtained value of
g/2m=52.7 MHz. The slight tilt of the oscillation is due to finite risetimes
of the flux pulse limited by the AWG and the filters that have been installed
at the base plate of the cryostat.

5.4.2 Dissipative Resonant Dynamics

A more detailed treatment of the resonant interaction will also take care
of dissipative terms. For the strong coupling limit the dynamics is mostly
dominated by the coupling g. However in the bad cavity limit, where Kk < g,
dissipative terms play a prominent role. To better understand the crossover
between those two regimes and to have analytic formulas at hand able to
describe the resonant dynamics for various dissipative configurations, we
have derived the time evolution of the operators o, and a'a for the vacuum
Rabi oscillation in the resonant limit. It is important to note that the initial
state of this oscillation is normally |0) ® |e), meaning that the system does
not carry any phase information that might get lost during the evolution.
We therefore only include the qubit dissipation 7; in the analytic treatment
and disregard ,. We once more use the von Neumann equation (2.43)
to calculate H;p; (equation 2.27) to find the state of the qubit and the
resonator at time t assuming the initial condition |0) ® |e). Whereas the
qubit population is given by a lengthy expression [?] it is possible to find a
compact formula for the resonator population

8g2e~3t0n+r) (1 — cosh (%t\/(/@ —m)? — 16g2))
Pres = p) 2 .
1692 — (11 — k)

(5.12)

The resonator population is plotted in the strong and the bad cavity limit
in figure 5.7, where g and k where fixed to the spectroscopic value and only
71, a time offset and a scaling factor where used as free fit parameters. Both
data sets were taken without parametric amplifier. The fact, that the pulse
sequence used to extract the cavity population in the strong coupling limit
requires to repeat the experiment for each different setting of 7 prohibited
us to measure the oscillation for times, long enough to see the influence of
any of the dissipative terms x or ;. However the crossover from a coherent
oscillation to an overdamped interaction is clearly visible. Even though the
cavity dissipation k clearly influences the dynamics. Also here the influence
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Figure 5.7: (a) Cavity population during a resonant vacuum Rabi oscil-
lation in the strong coupling limit. The interaction was switched on for
a time 7 and the area underneath the emitted signal was integrated and
renormalized. (b) Emitted power for a resonant interaction in the bad cav-
ity limit. The emitted data was directly recorded by a single preparation
in a time-resolved measurement.

of 71 is hardly visible as g > 71 and the dynamics is mostly influenced by
Kk and g.

In addition to the general expression of equation 5.12 we can further
approximate the analytic solution in the two regimes. In the strong coupling
regime, g > K, y1, we get

8926_15(71-0-/4)/2 (1 — cOos (29t (1 — (“{5}%)2)))
1692 — (k. — )2

(a'a) (t) = (5.13)

and

(0,)(t) = 96~ 3tN+R) (g2 (gt (1 — ('%3_2;21)2>> -1, (5.14)

which is the expression for an oscillation with frequency 2¢g damped with
a rate of (kK + 71)/2. To obtain an expression for the bad cavity limit we
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5 Single Qubit Manipulation and Dynamics

have to include further approximations by taking into account the fact, that
terms e~ decay faster than all other exponential terms, such that for any
time ¢ > 1/k they can be omitted. In this limit we obtain an expression
for the cavity population

4g26t (7717 ':igil )

f = 1
(a'a) (1) (= )7 = 1647 (5.15)
and the qubit population:
t —”/1—4_i)
2 2 _ 2 ( K=Y1
(02) (t) = (89° —(r—m)7)e 1. (5.16)

16g% — (71 — K)?

The expressions show a purely exponential decay with the decay constant
y1+(49%)/(K—m1), which agrees width the linewidth of the narrow Lorentzian
dip derived for the spectroscopic measurements (see section 4.1). This con-
firms that linewidths and decay constants constitute the same entity and
only depended on whether measurements take place in the frequency or
time domain. The purely exponential decay can also be derived by adia-
batic elimination of the resonator’s field mode [Delantyl1], a more sophis-
ticated method, which is useful when the collective dynamics of multiple
emitters are treated (see chapter 7).
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Collective Dynamics in the strong coupling limit

6.1 Collectively enhanced dynamics

Effects related to the interaction of light and matter can be investigated in
many different physical systems. The description of this interaction can be
simplified to the interplay of identical two-level systems and a single mode of
an electromagnetic field. This theoretical abstraction is known as the Dicke-
or Tavis-Cummings model [Dicke54, Tavis68]. In recent years it became fea-
sible to investigate the complex interaction of light with multiple two-level
systems as experiments approached a higher level of control over collections
of individual quantum systems. The coupling strength (transition ampli-
tude) of N two-level systems and a single mode increases as v/N. Clear evi-
dence of this nonlinear behavior was observed in spectroscopic measurement
with few atoms [Bernardot92, Childs96, Thompson98, Minstermann00],
large ensembles of atoms using cold gases [Brennecke07, Colombe07, Tuch-
man06], ion Coulomb crystals [Herskind09] and by using superconducting
qubits coupled to a transmission line resonator [Fink09, Altomarel0]. The
investigation of these interactions has also gained additional momentum
in the context of hybrid quantum systems, in which ensembles of micro-
scopic systems, such as NV-centers are coupled to a single mode of a cavity
[Kubo10, Wul0].

More insight into the dynamics of collective systems can be gained by time
resolved measurements of energy exchange between its individual compo-
nents. When multiple two-level systems are resonantly coupled to a single

69



6 Collective Dynamics in the strong coupling limit

mode, this process is called collective vacuum Rabi oscillations. The col-
lective coupling strength g defines the frequency of these oscillations. Here,
we restrict our investigation to the initial state in which the cavity is pop-
ulated with exactly one photon [Mlynek12]. In this case the oscillation
involves a single photon that is continuously absorbed and reemitted by all
N two-level systems. In fact each two-level system absorbs the photon with
equal probability 1/N. Our lack of knowledge about which two-level sys-
tem actually absorbs the photon leads to entangled states which are known
as W-states [Diir00]. The nonlinear enhancement of the coupling strength
speeds up the generation of W-states when N is increased. In the context of
quantum information processing such enhanced collective interaction rates
may prove useful to generate multi-qubit entangled states on time scales
o 1/v/N. Alternatively, the generation of Dicke- and W-states has been
explored in NMR [Teklemariam02], with photons [Eibl04], ions [Roos04]
and superconducting circuits [Neeley10] using interactions not mediated by
the resonant interaction with a cavity.

Here, using quantum state tomography, we demonstrate explicitly that
the strong collective coupling mediated by the resonant interaction of N
superconducting qubits with a single photon stored in a transmission line
resonator generates W-type entangled states as predicted by the Dicke and
Tavis-Cummings Hamiltonians [Dicke54, Tavis68]. This work builds on the
prior spectroscopic [Fink09] and time resolved [Altomarel0] observations of
the v/N enhancement of the collective resonant interaction with the cavity.
3-qubit entangled states of the W- or GHZ-class have also been generated in
superconducting circuits using sequential [DiCarlo10, Baurl2b, Fedorov12]
or collective schemes [Neeley10] based on physical interactions different from
the one presented here.

In our time-domain studies of the collective oscillation we use full control
over three transmon-type superconducting qubits [Koch07] coupled to a
single electric field mode of a microwave resonator. The coupling of multiple
two-level systems to a single mode is described by the Tavis-Cummings
Hamiltonian [Tavis68] as discussed in 2.3.

70



6.2 Experimental setup

6.2 Experimental setup

In our circuit QED implementation of the Hamiltonian Hrc (see equa-
tion 2.30) we use the first harmonic mode of a coplanar transmission line
resonator at w,/2m ~ 7.023 GHz with quality factor @ ~ 14800. The
resonator is used for the resonant exchange of a single excitation and for
joint dispersive readout of the three qubits by measuring its transmission
[Filipp09]. All qubits are located at antinodes of the first harmonic mode
of the resonator. The frequency of each qubit is approximately given by
hw;(®) =~ \/8EcEj(¢) — Ec where the Josephson energy depends period-
ically on the applied flux according to Ej(¢) = Ejmaz|cos(md/po)|. The
maximum Josephson energies E;(0)/h for the three qubits are (26.8, 28.1,
25.7) GHz and their charging energies E¢/h are (459, 359, 358) MHz. The
anharmonicity of the transmon energy levels depends on E¢ and is cho-
sen such that the validity of the two-level approximation is ensured while
keeping the charge dispersion low. The maximum transition frequency of
the qubits w;(0)/2m = (9.58, 8.65, 8.23) GHz is designed such that all three
qubits can be tuned into resonance with the resonator at w,. In the steady
state the qubits are flux biased at w;/2m ~ (6.11,4.97,7.82) GHz using the
quasistatic magnetic field generated by three superconducting miniature
coils positioned underneath the chip, such that |Aj;| > g; with detuning
Aj = wj — w,. We measure qubit dephasing times 75 = (100, 140, 440)
ns limited by flux noise far off the optimal bias point and qubit relaxation
times 77 = (2.1, 1.8, 1.0) us limited by unknown reasons other than the
Purcell-effect. Tuning of the qubit transition frequencies on the nanosecond
timescale is achieved by injecting current pulses into on-chip flux control
lines. Both for the coils as well as for the flux gate lines we determined the
full coupling matrix to compensate for cross-coupling at low frequencies.
The coupling strengths g; of the qubits (A,B,C) extracted from spectro-
scopic measurements are (g4, 9B, gc)/m = (—105.4,110.8,111.6) MHz. The
negative coupling constant of qubit A originates from the m-phase differ-
ence of the first harmonic mode between the center of the resonator and its
coupling ports. By applying phase controlled truncated Gaussian DRAG
pulses [Gambettallb] through the on-chip charge bias lines each qubit can
be prepared in an arbitrary superposition state ¢» = a|g) + f|e). For the
joint read-out all qubits are dispersively coupled to the resonator and its
measured frequency-shift depends on the state of each individual qubit as
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Figure 6.1: Pulse sequence for the single and collective vacuum Rabi
oscillation (QP=Qubit Preparation, Buf=Buffer Level for Flux Pulses,
SRI=Single Resonant Interaction, CRI=Collective Resonant Interaction,
ST=State Tomography). Qubits not taking part in the collective interac-
tion remain at their bias frequency (dashed green/blue). The duration 7 of
the collective interaction is varied.

Tr(M p), where M is the measurement operator and p is the density ma-
trix to be determined [Filipp09] (see also section 3.3). To extract the 64
unknown elements of the density matrix we have applied 64 linearly inde-
pendent measurement operators on the state to be characterized. These
independent operators are constructed by applying a set of single qubit
rotations, namely {Id, o,, oy, 0.} to the operator M. To extract the
population only, the number of linearly independent operators reduces to
8. The pulse sequence we have implemented to observe the single and col-
lective vacuum Rabi oscillation is depicted in Fig. 6.1.

6.3 Observation of enhanced coherent collective
dynamics

First, a m-pulse is applied to a single qubit far detuned from the resonator,
such that the system can be described by a product state |e) ® |0). Then
the qubit is tuned into resonance with the resonator using a flux pulse of
variable duration 7. To reduce the overshoot the qubit is first tuned to
an intermediate buffer frequency. On resonance the energy eigenstates of
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6.3 Observation of enhanced coherent collective dynamics

this system with n = 1 excitations and N qubits are [n =1, N =14) =
1/v2(]g,1) % |e,0)) and the initial excited qubit state undergoes vacuum
Rabi oscillations between |g, 1) and |e,0). The frequency of the oscillations
is given by Q = 24/¢g% + A2 with Qg = 2¢g for A = 0 (see section 5.4). The
amplitude of the vacuum Rabi oscillation is maximal on resonance where
the excitation is fully exchanged. After the resonant flux pulse of length
T the qubit is detuned from the resonator again and the energy exchange
process is stopped.

In addition to performing a dispersive readout of the qubit population
we determine the resonator population by measuring the average photon
number, as given by the time integrated power (afa) at the output of the
cavity once the oscillation is stopped [Bozyigit11l]. The qubit population
is observed to oscillate with a frequency of 112.0 MHz, out of phase with
the photon field oscillating at 111.2 MHz [Fig.6.2(b, left)] and in good
agreement with the spectroscopically obtained value.

We extended the procedure described above as shown in Fig. 6.2(a) to
two and three qubits. An initial single photon Fock state is prepared by
transferring the full excitation of the first qubit to the resonator by adjust-
ing the interaction time between the qubit and the resonator to 79 = 7/2g.
Then the second and third qubit are tuned into resonance and the res-
onant collective interaction proceeds for time 7. All qubit populations,
obtained by tomographic state reconstruction for each interaction time 7,
are observed to oscillate simultaneously out of phase with the cavity pho-
ton number. When the number N of qubits taking part in the resonant
interaction is increased, the frequency of the oscillations is observed to
scale with v/N and the amplitude of the individual qubit population de-
creases to 1/N fulfilling the normalization condition. The tripartite states
between which the oscillations occur are |g, g, 1) and 1/v/2(|g, e, 0)—|e, g, 0))
and equivalently |g, g,9,1) and 1/v/3(|g, g,¢,0) + |9, ¢, 9,0) —|e, g,g,0)) for
the fourpartite state, where we have denoted the states in a binary order
as |C, B, A, Cavity). The opposite phase of the |e, g, g,0) state originates
from the fact that qubit A has a negative coupling constant. The qubit
populations measured after the collective vacuum oscillations are shown in
Fig.6.2(b/c, left column). The collective oscillation transfers energy back
and forth between the qubits and the resonator, such that the population
in the cavity is correlated with the population of the qubit |ggg) state.
Hence it is instructive to measure the photonic part of the state as done
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Figure 6.2: Oscillations for N=1 (a), N=2 (b) and N=3 (c). The popula-
tion is shown for the excited states of qubit A (blue), B (green), C (orange),
the |ggg) state (gray) and the resonator (violet).

before for the single qubit vacuum Rabi oscillations [Fig. 6.2(b/c, right
column)]. The oscillation frequencies for the resonator population for N=2
and N=3 are 161.8 MHz = 1.05- /2 §/27 and 195.2 MHz =1.03 - /3 g/2,
with g being the root mean square [Lopez07] of the three spectroscopically
obtained coupling constants. These oscillation frequencies clearly demon-
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6.4 Demonstration of W-type entanglement of Dicke-States

strate the y/N-nonlinearity of the Tavis-Cummings Hamiltonian in time
resolved measurements as illustrated in figure 6.5(b). While the collective
qubit oscillations are in good agreement with the expected dynamics, we
observe a decrease in visibility with increasing N for both the qubit and
resonator populations. We attribute this effect to an imperfect control of
the flux pulse amplitudes as no additional cold pulse optimization was per-
formed as for example outlined in section 5.3. Although we have extracted
a flux pulse cross coupling matrix at low frequencies, its accuracy is not suf-
ficient to fully compensate the flux cross talk also at high frequencies and
to exactly tune all qubits into resonance with the resonator simultaneously.

6.4 Demonstration of W-type entanglement of
Dicke-States

During the collective oscillations a W-state is created at time 7y = 7/(25vVN),
i.e. when the cavity state factorizes |0) ® 1/v/3(|g, g,¢€) + g, €, 9) — |e, g, 9)).
We measured the three qubit density matrix at this time by applying full
quantum state tomography [Filipp09]. Figure 6.4 shows (a) the real part of
the density matrix and (b) the corresponding Pauli sets.

The collective interaction time needed to create this three qubit entangled
state was only 7y = 2.9ns, while the overall sequence duration from the
start of the excitation pulse to the end of the flux pulses was 24.4ns as
limited by technical constraints.

As needed the dynamic phase that is picked up during the time when the
qubits are detuned can be corrected by applying single qubit phase gates
or by adjusting the phases of the tomography pulses. Here the coherent
entries of the density matrix have been numerically rotated to correspond
to the phases in the expected state.

We have also characterized the measured state fidelity defined as (p¢| p |p¢)
with respect to the density matrix rotated into the appropriate basis. We
use a maximum likelihood method which assumes that the measurement
outcomes are subject to Gaussian noise. To find the most probable physical
quantum state consistent with the obtained result the problem is mapped
to a least square minimization by an appropriate change of the operator
basis [Smolinl12]. Using this method the number of steps needed to per-
form the maximum likelihood algorithm scales as O(d*), where d is the
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Figure 6.3: Sequential generation of a W-state. One Qubit is prepared in
its excited state (QP). All qubits are tuned one after another on resonance
until the initial excitation is equally shared (SRI 1-3). Once all qubits are
tuned back to their bias frequency state tomography is performed (ST).

dimension of the quantum state. The resulting fidelity is 78 % with re-
spect to the density matrix p; = |Uy) (¥w| of the ideal state Uy =
1/v3(lg,g9,¢€) + |g,e,9) — |e, 9, g)), limited predominantly by flux cross talk
as discussed before in the context of time resolved measurements. In addi-
tion, via convex roof extension we have found the three-tangle to be close to
zero (0.06), verifying that the prepared state belongs to the W-class rather
then to the GHZ-class [Caol0]. Using the entanglement witness operator
M =2/31d—|W) (W| we find that Tr(Mp) = 2/3—F = —0.12 < 0 allows
to discriminate our tripartite entangled pure state against any bipartite
entangled states [Githne09]. We note that, in the time resolved measure-
ments the total measurement time per data point is determined by the
2.510° averages per population measurement at a repetition rate of 50 kHz.
At the same rate each state preparation and subsequent measurement was
repeated 6.510° times to obtain the density matrix and 107 times to obtain
the cavity population.

To experimentally verify that the fidelity of a W-state generated by
the collective interaction with a cavity mode in this device is not limited
by coherence we have also prepared a W-state using a novel sequential
method. In this approach we distribute a single excitation equally be-
tween the three qubits using resonant interaction (see figure 6.3). First,
we excite qubit C and tune it into resonance with the resonator for time
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Figure 6.4: (Color online) Real part of the density matrix of the W-state.
(a) Obtained for the collective approach as shown in Fig. 6.2. (c) Generated
by the sequential approach. (b/d) Pauli set for the collective/sequential
approach.

71 = arcsin (1/2/3)/gc. During this interaction, 2/3 of the excitation is
transferred to the resonator. Next we tune qubit B into resonance for
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Figure 6.5: (a) Sequence duration for the W-state generation in depen-
dence of the number of qubits. The collective approach (blue) is compared
to a sequential one (red).(b) Experimentally obtained coupling strengths
(black points) fitted by a square root dependence (red solid line).

a time 7o = arcsin (1/1/2)/gp, transferring half of the resonator excita-
tion to qubit B. Finally we let qubit A pick up the remaining third of
the energy from the resonator by bringing it into resonance for a time
73 = arcsin (1)/ga. The overall sequence duration from the start of the
excitation pulse to the end of the flux pulses is 26.7 ns, much longer than
7w but similar to the total pulse sequence length used for the collective
resonant interaction. Using a joint high-power readout (see section 3.3) for
tomography we obtain a density matrix of the W-state with much higher
fidelity 91%, shown in figure 6.4(c/d). As expected the preparation time
for the sequential method is longer than for the collective approach, be-
cause the latter method exploits the /N-enhancement. The dependence
of the W-state’s preparation time in dependence of the number of qubits
is compared for the two approaches in figure 6.5. The fact that the higher
fidelity was obtained by a procedure where no simultaneous flux pulses are
applied to multiple qubits affirms that the main limitation of the collective
generation is due to residual flux crosstalk, which could be eliminated in
future experiments, rather than decoherence. Moreover we estimated the
influence of dissipation and dephasing in absence of all systematic errors to
obtain a theoretical upper limit of 93% for the sequential and 97% for the
collective state preparation.
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6.4 Demonstration of W-type entanglement of Dicke-States

In summary, in a cavity QED experiment, we have studied the collec-
tive interaction of up to three superconducting qubits with a single photon
stored in a microwave resonator. We have explicitly reconstructed the den-
sity matrix of the multi-qubit entangled state of the Dicke- or W-type with
fidelities considerably higher than 2/3. We have also resolved the tempo-
ral dynamics of the population in the time domain characterized by the
v/N-scaling of the collective vacuum Rabi oscillation frequency in both the
qubit and the photon states.
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Collective dynamics in the lossy cavity limit

7.1 Review of superradiance experiments

Since 1954, enhanced superradiant decay has been observed in many differ-
ent physical systems [Skribanowitz73, Gross76, Raimond82, Scheibner(7,
Rohlsberger10]. The obtained results are consistent with Dicke’s prediction
that the emitted power of large ensembles depends on the square of the
density of the emitters rather than showing a linear dependence (see figure
7.1). However, for large numbers of atoms or atom-like systems a direct
observation of superradiance may be hindered by numerous impeding ef-
fects, such as nonlinear propagation and diffraction which occur in dense
ensembles [Gross82].

Striving to realize ideal conditions for its observation, a number of exper-
iments were designed to explore the microscopic regime of superradiance by
employing a small number of two-level emitters [DeVoe96, Eschner01, Fil-
ippll, vanLool3]. In particular experiments involving two trapped ions
were able to show that their collective decay rate varied by a few percent
depending on their separation [DeVoe96, Eschner01]. These experiments
presented clear evidence of an enhanced decay, but were unable to resolve
the dynamics by directly measuring the intensity of the emitted radiation
as a function of time. Although the ions could be driven directly into either
sub- or superradiant states, arbitrary initial states could not be directly
prepared. In addition, the observed superradiant decay did not dominate
over other decay mechanisms, because of the too large distance R between
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Figure 7.1: (a) Regime of large ensemble superradiance. The population
of N emitters confined inside a volume V' (light blue area) of the system is
fully inverted.(b) Time dependence of the decay. The number of emitters
is varied from N =1 to N = 22.

the emitters exceeding the wavelength \ of the emitted radiation.

In the quickly developing field of circuit quantum electrodynamics, in
which artificial atoms realized as superconducting qubits are coupled to
microwave photons [Schoelkopf08], the condition R ~ X or even < A is real-
ized. Moreover experiments take advantage of the fact that emitters can be
localized in a one-dimensional (1D) architecture instead of in three dimen-
sions (3D). In particular, for 1D superconducting transmission lines single
microwave photons can propagate with small loss in forward or backward
direction while strong interactions can be maintained over larger distances
[vanLool13, Lalumiérel3]. As a consequence, in circuit QED experiments,
super- and subradiant states have been selectively prepared in the strong
coupling regime of cavity QED [Filippl1] as well as in 1D free space [van-
Loo13]. The yet largely unexplored bad (or fast) cavity limit [Haroche06],
where the cavity decay rate x is much larger than the coupling strength
g and the rates for non-radiative atomic decay I'y, and pure dephasing I'*
(k> g > T'y, ') extends between those two regimes.

7.2 Experimental setup and characterization

We have investigated superradiance of a pair of emitters in the bad cavity
limit of circuit QED [Mlynek14] as also discussed theoretically in [Bonifa-
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Figure 7.2: Schematic and Sample. a, Optical equivalent of the setup.
Two two-level systems (yellow) are coupled with identical rate g and intrin-
sic decoherence rate I', to a cavity mode with photon decay rate s (blue).
The two-level systems are excited by radiation applied orthogonal to the
cavity mode (green). b,c, Optical microscope false color image of the sam-
ple with two qubits (A,B) (yellow) capacitively coupled to an asymmetric
waveguide resonator (blue). Each qubit is equipped with a local charge gate
(green) and a flux bias line (red) to create initial states and tune transition
frequencies independently.
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7 Collective dynamics in the lossy cavity limit

cio71, Lehmberg70, Delanty11] (Fig. 7.2) with two transmon qubits coupled
to a single coplanar waveguide resonator with parameters I'; /27 (A, B) ~
(0.09 MHz, 0.12 MHz), I'* /27 (A, B) ~ (0.008 MHz, 0.076 MHz), g/27(A, B)
~ (3.5 MHz, 3.7 MHz), and /27 ~ 43 MHz. Here, the measured I'y is the
sum of the negligible small radiative Purcell decay rate at the bias frequency
I'.(wa0,wB0)/2m = (0.0004, 0.005) MHz into the cavity mode at the de-
tuning A /27 = (1140, 340) MHz between the qubit and the cavity and the
dominating non-radiative decay rate I'y, ~ I'y, which we chose to include
all other decay channels.

The sample was fabricated in two-dimensional geometry using standard
techniques. The resonator is weakly coupled to an input and overcoupled
to an output line resulting in large decay rate. A smaller than typical
coupling rate g was realized by creating a qubit geometry in which island
and reservoir couple almost identically to the resonator (see section 2.3).
The qubits were positioned at field maxima of the first harmonic mode of
the resonator.

The qubit coherence properties at their idle positions w40 and wp
have been extracted as 1/I'1 (A, B)=(1.7 us, 1.3 us) and 1/T'2(A, B)=(2.9 ps,
1.2 us) by standard Rabi and Ramsey pulse sequences. The final state was
evaluated by measuring the qubit fluorescence when tuning it into resonance
with the cavity (see section 3.3).

For a further characterization of the system properties we have measured
the average transmittance of the cavity with the transition frequency w4 of
qubit A tuned to the center frequency of the resonator w, /27 ~ 7.064 GHz
while the second qubit B is kept off-resonant at wpog ~ 7.41 GHz. The
measured transmission spectrum is plotted vs. the frequency w, of a weak
external probe field as shown for this sample in figure 4.1 of section 4.1.

7.3 Time dependent dynamics

In a next step, we have explored the Purcell-enhanced spontaneous decay
of the individual qubits. For this purpose the qubits were prepared in their
excited state |e) by applying a m-pulse through a separate gate line (green in
Fig. 7.2) and tuned into resonance with the cavity by applying a magnetic
field pulse using a dedicated flux line (red in Fig. 7.2).

The pulse scheme used for individual control and read out of the qubits is
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7.3 Time dependent dynamics

similar to the one used for observing collective dynamics in strong coupling
circuit QED (see figure 6.1). In their idle position, both qubits are tuned
to their maximum transition frequencies of wa o ~ 8.20GHz and wp o ~
7.40 GHz by using miniature superconducting coils mounted on the backside
of the chip which allow for individual flux biasing of the qubit SQUID loops.
Single-qubit operations are realized using 12ns long resonant microwave
pulses. Qubit transition frequencies were tuned on ns timescales by injecting
current pulses into the flux gate line (Fig. 7.2).

To measure the field we used a heterodyne setup which measures the
complex amplitude S(t) = a+ hf, consisting of the experimental signal plus
amplifier noise dominated by a high-electron-mobility transistor amplifier
used to amplify the signal by 30 dB at 4 K. Additional amplification is done
at room temperature by 60dB. The microwave signal is then mixed down
to 25 MHz, again amplified by 30 dB, digitized using an analogue to digital
converter at a time resolution of 10ns and finally processed in real time
with field programmable gate array (FPGA) electronics, which also digi-
tally converts the signal down to DC and uses a 4 points square filter to
get rid of frequency components at more than 25 MHz. To extract the pho-
ton number the FPGA calculates STS in real time and then averages over
multiple instances of the same experiment leading to (STS) = (afa) + (hh')
assuming that the noise and the signal are uncorrelated. The noise floor is
determined from an off-measurement where no photons are generated and
can be numerically subtracted (see also section 3.3).

In the limit k > g > T'y;, the single excited qubit shows exponential de-
cay of the detected power P (Fig. 7.3a) with a rate of I'y = rg?/|% + iA,|?
[Delanty11, Heinzen87, Carmichael08]. To slow down the qubit decay with
respect to the bandwidth of our acquisition system we have performed
the measurements at a small qubit/cavity detuning of A, /27 = (wa/p —
wy)/2m = 25MHz. The time dependence of the individual qubit decays
are very similar with differences limited only by a small spread in in-
dividual coupling rates ¢g. By numerically fitting the master equation
simulation to the individual decays we may extract the non-radiative de-
cay rates once the qubits are tuned into resonance, given by I'y (A =
25 MHz.)/27=(0.040,0.042) MHz. This rates are small to the radiative de-
cay rates of I'y(A = 25 MHz.)/27=(0.48,0.54) MHz. The deviation of the

power AP(t) = Py e TRt P(t) emitted from the individual emitters
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7 Collective dynamics in the lossy cavity limit

from their mean P is plotted versus t in the upper panel of Fig. 7.3a.
The normalization is given by Py = hwl'x. These data sets serve as a ref-
erence for comparison with the superradiant decay of two qubits. When
both qubits are prepared in the state |ee) and tuned synchronously into
resonance with the resonator we observe the characteristic collective su-
perradiant decay of the two-qubit ensemble [Gross82, Delantyll]. First
we note that the emitted power level is approximately twice as large as in
the single qubit case (Fig. 7.3b) with an enhancement of the power level
relative to the single qubit case at early times and a reduction at later
times, which is also displayed in the upper panel of Fig. 7.3b. In addition
we note that the two-qubit collective decay begins at a rate smaller but
then speeds up to values larger than the single qubit decay rate. Both
features are qualitatively expected for small ensemble superradiance and
are also in quantitative agreement with a master equation simulation tak-
ing into account the measured qubit relaxation and dephasing rates (blue
line) and an analytic approximation AP(t) = 2Py e~ 2'#t(1 4 2T .t) — 2P(t)
(black line) [Gross82]. Intuitively, the decay process starting out at a small
rate and speeding up can be understood as due to the qubits dipoles with
initially undefined phase synchronizing during the decay through their in-
teraction, which gives rise to correlations. The correlations are naturally
linked to the presence of entanglement, as the only allowed decay channel
for the |ee) state is to cascade down to |gg) via the entangled bright state
|B) = |ge) + |eg) (see figure 7.4a). The transition matrix element from
|B) to |gg) is twice enhanced compared to a simple one qubit decay from
lge) to |gg) (see figure 7.4b). However both |B) and |ge) contain the same
number of excitations. It is therefore apparent that the superradiant de-
cay cannot follow a purely exponential dependence as the decay rate is not
always proportional to the number of excitations, i.e. dN/dtzN This intu-
itive argument can also be verified experimentally by initially preparing the
two qubits in superposition states (|g) + exp?4.2 |e))/v/2 with well defined
phases. If the relative phase of the dipoles Ap = a4 — ¢p is adjusted to
0, initially, the superradiant decay occurs at a single enhanced rate much
earlier (Fig. 7.3¢c), as the initial state, written in the coupled basis, already
contains a |B) state part and thus is provided with correlations right away.
Also in this case the observed decay dynamics are in good agreement with
theory AP(t) = Py e 2I=!(3 4+ T'wt) — P(t) (black lines) and master equation

86



7.3 Time dependent dynamics
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Figure 7.3: Spontaneous emission and two-qubit superradiance for the in-
dicated initial states. In each panel the time dependence of the emitted
power P for a given initial state (bottom) and the deviation from the av-
erage single qubit power AP (top) is shown. Data (dots) is compared to
a simple rate equation model (solid black lines) and full master equation
simulations (solid blue lines), see text for details. a, Individual decay of
qubit A (purple) or B (green) prepared in state |e). Collective decay for
initial states b |ee), ¢ (|g) + |e))(lg) + |e))/2, and d |ge). The orange area
indicates the difference of the collective two-qubit decay with respect to the
mean individual decay (dashed red line). For time t < 0 (greyed-out area),
the emission dynamics is governed by the initial field build-up, which is not
considered in the upper parts of each panel. All data was normalized by
the the same constant, extracted by matching the emitted energy of the
mean individual decay to what is expected from the master equation. The
theoretical curves then are scaled by s to include variations in our detec-
tion efficiency, where in (b) s=0.9, in (c) s=0.94 and in (d) s=1.07. The
reference curve of the mean individual decay was scaled accordingly.
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7 Collective dynamics in the lossy cavity limit
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Figure 7.4: Two qubit level scheme and decay channels. (a) Eigenstates
in the coupled basis. All allowed transitions happen via the bright state.
The dark state does not couple to the cavities field mode.(b) Eigenstates
in the uncoupled basis. The transition rates are always proportional to the
number of excitations in the system.

simulations (blue lines).

Notably, the physical system investigated here also allows for the experi-
mental investigation of a situation which Dicke has denoted as single atom
superradiance in his initial Gedankenexperiment, an effect surprising at the
time, in which a single emitter in the excited state |e) decays at an enhanced
rate in the presence of a second emitter, even when that second emitter is
in its ground state |g) (Fig. 7.3d). Here the initial state |ge) can be decom-
posed into a superposition (|B)+|D))/+/2 of a bright |B) = (|ge)+|eg))/V2
and a dark state |D) = (|ge) — |eg))/v/2. Half of the initial excitation re-
mains trapped in |D) while the other half decays at twice the rate from
the state |B), as pointed out by Dicke in his original argument [Dickeb4].
Again the measured data is in agreement with solutions of simple coupled
rate equations, namely AP(t) = Py e ?'=t — P(t) (Fig. 7.3, black lines)
[Gross82].

7.4 Reconstruction of field correlations

To further characterize the superradiant decay of the two-qubit ensemble,
we have fully reconstructed the single mode density matrix of the emit-
ted field using a statistical analysis of the measured quadrature ampli-
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7.4 Reconstruction of field correlations

b lg+eg—e)/2

Figure 7.5: Real part of the measured density matrix p (colored bars)
compared to expected values p4 and p_(wire frames) for initial qubit states
a (|lg) +€))(lg) + le))/2 and b (|g) +[€))(|g) — |e))/2. The imaginary part
was measured to be 0+ ¢ = 0+ 0.012 for (a) and 0 £ 0.037 for (b)

tudes [Eichler12]. The tomographic measurements were performed using
the techniques discussed in Ref. [Eichler12] making use of a parametric
amplifier [Eichler14] operated in the phase preserving mode to reduce the
required integration time. Any initial pure and separable two qubit state
brought into resonance with the cavity can be expressed in the coupled
atomic basis states as «|gg) +0 | D)+ 5 |B) + |ee). The resulting photonic
state is in general a mixed state obtained by tracing over |D) and reads
6210) (0] + (1 = 62) |UR) (Ug| with g = (1 — 62)"Y2(a |0) + B[1) +7[2)).
We have reconstructed the density matrix of such output states for both
qubits initially in the state (|g) + |e))/v/2 (Fig. 7.5a). The reconstructed
density matrix clearly shows that the emitted field consists of a zero, one,
or two photon Fock states and features pronounced coherences between
those states (colored bars) in good agreement with the expected output
state p = (1/2]0) +1/v/2|1) +1/212))(1/2 (2| +1/v/2 (1| +1/2 (2|) (wire-
frame). The state fidelity of the measured state p with respect to py is

F = (Tr\/\/oxp/p+)* = 0.94.

Initially preparing the two qubits in equal superposition states (|g) +
le))/v2 @ (lg) — |e))/V/2 out of phase by m, either zero or two photons
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7 Collective dynamics in the lossy cavity limit

are emitted, displaying a coherent component as well, while the probability
for measuring a single photon vanishes (Fig. 7.5b), compatible with the
expected mixed state of the form p_ =1/20) (0] +1/4(|0) — |2))((2] — (0])
with a fidelity of F=0.94.
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Outlook

The work presented in this thesis discussed the collective dynamics of mul-
tiple two-level emitters coupled to a single mode of an electromagnetic field.
Experiments were carried out both in the strong and in the weak coupling
limit of cavity QED.

Most experiments with a strong motivation towards quantum informa-
tion processing were realized in the first of the two mentioned regimes, as
the strong coupling rates allow the fast and efficient generation of highly
entangled states, as was also demonstrated in this thesis.

The bad cavity regime in contrast was previously almost unexamined in
the field of circuit QED. Here a variety of interesting experiments are still
outstanding which promise to contribute to a deeper understanding of ba-
sic quantum optical effects. In the context of superradiance, the multi-level
structure of the transmon allows to include higher levels into the observa-
tion of collective decays, giving rise to multi-color superradiance [Hayn11].
Also the observation of superradiant phase transitions, so far demonstrated
by coupling a Bose-Einstein condensate to a single mode of an open opti-
cal cavity [Baumannl0], could be extended to include multiple levels and
thus built a useful test bed for more complicated multi-level Dicke type
Hamiltonians [Hayn11].

Superradiance is an effect which up to now was only related to two-level
systems. Nevertheless it is expected that also harmonic systems should
show similar signatures indicating a collective decay. So far it was very diffi-
cult to engineer a common reservoir interaction for an ensemble of harmonic
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8 Outlook

oscillators. The on-chip integration of multiple microwave transmission line
resonators is certainly within reach of current circuit QED fabrication tech-
niques and would allow for the first experimental study of harmonic oscil-
lator superradiance [Delanty12]. In this context the recording of two-time
correlation functions would be of special interest and would well meet the
abilities to analyze the statistical properties of emitted microwave photons
with techniques that have been developed in the past [Eichler12].

Furthermore the control over small superradiating ensembles may prove
essential for experiments exploring entanglement by dissipation [Schnei-
der02, Harkonen09, Gonzalez-Tudelal3, Linl3, Shankar13]. Here the cou-
pling of the qubits to a common electromagnetic environment, represented
by the lossy cavity, is the key resource for the entanglement generation.
A main advantage of this attempt is that entanglement is arising in the
steady state of the system once the qubits are coherently and simultane-
ously driven. Therefore high fidelities can be achieved without requiring
precise control over microwave and flux pulses.

Another novel entanglement-generating protocol that could possibly be
implemented in the bad cavity regime is measurement-induced entangle-
ment [Julsgaard12]. Here the required coherent correlations between multi-
ple qubits are established as a consequence of the outcome of a measurement
process, which is either given by a quantum-non-demolition measurement
or as a result of a single quantum jump. The feasibility of such a pro-
tocol has already been demonstrated by time-resolved, continuous parity
measurements of two superconducting qubits. In the same instance it was
shown that the inclusion of feedback techniques may transform entangle-
ment generation from probabilistic to fully deterministic [Ristel3].

The reliable transfer of unknown quantum states is a key requirement
for large quantum networks [Kimble08]. The realization of the complete
teleportation protocol was successfully demonstrated recently [Steffen13b].
In addition to the conventional teleportation algorithms, superradiance,
especially in the context of reservoir-induced entanglement, might be a
promising tool to further pursue this direction [Chen05].
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