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Abstract

Superconducting quantum circuits have become a promising architecture for the
potential realization of a scalable quantum computer. These circuits consist of ca-
pacitors, inductors and Josephson junctions, and the combination of these elements
allows artificial on-chip two-level quantum systems (superconducting qubits) to be
engineered, which can be used as the basic units of quantum information.

This thesis presents the realization and characterization of fundamental elements
of a quantum processor comprised of up to three superconducting transmon qubits
capacitively coupled to a microwave transmission line resonator. In this circuit
quantum electrodynamics architecture, the resonator acts as a quantum bus con-
necting the qubits and simultaneously allows for a joint readout of the three-qubit
quantum states. High fidelity single-qubit operations are carried out by applying
microwave signals to additional transmission lines coupled to each individual qubit,
and fully characterized using quantum process tomography. For the realization of
two-qubit operations, two different approaches are discussed. The first is based on
sideband transitions between the resonator photons and each qubit. In combination
with the single-qubit operations, this allows us to generate and reconstruct highly
entangled two-qubit states using state tomography techniques. Furthermore, the
generation of photon Fock states with up to five photons inside the resonator is
demonstrated. The second approach exploits the fact that two qubits can coherently
exchange a single excitation mediated via virtual photons in the resonator. This
allows the realization of a conditional phase operation between each pair of the
three qubits, which is used to demonstrate the two-qubit Deutsch-Jozsa algorithm,
and to generate and fully reconstruct highly entangled three-qubit states useful for
quantum teleportation and quantum error correction. Furthermore, a three-qubit
Toffoli gate is efficiently implemented by exploiting the third energy level of the
transmon qubit. These quantum operations are fully characterized using quantum
process tomography.





Zusammenfassung

Supraleitende Quantenschaltungen haben sich zu einer vielversprechenden Ar-
chitektur für die mögliche Realisierung eines skalierbaren Quantencomputers
entwickelt. Diese Schaltungen bestehen aus Kondensatoren, Spulen und Josephson-
Kontakten, und die Kombination dieser Elemente ermöglicht die künstliche Fab-
rikation von Zwei-Niveau-Quantensystemen (supraleidende Qubits) auf einem
Mikrochip, welche dann als kleinstmögliche Speichereinheiten in der Quantenin-
formationsverarbeitung eingesetzt werden können.

Diese Doktorarbeit präsentiert die Realisierung und Charakterisierung von
grundlegenden Elementen eines Quantenprozessors anhand von bis zu drei supralei-
tenden Transmon-Qubits, welche kapazitiv an einen Wellenleiterresonator im
Mikrowellenbereich gekoppelt sind. In dieser Schaltkreis-Quantenelektrodynamik
Architektur fungiert der Resonator als ein Quantenbus der die Qubits miteinander
verbindet und ermöglicht gleichzeitig die simultane Messung aller drei Qubit-
Zuständen. Operationen auf einem einzelnen Qubit mit hoher Genauigkeit können
mit kurzen Mikrowellenpulsen ausgeführt, und mit Quanten-Prozess-Tomographie
charakterisiert werden. Für die Realisierung von Zwei-Qubit Operationen wer-
den zwei verschiedene Möglichkeiten diskutiert. Die Eine basiert auf Seiten-
bandübergängen zwischen Photonen im Resonator und den einzelnen Qubits. Dies
ermöglicht uns in Kombination mit den Ein-Qubit Operationen stark verschränkte
Zwei-Qubit-Zustände zu präparieren und mit Hilfe von Zustands-Tomographie
komplett zu rekonstruieren. Zusätzlich wird die Erzeugung von Photonen Fock-
Zuständen mit bis zu fünf Photonen innerhalb des Resonators gezeigt. Die zweite
Möglichkeit nutzt die Tatsache, dass zwei Qubits mit Hilfe von virtuellen Photonen
im Resonator eine einzelne Anregung austauschen können. Dies ermöglicht die Re-
alisierung eines kontrollierten Phasengatters zwischen jedem Paar der drei Qubits,
welches dann verwendet wird um den Deutsch-Jozsa Algorithmus mit zwei Qubits
zu implementieren. Zusätzlich ermöglicht es uns stark verschränkte Drei-Qubit-
Zustände zu präparieren und zu rekonstruieren, welche zur Quantenteleportation
und Quantenfehlerkorrektur verwendet werden können. Ferner wird mit Hilfe
des dritten Energieniveaus des Transmon-Qubits eine effiziente Implementierung
des Drei-Qubit Toffoligatters demonstriert, und alle Quantengatter werden mit
Quanten-Prozess-Tomographie vollständig charakterisiert.
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1
Introduction

One of the greatest technological advancements in the last century lies in digital
computer science. The idea of storing information and performing calculations in
the most simple mathematical model, using strings of 0’s and 1’s (string of bits),
proved to be very successful. In the early years, the basic electronic elements of a
computer consisted of vacuum tubes and the whole machine occupied the space
of a whole living room. At that time people believed that there was a worldwide
demand of no more than five computers. These days however, about every second
person in this world has one in their pocket. This amazing development was driven
by the discovery of the transistor, in 1947, which became the new basic electronic
element. As noticed by Gordon Moore in 1965 the number of transistors in a
computer of a given price has been doubling every two years until today (this
observation is now known as the Moor’s law).

The groundbreaking result for this development was the invention of an abstract
mathematical model by Alan Turing in 1936 [Turing37], describing a hypothetical
device of a programmable computing machine, known as the Turing machine. This
device, as he claimed, is universal in a sense that if an algorithm can be executed
on any machine, than there is an equivalent algorithm that solves the same problem
on the Turing machine. This conjecture, also known as the Church-Turing thesis, is
now widely accepted even though it is not formally proven. After the first computers
had been built, people started to think about how efficiently the Turing machine
can solve problems, namely, whether the resources required grow exponentially or
polynomially with the problem size. This led to the strong Church-Turing thesis
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1 Introduction

which states that any machine that performs some algorithm can be efficiently
(in polynomial time) simulated using the Turing machine. However, it did not
take long until probabilistic algorithms were found for problems that seemed to
have no efficient solution on a Turing machine. While this challenge to the strong
Church-Turing thesis could then easily be fixed by replacing the Turing machine
with a probabilistic Turing machine, it inspired Richard Feynman [Feynman82]
and David Deutsch to think about whether the Turing machine can be made even
more powerful when including the principles of quantum mechanics. In 1985
David Deutsch presented a model of a universal quantum computer [Deutsch85],
that can perfectly simulate any Turing machine, and even any quantum computer or
simulator. And indeed, he later discovered the first quantum algorithm (the Deutsch-
Jozsa algorithm) which is capable of solving a given problem faster than any
classical computer [Deutsch92], but not more efficiently according to the definition
as given above. It was Peter Shor in 1994 [Shor94] who first demonstrated the
full potential power of a quantum computer by developing an efficient algorithm
for the factorization of large integer numbers, which takes polynomial time on
a quantum computer but requires, up to now, exponential time for any known
classical algorithm. This problem is assumed to be so hard to solve on a classical
computer that it is widely used in encryption algorithms (such as RSA encryption)
for secure communication. Besides the possibility to decipher secret messages,
these results demonstrate a strong indication that quantum computers have the
potential of outperforming any machine based on classical physics only.

Very similar to a classical computer, a quantum computer would also store its
information in two distinct states 0 and 1, but unlike in classical physics, these
states can exist in a quantum superposition. A superposition state can exist in 0
and 1 at the same time. This offers the possibility to process quantum information
on many states in parallel, a powerful tool not available on classical computers.
Such a quantum bit (qubit) can for example be formed by the ground (0) and first
excited state (1) of an electron in an atom. The physical realization of such a
computer however turned out to be extremely challenging. While the individual
quantum system (for example a single atom) needs to be well isolated from its
environment to protect it from noise (decoherence), it must at the same time be
coherently controlled with extremely high precision. Furthermore, the qubits then
need to be wired together in a complex way to transfer and manipulate quantum
information. These tasks are so daunting that many people were in doubt about
the feasibility of the physical realization of a quantum computer. The discovery
of quantum error-correction schemes [Knill05, Shor95, Steane96b] was thus a
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huge breakthrough. These schemes allow for accurate quantum computation even
with faulty quantum operations and in the presence of decoherence, as long as
the error rate per operation is below a certain threshold (1 − 30 errors per 1000
operations [Knill05, DiVincenzo09]).

Following this discovery a number of physical systems have been proposed and
extensively studied in the context of quantum information processing. Some of
the most promising quantum systems to date are the polarization states of a pho-
ton [Kok07], two energy levels of an electron in a trapped atom [Saffman10]
or ion [Häffner08, Duan10], the two spin directions of an electron or nu-
cleus [Vandersypen04] in a magnetic field (NMR), and the quantum states of
artificial superconducting electronic circuits [Clarke08]. First building blocks of
a quantum computer and first quantum algorithms have been demonstrated with
these systems. The Deutsch-Jozsa algorithm could be realized in NMR [Chuang98],
ion trap [Gulde03], photonic [Takeuchi00] systems and with superconducting cir-
cuits [DiCarlo09]. The more challenging Shor algorithm has only been demon-
strated in a compiled version [Beckman96] for the factorization of the number 15
with NMR techniques [Vandersypen01] and photons [Lanyon07, Lu07, Politi09].
First experimental realization of basic quantum error correction schemes have
been made in NMR [Cory98], and subsequently in linear optics [Pittman05],
ion traps [Chiaverini04, Schindler11] and more recently also in superconduct-
ing circuits [Reed12]. Current state of the art experiments carried out in many
laboratories routinely achieve coherent manipulation of multiple qubits, and an
experiment on a maximal number of 14 qubits has recently been realized with
trapped ions [Monz11].

In NMR, trapped ions and photonic systems, the properties of the qubits are
given by nature. In contrast, superconducting qubits are made of artificial electronic
structures consisting of several circuit components, namely capacitors, inductors
and the Josephson elements. Different combinations of these elements allow to
design and engineer their properties to a large extent, such as the energy level
structure and coupling mechanism to its environment. Some of these properties
can also be tuned in-situ using local magnetic fields. Additionally superconducting
circuits have the technological appeal that they are fabricated on chips using
standard lithography techniques known from conventional integrated circuits, which
might be an advantage when scaling up the system to a large number of quantum
bits. The characteristic energy of these circuits lies in the microwave frequency
range (5 − 20 GHz) with well developed technology available for experiments, due
to the applications of similar components in telecommunication and radar systems.
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Strong interaction between single microwave photons and superconducting cir-
cuits can be reached with the so called circuit quantum electrodynamics (circuit
QED) setup, as proposed by Blais et al. [Blais04] and first experimentally realized
by Wallraff et al. [Wallraff04]. This system consists of one or several supercon-
ducting qubits which are integrated into a transmission line resonator, and was
extremely successful over the last few years for quantum computation and quantum
optics experiments. In the context of quantum computation, the resonator isolates
the qubits from the electromagnetic environment [Haroche89], allows for qubit
read-out [Filipp09, Bianchetti09, Reed10] and acts as a coupling bus between sev-
eral qubits inside the same resonator [Majer07, Sillanpää07]. This led to several
fruitful experiments carried out with superconducting qubits: demonstration of a
geometric single qubit phase gate [Leek07], generation of two-qubit entanglement
using sideband transitions between resonator and qubit [Leek10], violation of the
Bell inequality [Ansmann09, Palacios-Laloy10], demonstration of two-qubit quan-
tum algorithms [DiCarlo09, Yamamoto10, Dewes11], control and tomographic
reconstruction of a three-level system [Bianchetti10b], generation and detection
of three-qubit entanglement [DiCarlo10, Neeley10, Baur12], observation of quan-
tum jumps [Vijay11], benchmarking of a teleportation protocol [Baur12] and the
implementation of a three-qubit Toffoli gate [Fedorov12, Reed12, Mariantoni11a].

In the context of quantum optics experiments, it was the small mode volume
realized in transmission line resonators and the large dipole moment of super-
conducting artificial atoms that led to novel experimental achievements: demon-
stration of a single microwave-photon source [Houck07], observation of single-
artifical atom lasing [Astafiev07], observation of the

√
n nonlinearity of the Jaynes-

Cummings ladder in frequency [Fink08, Bishop09] and time domain [Johansson06,
Hofheinz08, Altomare10], observation of the Lamb shift [Fragner08], cooling and
amplification with a qubit [Grajcar08], generation of Fock states [Hofheinz08]
and arbitrary superpositions of Fock states [Hofheinz09], observation of the
Autler-Townes doublet [Baur09, Sillanpää09] and Mollow triplet [Astafiev10,
Lang11], electromagnetically induced transparency [Abdumalikov10], Bloch-
Siegert shift [Forn-Díaz10, Niemczyk10] in a ultrastrongly coupled qubit-
resonator system, first measurement of microwave frequency photon antibunch-
ing [Bozyigit11] using linear amplifiers and on-chip beam splitters, tomographic
reconstruction of itinerant microwave photons [Eichler11b, Mallet11], two mode
squeezing [Eichler11a] and entanglement of photons [Wang11].
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Outline of the Thesis

In this thesis I present our work carried out on superconducting qubits from 2008 to
2012 in the Quantum Device Lab at ETH Zurich. Even though some contributions
to the progress in quantum optics experiments have been made, I mainly focus
here on the contributions made to quantum computation. Before going to the
detailed discussion of our system, I first give a short review of the basics of
quantum information theory in Chapter 2. This includes a description of quantum
bits, how they can be manipulated and how a quantum computer differs from
classical computers. In Chapter 3 I introduce our quantum processor consisting of
superconducting charge qubits and a transmission line resonator. The interaction
between the qubit and the electromagnetic field inside the resonator is described
by the generalized Jaynes-Cummings Hamiltonian. A review of the theoretical
description is given and then used to show how this system can be employed to
control and readout the state of superconducting qubits. In Chapter 4 I present the
measurement setup used to cool down the quantum chip to millikelvin temperatures
and to connect the chip to room temperature equipment for qubit manipulation and
to digitally acquire the readout signal. The main results of this thesis are given
in the last two chapters. In Chapter 5 I discuss a number of important sample
characterization measurements, the measurement of Autler-Townes and Mollow-
transitions, and a detailed instruction of how to calibrate and characterize high
fidelity single qubit quantum gates. Furthermore, I discuss how to fully reconstruct
the density matrix of a qubit state and the process matrix of a quantum process.
Finally, in Chapter 6, I present two different methods to realize two-qubit quantum
operations. The first is based on sideband transitions between qubits and resonator,
and the qubit-qubit interaction is generated via transferring of the qubit excitation
to a photon in the resonator. The second method uses the interaction mediated by
virtual photons inside the resonator. I then use the latter interaction to generate and
fully reconstruct the density matrix of two- and three-qubit entangled states relevant
to quantum error correction and quantum teleportation schemes. It also allows
us to realize the Deutsch-Jozsa algorithm and to demonstrate the realization of a
three-qubit Toffoli gate which is useful in the context of quantum error correction.
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2
Short Review of Quantum Information Theory

This chapter is intended to give a short overview on the basic theory of quantum
computation and closely follows the description given in the book of Nielsen and
Chuang [Nielsen00]. It includes the mathematical and geometric description of a
quantum bit, as well as the description of the quantum operations on single and
multi-qubit states needed to perform arbitrary quantum computation. At the end
I also discuss the quantum parallelism, which describes a method that allows a
quantum computer to evaluate a function for a large number of values in parallel,
using only one single function call.

2.1 Quantum bit

The smallest unit of information on a classical computer is the so called binary
digit (bit) and takes one of two possible states, 0 and 1. Physically these states
correspond for example to whether a capacitor is charged or discharged. Any
information can then be stored by concatenating many of these bits into larger units.
Like the classical bit, a quantum bit (qubit) can also be in states |0〉 and |1〉. But
instead of corresponding to a classical quantity, these states are quantum states
formed by any quantum system with two distinct energy levels, such as the spin of
an electron in a static magnetic field. In this case, if the spin is pointing parallel or
anti-parallel to the magnetic field, the system is in the low (|0〉) or high energy state
(|1〉) with energies E0 and E1, respectively. Unlike a classical bit which must be
either 0 or 1, the qubit can be in both states at the same time. Such a superposition
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0

ψ

1

x

z

y
0 1+i

0 1+
φ

θ

Figure 2.1: Bloch sphere representation of a qubit.

state is mathematically represented by |ψ〉 = α|0〉+β|1〉, where α and β are complex
numbers, or in other words, by a vector in a two-dimensional complex vector
space with the orthonormal basis states |0〉 and |1〉 (computational basis states).
One might wonder why |ψ〉 is called a qubit, as it can be prepared in infinitely
many superposition states. The reason is that whenever the state is measured, the
result only contains one bit of information. The measurement outcome is 0 with
a probability |α|2 or 1 with probability |β|2, and the state after measurement is
collapsed onto the computational basis states |0〉 or |1〉, respectively. Because all
probabilities must add up to one, |α|2 + |β|2 = 1 must be satisfied.

It is sometimes useful to have a visual interpretation of a qubit state to better un-
derstand the action of quantum operations on the state. To find such a representation
we can rewrite an arbitrary qubit state in the form

|ψ〉 = eiγ
(
cos

θ

2
|0〉 + eiφ sin

θ

2
|1〉

)
, (2.1)

where the global phase factor γ can be set to zero as it is not measurable. The
variables θ and φ are real and define a point on a three dimensional unit sphere,
the so called Bloch sphere, see Figure 2.1. Every point on this sphere represents
a qubit state, and the vector pointing to the north pole is the ground state |0〉 and
the vector to the south pole is the excited state |1〉. The direction of the z axis is
defined by the direction of the static magnetic field. The time evolution of the state
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2.1 Quantum bit

vector is governed by the Hamiltonian of a spin 1/2 particle in a magnetic field

Ĥ =
1
2
~ω01σ̂z =

1
2
~ω01

(
1 0
0 −1

)
(2.2)

where ~ω01 = E1 − E0 is the energy difference between the ground and excited
states and σ̂z the Pauli z-matrix. In the Bloch sphere picture the time evolution
Û = e−iĤt can be understood as a precession of the state vector around the z axis
with the Larmor frequency ω01/2π. In order to have a better intuition for quantum
operations carried out on the qubit, one often considers a frame which rotates the
coordinate system with this Larmor frequency about the z axis (rotating frame),
such that the state vector is stationary in this frame. Rotations about the other two
axes to drive transitions between |0〉 and |1〉 are performed using magnetic fields
applied perpendicular to the z axis, see Section 2.2.1.

2.1.1 Many qubits

Storing information involves the concatenation of several bits. In the case of two
classical bits, this yields the four possible states 00, 01, 10 and 11. Similarly, for
two quantum bits these correspond to the computational basis states |00〉, |01〉, |10〉
and |11〉 (where |i j〉 stands for the tensor product |i〉 ⊗ | j〉). But as for a single qubit,
the most general two qubit state is given by the linear superposition of the basis
states

|ψ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉, (2.3)

where αi j are again complex numbers which fulfill the normalization condition∑1
i, j=0 |αi j|

2 = 1. Since the vector space is now a four dimensional complex space,
there is no easy graphical visualization of such a state anymore. Nevertheless, we
can still analyze some interesting features of this state which have no classical
counterpart. First lets discuss what happens when the state of the first qubit is
measured. Similarly to the single qubit case, the probability to obtain the result 0
(1) is given by |α00|

2 + |α01|
2 (|α10|

2 + |α11|
2). If the measurement outcome is 0, the

state will immediately collapse onto the state (α00|00〉 + α01|01〉)/
√
|α00|2 + |α01|2.

This result has some striking consequences. If the initial state is for example in the
special two qubit state

|ψBell〉 =
1
2

(|00〉 + |11〉) , (2.4)

9



2 Short Review of Quantum Information Theory

then the measurement of the first qubit immediately projects the second qubit onto
the state |0〉 if the measurement outcome was 0, and onto the state |1〉 if it was 1.
Imagine now that we send the second qubit of the prepared two-qubit state |ψBell〉

to the moon and keep one on earth. We can then change the state of the qubit on
the moon instantaneously, simply by performing a local measurement on our qubit
without ever interacting with the second qubit. When our measurement outcome
is 0 (1), we know that when someone else on the moon measures their qubit, they
will also measure 0 (1). This correlation between the measurement outcomes is
stronger than any classical correlation could be as was first pointed out by Einstein,
Podolsky and Rosen [Einstein35]. States with this non-classical property are called
entangled states and are the key elements for quantum computation algorithms and
quantum teleportation protocols, see also Section 6.3.

2.2 Quantum operations and quantum circuits

Besides storing information we also would like to be able to perform operations
on the qubits and move information from one qubit to another, in order to perform
quantum computation. In analogy to classical computation where bits are connected
using wires and gates, a quantum computer can be interpreted in terms of quantum
circuits and quantum gates applied to qubits. As an example the following quantum
circuit

|0〉 R̂π/2y •

|0〉

(2.5)

can be used to generate the Bell state given in Equation (2.4). This circuit is
read from left to right, and each qubit is associated with a quantum wire which
corresponds to the passage of time. First a single qubit operation on the first qubit
is applied, followed by a two qubit operation which generates the entanglement.
Instead of using operators to describe a certain quantum algorithm, these quantum
circuit diagrams provide a graphical method to better understand the action of
the algorithm on the individual qubits. In the following two sections we describe
the most important quantum gates and their circuit symbols used for the quantum
operations presented in this thesis.

10



2.2 Quantum operations and quantum circuits

2.2.1 Single-qubit operations

Any single qubit operation can easily be visualized on the Bloch sphere as a rotation
of the state vector around an arbitrary rotation axis. We label these operations
as R̂θn where n defines the rotation axis and θ is the rotation angle. The most
important operations are the rotation around the x and y axis. In fact, any single
qubit operation can be decomposed into a combination of rotations around these
two axes.

Bit-flip gates

Mathematically all quantum operations are represented by unitary matrices. In
the case of rotations around the x and y axis, these are given by the unitary 2 × 2
matrices

R̂θx = e−i θ2 σ̂x =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
with σ̂x =

(
0 1
1 0

)
, (2.6)

R̂θy = e−i θ2 σ̂y =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
with σ̂y =

(
0 −i
i 0

)
, (2.7)

where σ̂x and σ̂y are the Pauli x- and y-matrix. The R̂θy operations can be used to
construct the quantum equivalent of a classical not gate, which flips the state of
the qubit. This is done by choosing a rotation angle θ = π, such that it rotates the
vector from the south to the north pole or vice versa and maps the state |1〉 to |0〉
or |1〉 to |0〉. Since R̂πy = σ̂x, this gate is also referred to as the σ̂x-gate. Similarly,
when choosing θ = π/2, this operation maps a state initially in the ground |0〉 or
excited state |1〉 into an equal superposition of the two basis states, namely into
R̂π/2y |0〉 = (|0〉 + |1〉)/

√
2 or R̂π/2y |1〉 = (|0〉 − |1〉)/

√
2, respectively.

For a spin 1/2 particle in a magnetic field, these operations can be carried out
by applying a magnetic field which rotates in the x-y plane with an oscillation
frequency equal to the transition frequency of the qubit ωd = ω01. The Hamiltonian
describing this situation in the frame rotating at the Larmor frequency is given by

Ĥ = ~Ω
(
cos(φ)σ̂x + sin(φ)σ̂y

)
, (2.8)

where Ω defines the rate of rotation around an axis defined by the phase φ of
the transverse magnetic field. When considering other systems than spin 1/2
particles, these transitions can also be driven using different control fields rather

11
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than oscillating magnetic fields. In our case using superconducting qubits, we do
this by applying microwave signals in resonance with the qubit transition frequency,
see also Section 5.4.

Phase gate

Another important single qubit gate is the phase gate R̂φz , which rotates the state
vector around the z axis on the Bloch sphere. In other words, it changes the dynamic
phase of the state by φ such that R̂φz (α|0〉+ β|1〉) = α|0〉+ eiφβ|1〉. The matrix which
describes this gate is given by

R̂φz =

(
1 0
0 eiφ

)
. (2.9)

For details on how this is implemented see Section 5.4.4.

2.2.2 Multi-qubit operations

One of the most important multi-qubit gate is the controlled-not operation (ÛCNOT)
acting on two qubits, the target and control qubit. Together with arbitrary single
qubit operations, it forms a set of universal quantum gates, which means that any
quantum operation carried out on n qubits can be decomposed into single qubit
and the two-qubit controlled-not operations. It furthermore appears in most of the
currently known quantum algorithms. The action of this gate can be describes as
follows. It inverts the state of the target qubit if the control qubit is |1〉, and does
nothing if the control qubit is |0〉. In other words, depending on the state of the
control qubit, the gate applies a not operation or the identity on the target qubit.
The matrix and quantum circuit representation of this gate are given by

ÛCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ≡
|x〉 • |x〉

|y〉 |x ⊗ y〉
. (2.10)

Here x, y = 0 or 1, ⊕ denotes the addition modulo 2 and the controlled-not
operation is represented in the circuit diagram by a vertical line between the control
(•) and target (⊕) qubit. As we have already seen in Equation (2.5) this gate can
be used to generate entanglement. Refer to Section 6.2.3 for a description of an

12



2.2 Quantum operations and quantum circuits

implementation of this gate with superconducting qubits.
In an experimental realization of the controlled-not operation, it is often easier

to first generate the controlled-phase operation

ÛcZ11 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ≡
•

•
. (2.11)

This gate swaps the phase of the target qubit, if the control qubit is |1〉, and does
nothing if it is |0〉. The controlled-not operation is then constructed by applying a
R̂−π/2y and R̂π/2y rotation before and after ÛcZ11 , respectively.

A three-qubit gate that is important in the context of reversible classical compu-
tation and quantum error correction is the Toffoli gate

ÛToffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


≡

•

• (2.12)

It applies a not gate on the target qubit only if the two control qubits are in the state
|1〉, and does nothing otherwise. It can be shown that any (irreversible) classical
circuit can be efficiently simulated with a reversible circuit consisting only of
classical Toffoli gates. The Toffoli gate is thus universal for classical computation.
Because it can also be implemented as a quantum logic gate, it directly follows
that a quantum computer can simulate any classical computer. In addition, the
Toffoli gate is useful for quantum error correction , see also Section 7. For the
decomposition of this gate into controlled-not and single qubit operations, and its
implementation with superconducting qubits, see Section 7.2.

2.2.3 The power of quantum parallelism

One of the most important differences between classical and quantum computers is
the fact that a quantum computer can store its information in superposition states.

13
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This ability and the linearity of quantum operations equips a quantum computer
with an inherent parallelism that has no counterpart in any classical computer. As an
example, a quantum system consisting of n = 500 qubits can exist in a superposition
of 2500 states. This number is larger than the estimated number of atoms in the
universe [Nielsen00], and thus impossible to store on a classical computer, not to
mention to perform operations on all of them in a reasonable amount of time. A
quantum computer however is able to perform a quantum operation on all states at
the same time. This ability, referred to as quantum parallelism, leads to a significant
speed advantage over classical computers. However, to find algorithms that make
full use of this potential power is difficult as briefly explained below.

Let us assume we want to calculate the outcome of a Boolean function
f (x) : {0, 1}n → {0, 1}m which takes n qubits as an input and m qubits as an out-
put. Furthermore, we assume that we can carry out a unitary operation Û f that
transforms the state |x, 0〉 into |x, f (x)〉, using a sequence of quantum gates. Here x
denotes the d = 2n n-qubit computational basis states of the first register, and |0〉
denotes all m qubits of the second register in state |0〉. Instead of applying Û f onto
all input basis states individually, we first create an equal superposition of all basis
states |x〉 using the following unitary transformation

|ψinput〉 = R̂π/2y ⊗ R̂π/2y ⊗ . . . ⊗ R̂π/2y |0, 0, . . . , 0〉 =
1
√

n

d−1∑
x=0

|x〉. (2.13)

We then apply the unitary operation Û f onto this superposition state and all qubits
of the second register in the state |0〉

|ψ〉 = Û f

 1
√

d

d−1∑
x=0

|x, 0〉

 (2.14)

=
1
√

d

d−1∑
x=0

|x, f (x)〉. (2.15)

As a result of the quantum superposition and the linearity of Û f , this highly
entangled final state contains the solutions of the function f (x) applied to all
possible input states x, even though we have evaluated the function f only once!
On a classical computer, this would mean to run the computation on 2n different
machines in parallel, which is already more than atoms available in the whole
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2.2 Quantum operations and quantum circuits

universe for n = 500. Unfortunately, we can not easily access all these solutions. If
we measure the final state |ψ〉, we randomly retrieve the solution of f evaluated for
one single value of x with probability 1/d. This algorithm is thus no better than
randomly choosing an x and evaluating f (x) on a classical computer. For quantum
algorithms to be faster than any classical counterpart, the quantum parallelism is not
sufficient. The algorithm must be adapted such that the state containing the wanted
solution is measured with an increased probability compared to all other states, by
using quantum interference. One of the first quantum algorithms which makes use
of this is the Deutsch-Jozsa algorithm [Deutsch92]. It has been demonstrated with
superconducting transmon qubits in Yale [DiCarlo09], and later also with phase
qubits [Yamamoto10]. A realization of this algorithm in our laboratory is discussed
in Section 6.2.5.
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3
Quantum Circuits: On-Chip Quantum Processor

In this chapter I describe our quantum processor used during this thesis. As
an example, a false colored optical image of a three-qubit quantum processor
used in a number of experiments presented in this thesis [Baur12, Fedorov12]
is shown in Figure 3.1. It consists of a small sapphire chip of size 7x2 mm2

with electrical circuits patterned in a niobium thin film. Three superconducting
transmon qubits [Koch07a] fabricated from aluminum (orange) are coupled to a mi-
crowave transmission line resonator [Göppl08] (blue), which serves as a coupling
bus [Majer07] between the qubits for two-qubit quantum operations [DiCarlo09].
Simultaneously, the resonator is also operated as a measurement device [Wallraff05]

Figure 3.1: False colored optical image of the most recent version of a three-qubit
quantum processor used during this thesis, with the qubits colored in orange, the
resonator in blue and the local gate lines in red.
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3 Quantum Circuits: On-Chip Quantum Processor

to perform a joint readout of the three-qubit quantum states. Single qubit quantum
operations are carried out using the local transmission lines passing by each qubit
(red). Similarly to a classical central processing unit (CPU), our processor is fabri-
cated using standard photo-lithography and nano ebeam-lithography techniques.
A scaled up system can thus easily be fabricated or integrated into other electrical
circuits. However, the coherent control over the large scale circuit still remains
a great challenge. The processor is operated at microwave frequencies, which
is beneficial because the technology in this frequency range used to measure the
state of the qubits and to perform quantum operations is well established due to its
application in radio-astronomy and telecommunication. To avoid thermal excitation
of the qubit states and to maximize coherence, the processor must be operated at
ultra low temperatures < 20 mK.

At the beginning of this chapter, in Section 3.1, I describe how electrical circuits
can be used to fabricate a quantum bit. An essential building block to realize this
goal is the Josephson junction, the properties of which are discussed. In Section 3.2
I discuss how qubits can be coupled to the transmission line resonator, and how
this system then can be used to prepare and read out an arbitrary qubit state.

3.1 Superconducting qubits

When talking about quantum mechanics, one usually thinks about microscopic
systems such as photons, atoms or electrons. It may thus sound a bit surprising
that the macroscopic circuits alluded to above, visible with our bare eyes, can be
used to perform coherent quantum information processing. However, macroscopic
objects may behave quantum mechanically, as long as the relevant collective de-
grees of freedom are well enough decoupled from the environment and that the
energy dissipation is small enough. In electric circuits, these collective degrees
of freedom are the flux Φ stored in an inductor and the charge q on a capacitor.
While dissipation is eliminated by using superconducting materials, the isolation
from the environment is achieved by carefully designing the electric circuits to
decouple the quantum system from the control and measurement devices. In
addition, careful magnetic shielding and thermalization of the quantum device
to millikelvin temperatures is used to suppress magnetic flux noise and thermal
population, respectively. First evidence for the quantum behavior of electrical
circuits resulted from experiments with Josephson junction in which macroscopic
quantum tunneling was demonstrated [Voss81, Devoret85]. In 1997, a first ex-
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3.1 Superconducting qubits

periment was carried out [Nakamura97] which showed spectroscopically that the
quantum variable specifying the number of Cooper-pairs on a superconducting
island can exist in a superposition state. Later in the year 2000, it was shown
with flux qubits [Friedman00, vanderWal00] that the quantum state flux through a
superconducting loop can also exist in a superposition of a state described by flux
pointing up and flux pointing down.

In order to gain insight about how one can construct a quantum bit with super-
conducting circuits, I first discuss the parallel LC oscillator (see Figure 3.2a) as
a simple quantum circuit. The equation of motion for this circuit is found using
Kirchoff’s law and reads

Ld2q/dt2 + (1/C)q = 0. (3.1)

It is easy to check that the classical Lagrangian

L(q, q̇) = (1/2)L(dq/dt)2 − (1/2C)q2 (3.2)

describes the same dynamics according to the Euler-Lagrange equation

d
dt

(
∂L

∂q̇

)
−
∂L

∂q
= 0. (3.3)

The circuit can then be quantized using the standard quantization principle (a
description of how to quantize a general electrical circuit is given in [Yurke84,
Devoret97]). First, the Hamiltonian of the circuit is found using the Legendre
transformation H(p, q) = pq̇ − L(q, q̇) which yields

H(q,Φ) = q2/(2C) + Φ2/(2L). (3.4)

E
ne

rg
y

E4
E3

E2
E1
E0

LC

a) b)

Figure 3.2: a) Circuit diagram of a parallel LC oscillator. b) Harmonic energy level
diagram.
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Here, the flux Φ = p = Ldq/dt = dL(q, q̇)/dq̇ takes the role of the generalized
canonical momentum conjugate to the canonical position q. Once it is known
which are the conjugate variables and what the form of the Hamiltonian is, the
quantization is done by replacing the classical canonical conjugate variables with
quantum mechanical Hermitian operators q̂ and Φ̂, which obey the commutation
relation [q̂, Φ̂] = i~. One can then express the Hamiltonian operator in terms of
dimensionless operators

Ĥ = ~ω

(
â†â +

1
2

)
, (3.5)

where ω = 1/
√

LC is the resonance frequency of the circuit and a = (Φ̂ +

iZq̂)/
√

2~Z the photon annihilation operator. The charge and flux operators can
thus readily be expressed in terms of the creation and annihilation operators as
q̂ = i

√
~/2Z(â† − â) and Φ̂ =

√
~Z/2(â + â†). The energy levels of this system

form a harmonic spectrum, in which all the levels are equally separated from each
other, see Figure 3.2b.

In order to use a system as a qubit however (for example the ground and first
excited state), the transition between those two states must be sufficiently different
from the transitions to the next higher states. The only known dissipation free elec-
tric element which could produce such an anharmonic spectrum is the Josephson
junction, see Section 3.1.1. Therefore, the building blocks to construct a circuit
which can be used as a qubit are capacitors with capacitance C, inductors with
inductance L and Josephson junctions characterized by their Josephson energy
EJ . Numerous of different circuits have been found to be promising candidates
and can be categorized into three different types of qubits [Clarke08]. The phase
qubit [Martinis02] consists of a single current biased Josephson junction. For a
current bias smaller than the critical current of the junction, the anharmonic po-
tential can be approximated by a cubic potential, and the two lowest energy states
with well defined superconducting phase difference across the junction define the
qubit state. The flux qubit consists of a micrometer sized superconducting loop,
interrupted by one [Friedman00] or three [vanderWal00] Josephson junctions. The
potential is a double well potential with the two quantum ground states in the two
wells define, respectively, a magnetic flux pointing up or down. These two states
are coupled by the small potential barrier connecting the two potential wells, giving
rise to quantum superposition between the two states, which form the qubit states.
The charge qubit [Bouchiat98, Nakamura99, Vion02, Koch07a] is defined by a tiny
superconducting island which is on one side connected to ground via a Josephson
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3.1 Superconducting qubits

junction, and on the other side capacitively coupled to a voltage bias source. The
qubit states are defined by the quantum states which describe whether n or n + 1
Cooper pairs are located on the island. A more detailed discussion of the charge
qubit in general, and the transmon qubit in particular is given in Section 3.1.2 and
Section 3.1.3.

3.1.1 The Josephson junction

A Josephson junction consists of two superconducting electrodes connected by a
“weak link" which limits the flow of supercurrent between the two electrodes. If
the closest distance between the electrodes is sufficiently small, the macroscopic
wavefunctions of the two superconductors overlap and form a weakly coupled
system in which Cooper pairs can coherently tunnel from one electrode to the other,
carrying a small supercurrent. The theoretical description for such a system was first
proposed in 1962 by the British physicist Brian David Josephson [Josephson62]
and closely followed by an experimental verification in 1963 [Anderson63]. The
“weak link" can be either an insulating barrier (S-I-S junction), a normal metal
thin film (S-N-S junction) or a short, narrow constriction in a superconductor
(S-c-S junction) [Tinkham96]. For most superconducting qubit applications S-I-S
junctions are used at the current state of the art, consisting of a few Ångström thin
oxide layer (usually aluminum oxide Al2O3) grown between two superconducting
electrodes (usually aluminum Al) using standard nanolithography techniques. A
simplified schematic of a current biased S-I-S junction and its equivalent electrical
circuit are shown in Figure 3.3a,b. The physical Josephson junction is modeled
as an ideal Josephson element shunted by a resistance R and a capacitance C
(RCSJ model) [McCumber68]. There are two contributions to the resistance R.
One part is the resistance Rqp which accounts for dissipation due to quasi-particle
tunneling through the junction. The other part accounts for the frequency dependent
dissipation due to the coupling of the Josephson junction to the biasing circuitry and
the environment, which is determined by the real part of the admittance Rcircuitry =

Re(Y(ω)) seen by the junction [Esteve86], see also Section 4.4.1. The capacitance
C reflects the geometric shunting capacitance between the two electrodes. For
temperatures smaller than the critical temperature of the superconductor T < Tc, the
resistance Rqp rises exponentially. For the case of very low temperatures T � Tc,
the resistor Rqp becomes so large that it can be replaced with an open circuit in the
model.

The two fundamental equations describing the relation of current flowing through
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Figure 3.3: a) Schematic of a current biased S-I-S Josephson tunnel junction. It
consists of two superconducting electrodes S 1 and S 2 with a thin isolation layer in
between. b) A physical Josephson junction can be modeled as an ideal Josephson
element with Josephson energy EJ shunted by a resistance RJ and a capacitance
CJ . c) Washboard potential for different bias currents I. If the bias current is
smaller than the critical current of the junction (I < IC), the potential has well
defined minima around which the potential can be approximated with as a weakly
anharmonic potential with resonance frequency ∼ ωJ .

and the voltage across an ideal Josephson element to the phase difference between
the electrodes are summarized below [Tinkham96].

1. Current phase relation - When no voltage is applied across the Josephson
junction, there is a supercurrent Is through the junction, which depends on
the phase difference δ between the two macroscopic wave functions of the
two superconducting electrodes. This effect is called the DC Josephson effect
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and described with the sinusoidal relation 1

Is(δ) = Ic sin(δ). (3.6)

It can directly be derived from simple boundary conditions for the current
phase relation. Here Ic is the critical current, which corresponds to the
maximum supercurrent that can flow through the weak link and δ is the
gauge-invariant phase difference defined by

δ(~r, t) = Θ2(~r, t) − Θ1(~r, t) −
2π
Φ0

∫ 2

1
~A(~r, t) ~ds, (3.7)

where the integration is from one electrode of the weak link to the other and
Θ1/2 are the phases of the macroscopic wavefunction of the two supercon-
ducting electrodes. The vector potential ~A accounts for an external magnetic
field and vanishes if the magnetic field is zero, and Φ0 = h/2e is the magnetic
flux quantum.

2. Voltage phase relation - When the phase difference δ across the Josephson
junction changes in time, a voltage V drops between the two superconductors
according to

dδ
dt

=
2π
Φ0

V. (3.8)

Such a state with time dependent phase can in practice be realized by biasing
the junction with a DC voltage, with a current exceeding the critical current
Ic, or with an AC current. Thus, Equation (3.8) is also referred to as the AC
Josephson effect.

The only parameter in the above equations that is controllable during fabrication
is the critical current Ic. All others are fundamental constants, which is why
the Josephson junction is used for voltage standards [Taylor67]. In the context
of qubit fabrication, this parameter determines the maximal transition frequency
of the qubit and it is thus desirable to have accurate control over the critical
current. Its temperature dependence and relation to the normal state resistance Rn

(the resistance of the junction in the non superconducting state) is given by the

1The most general relation would be Is(δ) =
∑∞

n=1{In sin(nδ) + Jn cos(nδ)}. However the one given
in Equation (3.6) holds rather well in most cases and is used here for simplicity.
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Ambegaokar-Baratoff relation [Ambegaokar63]

Ic =
π∆(T )
2eRn

tanh
(

∆(T )
2kBT

)
, (3.9)

where ∆(T ) is the band gap of the superconductor. In the limit where the tempera-
ture is much smaller than the critical temperature of the superconductor T � Tc,
this relation can be approximated as

Ic ≈
π∆(0)
2eRn

. (3.10)

The normal resistance Rn ∝ eBd/A is inversely proportional to the area of the
junction A and exponential in the barrier thickness d, where B is a material depen-
dent constant. Thus we can control the critical current Ic by simply adjusting the
geometry of the junction during the nanolithography process.

The Josephson junction can also be characterized in terms of coupling free energy
F stored in the junction and the energy stored in the capacitor ECN = CV2/2. F
is derived by integrating the electrical work F =

∫
IVdt done by a bias current I.

Using the two Josephson relations given in Equation (3.6) and Equation (3.8) these
two energies are written as

F(δ) = EJ(1 − cos δ), (3.11)

ECN = 4N2EC , (3.12)

where EJ = Φ0Ic/2π is the Josephson energy. EC = e2/2C is the charging energy
which is the energy needed to transfer a single electron from one electrode to the
other and N the number of excess Cooper pairs on one electrode relative to the
neutral state.

Within the RCSJ model, the dynamics of the phase δ can be determined by using
the Kirchhoff’s rule for the circuit shown in Figure 3.3b to write the differential
equation

I = Ic sin δ +
V
R

+ C
dV
dt

= Ic sin δ +
~

2eR
δ̇ +
~

2e
Cδ̈, (3.13)

where I is the bias current. This is the equation of a damped non-linear oscillator.
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In the following, we will neglect the damping term which determines the qubit
lifetime because it can be made small by operating at low temperatures and carefully
designing the circuitry coupled to the Josephson junction. The dynamics described
by this equation is the same as that of a particle of mass (~/2e)2C moving along
the δ axis in an effective potential

U(δ) = EJ(1 − cos δ) −
~

2e
Iδ, (3.14)

called the tilted washboard potential shown in Figure 3.3c. In the absence of bias
current (I = 0) the potential is sinusoidal and has well defined minima. Around
such a minimum, the potential can locally be approximated by the potential of a
harmonic oscillator with resonance frequency

ωJ =

√
2eIc

~C
, (3.15)

known as the plasma frequency of the Josephson junction. When bias current
is applied, the potential becomes tilted, the minima become more shallow and
completely disappear when the bias current becomes bigger or equal to the critical
current I ≥ Ic. At this point, δ̇ is finite and a voltage drop occurs across the junction.
The slight deviation of U(δ) from the harmonic potential due to the nonlinearity
of the Josephson junction and the tilting of the potential due to the bias current
form the basis for quantum information processing with superconducting qubits in
general and superconducting phase qubits [Martinis02] in particular.

Combining this potential energy characterized by the Josephson energy of the
junction and the kinetic energy Ekin = (~δ̇)2/16EC (found from the last term in
Equation (3.13)) characterized by the charging energy, we can immediately write
down the Lagrangian of a current biased Josephson junction

L(δ, δ̇) =
~2δ̇2

16EC
− EJ(1 − cos δ) +

~

2e
Iδ. (3.16)

We use this equation later to find the quantization of the circuit shown in Figure 3.3a.

3.1.2 The Cooper pair box qubit

Instead of biasing a Josephson junction with a current as we have seen in the
last section, it can also be biased with a voltage as shown in Figure 3.4a. This
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3 Quantum Circuits: On-Chip Quantum Processor

circuit is called the Cooper pair box (CPB) and was first theoretically discussed
in 1987 by Büttiker [Büttiker87] and experimentally realized by Bouchiat et al. in
1997 [Bouchiat98]. It did not take long until coherent quantum dynamics has first
been observed in Japan 1999 by Nakamura et al. [Nakamura99]. The CPB consists
of a small superconducting island (orange), which is connected via a Josephson
tunnel junction (yellow) with capacitance CJ and Josephson energy EJ to a large
superconducting electrode (blue) that serves as a reservoir of Cooper pairs. Single
Cooper pairs can tunnel coherently from the reservoir through the junction to the
island and vice versa. If the charging energy of the island is large compared to
the Josephson energy of the junction (4EC � EJ), the system is in a Coulomb
blockade regime, also called the charge qubit regime. Then, the amount of excess
Cooper pairs N (number of Cooper pairs additional to the neutral state consisting of
∼ 1013 Cooper pairs) on the island can be controlled by changing the gate voltage
Vg applied to the gate capacitance Cg.

Φ
Vg

b)
Cg
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ir

Island

EJ,1 EJ,2
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Cg
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Φ

Cg

Reservoir

Island
EJ

Figure 3.4: a) Schematic of a CPB consisting of a Josephson junction (yellow)
which connects a superconducting island (orange) with a reservoir for Cooper pairs
(blue). The number of Cooper pairs on the island are controlled with a capacitively
coupled voltage source. b) Here the single Josephson junction is replaced with a
SQUID loop, to add another control parameter to the CPB Hamiltonian to change
the Josephson energy with a magnetic field. c) Circuit diagram corresponding to
the schematic in b).

In order to find the Lagrangian for the CPB, we have to determine the kinetic
and potential energy of the system. From Section 3.1.1 we already know that the
potential energy is determined by the Josephson energy U(δ) = EJ(1 − cos δ) and
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3.1 Superconducting qubits

the kinetic term is given by the electrostatic energy of the capacitor. Since the
structure has two capacitances, the kinetic energy term is given by

Ekin =
CJV2

J

2
+

Cg(Vg − VJ)2

2
, (3.17)

where VJ is the voltage drop over the Josephson junction. By using the voltage
phase relation of the Josephson junction (3.8) and adding a constant term (indepen-
dent of δ and δ̇) that does not influence the dynamics of the system, the Lagrangian
can be written as [Wendin05]

L(δ, δ̇) =
CΣ

2

(
~

2e
δ̇ −

Cg

CΣ

Vg

)2

− EJ(1 − cos δ), (3.18)

where CΣ = CJ + Cg. Here the kinetic term can be tuned by the external gate
voltage, the potential term however is fixed by the EJ defined during the fabrication
process.

In order to add an additional control parameter for the potential term, the CPB is
slightly modified as shown in Figure 3.4b. There, the single Josephson junction
is replaced by a SQUID (Superconducting QUantum Interference Device) loop
consisting of a superconducting loop interrupted by two Josephson junctions. This
structure is referred to as the split CPB. If the two junctions are equal (EJ,1 =

EJ,2 = EJ), such a SQUID loop can be considered as a single junction with an
effective Josephson energy EJ(Φ) = Emax

J | cos(πΦ/Φ0)|, tunable via a magnetic flux
Φ applied through the SQUID loop, see [Tinkham96, Chapter 6.4.1]. The maximal
Josephson energy Emax

J = 2EJ is given by the sum of the Josephson energies of the
two individual junctions. The Lagrangian of the split CPB is then given by

L(δ, δ̇) =
CΣ

2

(
~

2e
δ̇ −

Cg

CΣ

Vg

)2

− EJ(Φ)(1 − cos δ), (3.19)

with CΣ = CJ,1 + CJ,2 + Cg because the two Josephson junctions are connected in
parallel. With the knowledge of the Lagrangian, the circuit can readily be quantized
in the same way as described at the beginning of Section 3.1. Subtracting a constant
term that does not change the dynamics (again independent of δ and δ̇), we end up
with the Hamiltonian [Bouchiat98]

ĤCPB = 4EC(N̂ − ng)2 − EJ(Φ) cos δ̂. (3.20)
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Here, N̂ = p̂/~ is the operator associated with the number of Cooper pairs in
excess from the neutrality in the metallic island and p̂ the canonical momentum
operator conjugate to the phase operator δ̂. EC = e2/2CΣ the charging energy and
ng = −CgVg/2e the charge on the gate capacitor (in units of 2e), which can be
tuned by the gate voltage and is therefore, additionally to the magnetic flux, an
external control parameter of the CPB Hamiltonian. In order to find the spectrum
associated with this Hamiltonian, one has to solve the corresponding eigenvalue
equation

Ĥ|k〉 = Ek|k〉, (3.21)

which can be done analytically in the phase space representation.

Phase representation

The eigenstates |δ〉 and the corresponding eigenvalues δ of the operator δ̂ associated
with the superconducting phase drop across the Josephson junction are defined as

δ̂|δ〉 = δ|δ〉. (3.22)

The set {|δ〉, δ ∈ [0, 2π[} forms a complete basis for the CPB states [Cottet02]. The
representation of the number operator in this phase basis writes

N̂ = −i
∂

∂δ
. (3.23)

With Equation (3.21), one can then write down the Schroedinger equation

Ek〈δ|k〉 = 〈δ|ĤCPB|k〉 (3.24)

⇔ Ekψk(δ) =

4EC

(
−i

∂

∂δ
− ng

)2

− EJ(Φ) cos(δ)

ψk(δ), (3.25)

where ψk(δ) = 〈δ|k〉 is the wavefunction of the eigenstate |k〉 represented in the
phase basis. It satisfies the boundary condition ψk(δ) = ψk(δ+ 2π). This differential
equation can be solved analytically and the wavefunctions and the eigenenergies Ek

can be given in terms of Mathieu functions, see [Cottet02] for a detailed discussion.
The energies Ek calculated from the analytic solution for k = 0, 1, 2 as a function

of the gate charge ng are shown in Figure 3.5 for a fixed Josephson energy EJ(Φ) =

EC . To give an intuitive understanding of this energy level diagram, it is useful
to represent the CPB Hamiltonian in the charge representation, even though the
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Figure 3.5: Solid lines show the eigenenergies of the CPB for EC = EJ , calculated
from the analytic solution of the Schroedinger equation in terms of Mathieu func-
tions. The red, blue and green curves show the ground, first and second excited state
energy levels E0, E1 and E2. Dashed lines show the electrostatic energies of the
charge states with 0, 1, and 2 Cooper pairs on the island. The degeneracies between
the energies of neighbouring charge states occurring at ng = ±0.5, ±1.5, . . . are
lifted by the Josephson coupling.

Schroedinger equation is then not analytically solvable. I will thus briefly discuss
the charge representation and review how the CPB can be used as a qubit.

Charge representation

The basis for which the number operator N̂ is diagonal are the eigenstates |N〉
which satisfy the relation

N̂ |N〉 = N |N〉. (3.26)

|N〉 represents the state with a precise number of excess Cooper pairs N on the
island and the set {|N〉,N ∈ Z} forms a complete basis for the states of the CPB
for energies lower than the superconducting gap, i.e. when no quasiparticles are
present. The diagonal kinetic term of the Hamiltonian can in this basis readily be
written as [Bouchiat98]

Ĥkin = 4EC

∞∑
N=−∞

(N − ng)2|N〉〈N |. (3.27)
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Since δ and N are conjugate variables, the number states |N〉 can be related to the
phase states using the Fourier transform [Tinkham96]

|N〉 =
1

2π

∫ 2π

0
e−iNδ|δ〉dδ. (3.28)

With this relation it directly follows that

e±iδ̂|N〉 = |N ∓ 1〉. (3.29)

The Josephson coupling term ∝ cos δ̂ = (eiδ̂ + e−iδ̂)/2 of the CPB Hamiltonian
is thus the sum of two terms which raise and lower, respectively, the number of
Cooper pairs on the island by one. This describes exactly the behavior of Cooper
pairs tunneling through the Josephson junction at a rate EJ/~, leading to the full
CPB Hamiltonian in the charge representation

Ĥ(ng) =

∞∑
N=−∞

[
4EC(N − ng)2|N〉〈N | −

EJ

2
(|N〉〈N + 1| + |N + 1〉〈N |)

]
. (3.30)

Starting from this Hamiltonian, we can now understand how the energy level di-
agram shown in Figure 3.5 comes about. Let us first look at the situation where
EJ = 0. For a fixed number of Cooper pairs N on the island, the energy depends
quadratically on the gate charge ng, leading to the dotted and dashed parabolae.
At the crossing points of the parabolae, the two charge states are energetically
degenerate. If we now turn on the Josephson coupling term EJ > 0, the degeneracy
between neighbouring parabolae is lifted due to the coupling between the two
charge states |N〉 and |N + 1〉, leading to an avoided crossing. Let us now consider
the regime where the charging energy is much larger than the Josephson energy
(4EC � EJ), the so called charge regime. At the degeneracy point ng = 0.5, the two
new eigenstates with lowest energy are given by the symmetric and antisymmetric
superposition states (|0〉 ± |1〉) /

√
2 whose eigenenergies are separated by EJ(Φ),

which can be tuned externally with a magnetic field. More generally, when restrict-
ing ourselves to a gate charge that stays around the degeneracy point (0 � ng � 1),
the only charge states |N〉 relevant for the lowest two energy levels are |0〉 and |1〉.
All the other states are separated by energies much higher then the coupling energy
EJ and can be considered to be decoupled.
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The two-level approximation

We can thus restrict ourselves to the space spanned by the two charge states |0〉 and
|1〉. The CPB Hamiltonian projected onto this subspace is given by

Ĥ =
ε

2
(|1〉〈1| − |0〉〈0|) −

EJ

2
(|0〉〈1| + |1〉〈0|) , (3.31)

where a constant energy term was subtracted such that ε = 4EC(1 − 2ng) is zero
at the degeneracy point ng = 0.5. The eigenenergies E0,1 and the corresponding
symmetric and antisymmetric eigenstates of this Hamiltonian are given by

E0,1 = ∓
1
2

√
E2

C(1 − 2ng)2 + E2
J , (3.32)

|ψs,a〉 = cos
(
ϑ

2

)
|0〉 ∓ sin

(
ϑ

2

)
|1〉, (3.33)

where ϑ = arctan(EJ/ε) is the mixing angle. Defining the computational ground
and excited states as the symmetric and antisymmetric eigenstates respectively
|0C〉 = |ψs〉 and |1C〉 = |ψa〉, we end up with the well known Hamiltonian of a spin
1/2 particle in a magnetic field

Ĥ/~ =
1
2
ω01σ̂z, (3.34)

where ω01 = (E1 − E0)/~ is the transition frequency between ground and excited
state, and σ̂z the Pauli matrix. Note also that in our notation the computational
states are labeled with a C such that they are not confused with the number state.

Driving the qubit

Instead of biasing the qubit with a constant gate voltage, one could add a time
dependent driving term oscillating with a frequency ωD close to the qubit transition
frequency ω01. To take this into account in the CPB Hamiltonian, Vg in Equa-
tion (3.20) is replaced with the voltage Vg = VDC

g + V(t), with V(t) = VD cos(ωDt).
Expanding the square gives

Ĥkin = 4EC(N̂ − nDC
g )2 +

ECC2
g

e2 V(t)
(
2VDC

g + V(t)
)
−

4ECCg

e
V(t)N̂ (3.35)
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for the kinetic term of the Hamiltonian. The first term is just the original electro-
static term with the DC bias. The second term is a constant additional energy stored
in the system which is not state dependent (does not depend on N̂), and thus does
not influence the dynamics of the qubit. The last term describes the coupling of the
driving field to the qubit and depends both on the drive strength VD and the state of
the CPB. When restricting ourselves as in the last section to the space spanned by
the two charge states |0〉 and |1〉, we get additionally to Equation (3.31) the driving
Hamiltonian

Ĥdrive/~ =
Ω̃

2
cos(ωDt) (|1〉〈1| − |0〉〈0|) , (3.36)

with Ω̃ = 4ECCgVD/e~. In the charge basis, it is always diagonal and thus or-
thogonal to the qubit Hamiltonian when the Cooper pair box is operated at the
degeneracy point ng = 0.5. When rotating the basis such that the qubit Hamiltonian
is diagonal, the driving is completely transverse and proportional to σ̂x. If the
Cooper pair box is biased away from the sweet spot however, the driving term also
consists of a σ̂z term which depends on the mixing angle ϑ

Ĥdrive/~ =
Ω̃ sin(ϑ)

2
cos(ωDt)σ̂x +

Ω̃ cos(ϑ)
2

cos(ωDt)σ̂z. (3.37)

For the condition that the drive strength is small enough such that Ω̃ � ωD is
fulfilled, then the σ̂z term in Equation (3.37) can be neglected and we arrive at the
final driven two-level Hamiltonian

Ĥ ≈
1
2
ω01σ̂z + Ω cos(ωDt)σ̂x, (3.38)

where Ω = Ω̃ sin(ϑ)/2 is the Rabi frequency of the drive. This is exactly the Hamil-
tonian we need to perform arbitrary single qubit rotations, see also Section 2.2.1.

Pros and cons of the Cooper pair box

The two crucial parameters for the usefulness of the CPB for quantum computation
tasks are the anharmonicity and the charge dispersion of the energy levels. The
anharmonicity α = ω12 − ω01 is a measure of how well the system can be treated
as a two-level system. It is defined as the difference in the transition frequencies
between the first two energy levels ω01 = E01/~ = (E1 − E0)/~ and between the
next higher neighbouring energy levels ω12 = E12/~ = (E2−E1)/~. A large enough
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anharmonicity (large |α|) is needed to carry out fast quantum operations within the
two-level approximation, without exciting higher excited energy levels outside the
computational basis states [Gambetta11], see also Section 5.4.2. As we have seen
above, this is very well fulfilled by the CPB in the charge regime.

The charge dispersion describes the variation of the energy levels as a function
of the gate charge and environmental offset charges, and determines the sensitivity
of the CPB to charge noise. The smaller the charge dispersion, the less the qubit
transition frequency varies due to gate charge fluctuations. In current state of the art
CPB qubit experiments, the qubit is biased to the so called “sweet spot” at ng = 0.5,
where the qubit frequency is to first-order insensitive to charge noise. This was
made use of for the first time with a quantronium qubit [Vion02, Vion03]. Indeed,
the coherence times are drastically increased by working at this point, but still
limited by higher-order effects of the 1/f charge noise [Ithier05]. The best dephasing
times and energy decay times reached so far with a CPB are T2 = 2 µs [Leek07] and
T1 = 200 µs [Kim11] respectively. Also the long term stability of the gate charge
bias is marginal, due to quasiparticles tunneling through the Josephson junction.
The latter changes the bias by ng = 0.5 which in turn drastically shifts the qubit
frequency. Every time such an event happens, the CPB has to be re-biased to the
sweet spot. In our early experiments [Leek07] the CPB had to be re-biased every
several minutes, which would have made it impossible to perform the multi-qubit
experiments shown at the end of this thesis, where long term stabilities of several
hours were required. This has been achieved by drastically reducing the charge
dispersion by going into the phase regime where EJ � EC .

3.1.3 Transmon qubit

The main problem with the CPB is the sensitivity to charge fluctuations in the
nearby surroundings caused by quasiparticles and surface charges. A natural way
to solve this problem is to make the box independent of the gate charge by going
to a regime where EJ � EC , the so called transmon regime [Koch07a]. While
the increased ratio EJ/EC flattens the energy bands in the charge direction, the
qubit frequency can be tuned by controlling the magnetic flux applied through the
SQUID loop. The flattening of the energy bands is illustrated in Figure 3.6, where
the first three eigenenergies (E0,E1,E2) of the CPB Hamiltonian (3.20) are shown
as a function of gate charge for different ratios of EJ/EC . A quantity which defines
the sensitivity to charge noise is the charge dispersion. It can be defined as the
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Figure 3.6: Eigenenergies for the first three energy levels (k = 0, 1, 2) of the CPB
Hamiltonian (3.20) for different EJ/EC ratios. The energies are given in units of
the energy difference E01 evaluated at the degeneracy point ng = 0.5. The energy
bands get less and less sensitive to gate charge, as the EJ/EC is increased from the
charge regime with a ratio of 0.5 (a) to the transmon regime with a ratio of 50 (c).

maximal spread in the transition energy between neighboring energy levels

εk = Ek,k+1(ng = 0.5) − Ek,k+1(ng = 0), (3.39)

where Ei j = E j − Ei is the energy difference between energy levels i and j. As is
shown in [Koch07a], this charge dispersion decreases exponentially fast as EJ/EC

is increased
εk ∝ e−i

√
8EJ/EC , (3.40)

and ε0 becomes smaller than 1 kHz at a ratio bigger than 60, making the transmon
qubit almost immune to low frequency charge noise. To reach this ratio of energies,
it is sufficient to slightly increase EJ in comparison to the charge regime, and
to reduce the charging energy EC by adding a large shunting capacitance CS in
parallel to the Josephson junctions, see Figure 3.7d. Typical transmon qubits as
shown in Figure 3.7a-c, have energies in the range of EC/~ ≈ 200 − 400 MHz and
EJ/~ ≈ 10 − 30 GHz.

Unfortunately the reduction in the sensitivity to charge noise does come at the
price of typically a reduction in the anharmonicity α. Since for quantum computa-
tion tasks only the first three energy levels are considered, a natural definition for α
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Figure 3.7: a) False colored optical microscope image of a transmon qubit. The
large finger capacitor shunts the two Josephson junctions of the SQUID loop, in
order to get a small enough charging energy EC . Blue and orange colored electrodes
are the reservoir and the island, respectively. b)-c) False colored SEM images of the
SQUID loop and a single Josephson junction of the transmon. d) Lumped element
model of the transmon qubit shown in a).

is given by the difference between the first two transition energies

~α = E12 − E01. (3.41)

However, the anharmonicity only decreases with a weak power law, while the
charge dispersion decreases exponentially with EJ/EC . The transmon thus still
maintains a sufficiently large anharmonicity to do quantum operations when using
specially shaped control pulses to minimize the effect of higher excited states
outside the computational bases (see Section 5.4.2 for details). For the typical
parameter ranges given above, the anharmonicity is approximately given by the
charging energy [Koch07a]

α ≈ −EC/~. (3.42)

Also for these parameters, the transition energy between the first two energy levels
can be approximated by

E01 ≈

√
8ECEmax

J | cos(πΦ/Φ0)| − EC . (3.43)
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It can thus still be varied with a magnetic field applied to the SQUID loop.

3.2 Circuit quantum electrodynamics

Studying the interaction of electromagnetic fields with single atoms or other nonlin-
ear quantum systems is interesting in fundamental physics, but also for applications
in quantum information processing. In the context of this thesis, it allows to read
out the state of the atom (or in our case the transmon qubit) by monitoring changes
in the electromagnetic field transmitted through a resonator. This interaction how-
ever is usually very small due to the small cross-section of a single atom for optical
photons in free space. In a system referred to as cavity quantum electrodynamics
(cavity QED) [Haroche89, Raimond01], the atom is placed into a cavity formed
by two highly reflective optical mirrors, see Figure 3.8a, which can be designed to
have a considerably smaller mode volume compared to free space. This leads to an
increased electric field strength for a given photon number, and therefore to an in-
creased interaction strength between single atoms and single photons. Additionally
to the small mode volume, cavities with high quality factors can be engineered to
study the consecutive coherent exchange of energy between the two systems. Their
dynamics is described by the Hamiltonian

Ĥ/~ =
1
2
ω01σ̂z + ωrâ†â + g (|0〉〈1| + |1〉〈0|)

(
â† + â

)
. (3.44)

Here, the first term describes the atom (approximated as a two-level system with
transition frequency ω01), the second term describes the single mode of the elec-
tromagnetic field in the cavity with resonance frequency ωr and the last term the
interaction between the two with a coupling strength g. The operators â(†) are the
(creation) annihilation operators of the cavity mode. The energy conserving terms
proportional to |0〉〈1|â† (|1〉〈0|â) describe the process in which one excitation is
removed from (added to) the atom and a photon is created (annihilated) in the
resonator mode. The other terms describing simultaneous excitation (de-excitation)
of both the atom and the resonator field mode are not energy conserving. In the
regime where g � ω01, ωr and the detuning |∆0| = |ω01 − ωr | � ωr + ω01, these
two terms can be dropped. After making this rotating wave approximation, the
Hamiltonian (3.44) reduces to the Jaynes-Cummings Hamiltonian [Jaynes63]

ĤJC/~ =
1
2
ω01σ̂z + ωrâ†â + g|0〉〈1|â† + |1〉〈0|â, (3.45)

36



3.2 Circuit quantum electrodynamics

 L= 6 mm

5 µm 

300 µm 
(a)

(b)

γ

κm
irr

or

g

Figure 3.8: a) Cavity QED architecture, where a two-level atom is coupled to the
electromagnetic field mode of a cavity, formed by two highly reflecting mirrors. If
the coupling strength g is larger than the decay rate of the atom and the rate with
which a photon leaves the cavity, single excitations can be coherently exchanged
between cavity and atom. The system is then called to be in the strong coupling
regime. b) Circuit QED architecture with three transmon qubits (dark blue) at
the center and the ends of a coplanar waveguide resonator (blue). At resonance
frequency (∼10 GHz) set by the distance between the end capacitors, the electro-
magnetic field inside the resonator forms a standing wave (electric field is shown
in pink). For maximal interaction strength, each qubit is placed at an anti-node of
the electric field. The resonator can be driven externally by applying a microwave
signal to the transmission line coming from one side, and transmission is measured
by detecting the signal on the other side.

which can be diagonalized analytically, see Section 3.2.1.
In addition to the enhanced interaction strength, the cavity strongly modifies

the spontaneous decay rate of the atom. In contrast to free space which supports a
continuum of electromagnetic field modes, the cavity only supports a single mode.
This results in a strongly inhibited [Hulet85, Jhe87] spontaneous decay rate of the
atom when the cavity resonance frequency is far detuned from the atomic transition
frequency, because there is no mode available into which the atom can emit a
photon. The cavity thus protects the atom from decay, which is highly beneficial
for quantum information processing. On the other hand, if the cavity is nearly on
resonance with the atom, the spontaneous decay of the atom is enhanced by the
Purcell effect [Purcell46]. Additionally to the effects on the decay rate, the cavity
also shifts the transition frequency of the atom, called the Lamb shift [Lamb47],
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induced by the vacuum fluctuations inside the cavity.
In the strong coupling regime (g � γ, κ), where the coupling strength g is much

larger then the decay rate of the atom γ and the photon inside the cavity κ, single
quantum excitations can be coherently exchanged between the atom and the cavity.
First signatures of this exchange were observed by spectroscopically measuring the
vacuum Rabi mode splitting [Thompson92], and later by directly detecting the time-
resolved vacuum Rabi oscillations [Brune96]. With this system it was then possible
to perform a quantum non-demolition measurement of single photons [Nogues99]
and to generate and fully reconstruct non-classical cavity field states [Deleglise08].
Additionally it was possible to observe photon blockade [Birnbaum05], which can
be used as a single photon source, and more recently to prepare and stabilize photon-
number states inside the cavity using real-time quantum feedback [Sayrin11].

In 2004, A. Blais et al. [Blais04] proposed the idea to realize such a cavity
QED system with superconducting electrical circuits. Rather than using atoms and
optical cavities, superconducting qubits are coupled to a superconducting trans-
mission line resonator formed by a coplanar waveguide with two gap capacitors
interrupting the center conductor (see Figure 3.8b). This system is referred to as
circuit QED and operated at microwave frequencies. It has first been realized in
the Schoelkopf Lab at Yale [Wallraff04], and a good review is found in the thesis
of David Schuster [Schuster07a]. Even though many different types of supercon-
ducting quantum circuits could in principle be coupled to such a resonator, I only
discuss the transmon qubit that was used throughout this thesis. In analogy to cavity
QED, a microwave photon in the resonator is bouncing between these two gap
capacitors acting as mirrors, or speaking in a classical electrical engineering lan-
guage, the electromagnetic field in the resonator forms a standing wave. Maximal
capacitive coupling between the resonator field and the transmon qubit is reached
when it is positioned at an anti-node of the electric field. This architecture has many
advantages compared to cavity QED. It is possible to fabricate the whole system on
a small chip with the size of several square millimeters. This is beneficial in context
of scalability, an important requirement for quantum information processing. It
also allows to freely position the qubits within the resonator (compared to cavity
QED where atoms are flying through the cavity, or have to be held on position with
complicated traps) and to engineer the coupling strength g to the resonator field
(fixed in cavity QED).

In this section I review the basics of such a circuit QED architecture. I first
discuss in more detail the generalized Jaynes-Cummings Hamiltonian which de-
scribes the interaction between a transmon qubit and a microwave resonator, and
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then explain how this system can be used as a quantum information processor,
i.e. how to prepare and to read out the qubit state (Section 3.2.3-Section 3.2.4). I
then review the basics of transmission line resonators (Section 3.2.5) and coplanar
waveguide (CPW)’s (Section 3.2.6). Finally I discuss in Section 3.2.7 how the
transmon qubit is coupled to a CPW resonator and derive the Jaynes-Cummings
Hamiltonian starting from the Hamiltonian of an LC oscillator and the CPB.

3.2.1 Generalized Jaynes-Cumming Hamiltonian

When coupling a transmon qubit to a resonator, it is not enough to simply consider
a two-level system due to the small anharmonicity of the transmon qubit. The
system is thus described by the Hamiltonian [Koch07a]

Ĥ/~ =

N−1∑
i=1

ωi|i〉〈i| + ωrâ†â +

N−2∑
i=0

gi,i+1 (|i〉〈i + 1| + |i + 1〉〈i|)
(
â + â†

)
. (3.46)

The first term describes the transmon qubit including N energy levels, where the
lowest energy level with energy E0 = ~ω0 is set to zero and the second term is
the usual Hamiltonian of a harmonic oscillator. The last term is the interaction
Hamiltonian, where only coupling terms between neighbouring energy levels are
included, because all others are negligible due to the near harmonicity of the
transmon qubit (see Section 3.2.7). In the regime where gi,i+1 � ωi, ωr and the
detunings |∆i| = |ωi,i+1 −ωr | � ωr +ωi,i+1, with ωi, j = ω j −ωi being the transition
frequency between energy levels i and j, the rotating wave approximation can
be applied. Throughout this thesis, this approximation is always valid. Recently
however, a regime where this approximation breaks down (ultra strong coupling)
has been reached with superconducting circuits [Niemczyk10, Forn-Díaz10]. The
generalized Jaynes-Cummings Hamiltonian then reads

Ĥ/~ =

N−1∑
i=1

ωi|i〉〈i| + ωrâ†â +

N−2∑
i=0

(
gi,i+1|i〉〈i + 1|â† + h.c.

)
. (3.47)

For a two-level system (N = 2) this Hamiltonian can analytically be diagonalized
and yields the excited states [Haroche92]

|+q, np〉 = cosϑn|1q, (n − 1)p〉 + sinϑn|0q, np〉, (3.48)

|−q, np〉 = − sinϑn|1q, (n − 1)p〉 + cosϑn|0q, np〉, (3.49)
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with ϑn =
1
2

arctan
(
2g
√

n
∆0

)
, (3.50)

and the ground state |0q, 0p〉. Whenever there is the potential for confusion, we will
add the subscripts q and p, which label the qubit and photonic state, respectively.
The corresponding eigenenergies are

E±,n = n~ωr ±
~

2

√
4g2

01n + ∆2
0, (3.51)

E0,0 = −
~∆0

2
. (3.52)

These energies are depicted in Figure 3.9 for two different regimes. In the resonant
regime, where the qubit is on resonance with the resonator ω01 = ωr, the product
states |0q, np〉 (|1q, (n − 1)p〉) with the qubit in the ground (excited) state and n
(n − 1) photons in the resonator are no longer eigenstates of the Hamiltonian. Their
degeneracy is lifted by the interaction term and the new eigenstates are equal super-
positions of the qubit and the resonator |±q, np〉 =

(
|0q, np〉 ± |1q, (n − 1)p〉

)
/
√

2
and the ground state |0q, 0p〉. Qubit and resonator can no more be considered as
individual systems, they rather form a new hybridized entangled system, similarly
as the hybridization of the electron orbitals in a molecule. The two symmetric
and antisymmetric states are split by the energy 2g01

√
n, see Figure 3.9a, which is

called the vacuum Rabi mode splitting for one excitation n = 1 in the system. This
splitting manifests itself in the time domain as a vacuum Rabi oscillation. When the
system is initially prepared in the state where the qubit is excited and the resonator
left empty |1q, 0p〉, the vacuum fluctuations in the resonator will cause the qubit to
relax into its ground state by emitting a photon into the resonator. After some time,
this photon is again reabsorbed by the qubit, leading to an oscillation between the
states |1q, 0p〉 and |0q, 1p〉 with a frequency g01/π, or with

√
ng01/π when starting

with n excitations in the system. This
√

n scaling is a direct quantum signature
of the system, because no classical model can explain it, and could only recently
be measured in a circuit QED [Fink08, Hofheinz08, Bishop09, Altomare10] and a
cavity QED system [Brune96, Schuster08]. As observed in [Fink08], this 2g01

√
n

splitting is slightly renormalized due to the presence of higher transmon levels if
the anharmonicity α is similar to g01. A requirement for this achievement was to
reach the strong coupling regime g � κ, γ, where the coupling strength is much
larger then the photon decay rate κ and the qubit relaxation rate into a mode other
then the resonator mode γ. In this limit, the vacuum Rabi mode splitting can be
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Figure 3.9: Energy level diagram of the dressed Jaynes-Cummings eigenstates,
including two transmon levels. The uncoupled energy ladder of the uncoupled
product states |0q, np〉 (left) and |1q, np〉 (right), where the qubit and photon states
are labeled with a subscript q and p for clarity, are depicted by the black lines. a) In
the resonant case where ωr = ω01, the degeneracy of the uncoupled states is split in
frequency by

√
n2g01 and the new dressed states are |±q, np〉. b) In the dispersive

regime where ∆0 � g01, the coupling only manifests itself in a shift of the energy
levels.
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well resolved with spectroscopy and many vacuum Rabi oscillation periods can
be measured before losing the excitation to the environment. The energy level
diagram shown in Figure 3.9b, where qubit and resonator are not on resonance
with each other is discussed in the next section.

3.2.2 The dispersive regime

We now describe the dispersive limit in which the transmon qubit is operated
at a frequency for which the detunings ∆i = ωi,i+1 − ωr between the transmon
and resonator are large. In particular where g01 � |∆0|, |∆1|. In this regime, no
excitations are exchanged between qubit and resonator, but the state of one system
still has an influence on the energy of the other, see Figure 3.9b. This dispersive
interaction is particularly interesting because it allows to readout the qubit by
measuring the phase and amplitude of a microwave signal transmitted through
the resonator near resonance, and to control the qubit by driving the resonator
off-resonantly with short microwave pulses.

The dispersive Hamiltonian can be found by performing the transformation
eŜ Ĥe−Ŝ which eliminates the direct interaction between the resonator and the
transmon qubits, where [Koch07a]

Ŝ =

N−1∑
i=0

gi,i+1

∆i
(â|i + 1〉〈i| − â†|i〉〈i + 1|). (3.53)

Due to the small anharmonicity of the transmon, at least three energy levels need
to be included in this transformation. Only after this it is possible to make a two
level approximation. Using the Baker-Campbell-Hausdorff expansion eŜ Ĥe−Ŝ =

Ĥ + [Ŝ , Ĥ] + 1
2! [Ŝ , [Ŝ , Ĥ]] + . . . and keeping the terms up to order g2

i,i+1/∆
2
i , we

get the dispersive Hamiltonian [Koch07a]

Ĥdisp/~ =

ωr − χ01|0〉〈0| +
N−1∑
i=1

(χi−1,i − χi,i+1)|i〉〈i|

 â†â

+

N−1∑
i=0

(
ωi|i〉〈i| + χi,i+1|i + 1〉〈i + 1|

)
+

N−1∑
i=0

(ηiââ|i + 2〉〈i| + h.c.) , (3.54)
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where

χi,i+1 =
g2

i,i+1

∆i
,

ηi =
gi,i+1gi,i+2[(ωi+1 − ωi+2) − (ωi − ωi+1)]
2(ωi+1 − ωi − ωr)(ωi+2 − ωi+1 − ωr)

. (3.55)

The coupling between resonator and qubit now only shows up by state dependent
dispersive energy shifts χi,i+1 and a two-photon process term proportional to the
two-photon transition rates ηi. Because the ηi are small, this last term can safely be
neglected. We can now make a two-level approximation by evaluating the sums in
Equation (3.54) only up to N = 2, but keeping terms including the coupling to the
second excited level, and arrive at the Hamiltonian

Ĥdisp/~ =
1
2

ω01 +
g2

01

∆0

 σ̂z + (ω̃r + χσ̂z)â†â. (3.56)

This has exactly the same form as if we started from the normal Jaynes-Cummings
Hamiltonian including only a two-level system, but with a renormalized resonator
frequency ω̃r − g2

12/2∆1 due to the interaction with higher transmon levels. The
first term describes the qubit with a transition frequency ω̃01 = ω01 + g2

01/∆0 renor-
malized by the Lamb shift g2

01/∆0 [Fragner08], induced by the vacuum fluctuations
in the resonator. The second term is similar to the Hamiltonian of a harmonic
oscillator, with an oscillation frequency ω̃r + χσ̂z depending on the qubit state (χ
is discussed below). If the qubit is in its ground state |0〉, the resonator frequency
is ω̃r − χ, if the qubit is in its excited state, the resonator frequency is ω̃r + χ, see
Figure 3.10. Measuring this frequency shift can be used to perform a quantum
non-demolition readout of the qubit state (Section 3.2.3). The second term is also
responsible for the AC Stark effect [Schuster05], which can be easily explained by
rewriting the Hamiltonian (3.56) in the form

Ĥdisp/~ =
1
2

(
ω̃01 + 2χâ†â

)
σ̂z + ω̃râ†â. (3.57)

Depending on the number of photons n inside the resonator, the qubit frequency
gets AC Stark shifted by the frequency 2χn. If the resonator is prepared in a state
consisting of a superposition of several photons (for example a classical coherent
state), the qubit spectrum shows well resolved photon number peaks, called photon
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number splitting [Schuster07b, Gambetta06].

The dispersive shift for a two-level system is simply given by χ = χ01. For the
transmon qubit however, it has to be substituted by χ = χ01 − χ12/2 due to the
level repulsion between pairwise coupled higher energy states. In the regime where
EJ � EC , the dispersive shift can be approximated as [Koch07a]

χ ≈
g2

01EC

∆0(∆0 − EC)
. (3.58)

For negative detunings ∆0 < 0 and positive detunings larger than the qubit an-
harmonicity ∆0 > EC , this shift is always negative. For small positive detunings
0 < ∆0 < EC , where the resonator frequency ωr is in between the transition
frequencies ω01 and ω12, the values of χ can become very large. This so called
straddling regime can be particularly interesting for qubit readout or fundamental
exploration of the Jaynes-Cumming Hamiltonian [Hoffman11].

The eigenstates (3.48-3.49) of the full Jaynes-Cummings Hamiltonian can be
approximated in the dispersive regime as

|+q, np〉 ≈ |1q, (n − 1)p〉 +
g01

∆0
|0q, np〉, (3.59)

|−q, np〉 ≈ −
g01

∆0
|1q, (n − 1)p〉 + |0q, np〉, (3.60)

and the ground state |0q, 0p〉. For large detunings g01/∆0 � 1, these states are nearly
given by the product states |0q, np〉 and |1q, np〉, which means that the transmon and
resonator can nearly be considered as individual systems. The computational basis
states |0〉 = |0q, 0p〉 and |1〉 = |+q, 1p〉 mainly consist of the transmon qubit states
and only contains a small resonator part. Even though this part can be made small,
it still opens up a new decay channel for the computational qubit state |1〉. The
excitation can be lost through the decay of the photonic part in the resonator, called
the Purcell effect [Purcell46, Houck08, Houck07], with the rate

γκ = κ
g2

01

∆2
0

, (3.61)

where κ is the rate with which the resonator loses its photon.
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Figure 3.10: Left panels: Calculated amplitude and phase of the resonator trans-
mission spectrum for the uncoupled resonator with bare resonance frequency ωr

and for the coupled resonator qubit system. The coupled qubit renormalizes the
resonator frequency to ω̃r. The solid lines show the dispersively shifted resonator
spectra for the qubit in its ground state |0〉 (blue), and the qubit in the excited state
|1〉 (red). Right panels: Measured time response of the I/Q-quadratures of the
transmitted signal for the qubit in the ground state (blue) and the excited state (red),
when the resonator is driven with a coherent microwave field on the frequency
ω̃r − χ. The solid lines represent a fit to cavity Bloch equations [Bianchetti09] with
the following parameters: qubit energy decay and dephasing times of T1 = 700 ns
and T2 = 600 ns, respectively, a dispersive frequency shift of the resonator of
χ/2π = 1.1 MHz and a resonator line width of κ/2π = 4.5 MHz.
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3.2.3 Quantum non-demolition readout of the qubit state

When the circuit QED system is operated in the dispersive limit, the qubit state
dependent shift of the resonator by the frequency of ±χ, see left panels of Fig-
ure 3.10, can be used to perform a quantum non-demolition measurement of the
qubit state [Blais04, Wallraff05, Bianchetti09]. We do this by measuring the trans-
mission of a weak coherent microwave drive applied to the resonator described by
the Hamiltonian

Ĥd = ~εd(â†e−iωdt + âeiωdt) (3.62)

with amplitude εd and frequency ωd. The in-phase I(t) = 〈â† + â〉 and quadrature
Q(t) = 〈i(â† − â)〉 components of the transmitted field depend non-linearly on the
dispersive shift operator χ̂ = χσ̂z, and are thus different for the qubit in the ground
or the excited state. The right panels of Figure 3.10 show examples of the measured
I/Q signals when the measurement drive, turned on at time t = 0, is applied on
resonance with the resonator for the qubit in the ground state. For each trace, the
experiment was repeated 65 000 times and the measurement signal is averaged to
directly extract the expectation values I(t) and Q(t), and to eliminate the noise in
the measurement signal. If the qubit is initially prepared in |0〉 (blue trace), the
resonator response reaches its steady state at the rate κ, seen in the exponential rise
of the Q-quadrature. The phase of the measurement drive was chosen such that
the I-quadrature always stays zero. When the qubit is initially prepared in |1〉 (red
trace), the response shows the behavior of an off-resonantly driven resonator due to
the dispersive resonator pull of χ, and then approaches the steady-state as the qubit
decays to |0〉 with the energy decay rate of the qubit γ. The numerical fit to theory
(solid lines) shows the good agreement of the time response of the resonator with
theory. An analytical solution in terms of an effective qubit measurement operator
M̂
′

I,Q(t) can be given in the limit of vanishing qubit decay. The I and Q components
for the qubit initially prepared in state ρ̂ before the measurement are given by
I(t),Q(t) = 〈M̂

′

I,Q〉 = Tr[ρ̂ M̂
′

I,Q] and the measurement operators are determined
by the solution to the master equation of the Hamiltonian Ĥd+(3.56) [Bianchetti09]

M̂
′

I(t) = ε
e−κt/2[2(χ̂ + ∆rm) cos((χ̂ + ∆rm)t) + κ sin((χ̂ + ∆rm)t)] − 2(χ̂ + ∆rm)

(χ̂ + ∆rm)2 + (κ/2)2 ,

(3.63)

M̂
′

Q(t) = ε
e−κt/2[κ cos((χ̂ + ∆rm)t) − 2(χ̂ + ∆rm) sin((χ̂ + ∆rm)t)] − κ

(χ̂ + ∆rm)2 + (κ/2)2 , (3.64)
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where ∆rm = ω̃r −ωd is the detuning of the measurement drive. These operators are
diagonal in the qubit basis and stay diagonal for all times, because of the quantum
non-demolition nature of the measurement [Blais04]. They may thus be written in
a much simpler and time independent way as

M̂I,Q = αI,Q
0 |0〉〈0| + αI,Q

1 |1〉〈1|. (3.65)

Here αI,Q
i = 1/N

∫ T
0 [〈|i〉〈i| M̂I,Q〉 − 〈|0〉〈0| M̂I,Q〉]dt are defined by the integral of

the measured signal for qubit in state |i〉 from the start of the measurement t = 0 to
the final time T , with the ground state response subtracted. This corresponds to the
shaded area in between the measured traces in Figure 3.10. Due to the finite qubit
lifetime, this integration only runs up to several microseconds. The normalization
N is chosen such that αI,Q

1 = 1. The measurement operator for one qubit is thus by
definition given by M̂I,Q = |1〉〈1|, and its expectation value 〈M̂I,Q〉 = Tr[ρ̂ M̂I,Q]
(which is the normalized area between the measured transmitted signal for the qubit
in the state ρ̂ and in the ground state) directly yields the population of the qubit.

This measurement operator can easily be generalized to read out multiple levels
of the transmon qubit, by extending the sum in Equation (3.65) over the projectors
on all energy levels, and was used to perform quantum state tomography of a
three-level system [Bianchetti10b]. Similarly one can generalize the measurement
operator to multiple qubits for a joint measurement, by running the sum over the
projectors onto all computational basis states. For example, if two qubits are
coupled to one single resonator, the measurement operators are given by [Filipp09]
M̂I,Q = αI,Q

0 |00〉〈00|+αI,Q
1 |01〉〈01|+αI,Q

2 |10〉〈10|+αI,Q
3 |11〉〈11|, which is equivalent

to
M̂I,Q = βI,Q

0 Î + βI,Q
1 Î ⊗ σ̂z + βI,Q

2 σ̂z ⊗ Î + βI,Q
3 σ̂z ⊗ σ̂z. (3.66)

Each βI,Q
i and αI,Q

i respectively is calibrated by measuring the averaged trans-
mission signal for each corresponding computational basis state. A single mea-
surement trace of the transmitted signal then gives information about the joint
qubit state, including the two-qubit correlations σ̂z ⊗ σ̂z. This joint readout is
used throughout this thesis and allowed us and other groups to perform full quan-
tum state tomography of two-qubit [Filipp09, Leek09, DiCarlo09] and three-qubit
states [DiCarlo10, Baur12], as well as full quantum process tomography of two-
and three-qubit quantum operations [Fedorov12, Reed12]. A discussion about
quantum state and process tomography using this joint readout can be found in
Section 5.5.1 and Section 5.5.2.
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3.2.4 Driving the qubit through the resonator

Besides using local drive lines (Section 3.1.2), the coherent control of the qubit
state can also be achieved by applying a strong microwave drive to the resonator,
described by the Hamiltonian Ĥd (3.62). In contrast to the measurement of the
qubit, the drive is applied far off-resonant from the resonator frequency, but on
resonance with the qubit frequency ωd = ω01. In this limit, the drive does not
measure the state of the qubit, because there is only very little phase and amplitude
difference in the transmitted signal for the two qubit states. As a result, there is no
significant unwanted entanglement between the resonator field and the qubit when
controlling the qubit state [Blais07].

Because of the large detuning from the resonator, most of the drive is reflected
at the input port. Only a small part enters the resonator and populates it with an
average number of photons of n̄ = (εd/∆rm)2 and drives the qubit transition with
the Rabi frequency ΩR ≈ 2g

√
n̄. Due to the large drive strength, the drive can be

considered as a classical drive, described by the Hamiltonian [Blais07]

Ĥd =
ΩR

2
σ̂x. (3.67)

This drive therefore allows to rotate the state of the qubit around the x axis on the
Bloch sphere, and when changing the phase of the drive by π/2 around the y axis.

3.2.5 Transmission line resonator

A good reference for the theory of transmission lines is the book [Pozar93, Chapters
2 and 3]. They can schematically be represented as a two-wire line (Figure 3.11a),
because transmission lines for TEM wave propagation (which is used in our setup)
always have at least two conductors. One can model the transmission line as series
of infinitesimally small circuits of lumped elements that have the same impedance
per unit length as the transmission line, see Figure 3.11b, where the different
elements are given by

• the series resistance per unit length R∗ for both conductors in Ω/m represent-
ing the resistance due to the finite conductivity of the conductors,

• the series inductance per unit length L∗ for both conductors in H/m repre-
senting the total self-inductance of the two conductors,
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• the shunt conductance per unit length G∗ in S/m due to dielectric loss in the
material between the conductors,

• the shunt capacitance per unit length C∗ in F/m due to the close proximity
of the two conductors.

Applying Kirchhoff’s law to the circuit shown in Figure 3.11, one can derive the
differential equations for a traveling wave with frequency ω in a transmission line.
The solutions for the voltage V and current I are given by

V(x, t) = Re
[(

V+
0 e−γx + V−0 eγx

)
e−iωt

]
, (3.68)

I(x, t) =
1
Z0

V(x, t), (3.69)

Z0 =

√
R∗ + iωL∗

G∗ + iωC∗
, (3.70)

where Z0 is the frequency dependent characteristic impedance of the transmission
line and V±0 the voltages of the wave propagating in the positive and negative x-
direction respectively. The imaginary part (β = Im[γ]) of the complex propagation
constant γ = α + iβ =

√
(R∗ + iωL∗)(G∗ + iωC∗) describes the phase of the wave

and the loss is given by the real part (α = Re[γ]) which is called the attenuation
constant.

(b)(a)

+

_

Z0, dx

V(x, t )

x

I(x, t )

G*C*

R*L*

Figure 3.11: a) Schematic of a transmission line with characteristic impedance Z0.
b) Lumped element model of an infinitesimally small segment of the transmission
line with same impedance per unit length.
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Terminated transmission line

Let us now consider a transmission line which is terminated at x = 0 with a load
impedance ZL. If it is different from the characteristic impedance ZL , Z0, an
incident wave V+e−iγx−iωt must excite a wave reflecting back at the end to fulfill
the boundary condition. Here V+ is referenced at x = 0. The ratio between the
reflected and incident wave at a distance l from the load is given by the reflection
coefficient

Γ(l) =
ZL − Z0

ZL + Z0
e−2γl, (3.71)

which can be derived from the condition that the load impedance at position x = 0
is given by

ZL =
V(0, t)
I(0, t)

=
V+

0 + V−0
V+

0 − V−0
Z0. (3.72)

The voltage in the transmission line can thus be written as V(x, t) = Re[V+
0 (e−γx +

Γ(x)eγx)e−iωt] and the input impedance Zin looking into the line in the positive
x-direction from a distance l of the load is then

Zin =
V(−l)
I(−l)

= Z0
ZL + Z0 tanh(γl)
Z0 + ZL tanh(γl)

. (3.73)

Open-ended transmission line resonator

We now consider the special case for which the transmission line is terminated
with a perfect open circuit with impedance ZL = ∞. For this condition, the incident
and the reflected waves have the same voltage amplitudes (Γ(0) = 1) and form
a standing wave. The voltage V(x, t0) (blue) and current amplitudes I(x, t0) (red)
at time t0 oscillate with the position on the line, see Figure 3.12a. The input
impedance seen looking into the line in positive x-direction therefore also varies
with position, see Figure 3.12b, and is given at distance l = −x by

Zopen
in = Z0 coth(γl). (3.74)

Such an open-ended transmission line shows two different resonance types.
Whenever the length of the line is an integer multiple of a half wavelength
(l = nλ/2 = πν/ω0), there will be high impedance resonance. Whenever the
length is odd multiple of a quarter wavelength (l = (2n + 1)λ/4), there will be
high admittance resonance. In this thesis, the λ/2 high impedance resonance is
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Figure 3.12: a) The amplitude of the voltage V (blue) and the current I (red)
oscillate with the length of a transmission line that is open on one end (x = 0). b)
The impedance Zopen

in as a function of the position on the open transmission line.

used by adding another open circuit termination at x = −λ/2. For frequencies ω
close to the resonance frequency ω0, the impedance given in Equation (3.74) can
be approximated for small losses αl � 1 as

Zopen
in ≈

Z0

αl + iπ
ω − ω0

ω0

. (3.75)

Comparing this expression with the impedance of a parallel RLC oscillation circuit
allows one to map this model to the parallel RLC circuit around the resonance
frequency ω0 with the substitution

R =
Z0

αl
, C =

π

2ω0Z0
, L =

1
ω2

0C
=

2Z0

πω0
. (3.76)

The resonance frequency is given by

ω0 =
1
√

LC
, (3.77)

and the quality factor Q of the transmission line can then be written as

Q = ω0RC =
π

2αl
=

β

2α
. (3.78)
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Figure 3.13: a) Top view of a CPW resonator of length l with a finger capacitor
of length l f on the left and a gap capacitor of length sg on the right side, and the
two lateral ground planes. b) Cross section of the CPW resonator design. Center
conductor with width w and lateral ground planes spaced by a distance s (light
blue) on top of an isolating substrate (gray). The metallization layer consists of a
t ≈ 200 nm thick sputtered niobium patterned with a standard photo lithography
etching process. The substrate is a h ≈ 500 nm thick c-cut sapphire with a relative
permitivity of ε1 ≈ 11.

3.2.6 Coplanar waveguide resonator

Probably the most well known transmission line is the coaxial cable consisting
of an inner-conductor surrounded by an insulator and a conducting shield. This
is convenient for testing applications but not for integrated circuits to fabricate
complex microwave components. Planar transmission lines such as the stripline,
microstrip, slotline or coplanar waveguide (CPW) provide a compact alternative
which can easily be integrated in complex microwave circuits with standard photo
lithography methods. The CPW can be seen as a two dimensional version of the
coaxial cable consisting of a median strip with a width w separated by two narrow
gaps of width s from the lateral ground planes as depicted in Figure 3.13. The
electric field is localized in these two gaps, with roughly half the electric field in
the vacuum and the other half in the substrate. A detailed discussion about CPW
resonators can be found in [Göppl08]. We chose this type of transmission line
because it has several advantages compared to the others: it is easy to fabricate,the
characteristic impedance of the line is determined by the ratio s/(s + 2w) which
makes it possible to reduce the size of the transmission line to values only limited
by the fabrication process. Additionally, cross-talk between adjacent lines is small
because of the existence of the lateral ground planes in between the lines.

The resonance frequency ω0 of the resonator is determined by its length l and
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the phase velocity vph = c/
√
εeff of the microwave signal propagation in the CPW

ω0 = 2π
c
√
εeff

1
2l
. (3.79)

Here the effective relative permitivity εeff ≈ 5.9 is determined by the relative
permitivity of the substrate dielectric (εr ≈ 11 for c-cut sapphire) and the geometry
of the CPW, and c is the speed of light in vacuum. The capacitance C∗ and
inductance L∗ per unit length of the CPW can be determined with conformal
mapping techniques. For a large substrate thickness h, they are given by [Simons01]

C∗ = 4ε0εeff

K(k0)
K(k′0)

, (3.80)

L∗ =
µ0

4
K(k′0)
K(k0)

, (3.81)

where K is the complete elliptic integral of the first kind with the arguments

k0 = w
w+2s and k′0 =

√
1 − k2

0. Assuming that the CPW only has small losses
(R∗ � ωL∗ and G∗ � ωC∗), we can write the impedance of the line as

Z0 ≈

√
L∗

C∗
=

1
4

√
µ0

ε0εeff

K(k′0)
K(k0)

. (3.82)

Our typical CPW resonators have a center pin with a width of w = 10 µm and gap
sizes of s = 4.5 µm to the lateral ground planes, which leads to a characteristic
impedance of Z0 = 50 Ω. It is possible to map this CPW resonator to the parallel
RLC circuit model for frequencies around the resonance frequency ω ∼ ω0 with
Equation (3.76)

L =
2L∗l
π2 , C =

C∗l
2
, R =

Z0

αl
. (3.83)

In other words, the CPW resonator can be approximated as an RLC resonator. If the
loss is zero (R = ∞), it can is thus be quantized the same way as an LC resonator,
leading to the Hamiltonian of a usual harmonic oscillator

Ĥ = ~ω0â†â. (3.84)
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Input/output coupling

In order to drive the resonator and to read out the transmission spectrum, it is
capacitively coupled to input/output transmission lines with impedance Z0, see
Figure 3.13. The coupling capacitance CL is typically varied from 0.2 fF up to
60 fF by using gap capacitors with a gap of sg ≈ 50 µm or finger capacitors with
8 fingers with finger lengths l f ≈ 100 µm. This coupling has several effects on
the properties of the resonator, see [Göppl08] for details. First, the resonance
frequency is shifted due to the parallel contribution Cp = CL/(1 + ω2

0C2
LR2

L) of
the coupling capacitance to ω̃0 = 1/

√
L(C + 2CP). Second, one has to distinguish

between the internal quality factor Qint = ω0RC determined by conductor and
dielectric losses in the resonator, and the external quality factor Qext = ω0C(1 +

ω2
0C2

LR2
L)/(2ω2

0C2
LRL) determined by the coupling capacitance and external resistive

loading RL. The total quality factor is then given by 1/Q = 1/Qint + 1/Qext. Using
superconducting materials, internal quality factors of up to 106 have been reached
and are thought to be limited by impurities in the metal to dielectric interface
[Megrant12, Pappas11, Wisbey10].

3.2.7 Coupling a transmon qubit to a coplanar waveguide
resonator

Even though the transmon qubit is insensitive to DC voltage, it still couples to an
AC voltage oscillating close to the transition frequency, as described in [Koch07a].
For a transmon qubit positioned in the gap of a CPW resonator, this AC voltage is
given by the electric field generated between the center pin and the ground planes.
The gate voltage Vg in the kinetic term of the CPB Hamiltonian (3.20) is thus given
by a DC component and the quantum voltage V̂ generated by photons inside the
resonator

V̂g = VDC
g + V̂ . (3.85)

Since the CPW resonator can be seen as an LC oscillator, see Section 3.2.6, the
operator V̂ = q̂/C can be written in terms of the charge operator q̂ introduced in
the beginning of Section 3.1, which then yields

V̂ =

√
~ωr

2C
(â + â†) = V0

rms(â + â†), (3.86)
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where V0
rms is the vacuum voltage of the resonator in the ground state. Substituting

this gate voltage into the Hamiltonian (3.20) and following the same calculations
as were done for the derivation of the driving Hamiltonian (3.36) of a CPB we get

Ĥ = 4EC
(
N̂ − nDC

g

)2
− EJ(Φ) cos δ̂ + ~ωrâ†â + 2eβV0

rms(â
† + â)N̂. (3.87)

Here the first two terms correspond to the usual DC biased CPB Hamiltonian, the
third term is the energy of the resonator, the last term is the coupling Hamiltonian
and β = Cg/CΣ accounts for the fact that some of the voltage drops between the
center conductor and the island, and the other between island and reservoir of
the CPB and depends on the geometry of the box. Rewriting this Hamiltonian in
the basis of the uncoupled CPB eigenstates |k〉, we obtain the generalized Jaynes-
Cummings Hamiltonian

Ĥ/~ =
∑

k

ωk|k〉〈k| + ωrâ†â +
∑
k,l

gk,l|k〉〈l|
(
â† + â

)
, (3.88)

where the coupling energies are determined by the matrix element of the charge
operator and the vacuum voltage of the resonator

~gi j = 2eβV0
rms〈i|N̂| j〉 = ~g∗ji. (3.89)

If the CPB is operated in the charge regime and at the charge degeneracy point
nDC

g , only the first two energy levels are considered and the matrix elements of the
charge operator are simply given by ~g01 = ~g10 = eβV0

rms and g00 = g11 = 0. In
the transmon regime, the matrix elements are given by [Koch07a]

∣∣∣〈 j + 1|N̂ | j〉
∣∣∣ ≈ √

j + 1
2

(
EJ

8EC

)1/4

, (3.90)∣∣∣〈 j + k|N̂ | j〉
∣∣∣ EJ/EC→∞
−−−−−−−−→ 0, for |k| > 1. (3.91)

All off-diagonal elements with |k| > 1 are nearly zero because of the near har-
monicity of the transmon qubit and will be neglected in the following. The matrix
elements gi,i+1 are proportional to EJ/EC ratio. This is a rather remarkable result.
While the sensitivity to DC charge fluctuations decreases exponentially with in-
creasing EJ/EC , the coupling strength gi,i+1 induced by AC charge fluctuations
increases with a weak power law. It is even larger than the one in the charge regime
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with large charge dispersion. An intuitive picture that explains this result is nicely
described in [Koch07a]. Substituting these coupling strengths into Equation (3.88)
and applying the rotating wave approximation, which drops the coupling terms
|k − 1〉〈k|â and |k〉〈k − 1|â† which excite or lower both the qubit and the resonator
simultaneously, results in the effective generalized Jaynes-Cummings Hamiltonian

Ĥ/~ =

N−1∑
k=0

ωk|k〉〈k| + ωrâ†â +

N−1∑
k=1

√
kg01(|k − 1〉〈k|â† + |k〉〈k − 1|â). (3.92)

which is equal to the generalized Jaynes-Cummings Hamiltonian described in
Section 3.2.1. Due to the small anharmonicity α of the transmon qubit which is
similar to the coupling strength g01, at least three energy levels need to be included
to get accurate results. For the resonant case, this was experimentally demonstrated
in [Fink08].

56



4
Measurement Setup

Controlling a quantum system at millikelvin temperatures and on a single quantum
level with room temperature equipment is a challenging task. While it must couple
strong enough to the control instruments for qubit manipulation and readout, it
must be effectively isolated from its environment, such as from high frequency
electromagnetic fields (e.g. thermal radiation from room temperature traveling
along the cables connected to the sample), low frequency magnetic fields and
electrical noise. Here I summarize the techniques used to achieve this task in
the Quantum Device Lab at ETH Zurich. At the beginning of this chapter, in
Section 4.1, I describe how to connect the millimeter sized quantum chip to coaxial
microwave cables and how to protect the quantum system from electromagnetic
radiation and magnetic fields using a sample box and magnetic shielding. In
Section 4.2 the cabling from millikevin to room temperature within the dilution
refrigerator is discussed, including the different filtering and thermal anchoring
techniques to reduce the Johnson-Nyquist noise. The microwave signal synthesis
for qubit manipulation, the signal down-conversion and digitization of the qubit
readout signal for post-processing at room temperature is discussed in Section 4.3.
And finally, in Section 4.4, the on-chip magnetic flux lines for fast individual
qubit frequency tuning and its implication on the qubit coherence is discussed.
Furthermore, I describe an optimal pulse control technique (Section 4.4.2) for
accurate local magnetic flux pulses applied to the transmon SQUID loop.
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4 Measurement Setup

4.1 Mounting the sample

The quantum processor is fabricated on a 2 × 7 × 0.5 mm polished sapphire chip
using standard lithography techniques. The resonator structure with feature size
of 2 µm is patterned into a magnetron sputtered niobium thin film of thickness
150 nm using reactive ion etching. Smaller qubit structures with feature size
∼ 100 nm are then written into a double layer resist film using a beam of electrons
with an energy of 30 keV, followed by a double angle shadow evaporation of
two thin aluminum films (20 nm and 80 nm) interrupted by a short oxidation step.
Because a detailed discussion of the individual fabrication processes can be found
in [Göppl09, Fink10], I will not discuss fabrication any further in this thesis.

In order to connect the on-chip quantum processor to the qubit control and read
out cabling, a printed circuit board (PCB) with room for eight coaxial cable ports is
used, see Figure 4.1. The chip is glued with PMMA into the small cutout located at
the center and then contacted with the PCB under a microscope using short ∼ 30 µm
thin aluminum wire bonds. While we use 2 − 3 bonds to make contact between
the respective coplanar waveguide launchers, about 10 bonds per millimeter are
used to connect the chip ground planes to the PCB ground at the circumference.
Additionally, we use another ∼ 20 bond wires to connect partitioned on-chip ground
planes with each other to eliminate spurious resonances. The right angle surface
mount Rosenberger SMP launchers are soldered with a heat gun onto the PCB and
mounted bullet adapters serve as intermediaries for SMP connection to microwave
coaxial cables.

When designing the PCB we take care of properly suppressing any parasitic
resonance modes and impedance mismatches. The former is achieved by connecting
the top ground plane with the back copper metallization using small via holes,
which suppress any resonance modes between these two plates. Choosing a spacing
of 1 mm gives acceptable results up to ∼ 20 GHz. To have no resonances within
the sample area, the chip was chosen small enough such that the cut-off frequency
is larger than the relevant frequencies of the quantum processor. The impedance
mismatch at the interface between the chip and PCB can be minimized by choosing
dielectrics with similar dielectric constants for both parts, such that the waveguide
launchers have similar dimensions. We thus choose a low loss woven glass laminate
AD1000 dielectric from Arlon with a relative dielectric constant of εr = 10.2 at
10 GHz for the PCB, compared to sapphire which has εr = 11.

The PCB is then mounted in a fully closed sample box made out of solid oxygen
free copper to shield the chip from electromagnetic radiation, see Figure 4.1. This
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4.1 Mounting the sample

Figure 4.1: The chip is glued onto a PCB to make connection to the microwave
cables (left). The connection from the PCB onto the chip is done using thin wire
bonds (left bottom). Before mounting the PCB into the sample holder (right), it is
screwed onto the base sample mount (second from the left) and covered with a shim
(second from the right) to fill all remaining empty space and remove unwanted
spurious modes in the otherwise empty cavity.

box consists of three parts, a base (second from the left) onto which the PCB
is screwed, a cover (second from the right) and a lid (right). The eight holes
in the lid are used as a feed-through for the SMP connectors of the semi-rigid
microwave cables and entirely closed when fully assembled. Any free space
inside the sample mount can support resonance modes at frequencies similar to the
operation frequencies of the processor. In particular we observed a resonance at
around 10 GHz. We suppress this mode by filling the empty space with the sample
cover, shown in the middle of Figure 4.1. This copper spacer is mounted flush
with the top of the PCB. Milled slots with a depth of 500 µm at the positions of the
waveguide structures and the chip prevent from shorting any lines and bond wires.
With this design the free space is drastically reduced to dimensions for which the
cut-off frequency is well above 20 GHz.
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The fully assembled sample holder with three superconducting coils (two coils
with an inner diameter of 4 mm and a big coil on top with an inner diameter of
11 mm) mounted onto the outer part of the base underneath the chip is shown in
Figure 4.2a. The magnetic field generated by these coils is local enough to be able
to dc bias each individual frequency of three different transmon qubits. Fast tuning
of qubit frequency is achieved using on-chip transmission lines (see Section 4.4).
The coil bodies are made out of Stycast R©1266 epoxy which is non conductive and
thermalizes well at millikelvin temperatures and the superconducting wire used is
a 35 µm thin niobium-titanium wire of type SC-T48B-M from Supercon Inc. More
details can be found in [Bianchetti10a].

The sample holder is then mounted onto the 20 mK plate of the dilution refriger-
ator with a long threaded rod and shielded from external magnetic fields using two
layers of a high permeability nickel-iron alloy (Cryoperm 10), see Figure 4.2b and
c.

4.2 Cryogenic wiring

Connecting the quantum processor at 20 mK to room temperature equipment for
qubit control and readout requires special care in the design of the cryogenic setup,
with the main goal to minimize the electric Johnson-Nyquist noise, generated by
the thermal agitation of charge carriers inside a conductor, and the heat transferred
along the wiring to the sample. At the same time, the power dissipated at the
different temperature stages of the refrigerator needs to be below the maximal
cooling power of the cryostat. Depending on the function of the wire different
methods are used to achieve these goals. These include filtering, attenuation,
thermal anchoring and the choice of cables. In our setup we need to distinguish
between the microwave input lines used to manipulate qubit state and to drive the
readout resonator, the output lines of the resonator, the cabling for the flux lines
and the DC bias lines for the magnetic coils, see Figure 4.2c,d and Figure 4.3 for
an overview of the cabling.

Microwave input lines

The microwave signals are generated at room temperature with a commercial
microwave source E8257D from Agilent which provide maximal signal powers
of 20 dBm, much larger than the room temperature Johnson-Nyquist noise. To
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Figure 4.2: a) Closed sample holder with the magnetic coils mounted underneath
the chip. b) Mounted sample holder with the holder for the magnetic shielding. c)
Fully wired insert of our dilution refrigerator showing the different temperature
plates. The mounted double-walled magnetic shield covering the sample is seen
at the bottom. d) Close up of the 800 mK to the 4 K temperature plates with one
of the HEMT amplifiers thermally anchored to the 4 K plate (left side). The other
HEMT amplifier thermally anchored to the 1.5 K plate is only barely visible. Every
input microwave cables are attenuated with −20 dB and thermally anchored to the
4 K plate.
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Figure 4.3: Schematic of the cryogenic measurement setup. The transmon qubit is
biased with the magnetic coil Lc and manipulated on the nanosecond time scale with
an on-chip magnetic flux line inductively coupled Lfl and an on-chip microwave
line capacitively coupled Cc to the qubit. The readout of the qubit is carried out by
measuring transmission through the input (Ci) and output (Co) coupling port of a
resonator, which is capacitively coupled (Cg) to the qubit.
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control and readout the qubit state however, no more than −50 dBm and −120 dBm
of power at the sample is required, respectively. The easiest method in this case
to eliminate the Johnson-Nyquist noise is to just attenuate the entire signal at
low temperatures. For temperatures above 1 K, the noise power spectral density
S v2(ω) ≈ 4kBTR emitted by a resistor with resistance R in the 1 − 20 GHz regime
depends linearly on temperature T. We therefore mount a 20 dB attenuator for
each microwave input line at 4 K, which reduces the noise from room temperature
below the noise generated at 4 K. To further suppress the noise from temperatures
higher than the base temperature, it turned out to be sufficient to add another
20 dB at 100 mK and 10 dB at 20 mK [Bianchetti10a]. Even though all attenuation
could also be installed at 20 mK, the heat load due to dissipation of the control
and measurement signal would be large enough to significantly increase the base
temperature. Since the higher temperature stages of the cryostat have higher cooling
power, it is desirable to dissipate most of the energy at 1.5 K and 4 K. This method
of signal attenuation to reduce the Johnson-Nyquist noise only works if the cables
are well thermalized with the different temperature stages. We therefore thermally
anchor the outer conductor of each cable at every temperature state with solder
braids. Due to the poor thermal conductance of the dielectric of the coaxial cables,
the inner conductor is effectively only thermalized at each attenuator, filter or
amplifier, where the inner conductor is in contact with the outer conductor.

Besides transferring electrical noise, the cables can also transfer significant
amount of heat towards the sample. Using standard semi-rigid cables made out
of copper for example would inevitably warm up the cryostat. For this reason, all
microwave input lines connecting different temperature stages are made entirely
out of stainless steal.

Microwave output lines

When performing readout of the qubit state, the resonator is populated with only a
few photons n̄ on average. For a typical resonator line width κ/2π ≈ 2 MHz and
resonator frequency ωr = 8 GHz, the transmitted power Pm = ~ωrn̄κ ≈ 10−17 W
is extremely small and has to be amplified by a factor of more than 1010 to be
detectable, using several amplification steps. Even with the best commercially
available amplifiers, a significant amount of noise larger than the signal itself is
added to the weak signal during this process. To get a good signal to noise ratio, it is
thus essential to avoid attenuation on the output line. We therefore use a microwave
cable with silver plated center conductor, or in newer setups, superconducting
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cables based on a niobium-titanium alloy for the connection between the sample
and the first amplifier.

Since the signal to noise ratio is mainly limited by the noise added by the first
amplifier, we use an ultra low noise HEMT amplifier from Caltech or the Low
Noise Factory, operated at cryogenic temperatures. They typically have a gain
of 30 − 35 dB and a very low noise temperature of 4 K with a bandwidth from
4 − 8 GHz. Due to the significant amount of power dissipated in such a device
(∼ 20 − 30 mW) it is thermally anchored to the 4 K or 1.5 K stage rather than
to the base plate. Any Johnson noise from room temperature is blocked by the
output port of the amplifier. The remaining 4 K/1.5 K Johnson-Nyquist noise and
amplifier noise that could travel along the output line from the input port of the
amplifier down to the sample is blocked with two circulators from Pamtech1. This
is a passive non-reciprocal three-port device, which redirects microwaves entering
any port i to port i + 1, but never to i − 1. When terminating port 3 with 50 Ω and
using the port 1(2) as the input (output) port, then the measurement signal coming
from the sample is transmitted from port 1 to 2. But the noise entering port 2 is
always redirected to port 3, where it is dissipated in the 50 Ω termination.

At room temperature, the measurement signal is further amplified by 60 dB
and band-pass filtered before it is downconverted to an intermediate frequency,
amplified and digitized for detection, see Section 4.3.2.

Flux lines

On-chip magnetic flux lines are used for fast tuning of the individual qubit frequen-
cies, using short current pulses generated with an arbitrary waveform generator
(AWG) from Tektronix (AWG5014). These instruments have a sampling rate of
1.2 GS/s, which means that they can generate signals with maximal bandwidth
of 600 MHz. At the same time, these lines should also allow for local dc biasing.
The cabling therefore requires a bandwidth of DC-600 MHz. In contrast to the
microwave input lines where the Johnson noise is eliminated by attenuation, this is
not possible due to the heat load generated by the large currents of 1 − 10 mA flow-
ing through the flux line. Instead, we have installed a low pass filter VLFX-1050
from Mini-Circuits at the base plate, with a cut-off frequency of around 1 GHz and
a stop band reflection larger than 40 dB. The cut-off is chosen significantly larger
than the required bandwidth, to distort the current pulse as little as possible. In

1At the same time they also serve as thermal anchors for the center conductor
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addition, we add an Eccosorb low pass filter [Santavicca08], which attenuates the
signals above the cut-off frequency of 1 GHz, rather than to reflect the signals. This
ensures that the qubit sees a constant load impedance of 50 Ω for all frequencies
when looking into the flux line, such that the influence on the qubit coherence
due to the capacitive coupling between the qubit and the flux line is minimized
(see also Section 4.4). At the 4 K plate where more than 1 W of cooling power is
available, we use 20 dB of attenuation. This setup is sufficient for short flux pulses,
but not for dc biasing due to heating issues. The only dissipative element at the
lower temperature plates are the stainless steal coaxial cables. Replacing these with
superconducting cables may eliminate this problem.

DC bias line for the coils

The large mutual inductance between the coils and the transmon SQUID loops
requires careful low-noise biasing to avoid 1/ f flux noise which leads to dephasing
of the qubit. For this reason, we use isolated voltage battery sources SIM928 from
Stanford Research Systems to provide an ultra low noise output. The voltage can
be set from −20 V to 20 V with only 10µVrms of noise within a 1 kHz bandwidth.
Additionally, we add a simple RC-filter at room temperature to the output with
a cutoff frequency below 10 Hz to further decrease the noise, see [Bianchetti10a]
for details. At the same time, it converts the voltage source into a current source
by using 20 kΩ resistors in series within the filter. The source then still provides
enough current since only ∼ 100 µA are required to apply one single flux quantum
through the SQUID loop.

The wiring and connection to the cryostat is done with an electromagnetically
shielded twisted pair cable and shielded LEMO connectors. Within the cryostat,
standard twisted pair looms out of copper are used from room temperature to 1.5 K,
and superconducting Nb-Ti looms for connection down to base temperature to
avoid heating due to dissipation. At every temperature stage, each loom is thermally
anchored by winding it around a cooper rod and fixing it with GE low-temperature
varnish (C5-101).

Grounding

Because there are many different instruments and cables connected to the cryostat,
it can easily happen that the grounds of two instruments attached to different
power supplies are both connected to the cryostat, creating a so called ground loop.
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Whenever the two grounds are on slightly different potentials, equalizing currents
will flow along unpredictable paths within the cryostat. Since the center pin of
our flux line is grounded on one end, these fluctuating currents can generate a
magnetic field at the position of the qubit, leading to fluctuating qubit frequencies,
and therefore dephasing. To avoid these problems, we connect only the ground of
the AWG used to generate the fast flux pulses via the flux line to the cryostat. All
other grounds are isolated with DC blocks.

4.3 Qubit control and data acquisition

4.3.1 IQ modulation

The time resolved manipulation of superconducting qubits requires accurate control
over the amplitude, phase and frequency of a microwave carrier signal at the
qubit frequency on nanosecond timescale. This is accomplished by modulating
the in-phase (I) and quadrature (Q) components of the carrier signal with an IQ-
mixer. A schematic of such a device is shown in Figure 4.4. A continuous wave
sLO = A cos(ωLOt) with a frequency ωLO of up to 20 GHz is generated with an
analog signal generator E8257D from Agilent and fed into the local oscillator (LO)
port of the mixer. Since these IQ-mixers obtain their bias from the power supplied
by the LO signal, this power should be kept constant within the designed range of
the IQ-mixer (10 − 13 dBm or 13 − 16 dBm for our IQ-mixers). This LO signal is
then split into two signals. One of them is in phase with the carrier and multiplied
with the voltage applied to the I port sI using a mixer, and the other one is phase
shifted by −π/2 and multiplied with the Q voltage sQ. Adding these two signals
with a power combiner results in the output waveform

sRF = I cos(ωLOt) + Q sin(ωLOt) = A cos(ωLOt + φ), (4.1)

where I = A cos(φ) and Q = A sin(φ). We can thus control the amplitude and phase
of the carrier wave, by manipulating the amplitude of the separate I and Q input
signals. This is often referred to as quadrature upconversion. Instead of using DC
voltages, we can also apply the waves I cos(ωIFt +φ) and Q cos(ωIFt +φQ +φ) with
an intermediate frequency ωIF to the I and Q ports, respectively. In general, the
resulting output signal will then consist of two sideband signals with frequencies
ωLO ± ωIF centered around the carrier frequency. For the special case that φQ =

±π/2 and I = Q, either the right or the left sideband is canceled, resulting in a
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Figure 4.4: Schematics of an in-phase/quadrature mixer used for up/down conver-
sion of microwave signals. It consists of two mixers, a 90 deg hybrid and an in
phase power combiner. Amplitude and phase errors of the hybrid, power combiner
and cables can be combined to single errors and are indicated by ∆A and ∆φ.

single frequency output signal, shifted by ωIF from the carrier. The amplitude and
phase of this signal is manipulated with the amplitude I = Q and phase φ of the
two IQ waves. This type of mixing, referred to as single sideband mixing, has
the advantage that imperfections in real physical mixers are easier to calibrate, as
described below.

Mixer imperfections

In our measurement setup, we use an arbitrary waveform generator, typically an
AWG5014 from Tektronix, to generate the I and Q signals, and the IQ − 0307
or IQ − 4509 mixers from Marki Microwave for IQ modulation, as depicted in
Figure 4.5a. The output signals of the AWG are attenuated by 10 dB before they
are connected to the mixer, in order to reduce the broadband noise of the AWG
output which is upconverted to the qubit frequency. Additionally to the channel
outputs, the AWG also provides DC voltage outputs which are connected to a
simple voltage divider and then added to the channels using the rear panel inputs.
This is convenient as no additional bias tees are required to add DC offsets to the I
and Q ports used to calibrate for offset related imperfections of the mixers. These
imperfections can be categorized into the phase ∆φ (phase imbalance), amplitude
∆A (amplitude imbalance) and offset error. The former two are caused by the
imperfect hybrid and power combiners within the IQ-mixer, see Figure 4.4, as
well as by differences in the length of the cables connecting the AWG and the I/Q
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Figure 4.5: a) Microwave pulse generation setup, with modulation intermediate
frequency signals generated by an arbitrary waveform generator and then upcon-
verted to qubit frequencies using an IQ-mixer. b) The output signals for single
sideband upconversion. Due to imperfections in the mixer, the output contains
three instead of a single frequency. Carrier leakage is attributed to DC offset errors,
while the imperfect sideband suppression is caused by phase and amplitude errors.

ports of the mixer. These errors manifest themselves in the output spectrum as an
imperfect suppression of the unwanted sideband (Figure 4.5b). Small DC offsets at
the IQ ports result in leakage of the carrier signal at the LO frequency, even if no
voltage is applied to the IQ ports. For the Marki mixers used, the isolation between
the LO and RF port (carrier leakage) is typically about 30 − 40 dB, and the phase
and amplitude errors are about ∆φ < 5 deg and ∆A < 0.3 dB, respectively. For a
tiny phase imbalance of only 1 deg, the unwanted sideband suppression is already
reduced to only 40 dBc, and typical mixers have a sideband suppression of about
25 dBc.

It now becomes clear why we prefer to use sideband mixing rather than mixing
with DC voltages on the IQ port. In the latter case, the upconverted qubit drive is at
the same frequency as the LO leakage, resulting in an unwanted qubit drive even
if no signal is applied to the IQ port. Regardless of whether this leakage can be
drastically reduced or completely removed, there is still the problem that the phase
of the output signal strongly depends on the phase and amplitude imbalances. To
realize high fidelity single qubit gates, these imbalances must be calibrated.

For the case of sideband mixing however, the carrier leakage and the unwanted
sideband are off-resonant from the qubit transition (we typically chose a ωIF of
100 MHz), and thus have much less influence on the gate fidelity. Additionally, the
phase of the output signal is fully determined by the phase of the I and Q signals
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only, which can accurately be defined while generating the signals with the AWG,
even if no calibration is carried out. Nevertheless, for optimal single qubit gates,
we still calibrate for the imbalances.

Mixer calibration

Calibrating the mixer allows us to enhance the LO to RF port isolation to about
80 dB and the sideband suppression to ∼ 65 dBc. The leakage error is reduced
by adding DC voltage offsets to the IF signal on the I and Q ports. We run a
routine which searches the I and Q voltages which minimize the carrier leakage.
To reach good results, these voltages must be chosen with an accuracy better than
200 µV. To understand how to calibrate for the amplitude and phase imbalances,
we calculate the output signal including these two errors, yielding

sRF =
1
2

[
I cos(ωLOt) cos(ωIFt + φ)

+ (1 + ∆A)Q sin(ωLOt) cos(ωIFt + φ + φQ)
]
, (4.2)

=
1
4

[
I(cos((ωLO + ωIF)t + φ) + cos((ωLO − ωIF)t − φ))

+ (1 + ∆A)Q(sin((ωLO + ωIF)t − ∆φ + φ + φQ)

+ sin((ωLO − ωIF)t − ∆φ − φ − φQ))
]
. (4.3)

When the upper sideband should be used for qubit driving, the lower sideband can
be canceled by choosing the amplitude Q = I/(1 + ∆A) and phase φQ = π/2 − ∆φ.
The signal on the upper sideband is then given by

sRSB
RF =

1
2

I cos(∆φ) cos((ωLO + ωIF)t + φ − ∆φ). (4.4)

Similarly, when using the lower sideband we choose Q = I/(1 + ∆A) and φQ =

−π/2 + ∆φ, yielding the output

sLSB
RF =

1
2

I cos(∆φ) cos((ωLO − ωIF)t − φ − ∆φ). (4.5)

Note the different signs in the phase of the signal, depending on which sideband is
used. This must be considered when choosing the rotation axis for a single qubit
gate operation.

The optimal values of Q and φQ are in practice found by determining the values
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for which the power in the unwanted sideband is minimized. Since this calibration is
not independent of the LO frequency, it needs to be redone whenever the frequency
is changed. To make it more convenient for the user, we have written a Labview
program which executes the calibration routine automatically.

4.3.2 Data acquisition

The readout of the qubit states requires the time resolved measurement of a mi-
crowave signal transmitted through the readout resonator in the 6 − 10 GHz range.
The small number of photons involved in this measurement signal (in typical ex-
periments the resonator is populated with less than 10 photons on average) makes
it necessary to repeat the same experiment a number of times in order to average
out the dominant noise added by the amplification chain. In principle, this signal
could be digitized using a real time high frequency oscilloscope. They are however
expensive and inefficient in averaging. Since the bandwidth of the measurement
signal is only a few MHz due to the filtering effect of the resonator, we instead
downconvert the high frequency signal ωRF to an intermediate frequency of typ-
ically ωLO = 25 MHz, using a mixer and a local oscillator with a frequency of
ωRF−ωLO (heterodyne detection). This signal is further amplified by another 30 dB
and low pass filtered with an anti-aliasing filter with cut-off frequency of 30 MHz.
It can then easily be digitized with a PCI data acquisition card from Acquiris with a
sampling rate of 1 GS/s. The I and Q quadratures containing the information about
the qubit population (see also Section 3.2.3) are extracted with a further digital
downconversion to DC (digital homodyne). This is achieved by simply multiplying
the detected signal A(t) cos(ωRF + φ(t)) with a sine and a cosine

I(t) = A(t) cos(ωIF + φ(t)) cos(ωIFt), (4.6)

Q(t) = A(t) cos(ωIF + φ(t)) sin(ωIFt), (4.7)

which folds the signal from ωIF to DC and 2ωIF. The upper sideband is removed
with a digital low pass filter, by evaluating the convolution of the I and Q signals
with a square window function of length 2π/ωIF. The maximal bandwidth of the
detection is thus limited by ωIF.

If higher bandwidth is required, the analog signal can also be downconverted
directly to the DC I and Q components before digitization, using an IQ-mixer
and an LO frequency equal to ωRF (homodyne detection). The bandwidth is then
limited by the IQ-mixer bandwidth and the sampling rate of the data acquisition
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card. Imperfections in the IQ-mixer, namely amplitude and phase imbalance,
and DC offsets however introduce errors in the detected signal, which need to be
carefully calibrated. In contrast, the digital homodyne downconversion is perfect
and the analog heterodyne downconversion also introduces no errors, because only
one channel of the downconversion mixer is used. Additionally, any DC offsets
are removed by the digital filter. A detailed discussion of the different detection
schemes can be found for example in [Schuster07a].

4.3.3 Signal synchronization

Our experiment involves the interplay between several microwave instruments. At
least one microwave signal generator and two AWG output channels are needed
per qubit for manipulation, two additional signal generators for measurement and
heterodyne detection, and an analog to digital converter for data acquisition. The
synchronization of all these devices involves three parts, as sketched in Figure 4.6a.
First, all devices are phase locked to an ultra stable 10 MHz reference provided
by an atomic frequency standard FS725 from Stanford Research Systems (red),
specified with an Allan variance ofσy(τ = 1 s) < 2·10−11 (σy(τ = 100 s) < 2·10−12).
This measure is interpreted as the relative root mean square (rms) value of the
frequency deviation between two observations τ apart. For a 10 Hz this results
in a rms frequency fluctuation of < 20 µHz in 1 s intervals. This phase locking
technique ensures the same time-base for all devices. In other words it makes sure
that when setting a certain frequency, all devices deliver exactly this frequency in
the given time-base. In our typical experiments, the microwave signal transmitted
through the resonator is averaged over a time period of several minutes to a few
hours. The frequency error between the measurement and local oscillator signal
for downconversion must therefore be much less than 0.001 Hz, corresponding to a
relative error of only 10−10 percent for a wave in the GHz regime! Otherwise, the
error would lead to a phase randomization of the acquired signal and the complete
loss of information when averaging over many experimental realizations. Second,
a trigger signal is used to define the start of an experiment (blue). A square pulse
generated with an 80 MHz AWG 33250A from Agilent and a typical repetition rate
of 50 kHz is sent to the trigger input of the Tektronix AWG’s, which triggers the
output of the qubit control waveform. Additionally, two marker outputs generate a
square pulse which in turn trigger the measurement and data acquisition card (third
part, green).

The main consideration when realizing this triggering setup is primarily on the
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Figure 4.6: a) Synchronization of all microwave generators (AWG and measure-
ment source) and the data acquisition card (ADC) is done with three parts. Phase
locking of all devices to a 10 MHz reference (red), triggering of the AWG’s using
a trigger source (blue), and triggering the measurement and data acquisition card
using a marker output of an AWG (green). b) Schematic of the timing between the
sampling clock of an AWG and the square pulse of the trigger signal.

timing jitter of the output signals. This is especially critical for signals involved in
qubit manipulation. To understand how jitter can occur, let us take a look at the
schematic in Figure 4.6b, depicting the sample clock of the Tektronix AWG with
sampling period Ts and the square pulse of the trigger signal. For synchronous
trigger operation, the trigger input must occur within a valid time window with
respect to the sampling clock, specified by the delay between the rising edge of
the trigger to the first rising edge of the sampling clock ∆t. This is because the
analog output from the AWG is produced at a time determined by this first rising
edge. If ∆t is too small, the AWG will jump back and forth between the two rising
edge of the clock at ∆t and ∆t + Ts, leading to a jitter in the output signal of Ts. To
insure that such a state never occurs, it is important to have a fixed timing between
the trigger signal and the sampling clock. Unfortunately, this can not be achieved
using the output channel of the 33250A AWG used to produce the trigger, as it
always changes the timing when the output is turned off and on again. Instead, we
use the sync output for which the timing is fixed. Since the phase of the sampling
clock is different for all Tektronix AWG’s, we adjust the timing for each instrument
individually by adjusting the trigger level of the trigger input. This needs to be
redone whenever the instrument is restarted. Additionally, the repetition period of
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the trigger must always be set to an integer multiple of the sampling clock.

4.4 Magnetic flux bias line

Quantum operations between two qubits can be realized with fast qubit frequency
tuning on the nanosecond timescale using short magnetic flux pulses. The mag-
netic coils used to bias the qubit frequencies however have an inductance of
L ≈ 0.04 − 0.8 H and are biased with a R ≈ 10 kΩ feed line. This serial com-
bination of inductance and resistance acts as a low pass filter for a current pulse
sent through the coil, with a time constant τ = L/R on the order of micro- to
milliseconds. Furthermore, the number of coils that can be mounted on the sample
holder underneath the chip is limited, which makes it difficult to scale the system
to more than five qubits while maintaining individual qubit biasing. Both problems
can be resolved by adding local on-chip flux lines which allow for individual tuning
of each qubit frequency on the nanosecond timescale.

The two flux line designs (FLA and FLB) used in our lab are shown in Figure 4.7a
and b. FLB consists of a transmission line that is terminated with a short next to
the transmon SQUID loop, where the current is split into two opposite directions.
We place the line slightly off-centered, such that the magnetic field generated by
the current is maximal at the position of the SQUID loop. This design has the
advantage that the line can be brought very close to the qubit without harnessing the
coherence, see Section 4.4.1, needed to reach large mutual inductance. However,
the currents fed onto the on-chip ground plane flow along poorly controlled paths
across the whole chip, leading to cross-couplings to the other qubits (on the order
of 10%) and might lead to unpredictable time response. This problem is resolved
in the FLA design, where the transmission line is terminated with a short on the
PCB ground rather than on-chip. Since the PCB ground is resistive, the current is
dissipated without influencing other qubits (measured cross-couplings are smaller
than 1%). Even though the realizable mutual inductance is smaller compared to
the FLB design without limiting the qubit lifetime, it is still large enough for our
experiments. We have thus decided to use the FLA design through out this thesis.

The minimal mutual inductance M required for the flux line to be useful is set
by the maximal amount of current we can send through the line and the possibility
to apply at least half a magnetic flux quantum Φ0 through the SQUID loop to
guarantee enough tunability of the qubit frequency. The former is limited by the
maximal current the room temperature electronics is able to provide, the critical
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Figure 4.7: Two different flux line designs. a) FLA consists of a transmission
line passing close by the qubit and is shorted on the PCB. b) FLB consists of a
transmission line which is shorted near the qubit. c) Equivalent circuit model for
calculating the energy decay rate due to the capacitive coupling of the flux line to
the qubit with a coupling capacitance Cc. The qubit is modeled as a simple LC
oscillator and the short termination of the flux lines as an inductance Ls. ZL is the
impedance of the termination of the input side of the flux line, and l1 and l2 the
lengths of the transmission lines from the qubit to the short and load impedance ZL,
respectively.
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current/magnetic field of the superconducting transmission line and most impor-
tantly, the maximal cooling power of the dilution refrigerator. In our experiments,
we observe significant heating of several millikelvins already with dc currents of
about 1 mA, due to energy dissipation in the 20 dB attenuation connected to the 4 K
stage or in the normal conducting microwave cables connected to the 20 mK stage.
Replacing these cables with superconducting cables might eliminate the problem
to some degree.

The mutual inductance can be controlled in the design by the distance between
the SQUID loop and the flux line, and by the size of the loop. A lower bound for
the distance is given by the capacitive coupling of the qubit to the 50 Ω transmission
line which negatively influences the qubit lifetime, see Section 4.4.1. Regarding
the loop size, it is not clear how large it can be made without influencing the
dephasing of the qubit. Measurements on the flux noise in SQUID loops have only
shown weak dependence on geometry [Wellstood87]. Nevertheless, we have taken
a conservative approach and designed a rather small loop of size 4.6 µm × 3.6 µm
in our most recent three-qubit processor to minimize the influence of external stray
magnetic fields. With a minimal distance of the flux line to the SQUID loop of
5.8 µm we experimentally found a mutual inductance of M ≈ 250 Φ0/A. While
this is enough for short flux pulses, it is too small for dc biasing without significant
heating. We thus still do the biasing with the coils attached underneath the chip.

4.4.1 Flux line induced decoherence

Energy relaxation

The coupling of the flux line to the qubit opens several new channels for energy
relaxation. As mentioned in [Koch07a], there is the relaxation induced by flux
coupling. This includes two types of couplings. One is the generation of Josephson
energy noise generated by current noise in the flux line via the mutual inductance
M. The other one describes the loss of energy, because the oscillating magnetic
field generated by the qubit described as a simple LC oscillator, induces a voltage
in the flux bias line. The 50Ω environment then dissipates this energy and reduces
the relaxation time. As long as the flux line is properly thermalized at the respective
temperature stages of the cryostat and well filtered to eliminate high frequency
noise from room temperature Johnson noise, these two energy relaxation channels
can be neglected. Koch et al. [Koch07a] estimated energy relaxation times of
> 20 ms for typical transmon parameters.
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The more relevant energy relaxation channel is the capacitive coupling to the
flux line. We can model this situation with the equivalent circuit diagram shown
in Figure 4.7c. Since the transmon qubit is nearly a harmonic oscillator, it can
be approximated as a simple LC oscillator with capacitance C = e2/2EC . This
oscillator is capacitively coupled to the flux line which on one side consists of
a transmission line of length l1 terminated on PCB with a short modeled as an
inductor with inductance Ls (or only a short Ls for FLB), and on the other side of a
transmission line with length l2 terminated with a load impedance ZL. We can then
map this circuit to a parallel LRC oscillator by replacing R→ 1/Re(Y(ω)) with the
real part of the admittance seen by the qubit [Esteve86, Houck08]. Since the decay
time of such an LRC oscillator is given by 1/κ = RC, where κ is the half width at
half maximum of the resonance, we find a qubit energy decay time of

T1(ω) =
C

Re[Y(ω)]
=

e2

2ECRe[Y(ω)]
. (4.8)

The value of ZL strongly depends on the filtering used on the flux line. If
low pass filters with reflective stopbands are used, this impedance is frequency
dependent and significantly differs from the characteristic impedance Z0 = 50 Ω of
the transmission line. The impedance mismatches at the short and the filter then
form a resonator which may enhance qubit relaxation if the qubit frequency is close
to the resonance frequency. In order to suppress this resonance, we have added
an Eccosorb low pass filter [Santavicca08] in between the reflective filter and the
sample, which attenuates rather than reflects the signal at the stopband frequencies,
such that the load impedance seen by the qubit when looking into the flux line
towards the filters is close to ZL ≈ Z0. Since the form of Y(ω) is rather complicated
for an arbitrary ZL, we assume in the following that ZL = Z0. The real part of the
admittance can then easily be calculated and yields

Re
[
Yshort(ω)

]
=

Z0C2
c L2

sω
4

L2
sω2 + Z2

0
(
1 −CcLsω2)2 (4.9)

for the flux line FLB. For FLA we further simplify the calculations by only con-
sidering the case were the shorted transmission line is neglected. Since this part is
non-dissipative and shunts ZL, it can only reduce the total dissipation of the system.
Neglecting it thus gives a lower bound for T1. For this case, we find a real part of
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the admittance of
Re [Y(ω)] =

Z0

Z2
0 + 1

C2
cω

2

. (4.10)

From numerical simulations with the ANSYS Maxwell software we find a coupling
capacitance of Cc ≈ 0.1 fF for the FLA design, resulting in an energy relaxation
time of T1 > 50 µs for frequencies below 8 GHz. As this is only a lower bound,
we are confident that the flux line is not the limiting factor for our measured T1 of
∼ 1 µs. For the case that the T1 can be increased in the future, we can also think
about protecting the qubit from decay into the flux line by carefully designing
the shorted transmission line, using similar techniques as in Reference [Houck08].
There, the qubit has been protected from Purcell decay into the resonator using a
stub tuner.

Dephasing

Low frequency current noise in the flux line that is not filtered by the low pass
filters translates into fluctuations ∆Φ in the flux Φ penetrating the SQUID loop,
leading to fluctuations in the qubit frequency ω01. The sensitivity of ~ω01 =√

8ECEmax
J | cos(Φ/Φ0)| − EC to ∆Φ strongly depends on the bias point of the qubit.

At the so called “sweet spot” (Φ ≈ Φ0) for example, the frequency is to first order
independent on ∆Φ and is thus the point with best phase coherence. Assuming a
1/ f noise power spectrum S Φ(ω) = 2π(∆Φ)2/ω, where ∆Φ is the amplitude of the
fluctuations at 1 Hz, the dephasing time away from the sweet spot is simply given
by the first derivative of ω01 with respect to Φ [Koch07a]

Tφ '
1

∆Φ|
∂ω01
∂Φ
|

=
~Φ0

π∆Φ
√

2Emax
J EC |sin(πΦ/Φ0) tan(πΦ/Φ0)|

. (4.11)

Since this equation diverges at the flux sweet spot, the dephasing for Φ = Φ0 must
be calculated by including second-order contributions, yielding

T sweetspot
φ '

1

π2∆Φ2|
∂2ω01
∂Φ2 |

=
~Φ2

0

∆Φ2π4
√

2Emax
J EC

. (4.12)

Even without including the flux line, the Tφ is limited by local flux noise in the
SQUID loop from an origin that was for a long time unidentified. A multiple of
independent measurements of ∆Φ report a more or less geometry and material inde-
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Figure 4.8: Dephasing time Tφ as a function of flux bias Φ calculated using Equa-
tion (4.11), for a 1/ f flux noise spectrum with amplitude ∆Φ = 10−5Φ0 (solid
blue line), ∆Φ = 10−6Φ0 (dashed green line) and typical transmon parameters
EC/h = 300 Mhz, Emax

J = 28.7 GHz. The second order contribution at the sweet
spot results in a dephasing time of T sweetspot

φ ≈ 4.7 ms and T sweetspot
φ ≈ 470 ms,

respectively.

pendent value of ∆Φ = (10−6−10−5) Φ0 [Wellstood87, Yoshihara06, Yoshihara10].
Figure 4.8 shows the calculated dephasing times Tφ using Equation (4.11) for
these values of ∆Φ and typical transmon parameters as an example. Recent
experiments and theories suggest the existence of a high density of spins on
the surface of superconducting electrodes due to defects in the surface oxides
or disorders in the interface between dielectric and metal as the origin of this
noise [Bluhm09, Sendelbach09, Koch07b, Faoro08, Choi09]. Eliminating these
spins will be important to enhance the Tφ times in the future.

When coupling a flux line to the qubit, the additional flux noise should thus
be smaller than ∆ΦFL < 10−6 Φ0. With a mutual inductance of M = 250 Φ0/A
and including the 20 dB of attenuation at the 4 Kelvin stage to eliminate the room
temperature Johnson noise, this results in an upper bound for the current and
voltage noise spectral density of the room temperature electronics of ∆I(1 Hz) =

10∆Φ/(MHz1/2) < 40 nA · Hz−1/2 and

∆V(1 Hz) = ∆I · 50 Ω < 2 µV · Hz−1/2, (4.13)
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respectively. While the ultra low noise voltage/current source SRS SIM928 we
already use for biasing the coils, specified with Vrms(1 Hz) = 300 nV · Hz−1/2,
would likely be suitable for biasing through the flux lines, it is less clear for the
Tektronix AWG5014 since the company does not provide specifications for the
voltage noise. In our experiments we see a reduction of Tφ when connecting
an output of the AWG5014 to the flux line, and thus we add a further 10 dB of
attenuation to the flux line at room temperature. Since the AWG is only needed
for pulsing, adding a high pass filter with a cut off in the MHz range might further
reduce the influence on Tφ.

4.4.2 Optimal pulse control

The precise knowledge of the pulse shape applied to a flux line is important to
achieve high fidelity two-qubit gates that rely on fast tuning of the qubit frequency
(Section 6.2.3). In particular, in these experiments the qubit frequency needs to be
changed by ∼ 1 GHz in several nanoseconds and the precision has to be better than
5 MHz, requiring flux pulses with an accuracy of less than one percent. Even though
an AWG can in principle generate any arbitrary analog signal with a bandwidth
smaller than half the sampling rate, it is not a trivial task to determine the discrete
digital pattern one has to load onto the AWG to achieve the desired analog output
signal. Additionally, frequency dependent attenuation in the microwave cables,
the low pass filters and imperfections in the on-chip circuitry significantly distorts
the signal when traveling along the flux line. Here I describe how to tackle these
problems, based on previous work carried out by Deniz Bozyigit during his master
thesis in our lab [Bozyigit10], using standard signal processing techniques.

Theory of signal reconstruction

The main function of an AWG is to output a time-continuous analog output signal
by programming the device with a discrete digital version (waveform). In theory,
the relation between these two signals is given by the Nyquist-Shannon sampling
theorem, which states that any continuous signal s(t) is fully determined by the
sampled signal x[n] = s(nTs), as long as s(t) has no frequency components higher
than half the sampling rate 1/Ts. More specifically, the continuous signal can
always be reconstructed from the discrete version by the convolution between x[n]
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and the kernel h(t) = sinc(t/Ts)

s(t) = x[n] ∗ h(t − nT s) =

∞∑
n=−∞

x[n]sinc
(
t − nTs

Ts

)
, (4.14)

where sinc(x) = sin(πx)/πx is the normalized sinc function. In practice however,
this ideal reconstruction can never be precisely implemented, since the sinc function
extends to infinite times. Instead, another kernel with finite length must be found
that approximates the sinc function well enough. The error introduced by this
approximation is referred to as the interpolation error. A common choice in
practical devices is the zero-order hold kernel, a rectangular function which is 1
for 0 < t < Ts and 0 otherwise. Since the frequency spectrum of this kernel has
nonzero components above 1/2Ts, the output signal is low pass filtered afterwards.
However, a practical filter can only attenuate and not totally eliminate the high
frequency components. This introduces another error which is referred to as
aliasing.

Even though the Nyquist-Shannon sampling theorem as given above is not
fulfilled anymore, the output signal can still be reconstructed by convolution with
the new kernel function hAWG of the AWG. Since the exact function is not know in
advance, it has to be measured in order to predict the output of the AWG.

Before doing so, let us first describe a system consisting of the AWG whose
output is connected to cables (acting as a filter) and filters. Since the action of a
filter can be described in time-domain by a convolution between the signal and a
time window g(t), the output signal is given by

s̃(t) = g(t) ∗ (x[n] ∗ hAWG(t − nTs)), (4.15)

= x[n] ∗ (g(t) ∗ hAWG(t − nTs)), (4.16)

= x[n] ∗ h̃(t − nTs). (4.17)

In other words, any system consisting of an AWG connected to a series of linear
components can be described by a single kernel h̃(t). We can easily measure this
kernel by loading a waveform given by the delta function x[n] = δ[n] (one single
point is 1, all others are 0) and measuring the resulting output signal

δ[n] ∗ h̃(t − nTs) = h̃(t). (4.18)

Once this impulse response is measured, we can fully predict the output signal s̃(t)
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Figure 4.9: a) Combined impulse response of the AWG5014 from Tektronix and
the flux line cabling until the sample holder. b) Uncorrected square pulse generated
by the AWG. c) Corrected square pulse using the impulse response shown in a).

for any waveform x[n] according to Equation (4.17). As an example, Figure 4.9a
shows the measured impulse response for a Tektronix AWG5014 operated at a
sampling frequency of 1.2 GS/s, which is connected to the flux line cabling and
filtering. The signal is recorded at room temperature using a 6 GHz oscilloscope
from LeCroy running at a sampling rate of 20 GS/s right before the cable is
connected to the sample, and was averaged 1000 times to reduce the noise. To
demonstrate the interpolation error caused by the deviation of this kernel from
the sinc function, we measure the output of a waveform which is given by a 50 ns
long square pulse filtered with a 350 MHz Gaussian low pass filter, see Figure 4.9b.
Instead of a flat top, the pulse slowly increases for about 40 ns until it flattens
out. Also, it takes roughly the same time until the pulse is completely turned off.
Obviously this would be a substantial problem for fast qubit manipulation.

Pulse correction

Being able to predict the output signal for an arbitrary waveform allows us to find
the waveform that corrects for all the distortions caused by the AWG, cabling and
filtering, and results in an output that is close to a desired signal. Due to bandwidth
restrictions of the AWG this is clearly impossible to achieve for any arbitrary
desired signal. We thus use a method which finds the waveform that approximates
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the desired signal in a linear least-square sense.
To do so, we discretize the desired signal s̃(t) with a very high sampling rate

1/Ta and write the quasi continuous signal and the waveform as vectors ~̃s and ~x,
with entries s̃m = s̃(mTa) and xn = x[n]. Since the convolution is a linear function,
we can rewrite the discretized version of the convolution Equation (4.17) in matrix
form

~̃s = H · ~x, (4.19)

where H is a rectangular matrix with lx columns and ls rows, and fully determined
by the kernel function h̃. Comparing (4.17) and (4.19), we find for the entries of
the matrix

Hm,n = h̃(mTa − nTs). (4.20)

The length lx and ls are determined by the maximal length of the desired signal and
the sampling rates Ts and Ta. As an example, if the desired pulse is nonzero during
the time 0 < t < L, we typically sample the signal from −50 ns < t < L + 300 ns to
insure that all pre and post oscillations are contained in the corrected waveform.
The dimensions of the matrix are thus given by lx = (L + 350 ns)/Ts and lx =

(L + 350 ns)/Ta. While Ts is given by the sampling rate of the AWG, we typically
chose Ta = 10 · Ts.

The task now is to find the vector ~x that fulfills Equation (4.19) for a desired out-
put signal ~s. Since ls � lx, the system of linear equations (4.19) is overdetermined
in the sense that it has more equations than unknowns. Such a system usually is not
solvable for all equations (H~x , ~̃s for all ~x). The best solution is therefore to find a
vector ~x which minimizes the error ||~̃s−H~x||22, where ||x||2 is the L2-norm. This can
be done with linear regression using the LeastSquares function in Mathematica.

To demonstrate how good this procedure works, we remeasured the output of the
pulse shown in Figure 4.9b when first applying the pulse correction procedure. As
can be seen in Figure 4.9c, the pulse now rapidly reaches its voltage maximum, and
the top of the pulse is almost perfectly flat. Only a small ringing with an amplitude
of ∼ 1% relative to maximal amplitude and a duration of 5 ns − 10 ns at the rising
and falling edge of the pulse is observable.

Measuring the impulse response of cold cables

We now know how to accurately compensate for distortions caused by cables, filters
and the AWG at room temperature. But how does our correction perform when
cooling down the cables in the cryostat to 20 mK? As a test experiment, we have
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Figure 4.10: a) Measured S12 parameters of two microwave transmission line
cables of ∼ 2 m length with two Mini-Circuits VLFX-400 low pass filters connected
in between, measured at room temperature (red) and 4 Kelvin (blue) b) Measure-
ment of a corrected square pulse sent through the cables at 4 K using the impulse
response measured for warm cables (red) and cold cables (blue).

compared the frequency response of two 2 m long microwave cables connected to
two low pass filters VLX − 400 from Mini-Circuits at room temperature (red) and
at 4 Kelvin (blue), by dipping the components into liquid helium, see Figure 4.10a.
The attenuation of the cables is reduced by several dB at 4 K, since a metal normally
has an increased conductivity when going to lower temperatures. Additionally,
the cutoff frequency of the low pass filter is significantly shifted by about 50 MHz
to higher frequencies. How this manifests itself in time domain is shown in
Figure 4.10b. The red curve shows a corrected pulse sent through the cables at 4 K,
but using a pulse response measured at room temperature. The overcompensation
for the cable attenuation and the wrong low pass filter cutoff results in an overshoot
and undershoot of ∼ 2% − 3% at the beginning and end of the pulse, respectively.
As a control measurement, we have also recorded the corrected pulse when using
the pulse response for cold components, which results in the expected pulse shape.

While it is easy to measure the impulse response through cables dipped into
liquid helium, it is not straightforward how to measure the impulse response for
a cable in the cryostat that extends from room temperature down to the sample
holder. This is because it is not possible to attach an oscilloscope to the output
of the cable at 20 mK. Instead, we connect two nominally identical lines with a
through such that we can measure all the S-parameters S both of both cables from
room temperature down to 20 mK and back again using a network analyzer. In
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order to eliminate reflections between the low pass filters, we add an additional
6 dB of attenuation in between the two cables. With the knowledge of S both we
can reconstruct the S-parameters S ind of each individual cable by first converting
the scattering matrix S both into the transmission matrix ABCDboth. Under the
assumption that both microwave lines are identical, the transmission matrix for
each individual line is given by

√
ABCDboth, which can then be mapped back to

the S-parameters of the individual lines S ind, see [Pozar93, Table 4.2] for details
about how this mapping is calculated.

With the knowledge of the S-parameters of the flux line cabling in the cryostat
and the impulse response of the AWG and the room temperature cabling h̃, we can
reconstruct the full impulse response using the relation

h̃full = F −1[F (h̃) · S ind
12 ]. (4.21)

Here, F (x) is the discrete Fourier transform of the list x and S ind
21 the complex

transmission coefficient of the cold cables.

4.4.3 Measuring the flux pulse shape through its interaction with
the qubit

In the previous section I have described how to accurately control the shape of the
flux pulse which arrives at the input port of the on-chip flux line. I now go a step
further and analyze the influence of the on-chip circuitry on the pulse shape by
measuring the shape of the flux pulse on-chip. The only way this can be done is
by directly probing the time response of the on-chip magnetic field with the qubit
itself, since connecting an oscilloscope or network analyzer is impossible.

The pulse scheme for such an experiment is shown in Figure 4.11a. A short
corrected square current pulse with length L = 50 ns and amplitude h is applied to
the flux line which shifts the qubit by around 900 MHz away from its sweet spot
(ω01/2π = 6 GHz) to ω01/2π = 5.1 GHz. At the same time, the qubit frequency is
detected by sweeping the frequency ωd of a Gaussian shaped spectroscopy pulse
with a total length of 20 ns around 5.1 GHz. The amplitude of this spectroscopy
pulse is chosen such that it is exactly a π pulse when the drive is on resonance with
the qubit (∆νd = (ω01 − ωd)/2π = 0). We repeat this measurement for different
delays τ of the spectroscopy pulse to the leading edge of the flux pulse to extract
its time response. The resulting spectrum shown in Figure 4.11b displays a large
overshoot of about 40 MHz at the beginning of the pulse followed by an undershoot
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Figure 4.11: a) Schematic of the pulse sequence used to probe the shape of the on-
chip flux pulse with the qubit. b) Measured amplitude of the resonator transmission
as a function of the frequency detuning ∆νd of the drive pulse from the qubit and
the delay τ to the leading edge of the flux pulse.

of ∼ 20 MHz several nanoseconds later. This result seems to indicate a rather poor
control over the pulse shape, as 40 MHz error for a tuning range of 900 MHz is
rather large. To estimate the corresponding error in the current flowing through
the flux line, we first convert the frequencies into magnetic flux applied through
the SQUID loop of the qubit using the relation (3.43), as it depends linearly on
the current. We then find that while the flux is changed from 0 to 240 mΦ0, the
overshoot only corresponds to ±4 mΦ0. The tiny error of 1 − 2% in the current
pulse thus transforms into a large error in qubit frequency due to the nonlinear
dependence, demonstrating the high demand on the control of the pulse shape for
these type of experiments. In fact, for our two-qubit and three-qubit experiments
shown towards the end of this thesis, we add a short step at the beginning of the
flux pulse to reduce this overshoot, see Section 6.2.3 for details. The origin of
this 1 − 2% error remains unclear, might however be related to screening currents
flowing on the ground planes of the chip, the accuracy for the calibration of the
cold cables or the finite accuracy of the real-time oscilloscope, all of which are
hard to verify.
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5
Control of a Single Qubit

In this chapter I discuss a number of important characterization experiments that are
regularly carried out when analyzing a new sample. This includes the determination
of the resonance frequency and quality factor of the resonator, the Josephson energy
and charging energy (Section 5.1) as well as the coherence times of the qubit
(Section 5.3). I then discuss in Section 5.2 the measurement of Autler-Townes and
Mollow transitions, which occur between dressed eigenstates of a strongly driven
many-level system. This provides useful insights about the influence of the third
qubit level when driving a qubit with an anharmonicity similar to the drive strength.
In Section 5.4 I give a detailed explanation about how to calibrate single qubit gate
operations using optimal control techniques to reduce errors caused by the third
transmon level. Using quantum state and quantum process tomography, I show in
Section 5.5, that these techniques allow us to carry out single qubit operations with
fidelities of > 97%.

5.1 Qubit spectroscopy

Resonator spectrum

The first step when characterizing a new sample is to measure the resonator spec-
trum, as the resonator is used later as a measurement device to read out the qubit
state. This is done by sweeping the frequency νr f = ωr f /2π of a microwave tone
applied to the resonator input across the designed resonance frequency while mea-
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Figure 5.1: Measured power transmission spectrum of the fundamental mode of a
coplanar waveguide resonator.

suring the transmitted signal, see Figure 5.1. The transmitted power spectrum P(ω)
is as for all driven linear oscillators given by a Lorentzian that is centered around
the resonance frequency ωr

P(ω) = P0
(κ/2)2

(ω − ωr)2 + (κ/2)2 , (5.1)

where κ is the half width at half maximum and P0 the transmitted power on
resonance. Fitting the data to this Lorentzian then allows to extract the precise
resonator frequency ωr/2π = 8.667 GHz, as well as the quality factor Q = ωr/κ =

3600 which quantifies the rate of energy loss relative to the stored energy inside
the resonator. The lifetime of a single photon inside the resonator is given by 1/κ.

Qubit spectrum

The qubit transition frequency is determined using a dispersive spectroscopy mea-
surement [Wallraff04]. This is done by applying two continuous microwave signals
to the resonator1. One is the measurement signal applied on resonance with the
resonator frequency for the qubit in the ground state, as determined above. The
other microwave signal has a frequency νspec which is far detuned from the res-
onator and swept over a large range. When the qubit is initially in the ground state
and νspec is on resonance with the qubit transition frequency ω01/2π, population
is transferred to the excited state. In fact, if the drive frequency is fixed for a time
much longer than the coherence time of the qubit, the transition saturates and the

1Of course, the spectroscopy signal could also be applied directly to the local qubit drive lines.
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Figure 5.2: Left panel: Qubit spectroscopy of the 0 ↔ 1 transition Right Panel:
High power spectroscopy of the two photon 0↔ 2 transition

qubit ends up in a mixed state with probability 0.5 to be in the ground or excited
state. Due to the off-resonant coupling, the resonator frequency is then shifted by
the dispersive shift 2χ. This is detected as a change in the transmitted amplitude and
phase of the measurement signal. The left panel of Figure 5.2 shows an example
of such a measurement, for which the transmission amplitude is unity when νspec
is off-resonant, and drops when it is on resonance at ω01/2π = 5.485 GHz. In
this scheme, the resonator is populated with photons which lead to an AC Stark
shift of the qubit frequency while carrying out spectroscopy [Schuster05], see also
Section 3.2.2. This shift is increased when increasing the power of the measurement
signal. Additionally, fluctuations in the number of photons induce dephasing in
the qubit state and can also lead to photon number splitting [Schuster07b]. The
measurement drive should thus be weak enough such that the average number of
photons inside the resonator is smaller than one photon. Alternatively, one can
also carry out pulsed spectroscopy, for which the measurement signal is turned
on only after the qubit was populated by a pulsed spectroscopy signal, see for
details [Göppl09].

Measurement of Emax
J and EC

Further characterization of the qubit, i.e. to determine the two parameters Emax
J

and EC , which fully determine the transmon Hamiltonian (3.20), can be made by
increasing the power of the spectroscopy drive. At slightly lower frequencies next
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to the power broadened qubit spectral line, another sharper peak then appears2

corresponding to a two-photon process, see right panel of Figure 5.2. This two-
photon transition from the ground state to the second excited transmon state |2〉
appears at half the transition frequency 2πν02/2 = ω02/2 because two photons of
equal energy are involved. This directly allows us to measure the anharmonicity of
the transmon qubit α = ω02 − 2ω01 for this specific frequency. For the special case
that we perform this measurement exactly at the maximal qubit transition frequency,
we can even completely characterize the transmon parameters, namely the charging
energy EC and the maximal Josephson energy Emax

J . Because we know that the
magnetic flux applied through the SQUID loop of the transmon qubit is zero at this
position, these two measurements are enough to extract EC and Emax

J from a fit of
the measured frequencies ω01 and ω12 to the analytic solutions (Mathieu functions)
of the energies of the CPB Hamiltonian.3

5.2 Strong qubit driving

For the spectroscopy measurement presented before, the qubit is generally driven
in a weak driving limit, with a drive rate smaller than the decoherence rate of the
qubit. What is then measured by spectroscopy is the incoherent mixing between the
excited and the ground state of the qubit. For the case of strong driving however, the
qubit state undergoes coherent Rabi oscillations between the ground and excited
state. This coherent process then forms so called dressed states in the driven
qubit energy level diagram which are split in frequency by the Rabi frequency.
When detecting the photons emitted from such a driven two-level system, a three
peaked fluorescence spectrum referred to as the Mollow triplet [Mollow69] can be
observed. When probing transitions into a third level of the qubit, two characteristic
spectroscopic lines separated by the Rabi frequency appear, a feature which is called
the Autler-Townes doublet [Autler55]. In this section I first describe how Rabi
oscillations are driven and observed in our system, explain the dressed states of a
driven many-level system and then present the first measurements of Autler-Townes
and Mollow-Transitions [Baur09] in superconducting qubits.

2In order to see this two-photon process, the driving power must be increased by about 30 dB
relative to the power needed to detect the 0↔ 1 transition.

3A Mathematica function that automatically makes this fit is FindEcEj which can be found in the
library TransmonFunctions.m.
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Figure 5.3: a) Pulse scheme for a Rabi oscillation measurement. b) Measured
excited state population of the qubit as a function of the pulse length τ while
keeping the Rabi frequency ΩR/2π = 9.7 MHz fixed.

5.2.1 Rabi oscillations

As we have already seen in Section 3.2.4, the Hamiltonian of a driven transmon
qubit can be written as

Ĥ =
1
2
ω01σ̂z + ΩR cos(ωdt)σ̂x. (5.2)

For the special case that the drive is on resonance with the qubit ωd = ω01, the
microwave field induces transitions between |0〉 to |1〉. If the qubit is initially in
the ground state, the probability of being in |1〉 after a microwave pulse of length
τ is |pe|

2 = sin2(ΩRτ/2). This probability thus oscillates in time with the Rabi
frequency ΩR until the drive is turned off. In the Bloch sphere picture, this can be
visualized by a rotation of the state vector around the x axis from the north to the
south pole and back again.

Such an experiment is performed using the pulse sequence depicted in Fig-
ure 5.3a. The qubit is driven for a short time with a square pulse of length τ

and an amplitude ΩR and read out afterwards with a pulsed measurement. The
amplitude of the pulse determines the Rabi frequency ΩR of the rotation on the
Bloch sphere, and the total area under the pulse determines the angle of rotation
Θ. By varying the length or amplitude of the pulse, we can therefore calibrate
pulses with Θ = π which flips the qubit between the ground and the excited state,
or with Θ = π/2 which brings a qubit initially in the ground or excited state into
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an equal superposition. An example of such a Rabi oscillation measurement is
shown in Figure 5.3b, which shows the population of the excited state pe as a
function of the pulse length τ for a constant Rabi frequency ΩR. As expected, we
observe a sinusoidal dependence of the population on the pulse area. Due to pure
dephasing and energy decay, these oscillations show an exponential decay with
decay time τR. In the limit of large driving fields, where the Rabi rate is much
larger than the energy decay rate γ1 and the pure dephasing γφ (ΩR � γ1, γφ), the
time dependence is predicted to be given by [Allen87, Bianchetti09]

pe(t) '
1
2
−

1
2

e−τ/τR cos(ΩRt/2), (5.3)

where τR = 4/(3γ1 + 2γφ). The red solid line in Figure 5.3b represents a fit of the
data to this function and yields a Rabi decay time of τR ≈ 770 ns. We will use such
Rabi oscillations later to calibrate the single qubit gate operations, as described in
Section 5.4.3

5.2.2 Dressed states

Whenever a two-level system is coherently coupled to an electromagnetic field, new
eigenstates are formed, which are called dressed states [Cohen-Tannoudji98]. For
the case of strong fields, such as in a Rabi oscillation experiment, we can treat the
field classically because many photons are involved. However, we will then later
include the number of photons in the drive again in order to give an interpretation
of the Mollow triplet. Also, to explain the Autler-Townes doublet, we will instead
of a two-level system consider a many-level system. Let us first discuss the new
eigenstates of a Hamiltonian describing a five-level transmon qubit with a drive
that only couples the first two levels. We first transform the Hamiltonian into a
frame rotating each transmon level i with a multiple of the drive frequency iωd

by using the unitary operation Û = exp(−
∑

i iωd |i〉〈i|t) which results in the time
independent Hamiltonian

Ĥ =

4∑
i=2

(
ωi−1,i − iωd

)
|i〉〈i| +

ΩR

2
(|0〉〈1| + |1〉〈0|) . (5.4)

Here we assume that the drive ωd = ω01 is on resonance with the 0↔ 1 transition.
Since the drive only couples the lowest two energy eigenstates, only |0〉 and |1〉 get
modified and the new eigenstates are given by |±〉 = (|0〉 ± |1〉)/

√
2 and |i〉 for i > 1.
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Figure 5.4: [a),b)] Dressed energy eigenstates of a driven five-level transmon qubit
in the rotating frame of the drive on resonance with the 0↔ 1 transition, and in the
subspace of n drive photons. a) The drive only couples to the 0↔ 1. b) The drive
couples to all transitions between neighbouring states. c) The Mollow triplet can
be interpreted as the decay of the dressed states from the n + 1 to the n drive photon
subspace. The central line at frequency νd is indicated as black arrows, and the
sidebands with frequencies ν−,+ and ν+,− as red arrows. The Autler-Townes doublet
involves transitions between the dressed states and the second excited transmon
qubit state.

The corresponding eigenenergies for the first four levels in the rotating frame are
plotted in Figure 5.4a as a function of the drive strength ΩR. While the energies of
|2〉 and |3〉 stay constant, the energies of |±〉 are split by the energy of the drive ΩR.
This is the direct consequence of the coherent Rabi oscillations in the time domain.
When treating the electromagnetic field quantum mechanically, the eigenstates
also have a photonic part and |±〉 will become the symmetric and antisymmetric
superposition of the bare states |±, n〉 = (|0, n + 1〉 ± |1, n〉)/

√
2 and are called

dressed states because they share an excitation between the drive field and the qubit.
Due to this dressing, the system forms an energy ladder of doublets separated by
the energy of the drive photons ~ωd, see Figure 5.4c. The other eigenstates are
simply the product states |i, n〉 for i > 2.

In this framework it is now possible to give an intuitive interpretation of the three
peaked Mollow triplet fluorescence spectrum, see also [Cohen-Tannoudji98] for
details. In this energy ladder of doublets there are now four possible spontaneous
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transitions between the dressed states, as depicted in Figure 5.4c. A photon can be
spontaneously emitted at the qubit transition frequency ω01 = ωd when the system
decays from the states |±, n + 1〉 to |±, n〉 (black arrows), and in the limit of n �

√
n

at a frequency 2πν−,+ = ω01 + ΩR when decaying from |+, n + 1〉 to |−, n〉 and at a
frequency 2πν+,− = ω01 − ΩR when decaying from |−, n + 1〉 to |+, n〉 (red arrows).
This leads to the triplet structure in fluorescence formed by the central line at ω01
and the sidebands offset by ±ΩR, which can be observed whenever ΩR is (much)
larger than the dephasing and energy decay rates.

When, instead of measuring the fluorescence spectrum, detecting the absorption
of a second drive field swept around the frequency of the 1 ↔ 2 transition, the
splitting of the dressed states can be observed as a doublet at frequencies 2πν±,2 =

ω01 ± ΩR/2 in the absorption spectrum (blue arrows), known as the Autler-Townes
doublet.

So far we have only considered a drive that couples to the transition between |0〉
and |1〉. However, when the Rabi frequency becomes similar to the anharmonicity
of the transmon qubit, here assumed to be α/2π = −260 MHz, then this assumption
is not valid. The Hamiltonian in the rotating frame which describes the coupling of
the single drive to all transitions between neighboring states4 is given by

Ĥ =

4∑
i=2

(
ωi−1,i − iωd

)
|i〉〈i| +

4∑
i=1

√
i ·ΩR

2
(|i − 1〉〈i| + |i〉〈i − 1|) . (5.5)

Now, the new eigenstates do not have the simple structure anymore as before, since
they are now given by a superposition of all qubit levels. And in contrast to the two-
level case where |±, n〉 have the same contribution of the |0〉 and |1〉 states, the two
states now have different contributions of the other transmon levels. This reflects
itself in the energy spectrum by a repelling of the states corresponding to |−, n〉 and
|2, n〉 as they get closer, while the state |+, n〉 is much less affected, leading to an
asymmetric fluorescence spectrum and also asymmetric Autler-Townes doublet.

5.2.3 Measurement of Autler-Townes and Mollow transition

The Mollow triplet and the Autler-Townes doublet were observed for the first
time in an atomic beam of sodium [Schuda74] and in a microwave spectroscopy
of molecules by Autler and Townes themselves [Autler55], respectively. Later

4Transitions between non neighboring states can be neglected because their coupling strength are
nearly zero due to the near harmonicity of the transmon qubit.
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Figure 5.5: Energy-level diagram of a bare three-level system. The drive and probe
transitions to measure the Autler-Townes doublet and the sideband of the Mollow
transitions are indicated by black and red/blue arrows.

they have been measured in single molecules [Wrigge08, Tamarat95], single atoms
[Walker95] and more recently also in quantum dots [Xu07, Nick Vamivakas09,
Muller07]. Here we discuss our results on the first observation of Autler-Townes
and Mollow transitions with superconducting qubits [Baur09], where we instead
of observing the fluorescence spectrum, carry out a pump and probe measure-
ment. Later, the Autler-Townes doublet has also been observed with phase
qubits [Sillanpää09] and the Mollow triplet could be measured for a strongly
driven transmon qubit in a transmission line [Astafiev10] and for a two-level sys-
tem formed by the ground state and a polariton state of a transmon qubit resonantly
coupled to a microwave resonator [Lang11]. The properties of superconducting
qubits dressed by strong drive fields have also been studied experimentally in
References [Tuorila10, Wilson07, Oliver05].

The sample used for this experiment consists of a single resonator with resonance
frequency of ωr/2π ≈ 6.439 GHz and photon decay rate of κ/2π ≈ 1.6 MHz
coupled to two transmon qubits located at both ends of the resonator. For all
experiments, only one qubit is used and the other one is maximally detuned to
low frequencies. The relevant qubit has a coupling strength to the resonator
of g01/2π ≈ 133 MHz, a charging energy of EC/h = 233 MHz and a maximal
Josephson energy Emax

J /h = 32.8 MHz, and for these experiments is always driven
through the resonator input port.

We measure the Autler-Townes and the Mollow spectral lines according to the
scheme shown in Figure 5.5. First, we tune the qubit to the frequency ω01/2π ≈
4.811 GHz, where it is strongly detuned from the resonator by ∆0/2π = 1.63 GHz.
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5 Control of a Single Qubit

At this frequency, the qubit has an anharmonicity of α ≈ −260 MHz. We then
strongly drive the transition |0〉 ↔ |1〉 with a first microwave tone of amplitude ε
applied to the qubit at the fixed frequency ωd/2π = 4.812 GHz. The drive field is
described by the Hamiltonian Hd = ~ε(a†e−iωdt + aeiωdt) where the drive amplitude
ε is given in units of a frequency. The qubit spectrum is then probed by sweeping a
weak second microwave signal over a wide range of frequencies ωp including ω01
and ω12. Simultaneously, amplitude T and phase φ of a microwave signal applied
to the resonator are measured [Wallraff04]. We have adjusted the measurement fre-
quency to the qubit state-dependent resonance of the resonator under qubit driving
for every value of ε. Figure 5.6a and b show the measurement response T and φ
for selected values of ε. For drive amplitudes ε/2π > 65 MHz, two peaks emerge
in amplitude from the single Lorentzian line at frequency ω12 corresponding to the
Autler-Townes doublet, see Figure 5.6a. The signal corresponding to the sidebands
of the Mollow triplet is only visible at high drive amplitudes ε/2π > 730 MHz in
phase, see Figure 5.6b. The central line is not observed in our measurements as the
corresponding transition is completely saturated by the strong drive tone. Black
lines in Figure 5.6 are fits of the data to Lorentzians from which the dressed qubit
resonance frequencies are extracted.

We have plotted these extracted frequencies of the Autler-Townes doublet (blue
dots) and of the Mollow triplet sidebands (red dots) in Figure 5.7. The splitting of
the spectral lines in pairs separated by ΩR and 2ΩR, respectively, is observed for
Rabi frequencies up to ΩR/2π ≈ 300 MHz corresponding to about 6% of the qubit
transition frequency ω01 and is larger than the anharmonicity of the qubit α.

In the simplest model, the continuous classical drive at frequency ωd is expected
to induce Rabi oscillations between the qubit levels |l〉 and |l + 1〉 at the frequency
[Blais07]

Ωl,l+1 ≈
2εgl,l+1

ωr − ωd
, (5.6)

depending linearly on the drive amplitude ε. Therefore, one would expect that the
strong drive at the qubit transition frequency ωd ≈ ω01 should lead to a square-root
dependence of the Autler-Townes and Mollow spectral lines on the drive power
Pd ∝ ε

2. However, the Autler-Townes spectral lines show a clear power dependent
shift, see Figure 5.7, and the splitting of both pairs of lines scales weaker than
linearly with ε. As we have seen in Section 5.2.2, these effects can be understood
by considering more than two transmon levels. We have numerically diagonalized
the Hamiltonian given in Equation (5.5) which only takes into account the drive
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Figure 5.6: a) Autler-Townes spectrum as a function of drive amplitude ε. Traces
are normalized to the maximum transmission through the resonator, and separated
from each other with a vertical offset of 0.5. b) Mollow spectrum in phase. Traces
are offset by 30 degrees. Black solid lines are fits to Lorentzians. Peaks not fitted
with Lorentzians correspond to the phase response of the Autler-Townes doublet.
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terms between nearest neighbor energy levels since other transitions are strongly
suppressed due to the near harmonicity of the transmon [Koch07a]. This model is
in good agreement with our data when considering the lowest 5 qubit levels, see
solid black lines in Figure 5.7. Because of the low anharmonicity [Koch07a] and
large drive amplitude, many qubit levels must be included in the description. The
calibration factor between the externally applied drive amplitude and ε is the only
free parameter in the fit.

Numerical diagonalization of Equation (5.5) also leads to a qualitative under-
standing of the amplitude and phase information contained in the measurement
signal. This is done by first calculating the pulled cavity frequencies using the
prefactor of â†â of the dispersive Jaynes-Cummings Hamiltonian as given in Equa-
tion (3.54). Since the measurement rate is small [Gambetta08], the measured signal
is given by the averaged response of all the dressed-state pulled frequencies con-
tained in the steady-state reached by the qubit under the strong drive tone. In the
Autler-Townes configuration, the weak probe tone transfers a small population from
the dressed ground and excited states (|±, n〉) to the dressed |2, n〉 state, resulting
in a change in the cavity frequency and a drop of transmitted signal. On the other
hand, in the Mollow configuration, population is exchanged by the probe tone
from the |∓, n〉 to the |±, n + 1〉 dressed-states. At low drive power, the dressed
states |±, n〉 are equal superpositions of the bare |0, n〉 and |1, n〉 states such that no
signal is measured. As the power is increased, these states get dressed in different
proportion with |2〉 (see also Section 5.2.2) and a signal is measured.

Finally, plotting the difference between the two Autler-Townes spectral lines
(blue dots) and the sidebands of the Mollow spectrum (red dots) versus drive
amplitude ε, the nonlinearity of the dressed state splitting becomes more apparent,
see Figure 5.8a. The dashed line shows the linear dependence of the Rabi frequency
in Equation (5.6) on the drive amplitude ε, which only fits to the data at low ε. The
non-linear dependence at high ε, instead, agrees very well only with our full model,
black solid line.

To confirm the direct relationship between the measured dressed state splitting
frequency and the Rabi oscillation frequency of the excited state population we have
also performed time resolved measurements of the Rabi frequency up to 100 MHz,
see Figure 5.8c. The extracted Rabi frequencies (orange dots) are in good agreement
with the spectroscopically measured Rabi frequencies (blue squares) over the range
of accessible ε, as shown in Figure 5.8b.
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Figure 5.8: a) Extracted splitting frequencies of the Mollow triplet sidebands (red
dots) and the Autler-Townes doublet (blue dots) as a function of the drive field am-
plitude. Dashed lines: Rabi frequencies obtained with Equation (5.6)). Black solid
lines: Rabi frequencies calculated by numerically diagonalizing the Hamiltonian in
Equation (5.5) taking into account 5 transmon levels. b) Zoom in of the region in
the orange rectangle in a). Orange dots: Rabi frequency ΩR vs. drive amplitude ε
extracted from time resolved Rabi oscillation experiments, lines as in a). c) Rabi
oscillation measurements between states |0〉 and |1〉 with ΩR/2π = 50 MHz and
85 MHz.
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5.3 Measurement of the qubit coherences

The fidelity with which a quantum operation can be carried out in superconducting
circuits is at the current state of the art mainly limited by the coherence times of
the qubits. Identifying the sources of loss in these systems is thus an important step
towards the realization of a scalable quantum processor. Since the first supercon-
ducting qubit has been realized, the energy decay (phase coherence) times have
drastically been improved [Steffen11] by almost five orders of magnitude from 1 ns
(1 ns) [Nakamura99] up to ∼ 60 µs (∼ 20 µs) [Paik11] to date with superconducting
qubits embedded in three dimensional microwave cavities. During this process
it turned out that one of the most important contribution to decoherence is likely
the dielectric loss from two-level states at metal to air and metal to substrate inter-
faces [Martinis05]. Other results suggest that quasiparticles generated from stray
infrared light might also play a significant role [Barends11, Córcoles11]. A pre-
requisite for this development was the ability to measure the coherence times and
is thus shortly explained here. A good overview of coherence measurements and
sources of decoherence in superconducting qubits can also be found in [Ithier05].

5.3.1 Measurement of the energy decay time

The pulse sequence to measure the energy decay of a qubit state is shown in
Figure 5.9a. The qubit is first excited from the ground state |0〉 to |1〉 with a resonant
π pulse inferred from Rabi oscillations. We then wait for a time τ during which the
qubit may decay and then measure the remaining population of the excited state
pe. A typical result is shown in Figure 5.9b which shows an exponential decay of
the population with time. We extract the energy decay time T1 = 1.14 µs from an
exponential fit pe(t) = e−t/T1 . Of course, this time strongly depends on the operation
frequency of the qubit and is consistently higher when going to lower frequencies.
In fact, in the regime where the Purcell effect can be neglected [Houck08], the
energy decay time shows a 1/ f dependence, consistent with the theory of dielectric
loss [Martinis05].

5.3.2 Measurement of the phase coherence

Additionally to the energy decay, there also exists a decoherence process which
is purely quantum. It describes the loss of quantum information, by losing the
knowledge about the phase of a quantum state. This decoherence mechanism
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Figure 5.9: a) Pulse sequence for the measurement of the energy decay time. The
qubit is first excited to the state |1〉 and then measured after waiting a time τ. b)
The measured population of the excited state pe decays exponentially with time
with a decay time of T1 = 1.14 µs extracted from a fit (solid red line).

referred to as phase damping or dephasing has two contributions:

1
T2

=
1

2T1
+

1
Tφ
. (5.7)

The first arises from the energy decay with decay time T1, and the second arises
due to random adiabatic variation of the qubit frequency induced by low frequency
noise (only the noise power spectrum at frequencies much smaller than ω01 are
relevant for dephasing), called the pure dephasing Tφ. In the absence of pure
dephasing, the dephasing time can thus maximally be 2T1.

The dephasing is apparent in the decay of the off-diagonal elements of the density
matrix and is thus not directly accessible by projective readout, which only gives
information about the diagonal terms. Instead, one applies a so called Ramsey
interference pulse sequence [Ramsey50] as depicted in Figure 5.10a consisting of
two short π/2 pulses separated by a free evolution time τ. This experiment can be
explained in the Bloch sphere picture using a frame rotating with the frequency of
the drive. When starting with the qubit in its ground state, the first π/2 pulse rotates
the state around the x axis onto y. The state then precesses around the z axis for
time τ. The final π/2 pulse around the y axis rotates the ±x component of the state
onto ∓z and leaves the ±y components the same. When the drive is on resonance
with the qubit, the state in the rotating frame always stays on the y axis during the
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Figure 5.10: a) Pulse sequence of a typical Ramsey experiment to determine the
dephasing time T ∗2 of a qubit. b) Measured Ramsey oscillations for ∆ω = 4 MHz
and a decay time of T ∗2 = 0.54 µs extracted from a fit to Equation (5.8) (solid red
line).

free evolution time. The final state will then be an equal superposition of |0〉 and
|1〉, and does not depend on τ. For a slightly off-resonant drive with a detuning
of ∆ω however, the state does precess around ±z with a frequency |∆ω| and a
direction determined by the sign of ∆ω. The final state then shows a sinusoidal
time dependence on τ (see Figure 5.10b) and is given by

pe =
1
2

+
1
2

e−τ/T
∗
2 cos(∆ω · τ ± π/2). (5.8)

The decay of the envelope of these Ramsey oscillations is exponential for 1/ f noise
and the decay time is given by T ∗2 (difference to T2 is explained below) and the
phase of the oscillation is determined by the sign of ∆ω5. From a fit of the data to
this function we extract a dephasing time T ∗2 = 0.54 µs.

In these Ramsey oscillation measurements, one has to distinguish between the
T2 defined as in Equation (5.7), and the T ∗2 [Clarke08] which is the result of an
ensemble average. In the measurement shown above, the same experiment is
repeatedly acquired many times (∼ 500 000) to get enough statistics and to increase

5This is the reason why the final pulse rotates around the y axis, because the Ramsey oscillations
then also contain the information whether the drive is positively or negatively detuned from the
qubit frequency. If both pulses were applied around the same axis, this information could not be
extracted as the phase is the same in both cases.
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the signal to noise ratio. While the individual runs of the experiment are nominally
equal, slow fluctuations between the runs slightly change the experimental settings
(such as ∆ω) and as such reduce the observed decay time T ∗2 ≤ T2. If we are
interested in the real T2 of each single run, a spin-echo sequence [Hahn50, Ithier05]
can be used, which eliminates the noise with frequencies lower than the inverse of
the time a single run takes.

5.4 Single-qubit gates

5.4.1 Rotations around the x and y axis

As seen in Section 5.2.1, we can rotate the qubit state around the x axis on the
Bloch sphere by applying a microwave pulse to the qubit. The angle of rotation is
controlled by the area under the pulse, by either changing the length or amplitude
of the pulse. To see how we can rotate around the y axis, let us look at the more
general Hamiltonian of a driven two-level system including the phase φ of the drive

Ĥ =
1
2
ω01σ̂z +

ΩR

2

(
ei(ωdt+φ) + e−i(ωdt+φ)

)
(σ̂− + σ̂+). (5.9)

For φ = 0, this is exactly the Hamiltonian discussed in Equation (5.2). Transforming
this Hamiltonian into the frame rotating at the drive frequency ωd and performing
the rotating wave approximation we get

Ĥ = δ1σ̂z +
ΩR

2

(
cos(φ)σ̂x + sin(φ)σ̂y

)
, (5.10)

where δ1 = ω01 − ωd. With the phase of the microwave drive, we can thus rotate
about any arbitrary axis on equatorial plane of the Bloch sphere. As an example,
the drive will rotate the state about the y axis when choosing φ = +π/2.

One might ask the question what phase we have to set on the microwave generator
to rotate around the x axis, or what is the definition of zero phase? Also, the phase
set on the microwave generator might change from one experiment to another,
will this be a problem? In the experiment, all microwave generators are phase
locked to a common reference clock with an arbitrary but stable absolute phase.
We define this arbitrary phase of the microwave generator used to output the first
pulse applied to the qubit as the zero phase φ = 0, which in turn defines the x
axis. The rotation axis of all subsequent pulses are defined by the phase relative to
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this arbitrary initial phase. Between different experiments, this arbitrary phase is
allowed to be different, as long as the time between the two experiments is longer
than the phase coherence, such that the qubit completely forgot about the phase of
the previous experiment.

5.4.2 Optimal pulse control for high fidelity single-qubit gates

The error rate of a quantum gate useful for large scale quantum computers is re-
quired to be below a specific threshold, which is estimated to be around 1−30 errors
per 10 000 operations [Knill05, DiVincenzo09]. However, the implementation of
high fidelity quantum gates for a system with more than two levels and limited
anharmonicity is challenging. On one hand, the gate operation needs to be fast
relative to the coherence time of the system which requires large driving fields.
On the other hand the leakage out of the computational subspace should be inhib-
ited. As described in the dressed state picture (Section 5.2.2), the higher excited
energy levels significantly shift the energy of the dressed states when driving a
multi-level system on the 0 ↔ 1 transition with a Rabi rate similar to the anhar-
monicity. In the context of single qubit gate operations these AC Stark shifts lead
to a non-zero population of the state |2〉 after the pulse and significant phase errors
on the dynamic phase of the prepared qubit state due to population of |2〉 during
the pulse. While the leakage into the state |2〉 can be reduced by using Gaussian
shaped pulses instead of square pulses due to the narrower Fourier spectrum, the
phase errors in fact become larger as larger maximal Rabi rates are required for
the same gate duration. To solve these problems, we instead use an optimal pulse
control technique developed by Motzoi et al. [Motzoi09, Gambetta11], which has
also been experimentally realized in [Chow10, Lucero10]. Their method, which
is called derivative removal by adiabatic gate (DRAG), gives an analytic solution
for the optimal pulse shapes. We call a pulse optimized by this procedure a DRAG
pulse.

In [Motzoi09, Gambetta11] the authors consider a weakly anharmonic three-
level system with only neighboring level coupling for which the Hamiltonian
including the drive in the rotating frame with respect to the drive frequency ωd and
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after the rotating wave approximation is

H =


0

εx(t)
2
− i

εy(t)
2

0
εx(t)

2
+ i

εy(t)
2

δ1(t)
√

2
(
εx(t)

2
− i

εy(t)
2

)
0

√
2
(
εx(t)

2
+ i

εy(t)
2

)
α + 2δ1(t)


. (5.11)

Here, εx and εy are the amplitudes of the two quadratures of the drive ε(t) =

εx(t) cos(ωdt) + εy(t) sin(ωdt) and α is the anharmonicity. In addition, the authors
assume that the frequency of ω01 can be tuned in-situ while the drive frequency ωd

is fixed and δ1(t) = ω01(t) − ωd. The optimal value for the quadrature amplitudes
and drive detuning found to cancel the AC Stark shift (phase) error are given by
[Motzoi09]

εy(t) = −
1
α

∂εx(t)
∂t

and δ1 =
−ε2

x

2α
. (5.12)

This is calculated to eliminate the leakage to order ε4
x/α

3. To have no discontinuities
in εy, εx must be a smooth function. We have chosen a Gaussian pulse which is
forced to start and end with an amplitude zero and is given by

εx(t) = A
exp

[
−

(t−σ· ft)2

2σ2

]
− exp

[
−

(σ· ft)2

2σ2

]
1 − exp

[
−

(σ· ft)2

2σ2

] , (5.13)

where t ∈ [0, 2σ · ft], σ is the standard deviation and A the maximal amplitude of
εx. With ft we choose after how many σ the pulse is truncated on both sides. The
quadrature amplitudes and the qubit detuning for a DRAG pulse with the typical
values for the total pulse duration of 10 ns, a standard deviation of σ = 2.5 ns and a
truncation factor ft = 2 are shown in Figure 5.11a.

In our experiment it is difficult to accurately control the frequency of the qubit,
or δ1, as the relation between the current applied to the flux line and the qubit
frequency must be carefully calibrated. We can however precisely control the phase
of our drive, and δ1(t) can be replaced by phase ramping, see Appendix A.1 for the
derivation. Another approach is to just set δ1 = 0 and scale the amplitude of εy by a
scaling factor qs. In the Reference [Gambetta11] this is called the Y-only correction,
and is shown to perform better according to their numerical simulations, with a
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Figure 5.11: An example of the DRAG pulse as it is applied to the I and Q port
of the upconversion mixer for qubit driving, in two different IQ-mixer operation
modes. The DRAG parameters are α = 330 MHz, σ = 2.5 ns and ft = 2. a) DC
mode: The Gaussian pulse with amplitude εx(t) (blue solid line) is directly applied
to the I port, while the correction quadrature εy(t) (red dash-dot line) is applied to
the Q-port. The qubit frequency control δ1 (green dashed line) is in experiment
replaced by phase ramping, or set to zero and as a compensation εy(t) is scaled by a
factor qs. b) Signal applied to the IQ-mixer in single sideband mixing mode. Here
the typical sideband frequency of 100 MHz is chosen.

scale of qs = 0.5. In our experiments, we have not observed an improvement when
including the phase ramping. Thus we have decided to use the Y-only corrected
pulse in our implementation of DRAG pulses.

Depending on how we operate our upconversion mixer, we have to further
process εx and εy before the signal is applied to the IQ ports. If we use the IQ-
mixer in DC-mode, we directly apply the values above. However, if we operate
it in the single sideband mixing mode, see Section 4.3.1, we apply a signal given
by I(t) = B(t) sin(ωIFt + φ(t)) and Q(t) = B(t) cos(ωIFt + φ(t)) with the amplitude

B(t) =

√
ε2

x + ε2
y , the phase φ(t) = arctan[εx(t)/εy(t)] and the sideband frequency

ωIF. Figure 5.11b shows these signals for the same values as before and ωIF/2π =

150 MHz.
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5.4.3 Pulse calibration

For all single qubit operations used in our experiments, we choose a fixed pulse
duration (typically about 8− 12 ns), and control the amount of rotation by adjusting
the amplitude of the pulse. Our procedure to calibrate the single qubit π and
π/2 pulses is outlined below. It consists of a sequence of Rabi and Ramsey
experiments to find the accurate pulse amplitudes and qubit frequency, and finally
also a DRAG calibration procedure to find the experimentally optimal scaling factor
qs. Even though there are more sophisticated procedures to accurately calibrate
the amplitude of the π and π/2 pulses [Vaughan72, Chow09], our method results
in gate fidelities of ∼ 0.98 ± 0.01 extracted from a randomized benchmarking
experiment [Chow09] and quantum process tomography (Section 5.5.2). We have
done the same characterization using the more sophisticated pulse calibration
procedures and observed no improvement of the fidelity. For qubits with enhanced
coherence times, these methods however might become more relevant.

Calibration procedure

1. Find the approximate qubit frequency ω01 with spectroscopy.

2. Drive Rabi oscillations at this frequency and determine the approximate
amplitude values for π and π/2 pulses.

3. Measure Ramsey oscillations with a drive detuned by ∼ 4 MHz from the
qubit transition frequency and determine the accurate value of ω01 from a fit
to the data.

4. Calibrate the upconversion mixer for the desired LO-frequency and keep this
fixed for all subsequent experiments. The drive frequency is now always
adjusted with the IF frequency ωIF used for sideband mixing.

5. Measure Rabi oscillations again on the accurate qubit transition frequency
with approximate DRAG pulse calibration. Extract from a fit the accurate εx

amplitude required for a π and π/2 pulse.

6. Run the DRAG calibration procedure and determine the scaling factor qs,
see below.

7. Repeat the Rabi experiment again to determine the final amplitudes for the π
and π/2 pulses using a sinusoidal fit to the measured Rabi oscillations.
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DRAG calibration

We experimentally determine the optimal value of qs by measuring the excited state
population of the qubit after a sequence of pulses that are particularly susceptible to
phase errors as a function of qs. More specifically, we repeat three such experiments
where we apply first a π/2-pulse around the x axis followed by a π-pulse around
the x, y or −y axis, respectively. For ideal pulses, all these sequences result in the
same qubit population of 0.5, and any phase errors of the first pulse result in a
deviation of the qubit population from 0.5 when the second pulse rotates about a
different axis. As shown in Figure 5.12a, this is observed in our data, where the
deviations in the population from 0.5 have opposite signs for the two cases where
the second pulse rotates around the y (green dots) or −y axis (red dots), while no
deviation is observed when both pulses perform rotations around the same axis
(blue dots). From a linear fit to the data (solid lines), we extract the optimal scaling
factor qs = −0.178 from the position where all three lines cross in a single point at
0.5 population, in contrast to a normal Gaussian pulse (qs = 0) where population
errors of 5% − 10% are observed. Our scaling factor drastically differs from the
theoretically optimal value of qs = 0.5. While the sign difference remains unclear
(sometimes it is positive and sometimes negative, and depends on the frequency of
the qubit), the difference in the amplitude is likely to be caused by signal distortions
due to imperfections of the cabling between the room temperature equipment and
the chip, or a coupling strength ratio g01/g12 other than

√
2. A similar scheme was

used in [Chow10], and another scheme which measures the phase errors in a more
direct way is presented in [Lucero10].

5.4.4 Rotations around the z axis

Even though it is possible to decompose any unitary single qubit operation into
a sequence of rotation operators about the x and y axis, it is still useful in some
cases to be able to carry out rotations about the z axis. In fact, we use it for
eliminating the dynamic phases after a controlled-phase gate which is particularly
useful for the implementation of the Toffoli gate, see Section 7.2. As can be seen
in Equation (5.10), the Hamiltonian of a two-level system in the rotating frame
contains a σ̂z term whenever the qubit frequency is detuned from the drive. We
can thus realize a rotation about the z axis by shortly shifting the qubit transition
frequency out of resonance in between the microwave pulses, using a fast magnetic
flux pulse applied to the qubit. While the rate at which the qubit acquires the
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Figure 5.12: DRAG pulse calibration. a) The scaling factor qs for the εy quadrature
can be calibrated by measuring the population of the qubit after the three different
pulse combinations as a function of qs. An optimal pulse would always result
in pe = 0.5, and the optimal qs is found where the measured populations cross
each other. b) The measured population after different combinations of pulses as a
check of the calibration from a). Using randomized benchmarking, we reach an
average fidelity of ∼ 0.98 for the x and y pulses using this calibration technique,
with σ = 2.5 ns and ft = 2.
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5.5 Quantum state and process reconstruction

dynamic phase is determined by the detuning δ1(t), the amount of rotation is given
by the integral φ =

∫ T
0 δ1(t)dt where T is the length of the flux pulse.

We calibrate φ in a Ramsey type experiment depicted in Figure 5.13a. The short
flux pulse with length T (in this case T = 3 ns) and amplitude A is sandwiched in
between two π/2 pulses applied on resonance with the qubit. Starting from state
|0〉, the first π/2 pulse brings the qubit into a superposition state (|0〉 + |1〉) /

√
2.

During the short frequency excursion during the flux pulse, the state |1〉 acquires
a dynamic phase φ relative to the state |0〉 such that the qubit ends up in the state
|0〉+ eiφ|1〉. This phase is then mapped onto the population pe = cos(φ) of the qubit
by the second π/2 pulse to make it detectable. Measuring pe as a function of A
results in a sinusoidal oscillation in the regime where δ1 can be approximated to
depend linearly on A, as confirmed in experiment, see Figure 5.13b. From a fit to a
cosine function (red solid line), we can for example extract the amplitude A ≈ 0.43
corresponding to a φ = π rotation. In contrast to the two-qubit operation described
in Section 6.2.3, the shape of the flux pulse has no influence on the accuracy of the
gate. Only the total area under the pulse is of relevance.

This pulse scheme can also be useful to calibrate the flux pulse amplitude
required to shift the qubit by a certain frequency. As an example, for A = 0.43 we
can readily extract the average qubit detuning of δ̄1 = φ/(2πT ) ≈ 167 MHz during
the 3 ns short flux pulse. Using a π/2 pulse about the y instead of about the x axis
would also allow to determine whether the qubit is positively or negatively detuned
from the drive, and as such determine the sign of δ1 and of the phase φ accumulated
during the flux pulse.

5.5 Quantum state and process reconstruction

Before proceeding with more complicated experiments involving two-qubit gates,
we first need to verify that we are able to accurately prepare an arbitrary single qubit
state. We do this by reconstructing the full density matrix of the prepared state with
a method called quantum state tomography and then compare the result with the
theoretically expected state. Similarly, we can also fully characterize an arbitrary
quantum operation applied to our qubit using quantum process tomography. This is
a useful tool to verify correct operations of two and three qubit gates, see Section 6.
I will thus shortly describe the two methods. A more detailed description of
quantum process tomography can be found in the Appendix A.2.
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Figure 5.13: Calibration of a single qubit phase gate is carried out using a Ramsey
type experiment. a) The pulse sequence consists of a magnetic flux pulse of length
T = 3 ns and varying amplitude A, sandwiched in between two π/2 pulses applied
on resonance. During the short frequency excursion during the flux pulse, the qubit
acquires dynamic phase which depends on the area under the pulse. This phase
is then mapped onto the population pe of the qubit by the second π/2-pulse. b)
Recording pe as a function of A results in the expected sinusoidal oscillation (red
solid line is a fit to a sine function).

5.5.1 Quantum state tomography

As outlined in Section 3.2.3, a transmission measurement of the resonator allows to
extract the expectation value of the measurement operator 〈M̂〉 = Tr(ρ̂ M̂), which
for the single qubit case is just the population of the state ρ̂ being in the excited state,
which is equivalent to 〈σ̂z〉 = Tr(ρ̂σ̂z). The full reconstruction of a density matrix
is thus not possible with a single transmission measurement, as it only provides
information about the diagonal terms, or speaking in the Bloch sphere picture,
only determines the projection of the state onto the z axis. Since the measurement
operator is fixed by the form of the Jaynes-Cummings Hamiltonian, we can not
directly rotate the measurement basis to measure the x and y components of the
state. However we can use the relation

〈M̂k〉 = Tr
[
ρ̂Û†k M̂ Ûk

]
= Tr

[
Ûkρ̂Û†k M̂

]
(5.14)

to convince ourselves that instead of changing the measurement basis, we can just
rotate the prepared state by the unitary operation Ûk prior to measurement to extract
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5.5 Quantum state and process reconstruction

the projections onto the other axes. In fact, when using the operators

{Ûk} = {Î, e−i π4 σ̂x , e−i π4 σ̂y , e−i π2 σ̂x} (5.15)

we find an expectation value 〈M̂k〉 which is equivalent to 〈σ̂z〉, 〈−σ̂y〉, 〈σ̂x〉 and
〈−σ̂z〉, and thus unambiguously defines the state vector on the Bloch sphere.

We calculate the density matrix of the prepared state by solving the set of linear
equations

mk = Tr
[
ρ̂(~r)Û†k M̂ Ûk

]
, (5.16)

for the variables ~r. Here, mk are the estimates of the expectation values 〈M̂k〉

extracted from experiment, and

ρ̂(~r) =
r1 Î + r2σ̂x + r3σ̂y + r4σ̂z

2
(5.17)

is a decomposition of the density matrix into Pauli and identity operators, which
span the one-qubit density matrix space. This decomposition however does not
include the normalization, such that the trace of the resulting matrix gives a measure
of how well our state reconstruction worked. If the trace is far off from one, we
know that there is a systematic error in the tomography procedure. The measure-
ment operator M̂ is extracted from independent measurements of the resonator
response for both computational basis states |0〉, |1〉

For the case of n-qubit state tomography, we apply the 4n possible combinations
for the tensor product of the single qubit operations {Ûk}

⊗n before measurement, to
get 4n expectation values used to extract the 4n unknown elements of the 2n × 2n

density matrix from a set of linearly independent equations. Analogous to the single
qubit case, the set of all possible combinations of tensor products between Pauli
and identity matrices {Î, σ̂x, σ̂y, σ̂z}

⊗n form an orthonormal basis for the space of
2n × 2n complex Hermitian matrices. The density matrix can thus be decomposed
as

ρ̂(~r) =

4n∑
i=1

riσi. (5.18)

The measurement operator M̂ is determined from independent measurements of
the resonator response for all computational basis states {|0〉, |1〉}⊗n.6

6We have written a Mathematica function which automatically returns the density matrix for an
arbitrary number of qubits. It is called GetDensityMatrix and is found in the library StateTomogra-
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5 Control of a Single Qubit

Due to noise in the measurement, the reconstructed density matrix is not nec-
essarily physical, i.e. a positive-semidefinite matrix with trace one (the matrix is
always Hermitian as it was already required by the decomposition of the density
matrix). We therefore run a maximum likelihood algorithm given in [Smolin12]
and summarized in Appendix A.2.1. This method numerically finds the density
matrix, which gives the measured expectation values with highest probability under
the assumption that the noise is Gaussian.7

In order to demonstrate how well our state reconstruction works, we have
prepared a full set of basis states {|0〉, |1〉, (|0〉 − i|1〉)/

√
2, (|0〉 + |1〉)/

√
2} using

π and π/2 pulses about the x/y axis and reconstructed their density matrices, see
Figure 5.14. How well these states have been prepared can be quantified by
calculating the state fidelity8 given by

F =

(
Tr

√√
ρ̂t ρ̂m

√
ρ̂t

)2

, (5.19)

where ρ̂m and ρ̂t are the experimentally obtained and the theoretically expected
density matrices, respectively. Calculating the fidelity for the prepared states yields
0.986, 0.99, 0.99 and 0.99, respectively, demonstrating the exceptionally good
control over a single qubit state.

5.5.2 Quantum process tomography

A quantum process which returns a state ρ̂′ = E(ρ̂) when acting on a state ρ̂, be it a
measurement, decoherence or a unitary operation, can always be described by a so
called χ matrix defined as

E(ρ̂) =
∑
mn

χmn
ˆ̃Emρ̂

ˆ̃E†n, (5.20)

Here, ˆ̃Em form a fixed set of basis operators for the operators acting on the state
space and χmn are the 4n entries of the positive semidefinite Hermitian χ matrix
describing an n qubit process, represented in the basis { ˆ̃Em}. This is very similar to

phy.m. The order of the measured expectation values 〈M̂k〉 and the elements of the measurement
operator given to the function have to be the one as given above!

7We have implemented this algorithm in Mathematica and can be found under the name MLState in
the StateTomography.m library.

8Note that the fidelity is sometimes also defined without the square.
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5.5 Quantum state and process reconstruction

the density matrix formalism, where the full quantum state is described by a matrix
ρ̂, typically represented in the basis formed by the computational states {|k〉} =

{|0〉, |1〉}⊗n. The entries of this matrix are then determined from the expansion ρ̂ =∑
kl ρkl|k〉〈l|. For a quantum process, the basis is not formed by states, but rather by

operators, and the expansion is given by Equation (5.20). Once the χ matrix is fully
determined using quantum process tomography, we can calculate the output E(ρ̂)
of the quantum process for every arbitrary input state ρ̂. Throughout this thesis, we
use the commonly used basis operators { ˆ̃Em} = {Î, σ̂x,−iσ̂y, σ̂z}

⊗n = {Î, X̂, ˆ̃Y, Ẑ}⊗n.
As an example, let us discuss how to determine the χ matrix for the unitary

operation R̂π/2x = exp(−iπ4 σ̂x) describing the π/2 rotation about the x axis. To do so
we first decompose R̂π/2x into the basis operators ˆ̃Em

R̂π/2x =
1
√

2

(
1 −i
−i 1

)
=

∑
m

am
ˆ̃Em =

1
√

2
Î − i

1
√

2
σ̂x (5.21)

Using Equation (5.20), we can directly see that the diagonal terms of the χ matrix
are given by χmm = ama∗m and the off-diagonal ones by χmn = ama∗n, yielding the χ
matrix

χ =
1
2


1 1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 . (5.22)

For unitary dynamics, the χ matrix can be read fairly easy, since it directly gives
the decomposition of the unitary into the basis operators. However, extracting
information about non-unitary dynamics such as decoherence is not so straight
forward [Kofman09].

The procedure to experimentally determine χ for an arbitrary n-qubit process is
as follows:

1. Prepare all 4n n-qubit states {ρ̂ j} = {|0〉〈0|, |1〉〈1|, |−〉〈−|, |+〉〈+|}⊗n, where
|−〉 = (|0〉 − i|1〉)/

√
2 and |+〉 = (|0〉 + |1〉)/

√
2. This set forms a linearly

independent basis of the state space consisting of 2n × 2n matrices.

2. Apply the quantum process to each prepared basis state and reconstruct the
output states ρ̂′j = E(ρ̂ j) (do not run a maximum likelihood algorithm on
these states).
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5 Control of a Single Qubit

3. Reconstruct the χ matrix from the measured ρ̂′j.
9

A more detailed description of quantum process tomography can be found in
Appendix A.2.2.

As for quantum state tomography, the extracted χ matrix is not necessarily
physical (positive semidefinite, Hermitian and trace preserving) due to noise in the
measurement. We thus apply an iterative maximum likelihood algorithm [Ježek03]
which finds the physical χ matrix, which is most likely to give the measured values
under the assumption that the noise is Gaussian (see also Section A.2.3).10

We test the quantum process tomography procedure on four different single qubit
gates, the identity Î, the π/2 and π rotation about the x axis, and the π rotation
about the y axis, see Figure 5.14. We quantify the accuracy of the quantum gates
with the process fidelity

FP = Tr(χt · χm), (5.23)

where χt is the theoretically expected and χm the experimentally reconstructed χ
matrix of the intended process. Calculating FP for the experimentally realized
processes yields 0.96, 0.98, 0.98 and 0.98, respectively.

5.6 Conclusion

In this chapter, we have demonstrated high fidelity single qubit operations. Due to
the weak anharmonicity of the transmon qubit, optimal pulse control techniques
have to be used to eliminate the phase and population errors due to leakage into
the third transmon level. Using quantum state and quantum process tomography,
we have fully characterized our gates, and show gate fidelities of ∼ 98%. In order
to run simple quantum algorithms, we need in addition to be able to carry out
two-qubit operations. The next chapter describes two possible approaches to do so.

9 Use the Mathematica function CalculateChiNQ which is found in the library QuantumProcessTo-
mography.m. Note here that it is important to pass the reconstructed ρ̂′j in the correct order to the
function.

10Use the Mathematica function ProcessMaxLikelyHood in the QuantumProcessTomography.m
library to run this algorithm.
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Figure 5.14: Quantum State and Process Tomography. First two rows show the
real and imaginary part of the measured one-qubit density matrices with a fidelity
of 0.986, 0.990, 0.999, 0.999 with respect to the ideal states |0〉, |1〉, |0〉 − i|1〉 and
|0〉 + |1〉, respectively. Last two rows show the measured χ matrices with a process
fidelity of 0.96, 0.98, 0.98, 0.98 with respect to the ideal processes of identity, π
and π/2 rotation around x axis and π rotation around y axis.
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6
Quantum Operations between Multiple Qubits

In this chapter I describe two different approaches for the realization of two-qubit
operations. In both cases, the qubits are operated in the dispersive regime. The
first is based on sideband transitions between the qubits and the resonator, and
the interaction between qubits is realized by exchanging a single excitation be-
tween the qubits via a photon inside the resonator [Wallraff07, Leek09, Leek10],
see Section 6.1. The other approach exploits the fact that two qubits can ex-
change a single excitation via virtual photons inside the resonator when their
transition frequencies are resonant, even though they are far detuned from the
resonator [Majer07, DiCarlo09, Yamamoto10, Strauch03], see Section 6.2.

Both approaches have their advantages and disadvantages. For the former it is
beneficial that the qubits always stay at their optimal bias points with maximized
coherence and two-qubit operations are carried out only with microwave drives,
no flux pulses are required. However, due to selection rules in circuit QED, strong
drives are required to drive the sideband transitions and the operations are relatively
slow. Another all-microwave approach with the same advantages has recently been
used to demonstrated a high fidelity controlled-not gate [deGroot10, Chow11].
The latter approach has the benefit that the qubit-qubit interaction is much faster.
However, it requires the fast tuning of qubit frequencies with flux pulses, which
adds additional complexity, see also Section 4.4.

119



6 Quantum Operations between Multiple Qubits
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Figure 6.1: Energy level diagram of the combined qubit resonator system in the
dispersive regime. The blue (red) sideband transition, indicated with blue (red)
arrows, at frequency ωblue = ωr +ω01 (ωred = |ωr −ω01|) is forbidden to first order
with one photon, but may be driven using two photons, for example, both at a
frequency of ωblue/2 (ωred/2).

6.1 Qubit-qubit interaction with sidebands

In atomic systems, sideband transitions couple the harmonic quantized motion,
e.g. of the atom in a trap, with the internal degrees of freedom of the atom. They
are very successfully used for sideband cooling [Wieman99] to cool the motion of
atoms to the ground state and in the context of quantum computation, to perform
multi-qubit operations between trapped ions [Cirac95, Monroe95, Sørensen99,
Childs00, Schmidt-Kaler03, Lanyon11]. In circuit QED, sidebands can be driven
between the qubit and the resonator and have first been observed with a flux qubit
coupled to an LC oscillator [Chiorescu04] and later with a CPB coupled to a CPW
resonator [Wallraff07].

In this section I describe our experiments [Leek09, Leek10] on sidebands with
our circuit QED system, which extend the previous work, including the observation
of coherent two-photon Rabi oscillations on the sideband transition, the preparation
of n photon Fock states up to n = 5, the measurement of the energy decay and phase
coherence of the one photon Fock state, and finally the generation of two-qubit
entangled Bell states. A key element for the success of these experiments was a
special design of our resonator, which has drastically different photon lifetimes in
different harmonic modes. We designed one harmonic mode to have short photon
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6.1 Qubit-qubit interaction with sidebands

lifetimes for fast qubit readout, and another harmonic mode to have long photon
lifetimes for photon storage.

The energy level diagram of the coupled transmon-resonator system in the
dispersive regime is depicted in Figure 6.1. Although the qubit and resonator do
not directly exchange energy in this case, the residual dispersive coupling allows
sideband transitions to be accessed using strong microwave drive fields. Blue
sideband transitions involve simultaneous excitation of both qubit and resonator
at a transition frequency ωblue = ωr + ω01 (blue arrow), while the red sideband
involves the exchange of an excitation between the two systems at a transition
frequency ωred = |ωr − ω01| (red arrow). Due to symmetry considerations of the
Jaynes-Cummings Hamiltonian, single-photon sideband transitions with either a
CPB biased at charge degeneracy or a transmon qubit are forbidden to first order
[Blais07], see also Section 6.1.1. They may, however, be accessed using two
photons with frequencies ωd1 , ωd2 , whose sum or difference frequency is equal
to one of the sideband transition frequencies ωblue(red). In our experiments, we
restrict ourselves to drive the sideband transitions with two photons of equal energy,
using a single microwave drive of frequency ωblue(red)/2. In this configuration, the
drive is equally detuned from the qubit and resonator, maximizing the selectivity
of the sideband transition with respect to the undesired off-resonant driving of the
bare-qubit transition and off-resonant population of the resonator.

The system including the two drives for the two-photon excitation is described
by the Jaynes-Cummings Hamiltonian

Ĥ/~ = ωrâ†â +
ω01

2
σ̂z + g01(â†σ̂− + σ̂+â) + Ĥd1 + Ĥd2 , (6.1)

where the driving terms depend on whether the drives are applied to the resonator
input or to the local qubit driving lines. For the former case they are given by
Ĥdi/~ = εdi(t)(â

†e−iωdi t + âeiωdi t) with the amplitude εdi , while for the latter case
they are given by Ĥdi/~ = (Ωdi(t)/2)σ̂x cos(ωdi t), where the driving strength is
determined by the Rabi frequency Ωdi(t). From this Hamiltonian (6.1), one can
find an effective Hamiltonian [Blais07] which includes the terms

Ĥblue/~ = g01
Ωd1

2(ω01 − ωd1)
Ωd2

2(ω01 − ωd2)
(σ̂+â† + σ̂−â) =

Ωblue

2
(σ̂+â† + σ̂−â)

(6.2)
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Ĥred/~ = g01
Ωd1

2(ω01 − ωd1)
Ωd2

2(ω01 − ωd2)
(σ̂+â + σ̂−â†) =

Ωred

2
(σ̂+â + σ̂−â†),

(6.3)

corresponding to two-photon blue and red sideband transitions driven with the Rabi
rate Ωblue and Ωred, respectively. Terms corresponding to one-photon sideband
transitions (i.e. including only one drive) do not appear due to symmetry properties
of the drives and the Jaynes-Cummings Hamiltonian.

6.1.1 Selection rules for the driven Jaynes-Cummings
Hamiltonian

The fact that sideband transitions in circuit QED are forbidden, can be attributed
to the symmetry of the Jaynes-Cummings Hamiltonian [Blais07]. In particular,
the operator Ĉ = â†â + σ̂z/2 commutes with the Hamiltonian and as a result,
the number of excitations is a conserved quantity. It is thus not possible to drive
transitions with one photon that involve the excitation of zero (red sideband) or two
(blue sideband) excitations. To see this more clearly, one can introduce the parity
operator (the natural unitary extension of Ĉ) P̂ = e−iπâ†âσ̂z =

∑∞
n=0(−1)n|n〉〈n|σ̂z.

The parity of a state |ψ〉 is said to be even (odd), if it is an eigenstate of P̂ with
eigenvalue p = 1 (p = −1). Since the parity operator anticommutes with the
drive Hamiltonian Hdi in a frame rotating at the drive frequency, we can write the
following relation

0 = 〈ψ f |Ĥdi P̂ + P̂Ĥdi |ψi〉 = (pi + p f )〈ψ f |Ĥdi |ψi〉, (6.4)

where |ψi〉 and |ψ f 〉 label the initial and final state of a transition we would like to
drive. If the parity of both states is the same, the right hand side can only be zero if
the matrix element of the drive 〈ψ f |Ĥdi |ψi〉 vanishes. The drive can thus only cause
transitions between states with different parity pi = −p f .

In order to find the allowed and forbidden transitions in circuit QED, we first have
to write down the parity of the eigenstates (3.48-3.49) of the Jaynes-Cummings
Hamiltonian

P̂|0, 0〉 = −|0, 0〉, P̂|±q, np〉 = (−1)n−1|±q, np〉. (6.5)

The blue sideband transition indicated in Figure 6.1 corresponds to a transition
between |0q, 0p〉 and |+q, 2p〉 which have the same parity, and is thus forbidden.
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6.1 Qubit-qubit interaction with sidebands

Similarly, the red sideband corresponds to a transition between |−q, 1p〉 and |+q, 1p〉

and is also forbidden. In contrast, driving the single qubit transition connecting
|0q, 0p〉 and |+q, 1p〉 is allowed. When using two drives, the selection rules are
reversed since the operator Ĥd1 + Ĥd2 commutes with the parity operator P̂.

6.1.2 Cavity quantum electrodynamics with separate photon
storage and qubit readout modes

In Section 3.2.3 we have described the weak dispersive quantum non-demolition
readout of a qubit state in circuit QED by measuring the transmission of microwave
photons through a coplanar waveguide resonator. One important condition to be
able to extract useful information about the qubit state with this procedure is that
the photon lifetime inside the resonator is much shorter than the qubit energy decay
time. If this condition is not fulfilled, the signal to noise ratio of the transmitted
measurement signal is significantly reduced. This is because with high probability,
the qubit state is already decayed before any transmitted photons could be detected,
significantly reducing the measurement contrast between the ground and excited
state of the qubit. On the other hand, if we want to carry out coherent operations
between qubit and photons, maximum photon lifetimes are required. One way
to combine these two requirements and to carry out experiments with photons
of different lifetimes would be to couple the qubit to two different resonators
[Johnson10, Mariantoni11a, Wang11, Mariantoni11b]. However, this significantly
increases the space occupied on chip and the complexity of the design. We have
instead found a method of doing such experiments by controlling the quality factors
of different harmonic modes of a single resonator.

Design of a multi-Q resonator

The schematics of a resonator with significantly different quality factors between
the odd and even-symmetry harmonic resonance modes is shown in Figure 6.2a.
In addition to the coupling capacitors at the ends of the resonator, two coupling
capacitors are added at the center. The first-harmonic mode with frequency ω1 and
all other even-symmetry modes have an electric field distribution with an antinode
in the center and are hence strongly coupled to the center ports 3 and 4. Conversely,
the fundamental (ω0) and higher odd-symmetry harmonic modes have an electric
field node at the center of the resonator and couple only weakly to the center ports.
Choice of the coupling capacitors with capacitance C34 at ports 3 and 4 allows one
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Figure 6.2: a) Schematics of a resonator with individually adjustable (in fabrica-
tion) quality factors of the fundamental and first harmonic resonance mode. b)
Equivalent circuit model of the device shown in a).

to define an external quality factor at the even harmonic modes Qeven as described
in Section 3.2.6, leaving the quality factor of the odd harmonic modes Qodd almost
unaffected. The capacitors on ports 1 and 2 with capacitance C12 however have an
effect on all modes because the electric field always has an electric field antinode
at the ends of the resonator. This design thus has the feature that the odd harmonic
modes have higher quality factors than the even modes. Of course one could also
think of other designs for which the frequency spacing between harmonic modes
can be adjusted and has the flexibility to chose which mode should be high/low Q,
which could be investigated in future experiments.

In order to calculate the S parameters of such a device, the multi-Q resonator can
be modeled with the equivalent circuit shown in Figure 6.2b. A transmission line
with characteristic impedance of Z0 = 50 Ω and length l is capacitively coupled
to ports 1 and 2. Additionally, a capacitive coupling is added in the middle of
the transmission line to ports 3 and 4. The different 2-port S parameters can
now be calculated with the ABCD matrix formalism. If we are interested in the
parameters between port 1 and 2, we terminate ports 3 and 4 with a ZL = 50 Ω

load and calculate the admittance Y34 of the line connecting these ports with the
transmission line. It simply consists of a capacitor and a load impedance connected
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6.1 Qubit-qubit interaction with sidebands

in series, resulting in two admittances of

C34 ZL ⇒ Y34 = 1/Z34 =

(
1

iωC34
+ ZL

)−1

(6.6)

connected in parallel in the center of the transmission line. The ABCD matrix of
the whole circuit can thus be readily calculated as(

A B
C D

)
12

=

(
1 1/iωC12
0 1

)
(ABCD)l/2

T L

(
1 0

2Y34 1

)
(ABCD)l/2

T L

(
1 1/iωC12
0 1

)
.

(6.7)
The ABCD matrix of the transmission line with length l/2 and characteristic
impedance Z0 can be found in [Pozar93, Table 4.1] and is given by

(ABCD)l/2
T L =

(
cos(βl/2) iZ0 sin(βl/2)

iY0 sin(βl/2) cos(βl/2)

)
. (6.8)

Similarly, if we are interested in the S parameters for port 3 and 4, we terminate
ports 1 and 2 with a 50 Ω load and calculate the admittance of the transmission
line with length l/2 terminated with a capacitor and a load impedance connected in
series

C34 ZLl/2 ⇒ Y12 =

(
Z0

ZL + 1/iωC12 + iZ0 tan(πω/2ω0)
Z0 + i(Z0 + 1/iωC12) tan(πω/2ω0)

)−1

.

(6.9)
The ABCD matrix of the whole 2-port network is then given by(

A B
C D

)
34

=

(
1 1/iωC34
0 1

) (
1 0

2Y12 1

) (
1 1/iωC34
0 1

)
. (6.10)

For the network between port 1 and 3, a combination of the two methods explained
above are used. From the ABCD values, the S parameters for the different 2 port
networks is extracted by using the relations in [Pozar93, Table 4.2].

Figure 6.3 shows the calculated transmission parameters between the different
ports as an example for coupling capacitors with capacitances of C12 = 10 fF
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Figure 6.3: Calculated transmission between the different ports of the equivalent
circuit model shown in Figure 6.2b.

and C34 = 70 fF. Transmission between the end ports S 12 (solid red line) clearly
shows resonances at around ν0 = 3.5 GHz and ν2 = 10.5 GHz, corresponding to
the fundamental and 2nd harmonic resonance modes with a high quality factor. The
first harmonic mode resonance at ν1 = 7 GHz is largely suppressed because most
of the signal is lost into the center coupled lines. Transmission through the center
ports S 34 (dashed blue line) has as expected a resonance at the first harmonic mode
with low quality factor and unit transmission at resonance and has an antiresonance
at the high Q modes. The spectrum between an end port and a center port (dotted
black line) only shows one resonance at ν1 in the displayed range. Although all
modes are excited by driving an end port, only signals at the first harmonic mode
can be detected with the center port.

Physical implementation

Figure 6.4a shows an optical image of a fabricated chip consisting of the multi-Q
resonator coupled to two qubits at the ends of the resonator. Because the center
ports 3 and 4 disconnect the ground planes on both sides at the center of the
resonator, air-bridges, or in our case bond wires are used to reconnect the ground
planes. This is essential to suppress mode conversion from the even CPW mode
to other spurious propagation modes. The same is true for the local gate lines 5
and 6 used for individual qubit driving. For an initial check of how well such a
multi-Q design performs in an experiment, we have fabricated a first device (I) with
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Figure 6.4: a) Optical image (colorized) of a multi Q device with two transmon
qubits (device II). Grounding bond wires are shown schematically at position X. b)
Normalized transmission spectrum for a four-port center and end-coupled resonator
measured at a temperature of 20 mK (device I). Transmission between the end ports
S 12 (red closed circles) and the center ports S 34 (blue open circles) around the
fundamental (ν0), 1st (ν1) and 2nd (ν2) harmonic resonance frequencies are shown.
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weakly capacitively coupled end ports 1 and 2 and no qubits. The capacitances
were chosen small enough (Ce ≈ 1 fF) to have little effect on the quality factor
of the first three harmonic modes, while the center ports were strongly coupled
(Cc ≈ 15 fF). Measurements of the first 3 harmonics are shown in Figure 6.4b.
The data is normalized to a resonant transmission of 0 dB in each case. The center
coupled transmission (S 34, blue open circles) shows a resonance at ν1 ≈ 6.49 GHz
with a quality factor Q1 ≈ 1700 consistent with the chosen value of Cc, but low
transmission around ν0 and ν2. The end-coupled transmission (S 12, red closed
circles) shows resonances at ν0 ≈ 3.29 GHz and ν2 ≈ 9.87 GHz with much higher
measured quality factors Q0 ≈ 3 · 105 and Q2 ≈ 2 · 105, respectively, and low
transmission at ν1. These Q factors are on the same order as those measured for
weakly end-coupled two-port resonators, showing that the fundamental and 2nd
harmonic in our multi-Q device are negligibly coupled to the center ports. Hence
the device performs as desired, with a low Q first harmonic mode for qubit read-out,
and the high Q odd modes for optimal photon storage times.

We then fabricated a second device (II) as it is shown in Figure 6.4a with
qubits for actual qubit experiments. The left and right qubits are labeled A and
B, respectively. This device has higher mode frequencies than device (I), and
no end ports (1 and 2) for maximized photon lifetime in the high Q mode. The
qubits both have a charging energy EC/h ≈ 305 MHz and a maximal Josephson
energy Emax

J /h ≈ 150 GHz, which corresponds to a maximal transition frequency of
around 19 GHz. Direct microwave drive lines (ports 5 and 6) allow selective driving
of the individual qubits. The resonant coupling strengths g01,1/2π ≈ 119 MHz of
the qubits to the 1st harmonic at ν1 = 7.01 GHz were extracted from a standard
resonator transmission S 34 measurement of the vacuum Rabi mode splitting for
each qubit. The coupling strength g01,2/2π ≈ 183 MHz to the 2nd harmonic at
ν2 = 10.74 GHz was instead obtained from a spectroscopic measurement of the
qubit transition frequency using the 1st harmonic mode when the qubit is tuned
across the 2nd harmonic mode.

6.1.3 Spectroscopy and Rabi oscillations on the blue sideband
transition

For initial sideband experiments, we have tuned qubit A between the 1st and 2nd
harmonic mode of the resonator, to around ν01 ≈ 9.718 GHz, and biased qubit B
far away to around 6 GHz. At this position, the blue sideband transition frequency
between qubit A and the 2nd harmonic high Q mode is expected to be at a frequency
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6.1 Qubit-qubit interaction with sidebands

of ωA
blue = ωA

01 + ωr,2 ≈ 20.458 GHz. In order to verify this, we have performed a
spectroscopy measurement by sweeping the frequency of a single strong microwave
drive applied to the selective drive line of qubit A and simultaneously measuring
the phase of resonator transmission at the 1st harmonic low-Q mode. We repeated
this experiment for different drive powers, see Figure 6.5a. Note that these powers
are quoted at the input port of the cryostat and not at the device itself. At a power
of around −15 dBm, a spectral line appears corresponding to the two-photon blue
sideband transition at ωA

blue/2. Even though the theoretical description of the two-
photon sideband driving involves two different microwave drives, in experiment a
single one with a high enough power is sufficient to provide two photons of equal
energy. The difference in frequency between the expected ωA

blue/2 ≈ 10.229 GHz
and the measured frequency of 10.22 GHz can be attributed to the ac-Stark effect
[Schuster05]. The strong microwave drive needed to drive the sideband applied
above the qubit transition frequency ω01 ac-Stark shifts ω01, and thus also ωblue,
to lower frequencies. This behavior is also seen in Figure 6.5a as the drive power
is increased. Additionally, the measurement response of the off-resonantly driven
qubit transition becomes visible on the left side for increasing drive powers. As
an example, Figure 6.5b shows a single spectroscopy trace at a drive power of
−7 dBm.

Knowing that the sideband can be saturated by a two-photon transition, we can
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Figure 6.5: a) Spectroscopy of the sideband transition at frequency νblue ≈

10.22 GHz as a function of the drive power (the power at the input port of the
cryostat). Dark blue and dark red correspond to a phase of −10 deg and 40 deg of
the transmitted measurement signal, respectively. b) The phase of the transmitted
measurement signal for a single spectroscopy trace at a driving power of −7 dBm.
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drive time-resolved Rabi oscillations on the blue sideband with the 2nd harmonic
mode between the states |0q, 0p〉 and |1q, 1p〉 by applying square microwave pulses
of fixed amplitude and varying length, at the Stark-shifted two-photon blue sideband
frequency, to the gate line of qubit A. The measured qubit excited-state population
(red solid dots) for a drive power of about 3 dBm and the qubit A biased at ν01 ≈

9.22 GHz, ∆0 ≈ 1.52 GHz detuned from νr,2, is shown in Figure 6.6a. The time
evolution can be well understood with numerical simulations, using the simple
Hamiltonian

Ĥ/~ = ∆ωrâ†â +
Ωblue

2
(eiφblueσ̂−â + e−iφblueσ̂+â†), (6.11)

written in a frame rotating the qubit with frequency ω01 and the resonator with
2ωd − ω01, where ωd is the frequency of the microwave drive. For simplicity, we
assume that the transition can be driven with one photon at 2ωd and Rabi rate Ωblue.
Due to dissipation, the quantum state during the time evolution is in general a
mixed state described by the density matrix ρ̂. The equation governing the time
evolution of ρ̂ is the master equation in the Lindblad form [Lindblad76]

dρ̂(t)
dt

= −
i
~

[Ĥ, ρ̂(t)] + γ1D[σ̂−]ρ̂(t) +
γφ

2
D[σ̂z]ρ̂(t) + κD[â]ρ̂(t) + 2κφD[â†â]ρ̂(t)

(6.12)
where D[L̂]ρ̂ = L̂ρ̂L̂† − L̂†L̂ρ̂/2 − ρ̂L̂†L̂/2 and L̂ are the Lindblad operators
describing the non-unitary dynamics associated with dissipation and dephasing. A
fit to the numerical solution of this master equation is shown in Figure 6.6a as black
solid line. The only fit parameter is the sideband Rabi rate Ωblue/2π = 9.8 MHz and
demonstrates the good understanding of the system. The other parameters used for
qubit and photon energy decay time 1/γ1 = 730 ns and 1/κ = 1.45 µs, respectively,
as well as for the qubit and photon pure dephasing time 1/γφ = 1.2 µs and 1/κφ =

5.5 µs, respectively, have been taken from separate independent measurements (see
Section 6.1.4 for a detailed description of how κ and κφ was measured).

To demonstrate the importance of the multi-Q device for these sideband ex-
periments, we repeated the experiment above with qubit A biased at a transition
frequency of ω01/2π = 5.49 GHz, but now driving the blue sideband transition
between the 1st harmonic low-Q mode and the qubit (blue, open circles). The
detuning ∆0 to the relevant resonator mode was chosen the same as before, and
also the Rabi rate of the sideband drive Ωblue/2π = 10.4 MHz was chosen to be
similar. The rapidly decaying Rabi oscillation is consistent with the simulations for
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Figure 6.6: a) Rabi oscillations on the blue sideband with the low Q 1st harmonic
(blue open circles), and with the high Q 2nd harmonic (red closed circles) resonator
mode. Master equation simulations with photon lifetime and sideband drive rate
as fit parameters are shown as solid lines. b) Energy level diagram showing the
relevant energy decay paths when driving the blue sideband transition. The photon
decay with rate κ is indicated with blue thick arrows (low Q 1st harmonic) and red
thin arrows (high Q 2nd harmonic). Energy decay of the first excited qubit state
with rate γ1 is indicated with green arrows.

a short photon lifetime of 1/κ = 39 ns that is in turn consistent with the linewidth
of the resonator spectrum. The other simulation parameters are again consistent
with independent measurements (1/γ1 = 1 µs, 1/γφ = 420 ns and κφ = 0 was
chosen to be zero, because the dephasing rate of the 1st harmonic resonator mode
is mainly limited by the short photon lifetime). This experiment demonstrates that
the multi-Q device works as expected, with drastically different photon lifetimes of
the even and odd modes of the resonator, corresponding to Q1 = 2πνr,1/κ1 ≈ 1700
and Q2 = 2πνr,2/κ2 ≈ 98000. The quality factor of the high-Q mode is now by a
factor of two lower compared to the sample measured with no qubits, which might
be an indication that the qubit fabrication process lowers the quality factor of the
resonator.

It is interesting to note that the Rabi oscillations of the blue sideband transition
with the low-Q 1st harmonic mode are asymmetric. For long pulse lengths, it
can be seen that the qubit excited-state population tends to a steady-state value of
p10,ss ≈ 0.95. This can be explained by considering the different drive and decay
channels present in the system, see Figure 6.6b. Since the state |1q, 0p〉 has no
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blue sideband transition and γ1 � κ1, driving the sideband from the ground state
|0p, 0q〉 results in a buildup of population in |1q, 0p〉. Taking only energy decay into
account, we can write down the rate equations for the four level system

dp11

dt
= Ωblue p00 −Ωblue p11 − (κ + γ1)p11,

dp10

dt
= κp11 − γ1 p10,

dp01

dt
= γ1 p11 − κp01,

dp00

dt
= Ωblue p11 −Ωblue p00 + κp01 + γ1 p10,

where pi j is the population of the state |iq, jp〉. Solving this set of equation for the
steady state and the boundary condition that p00 + p01 + p10 + p11 = 1, we get
(in the limit where κ � γ1) p10,ss = κΩblue/(κΩblue + γ1κ + γ1Ωblue) = 0.948, in
good agreement with experiment. It is worth noting that an increase in the ratio
κ/γ1 could be used to generate population inversion and to realize a high fidelity
excited-state preparation of the qubit by pumping of the blue sideband.

With these coherent sideband Rabi oscillations between the qubit and the high-Q
mode, it is now possible to prepare non-classical photon states and to entangle the
qubit with a photon. For example, applying a π-pulse with a length of ∼ 50 ns
on the blue sideband and a subsequent π-pulse on the qubit, creates a single
photon in the resonator, the so called one photon Fock state. On the other hand if
one applies a π/2-pulse of length ∼ 25 ns on the blue sideband, the resonator is
maximally entangled with the qubit, described by the state (|0q, 0p〉 + |1q, 1p〉)/

√
2.

Adding another qubit, this entanglement can even be swapped onto qubit-qubit
entanglement, as described in the next two sections. The speed of these qubit-
resonator operations is limited by the maximal drive rate on the blue sideband
transition. If it is driven too strongly, off-resonant driving of the direct qubit
transition at frequency ω01 becomes significant. As can be approximated from
spectroscopy shown in Figure 6.5a, the maximal sideband Rabi rate we could
use is about Ωblue ≈ 12 MHz at a power of around 6 dBm. Another issue is the
large ac-Stark shift during sideband driving, which was about ∼ 70 MHz for the
sideband experiments shown in Figure 6.6a. Due to the finite rise time of the
square pulse used for driving, the sideband transition is at the beginning and the
end of the pulse driven off-resonantly, which causes phase and amplitude errors.
These errors get more significant as the pulses get shorter. The same problem also
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Figure 6.7: a) Pulse sequence used to measure the energy decay and dephasing
time of a single photon in the high Q 2nd harmonic resonator mode. b) Results of
the photon lifetime T κ2

1 = 1.45 µs c) Results of the Ramsey experiment to measure
the photon dephasing time T ∗κ2

2 = 1.9 µs. Master equation simulations are shown
as solid lines.

makes it hard to apply any pulse shapes other than the square pulse, because the
drive frequency would have to be changed while varying the amplitude, to stay
on resonance. Nevertheless, driving these sideband transitions still allowed us to
perform interesting experiments on the preparation of photon Fock states and the
entanglement between two qubits, as discussed below.

6.1.4 Fock state preparation

Using a sequence of blue sideband and direct qubit pulses, we now demonstrate
a photon storage experiment with the long lifetime mode. The system is first
excited to the state |1q, 1p〉 using a blue sideband π-pulse. A direct π-pulse on
the qubit returns the qubit to the ground state and leaves the resonator in a single
photon Fock state |0q, 1p〉. After a storage time τ, the two pulses are repeated in
reverse order. For perfect photon storage the qubit population should return to
state |0〉. However, when the photon is lost the qubit ends up in state |1〉. The
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measured result is shown in Figure 6.7a, along with a master equation simulation
fitted to the data, with a photon lifetime of T κ2

1 = 1/κ2 = 1.45 µs, consistent with
the fits of the sideband Rabi data to theory (Figure 6.6a). This corresponds to a
quality factor of Q2 = 97 000. We also measure the photon dephasing time using
a Ramsey type pulse sequence, in which we now carry out the pulse sequence of
the storage experiment sandwiched between two π/2-pulses on the qubit transition,
see Figure 6.7a inset. The blue sideband π-pulses are now detuned by ∆ωd/2π ≈
0.46 MHz from resonance, to result in a Ramsey oscillation frequency of fRamsey =

0.92 MHz = 2∆ωd/2π due to the two-photon sideband transition. A dephasing time
of T ∗κ2

2 = 1.9 µs is found by fitting the data to a master equation simulation, see
Figure 6.7b. The fact that T ∗κ2

2 < 2T κ2
1 indicates the presence of some fluctuation

of the resonator frequency, which may be partially accounted for by the dispersive
coupling to the qubit, which at the chosen transition frequency has a separately
measured dephasing time of T ∗2 = 250 ns.

The excellent coherence properties of such a long-lived cavity mode could enable
its use as a quantum memory, collectively accessible to multiple qubits. Besides the
ability to measure the dephasing time of the resonator, this Ramsey type experiment
can also be useful to accurately calibrate the frequency of the sideband transition.

The high Q of the 2nd harmonic also allows us to carry out more complex
sideband pulse sequences to generate Fock states |n〉 of the long-lived microwave
field, and to observe Rabi oscillations on the blue sideband between the states
|0q, n − 1p〉 and |1q, np〉 up to n = 5. The state |0q, np〉 is generated by applying
a sideband π-pulse followed by a direct qubit π-pulse which remove the qubit
excitation and repeating this n times, see Figure 6.8b. It is important to note here,
that each additional photon in the high-Q mode shifts the qubit transition frequency
by the dispersive shift 2χ ≈ 7.5 MHz. For each repetition, the frequency of the
direct qubit and sideband pulses thus has to be properly adjusted. In Figure 6.8b
we show the results of sideband Rabi oscillation experiments starting from the
experimentally generated Fock states with n = 1, 2, 3, 4, 5. A fit to P1(t) = A −
Be−t/τ cos(Ωnt) yields Rabi frequencies Ωn that are in very close agreement with the
expected

√
n scaling of the coupling strength, see Figure 6.8c, which has also been

measured with spectroscopic techniques in a regime where qubit and resonator are
in resonance [Fink08]. Master equation simulations are also shown in Figure 6.8c,
agreeing qualitatively with the measured data, but deviating for the longer pulse
sequences. This is likely due to build up of errors due to off-resonant driving of
other transitions, and will be important to characterize and correct before taking
operation complexity further in future experiments of this type.
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Figure 6.8: a) Pulse sequence for generation of Fock states in the high Q mode, and
driving of sideband Rabi oscillations |0q, (n − 1)p〉 ←→ |1q, np〉. b) Measurement
of the sequence depicted in a), for n=1,2,3,4,5 (red dots). Fits to a cosine with
an exponential decay envelope are shown as solid lines, while master equation
simulations are shown as dashed lines. c) Plot of the squared normalized sideband
Rabi frequencies extracted from the fits shown in b). Expected linear dependence
on the number of photons n in the high Q mode is shown as a black solid line.
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6.1.5 Bell-state preparation

After demonstrating the coherent control between single photons and one qubit,
we show the realization of a two-qubit operation based on blue sideband transi-
tions between two qubits (labeled as qubit A and qubit B) coupled to the same
high-Q mode. For this experiment, the qubits have been biased at frequencies
ωA

01 = 9.2 GHz and ωB
01 = 8.11 GHz, respectively. This large frequency separation

between the qubits was chosen to keep the residual dispersive qubit-qubit coupling,
mediated by virtual excitations of the resonator, negligibly small, and to reduce
the cross-talk of the direct qubit and sideband drives of one qubit onto the other
qubit, because they have different transition frequency. Additional isolation of
about ∼ 20 dB in power between the drives of different qubits has been reached
by applying the drives through the individual gate lines of the qubits. The pulse
sequence used to generate two-qubit entangled Bell states, shown in Figure 6.9a,
is similar to that implemented in trapped ions [Roos04]. First, the system is pre-
pared in its ground state |0A, 0B, 0p〉 and a resonant π-pulse is applied to qubit B,
generating the state |0A, 1B, 0p〉. A π/2-pulse on the blue sideband of qubit A then
generates a state |0A, 1B, 0p〉 + eiφ′ |1A, 1B, 1p〉 that contains entanglement between
qubit A and a photon in the high-Q mode. This qubit-resonator entanglement is
then transferred to qubit-qubit entanglement with a π-pulse on the blue sideband
of qubit B, generating a Bell state between both qubits |Ψ〉 = |0A, 1B〉 + eiφ|1A, 0B〉

and returning the high-Q resonator mode to its unentangled ground state |0p〉. The
phase φ of the state is adjusted with the phase difference between the two blue
sideband pulses in the sequence. An additional single-qubit π-pulse may now be
applied to qubit A to generate the Bell state |Φ〉 = |0A, 0B〉+e−iφ|1A, 1B〉. The length
of the full pulse sequence is 110 ns, with the entanglement generating sideband
pulses and the single qubit operations lasting ∼ 85 ns and 10 ns, respectively.

As an example, we have prepared and fully reconstructed the resulting den-
sity matrix ρ̂ for the two Bell states |Φ+〉 = (|0A, 0B〉 + |1A, 1B〉)/

√
2 and |Ψ+〉 =

(|0A, 1B〉 + |1A, 0B〉)/
√

2 with quantum state tomography and a maximum likeli-
hood method, see Figure 6.9b,c. The fidelities F = 〈ψ|ρ̂|ψ〉 with respect to the
theoretically ideal states |ψ〉 = |Φ+〉 and |Ψ+〉 are F = 0.74 and F = 0.75, respec-
tively. By comparing the measured density matrices with the expected density
matrices resulting from master equation simulations, we conclude that fidelities
are mainly limited by the decoherence of qubit and resonator. The calculated
concurrences [Wootters98] for our measured states C = 0.51 and 0.52, which quan-
tifies the amount of entanglement present in a two-qubit state, proves that those

136
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Figure 6.9: a) Pulse sequence to generate and characterize Bell states. Direct
resonant qubit pulses are shown in white, while blue sideband pulses between the
resonator and qubits A and B are shown in light and dark blue, respectively. [b)
and c)] Real and imaginary parts of the two-qubit density matrix of the Bell states
|Φ+〉 and |Ψ+〉 generated according to the sequence shown in a). The fidelities with
respect to the ideal states are F = 0.74 and F = 0.75.
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6 Quantum Operations between Multiple Qubits

two-qubit states contain two-qubit entanglement. Another commonly used measure
is the entanglement of formation [Bennett96], which can readily be calculated from
the concurrence for two qubits[Wootters98] and yields 0.37 for both states. See
also Appendix A.4 for a discussion about the concurrence and entanglement of
formation measures.

6.1.6 Conclusion

In this section we have demonstrated coherent operations between qubits and single
resonator photons using sideband transitions. This allowed us to prepare highly
entangled two-qubit Bell states and up to five photon Fock states. As demonstrated
with trapped ions [Cirac95, Monroe95, Childs00, Schmidt-Kaler03], it is possible
to implement controlled-not operations between two qubits using such sideband
transitions, either by applying a sequence of sideband pulses with different phase
and length, or by carrying out a 2π rotation on a sideband transition involving an
auxiliary qubit state outside the computational basis. However, the time required for
such a gate operation in our circuit QED architecture would be too long to achieve
high fidelity gates. The maximal Rabi frequency of 10 MHz on the blue sideband
transition is limited by off-resonant qubit driving, even though the sideband drive
is more than 500 MHz detuned from the qubit transition frequency. We have thus
decided to use another approach to realize controlled-not operations using fast
magnetic flux pulses [Strauch03, DiCarlo09], as described in the next section.

6.2 Qubit-qubit interactions controlled with fast
magnetic flux pulses

In the previous section I have described how to perform two-qubit operations using
sideband transitions. There, the interaction between the two qubits is mediated by
a photon created in the resonator. However, it is also possible to couple two qubits
by exchanging their excitations via a virtual photon [Majer07, Filipp11a]. Such an
exchange occurs when two qubits are dispersively coupled to the same resonator
and tuned into resonance with each other. This coupling is sometimes also called
the J-coupling and is of the form (σ̂− ⊗ σ̂+ + h.c.). Using fast magnetic flux pulses,
it can be turned on and off on nanosecond timescale by tuning one of the qubits
in and out of resonance with another qubit and is thus useful for fast two-qubit
operations [Strauch03, DiCarlo09, Bialczak10, Yamamoto10].
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6.2 Qubit-qubit interactions controlled with fast magnetic flux pulses

Figure 6.10: Optical microscope image of the sample with three qubits coupled
to a coplanar waveguide resonator with individual local microwave and magnetic
flux-bias lines for each qubit.

In this section, I describe our three-qubit sample fabricated to investigate this
J-coupling, see Section 6.2.1. I then describe in Section 6.2.2 how the J-coupling
is derived by transforming the generalized Jaynes-Cummings Hamiltonian includ-
ing three transmon qubits into the dispersive limit and how these couplings are
observed in experiment. Section 6.2.3 explains how we realize the universal two-
qubit controlled-phase and controlled-not gates [DiCarlo09, Yamamoto10]. We
then employ these gates to generate two-qubit entanglement (Section 6.2.4) and
to demonstrate the two-qubit Deutsch-Jozsa algorithm [Deutsch92, DiCarlo09,
Yamamoto10] (Section 6.2.5)

6.2.1 The sample

The following experiments are carried out with the three-qubit sample shown in
Figure 6.10, similar to the sample used in [DiCarlo09]. The qubits are referred to as
qubit A,B and C. They are dispersively coupled to a single microwave transmission
line resonator with a bare resonance frequency of ωr/2π = 8.625 GHz and a quality
factor of Q = 3300. Besides acting as a measurement device to perform a joint
readout [Wallraff05, Filipp09], the resonator acts as a coupling bus between all
three qubits [Majer07], as described in Section 6.2.2. All qubits are equipped with
individual drive lines for single qubit manipulations and magnetic flux lines for two-
qubit and single qubit phase gates. For optimal coherence, we have designed the
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6 Quantum Operations between Multiple Qubits

qubits to have maximal transition frequencies smaller than ωr, because we consis-
tently measured smaller energy decay times T1 above the fundamental mode of the
resonator on different samples. From spectroscopy measurements we have extracted
maximum transition frequencies ωmax

01 /2π = {6.714, 6.050, 4.999}GHz, charging
energies Ec/h = {0.264, 0.296, 0.307}GHz and coupling strengths to the resonator
of g01/2π = {0.360, 0.30, 0.34}GHz for qubits A,B,C. To maximize coherence,
we biased each qubit at the flux sweet spot [Vion02, Vion03] for time resolved
measurements, where we found energy relaxation times T1 = {0.55, 0.70, 1.10} µs
and phase coherence times T ∗2 = {0.45, 0.60, 0.6} µs.

Since all qubits have maximal transition frequencies below the resonator, it is
not possible to extract g01 from a Vacuum Rabi mode splitting. Instead, we have
spectroscopically measured the resonator frequency and the transition frequencies
of all qubits while tuning the frequency of one qubit over a large range and keeping
the frequency of the other two constant.1 As an example, such a measurement is
shown in Figure 6.11a when qubit A is tuned in frequency and the spectroscopy
drive is applied to the input of the resonator to detect all three qubits at the same
time. Since the frequency of qubit B and C is constant, we have only extracted
the frequencies of qubit A (see Figure 6.11c) and the resonator (see Figure 6.11c),
and fitted the data (solid lines) to the eigenenergies of the full Jaynes-Cumming
Hamiltonian describing the three-qubit system

Ĥ/~ =
∑

q=A,B,C

N−1∑
i=1

ω
q
i |i〉〈i|q + ωrâ†â +

∑
q=A,B,C

N−2∑
i=0

√
i + 1gq

01(â†|i〉〈i + 1|q + h.c.),

(6.13)
where the qubit frequency dependence with magnetic flux ωi(φ) is determined
with the exact Mathieu equations. The fit parameters were gA

01, E
A,max
J , ωr, the flux

periodicity and a small offset of the flux. As can be seen in the figure, the fit is in
very good agreement with the data.

1The individual qubit frequency tuning is achieved by applying magnetic fields with three external
current biased coils attached on the sample holder underneath the qubits, see Figure 4.2a. The
required currents are determined by first measuring the mutual inductances between each coil
and all three qubits, and then solving a set of linear equations.

2This data set was taken on the same sample as generally discussed here, but for an earlier cool
down. Qubit A thus has a slightly higher maximal transition frequency of 7.184 GHz.
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Figure 6.11: a) Simultaneous spectroscopy of all three qubits and the resonator,
when qubit A is tuned over a larger range of frequencies by applying a magnetic
flux to the SQUID-loop of qubit A. b) and c) show the extracted frequencies of the
resonator and qubit A (blue dots) for the different values for the magnetic flux. The
data is fitted to the generalized Jaynes-Cummings Hamiltonian (6.13), to extract
the coupling strength gA

01 of qubit A to the resonator.2
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6.2.2 The dispersive J-coupling

We transform the Hamiltonian (6.13) into the dispersive regime by performing
the transformation eŜ Ĥe−Ŝ which eliminates the direct interaction between the
resonator and the transmon qubits using the generator

Ŝ =
∑

q=A,B,C

N−1∑
i=0

gq
i,i+1

∆
q
i

(â|i + 1〉〈i|q − h.c.). (6.14)

Keeping only the terms up to order g2
i,i+1/∆

2
i and neglecting the two photon tran-

sitions yields in the dispersive Hamiltonian (see also Section 3.2.2 for the single
transmon case)

Ĥdisp/~ =

ωr +
∑

q=A,B,C

−χq
0|0〉〈0|q +

N−1∑
i=1

(χq
i−1 − χ

q
i )|i〉〈i|q


 â†â

+
∑

q=A,B,C

N−1∑
i=0

(
ω

q
i |i〉〈i|q + χ

q
i |i + 1〉〈i + 1|q

)
+

1
2

∑
q,q′

N−1∑
i,i′=0

Jqq′

ii′
(
|i〉〈i + 1|q|i′ + 1〉〈i′|q′ + |i + 1〉〈i|q|i′〉〈i′ + 1|q′

)
.

(6.15)

In addition to the dispersively shifted resonator and transmon qubit energy terms
(first two lines), the third describes the coupling between each pair of transmon
qubits via a virtual photon state in the resonator. When a transition connecting
neighboring transmon levels of one qubit (|i〉q ↔ |i + 1〉q) is on resonance with a
transition of another qubit (|i′〉q′ ↔ |i′ + 1〉q′), one single excitation is exchanged
by the transverse interaction Hamiltonian at a rate determined by the J-coupling

Jqq′

ii′ = gq
i,i+1gq′

i′,i′+1

∆
q
i + ∆

q′

i′

2∆
q
i ∆

q′
i′
. (6.16)

When the two transitions are detuned from each other, with a detuning much
larger than the J-coupling |ωi,i+1 − ωi′,i′+1| � Jii′ , the coupling term is energy
non-conserving and can be transformed away with a rotating wave approximation.
We can thus turn the coupling on and off, by moving the transition frequencies
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6.2 Qubit-qubit interactions controlled with fast magnetic flux pulses

in and out of resonance. While the coupling J00 only couples states within the
computational subspace, all other Jii′ involve coupling to non-computational states
and are thus interesting for the implementation of controlled-phase operations
between two qubits.

For the experiments shown in this thesis, only the first three transmon levels are
relevant. We can then approximate the Hamiltonian (6.15) to get the simpler form

Ĥ/~ = ωA
01|1〉〈1|A + ωA

12|2〉〈2| + ωB
01|1〉〈1|B + ω12|2〉〈2|

+ JAB
00

[(
|0〉〈1|A +

√
2|1〉〈2|A

)
⊗

(
|1〉〈0|B +

√
2|2〉〈1|B

)
+ h.c.

]
. (6.17)

Here we have only considered two qubits, and we have removed the energy term
of the resonator because we are only interested in the cases where the resonator
always stays in the ground state. Additionally we assume that J10, J01 ≈

√
2J00

and J11 ≈ 2J00, only valid for detunings much larger than the qubit anharmonicities
∆0 � α. With ω01 and ω12, we now refer to the dispersively shifted frequencies.

The |01〉 ↔ |10〉 coupling

First we discuss how we characterize the coupling strength J00 between each
pair of qubits in our sample. For this purpose we spectroscopically monitor their
transition frequencies when tuning one of the qubits through resonance of the other,
see Figure 6.12a. The coupling term proportional to (|0〉〈1|A|1〉〈0|B + h.c.) then
manifests itself in an avoided level crossing with a minimal size of the splitting of
2J00 when the qubits are on resonance. From this measurement we can extract the
coupling strength by fitting the data to the eigenenergies of the Hamiltonian (6.17)
which yields JAB

00 = 2π · 25 MHz at 6 GHz. We have repeated this experiment with
the other two qubits to determine their coupling, which gives JBC

00 = 2π · 15 MHz
at 4.935 GHz and JAC

00 = 2π · 3 MHz at 4.999 GHz. In addition to the avoided
crossing, the formation of a dark state can be observed by the disappearance of
the spectroscopic line for the upper state near resonance. This dark state can be
attributed to the symmetry of the states with respect to the drive applied to the
resonator [Majer07, Filipp11a]. On resonance the eigenstates of the system can be
approximated by the symmetric triplet states |00〉, |11〉, |ψ+〉 = (|01〉 + |10〉)/

√
2 as

well as the antisymmetric singlet state |ψ−〉 = (|01〉 − |10〉)/
√

2, where |ψ+〉 is the
one with the higher frequency. This state can not be excited as the drive applied
to the resonator ∝ (σ̂A

x − σ̂
B
x ) is antisymmetric under qubit permutation, while ψ+

is symmetric. Moreover, this state does also not couple to the resonator, which
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Figure 6.12: a) Pulsed spectroscopy measurement of the avoided crossing when
qubit A is tuned through resonance with qubit B. The minimal splitting is given by
2J00. With this interaction it is possible to realize an iswap gate. b) High power
pulsed spectroscopy of qubit A when it is tuned through resonance with qubit B.
The 01-transition of qubit A |10〉 is power broadened due to the strong drive applied
to the local gate line, and the line |20〉 corresponds to a two-photon process from
the ground state to |20〉. This line shows an avoided crossing of size 2J10 with
the state |11〉, when ωA

01 − α
A = ωB

01, and is used to implement a controlled-phase
gate. The data set b) is taken on a different sample than generally discussed in this
section and J00 can thus not be directly compared with J10.
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6.2 Qubit-qubit interactions controlled with fast magnetic flux pulses

protects it against the Purcell decay through the resonator [Filipp11b].
In the context of quantum computation, this J00-coupling can be used to gen-

erate an iswap gate as shown with capacitively coupled phase and transmon
qubits [Bialczak10, Dewes12]. There one uses the fact, that when the two qubits
are prepared in either of the states |10〉 or |01〉 and then tuned in resonance, the
system starts to oscillate between these two states at a rate 2J00. Waiting a time
t = π/2J00, the states are swapped such that |10〉 → i|01〉 and |01〉 → i|10〉, while
the other computational states |00〉 and |11〉 remain unchanged, and thus implements
an iswap gate. Eventhough this gate is universal, it requires two iswap gates and 5
single qubit operations to generate the cnot gate, often used in quantum algorithms.
However, by using the coupling terms that couple a computational basis state with
a state outside the computational subspace, it is possible to construct a cnot gate
more directly.

The |11〉 ↔ |20〉 coupling

As can be seen in Equation (6.15), the dispersive interaction through the resonator
also couples the computational state |11〉 to a state outside the computational basis
|02〉 by the term JAB

10 (|2〉〈1|A|0〉〈1|B + h.c.). In order to determine JAB
01 we perform

a high power spectroscopy when qubit A is tuned through resonance with qubit
B, see Figure 6.12b (Note that this measurement data was not available for the
sample generally discussed in this section. The figure thus shows data taken on
another sample and has not the same coupling parameters). The drive is applied to
the local gate line of qubit A. Nevertheless, the spectral line of qubit B (|01〉) at
the frequency ωB

01 ≈ 6.01 GHz is still just visible due to the cross-talk of the drive
to qubit B3. In addition to the power broadened spectral line of qubit A (|10〉), a
sharper line appears at a lower frequency corresponding to the two-photon transition
from the ground state to |20〉. The frequency separation between the two lines is
given by half the anharmonicity of qubit A. Besides the avoided-level crossing
between |10〉 and |01〉, we can now see another anticrossing of the two-photon line
at 6.18 GHz, where the state |11〉 is resonant with |20〉. The fit of the data (black
solid lines) to the eigenenergies of the Hamiltonian (6.17) shows good agreement
to theory and shows that this coupling is by a factor of

√
2 stronger than J00.

Using time resolved measurements performed on the sample shown in Figure 6.10,
we extracted JAB

10 = 2π · 36 MHz ≈
√

2JAB
00 and JBC

10 = 2π · 22 MHz ≈
√

2JBC
00 .

3Usually a drive applied to a local gate line is isolated from the other qubits by about 20 dB in
power
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6 Quantum Operations between Multiple Qubits

Between qubit A and C, no coupling could be observed, most likely due to the
direct capacitive coupling which destructively interferes with the coupling via the
resonator. In the next section, we describe how this coupling is used to construct a
cnot and controlled-phase gate.

6.2.3 Controlled-PHASE and controlled-NOT gate

As has been theoretically proposed for directly coupled phase qubits by Strauch
et al. [Strauch03], the coupling between the states |11〉 and |02〉 can be used to
construct a controlled-phase gate. Later it has first been experimentally imple-
mented at Yale by Leonardo DiCarlo et al. [DiCarlo09] with transmon qubits to
demonstrate first quantum algorithms and three-qubit entanglement [DiCarlo10].
It has then also been realized with phase qubits [Yamamoto10]. In this thesis, we
use this coupling for controlled-phase and cnot gates and finally to demonstrate the
realization of a three-qubit Toffoli gate.

In order to demonstrate a controlled-phase operation, we bias the two qubits,
e.g. qubit A and B, to their flux sweet spot at ωmax,A

01 = 6.714 GHz and ωmax,B
01 =

6.050 GHz, where the two qubits are well decoupled from both avoided crossings
discussed above. We then apply a short magnetic flux pulse to qubit A which
shifts the frequency of qubit A close to the one of qubit B (from position 1 to
position 2 illustrated in Figure 6.11). For fast enough rise-times of the flux pulse,
this shifts the state |11〉 nonadiabatically4 into resonance with |20〉. The system
then starts to oscillate between the two states with a time evolution given by
|ψ(t)〉 = cos(2J10t)|11〉 + i sin(2J10t)|20〉. Waiting for a time t = 2π/2J10, the
system returns to the initial state with an additional phase factor −1. When starting
with the other basis states |00〉, |10〉 and |01〉, no phase is accumulated because those
states are off-resonant from the avoided crossings. In addition to this conditional
phase on |11〉, qubit A picks up a dynamic phase φA =

∫
(ωmax,A

01 − ωA
01(t))dt during

the frequency excursion away from the steady state frequency during the time of
the flux pulse. In the presence of flux crosstalk5 to the other qubit, also qubit B
may pick up some dynamic phase φB. This procedure then produces the unitary

4It is also possible to carry out the gate with adiabatic flux pulses, and was in fact used for the first
realization [DiCarlo09]

5On this three-qubit sample this crosstalk is below 1%. Additionally, since all qubits are biased at
their flux sweet spot, no crosstalk is observed during the controlled-phase gate operation.
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6.2 Qubit-qubit interactions controlled with fast magnetic flux pulses

operation

ÛcZi j =


1 0 0 0
0 eiφA 0 0
0 0 eiφB 0
0 0 0 −ei(φA+φB)

 . (6.18)

Adding single qubit phase gate operations before or after the flux pulse, we can
compensate for these dynamic phases such that φA,B mod 2π = 0. This implements
the controlled-phase gate ÛcZ11 which adds a −1 to the state |11〉. In general, we
can also create the other controlled-phase gates ÛcZi j which add the −1 to the state
|i j〉 , by tuning the phases φA,B mod 2π to either 0 or π. The cnot gate can then be
constructed by the combination of ÛcZ11 and single qubit rotations

ÛCNOT = Î ⊗ R̂π/2y ÛcZ11 Î ⊗ R̂−π/2y =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (6.19)

Calibration of the CPHASE gate

In order to calibrate the precise amplitude and length of the flux pulse required for
the controlled-phase gate, we carry out a time resolved measurement of the coherent
oscillations between |11〉 and |20〉. The pulse scheme is shown in Figure 6.13a. We
first prepare the state |11〉 with a π-pulse on each qubit and then apply a flux pulse
with an amplitude ∆A and length l. The short 5 ns long step with amplitude ∆B
in the flux pulse is used to minimize errors due to the overshoot at the beginning
of the flux pulse (see also Section 4.4.3), and simultaneously serves as a single
qubit phase gate to eliminate the dynamical phase φA. Because single qubit phase
gates commute with ÛcZi j , we can apply the phase gate before ÛcZi j . Since the
measurement contrast is low between the states |11〉 and |20〉, we apply again a
π-pulse on each qubit at the end of the sequence before measurement, such that the
system oscillates between state |00〉 and |20〉 which maximizes the measurement
contrast. Figure 6.13b shows the measurement response as a function of ∆A and l,
while ∆B = −0.5 is set to a constant value. Minimal oscillation frequency occurs
when the two states |11〉 and |20〉 are in resonance at ∆A0 = −0.865. The asymmetry
in the picture, i.e. higher visibility when qubit A is shifted across the transition
frequency of qubit B and almost vanishing visibility when shifted only close but
not across resonance, can be explained by the finite rise time of the flux pulse of
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about 1− 2 ns. This has been confirmed with numerical simulations. From a single
trace for amplitude ∆A0 (Figure 6.13c) we extract the oscillation period l0 = 14 ns,
which corresponds to a J-coupling of J10/2π = 1/2l0 = 35.7 MHz. This is in good
agreement with the value of J00 ≈ J10/

√
2 we extracted from the independent

spectroscopic measurements shown in Figure 6.12a.
In order to check if the state |11〉 really acquires a −1 after one full oscillation

period, we perform a Ramsey type experiment which measures the phase of qubit
A conditional on the state of qubit B. Here, we replace the π-pulses of qubit A with
π/2-pulses, where the second pulse has a phase difference of ∆φ with respect to the
first. We then measure the resonator response as a function of ∆φ for the two cases
where qubit B is prepared in state |1〉 (red dots) or in state |0〉 (blue dots) before
the flux pulse, see Figure 6.13d. The two curves show a sinusoidal dependence
on ∆φ, but shifted by a phase π from each other, confirming the conditional phase
operation of the cZ11-gate. The overall phase shift of both curves ∆φ0 = φA is
equal to the dynamical phase acquired during the whole flux pulse and can be
compensated by changing the phase (the rotation axis) of all subsequent microwave
pulses to φ = ∆φ0. For the case that the pulse sequence does not involve subsequent
microwave pulses, the dynamic phase can be compensated with the short single
qubit phase gate. The amplitude ∆B is calibrated in a similar way, by fixing ∆φ of
the π/2-pulses and measuring the qubit populations as a function of ∆B and the
dynamical phase is then compensated by choosing ∆B for which φA = 0. Repeating
the same experiment on qubit B, the dynamic phase of qubit B accumulated during
the flux pulses on qubit A is determined. Due to the small cross talk of the flux
pulse, no compensation is required in our experiment.

Gate fidelity

We quantify the fidelity of the gate with quantum process tomography (for details
see Section 5.5.2 and Appendix A.2.2) which determines the χ matrix and fully
characterizes the quantum process E(ρ̂) =

∑
mn Êmρ̂Ê†nχmn. Here the matrix χmn

is represented in the operator basis Êm given by the tensor product of the Pauli
operators {Î, X̂, ˆ̃Y, Ẑ}⊗2 = {Î, σ̂x,−iσ̂y, σ̂z}

⊗2. To find this χ matrix, we first prepare
a full set of two-qubit basis input states {ρ̂i} = {|0〉〈0|, |1〉〈1|, |−〉〈−|, |+〉〈+|}⊗2 with
|−〉 = (|0〉 − i|1〉)/

√
2 and |+〉 = (|0〉 + |1〉)/

√
2. We then determine the density

matrix of each output state E(ρ̂i) when applying the controlled-phase gate ÛcZ11

to each input state ρ̂i. The χ matrix is reconstructed by solving a linear set of
equations determined from the 16 measured density matrices. Due to noise in the
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Figure 6.13: a) Pulse scheme to measure the coherent oscillations between states
|11〉 and |20〉. b) Measured oscillations, with the grid lines indicating the optimal
values of the flux pulse length l0 and amplitude ∆A0 for the operation of a controlled-
phase gate. c) A single oscillation trace at the optimal value ∆A0 used to determine
the length l0. d) Ramsey type experiment indicated in a) for qubit B prepared in
|0〉 (blue dots) or |1〉 (red dots) before the flux pulse, indicating the conditional
operation of the controlled-phase gate. Solid lines are fits to a sinusoidal function
to determine the dynamic phase acquired during the controlled-phase gate.
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Figure 6.14: Real parts of the measured χ matrices for a) the controlled-phase gate
ÛcZ11 with process fidelity FcZ11

P = 0.85 and b) the cnot gate with FCNOT
P = 0.80.

measurement, this matrix might not describe a physical process, i.e. a completely
positive and trace preserving map. We thus apply a maximum likelihood algorithm
to find the physically meaningful matrix χML which is closest to the measured
one [Ježek03], as summarized in Appendix A.2.3. The real part of χML is shown in
Figure 6.14 for the controlled-phase gate ÛcZ11 (a) and the controlled-not gate (b),
and is in very good agreement with the ideal processes χt indicated with wireframes.
The process fidelity of the gates can be quantified with

FP = Tr(χm · χt), (6.20)

where χm is the measured χ matrix. We get a gate fidelity of FcZ11
P = 0.85 for ÛcZ11

and FCNOT
P = 0.80 for the controlled-not operation, mostly limited by decoherence

of the qubits. We note here, that for the reconstruction of the χ matrix, we assumed
perfect input state preparation and perfect tomography pulses, which is a reasonable
approximation since our single qubit operations reach fidelities > 0.97. However,
it still leads to an underestimation of the actual process fidelity, because the errors
in the tomography and state preparation pulses is transformed into a gate error.
Nevertheless, it is possible to separate the fidelities of the different parts involved by
measuring process tomography of many repetitions of the same quantum process.
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6.2 Qubit-qubit interactions controlled with fast magnetic flux pulses

6.2.4 Generation of Bell-states

With the controlled-not operation, we can now prepare all four maximally entangle
two-qubit Bell states between qubit A and B, |Φ±〉 = (|01〉 ± |10〉)/

√
2 and |Ψ±〉 =

(|00〉 ± |11〉)/
√

2, by applying the unitary operations

ÛΦ± =
(
R̂πy ⊗ Î

)
· ÛCNOT ·

(
R̂∓π/2y ⊗ Î

)
ÛΨ± = ÛCNOT ·

(
R̂±π/2y ⊗ Î

)
(6.21)

to the ground state |00〉. In contrast to the Bell states generated with sideband
transitions, this sequence is much faster. While with sidebands it takes about
110 ns, it now takes about 40 ns where 2 × 8 ns used for single qubit operations,
20 ns for the controlled-phase gate and 2 × 3 ns for pulse separation. Consequently
we also reach higher fidelities of F = 0.91 and F = 0.87 for |Φ+〉 and |Ψ+〉,
respectively.

6.2.5 Deutsch-Jozsa algorithm

With a universal two-qubit gate and the ability to perform arbitrary operations on
the full single qubit Bloch sphere, we can implement a quantum algorithm. The
simplest quantum algorithm with two qubits is the Deutsch-Jozsa algorithm, which
solves the following problem. Assume we are given a black box which evaluates a
function f (x) : {0, 1}n −→ {0, 1} which takes an n bit state x as input and gives 0 or
1 as output. We are assured, that this function is either constant for all values of
x or balanced, that is, equal to 1 for exactly half of all possible values of x, and
0 for the other half. How many times do we have to call this function, in order
to find out for sure if it is constant or balanced? In the classical case, we need at
least 2n/2 + 1 queries, since we need to check the outputs of one more than half
the set of input states. In the quantum mechanical case, we only need one query
by exploiting quantum parallelism and quantum interference. This algorithm was
first demonstrated with transmon qubits [DiCarlo09], and later also with phase
qubits [Yamamoto10].

The steps involved in the algorithm for a one bit input state are shown in Fig-
ure 6.16. The black box that implements the function f (x) is a unitary two-qubit
operation Ui, often called the oracle. It takes the state |x, y〉 as an input, where x
is the input bit of the function f (x) encoded in the data qubit A and y the state of
an ancilla/answer qubit B, and outputs the two-qubit state |x, y ⊕ f (x)〉. Note here
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6.2 Qubit-qubit interactions controlled with fast magnetic flux pulses

that the input bit x is left unchanged and the result of the function is written in the
answer qubit, necessary for the operation Ûi to be unitary (reversible). It can easily
be verified, that the following unitary operators implement all the four possible
functions f0(x) = 0, f1(x) = 1 (constant), f2(x) = x and f3(x) = 1 − x (balanced)
respectively

Û0 = Î ⊗ Î, (6.22)

Û1 = Î ⊗ R̂πx, (6.23)

Û2 =
(
Î ⊗ (R̂π/2y R̂πx)

)
ÛcZ00

(
Î ⊗ R̂π/2y

)
, (6.24)

Û3 =
(
Î ⊗ (R̂−π/2y R̂πx

)
ÛcZ11

(
Î ⊗ R̂−π/2y

)
. (6.25)

Here ÛcZi j is a controlled-phase gate which adds a −1 to the state |i j〉 and leaves
the other computational basis states unchanged. To understand the result of this
circuit shown in Figure 6.16, lets see what happens to the input state |0, 0〉. First,
Hadamard gates are applied to both qubits which brings both the data and the
answer qubit into a superposition state(

|0〉 + |1〉
√

2

)
A
⊗

(
|0〉 − |1〉
√

2

)
B
.

Applying the unitary operation Ûi onto this state flips the phase of the data qubit
if the function is balanced, and does nothing (up to a global phase factor) if the

qubit A

qubit BÈ0\
È0\ Ry

Π�2

Ry
-Π�2

x

y

x

y Å fiHxL
Ui

Ry
Π�2

Ry
Π�2

tom.

tom.

Figure 6.16: Quantum circuit implementing the Deutsch-Jozsa algorithm.
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f0 f1 f2 f3
〈0, 0|ρ̂|0, 0〉 ideal 0 0 1 1

measured 0.07 0.08 0.82 0.89
〈1, 0|ρ̂|0, 1〉 ideal 0 0 0 0

measured 0.04 0.03 0.004 0.002
〈0, 1|ρ̂|1, 0〉 ideal 1 1 0 0

measured 0.85 0.86 0.07 0.05
〈1, 1|ρ̂|1, 1〉 ideal 0 0 0 0

measured 0.03 0.03 0.1 0.06

Table 6.1: Diagonal elements of the density matrices of the Deutsch-Jozsa algo-
rithm output for the four different function f0(x) = 0, f1(x) = 1, f2(x) = x and
f3(x) = 1 − x.

function is constant
±

(
|0〉 + |1〉
√

2

)
A
⊗

(
|0〉 − |1〉
√

2

)
B

f (x) is constant

±

(
|0〉 − |1〉
√

2

)
A
⊗

(
|0〉 − |1〉
√

2

)
B

f (x) is balanced

Finally, applying a Hadamard transformation again on both qubits, the state is
transferred into |10〉 if the function was constant, and into |00〉 if it was balanced

|ψfinal〉 =

|10〉 f (x) is constant
|00〉 f (x) is balanced.

Measuring the data qubit A directly returns the answer. We have implemented
this algorithm using the phase gates as shown above and performed full two-qubit
tomography on the final state. The absolute value of the output states for all four
possible functions f (x) are shown in Figure 6.17 (with wire frames indicating
ideal matrices) and the value of the diagonal elements for all density matrices
summarized in Table 6.1. The fidelities of the final states for the functions f0 to f3
are 0.85, 0.86, 0.82 and 0.89 respectively.

Although we demonstrate fidelities larger than the classical threshold of 0.5,
our experiment does not proof a speedup over the classical algorithm. This is
because our measurement is too noisy, such that we have to average over 65 000
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6 Quantum Operations between Multiple Qubits

experimental realizations to be able to reconstruct these density matrices. In other
words, we have to apply the oracle 65 000 times until we know if it implements
a constant or balanced function. However, this speed up has been demonstrated
with phase qubits [Yamamoto10]. Another two qubit algorithm, the Groover search
algorithm, was also realized [DiCarlo09], and quantum speed up for this algorithm
was later demonstrated by the group of Saclay [Dewes11].

6.3 Benchmarking a teleportation circuit

Here we demonstrate our efforts [Baur12] made towards the realization of on-
chip quantum teleportation of macroscopic quantum states. Due to the strin-
gent requirements on the control and read-out fidelity achievable for the multi
qubit quantum system, full teleportation with single shot read-out and real-time
feedback has so far only been experimentally realized in microscopic degrees
of freedom with single photon [Bouwmeester97, Boschi98, Marcikic03, Jin10]
or continuous variable states [Furusawa98, Lee11] and, more recently, with
ions [Riebe04, Barrett04, Riebe07, Olmschenk09].

Quantum teleportation achieves the transfer of a quantum state from one phys-
ical location to another, even if the sender has no knowledge about both the
state to be teleported and the location of the receiver [Bennett93]. In addi-
tion to its use in quantum communication [Gisin02], for example in context of
quantum repeaters [Briegel98], quantum teleportation also enables universal and
fault-tolerant quantum computation [Gottesman99, Zhou00, Childs05, Aliferis04,
Jorrand05]. In early experiments with spins using nuclear magnetic resonance
techniques [Nielsen98], single-shot readout and feedback was replaced by dephas-
ing and controlled unitary operations. Here, we demonstrate the implementation
of teleportation with superconducting circuits by replacing the single shot read-
out [Mallet09] and real-time feedback [Doherty99], both of which are challenging
to realize simultaneously in a three-qubit superconducting quantum processor at
the current state of the art, with quantum state tomography. Even without explic-
itly realizing these steps, our benchmarking method allows us to provide crucial
information on the entanglement generated during the teleportation protocol and
the fidelity of the teleportation process up to the measurement. It thus presents an
important step towards making use of teleportation in quantum processors realized
in superconducting circuits.

In the standard protocol, non-local quantum correlations combined with classical
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Figure 6.18: a) Circuit diagram of the standard protocol to teleport the state |ψ〉 of
qubit A to qubit C. Here, Ĥ is the Hadamard gate, Ẑ and X̂ are the Pauli matrices
σ̂x and σ̂y. The cnot gate is represented by a vertical line between the control qubit
(•) and the target qubit (⊕). b) The circuit implemented in this experiment with
controlled-phase gates, indicated by vertical lines between the relevant qubits (•),
and single qubit rotations R̂θn of angle θ about the axis n.

communication is used to perform teleportation. In this scheme (see Figure 6.18a)
the sender is in possession of qubit A in an arbitrary state |ψ〉. In the first step (I), a
maximally entangled pair is generated, e.g. using a Hadamard (H) gate followed
by a controlled-not (cnot) gate, and shared between the sender (qubit B) and the
receiver (qubit C). In the second step (II) the sender applies a cnot gate on his two
qubits followed by a H gate on qubit A generating an entangled three-qubit state |Φ〉.
In step III, the sender performs a measurement on his two qubits, which combined
with step II is equivalent to a measurement performed in the Bell basis. He then
sends the digital results to the receiver over a classical communication channel.
Depending on these results, the receiver applies one of four unitary operations
to his qubit to transform the state of qubit C into the state |ψ〉, completing the
teleportation protocol.

In our approach using superconducting qubits we realize steps I and II by
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6 Quantum Operations between Multiple Qubits

combining single qubit rotations and two-qubit controlled-phase gates, as illustrated
in Figure 6.18b, to create the entangled state

|Φ〉 =
1
2
{|00〉 ⊗ |ψ〉 + |01〉 ⊗ (−σ̂x)|ψ〉 (6.26)

+ |10〉 ⊗ (−σ̂z)|ψ〉 + |11〉 ⊗ (−iσ̂y)|ψ〉
}
,

where σ̂i are the Pauli matrices (|abc〉 denotes the states of qubits A,B,C, where
|0〉 is the ground and |1〉 the excited state). In this notation, it becomes obvious
that a measurement of qubits A and B collapses qubit C onto one of four possible
states. If the measurement outcome is 00, 01, 10, or 11, qubit C is projected to
either one of the states |ψ〉, −σ̂x|ψ〉, −σ̂z|ψ〉 or −iσ̂y|ψ〉, respectively. Instead of
performing single qubit measurements on qubits A and B in step III, we analyze the
three-qubit entangled state |Φ〉 with full quantum state tomography and reconstruct
the teleported state by calculating the projection of qubits A and B onto the basis
states |00〉, |01〉, |10〉 and |11〉. We then characterize the transfer of the input state
|ψ〉 to qubit C by performing process tomography conditioned on the projection
onto the basis states of qubits A and B.

The full pulse sequence applied to the device for the generation and reconstruc-
tion of the three qubit entangled state |Φ〉 using quantum state tomography is shown
in Figure 6.19. We repeated this scheme for a complete set of input basis states
|ψ〉 = {|0〉, |1〉, |−〉, |+〉}, with |−〉 = (|0〉 − i|1〉)/

√
2 and |+〉 = (|0〉 + |1〉)/

√
2. As

an example, the measured density matrix ρ̂m for the input state |ψ〉 = |−〉 is shown
in Figure 6.20a. We apply a maximum likelihood method [Smolin12] to ensure
that ρ̂m is physical and determine the fidelity F = 〈Φ|ρ̂m|Φ〉 = 0.74±0.06

0.06 with
respect to ideal state |Φ〉. We note that for this particular input state, |Φ〉 is a cluster
state useful for one way quantum computation [Raussendorf01]. The error bars
are estimated by re-sampling from the Gaussian distributions inferred from the
measurements before executing the maximum likelihood method. This procedure
is repeated to gather statistics. The 5th and 95th percentile are reported as the error
bar boundaries, while the median is reported as the nominal value, since the values
calculated all had unimodal distributions. For the input states |ψ〉 = |0〉, |1〉 and
|+〉 the fidelities are 0.77±0.06

0.07, 0.75±0.07
0.09 and 0.76±0.06

0.07, respectively, comparable
to the best fidelities of three-qubit entangled states realized in superconducting
qubits so far [DiCarlo10, Neeley10]. Also, the measured correlations (colored
bars) present in ρ̂m expressed in terms of Pauli sets are shown in Figure 6.20c.
It displays the expectation values of all tensor products P̂ of identity Î and Pauli
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6.3 Benchmarking a teleportation circuit

operators X̂, Ŷ , Ẑ for three-qubits, excluding the identity operator Î ⊗ Î ⊗ Î, which
are in good agreement with the expected ones (wireframe).

Generally, the ideal three-qubit state |Φ〉 generated by the circuit is genuine tri-
partite entangled as can be verified by calculating the three tangle (residual tangle)
defined for pure states [Coffman00]. Only for |ψ〉 = |0〉 and |1〉 the output state |Φ〉
remains biseparable. To quantify the amount of entanglement in the measured state
ρ̂m, we estimate the three tangle τ3(ρ̂) for mixed states via the convex-roof exten-
sion [Uhlmann98]. A more detailed discussion about multipartite entanglement and
entanglement measures can be found in Appendix A.3 and Appendix A.4, respec-
tively. The values τ3(ρ̂) = {0.45±0.10

0.09, 0.48±0.13
0.12} > 0 demonstrate that GHZ-type

tripartite entanglement was prepared for |ψ〉 = {|−〉, |+〉}. If we only want to verify
that ρ̂m contains genuine tripartite entanglement without distinguishing between the
GHZ and W class, we can use a witness operator Ŵ = αÎ−|Φ〉〈Φ| [Bourennane04],
see also Appendix A.5. Here, α is the maximal squared overlap of any bisepara-
ble state with |Φ〉, which yields 0.5 for |ψ〉 = |±〉. For all biseparable states we
find Tr(Ŵρ̂) ≥ 0, whereas for the ideal tripartite entangled state ρ̂ = |Φ〉〈Φ| we
find Tr(Ŵρ̂) = α − 1. According to this criterion Tr(Ŵρ̂m) = −0.24±0.06

0.06 < 0
the measured state shown in Figure 6.20a clearly has tripartite entanglement. As
derived in [Eisert07], the expectation value of the witness operator also directly
leads to a lower bound to the generalized robustness of entanglement. It measures
the minimal amount of mixing of ρ̂m with an arbitrary density matrix σ̂ such that
ρ̂m + sσ̂ is separable, for which we find s ≥ 0.47±0.13

0.11.

To determine the fidelity of the teleportation process up to the measurement,
we calculate the projection of ρ̂m onto the four basis states of qubit A and B |00〉,
|01〉, |10〉, and |11〉. The state of qubit C is then reconstructed by tracing out qubits
A and B and renormalizing the density matrix to ρ̂i j

C = TrAB(P̂i jρ̂mP̂†i j)/Tr(P̂i jρ̂m),
where P̂i j are the projectors |i j〉〈i j| ⊗ Î. For the projector P̂00, this state is expected
to be identical to the input state |ψ〉. Figure 6.20b shows ρ̂00

C reconstructed from the
measured data for the input state |−〉 with a fidelity of 0.87±0.08

0.10. For the other three
projections, we find the resulting states of qubit C −σ̂x|−〉, −σ̂z|−〉 and −iσ̂y|−〉

with respective fidelities of 0.80±0.09
0.10, 0.82±0.09

0.09 and 0.87±0.08
0.11.

To fully characterize the teleportation circuit, we have performed quantum pro-
cess tomography of the state transfer by repeating the procedure described above for
|ψ〉 = |0〉, |1〉, |−〉, and |+〉. With the known input states and the reconstructed state of
qubit C after teleportation, we calculate the completely positive map of the telepor-
tation process Ei j(|ψ〉〈ψ|) = ρ̂

i j
C =

∑
m,n χ

i j
mnÊm|ψ〉〈ψ|Ê

†
n characterized by the matrix
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Figure 6.21: Absolute value of the χ matrix representation for the teleportation
process which transfers the state of qubit A to qubit C for qubit A and B being
projected to a) |00〉, b) |01〉, c) |10〉 and d) |11〉.

χi j expressed in the modified Pauli operator basis {Êm} = {Î, σ̂x, ˆ̃σy = −iσ̂y, σ̂z}.
The extracted matrices χi j clearly demonstrate that the effective processes acting
on the target qubit during teleportation are the unitary operations expected from
Equation (6.26), see Figure 6.21. Since the χi j have only small imaginary ele-
ments < 0.07, we display the absolute value of χi j for the different projections
P̂i j on qubits A and B to emphasize the deviations from the ideal matrices χi j

t
indicated by wireframes. The corresponding process fidelities Fi j

p = Tr(χi j ·χ
i j
t ) are

0.80±0.07
0.08, 0.76±0.09

0.09, 0.80±0.08
0.09, 0.83±0.09

0.10, yielding 0.80±0.05
0.05 averaged over all mea-

surement outcomes. The average output state fidelity F̄i j = (2Fi j
p +1)/3 is 0.86±0.05

0.06,
0.84±0.05

0.07, 0.87±0.06
0.06, 0.88±0.06

0.06 for each individual process, and 0.86±0.03
0.04 on aver-

age. These are all well above the classical limit of F̄ = 2/3, suggesting that full
teleportation is likely to become possible in the near future with superconducting
qubits.
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6.3 Benchmarking a teleportation circuit

6.3.1 Outlook

To demonstrate full quantum teleportation including feedback, we need to be able
to perform a measurement of qubits A and B, without affecting qubit C, such
that the final state ρ̂m gets projected onto the four different basis states of qubit
A and B. In addition, this readout must be efficient enough to determine their
individual states in one single experimental realization, rather than performing
three-qubit tomography using measurement data averaged over many realizations.
This is clearly not possible with our current three-qubit circuit, as the transmission
measurement of the resonator inevitably yields information about all three qubits.

One possibility to fulfill these requirements would be to combine our setup
with the architecture described in References [Mallet09, Dewes12]. There, each
qubit is coupled to an individual Josephson bifurcation amplifier, which allows for
single-shot and quantum non-demolition readout with fidelities of 92%. Together
with our average output state fidelities of > 85%, full quantum teleportation above
the classical limit could be realized.

Another possibility could be to use two resonators, where the first only couples
to qubit A and B, and the second only couples to B and C. While the two resonators
are used as the coupling bus for the two controlled-phase gate operations required
to generate the final three-qubit entangled state, the first resonator also serves as a
measurement device to readout qubit A and B, without affecting qubit C. The state
teleported from A to C can then be detected by measuring transmission through
the second resonator. In order to reach high readout fidelities, we could add one
of our ultra low noise parametric amplifiers [Sandberg08, Vijay11, Eichler11a]
to each resonator output, and quantum feedback could be realized using the
FPGA [Bozyigit11] developed in our lab for real-time analysis of the acquired
measurement signal.
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7
Realization of the Toffoli gate

As we have seen throughout this thesis, it is demanding to accurately control
the state of multiple qubits. Already tiny errors in the control parameters due
to inaccurate calibrations or random fluctuations induce significant errors in the
quantum operation. Additionally, imperfect isolation of the qubits from their
environment inevitably leads to decoherence of the quantum state. Complete
elimination of the latter error source is probably impossible, as it is in contradiction
with the need for accurate control and measurement of the qubit state. Therefore,
the quantum states and operations are to be protected against errors using quantum
error correction. In this chapter I first describe the basic principles of quantum error
correction (Section 7.1), and then discuss our realization of the three-qubit quantum
Toffoli gate [Fedorov12] (Section 7.2). This gate is particularly interesting, as it
is useful for the implementation of the most simple quantum error correction
scheme using three qubits. In parallel and independent work, this scheme has been
fully demonstrated [Reed12] using a three-qubit gate, which only approximates
the Toffoli gate (it differs by a spurious two-qubit phase), and a Toffoli gate
between two qubits and a resonator has been realized [Mariantoni11b], but not
fully characterized.

7.1 Error correction

Before going to the quantum version, I shortly review the basic principles of
classical error correction. Suppose we have one bit of information and we want
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7 Realization of the Toffoli gate

to send it via a classical communication channel to another location. During this
process, the bit would randomly flip its state with a probability of p > 0 due to the
noise in the channel, and be transmitted without an error with probability 1 − p.
In order to protect the qubit from this error, we can encode the bit of information
in a state consisting of three identical copies of the bit: 1 → 111 and 0 → 000,
called the repetition code. Instead of transmitting a single bit, we send the bit
strings 000 or 111, and the receiver then decodes the original bit using a majority
vote. That is, if 0 appears more often in the bit string, the original bit was 0 and 1
otherwise. As an example, when 000 was sent and the first bit flipped its state, then
the receiver still recovers the correct original state 0 from the measured value of
100. If more than one bit flip their state, then the error correction code would fail.
The probability of this happening can be calculated as follows. The probability that
a particular pair of bits flipped and the third did not is given by p2(1 − p). Since
there are three different pairs and the probability that all three bits flipped their state
is p3, the probability of an error occurring in the encoded bit is pe = 3p2 − 2p3.
The transmission of information is thus more reliable with encoding, as long as
p < 0.5, and can be made arbitrarily accurate by increasing the number of bits used
for the repetition code.

As we will shortly see, a similar concept can be used for quantum error cor-
rection, even though there are some important differences in comparison with the
classical case. First, cloning a quantum state is forbidden by the basic laws of
quantum mechanics (no-cloning theorem) [Wootters82]. It is thus impossible to
encode the information by copying the state a number of times. Furthermore, the
measurement of a quantum state destroys the quantum information. This makes it
impossible to implement the decoding procedure described above, since it relies on
the measurement of the encoded message.

Instead of copying the information many times, quantum error correction codes
employ entanglement to protect the information from errors. As an example,
assume that we want to send a qubit in the state |ψ〉 via a noisy quantum channel to
another location. The noise acts on the qubit by applying the flip operation σ̂x|ψ〉

to its state with probability p, and leaves it unchanged with probability 1 − p. We
can protect the qubit from these errors using the encoding given by

α|0〉 + β|1〉 → α|000〉 + β|111〉. (7.1)

Instead of copying the whole state, we replace the computational basis states
with the three qubit repetition code as in the classical case: |0〉 → |000〉 and
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7.1 Error correction

|0〉A H

error

H • |ψ〉B

|0〉B H H •

|ψ〉C • • H H • •

encoding decoding recovery
︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸

Figure 7.1: Quantum error correction protocol that corrects for bit flip or phase
flip (including the dashed boxes) errors. The data qubit to be encoded is qubit C.

|1〉 → |111〉. A quantum circuit which implements this encoding using two cnot
operations is shown in Figure 7.1, where qubit C is the data qubit to be encoded.
For α = β = 1/

√
2, this state is a genuine tripartite entangled state, commonly

known as the Greenberger-Horne-Zeilinger (GHZ) state. We have experimentally
generated this state using the encoding procedure explained above as an example,
and reconstructed its density matrix with state tomography. In addition to showing
the density matrix, we also display the expectation values of all combinations of the
Pauli matrices and the identity (Pauli sets), calculated from the measured density
matrix, see Figure 7.2. As discussed below, the Pauli sets provide more information
relevant to the error detection.

The error detection is done similarly to the classical case using a majority vote.
In this step it is crucial that the measurement involved only gives information about
which qubit experienced an error, but gives no information about the amplitudes
α and β of the encoded quantum state. Otherwise the quantum coherence would
be destroyed. To do so, we can use the fact that the encoded state α|000〉 + β|111〉
is an eigenstate of both observables σ̂A

z σ̂
B
z and σ̂B

z σ̂
C
z with eigenvalue +1 for all

α, β, see as an example Figure 7.2c. If for instance qubit C undergoes a bit flip,
the measurement of σ̂B

z σ̂
C
z would result in −1 whereas the measurement of the

observable σ̂A
z σ̂

B
z would remain +1. This uniquely identifies that qubit C has

changed its state. However, no information is gained about the state |ψ〉. More
generally, with the four possible measurement outcomes of σ̂A

z σ̂
B
z and σ̂B

z σ̂
C
z (the

error syndrome) we can determine on which qubit the bit flip occurred. For the
results (+1,+1), (+1,−1), (−1,+1) or (−1,−1), no qubit, qubit C, qubit A or
qubit B are flipped, respectively. To perform a fault-tolerant measurement of
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7 Realization of the Toffoli gate
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Figure 7.2: [a) and b)] Real and imaginary part of the measured density matrix of
the three-qubit GHZ state. c) Measured expectation values of the Pauli operators
P̂ for the three-qubit GHZ state. Wireframes indicate the theoretically expected
values. The fidelity is F = 0.82.
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7.2 Toffoli gate

•

• =

• • • • Rπ/4z

• • R−π/4z R−π/4z Rπ/2z

H R−π/4z Rπ/4z R−π/4z Rπ/4z H

Figure 7.3: Quantum circuit implementation of the Toffoli gate using only two-
qubit cnot gates and single-qubit operations

the error syndrome, additional ancilla qubits would be required. However as
a proof of principle we can perform the decoding circuit shown in Figure 7.1
which maps the error syndrome onto the populations of the ancilla qubits A and B:
(+1,+1)→ |00〉AB, (+1,−1)→ |11〉AB, (−1,+1)→ |10〉AB and (−1,−1)→ |01〉AB.
In other words, if a bit flip occurred on qubit C, the ancilla qubits would be in
state |11〉. Applying a Toffoli gate, which performs a not operation on qubit C
conditioned on the state of qubits A and B, then allows to correct for the error on
qubit C.

Similar to the bit-flip error correction code, the quantum state can also be
protected against phase-flip errors, where the operation σ̂z|ψ〉 is applied to the
qubit with a probability p. The protocol only differs by the Hadamard gates shown
in Figure 7.1, and the syndrome measurements are performed by measuring the
observables σ̂A

x σ̂
B
x and σ̂B

x σ̂
C
x . If we want to protect the qubit from both errors at

the same time, the nine qubit Shor code can be used, which is a straightforward
combination of the bit and phase-flip codes described above. More details about
quantum error correction can be found in [Nielsen00, Gottesman09].

7.2 Toffoli gate

Implementing the Toffoli gate needed for the recovery step involved in the error
correcting scheme shown in Figure 7.1 is demanding. The best known decompo-
sition into single-qubit and cnot operations as depicted in Figure 7.3 [Nielsen00,
Barenco95], consists of six cnot and ten single-qubit gates. With the accuracy
of our gates however, the process fidelity of the Toffoli operation according to
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7 Realization of the Toffoli gate

this scheme would be lower than FP < 0.5. Here we demonstrate a method to
significantly reduce the number of elementary gates needed, by exploiting the third
energy level of the transmon qubit [Fedorov12]. This scheme requires in total two
qubit-qutrit, one qubit-qubit and two single-qubit operations, which allows us to
realize the Toffoli gate with a process fidelity of FP = 69%, extracted from full
process tomography. A similar approach [Mariantoni11b] to realizing character-
istic features of a Toffoli-class gate has been demonstrated with two qubits and
a resonator and achieved a limited characterization considering only the phase
fidelity. A slightly different approach, using the third and also the fourth level of
the transmon qubit, was used by Reed et al. [Reed12] for the realization of the
quantum error correction discussed above. However, their gate only approximates
the Toffoli gate, and differs by a spurious two-qubit phase which is not relevant in
this specific error correction scheme.

In the conventional realization of the Toffoli gate, a not operation is applied to
the target qubit (C) if the control qubits (A and B) are in the state |11〉. In our setup,
it is more natural to construct a variation of the Toffoli gate shown in Figure 7.4a,
in which the state of the target qubit is inverted if the control qubits are in |01〉. This
gate can easily be transformed to the conventional Toffoli gate by a redefinition of
the computational basis states of qubit A or by applying two π-pulses on qubit A.

The Toffoli gate can be constructed from a controlled-controlled-phase (ccphase)
gate sandwiched between two Hadamard gates, realized using ±π/2 rotations about
the y axis, acting on the target qubit. The ccphase gate leads to a phase shift of
π for the state |1〉 of the target qubit if and only if the control qubits are in state
|01〉. In other words, this corresponds to a sign change of only one of the eight
computational three-qubit basis states: |011〉 ↔ −|011〉.

The basic idea of “hiding” states by transforming them into non-computational
states to simplify the implementation of the Toffoli gate was theoretically proposed
in References [Ralph07, Borrelli11] and has been experimentally implemented for
linear optics and ion trap systems [Lanyon09, Monz09]. The implementation of the
scheme of Reference [Ralph07] in our setup would require three cphase gates, six
single-qubit and two single-qutrit operations. Instead, we construct the ccphase gate
from a single two-qubit cphase gate and two qubit-qutrit gates. The latter gates are
called π-swap and 3π-swap, respectively (Figure 7.4b, red frames). The application
of a single cphase gate to qubits B and C (Figure 7.4b, blue frame) inverts the sign
of both |111〉 and |011〉. To create the ccphase operation, the computational basis
state |111〉 is transferred to the non-computational state i|201〉 by the π-swap gate,
effectively hiding it from the cphase operation acting on qubits B and C. After the
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7.2 Toffoli gate

=

A

C

B
π 3π

Rπ/2
y

 

(a) (b)

  

=
2π

Rπ/2
-yRπ/2

yRπ/2
-y

|11x〉 → i|20x〉 i|20x〉 → |11x〉

|x11〉 → −|x11〉

Figure 7.4: a) The Toffoli gate can be decomposed into a ccphase gate and ±π/2
rotations about the y axis. b) The ccphase gate is implemented with two two-
qubit/qutrit gates between qubit A and B (red) which hide (recover) the state |11x〉
into (from) |20x〉, such that only the state |011〉 adds a phase when applying the
controlled-phase gate between qubit B and C (blue).

path initial state after π-swap after cphase gate after 3π-swap
1 |011〉 |011〉 −|011〉 −|011〉
2 |11x〉 i|20x〉 i|20x〉 |11x〉
3 |x0y〉 |x0y〉 |x0y〉 |x0y〉
3 |010〉 |010〉 |010〉 |010〉

Table 7.1: List of states after each step of the ccphase gate

cphase operation, |111〉 is recovered from the non-computational level i|201〉 by the
3π-swap gate.

All three-qubit basis states show three distinct evolution paths through our
ccphase gate, see Table 7.1. Only the input state |011〉 is affected by the cphase gate
acting on qubits B and C, which transfers |011〉 to the desired state, −|011〉. The
states |11x〉 with x ∈ {0, 1} are transferred by the π-swap gate to the states i|20x〉.
The subsequent cphase gate therefore has no influence on those states. The last
gate (3π-swap) transfers i|20x〉 back to |11x〉. Together the two swap gates realize a
rotation by 4π, such that the state |11x〉 does not acquire any extra phase relative to
the other states. The states of the last group (|010〉 and |x0y〉 with y ∈ {0, 1}) do not
change during the ccphase gate sequence.
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7 Realization of the Toffoli gate

7.2.1 Gate calibration

I have already discussed the realization of the cphase gate using the interaction
between |11〉 and |20〉 in Section 6.2.3. I am thus going to focus here on the actual
experimental implementation and accurate calibration of the swap gates and on
specific points that need to be considered when hiding the computational |11〉 state
into the non-computational |20〉 state.

SWAP calibration

The swap gate is based on the same interaction as the cphase gate. There the state
|11〉 is non-adiabatically tuned into resonance with |20〉 using a short magnetic flux
pulse. The system then oscillates between this pair of states with a frequency 2J10.
Waiting for an interaction time 2π/2J10 that corresponds to one full period of the
oscillation, the cphase gate is realized. Choosing an interaction time π/2JAB

10 = 7 ns
or 3π/2JAB

10 = 21 ns instead, realizes a π-swap (sometimes also referred to as the
iswap-gate) and a 3π-swap between qubits A and B, respectively. For the accurate
operation of the Toffoli gate, it is important that these swap operations fully swap
the state |11〉 to |20〉 without leaving any residual population in |11〉. A coarse
calibration of the length L and amplitude ∆A of the flux pulse is carried out by
measuring the |11〉 ↔ |20〉 oscillations as shown in Figure 6.13. The optimal value
∆A0, where |11〉 is on resonance with |20〉, is found by determining the ∆A for
which the oscillation frequency is minimal. From a single trace with amplitude
∆A0 we then extract the L0 required for the π- and 3π-swap. However, further
fine tuning is required for two reasons. First, the determination of ∆A0 and L0
from these oscillations is inaccurate. This is because the oscillation frequency
and the population around ∆A0 and L0, respectively, are to first order insensitive
to variations in ∆A and L. Second, the individual calibration of subsequent flux
pulses is affected by long term drifts on the millisecond timescale. These drifts are
believed to be caused by heating or persistent on-chip currents.

In order to include the influence of subsequent flux pulses in the calibration, we
fine tune the coarse calibration of each flux pulse within the full flux pulse sequence
of the Toffoli gate, instead of calibrating each flux pulse on its own. The pulse
scheme to calibrate the π-swap is shown in Figure 7.5a as an example. In order to
understand how this works let us take a look at the evolution of the two-qubit states
of qubit A and B when going through each step in this pulse scheme, starting with
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Figure 7.5: a) Pulse scheme to accurately calibrate the length L and amplitude ∆A
of the flux pulse used for the π-swap gate. b) For each setting of ∆A or L, a Ramsey
type experiment is carried out on qubit B where the phase of the second π/2 pulse
is varied. The extracted amplitude of the Ramsey oscillation is then plotted as a
function of ∆A or L, respectively. Optimal values for ∆A and L are determined
by finding the minimal Ramsey oscillation amplitude. c) A similar scheme can be
used to calibrate the 3π-swap by placing the first π-pulse on qubit A in between the
two swap operations and applying RπxRπx12

Rπx after the 3π-swap on qubit A.
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7 Realization of the Toffoli gate

|00〉AB

|00〉AB
R̂πx⊗R̂π/2x
−−−−−−−−→ |10〉AB + |11〉AB, (7.2)
π−swap
−−−−−−−−→ |10〉AB +

√
1 − ε2|20〉AB + ε|11〉AB, (7.3)

R̂πx⊗Î
−−−−−−−−→ |00〉AB +

√
1 − ε2|20〉AB + ε|01〉AB, (7.4)

R̂πx12
⊗Î

−−−−−−−−→ |00〉AB +
√

1 − ε2|10〉AB + ε|01〉AB, (7.5)
3π−swap
−−−−−−−−→

√
1 − ε2 (|0〉A + |1〉A) ⊗ |0〉B + ε|0〉A ⊗ (|0〉B + |1〉B) . (7.6)

Here we have omitted the normalization and all dynamic phases acquired during
the frequency tuning of qubits A and B for simplicity, as the phases are not relevant
to understand the principle. Additionally, we assume that all gates are perfect with
the exception of the π-swap, which leaves a small but finite population ε in the |11〉
state. As we can see, the π-pulses on the 01 (Rπx) and 12-transition (Rπx12

) on qubit
A in between the two swap operations are used to eliminate the influence of the
3π-swap operation on the final state. This allows us to independently calibrate the
π-swap even in the presence of the 3π-swap gate in the end.

The imperfect π-swap operation leaves qubit B with small probability ε2 in a
superposition state, while for perfect operation (ε = 0) it completely returns to
the ground state, see Equation (7.6). The value of ε can be probed by measuring
qubit population as a function of the phase φ of the final π/2-pulse on qubit B. For
ε = 0, the final state is independent of φ and no oscillations are observed. On the
other hand, if ε > 0, the oscillation amplitude AR is equal to ε. Figure 7.5b shows
the dependence of AR as a function of the flux pulse amplitude ∆A and length L,
respectively, and optimal flux pulse calibration is found by finding the minimum of
AR(∆A, L).

A similar scheme is used to calibrate the 3π-swap, see Figure 7.5c, by applying
the first π-pulse to qubit A in between the two swap operations and applying
RπxRπx12

Rπx after the 3π-swap on qubit A.

Phase calibration

While most of the dynamic single-qubit phases acquired throughout the pulse
sequence can be adjusted at the very end by rotating the phase of subsequent
microwave pulses or single-qubit phase gates, the dynamic phase acquired by the
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7.2 Toffoli gate

state |20〉 during the hiding process must be compensated in between the swap
operations. This can be understood by analyzing the temporal evolution of the two
initial states |ψ1〉 = (|0〉A + |1〉A) ⊗ |0〉B and |ψ2〉 = (|0〉A + |1〉A) ⊗ |1〉B when hiding
|11〉 into |20〉 for a waiting time t

|ψ1〉 = (|0〉A + |1〉A) ⊗ |0〉B −→ (|0〉A + |1〉A) ⊗ |0〉B, (7.7)

|ψ2〉 = (|0〉A + |1〉A) ⊗ |1〉B
π−swap
−−−−−−−−−−→ |01〉AB + i|20〉AB (7.8)
waiting time t
−−−−−−−−−−→ |01〉AB + ieiφ2 |20〉AB (7.9)
3π−swap
−−−−−−−−−−→ (|0〉A + eiφ2 |1〉A) ⊗ |1〉B (7.10)

Again, we assume that the frequency tuning of the qubits does not acquire any
dynamic phase without loss of generality, as these are easily corrected after the
full pulse sequence. While |ψ1〉 remains unchanged, |ψ2〉 acquires a dynamic phase
φ2 = α · t determined by the anharmonicity αA of qubit A and the time t. This is
because the phase of |11〉 rotates at a frequency ω = ωA

01 + ωB
01, whereas the phase

of |20〉 rotates with frequency ω − αA. For the correct realization of the Toffoli
gate however, these two states are required to have the same phase after the pulse
sequence, which is impossible to realize with single-qubit phase gates at the end of
the sequence.

Instead, we adjust the phase of |11〉 to be in phase with |20〉 before the 3π-swap
by tuning the amplitude ∆B of a short magnetic flux pulse applied on qubit B
before the cphase gate, see Figure 7.6a. The accurate value of ∆B is found by
measuring the dynamic phase of qubit A for |ψ1〉 and |ψ2〉 after the pulse sequence
with a Ramsey type experiment, where we apply a final π/2-pulse with phase φ on
qubit A and measure its population as a function of φ. We repeat this experiment
for different values of ∆B, until the two Ramsey oscillations are in phase, see
Figure 7.6b (red solid dots for |ψ1〉 and green open squares for |ψ2〉). Additionally,
we also make a control measurement for the case that qubit B and C are initially
prepared in |01〉BC (blue open triangles) and |11〉BC (orange stars). As expected, the
curve corresponding to |11〉BC is phase shifted by π, since the ccphase gate changes
the sign of |011〉. Fitting the data to a sine allows us to determine the dynamic
phase acquired by the qubit A. The same experiment is repeated for qubits B and C,
and the dynamic phases are compensated by rotating the phase of the subsequent
microwave pulses (tomography pulses).
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Figure 7.6: a) Pulse scheme to compensate for the dynamic phase acquired by |20〉
when hiding the state |11〉, by adjusting the amplitude of the flux pulse buffer ∆B
on qubit B. b) Ramsey oscillation experiment on qubit A where the phase of the
second π/2-pulse is varied, for qubits B and C in initially in the state |00〉 (red solid
dots), |01〉 (blue open triangles), |10〉 (green open squares) and |11〉 (orange stars),
respectively. Solid lines are fits to a sine to determine the overall dynamic phase
acquired by qubit A.

7.2.2 Gate characterization

We have characterized the performance of this realization of a Toffoli gate by
measuring the truth table and by full process tomography. The truth table depicted
in Figure 7.7 shows the population of all computational basis states after applying
the Toffoli gate to each of the computational basis states. It reveals the characteristic
properties of the Toffoli gate, namely that a not operation is applied to the target
qubit (C) only if the control qubits (A and B) are in the state |01〉. The fidelities
of the output states show a significant dependence on qubit lifetime. In particular,
input states with qubit A (with the shortest lifetime) in the excited state generally
have the lowest fidelity, indicating that the fidelity of the protocol is mainly limited
by the qubit lifetime. The fidelity of the measured truth table, Um, with respect
to the ideal one, Ut, namely FT = (1/8)Tr(UmUt) = 76.0%, shows the average
performance of our gate when acting on the eight basis states.

As an essential addition to the classical characterization of the gate by the truth
table, we have performed full three-qubit quantum process tomography and recon-
structed the process matrix, χm, to completely characterize the quantum operation
of the experimentally realized Toffoli gate. For this purpose, we prepared a com-
plete set of 64 distinct input states by applying all combinations of single-qubit
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Figure 7.7: Measured truth table of the Toffoli gate with truth table fidelity of 76%.

operations chosen from the set {Î, R̂π/2x , R̂π/2y , R̂πx} for each qubit, and performed
state tomography on the respective output states. The process matrix reconstructed
directly from the data (see Section 5.5.2 and Section A.2.2) has a fidelity of
FP = Tr(χm ·χt) = 70± 3% (the error represents a 90% confidence interval), where
χt is the ideal process matrix. Using a maximum-likelihood procedure [Ježek03]
to correct for unphysical properties of χm, we find that the obtained process matrix,
χML

m , has a fidelity of F = Tr(χML
m · χt) = 69% with expected errors at the level of

3%. In Figure 7.8a, χm shows the same key features as χt (Figure 7.8b).
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7 Realization of the Toffoli gate

Figure 7.8: Bar chart of the absolute value of the measured process matrix χML
m (a)

and ideal process matrix χt (b). The elements are displayed in the operator basis
{III, IIX, IIỸ , IIZ, IXI, IXX, . . . , ZZZ} and the process fidelity is 69%.
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7.3 Conclusion

7.3 Conclusion

In this chapter, we have experimentally demonstrated the two building blocks
needed for the most simple quantum error correction scheme. This is the preparation
of three-qubits in the bit-flip error correction code, and the realization of the three-
qubit Toffoli gate. To achieve the latter, a novel and efficient pulse scheme has been
found to decompose the Toffoli gate into only one two-qubit and two qubit-qutrit
operations, compared to the best known decomposition into two-qubit cnot and
single-qubit operations, which requires six cnot and ten single-qubit gates. Using
quantum process tomography, we have fully characterized the three-qubit operation,
and find a gate fidelity of ∼ 69%.
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8
Outlook

At the current state of the art, quantum algorithms [DiCarlo09, Yamamoto10,
Dewes11, Lucero12] and quantum operations [DiCarlo10, Mariantoni11b, Baur12,
Fedorov12] with up to three superconducting quantum bits have been achieved.
In these experiments, single-qubit operations could be realized with fidelities
> 99% [Chow10], and the fidelities of two-qubit operations of < 90% have mainly
been limited by the coherence time of the qubits. While these fidelities are good
enough for the demonstration of simple quantum operations with up to three qubits,
they are too low to perform experiments with more than four qubits.

An important step towards the realization of a scalable quantum computer with
superconducting transmon qubits was the recent increase of qubit coherence by a
factor of 100 to almost 1 ms by coupling a transmon qubit to the electromagnetic
field inside a three dimensional microwave cavity [Paik11, Rigetti12]. Eventhough
this architecture does not seem to be as well suited for scalable quantum com-
putation as the on-chip circuit QED architecture, it allowed to identify the main
source of decoherence in transmon qubits. As already suspected several years
ago [Martinis05], the most significant contributor is likely the dielectric loss due
to two-level states at metal to air and metal to substrate interfaces. Due to the
10 − 100 times larger size of the transmon qubit in these 3D cavities, the electric
field between the two electrodes of the transmon qubit is significantly smaller,
which in turn makes the qubit less sensitive to surface dielectric loss, in agreement
with the experimental results.

An immediate goal for the future should be to try to implement high fidelity gate
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8 Outlook

operations between two qubits coupled to the same 3D cavity, by using techniques
already developed for the planar circuit QED architecture. One example could be
to use sideband transitions [Blais07, Leek09, Leek10] as described in Section 6.1.
Because not many more than two qubits can be coupled within such a 3D cavity,
one then needs to start thinking about how to couple two qubits within two distinct
3D cavities.

Another approach could be to try to increase the coherence times of the trans-
mon qubits coupled to the coplanar waveguide resonators with the help of the
insights gained from the 3D cavity experiments. First results in this direction
have already been made [Chow12], by increasing the gap between the transmon
electrodes from ∼ 2 µm to 10 µm. Using such a design, the authors demonstrate
coherence times of ∼ 10 µs and single and two-qubit gate operations exceed-
ing 95%. These are no longer limited by qubit coherence, but rather by sys-
tematic errors in the pulse calibration. More sophisticated methods to calibrate
gate operations should therefore be developed. Furthermore, the increased co-
herence could open the door to implement quantum teleportation of a single-
qubit [Bennett93] and two-qubit [Rigolin05] states including full quantum feed-
back, entanglement swapping [Żukowski93, Pan98] or even quantum simulation
of Hamiltonians [Gerritsma10, Kim10, Ma11, Lanyon11], by scaling the system
to more than three qubits.

Eventhough the current fidelities of quantum operations are rather large, they are
still too low for large scale quantum computation. As an example, the full quantum
algorithm to factor a number 15 requires 4608 gates operating on 21 qubits. It
is thus clear, that a quantum computer can probably never be realized without
quantum error correction. First experiments in this direction have been made by
demonstrating the most basic quantum error correction scheme [Reed12], which is
however not fault tolerant and only corrects for either bit or phase flip errors. Next
hallmark experiments would therefore be to realize codes that correct for arbitrary
errors, such as the 7 qubit Steane code [Steane96a], and to realize simple fault
tolerant error correcting codes [Nielsen00] with the big goal in mind to demonstrate
a logical qubit, consisting of many physical ones, that never decays. Probably the
most promising fault tolerant error correction schemes for superconducting qubits
are based on two-dimensional surface codes [Dennis02, Kitaev03, DiVincenzo09].
The error per gate operation threshold for these codes is estimated to be on the
order of several percent, close to the values reached in current superconducting
qubit experiments. A first layout, consisting of a grid of resonators and four qubits
coupled to each of them, is proposed as a possible implementation of the surface
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code [DiVincenzo09]. A major step forward would be to demonstrate simple
realizations of such qubit-resonator grid structures and then try to scale it up to
demonstrate the working principle of surface codes.

183





A
Appendix

A.1 Derivation of the phase ramping for DRAG

The reduced anharmonicity of the transmon qubit requires the use of optimal
control techniques to realize fast single qubit operations with high fidelity. As
described in Section 5.4.2, we use derivative removal by adiabatic gate (DRAG)
pulses [Motzoi09, Gambetta11] for this purpose. In the derivation for the required
pulse shape, the authors assume accurate real time control of the qubit frequency.
In experiments however, this is difficult as the relation between the current applied
to the flux line and the qubit frequency must be carefully calibrated. Instead,
we can replace δ1(t) = ω01(t) − ωd, where ωd is the drive frequency, with phase
ramping since we can accurately control the phase of the drive applied to the qubit.
The Hamiltonian of a three-level system including a drive with amplitude ε(t),
frequency ωd and a constant and time varying phase φ0 and φ(t), has the following
form

Ĥ =

2∑
k=1

ωk|k〉〈k| +
ε(t)
2
λk

(
ei(ωdt+φ(t)+φ0) + e−i(ωdt+φ(t)+φ0)

)
(|k − 1〉〈k| + |k〉〈k − 1|) .

(A.1)
Here, ω2 = ω1 +αwith α being the anharmonicity of the qubit and λ1 = 1, λ2 =

√
2

weights the relative coupling strength of the 01- and 12-transition, which is a good
approximation to the actual matrix elements (3.90) of a transmon qubit. Only
the drive terms between nearest neighbor energy levels are taken into account
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since other transitions are strongly suppressed due to the near harmonicity of the
transmon. After performing the rotating wave approximation, the Hamiltonian
reads

ĤRWA =

2∑
k=1

ωk|k〉〈k| +
ε(t)
2
λk

(
ei(ωdt+φ(t)+φ0)|k − 1〉〈k| + h.c.

)
. (A.2)

We use a rotating frame by applying the unitary transformation

Û = exp(i
2∑

k=1

k(ωdt + φ(t))|k〉〈k|). (A.3)

In this frame, the Hamiltonian ĤRWA
RF = ÛĤRWAÛ t − iÛ ˙̂U t reads

ĤRWA
RF =


0

ε

2
eiφ0 0

ε

2
e−iφ0 ω1 − ωd − φ̇(t) λ2

ε

2
eiφ0

0 λ2
ε

2
e−iφ0 α + 2ω1 − 2ωd − 2φ̇(t)



=


0

εx(t) + iεy(t)
2

0
εx(t) − iεy(t)

2
ω1 − ωd − φ̇(t) λ2

εx(t) + iεy(t)
2

0 λ2
εx(t) − iεy(t)

2
α + 2ω1 − 2ωd − 2φ̇(t)


,

(A.4)

where εx(t) = ε(t) cos(φ0) and εy(t) = ε(t) sin(φ0). Note here that the definition of
εy in the DRAG paper [Motzoi09, Gambetta11] differs by a factor of −1 from the
one used above! This relates to the fact that in the DRAG paper, the phase of the
drive is φ0 = −π2 for a y-pulse, whereas in the above definition it is φ0 = +π

2 . Let
us now consider the two cases, where first the drive frequency matches the qubit
frequency (ωd = ω1), and second the drive is slightly off-resonant from the qubit.

Resonant case

Comparing the two Hamiltonians (5.11) and (A.4) for the condition whereω1−ωd =

0, we find that the negative derivative of the time dependent phase of the drive must
be equal to the qubit frequency shift −φ̇(t) = δ1(t). Thus, an equivalent effect can
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Figure A.1: The time dependent phases during a DRAG pulse with phase ramping,
with a standard deviation of σ = 3 ns, truncation 2 and a maximal Rabi frequency
of 100 MHz. The total duration of the pulse is 12 ns. Left panel: Phase ramping in
the resonant case. Right panel: Phase ramping in the off-resonant case.

be made use of by phase ramping

φ(t) = −

∫ t

0
δ1(s)ds. (A.5)

An example of this phase ramping for a typical DRAG pulse is shown in the left
panel of Figure A.1. The phase starts from zero, increases monotonically and ends
at a value bigger than zero. If a second pulse is applied, the next phase ramp needs
to start with the phase at the end of the previous pulse. This means that for this
implementation, the phases of all previous pulses has to be tracked.

Off-resonant case

Let us assume, that the drive is slightly detuned from the qubit frequency by the
average value of the time dependent qubit frequency pull discussed in the DRAG
paper [Motzoi09, Gambetta11] (ω1 − ωd = δaverage), with

δaverage =
1
tg

∫ tg

0
δ1(t)dt. (A.6)

Here, tg is total length of the pulse. If we now compare the two Hamiltonians (5.11)
and (A.4), we find δaverage − φ̇(t) = δ1(t). Solving this differential equation results
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in

φ(t) = −

∫ t

0
(δ1(s) − δaverage)ds, (A.7)

which is identical to the phase ramping described in the DRAG paper. An example
for a typical DRAG pulse is shown in the right panel of Figure A.1. The difference
to (A.5) is that here, the phase at the beginning and end of the pulse is zero. We thus
don’t have to track the phases of all previous pulses in a pulse train. However, since
the drive is off-resonant, phase is accumulated during the waiting time between
pulses. This phase has to be tracked and added accordingly to the pulses. This
version of phase ramping has therefor no advantage over (A.5) and only adds
complexity due to the off-resonant driving.

A.2 Quantum state and quantum process tomography

A.2.1 State maximum-likelihood estimation

In order to experimentally determine an expectation value of a Hermitian operator
〈M̂k〉, a single measurement of the operator M̂k is not enough. The experiment
must be repeated N times, and the statistical mean of all measurement outcomes
gives an estimate mk of 〈M̂k〉. Even for a perfect measurement apparatus how-
ever, this estimate always has a statistical uncertainty (a standard deviation of
1/
√

N), which only goes to zero for infinitely many repetitions of the experiment.
Furthermore, in real experiments, additional noise is added due to an imperfect
measurement apparatus. The perfect reconstruction of a quantum state from the
measured estimates mk with quantum state tomography is thus not possible. Instead,
we can find the state, which is most likely to yield mk. In this maximum-likelihood
estimation, one assumes that the mk obey the Gaussian probability distribution

p(mk |ρ̂) =
1

√
2πσk

e−
(
mk −Tr(M̂k ρ̂)

)2
/(2σ2

k ), (A.8)

with the standard deviation σk. The most likely state ρ̂ is then found by maximizing
the likelihood function

L =
∏

k

1
√

2πσk
e−(mk −Tr(M̂k ρ̂))2/(2σ2

k ), (A.9)

188



A.2 Quantum state and quantum process tomography

or by minimizing the log likelihood function [James01]

Llog =
∑

k

1
2σ2

k

(mk −Tr(M̂k ρ̂))2. (A.10)

We can further assume that σk = σk′ for all k = k′, since the main contribution to
the noise is amplifier noise, whose magnitude is independent of the measurement
observable. Minimizing the log likelihood function (A.10) is then equivalent to
minimizing [Smolin12]

‖µ̂ − ρ̂‖22 = Tr[(µ̂ − ρ̂)2] =
∑

i j

|µi j − ρi j|
2, (A.11)

where µ̂ is the non-physical noisy “density” matrix reconstructed with state to-
mography from the noisy measurement results mk. By construction, this matrix
is Hermitian and has trace 1, but may have negative eigenvalues. In practice,
Equation (A.11) is minimized with standard minimization functions, such as Find-
Minimum in Mathematica 8.0. Finding the solution however can be computationally
expensive. As shown by Smolin et al. [Smolin12], one can do much better by real-
izing that the 2-norm is basis independent, such that we can use an eigenbasis of µ̂.
Due to the square in Equation (A.11), it is clear that ρ̂ is also diagonal in this basis
because all off-diagonal terms could only increase the 2-norm. To find the most
likely physical density matrix (positive-semidefinite, Hermitian with trace 1) we
just need to minimize∑

i

(µi − λi)2 such that
∑

i

µi =
∑

i

λi and λi ≥ 0. (A.12)

This can be accomplished very efficiently using this algorithm1 [Smolin12]

1. Calculate the eigenvalues and eigenvectors of µ̂. Arrange the
eigenvalues in order from largest to smallest. Call these µi,
|µi〉, 1 ≤ i ≤ d, where d is the dimension of the density matrix.

2. Let i = d and set an accumulator a = 0.

3. If µi + a/i is non-negative, go on to step 4. Otherwise, set λi = 0
and add µi to a. Reduce i by 1 and repeat step 3.

1We have implemented this algorithm in Mathematica which can be found in the StateTomography.m
library under the name MLState.

189



A Appendix

4. Set λ j = µ j + a/i for all j ≤ i.

5. Construct ρ̂ =
∑

i λi|λi〉〈λi|.

A.2.2 Quantum process tomography

Assume that we are given a black box which performs an arbitrary quantum
operation on a quantum system ρ̂ and returns ρ̂′

ρ̂′ = E(ρ̂). (A.13)

This process is fully described by a linear, completely positive map E from the set
of density operators onto itself, and includes the dynamics of any unitary operation,
measurement or decoherence. It can be shown, that (A.13) can be written in the
operator-sum representation

E(ρ̂) =
∑

k

Êkρ̂Ê†k , (A.14)

where the operation element (also called Kraus operators) Êk satisfy
∑

k Ê†k Êk ≤ Î.
Equality is given if the quantum process is trace preserving, which means that the
trace of ρ̂′ is equal to the trace of ρ̂. The goal of quantum process tomography is to
determine all the Êk’s, which fully describe the quantum process E.

There are four different common approaches to process tomography. (1) Stan-
dard quantum process tomography [Chuang97, Poyatos97, Childs01, O’Brien04]
which involves preparing a complete set of input states, applying the quantum
process to be characterized to each of them, and then performing quantum state
tomography on every output. (2) Ancilla-assisted process tomography which
introduces an extra ancilla qubit and involves the preparation and tomography
of only one input state of the combined system, rather than a set of input
states [D’Ariano01, Altepeter03, D’Ariano03]. (3) As a special case of ancilla-
assisted process tomography, entanglement-assisted process tomography describes
the situation where the ancilla is initially maximally entangled with the system
being characterized. (4) Single-measurement ancilla-assisted process tomography
has also been proposed [Mohseni06], where a single joint measurement of the
system under consideration combined with an ancilla system is performed on a set
of input states. No state tomography is required in this case.

Depending on the experimental system that is used, one or the other implementa-
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tion might be easier to realize. In this thesis, I only present the standard quantum
process tomography in more detail. I will closely follow the derivation given in the
book by Nielsen & Chuang [Nielsen00].

In order to determine the Kraus operators Êk from experimentally extracted
expectation values, it is convenient to first transform Equation (A.14) into the so
called χ matrix representation. To do so, choose a fixed basis { ˆ̃Ek} for the operators
Êk on the state space and express the operation elements as a linear combination of
the basis states Êk =

∑
m ekm

ˆ̃Em, where the coefficients ekm are complex numbers.
Substituting Êk in Equation (A.14) we may rewrite the equation in the χ matrix
representation

E(ρ̂) =
∑
mn

ˆ̃Emρ̂
ˆ̃E†nχmn, (A.15)

where χmn =
∑

i eime∗in is a positive semidefinite Hermitian matrix and has trace
one if the quantum process is trace preserving. Since ˆ̃Em/n and ρ̂ are known, this χ
matrix completely describes the quantum process in the chosen operator basis. The
choice of basis is in principle arbitrary, but it is common to express the basis in
terms of the Pauli matrices σi and the identity matrix Î. We have chosen the basis
{Î, σ̂x, −iσ̂y, σ̂z}, where σ̂y is multiplied with −i to make all basis operators real.
This ensures that complex entries in operation elements appear as complex entries
in the χ matrix. The goal now is to determine χ experimentally from measurable
quantities.

To do so, we choose a fixed linearly independent basis { ˆ̃ρ j} for the space of
d × d matrices, where d is the dimension of the state space. Since the output of
a quantum process is always a density matrix, we may write the output state of a
quantum process applied to a basis element as a linear combination of the basis
matrices

E( ˆ̃ρ j) =
∑

k

λ jk ˆ̃ρk. (A.16)

In order to determine the complex coefficients λ jk experimentally, we measure the
output state E( ˆ̃ρ j) for all basis states with quantum state tomography. λ jk is then
extracted by solving the set of linear equations (A.16). The choice of the basis
states { ˆ̃ρ j} is again arbitrary, up to the fact that they have to be experimentally
realizable. We have chosen ˆ̃ρ j → {|0〉〈0|, |1〉〈1|, |−〉〈−|, |+〉〈+|} for single qubit
quantum process tomography, and all the tensor products of these for n-qubit QPT.
Here |−〉 = (|0〉 − i|1〉)/

√
2 and |+〉 = (|0〉 + |1〉)/

√
2.

The goal now is to extract the process matrix χ from the experimentally deter-
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mined λ. For this, we may write

ˆ̃Em ˆ̃ρ j
ˆ̃E†n =

∑
k

βmn
jk

ˆ̃ρk, (A.17)

where β is a complex matrix which can be determined without any measurements
from the given ˆ̃Em and ˆ̃ρ j. From Equations (A.15,A.16,A.17) and the linear
independence of the basis operators ˆ̃ρ j, it follows∑

mn

βmn
jk χmn = λ jk (A.18)

With the knowledge of β and λ, this system of linear equations can be solved for χ.2

Having determined χ, the operator-sum representation (A.14) for E is obtained in
the following manner. Let the unitary matrix Û† diagonalize χ such that the matrix
equation D = Û†χÛ is satisfied, where D is the diagonal matrix. The operation
elements are then constructed with the equation

Êk =
√

Dkk

∑
j

Û jk
ˆ̃E j. (A.19)

As a summary, process tomography involves the following steps:

1. Chose a fixed linearly independent basis { ˆ̃ρ j} for the space of d × d matrices
and perform state tomography on the output of the quantum process applied
to all basis states. Extract from this measurement the matrix λ.

2. Chose a fixed basis { ˆ̃Ek} for the space of operators acting on the state space
and calculate the matrix β for the given basis ˆ̃ρ j.

3. Calculate the χ matrix from the knowledge of λ and β.

A.2.3 Process maximum-likelihood estimation

As for quantum state tomography (see Section A.2.1), the χ matrix obtained with
the procedure explained above is not necessarily physical due to the presence
of noise on the measurement signal. Therefore, the goal is to find the physical
matrix χML (which describes a completely positive map and is Hermitian) that is

2For example in Mathematica 8.0 with the LeastSquares function.
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most likely to give the measured data and fulfills the additional trace preservation
constraint

∑
mn χmn

ˆ̃E†n ˆ̃Em = Î. To accomplish this task we first write a Hermitian
parametrization of χML using the Cholesky decomposition

χML(~t) = T †T, (A.20)

where T is a lower triangular matrix parametrized by the vector ~t. If we assume
that the measured data m jk are normally distributed (A.8), then we can find the
closest χML by minimizing the function [O’Brien04]

L(~t) =
∑

jk

m jk −
∑
mn

χML
mn (~t)Tr(M̂k

ˆ̃Em ˆ̃ρ j
ˆ̃E†n)

2

(A.21)

+ λ
∑

i

∑
m,n

χML
mn (~t)Tr( ˆ̃Em

ˆ̃Ei
ˆ̃E†n) − Tr( ˆ̃Ei)

 . (A.22)

Here, m jk is the measurement outcome for the case that the state ˆ̃ρ j was prepared
and the observable M̂k was measured, and λ is the Lagrange multiplier. To solve
this minimization problem we use the iterative algorithm described in [Ježek03].

A.3 Entanglement classes

While most physicists are familiar with entanglement between two quantum sys-
tems, the properties of entanglement between multiple quantum systems are typi-
cally less well known. Besides the fully separable and fully entangled states, there
also exist many types of partial separability. Additionally, the different types of
entanglement can then be further divided into different entanglement classes. I thus
shortly review the basic principles for tripartite systems.

Let us first consider a pure three-qubit state. It is called fully separable, if states
|α〉A, |β〉B and |γ〉C of the three subsystems can be found such that the three-qubit
state can be written as

|ψfs〉ABC = |α〉A ⊗ |β〉B ⊗ |γ〉C . (A.23)

A state is called biseparable, if it is not fully separable, but can be written as a
product between a one-qubit and a non-separable two-qubit state |δ〉. The three
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possibilities of grouping the quantum systems are

|ψbs〉A(BC) = |α〉A ⊗ |δ〉BC , (A.24)

|ψbs〉B(AC) = |β〉B ⊗ |δ〉AC , (A.25)

|ψbs〉C(AB) = |γ〉C ⊗ |δ〉AB. (A.26)

A three-qubit state is genuine tripartite entangled, if it is neither fully separable
nor biseparable. This type of states can further be classified into the GHZ and the
W class. Even though the states in both classes are genuinely tripartite entangled,
they cannot be transformed into each other using stochastic local operations and
classical communication [Dür00]. An example for a state in the GHZ and W class,
respectively, is the Greenberger-Horne-Zeilinger (GHZ) state [Greenberger90]

|GHZ3〉 =
1
√

2
(|000〉 + |111〉) , (A.27)

and the W state [Dür00]

|W3〉 =
1
√

3
(|001〉 + |010〉 + |100〉) . (A.28)

These states have a significantly different entanglement robustness against particle
loss. While |GHZ3〉 turns into a separable state ρ̂AB = TrC (|GHZ3〉〈GHZ3|) =∑

i〈i|C |GHZ3〉〈GHZ3||i〉C , the reduced density matrix of the W state ρ̂AB =

TrC (|W3〉〈W3|) remains entangled.

The definition of separability can readily be extended to mixed states. A mixed
state ρ̂fs is called fully separable, if it can be written as a convex combination of
fully separable pure states

ρ̂fs =
∑

i

pi|ψ
fs
i 〉〈ψ

fs
i |, (A.29)

with probabilities pi ≥ 0. A state ρ̂bs is biseparable, if it is not fully separable, but
can be written as a convex combination of pure biseparable states

ρ̂bs
A(BC) =

∑
i

pi|ψ
bs
i 〉〈ψ

bs
i |, (A.30)

where each |ψbs
i 〉 is biseparable with respect to at least on of the three possible
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partitions (A(BC), B(AC), C(AB)). Finally, a state ρ̂ is genuinely tripartite entangled
if it is neither fully separable nor biseparable. Again there are the two different
entanglement classes, and they can be written as convex combinations of the pure
GHZ or W class states, respectively. A graphical representation of the convex sets
of the different entanglement classes is shown in Figure A.2.

A.4 Entanglement measures

In any experiment that creates entangled states, we would like to be able to ensure
that entanglement really was produced, to determine the type of entanglement
and further to quantify the degree of entanglement in the system. There are
many ways to accomplish this task, including entanglement monotones to quantify
entanglement (shortly introduced in this section) and entanglement witnesses to
detect entanglement (Section A.5). More information can be found in the review
articles [Horodecki09, Gühne09, Plenio07].

The two properties that any entanglement measure E(ρ̂) should posses are the
following [Bennett96, Horodecki09]

1. E(ρ̂) = 0 if ρ̂ is separable,

2. Monotonicity under LOCC: Entanglement cannot increase under local opera-
tions and classical communication (LOCC). For any LOCC operation Λ the
following must be fulfilled

E(Λ(ρ̂)) ≤ E(ρ̂). (A.31)

Any function E satisfying these conditions is called an entanglement monotone,
and is used to quantify the degree of entanglement present in a state ρ̂. More
specifically, for a bipartite system, it gives E(ρ̂) = 0 for a separable state, and
monotonically increases as the amount of entanglement is increased. A state ρ̂
is called maximally entangled, such as a Bell state, if E(ρ̂) is maximal. For a
multipartite entangled state, this mapping is not that simple anymore. The term
maximal entanglement is no longer well defined, since it depends on the chosen
entanglement measure. Additionally, one needs to distinguish between many
different classes of entanglement. Some examples of entanglement monotones for
bipartite and tripartite systems are the concurrence, entanglement of formation and
three tangle, as described in Section A.4.2, Section A.4.3 and Section A.4.4.
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A.4.1 Convex roof extension

When searching for new entanglement monotones, it is often easiest to first define
one for pure states E(|ψ〉). It can then be extended to mixed states by the convex
roof construction [Uhlmann98]

E(ρ̂) = inf
∑

i

piE(|φi〉). (A.32)

Here, the infimum is taken over all possible decompositions of ρ̂ into pure states, i.e.
over all pi and |φi〉 for which ρ̂ =

∑
i pi|φi〉〈φi|. The optimization of Equation (A.32)

is in general not straightforward to compute. There are only a few examples where
analytic results are known. One such example is the concurrence, see Section A.4.2.
For the other cases, the optimization can be performed numerically [Cao10].

A.4.2 Concurrence

An example of an entanglement monotone defined for bipartite entanglement is
the concurrence, which was first introduced by [Hill97] for pure states. Any pure
two-qubit state defined in the Hilbert space H = HA ⊗ HB can be written as a
linear combination of the computational basis states

|ψ〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉. (A.33)

The concurrence is then defined as

C(|ψ〉) = 2|a00a11 − a01a01|. (A.34)

Sometimes one can also find the definition [Horodecki09]

C(|ψ〉) =

√
2(1 − Tr[ρ̂2

A]), (A.35)

where ρ̂A = TrB|ψ〉〈ψ| is the reduced state of |ψ〉 on subsystem A. This monotone is
bounded between 0 for separable states and 1 for maximally entangled two-qubit
states.

There are two reasons why this measure is important. First, the concurrence is
directly related to the entanglement of formation of two qubits, see Section A.4.3.
Second, it can easily be extended to mixed states as the convex roof can be analyti-
cally computed [Wootters98]. Given the mixed state ρ̂, it is calculated according to
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the formula
C(ρ̂) = max

{
0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (A.36)

in which λ1, . . . , λ4 are the eigenvalues in decreasing order of the expression

ρ̂(σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗ σ̂y). (A.37)

A.4.3 Entanglement of formation

The entanglement of formation of a mixed two-qubit state ρ̂ [Bennett96] is the
minimum average entanglement of an ensemble of pure states that represents ρ̂. It
is closely connected to the von Neumann entropy [Gühne09]. For an arbitrary state
of two qubits, this quantity can directly be calculated from the concurrence C by
[Wootters98]

EF(ρ̂) = h

1 +
√

1 −C2(ρ̂)
2

 , (A.38)

h(x) = −x log2 x − (1 − x) log2(1 − x). (A.39)

EF(ρ̂) is a monotonically increasing function of the concurrence C and ranges from
0 to 1 as C goes from 0 to 1.

A.4.4 Three-tangle

The three-tangle τ3 (residual entanglement), as introduced in [Coffman00], is an
entanglement measure for pure three-qubit states |ψ〉 =

∑1
i, j,k=0 ai jk|i jk〉. It is

defined as
τ3 = C2

A(BC) −C2
AB −C2

AC . (A.40)

Here, CAB is the concurrence between qubit A and B, and CA(BC) is the concurrence
between qubit A and the other two qubits. Even though the state space of BC
is four dimensional, it makes sense to speak of the concurrence CA(BC), because
only two of those dimensions are necessary to express the state |ψ〉 (the two
dimensions that are spanned by the eigenstates of ρ̂BC corresponding to the nonzero
eigenvalues) [Coffman00]. We can thus regard A and BC as two qubits. This is true
because A is a qubit and the three-qubit state is pure. In words, Equation (A.40)
states that the full entanglement of A with BC consists of three forms: entanglement
with B, entanglement with C, and a three-way entanglement of the triplet. The

197



A Appendix

three tangle has the following properties:

• τ3 = 0 for any (bi-)separable state.

• τ3 = 1 for the GHZ class states, because each qubit pair is only classically
correlated (CAB = CAC = 0).

• τ3 may also vanish for some pure tripartite entangled states, which still
contain bipartite entanglement when tracing out one subsystem (CAB,CAC ,

0). An example is the W state, where τ3 = 0.

We can calculate the three-tangle for pure states using the equation [Coffman00]

τ3 = 4 |d1 − 2d2 + 4d3| , (A.41)

where

d1 = a2
000a2

111 + a2
001a2

110 + a2
010a2

101 + a2
100a2

011, (A.42)

d2 = a000a111a011a100 + a000a111a101a010 + a000a111a110a001

+ a011a100a101a010 + a011a100a110a001 + a101a010a110a001, (A.43)

d3 = a000a110a101a011 + a111a001a010a100. (A.44)

For mixed states, the three-tangle can numerically be computed via the convex roof
extension [Cao10].

A.5 Entanglement witnesses

One drawback of the entanglement monotones is the fact that one needs to recon-
struct the full density matrix in order to quantify the amount of entanglement a
state has. Furthermore, there may exist no entanglement measure for a certain
state, and if it exists, it may be computationally expensive to compute the con-
vex roof extension for mixed states. One therefore often makes use of so called
entanglement witnesses to determine whether an experimentally prepared mixed
state contains entanglement. An entanglement witness is formally defined as a
Hermitian operator Ŵ, which fulfills the following properties [Horodecki96]

Tr(Ŵρ̂s) ≥ 0 for all separable states ρ̂s,

Tr(Ŵρ̂e) < 0 for at least one entangled state ρ̂e. (A.45)
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fully 
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states
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class
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states
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Figure A.2: Schematic picture of the structure of mixed three qubit states that is
formed by a convex set of fully separable states surrounded by the convex sets of
biseparable (BS) and genuine tripartite entangled states (consisting of the W and
GHZ class). The different entanglement classes can be detected using a witness
Ŵ represented by a hyperplane (one of the red solid lines) that cuts the space into
two halfs. All states ρ̂ along the hyperplane give an expectation value Tr(Ŵρ̂) = 0.
The entanglement of the states on the left side is detected byW, as these states
give a negative expectation value.

Since Ŵ is a Hermitian operator, it is a measurable quantity and thus very useful
in experiments where the quantum state ρ̂ cannot fully be reconstructed. If one
measures a negative expectation value of the observable Ŵ, one knows for sure that
ρ̂ is entangled, otherwise, no information can be gained. One says that entanglement
of ρ̂ is detected by Ŵ if and only if Tr(Ŵρ̂) < 0.

In the same way, one can also define witness operators which can be used to
distinguish between different classes of multipartite entanglement. How this works
is best illustrated with Figure A.2. It visualizes the structure of mixed three qubit
states that is formed by a convex set of fully separable states surrounded by the
convex sets of biseparable (BS) and genuine tripartite entangled states (W and GHZ
class). These sets of states are cut into two halfs by a hyperplane (one of the red
lines depicted in Figure A.2, depending on the witness considered) corresponding
to an entanglement witness Ŵ, defined by the set of states for which Tr(Ŵρ̂) = 0.
All the states on the left side of the hyperplane are entangled and detected by Ŵ
since Tr(Ŵρ̂) < 0. All states on the right side give Tr(Ŵρ̂) ≥ 0, for which no
statement about the separability can be made.

An entanglement witness can be constructed by using the fact that states close
to an entangled pure state |ψ〉 must also be entangled. For a given entangled pure
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state |ψ〉 one can thus define down the witness operator [Gühne09]

Ŵ = αÎ − |ψ〉〈ψ|. (A.46)

Here,
α = max|〈φ|ψ〉|2 (A.47)

is the maximal overlap between |ψ〉 and all fully separable, biseparable or W class
pure states |φ〉, respectively, depending on which type of states one wants to exclude.
If we want to distinguish between the GHZ and the W class for example, we can
use the witness operator

ŴGHZ =
3
4

Î − |GHZ3〉〈GHZ3|. (A.48)

The constant 3/4 is the maximal overlap between the state |GHZ3〉 and all the pure
W class states [Acín01]. This means that if an experimentally prepared state ρ
has a fidelity larger than 0.75 with respect to |GHZ3〉, then we can be sure that we
prepared a GHZ class state.

A witness operator for detecting genuine tripartite entanglement around the GHZ
state |GHZ3〉 without distinguishing between the GHZ and W class is given by

Ŵ3 =
1
2

Î − |GHZ3〉〈GHZ3|, (A.49)

and around the W state |W3〉 it is

ŴW =
2
3

Î − |W3〉〈W3|. (A.50)

In general, the computation of α is not straightforward. If we are just interested in
the maximal overlap between a state |ψ〉 and all biseparable states however, a step
by step procedure is provided in [Bourennane04].
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