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Abstract

The realization of circuit quantum electrodynamics has created significant progress
in the control and the coupling of microwave photons and superconducting qubits
by trapping photons in an on-chip cavity. At the same time, research on quantum
dots has led to an increase of the understanding and the possibility of manipulating
single charge and spin states in experiments in a solid state environment.

In this thesis the coupling between the electromagnetic field of a superconduct-
ing coplanar waveguide resonator and semiconductor quantum dots is explored in
detail. We discuss the design of the chip layout and present the development of
the sample processing using different micro- and nanometer fabrication techniques
for our samples, combining these two systems on one chip. A setup is built for the
measurements, performed at cryogenic temperatures, to investigate the sample both
at microwave frequencies and in the sub-kHz regime.

In a first experiment, the dependence of the transport properties through the
quantum dot on the microwave field in the resonator is used to characterize the
resonator with the quantum dot signal.

Furthermore a double quantum dot is investigated by measuring the transmission
signal of the microwave resonator while varying gate voltages. The coupling to
the resonator is used to record the double dot charge stability diagram, normally
obtained with direct current measurements through the quantum dot or with charge
detection techniques.

The interaction between the quantum dot system and the microwave resonator
also allows us to explore finite frequency specific quantum dot physics. Using the
GHz frequency resonator as a probe, we are able to characterize the complex admit-
tance of a quantum dot coupled to its lead. We find that the sign of the reactance
changes depending on the ratio between the excitation frequency and the tunnel
coupling strength. The interpretation of the observations is based on a scattering
matrix model.

We investigate the resonator quantum dot system in the vicinity of an interdot
charge transfer line for different detunings and tunnel coupling strengths between
the charge states of the quantum dots. Along the interdot charge transfer line two
quantum dot energy levels are degenerate and an additional electron is either in
the bonding or anti-bonding state of the double quantum dot forming the prin-



cipal building block for a charge qubit. The measurements can be well described
with master equation simulations based on the Jaynes-Cummings Hamiltonian. The
modelling of the experimental results allows us to evaluate the coupling strength be-
tween the two systems and to estimate the dissipation and dephasing rates of the
charge states.

11



Zusammenfassung

Die Realisierung der Quantenelektrodynamik basierend auf elektrischen Schaltkreisen
hat bedeutenden Fortschritt in der Kontrolle und der Kopplung von Mikrowellen-
photonen und supraleitenden Qubits gebracht. Dazu wurden auf dem gleichen
Chip Qubits und Resonatoren fiir die Photonen realisiert. Zur gleichen Zeit hat
die Forschung an Quantenpunkten zu einer Zunahme des Verstandnisses einzelner
Ladungs- und Spinzustande in einem Festkorper gefiihrt und ermoglicht sie im Ex-
periment gezielt zu beeinflussen.

In der vorliegenden Doktorarbeit wird die Kopplung zwischen einem solchen
Resonator und einem Halbleiterquantenpunkt im Detail untersucht. Die Anordnung
und das Aussehen der einzelnen Komponenten der Chips und die Entwicklung der
zugehorigen Fabrikationsprozesse, die fiir unsere Proben verschiedene Mikrometer-
und Nanometer- Fabrikationstechniken umfassen, um die beiden Systeme auf einem
Chip zu realisieren, wird beschrieben.

Im Zuge der Doktorarbeit ist ein Messplatz gebaut worden, um die Proben sowohl
im Mikrowellenfrequenzbereich als auch im sub-kHz Bereich zu untersuchen.

In einem ersten Experiment benutzen wir die Abhéngigkeit der Transporteigen-
schaften durch den Quantenpunkt vom Mikrowellenfeld im Resonator, um den Re-
sonator mit Hilfe des Quantenpunktsignals zu charakterisieren.

Des Weiteren wird ein Quantenpunkt mit Hilfe des Resonatortransmissions-
signals untersucht. Die Kopplung zum Resonator wird verwendet, um das Ladungssta-
bilitdtsdiagramm zu messen, das normalerweise durch die Aufzeichnung des Stroms
durch den Quantenpunkt oder mittels Ladungsdetektionstechniken erhalten wird.

Die Wechselwirkung zwischen einem Quantenpunkt und dem Mikrowellenre-
sonator erlaubt uns auch Eigenschaften des Quantenpunkts bei endlicher Frequenz
zu untersuchen. So konnen wir mit Hilfe des Resonators die komplexe Impedanz
eines Quantenpunkts, der an seine Zuleitung tunnelgekoppelt ist, charakterisieren.
Als Ergebnis finden wir, dass das Vorzeichen des Blindwiderstandes sich in Abhéngigkeit
des Verhaltnisses zwischen Anregungsfrequenz und Tunnelkopplungsstarke andert.
Die Interpretation der Beobachtungen basiert auf einem Streumatrixmodell.

Wir untersuchen das Quantenpunkt-Resonator-System in der Umgebung der In-
terdottunnelkopplungslinie fiir unterschiedliche Verstimmungen zwischen den Energie-
niveaus der Quantenpunkte und fiir unterschiedliche Tunnelkopplungsstarken zwi-
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schen den Quantenpunkten. Entlang der Interdottunnelkopplungslinie sind zwei
Ladungszustande in den Quantenpunkten entartet und ein zusatzliches Elektron
befindet sich entweder im bonding oder anti-bonding Zustand des Doppelquanten-
punkts, was die Grundlage eines Ladungsqubits bildet. Die Messungen kénnen
sehr gut mit Hilfe einer Mastergleichungssimulation, die auf dem Jaynes-Cummings
Hamilton Operator beruht, beschrieben werden. Die Modellierung der experimentellen
Resultate erlaubt uns, die Kopplungsstarke zwischen den beiden Systemen und die
Dissipations- und Dephasierungsraten des Ladungszustandes abzuschatzen.
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Chapter 1

Introduction

“Zwei Dinge erfillen das Gemit mit immer neuer und
zunehmender Bewunderung und Ehrfurcht, je ofter und anhal-
tender sich das Nachdenken damit beschdftigt: Der gestirnte
Himmel iiber mir und das moralische Gesetz in mir.”

Immanuel Kant: Kritik der praktischen Vernunft (1788).

Research on semiconductor nanostructures has contributed significantly to the
understanding of the physics of charges and spins in a solid state environment [1-3].

Experiments on transport measurements through quantum dots [4, 5] revealed
shell structure, as known from atomic physics, when adding electrons one by one to
the dot [6]. Quantum dots are therefore often referred to as artificial atoms. They
were also used to study the interaction of light and charge being one of the most
fundamental processes in physics. In this context, resonant absorption of photons by
electrons localized in a quantum dot has been explored in transport measurements
of photon assisted tunneling (PAT) [7, §].

As individual electrons do not only carry charge but also spin, quantum dots
allow the study of spin physics [3]. For example experiments manipulating and
reading out single spins gave insight into their coherence properties [9, 10]. Spin
dephasing times exceeding 200 us using a spin-echo sequence could be achieved in
quantum dots fabricated on GaAs heterostructures [11] proving the large amount of
control on a single spin embedded in a solid state environment.

Cavity quantum electrodynamics (QED), the study of the coupling of matter to
light confined in a cavity [12], is traditionally studied with atoms. The spectrum of
the light is given by the quantized eigenstates of the field modes and depends on the
confinement caused by the cavity. If the energy of one of these field modes is close
to or at the transition energy of two states in the atom, the interaction between
the two systems can be investigated. The different field modes are well described
by a set of harmonic oscillators with different energies and the behavior of the two
involved states of the atom can be mapped to that of a spin. Thus in essence cavity



Chapter 1. Introduction

QED physics deals with phenomena related to the interaction between spins and
oscillators [13].

In the literature experiments for two distinct parameter settings, named the
strong coupling and the perturbative regime of cavity quantum electrodynamics,
are discussed [13]. In the strong coupling regime the coupling strength between the
quantized electromagnetic field and the atom is larger than the decay and dephasing
rates of the quantum mechanical state of the atom and the decay rate of the photons
from the cavity. This allows the observation of vacuum Rabi mode splitting [14].
In the perturbative coupling regime the coupling strength between the atom and
the photons is smaller than at least one of the other relaxation parameters in the
system. Here effects like the increase of the spontaneous decay rate of the atom
state inside the cavity, the Purcell effect, was studied [15].

Cavity QED has not only been studied with atoms but has also been investigated
in solid state systems such as self-assembled quantum dots [16]. The strong coupling
regime could be achieved with quantum dots of this kind and cavities for photons
in the nm regime [17, 18].

Furthermore, the realization of circuit QED [19], in which a single microwave
photon is trapped in an on-chip cavity and coherently coupled to a quantum two-level
system, has led to major advances in the study and control of the interaction between
microwave photons and superconducting qubits. In this field of research experiments
related to quantum computing were performed [20-23], but also quantum optics
experiments on a chip [24] were demonstrated. Combining the ideas developed for
circuit QED experiments with semiconductor quantum dots opens up the possibility
to explore and engineer the interaction between single electrons or even single spins
with single microwave photons in a solid state environment.

In this thesis, we describe the design, fabrication and investigation of devices
in which semiconductor quantum dots are coupled to a GHz-frequency high-quality
transmission line resonator. So far laterally defined quantum dots have typically
been investigated by direct current (DC) transport measurements [4] or by using
quantum point contacts for charge sensing [25]. Large bandwidth and low noise
detection are harnessed by using radio frequency (RF) techniques, e.g., for charge
sensing [26-29] or quantum capacitance measurements [30].

Our novel approach of combining semiconductor quantum dots with supercon-
ducting microwave resonators allows us to characterize the properties of the double
quantum dot by measuring both its dispersive and dissipative interaction with the
resonator. In addition to providing a new readout mechanism, this architecture has
the potential to isolate the dots from the environment and to provide long distance
coupling between spatially separated dots. These features are expected to improve
the feasibility of a quantum information processor [31] consisting of hybrid systems.
They have the potential advantage to allow the combination of the best features of
every system, such as a long relaxation time e.g. of spin qubits [32, 33] and interac-
tion between distant qubits mediated by a superconducting resonator as previously
demonstrated in circuit QED experiments [34, 35]. A number of proposals to use



microwave frequency techniques for scaling of quantum information processing ar-
chitectures based on quantum dots have been put forward recently [36-39].

Quantum dot-resonator samples are however not only suitable to work towards
hybrid quantum computing, but also to address basic topics of physics related to
the tunneling of a particle through a potential barrier which is a fundamental conse-
quence of quantum mechanics [40]. Research on transport experiments in semicon-
ductor quantum dots relies on the tunnel effect as a requirement to measure a charge
current through these devices. The transmission of the tunnel barriers themselves
can be investigated in detail over orders of magnitude e.g. by counting electrons
entering and leaving the quantum dot with a nearby charge detector [26, 41]. The
properties of quantum dots coupled via a tunnel barrier to the leads can not only be
studied with direct current (DC) bias [42], but also at finite frequency, measuring
the complex admittance [43, 44]. This gives information about the dynamics of the
electrons in the system. In this thesis we use the microwave resonator as a meter to
study the dynamics of an electron wavefunction in the quantum dot which is tunnel
coupled to the lead. In particular we investigate the relation between the quantum
dot lead coupling strength and the measurement frequency.

This thesis is structured in 8 chapters and the appendix. We start with a discus-
sion about the basic properties of single and double quantum dot physics in chapter
2. The fabrication of the samples and the design and construction of a new setup
for the characterization of the devices are presented in chapter 3. In addition to the
quantum dots, superconducting microwave resonators are the second key compo-
nent of our chips and their development and characteristics on a GaAs substrate are
presented in chapter 4. In chapter 5 first measurements of the interaction between
the two systems are discussed. The coupling is used to characterize the microwave
resonator with the nearby quantum dot. The following two chapters discuss the
measurements of quantum dot properties with the on-chip microwave resonator. In
chapter 6 we focus on the coupling between a lead and the quantum dot, measure
the complex admittance and discuss the data using a scattering matrix approach.
In chapter 7 the interdot coupling is investigated in detail with the microwave res-
onator. The data is interpreted using the Jaynes-Cummings model with the double
quantum dot considered as a two level system and the microwave resonator as a
harmonic oscillator with a single mode. The final chapter 8 summarizes the work,
relates it to other experiments and gives an outlook for future experiments. In the
appendix we discuss three sets of preliminary results obtained in this thesis. First
microwave measurements of double quantum dots at finite bias are presented fol-
lowed by microwave measurements of the double dot charge stability diagram for
very small tunnel coupling to the leads. At last we discuss first measurements and
design considerations which were already undertaken towards future experiments
with single electron double quantum dots and resonators.



Chapter 2

Basic concepts and theoretical
background

In this chapter the basic concepts of quantum dot physics, required for the under-
standing of the thesis, are explained. In particular the focus is on lateral quantum
dots defined by nanofabrication techniques and investigated by charge transport
measurements. In section 2.1 a brief introduction of single quantum dots is given
comprising a discussion of the relevant energy scales in these systems. This eluci-
dation is followed up by section 2.2 dealing with the properties of double quantum
dots. As research with quantum dots has a large variety of aspects only the relevant
basics are covered in this chapter. The interested reader is referred to review articles
2, 4, 5] and books [1, 45] for more details which also served as reference for this
chapter.

2.1 Single quantum dots

Quantum dots are formed by confining electrons in all three spatial dimensions on a
small island coupled only weakly to the surrounding environment. Typical diameters
for lateral quantum dots defined by nanofabrication techniques, which are used in
this thesis, are on the order of 100 nm. Quantum dots can display a variety of
phenomena, e.g. the loading of an additional electron on the island is detectable,
and in the following the conditions under which they arise are presented.

We begin by discussing the electric circuit representation of a single quantum dot
as shown in Fig. 2.1 (a) to get an intuitive picture allowing us to understand the basic
phenomena arising in transport measurements through quantum dots. The quantum
dot is modeled as an island connected to the source (S) and drain contact (D) via two
tunnel barriers which allow exchange of electrons. The tunnel barriers are modeled
as a combination of a resistor and a capacitor and their characteristics like the
transmission are tunable with voltages (V4, and Vg). In addition, the electrostatic
potential on the dot can be tuned with a gate voltage (Vpg) represented in Fig. 2.1
(a) with a capacitor connected to the dot.



2.1. Single quantum dots

If we apply a small source-drain voltage (Vsp) and measure the current through
the sample as a function of the gate voltage (Vpg), a discrete set of peaks in the
current can be observed (Fig. 2.1 (b)). The current peaks are named conductance
resonances and the spaces in between are caused by Coulomb blockade arising due
to Coulomb interaction between the electrons on the islands.

In order to be able to measure such current traces, two requirements have to be
fulfilled. First the charging energy Ec = €*/Cx, (Cy is the self-capacitance of the
dot) when adding one electron on the dot has to be much larger than the thermal
energy (kgT.) of the electrons

62/02 > ]{?BTQ. (21)

Here the charging energy E¢ is introduced as the difference in energy between adding
an extra electron onto the quantum dot island being already occupied with N or
N — 1 electrons respectively, following the definition used in Ref. [1].

Second the coupling to the leads has to be small enough, for resolving the quan-
tization of charges on the island,

h
B> . (2.2)

where R; is the tunneling resistance.

If the current as a function of the plunger gate voltage (Fig. 2.1 (b)) is measured
for several different source-drain voltages, so-called Coulomb diamonds are obtained
as shown in Fig. 2.1 (¢). In Fig. 2.1 (d-g) sketches of the energy levels of the dot (ux)
with respect to the leads for different positions in the Coulomb diamond diagram are
displayed. Note that for simplicity we do not consider the temperature broadening
of the Fermi distribution function here.

At position (d) the Fermi energy in the two leads (us, up) is aligned with one
of the energy levels in the quantum dot, allowing one electron at a time to tunnel
from either lead into the dot and out again. In situation (e) however, located inside
a diamond, no energy level for adding an electron to the quantum dot is available in
the energy range spanned by the difference of the two Fermi distribution functions of
the electrons in the source and drain lead. In this situation the dot is in the so-called
Coulomb blockade. The difference between the two Fermi distribution functions is
termed bias window (BW) as indicated in Fig. 2.1 (f). In the same sketch the Fermi
level of the drain lead (up) is aligned with an energy level in the quantum dot (p).
This configuration (up = un) forms one of the boundaries of the diamond pattern.
The other limit of the diamond pattern is reached when the Fermi level in the source
contact (ug) is aligned with a dot energy level (uy) as depicted in part (g) of Fig. 2.1.

The extent of the diamonds in source-drain voltage is a direct measure of the
charging energy (E¢). The voltage difference (AVpg) between two Coulomb reso-
nances can be converted into an energy using the corresponding lever arm of the
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Figure 2.1: (a) Electric circuit representation of a single quantum dot. The tunnel
barriers are modeled using resistors and capacitors tunable with gate voltages V1,
Vpg and VR. Source contact (S) and drain contact (D) allow the measurement of
a charge current through the quantum dot. (b) Schematic of Coulomb resonances
in dependence on applied plunger gate voltages (Vpg). (c) Schematic of Coulomb
diamonds typical for the charge stability diagram of a single quantum dot. E¢ labels
the charging energy. us, un and pp are the chemical potentials of the source lead,
the quantum dot and the drain lead respectively. (d-g) Schematics of the single
quantum dot for different gate voltage settings. Arrows indicate tunneling processes
of electrons. (d) Coulomb resonance situation at zero source-drain bias. (e) Coulomb
blockade setting with a small bias applied. (f, g) Finite bias situation for ux = up
(f) and un = ps (g). BW labels the so called bias window which is the difference
in energy spanned by ug and up.

plunger gate (apg) which is defined as:

_ Vsl
|AVPG"

(2.3)

apag

Another energy scale which was not discussed so far is the single-particle level
spacing Y. Energy levels with a spacing of T arise because of the confinement of
the electrons on the island. A requirement to be able to resolve charge transport
through excited states is that the thermal energy of the electrons (kgT,) is much
smaller than the single particle level spacing.



2.2. Double quantum dots

Whether the charging energy or the single-particle level spacing is dominant de-
pends on the size of the quantum dots. The crossover can be estimated to be at
a radius (r) of approximately 10 nm [1] for circular dots in GaAs. If the radius of
the dot is much larger than this value the charging energy dominates whereas in the
opposite case it is the single-particle level spacing. For the samples investigated in
this thesis the charging energy is always larger than the single-particle level spacing.
The presence of single-particle levels in the dot can be observed in transport mea-
surements as additional steps in the current outside the diamonds. These current
steps as a function of the applied voltages are also parallel to one of the boundaries
of the Coulomb diamond.

2.2 Double quantum dots

After having dealt with the basic concepts within single quantum dot physics, we
now proceed to discuss the properties of two quantum dots connected in series for
zero source-drain voltage. First the emergence of the hexagon pattern in the charge
stability diagram is discussed (Fig. 2.2 (a-c)), where in the top of each sub-figure
(a-c) the electric circuit representation of the particular double quantum dot model
is displayed and the corresponding charge stability diagram below. The presenta-
tion of the origin of the features in the charge stability diagram is followed by an
investigation of the different quantum dot level configurations along the hexagon
boundaries (Fig. 2.2 (d)).

We start with two single quantum dots with only a resistive connection between
them as shown in the electric circuit representation in the top of Fig. 2.2 (a). The
individual dots are tunnel coupled to either the source (S) or drain (D) contact and
the electrostatic potential on each dot can be tuned by applying a voltage to the
corresponding plunger gates (Vip, Vrp). The charge stability diagram for this model
treatment of the double quantum dot as a function of the two plunger gate voltages
is displayed in Fig. 2.2 (a). It consists of vertical and horizontal lines. Along the
horizontal lines a quantum dot energy level in the right dot (RD) is resonant with the
drain lead whereas along the vertical lines the left dot (LD) is in resonance with the
source lead. Only at the crossing of the two lines highlighted by red circles an energy
level in the left dot is aligned with an energy level in the right dot and resonant
electron transport can occur through the double quantum dot. These points are
called triple-points. Within each rectangle the number of charge carriers is fixed
indicated by the number (M,N).

As mentioned above, quantum dots are small objects on the order of 100 nm.
Therefore the left (right) plunger gate has not only an electrostatic influence on the
left (right) dot, but there is also a so-called cross-capacitance which tunes the right
(left) dot at the same time, as indicated in Fig. 2.2 (b). The consequence for the
charge stability diagram is that the horizontal and vertical lines are tilted and the
slope is a measure for the cross coupling strength.
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Figure 2.2: (a-c) Circuit representations of different double quantum dot models
and schematics of the corresponding charge stability diagrams as a function of the
two plunger gate voltages Vip and Vrp . Red points label gate voltage configurations
where elastic electron transport is possible. (M,N) label stable charge configurations.
(a) Each dot is only capacitively coupled to its gate. (b) Each dot is capacitively
coupled to both gates. (c) Both dots are capacitively coupled to each other. (d)
Schematic of the charge stability diagram of a double dot for (M,N) electrons close
to the two triple points as a function of Vi p and Vgp.

In reality it is not adequate to model the connection between the two quantum
dots with a resistor because there is also a capacitive coupling between the two dots
as depicted in Fig. 2.2 (c). As a result a new energy scale, the interdot charging
energy (Fic), comes into play in double quantum dot physics. If we consider the
situation in which an energy level in the right and left dot each are resonant both
with each other and the leads, and an extra electron is loaded into the left dot,
then the interdot charging energy (Fic) has to be overcome before it is possible to
also load an electron into the right dot at the same time. The different electrostatic
effects of the gates on the dots and the coupling between the dots lead to double



2.2. Double quantum dots

dot charge stability diagrams consisting of hexagon structures (Fig. 2.2 (c)).

In Fig. 2.2 (d) a detailed view around two triple points, highlighted in red, is
shown for zero source-drain voltage. Along the green line connecting the two triple
points and referred to as the interdot charge transfer line, two quantum dot energy
levels, one in each dot, are resonant with each other but not with the leads. Therefore
transport is blocked here. In the case of a small tunnel coupling between the two
dots (I < kgT,) the length of the interdot charge transfer line is set by the interdot
charging energy. Along one set of parallel boundary lines (cyan lines in Fig. 2.2 (d)),
the left dot is resonant with its neighboring lead, the source contact, but the right
quantum dot is detuned from the drain contact as indicated with sketches in Fig. 2.2
(d). Correspondingly, for the other set of parallel lines (purple lines in Fig. 2.2 (d))
the right dot is resonant with its lead (drain contact) but the left dot is detuned
from the source contact. In transport experiments these lines are often referred
to as cotunneling lines. Along these lines, due to energy conservation, only higher
order tunneling processes referred to as cotunneling [46] can take place in order for
a current to flow through the double quantum dot. We come back to cotunneling
processes in chapter 6.

For the case of a non-zero source-drain voltage, a bias window is opened in which
current can flow through the double quantum dot. As a consequence a current
through the double quantum dot can be measured not only at the triple points in
the charge stability diagram but also within so called finite bias triangles developed
around the triple points. The origin of the finite bias triangles is explained in more
detail in Ref. [2] and corresponding data is presented in the appendix A.



Chapter 3

Sample fabrication and
measurement setup

In order to realize experiments in which we study DC transport properties of quan-
tum dots as well as the coupling between quantum dots and a microwave resonator
(for details on the physics of resonators see chapter 4) we need to bring together
the quantum dot device characteristics and the corresponding measurement setup
with the technology used for superconducting microwave circuits. This involves
developing fabrication methods for processing the "hybrid’ devices, as well as a mea-
surement setup that allows to investigate these chips at microwave frequencies and
in the sub-kHz regime.

In this chapter, we first discuss the different micro- and nanotechnology tech-
niques used for the sample fabrication in this thesis. The rest of the chapter is
devoted to the presentation of the different parts of the measurement setup.

3.1 Sample fabrication

In this section we describe the different fabrication steps required for the resonator
quantum-dot samples. Optical lithography is the predominant technology used for
the processing. The quantum dot structure itself, however, has to be defined with
different means. Two methods for quantum dot processing implemented success-
fully for samples presented in this thesis are discussed: atomic force microscope
(AFM) lithography and electron-beam defined split gate technology. The detailed
fabrication instruction is given in the appendix D.

3.1.1 Optical lithography part of the chip processing

A typical example of a sample is shown in Fig. 3.1. It is designed to implement
a quantum dot defined by AFM lithography. The position of the quantum dot,
indicated with a red circle in Fig. 3.1, is chosen to be at an antinode of the electric
field of a microwave transmission-line resonator. The chip is realized on a molecular
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center
conductor

Figure 3.1: Optical image of a hybrid quantum device, consisting of a microwave
resonator (R) and a mesa to define a quantum dot with atomic force microscope
lithography, see text for details. Dark brown parts (example indicated with a white
arrow) mark mesa regions with the two-dimensional electron gas (2DEG) present.
Golden squares are ohmic contacts (O). Red circle indicates the position of the
quantum dot. Inset: Zoom around the center conductor of the microwave resonator.

beam epitaxy (MBE) grown Al,Ga;_As heterostructure [11] with a two-dimensional
electron gas (2DEG) residing at the heterointerface about 35 nm below the surface
referred to as shallow 2DEG in the following. All the experiments in this thesis
are conducted using shallow 2DEGs except the measurement data shown in the
appendix C. Here different wafer material with the 2DEG at a depth of around
90 nm from the surface is used.

To fabricate a sample such as the one shown in Fig. 3.1 we start with three stages
of optical lithography. In the first lithography step, the mesa [47] for the quantum
dot (dark brown parts, indicated with a white arrow in Fig. 3.1) is defined with a
wet etching process. The etchant is a diluted piranha solution which is a mixture
of water, sulfuric acid and hydrogen peroxide. The two-dimensional electron gas
only remains at the position where later the quantum dot will be defined and at the
connecting lines between the quantum dots and the contacts. In the rest of the chip
it is removed by the etchant. The presence of the 2DEG everywhere on the chip
would otherwise strongly dampen the resonator due to the interaction between the
photons and the electrons in the 2DEG.

In the second stage the ohmic contacts (labeled O in Fig. 3.1) are fabricated by
depositing a multilayer consisting of gold, germanium and nickel. In the following
annealing step metal diffuses into the wafer material and contacts the 2DEG.

In the third stage the microwave resonator (R) is realized in coplanar waveguide
technology [48] consisting of the center conductor, separated by two gaps from the
ground plane (see inset in Fig. 3.1). The width of the center conductor (10 pum) and
the gaps (7.1 pum) are chosen so that the microwave line has an impedance of 50
and the length of the resonator (=~ 8273 pm) to have the fundamental resonance
frequency (vy) at around 7 GHz. The resonator is coupled to the input/output
lines by two planar capacitors. We use a lift off process including a deposition of a
bilayer of 3 nm titanium (Ti) and 200 nm aluminum (Al) for the fabrication of the
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Chapter 3. Sample fabrication and measurement setup

resonator. More details on the design of the resonators are discussed in chapter 4.
Note that for samples designed to implement a quantum dot using electron-beam
defined split gate technology an additional optical lithography step is required to
define the connecting lines for the split gates. An example of such a sample is shown
in Fig. 6.1.

3.1.2 Quantum dot fabrication techniques

The principle of AFM lithography is the local oxidation of the wafer [41, 49, 50]
resulting in a depletion of the underlying two-dimensional electron gas. A prerequi-
site for this method to work is a humidity in the AFM chamber of around 40% so
that a thin water film is formed on the surface of the wafer. A negative voltage is
applied to the tip of the AFM which was brought close to the surface of the wafer
before. This leads to a local electrically conducting connection between the wafer
and the tip mediated by the water film. Thus a current can flow between the AFM
tip and the surface of the wafer causing local anodic oxidation (LAO) of the wafer
surface. The AFM tip is moved along a predefined pattern to create semiconductor
nanostructures. An AFM image of a single quantum dot defined with AFM lithog-
raphy is shown in Fig. 3.2 (a). The yellowish lines are the oxide lines, separating the
quantum dot from the four in-plane gates (G1-G4) which are used to tune the quan-
tum dot electrostatically. Confining the 2DEG with oxide lines to small channels
allows the formation of tunnel barriers which separate the source (S) and drain (D)
contacts from the quantum dot. In Fig. 3.2 (b) a linecut through one of the oxide

I I I
-01 0 041

AX [pum]

Figure 3.2: (a) Atomic force microscope (AFM) image of a single quantum dot
with source (S) and drain (D) contacts and four gates (G1-G4). The bright lines
are caused by the oxidation of the sample surface. (b) Height profile of an oxide line
along the red arrow indicated in (a).
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lines is shown. The typical height of the oxide lines achieved for the samples used
in this thesis is around 15 nm. Approximately the same amount of material is also
oxidized in the wafer and the 2DEG is depleted locally. The oxide lines typically
start to leak when a voltage difference between 250 — 350 mV is applied.

The other nanolithography method applied in this thesis uses electron-beam
lithography to fabricate split-gate defined quantum dots [51-53]. Here the quantum
dot structure is defined using electron beam lithography in combination with a lift-off
process depositing 3 nm of titanium (T1i) followed by 25 nm of gold (Au). An example
of a split-gate defined double quantum dot is shown in Fig. 3.3. The appropriate
potential to form the double quantum dot is achieved by applying negative voltages
to the gate electrodes which leads to a depletion of the two dimensional electron gas
(2DEG) underneath them and in their vicinity.

Figure 3.3: Scanning electron microscope picture of a double quantum dot sample
(approximate locations of dots indicated by a red and a green circle). Metal gates
are used to deplete the electron gas underneath the electrodes to form the potential
landscape for a double quantum dot. The charge stability diagram of the double
quantum dot can be recorded either by direct transport measurement through the
source (S) and drain (D) contact or with charge detection techniques using one of
the two quantum point contacts (QPC1, QPC2).
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3.2 Measurement setup

In this section we describe the various parts of the measurement setup consisting of
different microwave components that allow transmission measurements of the res-
onator and DC voltage sources, and current to voltage converters (IVCs) to charac-
terize the sample with standard transport techniques. All experiments are performed
in a dilution refrigerator [54] with a base temperature of around 10 — 20 mK. The
low temperature is necessary to be able to operate the resonator in its ground state
(kgT < hw) and to reach an electron temperature (7,) as low as possible in order
to minimize thermal broadening of the conductance resonances of the quantum dot.
More details than presented in this section about the microwave components are
found in Ref. [55] and a more detailed description of similar microwave setups can
be found in Refs. [56, 57].

3.2.1 Printed circuit board

We designed printed circuit boards (PCBs) to mount the hybrid chips in the mea-
surement setup. They serve as a link between the sample and the cabling in the
fridge. Two photographs of the same printed circuit board from two different per-
spectives are shown in Fig. 3.4 (a,b). The printed circuit boards consist of a low
loss dielectric (Ad1000, Arlon) sandwiched between two copper layers covered with
a gold finish. The many vias, a conducting connection between the front and the
backside of the PCB, assure a proper grounding. The sample is glued in the cut-out
in the middle of the PCB and then bonded to the ground and the contacts of the
PCB. The designed printed circuit boards enable us to connect up to five microwave
lines. Microwave connectors are soldered to the board at two out of the possible
five spots shown in Fig. 3.4 (a,b). In addition twelve direct current (DC) voltage

Figure 3.4: (a,b) Photographs of the printed circuit board (PCB) used to measure
the hybrid quantum dot resonator chips. The PCB allows the connection of 12
direct current (DC) sources via the black plug. Moreover up to 5 microwave lines
can be used for the microwave measurements. Here only two microwave connectors
are soldered to the PCB. The quantum dot resonator chip is glued in the cutout in
the middle of the PCB and then bonded.
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3.2. Measurement setup

lines are available on the printed circuit board via the black connector soldered to
the board. The printed circuit boards were used with the connector configuration
as shown in Fig. 3.4 (a,b) for all of the measurements in this thesis.

3.2.2 Cryogenic setup

The PCB is connected to the lid of a copper box (Fig. 3.5(b)) using screws to
put the sample in the fridge. Then the lid is attached in the mount as shown in
(Fig. 3.5(a)). In Fig. 3.5 (c) a side view of the closed copper box is shown. In

Figure 3.5: (a) Top part of the copper box used to shield the sample from electro-
magnetic radiation. Two microwave cables indicated by blue arrows and the 12 pin
DC plug (red arrow) are fed through the lid. (b) Mount of the PC board with glued
and bonded chip. White dashed line indicates the orientation of the mounting of
the PCB in the lid. (c) Closed copper box with sample mounted inside, attached
to the base plate of a dilution refrigerator. Blue arrows indicate the two semi-rigid
microwave cables used to measure the transmission of the microwave resonator, red
arrow marks the DC cables used to tune the quantum dot electrostatically.
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Chapter 3. Sample fabrication and measurement setup

our experiments two semi-rigid microwave cables (indicated with blue arrows in
Fig. 3.5 (a,c)) and six twisted pairs of manganin wires (highlighted with a red arrow
in Fig. 3.5 (a,c)) are connected to the sample inside the box. The purpose of the
copper box designed for the hybrid resonator quantum dot devices is to shield the
sample from electromagnetic radiation. This sample holder is mounted to the base
plate of a dilution refrigerator for the experiments.

In Fig. 3.6 the microwave cabling in the fridge for one of the setups for the
quantum dot resonator project is shown. In (b) the open fridge is displayed with
its different temperature stages indicated. The microwave cables are attenuated
by 20 dB at the 4 K stage, the cold plate (CP) and the mixing chamber (MC) to
thermally anchor the semi-rigid microwave cables and to strongly attenuate Johnson-
Nyquist noise [1] from higher temperature stages, especially from room temperature,
before reaching the sample [57].

In Fig. 3.6 (a) a zoom near the attenuators is shown. Three of the four cables
are attenuated and thermally anchored. One of these cables is used to drive the
resonator, the other two are for future experiments. The fourth cable is the mea-
surement line, used for signals which are transmitted through the cavity and is not
attenuated, only the outer conductor is thermally anchored. Attenuating the signal
on the measurement line would decrease the signal to noise ratio. An isolator (shown
in Fig. 3.6 (d)) is mounted on the mixing chamber plate to prevent thermal radiation
from the stages at higher temperatures and the input noise of the first amplifier,
implemented in the measurement line, to reach the sample via the coaxial cable.
The working principle of the isolator is that it routes the measuring signal from the
sample towards the amplifier but guides the radiation coming from the amplifier
towards the sample to a 50 €2 terminated port inside the isolator. The fridge in
which our setup is built-in, is also used for other experiments using magnetic fields.
Therefore our isolator is equipped with a double magnetic shield to prevent is from
being damaged.

As the smallest microwave measurement signals used in the experiment contain
on average less than the energy of a single 7 GHz photon per bandwidth of the
resonator, the signal has to be strongly amplified before it can be recorded. We use
a low noise high electron mobility transistor (HEMT) as a first amplifier as already
briefly mentioned above. It is specified to have a gain of around 33 dB in the band
of approximately 4 — 12GHz and is mounted on the 4 K plate (Fig. 3.6 (c)).
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Figure 3.6: (a) Thermal anchoring of the microwave attenuators in the fridge. (b)
Photograph of the open fridge. White letters indicate the different temperature
stages in the fridge, 4 K stage, still plate (SP), cold plate (CP) and mixing chamber
plate (MC). The inner conductors of the microwave cables which can be used to
drive resonators are thermally anchored at the 4 K, the cold plate and the mixing
chamber plate. Red dashed oval indicates the position of the zoom shown in (a).
Note that between recording the pictures (a) and (b) the amplifier and the isolator
were implemented in the setup. (c¢) Low noise amplifier mounted at the 4 K stage.
(d) Picture of the isolator with double magnetic shield which is attached for the
experiment to the mixing chamber plate and part of the measurement line coming
from the sample.

3.2.3 Room temperature microwave signal processing

In this section we explain how to extract amplitude and phase information contained
in the transmission signal of the resonator in a heterodyne detection scheme. In
Fig. 3.7 (a-c) photographs of the different components of the microwave setup are
shown, complemented by the electric circuit diagram in (d). The colored frames
link the photos to the corresponding components in the schematic. The colored
arrows indicate the propagation direction of the signal and relate the position in the
schematic with the corresponding one in the photographs.

Two generators (SMB100a, Rhode & Schwarz), one for driving the resonator
((MWGT1) Fig. 3.7 (c)) and one for the local oscillator (LO) (MWG2) Fig. 3.7 (¢))
are used for the transmission measurements. They are 25 MHz detuned. First the
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measurement tone is divided into two signals (DS1, DS2) of equal strength with a
microwave splitter (SP) and the same is done with the LO (LO1, LO2). DSI is
sent through the resonator (see subsection 3.2.2 for details) and after coming out
of the fridge further amplified and bandpass filtered (Fig. 3.7 (a)). The bandpass
filters are implemented to decrease the level of the background noise within the
bandwidth of the amplifiers but are chosen to have no effect within the measurement
bandwidth. The measurement signal is multiplied with the LO1 in an I mixer
(MX) in order to downconvert it to 25 MHz because we cannot directly digitize a
7 GHz electromagnetic wave due to the limited bandwidth of the digital to analog
converters (ADCs) used in our experiments. Before being digitized, the signal is
amplified again and lowpass filtered and then averaged on a field programmable
gate array (FPGA).

The FPGA board has a second ADC. With this ADC we record the result of
mixing DS2 with LO2. This signal is used as reference signal as it did not pass the
fridge and its phase only depends on the generators and the length of the microwave
lines. From the I and @) quadratures of the two signals we extract the amplitude
(A) and the phase (¢) information as Ae’” = I +i@Q). The reference signal is needed
as the generators start with an arbitrary phase for each measurement. To determine
this phase and obtain the relative phase of the transmitted signal, the phase of the
reference signal is subtracted from the transmission phase.

The remaining components shown in Fig. 3.7 (¢) that have not been mentioned
so far are the rubidium frequency standard (clock) which is used to synchronize the
two generators, the arbitrary waveform generator (AWG) and the FPGA. The AWG
triggers the FPGA for the measurements. More details on the different microwave
components can be found in Ref. [57], where a similar setup is described.
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Figure 3.7: Measurement of the microwave field. (a) Pictures of the warm am-
plifier part of the setup. Black (red) arrow indicates where the microwave signal
enters (exits) the room temperature amplifier circuit. (b) Photograph of the down-
conversion board. Colored arrows indicate the direction of the different microwave
signals and are also seen in the schematic plot in (d). DCP stands for direct current
power for the amplifiers, other abbreviations listed in (d). (c) Picture of the rack
with the microwave equipment used for the measurements. It consists of a rubidium
frequency standard (clock) to synchronize the different measurement devices. Two
microwave generators (MWG1, MWG2) are used: one for measuring the resonator
transmission, and the second one to downconvert the resulting signal. The arbitrary
waveform generator (AWG) is used to trigger the field programmable gate array
(FPGA) circuit. (d) Schematic of the microwave part of the measurement system.
It consists of microwave generators (MWG1, MWG2), a clock and an AWG. For
the processing of the signal it is passed through splitters (SP) dividing the signal
into two signals of equal strength, amplified (AMP1, AMP2, AMP3), low and high
pass filtered (LPF, HPF) and mixed (MX) with the LO to downconvert the signal.
Encircled parts correspond to the pictures (a-c) respectively. For more details see
text.
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3.2.4 Room temperature direct current measurement setup

Our setup can also be used to perform standard transport measurements through
quantum dot samples in the sub-kHz regime. In this section we briefly discuss the
different components required, along with the schematics of the most relevant parts
(Fig. 3.8) and show photographs of the setup (Fig. 3.9).

For the current measurements through our samples we use home-built current
to voltage converters (IVCs) based on operational amplifier (op-amp) circuits [58] .
A simplified circuit diagram of the current to voltage converters is shown in Fig. 3.8
(a). It consists of two operational amplifiers operated in the negative feedback mode.
The resistors Ry set the amplification of the incoming signals hooked up to the ports
labeled I;,; and I;,5. The sample is connected between I;,; and I,5. The resistors
R, and R, serve as voltage dividers for the voltage Vpc which is used to apply a bias
voltage across the sample. In fact in an additional circuit (not shown) the voltage
Vbe is split and one part is inverted for one of the operational amplifiers. This leads
to a symmetric bias around 0 V across the sample. The voltage division is used
to increase the voltage resolution in the measurements and to increase the signal
to noise ratio. The use of two operational amplifiers for the current measurements
provides the possibility to record the current flowing into the sample at the same
time as the current leaving the sample and therefore allows the detection of leakage
currents.

In addition the double IV converter design enables the use of a pair of twisted
measurement cables to connect the sample and the IVCs for sensitive current mea-
surements reducing the unwanted coupling to electromagnetic radiation present in
the lab. With a design consisting of only one IV converter the ground connection
of the setup serves as one contact for the measurements. This potentially leads to
a decrease of the signal to noise ratio. Another reason for using two IVC circuits is
to minimize the change of the bias voltage due to temperature dependent drifts of
the operational amplifiers. The two operational amplifiers are located on two dif-
ferent integrated circuit chips. The two chips are thermally coupled in our designs
to prevent the occurrence of small temperature differences between them as the in-
tegrated circuits heat up in operation. We observe that the operational amplifiers
tend to drift in the same direction with temperature resulting in a reduction of the
change of the bias voltage. A more detailed investigation of the electric properties
of a similar setup for the DC transport measurements as used in this thesis can be
found in Ref. [59].

In Fig. 3.8 (b) the schematic of the circuit is shown which is used in the context
of the voltages set to the gates to tune the electrostatics in the sample. The circuit
allows the addition of two voltages Vi, and Vi,s. The voltage on input 1 (Vi) is
divided by a factor of around 20 and the voltage on input 2 (Viye) by around 20000.
The idea of the circuit is to increase the 1 mV resolution of the SIM 928 SRS voltages
sources which we had available for the experiment by combining two of the sources
and divide their outputs differently. We are aware that the overall output voltage
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Figure 3.8: (a) Simplified schematic of the current to voltage converter (IVC)
circuit. It consists of two operational amplifiers wired to resistors Ry setting the
amplification. A sample would be hooked up between Ii; and Ijns. A voltage Vpc
is applied to provide a potential difference across the sample. The ratio between
Vb and the potential difference across the sample depends on the ratio between Ry
and Rs. The circuit allows to monitor the current that flows into and out of the
sample at the same time and is measured by recording the voltages Vi1 and Vyro.
(b) Circuit schematic of the boxes shown in Fig. 3.9 (a) containing the low frequency
electronics used with the gate voltages applied to the sample. The circuit consists
of resistors (R; =~ 19 kQ, Ry ~ 20 MQ, R3 ~ 1 kQ), two capacitors C; ~ 100 nF,
Cy =~ 2200 pF and a diode D. The circuit allows to add the voltages ~ Viy1/20
and ~ Vip2/20000. The output voltage can optionally be low pass filtered. Both
presented circuit designs were mainly developed by Paul Studerus.

is only stable within the time scale set by the voltage noise on Vi,; and depends on
the stability of the digital to analog converter of the corresponding voltage source.
The circuit shown in Fig. 3.8 (b) offers the possibility to add capacitors in parallel
to the output voltage (Vo) for low pass filtering to decrease low frequency noise on
our voltage signal. The low cut off frequency (f, ~ 72 mHz) chosen for our circuits
increases the waiting time between setting the voltage and the recording of the
measurement result. Therefore a switch is implemented to connect or disconnect the
capacitors to the output voltage, allowing low noise and fast sweep measurements.
The network of resistors is realized twice in the box in order to have the capacitors
always at the same voltage as the measurement voltage to reduce voltage fluctuations
on Vou when the capacitors are connected. To reach such low cut off frequencies f, an
electrolytic capacitor (labeled Cy in Fig. 3.8) has to be implemented and the second
small capacitor Cy is added to improve the low pass filtering in the MHz regime.
The didode D is implemented to protect the capacitor C; which would be harmed
when the wrong voltage polarity is applied to the input port. For our measurements
we additionally implemented simpler circuits which only divide the incoming voltage
and offer the possibility to filter the output voltage. The corresponding schematic
is the same as the one shown in Fig. 3.8 leaving away the parts encircled with the
dashed red rectangle.
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A photograph of the box containing the IV converter circuits and the interface
box (IB) between the fridge and the BNC cables is shown in Fig. 3.9 (a). The boxes
for the resistive voltage dividers (F) which include a switch to turn on low pass
filtering as described above are also seen. Fig. 3.9 (b) shows the rack containing
all the devices used for the transport measurements, consisting of voltages sources
(Yokogawas and SRS battery-powered sources), multimeters to record output values
of the current to voltage converters and lockin-amplifiers for direct dI/dV conduc-
tance measurements.

@)

Figure 3.9: (a) Top view of the fridge showing the interface box (IB) between the
fridge and the BNC cables, boxes containing voltage dividers with included filters (F)
and IVC labels the box containing the current to voltage converter circuits used for
the transport measurements. (b) Rack for the DC measurements with the following
equipment: (I) SIM 928 SRS voltage sources, (II) Agilent HP 34410A multimeter,
(III) SR 830 lock-in amplifiers, (IV) Yokogawa voltage sources.
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Chapter 4

Superconducting microwave
resonators on (zaAs

In this chapter A/2 and A/4 microwave resonators are introduced for exploring the
properties and suitability of semi-insulting (SI) GaAs as a dielectric material. GaAs
is investigated as a substrate because it is the basic material for MBE grown GaAs
heterostructures used for quantum dot experiments. For these investigations, pre-
ceding the fabrication of the hybrid devices containing the resonator and the quan-
tum dot, SI-GaAs as obtained from the manufacturer is used. The wafers have a
resistivity larger than 8 - 107 Qcm at 22 °C, and the crystal orientation is [1,0,0].
Aluminum is used as the superconducting metal for all the resonators. Details on
the resonator fabrication can be found in section 3.1.

The structure of the chapter is as follows: we start with a section on \/2 res-
onators discussing the design considerations and characterization parameters. A
similar description is done for the A/4 resonators. The chapter is concluded with
a presentation of the properties of GaAs as a dielectric substrate for high-quality
microwave resonators. For comparison, a detailed analysis of microwave resonators
on a silicon substrate can be found in Ref. [60].

4.1 Half-wavelength resonators

4.1.1 Design considerations

In Fig. 4.1 (a) a photograph of a PCB with two wire bonded \/2 resonators is
shown. They are realized using a coplanar waveguide transmission line capacitively
coupled to an input and output line (Fig. 4.1 (b)) allowing for transmission mea-
surements. At the fundamental frequency (1) the length of the resonator is equal
to half a wavelength (A\/2), forming a standing wave profile with voltage antinodes
at the input and output of the resonator. The gap (7.1 um) and the width of
the center conductor (10 um) are chosen to form a transmission line of 50 Q wave
impedance. The calculation for the length and the width were performed using the
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freeware transmission line calculating software T'X — Line® [61] but can also be
done analytically [48]. The coupling capacitance increases with decreasing distance
between the center conductor and the feed lines and with increasing area of the
resonator facing the coupling lines (Fig. 4.1 (¢)). This way the coupling strength
can be engineered specifically for every particular experiment. The coupling capac-
itors simulated with a finite element model software Mazwell® [62] range from
approximately 0.7 fF to about 45 fF for our different designs. Note that the larger
the size of the coupling capacitance is chosen the smaller the quality factor of the
resonator is.

Figure 4.1: (a) Photograph of a printed circuit board with two microwave resonators
made of aluminum mounted. (b) Optical image of one of the A/2 resonators. (c)
Zoom of coupling capacitors at each end of the resonator.

4.1.2 Resonator characterization and parameter extraction

The microwave resonators are characterized by measuring their transmission spec-
trum. The samples are cooled down in a dilution refrigerator with a millikelvin (mK)
base temperature well below the critical temperature of the aluminum to minimize
resistive loss. The transmission is recorded using a vector network analyzer. A typ-
ical transmission spectrum of a \/2 resonator is plotted on a logarithmic scale (dB)
in Fig. 4.2. Tt can be fitted well with a Lorentzian line shape (red line) with the
full width at half maximum (dv), and the resonance frequency (1) indicated. The
loaded quality factor (Qy,) is defined as [60]:

y

. 4.1
which relates to the linewidth s of the resonator
Yo
K= 2m—. 4.2
o 42)

Near the resonance frequency the resonator can be mapped to a lumped LC R circuit
and the loaded quality factor (), can be expressed as a function of the internal Q)i
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and the external Qe quality factor [60]

L1
QL Qint Qext‘

(4.3)

The internal quality factor is related to loss channels caused inside the resonator
e.g. due to two-level fluctuators [63] or vortices [64], the external quality factor
depends on the coupling strength to the measurement lines.

The insertion loss (L) (Fig. 4.2) is a measure of the relation between internal
(Qint) and external (Qext) quality factor. It is defined as [60]

Qint

Lo = —20 log(m
int ext

)dB. (4.4)

If Qint is much larger than Qey (Qing => Qext) the transmission on resonance is 1
(0 dB). For Qini/Qexs < 1 the resonator is said to be undercoupled. These designs
are suitable to characterize the internal properties of the resonator like the quality
factor of the dielectric or the metallic film. The situation with Qint/Qexs > 1 is called
overcoupled and improves the signal to noise ratio as more photons are detected
on the measuring line than being lost through other channels in the resonator.
The difficulty in determining the insertion loss is calibrating the measuring lines to
correct for their losses. The properties of the lines are recorded at room temperature
but losses decrease when they are cooled down. For our setup this can result in a
systematic error in the insertion loss of up to about 2.5 dB and therefore the values
we obtain for the insertion loss are too small.
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Figure 4.2: Microwave amplitude transmission measurement of a A/2 resonator,
with resonance frequency rg, full width at half maximum Jdv and insertion loss Lg
indicated. The red line is a fit of a Lorentzian lineshape to the data.
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4.2 Quarter-wavelength resonators

4.2.1 Design considerations

The second design consists of \/4 microwave resonators with different resonance
frequencies that are capacitively coupled at one end to a transmission line and
grounded at the other end (Fig. 4.3 (a-d)). The electric field distribution inside the
resonator has an antinode at the end of the resonator facing the transmission line
and a node on the grounded end. At the fundamental resonance frequency (1) a
quarter of a wavelength (I = \/4) fits inside the resonator.

The coupling strength to the transmission line depends on the distance between
the resonator and the transmission line used for driving the resonator and the length
over which the two are coupled to each other. This length should however be much
smaller than the wavelength at resonance to avoid effects caused by the standing

Figure 4.3: (a) Photograph of a printed circuit board with a \/4 resonator chip
made of aluminum mounted. (b) Optical image of the chip containing five \/4
resonators with different resonance frequencies capacitively coupled to a transmission
line. (c,d) Enlarged view of individual resonators with different coupling strengths
to the transmission line. Red arrows indicate the distance between the resonator
and the transmission line used for driving the resonators (feedline). Blue arrows
indicate the distance of the coupling length between resonator and the feedline.
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4.2. Quarter-wavelength resonators

wave profile (Fig. 4.3 (c,d)).

The A/4 resonators in particular were investigated for two main reasons. With
our A\/4 resonator chips five resonators at several different resonance frequencies
could be investigated in one single fridge run. Exact calibration which was a problem
when investigating \/2 resonators is not necessary as the calibration can be done
by defining the transmission of the line as unity for frequencies detuned by several
resonator linewidths (k) from the resonance frequencies.

In Fig. 4.4 two individual non-calibrated Sy;-parameter [55] measurements of the
same chip (Fig. 4.3 (b)) are displayed on a logarithmic dB-scale. Both measurements
show the same pattern. This suggests that the observed features are related to the
resonators capacitively coupled to the transmission line and not due to noise. Dips
in the transmission can be identified to match with the fundamental modes of the
resonators at around 4 GHz, 5 GHz, 6 GHz, 7 GHz, 8 GHz (labeled with (a-e)
in Fig. 4.4). Moreover, the first harmonic modes for the three lowest resonators
in frequencies at three times their fundamental modes can be observed at 12 GHz,
15 GHz and 18 GHz. All other dips are suspected to be related to spurious resonances
which are attributed to standing waves and whispering gallery modes in the sample
mount [65]. The overall background is due to a frequency dependent microwave loss
of the cabling. A discussion of the background is given in section 4.2.2.
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Figure 4.4: Raw data of a microwave Ss;-parameter measurement of a transmission
line capacitively coupled to A\/4 resonators. (a-e) indicate the resonance frequency
of the different resonators. (al-cl) label higher harmonic modes of the resonators.
The two measurement curves are offset for a better visibility.

4.2.2 Resonator characterization - parameter extraction

When transmission measurements are performed it turns out that the resonances
display a variety of complicated line shapes. This can be attributed to the setup,
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Chapter 4. Superconducting microwave resonators on GaAs

e.g. standing waves due to impedance mismatches could cause such lineshapes. Sim-
ilar observations are made in Ref. [66] but are not discussed. To still quantitatively
characterize the A/4 resonators in the presence of these effects, a phenomenological
model is proposed. It consists of a transmission line capacitively coupled to a \/4
resonator and takes the impact of the setup into account by introducing the two
rectangles labeled bg for background (see Fig. 4.5) whose properties are discussed
in detail further below. The complex Sy;(v) parameter for a measurement of the
transmission line near a resonance can be approximated as [67]

| Smin 4 2iQy 0w
1) = =550, 50

with 2niin = Qext/(Qext + Qint)> 1/C2L = 1/Qext + 1/Qint and o = (l/ - VO)/VO- As
defined above Q);,; stands for the internal quality factor, Qe for the external quality
factor and @, for the loaded quality factor. The applied frequency is labeled as v
and the resonance frequency as 1.

We now consider the effects caused by the setup. Depending on the applied
frequency, an additional change in phase due to the finite optical length of the
cables of the setup is acquired

(4.5)

¢ (057 +0) (4.6)

where v is related to the optical length of the setup. The term © takes into account
that the frequency sweep starts with an arbitrary phase.

The semi-rigid microwave cables cause damping which we approximate as having
a constant part (a) plus a term that depends linearly on frequency (b)

a+b-ox. (4.7)

The last correction term is a constant offset (I, + iQ).) in the complex plane
for frequency independent power that is transmitted from one port of the network
analyzer to the other without crossing the sample.

The equation for our model including the effects caused by the setup then reads

St mens = (@ + b 62)Sy ()9O 1 (I, +iQ.). (4.8)

This equation is used to fit the I and () quadratures in the complex I() plane. In
Fig. 4.6 (a) a raw data-set (black points) of a A/4 resonator capacitively coupled to a
transmission line plus the fit (red line) using Eq. 4.8 is shown in the complex plane.
In Fig. 4.6 (d) the effects of the setup are subtracted for the same dataset. From the
I and () quadratures the amplitude and phase response can be calculated. These
are shown in Fig. 4.6 (b,e) for the amplitude and in Fig. 4.6 (c,f) for the phase.
We observe that with our modeling of the background we can locally reproduce the
background which we assume to be causing the asymmetry of the peak shape. A fit
using Eq. 4.5 would not result in a satisfying result.
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4.3. Quality factors of microwave resonators on GaAs
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Figure 4.5: Model of a single \/4 resonator capacitively coupled to a transmission
line. The effect of the setup is modeled with the two boxes labeled bg for background
taking into account frequency dependent phase shifts and damping. Details of the
background treatment are discussed in the text.

4.3 Quality factors of microwave resonators on
GaAs

In this section the results of the resonator characterization measurements are sum-
marized. The SI-GaAs wafers [68] used as substrate for the resonators are specified
to have a resistivity larger than 8 - 107 Qcm at 22 °C. They are undoped and the
crystal orientation is [1,0, 0].

For undercoupled \/2 resonators (Q, &~ Qi) at approximately 7 GHz, a max-
imum value for the internal quality factor Qi of around 10* was achieved. This
value does not depend on power down to the few photon regime as shown in Fig. 4.7.
This excludes two-level systems as reported in [63] as the main limiting factor for
the quality of our microwave resonators.

We also dipped the GaAs into hydrochloric acid (HCIl) to remove the natural
oxide right before the evaporation of the aluminium and found out that its presence
underneath the center-conductor and the ground plane is also not the limiting factor
of the quality. In the gaps between the center conductor and the ground plane the
oxide regrows, hence we could not check its influence on the quality factor.

We changed the orientation of the resonators on the GaAs wafer with respect
to the crystal orientation. In dependence on the crystal orientation the coupling
strength to surface acoustic waves [69] should change, but no clear dependence of
the orientation on the quality factor could be detected.

For a set of A\/4 resonators the fundamental resonance frequency in the range of
2 — 7 GHz is plotted versus the internal quality factor (Fig. 4.8). A different color
is assigned to each sample. The green points are a reference measurement using the
same design on a sapphire substrate to exclude geometry properties and the quality
of the aluminum films. The other data points were obtained from measurements on
samples with the SI-GaAs substrate described above.

Comparing the two wafer materials we observe that the internal quality factor
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Figure 4.6: Microwave transmission data (black points) of a A/4 resonator capac-
itively coupled to a transmission line. Red lines are best-fit curves using Eq. 4.8.
(a-c) Different representations of the raw data: (a) I-Q) representation, (b) transmis-
sion amplitude and (c) transmission phase data. (d-f) Different data representations
with setup specific background subtracted, (d) I-Q representation, (e) transmission
amplitude and (f) transmission phase data.

(Qint) for resonators on sapphire is around one order of magnitude larger than on
GaAs. We also note that @i, on GaAs has the trend to increase with frequency
whereas for the sapphire substrate it is the opposite. This points out that different
loss mechanisms limit the internal quality factor on different materials.

While we could not identify the dominant loss mechanisms of the microwave
resonators on GaAs substrates in these experiments, we speculate that the piezo-
electricity of GaAs causes the coupling of microwave photons to phonons. This
might be the dominant limiting factor for Q... To verify this speculation the in-
fluences of trenches, etched into the gaps of the resonators, on the quality factor
could be investigated. Due to the trenches the field distribution will change result-
ing in less field lines penetrating the GaAs wafer and therefore a smaller effect of the
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Figure 4.7: Measurement of the loaded quality factor @, of an undercoupled \/2
resonator in dependence on the applied input power. The error bars represent the
uncertainty in the fit of the Lorentzian line.
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Figure 4.8: Logarithmic plot of the internal quality factor Qin¢ versus frequency for
different \/4 resonators. Green points mark data points acquired with a sapphire
substrate. All other data points were acquired on GaAs wafers.

piezoelectric coupling would be expected. For other material systems, e.g. NbTiN

on silicon, improvements of the quality factor were reported using the etching of
trenches [70, 71].
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Chapter 5

Characterization of a microwave

resonator via a nearby quantum
dot

In this chapter first measurements of a hybrid system consisting of a microwave
transmission-line resonator and a lateral quantum dot defined on a GaAs het-
erostructure are presented. The two subsystems are characterized separately and
their interaction is studied by monitoring the electrical conductance through the
quantum dot. The presence of a strong microwave field in the resonator is found
to reduce the resonant conductance through the quantum dot, and is attributed
to electron heating and modulation of the dot potential. We use this interaction
to demonstrate a measurement of the resonator transmission spectrum using the
quantum dot.

5.1 Sample design

The sample used in the experiment is shown in Fig. 5.1 (a). It consists of a laterally
defined quantum dot positioned at an antinode of the electric field of a microwave
transmission-line resonator. The dot is realized on an Al,Ga;_,As heterostructure
with a two-dimensional electron gas (2DEG) residing at the heterointerface about
35 nm below the surface. The device is fabricated by three stages of optical lithog-
raphy followed by local anodic oxidation (LAO) with an atomic force microscope
(AFM) to define the quantum dot. Details of the fabrication techniques are de-
scribed in chapter 3.

The minimum distance from the mesa edge to the center conductor of the res-
onator is around 2 pum. The coplanar waveguide resonator is designed to have a
fundamental frequency vy ~ 7 GHz and is coupled to the input/output lines by
two planar finger capacitors (Fig. 5.1 (b)). The capacitance, determined in a finite
element calculation, corresponds to an external quality factor [60] of Qe =~ 8000.
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5.2. First quantum dot resonator interaction measurements

In Fig. 5.1 (d) the AFM defined nano-structure is shown. It consists of the quan-
tum dot connected by two tunnel barriers to the source (S) and drain (D) contacts
used to measure the conductance of the dot. In addition a left side gate (LSG), a
plunger gate (PG), and a right side gate (RSG) are used to tune the potential of
the quantum dot. The lithographic diameter of the quantum dot is approximately
230 nm.

Figure 5.1: (a) Optical micrograph of a microwave resonator (R) with an integrated
quantum dot, (GND): ground plane of the resonator, (O): ohmic contact, (M): 2DEG
mesa. (b) Magnified view of a coupling capacitor, location on the chip marked with
rectangles in (a). (c¢) Enlarged view of the 2DEG mesa, location on the chip marked
with a circle in (a). Edge of the mesa highlighted with a dashed line. (d) AFM
picture of the measured quantum dot, realized on the 2DEG mesa. Source and
drain contacts are labeled (S), (D), the plunger gate (PG), and the left and right
side gate (LSG), (RSG).

5.2 First quantum dot resonator interaction mea-
surements

Coulomb blockade diamonds of the quantum dot with no microwave power applied,
measured via lock-in techniques, are shown in Fig. 5.2 (a). The charging energy
(Ec) of the quantum dot extracted from the size of the Coulomb blockade diamonds
in bias voltage (Vsp) direction is found to be approximately 3 meV. The diameter of
the dot is estimated with the disc capacitor model E¢ = €%/Cx; = €2 /4¢epegansd, with
CY, the self-capacitance of the quantum dot, e the electric charge, d the diameter of
the quantum dot, egaas the relative dielectric constant of GaAs and ¢, the vacuum
permittivity. The diameter is found to be d ~ 115 nm. Excited state resonances are
observable, indicated by white arrows. The typical single-particle level spacing that
was resolved is about 350 peV. Using the constant density of states of the 2D system
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Chapter 5. Characterization of a microwave resonator via a nearby quantum dot

[1], the single-particle level spacing can be utilized to estimate the diameter of the
quantum dot to be about 110 nm. The value is in good agreement with the dot size
calculated using the disc capacitor model. The electron temperature extracted by
fitting a thermally broadened Coulomb resonance [4] is found to be T, < 200 mK
for this sample. Using the maximum of the Coulomb resonance at position A in
Fig. 5.2 (a), the total tunnel coupling of the quantum dot energy level to the leads
is estimated to be smaller than the thermal energy of the electrons. The measured
Coulomb resonances do not have simple thermally broadened line shapes, indicating
that the quantum dot is not deep in the single-level transport regime.

Before studying the interaction between the quantum dot and the microwave
field, the transmission of the resonator is characterized using a standard network
analyzer. A loaded quality factor [60] of @1, ~ 2900 is found for the fundamental
mode, at a frequency vy ~ 6.878 GHz.

In a next set of experiments, the effect on the conductance of the quantum dot
circuit of driving the microwave resonator is investigated. The quantum dot is swept
at zero DC bias through the Coulomb resonance (position A in Fig. 5.2 (a)) by chang-
ing the voltage on the plunger gate (PG) and the dot conductance is recorded via
lock-in techniques. The measurement is repeated with the addition of a microwave
tone applied to the resonator at v for a range of different microwave powers (Fig. 5.2
(b)). The applied powers are specified at the output port of the microwave gener-
ator, and the total attenuation of the microwave signal from the generator to the
sample is estimated to be about —30 dB. A reduction in the conductance of the
quantum dot and a broadening of the Coulomb resonance with increasing microwave
power are observed. We have performed the same measurement on another Coulomb
resonance and found similar behavior.

We now investigate the conductance of the quantum dot at the Coulomb reso-
nance (position A, Fig. 5.2 (a)), while sweeping the frequency of the signal applied
to the resonator. In Fig. 5.2 (¢) the change of the conductance AG at the Coulomb
resonance is plotted as a function of the applied microwave frequency v at a power of
—27 dBm. The change AG is measured relative to the conductance value obtained
when the applied microwave frequency is detuned by several GHz from an eigenfre-
quency of the resonator. Sharp minima in the conductance signal of the quantum
dot are observed at frequencies of 6.878 GHz, 13.773 GHz, 20.658 GHz, 27.517 GHz,
labeled (1) to (4) in Fig. 5.2 (c¢). They correspond to the fundamental frequency
(10) and the first three harmonics (1, v, v3) of the resonator within a relative error
of B, = (vn —n-1vp) /vy = 0.1 %. The two small additional resonances, marked with
arrows, are likely to be caused by sample holder resonances [65]. The conductance
measurement through the quantum dot is sensitive enough to observe higher har-
monic modes of the microwave resonator that are outside of the frequency range of
up to approximately 20 GHz for which the present microwave setup is designed.
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5.3. Quality factor of the resonator obtained measuring quantum dot properties
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Figure 5.2: (a) Charge stability diagram of the quantum dot without applied mi-
crowave power. White arrows indicate excited states. (b) Conductance through the
quantum dot in the vicinity of point A in (a) as a function of the PG voltage, for
different microwave powers applied to the resonator. (c) Relative change in con-
ductance AG of the quantum dot as a function of the microwave frequency applied
to the resonator. The resonator modes are numbered (1)-(4), and arrows indicate
additional spurious modes.

5.3 Quality factor of the resonator obtained mea-
suring quantum dot properties

In a next step the quantum dot conductance is analyzed at a small applied bias
of 75 pV in the vicinity of 1. The frequency of the tone applied to the feed lines
of the resonator is swept and the conductance through the dot is measured with
the quantum dot tuned to position A. To relate the influence of the strength of the
electromagnetic field to the quantum dot conductance, the measurement is repeated
for microwave powers ranging from —55 dBm to —20 dBm. In Fig. 5.3 (a) the change
in conductance AG of the quantum dot is plotted versus the frequency applied to
the resonator. The minimum of the conductance is found at the resonance frequency
of the resonator and the change of the conductance AG increases with microwave
power.
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Chapter 5. Characterization of a microwave resonator via a nearby quantum dot

In Fig. 5.3 (b) the minima of AG, extracted from datasets as shown in Fig. 5.3
(a), are plotted as a function of the applied microwave power to establish a relation
between the two quantities. The fact that the curve in Fig. 5.3 (b) levels off for small
microwave power is ascribed to the finite sensitivity of the quantum dot. Note that
the smallest input power that is clearly detectable as a change in conductance is
Poin = —50 dBm, corresponding to a resonator population of n ~ 15 - 10* photons.
Hence a stronger coupling between the two systems would be required to realize
a more sensitive detection potentially at the single-photon level. To extract the
scattering matrix element So; from the dataset with P = —20 dBm, the conductance
scale of Fig. 5.3 (a) is now converted into a power scale using Fig. 5.3 (b) and then
normalized so that the transmission peak is at 0 dB. A Lorentzian line shape
is obtained, blue points in Fig. 5.3 (¢). The coupling between the dot and the
resonator is assumed to be constant over the narrow frequency range covered in the
dataset. Also shown with open circles in Fig. 5.3 (c) is the S, signal measured with
a network analyzer, offset from the other curve by —5 dB for clarity. Both curves
are fitted with a Lorentzian line shape to extract the loaded quality factor @y, [60]
of the resonator. The obtained values are ()1, = 2896 + 22 for the network analyzer
measurement, and @, = 2890 £ 30 for the dot conductance based measurement, in
very good agreement with each other, supporting the assumption of the constant
coupling between resonator and dot.
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Figure 5.3: (a) Conductance measurement at Coulomb resonance A in Fig. 5.2 (a)
versus frequency of the driving tone in the vicinity of the fundamental mode, for
indicated microwave drive powers. (b) Maximum conductance change AG versus
microwave power. (c) Resonator spectrum extracted from the dot conductance signal
(blue dots) fitted with a Lorentzian line shape (green line). The dark circles are data
points obtained using a network analyzer and are fitted with a Lorentzian line shape
as well (red curve). The two curves are offset for clarity.
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5.3. Quality factor of the resonator obtained measuring quantum dot properties

We now discuss the potential coupling mechanics between the quantum dot and
the microwave resonator. Due to the large extension of the resonator in comparison
to the quantum dot, there is not only a coupling of the microwave to the quantum
dot itself but also to the surrounding 2DEG areas. The direct coupling capaci-
tance between the resonator and the dot in the present geometry is of the order
of 1 aF, much smaller than the coupling capacitances between the resonator and
the leads, which are in the range of 0.1 — 1 fF (estimated from DC characterization
measurements and finite element simulations). The conductance peaks in Fig. 5.2
(b) both decrease in height and broaden with increasing microwave power. These
features can be explained as a thermal broadening of the conductance resonance [1]
which can arise due to heating of the 2DEG by the microwave. In addition the line
shapes of the conductance resonances for the higher microwave powers (—24 dBm
and —21 dBm, Fig. 5.2 (b)) indicate that the peak form is a superposition of two
resonances. These line shapes are consistent with a modulation of the voltage on one
or more of the gates and leads of the quantum dot by the microwave. The coupling
of the cavity to the quantum dot may therefore be explained as a combination of
heating and gate modulation.
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Chapter 6

Single dot admittance probed with
an on-chip resonator at microwave
frequencies

In this chapter microwave frequency measurements of the dynamic admittance of a
quantum dot, which is tunnel coupled to a two-dimensional electron gas, are pre-
sented. The measurements are made via a high-quality 6.75 GHz on-chip resonator
capacitively coupled to the dot. The resonator frequency is found to shift both down
and up close to conductance resonance of the dot, corresponding to a change of sign
of the reactance of the system from capacitive to inductive. The observations are
consistent with a scattering matrix model. The sign of the reactance depends on
the detuning of the dot from a conductance resonance and on the magnitude of the
tunnel rate to the lead with respect to the resonator frequency. Inductive response
is observed on a conductance resonance, when tunnel coupling and temperature are
sufficiently small compared to the resonator frequency. Previous experiments at
frequencies smaller than tunnel coupling and temperature have shown good corre-
spondence to theory when the quantum dot circuit is modeled as a capacitor and a
resistor connected in series [43].

6.1 Sample design and setup

The sample we have investigated for the experiments presented in chapter 6 and
chapter 7 is shown along with an electrical circuit diagram of the sample and of the
setup in Fig. 6.1. A \/2 microwave resonator (see Fig. 6.1 (a)), also discussed in
chapter 4, is realized on the chip and allows the investigation of microwave transmis-
sion spectra. The double quantum dot (see Fig. 6.1(c)) is positioned at an anti-node
of the standing wave field distribution of the resonator. The left and right dots (LD,
RD) are arranged in series with respect to the source and drain (S, D) contacts.
The quantum dots are realized on an Al,Ga;_,As heterostructure in which the two-
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6.1. Sample design and setup

Figure 6.1: a) Optical micrograph of the microwave resonator (R), with integrated
double quantum dot, ohmic contacts (O), top gates (C), ground plane (GND), and
on-chip inductor (I). Inset: magnified view of inductor (I). (b) Enlarged view of
the device near the double quantum dot. The mesa edge is highlighted with a
dashed line. (c¢) Scanning electron micrograph of the gate structure defining the
double quantum dot (LD, RD). RG marks the gate connected to the resonator,
VL, Vip, Vo, Ve, Vi) label top gate voltages, and S, D, the 2DEG source and
drain. (d) Electric circuit representation of the double quantum dot coupled to the
resonator. The double quantum dot is tuned with voltages V1., Vip, Vo, Vrp, VR
and connected to the resonator via the capacitance Crg. The resonator is driven
with a microwave signal at frequency v. The transmitted signal passes through a
circulator, is amplified and mixed with the local oscillator at frequency v1,0 to obtain
the field quadratures I and Q.

dimensional electron gas (2DEG) is formed at a depth of about 35 nm below the
surface.

A selective capacitive coupling between the two systems which is mediated by
a gate (RG) extending from the resonator to the right quantum dot only (Fig. 6.1
(b,c)) is engineered for this chip in contrast to the sample used in chapter 5. This
coupling is independently confirmed at DC by biasing the resonator through an on-
chip inductor (Fig. 6.1 (a), inset). The on-chip inductor consists of a meandering
line about 250 nm wide with a thickness of around 3 nm titanium (Ti) and around
40 nm of gold (Au). It is positioned at the voltage node of the fundamental mode
to disturb the standing wave electric field distribution in the resonator as little as
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frequencies

possible. The possibility to bias the center conductor has the advantage that there is
no floating gate. Floating gates otherwise might charge over time and hence cause
drifts in the measurements [72]. In addition the resonator gate can also be used
to tune the quantum dot potential via the inductor. Note however that adding an
additional voltage source to the sample might lead to an increase of the decoherence
of the quantum dot charge states and is subject of further investigations.

The implemented coupling scheme results in a strong microwave frequency dipole
interaction of the resonator with two charge states which differ by one electron being
either on the left or right quantum dot. But also tunneling processes of an electron
between the dots and the leads can be detected via the resonator. In order to
accommodate the gate (RG), the dots are placed at the edge of a mesa (beyond
which the 2DEG is etched away), used as part of the confining potential. Negative
voltages are applied to metallic top gates (Fig. 6.1(a)) below which the 2DEG is
then depleted to complete the formation of the dots.

The experiments are performed in a dilution refrigerator with a base temperature
of approximately 10 mK. During the cooldown of the sample we apply a negative
voltage of about —250 mV to the 2DEG contacts with all other gates grounded but
the resonator gate (RG) which is set to around —150 mV. This method named pre-
bias cooldown is known to reduce charge noise [73]. The voltage difference between
the gates and the 2DEG leads to an increase of the population of the DX centers [74]
in the vicinity of the gates which remains at low temperatures without prebias ap-
plied. In the literature DX centers name localized defect centers which are charged
negatively [75]. The prebias cooldown has the effect that a less negative potential
is needed on the gates for operating the quantum dot. The resonator gate is set to
—150 mV as the electron density underneath should not be minimized due to an
expected decrease of the resonator quantum dot coupling strength but still potential
leakage through the Schottky barrier should be diminished [76]. The voltages are
applied with a 1 G resistor in series to minimize the leakage current through the
gates due to thermally activated electrons in the semiconductor at the beginning of
the cooldown.

For the quantum dot measurements the static potential on the dots is tuned via
two plunger gate voltages Vip and Vgyp. To allow electron transport, the two dots
are connected to each other and to the source (S) and drain (D) contacts through
tunnel barriers, tunable by applied voltages Vi, Vo and Vi (see Fig 6.1 (c,d)).
These tunnel barrier gates also tune the dot potentials with a similar lever arm as
the plunger gates due to finite capacitive cross coupling. The charging energies of
both quantum dots are Fg ~ 1 meV =~ h x 240 GHz as extracted from Coulomb
diamond measurements.

For the microwave measurements, we apply a coherent signal at frequency v
to the resonator (R) to extract the amplitude A and phase ¢ of the transmitted
signal from the measured field quadratures I and (), as described in chapter 3. The
microwave resonator has a fundamental frequency vy =~ 6.755 GHz and a loaded
quality factor [60] Q1 ~ 2630 corresponding to a decay rate x/2m ~ 2.6 MHz,
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6.2. Double dot charge stability diagram obtained with microwave and direct
current measurement techniques

measured with all gates grounded such that no quantum dots are formed. The
resonator is approximately prepared in its ground state with average thermal photon
number n < 1 by using appropriate filtering and attenuation in the microwave lines,
as discussed in chapter 3.

6.2 Double dot charge stability diagram obtained
with microwave and direct current measure-
ment techniques

We first investigate the dependence of the quality factor and resonant frequency
of the resonator on the charge configuration when forming the double quantum
dot. The measured transmission amplitude and phase are displayed in Fig. 6.2
(a,b) for two different gate voltage settings. For these and all the other microwave
measurements shown in this chapter the source and drain contacts are grounded. In
the first case, marked (1) in Fig. 6.2 (a,b), the quantum dot is tuned into Coulomb
blockade (see chapter 2) where the number of electrons is fixed in both dots. In
the second case (2), the double quantum dot is tuned to a triple point. In this
configuration the chemical potentials in the leads and in each dot are aligned such
that it is energetically possible for an electron to propagate elastically from one lead
through the quantum dot into the other lead. The gate voltage settings of the two
measurements (1) and (2) are indicated in Fig. 6.3 (a). A reduction in amplitude
and a change in phase are observed between the two cases while the line shapes
remain Lorentzian (Fig. 6.2 (a,b)). This fact can be exploited to save measurement
time; instead of measuring the full resonance spectrum for every value of Vi and V7,
a microwave tone at a fixed frequency vy = vy is applied to the resonator and the
difference in amplitude AA and in phase A¢ is recorded.
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Figure 6.2: Transmission amplitude (a) and phase (b) of the resonator as a function
of the frequency v of the applied microwave signal in Coulomb blockade (1) and on
a conductance resonance (2).
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frequencies

In Fig. 6.3 the change in amplitude (a) and phase (b) are shown for several
different electron configurations in the two dots. No major undesired background
charge rearrangement is visible over the whole investigated gate voltage region. In
Fig. 6.3 (d) the sketch of a double dot charging diagram (chapter 2) is shown along
with the corresponding quantum dot level structure in the vicinity of two triple
points, as indicated in Fig. 6.3 (a). Using this schematic, we can identify different
characteristic regions by taking a closer look at Fig. 6.3 (a). In region I charge
transfer between the two dots and between each dot and its adjacent lead is observed.
In region II (IIT) only charge transfer to the right (left) lead is discernible together
with interdot charge transfer. The resonances to the right lead are more pronounced
than those to the left lead. This is expected because the resonator is more strongly
capacitively coupled to the right quantum dot than to the left, leading to a higher
sensitivity to the tunnel coupling between the right dot and its lead. In region IV, no
charge transfer between the dots and the leads is visible. Microwave measurements
in this region are discussed in detail in chapter 7.

In this chapter, we focus on region II in which we specifically study the inter-
action between the right dot and the right lead. Fig. 6.3 (b) shows that the finite
frequency response of the quantum dot-lead circuit does not only consist of a change
in amplitude when an electron in the right dot can tunnel resonantly to the lead,
but also a change in phase is observed. Since the measurement frequency is set to
vy, such a change in phase corresponds to a change in resonance frequency. For
high quality resonators this frequency shift is mainly caused by reactive changes in
the impedance of the right dot tunnel-coupled to its lead, discussed in more detail
below.

We compare the microwave frequency response with standard DC transport mea-
surements (chapter 2 and Ref. [4]) as shown in Fig. 6.3 (c) to understand the origin
of the finite frequency response of the quantum dot-lead circuit. Voltages Vi, and
VR are swept as in Fig. 6.3 (a,b), but now a small source-drain bias Vsp = 50 uV
is applied. In Fig. 6.3 (c) clear hexagon patterns are observable. The size of the
hexagons and their position in gate voltage are the same as in the microwave mea-
surements. For less negative gate voltages, the coupling to the leads is strong enough
to lead to a finite current within the hexagons, indicating that the dots are not deep
in the Coulomb blockade regime. With decreasing gate voltages Vi, and Vg, and
therefore decreasing tunnel rates, the resonances to the leads become smaller and
finally disappear.

Although the microwave and transport measurements show equivalent charging
diagrams, differences are observable, such as good or poor visibility of the interdot
charging line and of the resonances to the different leads. This indicates that the
physical origin of the signal is different for the two measurement techniques. We
discuss this aspect in more detail below.

In the DC measurement (Figs. 6.3 (c), 6.4 (a)), the interdot charging lines at
which (M, N — 1) = ue(M — 1, N) (Fig. 6.3 (d)) are not observed because here
transport is suppressed due to Coulomb blockade [2].
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Figure 6.3: (a) Relative resonator transmission amplitude A/Apax at fixed mea-
surement frequency vy as a function of Vi, and Vi. Points labeled (1) and (2) mark
gate voltage positions where the full resonance spectra shown in Fig. 6.2 (a,b) are
measured. Green roman numerals label four different measurement regions sepa-
rated by dash-dotted green lines (see text for details). (b) Phase change of the
microwave resonator for the same gate voltage ranges as in (a). (c) Direct current
measurement through the double quantum dot for gate voltage settings V1, and Vg
within the dashed region highlighted in (a). (d) Schematic of the charging diagram
of a double quantum dot for (M,N) electrons close to the two triple points as a
function of Vi, and VR.

Sketches visualizing a possible explanation for the difference in the signals of the
dot-lead resonances are shown in Fig. 6.4 (c,d). The transport data in region III
(Fig. 6.3 (c)) shows mainly cotunneling lines [2] with the right dot being in resonance
with the lead with decreasing Vg. In the corresponding microwave measurement
however, the resonances to the left lead are more pronounced. Equivalent features
can also be found in region II with decreasing Vi, as shown in Fig. 6.4 (a,b). This
time the resonance to the left lead is seen in the transport data and the resonance
to the right lead in the microwave measurements. This indicates that the microwave
signal strength related to the process of an electron tunneling between the dot and
the lead depends strongly on the tunnel rate to this lead (Fig. 6.4 (d)).
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Figure 6.4: (a) Zoom of the direct current measurement in region II. (b) Magnified
view of the relative transmission amplitude change in the same gate voltage range as
in (a). (c,d) Schematic of the double quantum dot for the direct current measurement
(c) and for the microwave measurement (d). =1, and g are the tunnel rates to the
left and right lead, respectively.

For the transport measurements however, an electron must pass through both
quantum dots for a current to be measured (Fig. 6.4 (c)). For sufficiently negative
left side gate voltages (V1, < —100 mV), a cotunneling current can only be observed
along two of the boundaries of the hexagon (Fig. 6.4 (a)). Along these lines the
tunnel rate to the left dot is small, but since a dot level is resonant with the lead,
first order tunneling is possible and the electron can enter the left dot. In order to
now pass through the right dot, a cotunneling process needs to occur which requires
a strong coupling between the right dot and lead [1]. An analogue explanation also
holds for region III.

We conclude that the dominant mechanism for a change in the microwave trans-
mission signal is the tunneling process of an electron back and forth between the
lead and the dot, if only one of the dots is resonant with a lead and if the two dots
are tuned more than the energy of a microwave photon apart, to exclude interdot
photon assisted tunneling [7].

6.3 Measurement of the complex admittance for
dot-lead tunneling processes

We have further investigated the response of the resonator close to dot-lead reso-
nances (see Fig. 6.5). We now operate V;, and Vi at more negative gate voltages
than in Fig. 6.3, in order to focus on tunneling events occurring between the right
lead and the right quantum dot. This results in smaller tunnel rates to the left
lead and between the dots. Whenever an electron in the right dot can resonantly
tunnel to the lead, a drop in transmission amplitude is visible (6.5 (a,b)). We see
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Figure 6.5: (a) Relative resonator transmission amplitude A/Apax at fixed measure-
ment frequency as a function of V4, and Vg. (b) Relative amplitude change versus
Vr along the dashed line shown in (a). (c) Phase change A¢ for the same gate
voltage range as shown in (a) for a fixed measurement frequency ry;. Dash-dotted
line marks the upper border of the region displayed in detail in Fig. 6.6 (a). (d)
Change of transmission phase along Vi as indicated in (c).

more interesting features however in the transmission phase (6.5 (c,d)), in which
a characteristic change in the response occurs with decreasing Vg (i.e. decreasing
tunnel rate to the lead). At first the change in phase A¢ is negative, indicating that
the resonance frequency shifts to lower values. But at Vg &~ —145 mV, we observe
a double peak in the phase response and for even smaller tunnel rates, the phase
response becomes positive (highlighted in Fig. 6.5 (d) by red arrows).

This characteristic change in the phase response is seen for a range of different
electron numbers in the left dot (Fig. 6.6 (a)). A further dataset indicating that this
change in the phase signal depends on the tunnel rate between the right dot and
the lead is shown in Fig. 6.6 (b). This is a dataset acquired in a similar regime, but
the gate voltage parameters have slightly changed compared to Fig. 6.6 (a) due to a
charge rearrangement in the system. Here the positive phase shift of the resonator
evolves into a negative phase shift as the same dot-lead resonance is followed to more
positive Vg, corresponding to an increasing tunnel rate (indicated by an arrow).

We have found that the width of the double peak in the phase signal does not
depend on the microwave power over several orders of magnitude (Fig. 6.7 (a,b)).
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Figure 6.6: (a) Detailed view of the transmission phase in a selected region of Vi
as indicated by a dash-dotted line in Fig. 6.5(c). Dashed circles refer to gate voltage
settings investigated in more detail in Fig. 6.10. (b) Change of transmission phase
A¢ at fixed vy as a function of Vg and V1, for a dataset acquired in a similar regime,
but with slightly different gate voltages.

The indicated microwave powers in the figure refer to the power level at the output
of the microwave generators.

We have also confirmed experimentally that the origin of the double peak in
the phase signal is not caused by a current rectification process, as follows. We
have measured the transmission phase with a low-frequency sinusoidal voltage signal
(19.193 Hz) added to the drain-lead (D in Fig. 6.1) or the resonator gate (RG) via
the inductor. As a result, the double peaked phase signal is smeared out and for
increasing amplitudes of the sine signal, a double peak in the transmission amplitude
of the resonator is observed. The transmission amplitude and phase when applying
the low frequency signal to the drain contact is shown exemplarily in Fig. 6.8. The
onset of a double peak structure in the amplitude signal can be observed for voltage
amplitudes of around 120 'V or higher. The phase signal starts to flatten out for
AC voltages of around 30 pV added to the drain contact.

We now discuss three characteristic measurements of the transmission phase in
more detail which are recorded at the gate voltages highlighted by dashed circles in
Fig. 6.6 (a). For these datasets, there is a nontrivial dependence of the frequency
shift on the gate voltage Vg. We have measured the full microwave transmission
spectra when tuning the right quantum dot through resonance with the lead for
these three cases. We find for all measurements, that the transmission amplitude
can be fitted with a Lorentzian from which we obtain the resonance frequency. For
small shifts (Av < k/27) it is directly proportional to the change in the transmission
phase. In Fig. 6.10 (d) we plot the resonant frequency shift Avg versus the change
in right side gate voltage, where the resonances have been horizontally offset for
better comparison. A small linear background phase (visible in Fig. 6.5 (d)) has
been subtracted from the data in Fig. 6.10 (d). It is likely to originate from a slight
change in direct capacitance between the resonator and the right lead.
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Figure 6.7: (a) Dependence of the relative amplitude signal A/Ap.x around a dot-
lead resonance on the microwave powers applied to the resonator. (b) Phase shift
A¢ of the microwave resonator for the same experimental settings as in (a). The
datasets are acquired for the dot-lead resonance marked 2 in Fig. 6.6 (a), but with
slightly different gate voltages for V1, and Vy.
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Figure 6.8: (a) Dependence of the relative amplitude signal A/Apax around a dot-
lead resonance on the root mean square (rms) voltage strength of a low frequency
19.193 Hz signal applied to the drain contact. (b) Phase shift A¢ of the microwave
resonator for the same experimental settings as in (a). The datasets are recorded
for the dot-lead resonance marked 2 in Fig. 6.6 (a), but with slightly different gate
voltages for Vi, and Vg.

6.4 Modelling and interpretation of the results

For the interpretation of our data we use a scattering matrix approach [77], appli-
cable for different kinds of coherent transport phenomena at DC but also for the
case of finite frequencies (AC) (section 6.4.1). In section 6.4.2 we specify the fi-
nite frequency scattering matrix model for our experiment and compare the results
of the calculations with the experimental data. An attempt to give an intuitive

47



Chapter 6. Single dot admittance probed with an on-chip resonator at microwave
frequencies

explanation of the observed complex admittance behavior concludes this section.

6.4.1 Scattering matrix model at finite frequencies

With decreasing sample sizes and setups operated in the millikelvin temperature
range, it is possible to perform experiments where the phase coherence length (I4)
becomes equal or even larger than the electronic structure (lo5) of the sample. In
this situation, only elastic scattering plays a role in transport experiments and there-
fore phenomena related to wave-like transport can be studied. For these parameter
settings (I, > les) transport is called coherent and was investigated e.g. in interfer-
ence experiments of a single electron with itself, realized in a semiconductor het-
erostructure [42]. The scattering matrix approach known as the Landauer-Biittiker
formalism has proven to be very useful to treat coherent transport theoretically [78].

In this section we summarize the basics of the scattering matrix model at finite
frequencies developed by A. Prétre, H. Thomas and M. Biittiker in Ref. [79]. A more
detailed description can be found in this paper and the references therein, especially
in Ref. [80].

The goal is to find a self-consistent algebraic expression, fulfilling charge and
current conservation, for the AC conductance matrix in a mesoscopic conductor (see
Fig. 6.9 (a)) using the scattering matrix formalism. In the DC case the conductance
is fully described by the transmission probabilities. However, at finite frequencies
the relative phases of the scattering matrices also play a role.

The conductor is connected via contacts to electron reservoirs which are at equi-
librium described by a Fermi distribution function. In the contacts emission and
absorption including, e.g., the relaxation process of the electrons, take place. To
investigate the properties of the mesoscopic conductor, different voltage sources can
be attached to the contacts.

Gates can be capacitively coupled to the conductor to tune it electrostatically.
For clarity only one gate is plotted in Fig. 6.9 (a). The treatment of these gates
must be included in the model used for finite frequency investigations: in contrast
to the DC case they do not only have an electrostatic effect on the conductor but
the dynamics in the system are also affected because of AC currents that can flow
between the gates and the conductor.

The response of the system measured at one of the contacts (e.g. the oscil-
lating current) due to a small perturbation, for example an AC voltage excitation
on another contact, is computed in two steps. In the first step the response of the
electrons, treated as noninteracting particles for now, caused by the external pertur-
bation is considered. In the second step internal shifts in the potential (6U) due to
Coulomb interaction between the electrons are taken into account self-consistently,
ensuring charge conservation. For simplicity, we assume the presence of only one
channel in each arm of the circuit in the following.

We start by motivating the equation for the first step of the calculations. An
incoming wave from a particular contact, e.g. contact 1, can be either transmitted
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Figure 6.9: (a) Schematic of a mesoscopic conductor connected via two contacts Cy
and C5. The conductor is capacitively coupled to a nearby gate tuned by contact
Cs. Voltage perturbations can be applied to the contacts, leading to a change of the
internal potentials SU' and 6U2. (b) Schematic of the scattering matrix approach
in second quantization. Operators ay annihilate incoming particles, by annihilate
outgoing particles. The subscript x labels the contact the conductor is connected
to.

through the mesoscopic conductor to another contact or reflected back. The outgo-
ing signal to contact 1 is therefore the sum of the reflected wave and all the waves
transmitted from the other contacts. Here this situation is described using second
quantization with number operators a and b as shown in Fig. 6.9 (b). Operators
a annihilate incoming states impinging on the electronic structure and operators b
annihilate outgoing states. The two sets of operators are related to each other via
the scattering matrix s:

l;a = ZSQBCALB, (61)
B

where «, 3 label the contacts.
In order to calculate the oscillating current o/ in linear response due to an
external voltage perturbation, an expression for the current operator I(t) is needed.

The current density operator in the Heisenberg picture of quantum mechanics is
defined as [81]:

N h - A A N
e, 0) = S [ (e, 9 (r, 1) — (V1)) 1), (6:2)
and the current is given by integrating j(r, t) over the cross section of the reservoir.
The field operator ¥, in each contact is the sum of incoming and outgoing waves:

W, (r,t) o / dEe! kBB (B 4 ¢~ {kE)z+e(B0N) (). (6.3)
Evaluating Eq. 6.2 using Eq. 6.3, and performing the integration over the cross

section yields the following expression for the current in contact a:

e

fa=3 / AEAE' (6] (E)an(E') — B (E)ba(E)] ! E-FM (6.4)
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Expressing the b operators in Eq. 6.4 in terms of a operators using the scattering
matrix (Eq. 6.1) results in

I, = % / dEdE"Y " al(E)Ag,(a, E, B, (E)e P Fn (6.5)
By

with the matrix Ag (o, £, E') given as
Ag(a, B, E') = 1000, 500 — sgﬁ(E)sM(E') (6.6)

and the identity matrix 1,.

So far we have calculated the full current operator. Now we continue using linear
response theory to evaluate the current variation (§7) due to a voltage perturbation.
It is assumed that the reference state is an equilibrium state with zero current in
the leads.

The general formula for a linear response function of the observable B due to a
perturbation in A, also named Kubo formula in the literature, reads [82]:

xap(r—rt—t) = —%@(t —t') < [Bu(r,t), Au(r, t)] >, (6.7)

where the index H indicates that the operators are expressed in the Heisenberg
representation and the brackets () stand for an ensemble average and the © function
assures causality.

In our system the Hamiltonian of the perturbation reads

H =Y QVj, (6.8)
B

where Qg describes the total charge in reservoir §. The linear response equation
using Eq. 6.7 and Eq. 6.8 becomes

Fios(T) = —%([fa(f% Qs(0)))O(7). (6.9)

With Eq. 6.9 the function for the fluctuation of the current 47 in linear response in
Fourier space reads

Z 9&% (w) - Vs (w), (6.10)

with the external response

) fs(E) — f5(E + Aw
ST 2) = 5 [ B T8 ], (BB )] (P B

(6.11)
In Eq. 6.11 the replacement E' — E = hw was used and the Fermi distribution
functions originate from the quantum statistical average indicated with () in Eq. 6.9.
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After having dealt with the linear response of the system due to an external
perturbation, leading to an accumulation of charge in the conductor, the resulting
change of the local potential landscape is treated in the second step. The local
potential landscape is modified by the redistributed electron configuration caused
by electron-electron interactions. It is treated via geometrical capacitances Chy, .
The letters m,n label the different conductors. For the example shown in Fig. 6.9
(a) we have two conductors so that m,n = 1, 2.

The total dynamic admittance then reads

gl (W) = b g™ ( [ngﬁ ] M0 (w) [Z ggjg@)(w)]. (6.12)

6

The matrix My (W) = dmn a0 g gzxg ( ) — iwChy . takes the interaction between
the electrons into account and therefore assures charge conservation.

6.4.2 Comparison between model and experiment

In order to understand the observed frequency shifts of the resonator at different
tunnel rates, we model the system using the scattering matrix approach described in
the previous section. We neglect the presence of the left quantum dot in our model
as the center gate voltage V( is set so negative that electron tunneling between the
dots is negligible. In addition, as the capacitance between the right plunger gate
and the center gate and their capacitance to ground are much larger than their
respective capacitances to the dot, we assume that they are always on the same
microwave potential. This allows us to model the capacitive coupling of these two
gates to the right dot by a single effective gate with a capacitance Cgs (Fig. 6.10
(a)). In the model circuit, depicted in Fig. 6.10 (a), the resonator gate is coupled
via a capacitor Crg to the quantum dot and the drain contact (D) is tunnel coupled
to the dot. The voltages Vi (x = dot, Gs, RG) are applied with external sources,
and the voltage Uy, denotes the internal electrostatic potential of the quantum dot.
This quantity arises due to the Coulomb interaction between charged particles in
the dot, the lead and the gates and results in a local potential energy of electrons on
the quantum dot as discussed in section 6.4.1. The dynamic admittance (Eq. 6.12)
can be further simplified by approximating the density of states in the metal leads
as being infinite, since it is much larger than the density of states in the quantum
dot [83]. We calculate the dynamic admittance g®°(w) of the quantum dot circuit
in this approximation and find that the current flowing into the resonator gate is
given by:

1 1 -1
I . QD . ) 1
RG = ( iwCrc + gfféi( ) ; CGS) VRa = ¢ (W) Ve (6 3)

In this chapter we adopt the sign convention of previous authors [79], who define
the Fourier transform of the current I(t) as I(w) = [dtI(t)e=™'. Therefore the
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complex admittance of a capacitor is G(w) = —iwC. The dynamic admittance
gP(w) is capacitive for Im[g® (w)]/(—w) > 0, and inductive for Im[g®P (w)]/(—w) <
0. Equivalent relations hold for the inductive or capacitive behavior of g5 (w).
The lumped element representation of g% (w) (Eq. (6.13)) is shown in Fig. 6.10
(b). Tt consists of the parallel circuit of the capacitor Cgs and the complex admit-

ext

tance of g5¥(w) in series with the coupling capacitor Crg. In Eq. (6.13),

g KT,) = 5 [ e = slemste o)) (L) oy

describes the external response of the quantum dot (Eq. 6.11) coupled to a single lead
with an excitation with frequency w/27r. The two functions in g5 are the scattering
matrix s(e,y) = (14i€e/7v)/(1—ie/v), describing in our analysis resonant reflection of
Breit-Wigner type with the tunnel coupling strength ~, and the Fermi distribution
fle, i, kT) = 1/(elle=m/kT] 1 1), Here, p describes the detuning in energy between
the quantum dot level and the Fermi energy in the lead. It translates into a side
gate voltage via y = arVRw, where ag is the lever arm of the right side gate. The
external response ¢S5t (w, u, kT, 7) can be rewritten in terms of energy ratios fiw/7,
hw/ET and p/kT. Tts functional form is therefore completely determined by these
three values. As Cgnp is much larger than any other capacitances and as the dot is
only modulated by the gate connected to the resonator, we assume that the source
contact and the other gates are at microwave ground.

We also map the resonator to a lumped element model, (see Eq. (11-12) in [60])
and assume that the impedance of the coplanar waveguide resonator is 50 €) to
obtain the circuit model shown in Fig. 6.10 (c¢). To investigate the frequency shift

Av of the resonator we evaluate the following equation

1

A p—
YT 150 Q(C + Yop)

— Voffset (615)

with Yop = Im[g9 (w)]/(—w) and veget is a constant offset subtracted to obtain
Av.

Since the results of Eq. (6.13), (6.14), (6.15) depend on a number of parameters
(Cra, Cas, hw, v, kT, Cyp,, agr), we determine as many parameters as possible either
by directly extracting their values from experimental data or using reasonable values,
due to the given boundary conditions. We take Crg = 56 aF and Cgs = 30 aF,
obtained from gate characterization measurements, and C}, ~ 0.74 pF, calculated
from the resonator impedance and frequency. The electron temperature is estimated
from Coulomb peak width measurements to be 135 mK and w is set to 27y, A
constant lever arm ag = 0.05 is used to convert the energy scale to a gate voltage.
This value of agr is within less than a factor of two equal to the value obtained
from finite bias measurements in another regime. The tunnel coupling = is the only
adjustable parameter. It is chosen to match the different data sets best and is in
agreement with an upper bound obtained from the DC pinch off curve of the right
side gate with the center gate and the left side gate open.
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Figure 6.10: (a) Schematic of the right quantum dot tunnel-coupled to the drain
lead (D). The dot is capacitively coupled to the resonator gate (RG) and to a ca-
pacitor (Cgs) formed by the capacitive coupling of the center gate (Cc) and the
right plunger gate (Cp). This circuit model is used to calculate the dynamic admit-
tance gQD(w) of the dot coupled to the lead. The V4 refer to the voltages applied
by external voltage sources with x = dot, Gs, RG. Uge describes the locally in-
duced potential in the quantum dot. (b) Circuit representation of the schematic
in (a), see Eq. (6.13) in the text. (c) Lumped element model (inductor L, resistor
R, capacitor Ciy,) of the microwave resonator with the dynamic admittance of the
quantum dot connected in parallel. (d) Measured change of resonator frequency
Ay for the dot lead resonances (1-3) indicated by dashed circles in Fig. 6.6 (a).
(e) Calculated imaginary part of the external admittance g5 of the quantum dot
(Eq. (6.14)) for tunnel couplings 1 /h = 20 MHz (black), v2/h = 58 MHz (red),
v3/h = 125 MHz (blue). Inset: Imaginary part of the external admittance for tun-
nel couplings v4/h = 2 GHz, v5/h = 1.5 GHz, 76/h = 1 GHz from top to bottom.
(f) Results of the model calculations accordind to Eq. (6.15), for the three different
tunnel couplings from top to bottom as in (e).

To compare the results of Eq. (6.15) with the data in Fig. 6.10 (d), we first
show the complex admittance g5 (w) for different ratios fiw/y between the energy
of a microwave photon and the tunnel coupling. In the inset of Fig. 6.10 (e), the
reactance Im[g§¥ (w)]/(—w) is plotted for increasing values of fuw/v. For the topmost
curve, the response is capacitive for all gate voltages Vg. As the tunnel coupling
is decreased, inductive behavior begins to develop close to resonance (Vg =~ 0).
The inductive response of the system is strong in the regime where kT < Aw and

v < hw. It starts to appear at v ~ hw and v = kT
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The main part of Fig. 6.10 (e) shows the external response of the dot-lead system
for parameters as used for the calculation of the resonator frequency shift in Fig. 6.10
(f). In all three cases an inductive behavior is observed close to resonance which
turns into a capacitive response with detuning from the resonance.

The results of the evaluation of Av using Eq. (6.15) are shown in Fig. 6.10 (f).
We compare the three different data sets in Fig. 6.10 (d) with these calculations and
observe that the characteristic features of our measurements are well reproduced
within this model. We find a dynamic admittance g@P(w) with only a capacitive
component for the most transparent tunnel barrier (y3/h = 125 MHz) of the three
measurement sets presented in Fig. 6.10. The model also reproduces the crossover
from a capacitive to an inductive behavior as the tunnel rate is reduced. For g (w)
the frequency ~/h where the transition between inductive and capacitive behavior
occurs is shifted down from the GHz to the few tens of MHz-range due to the
presence of the additional capacitances Cgs and Crg.

Comparing Figs. 6.10 (d) and (f) we find the measured curve (3) to be slightly
broader in gate voltage than the corresponding calculated trace. Also the capacitive
reactance in case (1) is slightly less pronounced in the measurement than in the
calculated curve. Such differences between the scattering matrix model and the
measurements could have a number of reasons. First, the model does not consider
any sources of decoherence and noise. Second, the assumption of a Breit-Wigner-
type phase dependence [1, 84], which is based on a single resonance, may be an
oversimplification.

Detailed analysis of the resonator linewidth gives access to dissipative effects
described by the real part of the dynamic admittance. For dataset (2) we obtain
good agreement between model and data (Fig. 6.11) using the same parameters
which describe the resonator frequency shift in Fig. 6.10. The model underestimates
the dissipation by around a factor 2 in the other two cases. However, a comparison of
the measured phase and amplitude changes in Figs. 6.5 (b) and (d) already suggests
that the dissipative effects may be more difficult to describe than the reactive effects.
While the latter show a systematic and steady evolution from the case of purely
capacitive response to the case of inductive response with decreasing gate voltage,
the dissipative effects vary strongly in the same gate voltage range. While we do
not have a clear explanation for this effect at present, we point out that charge
relaxation, which is still under investigation [85-87], is believed to play an essential
role for high frequency resistance measurements.

6.4.3 Intuitive explanation of the complex admittance

In the following we propose an intuitive explanation for the appearance of an in-
ductive and a capacitive response in the vicinity of a conductance resonance. The
decisive parameter for the external response to be inductive or capacitive close to
resonance with the lead, is the ratio between the photon energy hw and the tunnel
coupling v. As v decreases at fixed frequency w, the dwell time in the dot of a
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Figure 6.11: (a) Broadened linewidth x* for the three characteristic cases indicated
in Fig. 6.6. Result of the model calculation using the real part of the complex
impedance with the same parameters as stated in the caption of Fig. 6.10.

resonantly tunneling electron becomes longer. If this dwell time exceeds the period
of the driving field, the electron can no longer follow the drive, the resulting current
lags behind the voltage, and the response tends to be more and more inductive.
This behavior may be interpreted as the quantum tunneling analogue of the kinetic
inductance of an electron gas, which is due to the inertia of the electrons, and which
causes a similar lag between current and voltage. However, in our resonant struc-
ture this inductive effect competes with the well-known contribution of the quantum
capacitance to the response caused by the tunnel-broadened spectral density of the
resonant state. The capacitive response prevails with increasing detuning from reso-
nance, where tunneling of electrons into the dot has an increasing character of virtual
transitions (elastic cotunneling) happening on very short time scales given by the
detuning energy. This intuitive interpretation follows the discussion presented in
Ref. [83].
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Chapter 7

Dipole coupling of a double
quantum dot to a microwave
resonator

In this chapter we present measurements using the hybrid solid state quantum device
introduced in chapter 6 to explore the dipole coupling between the semiconductor
double quantum dot and the microwave field of the superconducting resonator. Both
the observed frequency shift and the line width broadening of the resonator, recorded
in the vicinity of an interdot charge transfer line of the double quantum dot, are
explained by treating the double dot as a charge qubit coupled to the resonator with
a strength of several tens of MHz.

7.1 Investigation of the interdot charge transfer
line

We start with measurements investigating the properties of the double quantum
dot for small tunnel coupling to the leads labeled region IV in chapter 6. The
DC transport properties of the double quantum dot in this region are recorded
by applying a source-drain voltage of Vsp ~ 50 uV. To change the electrostatic
potentials on the quantum dots the side gate voltages Vi, and Vi are varied while
all other gate voltages are kept constant. The voltages Vi, and Vi are operated for
these measurements close to their lowest possible value where the signal to noise
ratio (I 2 80 fA) still allows resolving the transmitted current (see Fig. 7.1 (a)).

We observe the typical hexagonal charge stability pattern, noticing that the
signal starts vanishing due to the decreasing tunnel rates to the leads. The properties
of the hexagons are discussed in chapters 2 and 6. This is why here we only point
out the two hexagon boundaries, indicated by red arrows in Fig. 7.1 (a), at which
no DC current is observed. These boundaries are named interdot charge transfer
lines. Here two quantum dot energy levels with the same total number of electrons
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Figure 7.1: (a) Measurement of the direct current (I) through the double quantum
dot versus V1, and Vi (no microwave signal applied). A small background current
is subtracted from each horizontal line of the dataset. The dashed line outlines a
region with fixed electron number (M,N). The € and § axes indicate the direction of
the mean energy and the energy detuning of the two quantum dots. (b) Resonator
transmission amplitude at fixed measurement frequency v in the same gate voltage
range as in (a). The red dashed lines highlight the same hexagon as in (a). (c)
Transmission phase change with respect to the measurement tone of frequency v,
gate voltages as in (a). Red dashed lines as in (a).
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Chapter 7. Dipole coupling of a double quantum dot to a microwave resonator

are degenerate [2]. Along the interdot charge transfer line (Fig. 7.1(a)), the mean
energy (€) of the two quantum dots is tuned with respect to the chemical potentials
of the leads. The energy detuning (&) between the charge states of the quantum dots
is changed along a second axis indicated in the same figure. The charging energies
of both quantum dots are Ec &~ 1 meV = h x 240 GHz as extracted from Coulomb
diamond measurements. We operate the quantum dots in the many electron regime
where both quantum dots contain on the order of 100 electrons.

In Fig. 7.2(a) and (b), the amplitude and phase of the microwaves transmitted
through the resonator are shown for the two voltage settings indicated with (1) and
(2) in Fig. 7.1(a). Similar measurements are shown in chapter 6 (Fig. 6.2) but here
in both configurations (1) and (2), transport is blocked between the leads and the
quantum dots due to Coulomb blockade. However, in (1), the electron number in
both dots is fixed, whereas in (2), a pair of left and right dot charge states are
degenerate and hybridized states are formed. In the two cases, different resonance
frequencies and maximum transmission amplitudes are observed. In contrast to the
datasets shown in Fig. 6.2, the phase shift is more pronounced whereas the change
in height of the amplitude is smaller. The modified resonator response indicates
that the double dot couples with significant interaction strength to the resonator
and that the coupling mechanism of the interdot charge transfer to the resonator is
more of a reactive and less of a dissipative type. Remember that in all microwave
transmission measurements presented in this chapter no source-drain bias is applied
to the double dot.

For the same gate voltage ranges as shown in Fig. 7.1(a), we have measured the
dependence of the amplitude and phase of microwaves transmitted through the res-
onator at fixed probe frequency vy with high resolution (Fig. 7.1(b,c)). We observe a
clear reduction of the transmission amplitude and a change of the transmission phase
at the charge triple points and along the inter-dot charge transfer lines connecting
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Figure 7.2: (a,b) Measured transmission spectra of the microwave resonator at
positions (1) (blue rectangles) and (2) (red open points), indicated in Fig. 7.1(a).
(a) Transmission amplitude and (b) phase.
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7.1. Investigation of the interdot charge transfer line

pairs of triple points, but not in the regions with fixed electron numbers in both dots.
Also, no change of the microwave signal is observed along the dot-lead resonant lines
with these transmission settings of the tunnel barriers to the leads. In conclusion,
in this parameter regime, a resonator response only occurs at gate voltages at which
charges can be transferred between the two dots, leading to a dipole coupling to the
resonator. Further details of the coupling mechanism are discussed below.

We double check that the charge stability diagram in the microwave measure-
ment is well aligned in gate voltage with the one in the transport measurements, as
indicated by the hexagon-patterns shown as red dashed lines in Figs. 7.1(a-c). Sim-
ilar stability diagrams have been observed over a range of more than 10 electrons in
both left and right dot. This range covers gate voltage settings at which the tunnel
rates were so small that the DC current through the double quantum dot could not
be detected in direct transport measurements (I < 80 fA) but also larger tunnel
rates to the leads where a signal for dot-lead resonances could be detected in the
microwave measurement (Fig. 6.3).
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Chapter 7. Dipole coupling of a double quantum dot to a microwave resonator

7.2 Influence of the interdot tunnel coupling on
the resonator signal

We have examined in more detail the phase of the transmitted microwave signal
in the vicinity of one particular interdot charge transfer line, for different values of
interdot tunnel coupling energy ¢ (Fig. 7.3). The coupling energy ¢ can be tuned
using V. Decreasing Vi reduces t. For these sets of measurements the two plunger
gates Vip rp are swept (rather than Vi, g), to minimize the change of the tunnel rates
to the leads. The two side gates Vi, g are set such that the tunnel rates to the leads
are too small to allow DC transport measurements.

At the largest tunnel-coupling between the two dots (least negative center gate
voltage Vi) only a negative phase shift is observed in Fig. 7.3 (a). By decreasing the
tunnel coupling, the size of the phase shift along the charge transfer line becomes
smaller and finally changes the sign. At the smallest tunnel coupling (Fig. 7.3(f))
a clear positive phase shift is observed along the interdot charge transfer line. A
negative phase is recovered with increasing detuning § between the two dots. A
quantitative discussion of these characteristic observations as well as model calcula-
tions are presented in the next section.
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Figure 7.3: (a-e) Transmission phase measurements in dependence of the two
plunger gate voltages V1p and Vgp for different center gate voltages Vi and thereby
different tunnel coupling between the dots. From (a-f) Vi is decreased in steps of
0.1 mV.
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7.3. Interpretation of the measurement results

7.3 Interpretation of the measurement results

To interpret the data presented in this chapter, master equation simulations based
on the Jaynes-Cummings model are performed.

First, we give an introduction to the master equation simulation on which the
theoretical curves shown in Fig. 7.5 are based. Then we compare the results of the
calculations with the measurements and discuss where they are in agreement and
possible sources of deviations.

7.3.1 Jaynes-Cummings Model

This section is mainly based on private communications with Alexandre Blais, who
set up the model used for simulations of our data, and on the references [13, 88].

To model the measurement data of our resonator quantum-dot device, we write
down the total Hamiltonian of the system which reads

Htotal = Hr + Hq + qu + Hdrivo + Hr,onv + H ,env e (71)

Here H, is the Hamilton operator for the resonator, H, describes the double quantum
dot and H, takes the resonator double quantum dot coupling into account. Hagyive
models the coherent tone which we apply to the resonator with the microwave gen-
erator in the experiment. The operators H;eny and Hgeny deal with the coupling
of the resonator and the coupling of the double quantum dot to the environment,
respectively.

We start out with the discussion of a Hamiltonian which only consists of the first
three terms of Hiua and in a later step present how we take the drive term and the
interaction to the environment into account.

For the interpretation of our experiments the double quantum dot is modeled
as a two-level system. It is therefore considered as a charge qubit [89] and the
corresponding Hamiltonian reads

)
H, = 502 + toy. (7.2)

Here 0 represents the energy detuning between the charge states of the quantum
dots, ¢ is the interdot tunnel coupling energy and oy, are Pauli operators for the
charge qubit. Diagonalizing the above Hamiltonian H, leads to

hw
H,y =24, (7.3)
2
where the qubit transition frequency w,/27 is given by hw, = /0% + (2t)? and

tan = 2t /9.
The spectrum of the resonator consists of quantized light modes which we model
as

1 1
Hr - hUJ() (CLT(I + 5) - FLUJ() (fl + 5) s (74)
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Chapter 7. Dipole coupling of a double quantum dot to a microwave resonator

where 7 = a'a is the photon number operator, and wy/27 the resonance frequency
of the resonator.

We now focus on the coupling term H, between the resonator and the double
quantum dot. The microwave photon field in the resonator leads to a small variation
of the detuning (J) between the two charge states in the double quantum dot. In
our model this variation is described by a term acting along the direction of the
o, operator. In the eigenbasis of the qubit defined by Eq. 7.3 the coupling term is
found to be

Hy = hg(o,cos — oy, sinf)(a’ + a)

: (7.5)
~ —hgsinf(a'o_ + aoy)

where oy, = 0.5(ox £ ioy) and oy, , are the Pauli operators for the qubit. The
maximal coupling strength g between the two systems is proportional to the dipole
moment of the double quantum dot and the vacuum field fluctuations of the electric
field (Eyms) of the resonator. For zero detuning (6 = 0 = 6 = 7/2) the coupling
strength (gsin @) of our setup can be estimated by [88]

_ Be  [hwg
g= f”E' (7.6)

Here ( is defined as = Aa and A« is the difference between the leverarm of the
resonator gate on the left dot and the leverarm of the resonator gate on the right
dot. The smaller the capacitance per unit length (c) of the resonator and the shorter
the resonator length (L) the larger the coupling strength becomes which amounts
to reducing the mode volume.

In the second line of Eq. 7.5 we have performed the rotating wave approximation
(RWA), meaning that only terms that keep the total number of excitations in the
system constant are considered. This approximation is valid as long as wy +wq > ¢
[90].

In conclusion, the sum of the Hamiltonian of the resonator, the double quantum
dot and their interaction reads

Hqe = heon | 7 1 “Ya, _ nolate™ + agt
jo = hwy (n—l— 2) h 5 0z hgsinf(a'c™ +ao™). (7.7)
Note that for a single qubit the sign of g can be chosen arbitrarily. In general models
treating the interaction between a quantized light mode and a two-level system, as
described above, are referred to be of Jaynes-Cummings type [91].

In Fig. 7.4, the two lowest eigenenergies of the coupled system described by H ¢
are shown schematically as a function of ¢ for the two cases (a) 2t < hiy and (b,c)
2t > hiyy. Here the energies are offset in such a way that £ = 0 corresponds to
the energy of the vacuum field. In the presence of an interaction of strength g, the
bare resonator frequency vy (dashed green line) and the bare charge qubit transition
frequency v, (dotted red line) are coupled by the interaction to give the solid black
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Figure 7.4: (a) Schematic of the two lowest eigenenergies of the coupled system
(black line) for 2t < hiy. Horizontal green dashed line indicates the bare resonator
frequency v9. Red dotted line shows the bare transition frequency v, between the
double dot charge states. The two sloped blue dashed-dotted lines indicate the
detuning §. Insets I, III: Schematic of the two double dot charge states detuned by
energy d, in the limit 6 > ¢. Inset II: Schematic of the hybridized charge states in
the double quantum dot, split by 2t at § = 0. (b) Transition energy of the charge
qubit for 2¢ > hvyg in the presence of the nearby resonator (black line). Dashed and
dotted lines as in (a). (c) Resonator frequency in the presence of the nearby charge
qubit transition (black line) for the same case as in (b).

lines shown in Fig. 7.4(a). In the absence of decoherence, this model displays an
avoided level crossing at v, = 1 known as the vacuum Rabi mode splitting [92].

In the following we now discuss how the coupling of our system to the environ-
ment is treated. We begin with the presentation of the master equation and continue
with the discussion of the individual parameters entering it.

As mentioned above the resonator and the double quantum dot also couple to the
environment leading to an open quantum system [93]. On the one hand interaction
with the environment is necessary in the experiment because the resonator needs to
couple to the leads to be able to measure the transmission signal. On the other hand
there are also unwanted coupling mechanisms of the resonator to the environment
reducing its quality factor (see chapter 4 for details) and also unwanted coupling of
the double quantum dot to the environment leading to dissipation and dephasing
of its charge states. Possible processes of charge states coupling to the environment
leading to decoherence are e. g. gate voltage fluctuations, phonons and fluctuators
within the wafer [89, 94-99].

If we take the interaction with the environment into account the evolution is no
longer reversible and we use a Markovian master equation approach instead of the
Schrédinger equation to describe the dynamics of the system. The master equation
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Chapter 7. Dipole coupling of a double quantum dot to a microwave resonator

reads [92]

= —LH.p) + Dlalp + 1Dlo_Jp + 7Dl Jof2 (78)

with D[O]p = (20p0" — OTOp — pOTO) /2 which is named in the literature as the
Lindblad operator and discussed further below.

The first part in Eq. 7.8 takes the unitary evolution of the system into account.
H is the sum of the Jaynes-Cummings Hamiltonian Hjc (Eq. 7.7) and the drive of
the resonator Hgyve. For the Hamiltonian of the drive we use

Heyive = hie cos(wat)(a' + a), (7.9)

where € is the drive strength and wq/27 the frequency of the drive. The three other
terms in the master equation account for decay of photons from the resonator at a
rate x, decay of the qubit state at a rate ~;, and qubit pure dephasing at a rate ..

The decay rates will be treated in more detail below but first we want to come
back to the Lindblad operator and mention the essentials for its derivation. We refer
the interested reader for more details to the literature e. g. Ref. [13] and Ref. [92].
We start out by having a closer look at Hamiltonians Hj e, describing interaction
between a quantum system (s) and an environment (env). For a weak coupling they
can be written in the form

Hyony o k(ab + abl). (7.10)

The operators a (a') create (annihilate) an excitation in the quantum system (s)
and b (b) are the corresponding operators for the environment (env). The coupling
strength between quantum system and environment is proportional to k. The cor-
responding equation for the the density matrix {(¢) of the quantum system plus
environment in an interaction picture [92] reads

CO ). (7.11)
This equation can be solved iteratively and approximated by only considering per-
turbations up to second order which is justified due to the weak coupling. In the
next step of the calculation the trace over the degrees of freedom of the environ-
ment is taken, assuming that at time zero the density matrix of our system and
the environment are uncorrelated. In the last step of the derivation of the Lindblad
operator we apply the Markov approximation. In essence this implies that the envi-
ronment has a short memory meaning no correlations between the environment and
the quantum system are built up.
In the case of § > t, we calculate expressions for the energy relaxation (7P) and
for the pure dephasing rate (’y:;), using the above discussed approximations. We
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obtain
b Sx(w=4d/h)
TR 7.12
b S(w—0) (7.12)
Yo = Tz

where Sj(w) stands for the spectrum of the reservoir being of relevance for the
i = {z, 2z} qubit axis. Examples of the calculations of the spectra can be found in
Ref. [100] and Ref. [101].

As pure dephasing and relaxation are specified for the eigenstates of the system,
we have to calculate the corresponding rates in the diagonalized basis of the qubit
Hamiltonian H, (Eq. 7.3). Further, we implement the first assumption that the noise
sources acting on the detuning axis and on the tunneling coupling axis are considered
to be independent. Note that the validity of this and the further assumptions is
discussed at the end of section 7.3.2 when we compare the theory to the experiment.
We obtain for the two rates

1 = sin? H—Sz(w; o/h) + cos? H—Sx(wi; 5/h),
1
) 5w 0) y Se(w—0) (7.13)
Yo = COS QT + sin QT'

The basis transformation implemented for the above calculations can be con-
ceived as a rotation on the Bloch sphere around the y-axis which leads to the sub-
stitutions

0, — 0,c080 — oy sin 6

(7.14)

0x — 0,8In60 + oy cosb.

The second assumption is that the spectrum of the noise is approximated to be
white. This leads to the following new equations for the rates
v = sin? 97}; + cos® O77, (7.15)

Yo = cos? 972 + sin? O4p. '

The photon decay rate k is defined in Eq. 4.2. It is the larger the stronger the
capacitive coupling between resonator and the leads of the resonator are and the
higher the internal loss in the resonator is, as discussed in detail in chapter 4.

To simplify the calculations, the system is investigated in a rotating frame using
a unitary transformation with the corresponding operator U defined as

Ul(t) = eiwatlalat1/20) (7.16)

As a consequence the eigenstates of the system (|¥ >) transform to the new eigen-
states in the rotating frame (]¥ >) according to the equation

U >=U(t)|V >, (7.17)
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and the corresponding transformation of the Hamiltonian reads

H=U@{)HU(t) - U(t)ih%UT(t). (7.18)
To evaluate Eq. 7.18 the relations
giwatalagemiwatata _ g o=itat (7.19)
and
lwatos/2g  gmiwalo=/2 — o, cial (7.20)
are used.

Due to the unitary transformation Hjc, as defined in Eq. 7.7, is changed to

1 _
Hjc = h(wy — wq) (ﬁ + 5) + FLM&Z — hgsinf(a'6™ +a6™), (7.21)

and the drive term using again the rotating wave approximation, as already discussed
in Eq. 7.5, is modified to

Hapive = h%(aT +a). (7.22)

All the other terms in the master equation are not altered by the unitary transfor-
mation. For the simulation in the rotating frame we therefore only have to replace
H in the master equation Eq. 7.8 with the sum of Eq. 7.21 and Eq. 7.22.

In the last part of this section we want to focus on the evaluation of the density
matrix p obtained from the employment of the discussed master equation approach.
In the simulations, the steady state of the system (ps) (p is set to zero in Eq. 7.8)
is calculated with a fixed drive strength (¢) for different sets of drive frequency
(wa/2m) and detuning between the two dots (§). Further input parameters for the
simulation are the bare resonance frequency (wo/27) and the decay rate (k) which are
experimentally determined. The parameters tunneling energy (¢), maximal coupling
strength (g), dissipation rate (7y;) and pure dephasing rate () are chosen to fit
the experimental datasets best. Another input parameter of the simulation is the
considered number of photon states (n,um) in the resonator.

In the experiment the resonator is driven with a coherent tone. This leads to a
Poissonian distributed population of the photon number states in dependence of the
drive strength (€). For § > ¢ the mean number of photons (Nmean) in dependence of
the drive strength (¢) and the resonator linewidth (k) can be estimated using [102]

(€/2)°

" = (o = e + (/2 729

Therefore the choice of the input parameter (n,,,) must be correlated with 7yean
to obtain a correct simulation result.

The transmission amplitude through the resonator is obtained by calculating
(a)s = Trlaps] = I + i@, where the index s indicates the steady state. From the
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square of the calculated transmission amplitude signal, the shift of the resonance
frequency (Arvp) and the broadened linewidth of the resonator (k*) can be obtained
and compared with the experimental data.

Note that in the simulation used for explaining our data, we did not consider
the influence of thermal photons in the resonator and also not the excited state
population of our two-level system due to its finite temperature. The setup for the
measurements (see chapter 3) is engineered such that these parameters have a minor
influence on the measurement results.

7.3.2 Comparison between experiment and theory

For two different values of interdot tunnel coupling energy ¢, we have examined
the phase of the transmitted microwaves in the vicinity of one particular interdot
charge transfer line in more detail. The tunnel coupling is tuned using V¢. In order
to discuss the experimental data as clearly as possible, we assume in the following
that 2t can be larger or smaller than the resonator energy hry. We justify this
assumption after the presentation of the data with the quantitative model based
on the Jaynes-Cummings Hamiltonian presented in section 7.3.1. To change the
detuning 0 between the two quantum dots, the two plunger gates Vip rp are swept
(rather than Vi, ), in order to minimize the change of the tunnel rates to the leads.
Vi.r are set such that the tunnel rates to the leads are too small to measure DC
transport. The data shown in the left (right) column of Fig. 7.5 has been acquired
with the center gate set to Vo = —120 mV(—119 mV) corresponding to 2¢ smaller
(larger) than hiy, as discussed below. Despite the small change in Vi between the
two measurements, the two phase signals are clearly different. Note that in these
measurements the sweep ranges of the two plunger gates are chosen such that the
detuning A = vq — 1 between the resonator frequency 1 and the qubit transition
frequency v, is changed over a frequency range larger than the resonator frequency.
In Fig. 7.5(a), two regions of negative phase shift are observed on either side of a
region of positive phase shift along the interdot charge transfer line. In Fig. 7.5(b)
however, a single region of negative phase shift is seen, similar to the features shown
in Fig. 7.1(c) and Fig. 7.3. Negative/positive phase shifts translate directly to
negative/positive resonance frequency shifts (see Fig. 7.2(a) and (b)).

To characterize the interaction between the two systems in more detail, we have
measured the full resonator transmission spectrum for a set of gate voltages across
the interdot charge transfer line (black line in Fig. 7.5(a,b)). For all parameters, the
measured spectra are well approximated by a single Lorentzian line. The extracted
frequency shifts Ay relative to 1y and the extracted linewidths k* are plotted in
Fig. 7.5(c-f) for the two different interdot tunnel coupling strengths. In agreement
with the data in Fig. 7.5(a,b), for 2t < hyy both negative and positive frequency
shifts are observed in the left panel whereas for 2t > hyy only negative frequency
shifts are seen in the right panel. In both cases an increase in £* is observed when
the energy difference between two charge states is close to the resonator frequency.
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Figure 7.5: a) Measured transmission phase as a function of Vip and Vgp at
Ve = —120 mV (with 2t < hyy, as extracted from simulations). Black dashed line
indicates axis swept in (c,e). (b) Transmission phase measured at Vg = —119 mV
(with 2¢ > hiyy from simulations). Black dashed line indicates axis swept in (d,f).
(c,d) Measured resonator frequency shift Avy (blue points) along the axes shown
in (a) and (b) respectively. (e,f) Broadened resonator linewidth «* (blue points)
measured along the axes shown in (a) and (b) respectively. Solid red lines in (c-f)
are results of numerical simulations.

In the following we compare these observations with model calculations. We
use the Markovian master equation approach described in section 7.3.1 to obtain
a steady-state numerical solution of the Hamiltonian Eq. (7.7) including resonator
and qubit energy relaxation and qubit pure dephasing [100]. This approach allows
us to explain the characteristic features of the data shown in Fig. 7.5(c-f). Indeed,
using the measured values of 1y and k, choosing an energy relaxation rate at § > ¢
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7.3. Interpretation of the measurement results

of v1/2m = 100 MHz typical for charge qubits [103], and using a constant factor
related to the difference between lever arms of the left and right quantum dot to
convert gate voltage to detuning energy (J), we find that all simulations are in
reasonable agreement with the data, see red lines in Fig. 7.5(c-f). To achieve this
agreement, we consider a maximal coupling strength of g/2m = 50 MHz for all data
sets but take a tunnel energy 2t/h = 6.1 GHz < 1y and a pure dephasing rate
Yp/2m = 3.3 GHz at 6 > t for Fig. 7.5(c,e) and 2t/h = 9 GHz > 1y, and a smaller
value of v,/2r = 0.9 GHz at 6 > ¢ for Fig. 7.5(d,f). The order of magnitude of
the values found for the dephasing rates at ¢ = 0 within our model are comparable
to those found in other quantum dot charge qubit experiments [89]. The estimated
value of g considered here agrees within an order of magnitude with an estimate
obtained from the capacitive coupling between qubit and resonator using Eq. 7.6.
Since the qubit pure dephasing rate 7, is in both cases significantly larger than the
maximal coupling strength g we do not observe a vacuum Rabi mode splitting, but
rather a single spectral line broadened and shifted from its original frequency. At
detunings A between the double dot charge states and the resonator that are on
the order of or larger than the qubit linewidth we can clearly observe frequency
shifts induced by the non-resonant coupling [88]. We conclude that the size of the
observed shifts is in good agreement with our model.

For this set of extracted parameters, we also note that the measured linewidth
(Fig. 7.5(e)) is lower than the one found from our calculation and the rate for the
pure dephasing (7,) changes between the two investigated cases. This discrepancy
is potentially due to the frequency dependence of the noise that leads to decoherence
which is not considered in our model where the noise was considered to be white.
This is probably an oversimplification and a better knowledge of Sy (w) and S,(w) in
dependence of w is required for a better noise treatment. In addition the fluctuations
of the tunnel coupling were considered to be independent of the fluctuations of
the detuning which might be a vague assumption as the noise on e.g. the center
gate voltage Vo changes the tunnel coupling but due to the cross capacitive effects
also the detuning between the two dots. To increase the validity of the simulation
results, in future experiments more of the input parameters should be extracted
by experimental means e. g. by performing microwave spectroscopy of the double
quantum dot as previously demonstrated with superconducting qubits [104].

To double check the conclusions from our simulations, we have confirmed both
experimentally and in simulation that the results in Fig. 7.5 are independent of
changes in the resonator population due to coherent or thermal fields with a mean
occupation of below approximately 10 photons. This observation is reasonable,
since the large pure dephasing rate makes the rather small changes due to the
nonlinearities arising at larger photon numbers [105] unobservable in the current
experiments.
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Chapter 8

Conclusion and Outlook

In this thesis we have designed novel hybrid devices consisting of quantum dots and
microwave resonators integrated on one chip. The cleanroom processes necessary to
fabricate such samples were developed and employed successfully. A setup was built
to be able to perform measurements on the hybrid quantum devices in the sub-kHz
regime and at microwave frequencies.

The properties of the two building blocks (quantum dot, microwave resonator)
were investigated individually and the coupling between the two systems was ex-
plored in two different manners.

On the one hand, the effect on the transport properties of the quantum dot in
dependence on an electromagnetic field in the resonator, which is capacitively cou-
pled to the quantum dot system, was characterized. The presence of the microwave
field leads to a decrease of the conductance through the quantum dot which in-
creases with the field strength. This property could be explored to detect harmonic
modes of the cavity over a frequency range of around 30 GHz measuring the DC
transport signal. From these results, the quality factor of the fundamental mode of
the resonator was extracted [106].

On the other hand we have successfully demonstrated the dipole coupling of a
double quantum dot to an on-chip superconducting microwave resonator, and probed
the double dot charge stability diagram by measuring resonator frequency shifts.
Two different characteristic regimes with interdot tunnel coupling frequencies above
or below the resonator frequency could be observed and interpreted consistently
with a master equation simulation approach based on the Jaynes-Cummings model
[107].

We also explored the tunneling process between a quantized state in a single
dot and the 2DEG continuum for different tunnel rates. Carrying out these mea-
surements using a microwave frequency resonator enabled us to observe a crossover
from a capacitive to an inductive response [108]. The observations are well de-
scribed within the scattering matrix model of Ref. [79]. Our interpretation of the
phase shift data is of particular relevance for similar experiments coupling a mi-
crowave resonator to a single [109] or double quantum dot [110, 111]. In particular,
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Ref. [110] reports similar phase shifts but without discussion or interpretation.

Our measurements demonstrated that our architecture offers a new way to probe
semiconductor quantum dot systems in the microwave regime, and may be used, for
example, for high energy-resolution measurements of double quantum dots [112], in
addition to being a promising platform for potentially scalable hybrid solid-state
quantum information processing. The presented scheme could be extended to other
material systems, manipulating and reading out spin qubits [3, 111] and coupling
them to a microwave resonator using either ferromagnetic leads [113] or spin orbit
effects [114] or coupling to the interdot tunnel gate [115].

Moreover our measurement scheme promises the feasibility of future experiments
in which the sensitivity of the resonator is further exploited, e.g., in measuring the
shot noise properties [116, 117] of a quantum point contact in more detail.
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Appendices

A Double quantum dot measurements with a mi-
crowave resonator at finite source-drain bias

In this section we investigate the influence of a source-drain voltage Vsp on the charge
stability diagram of the hybrid quantum dot resonator sample shown in Fig. 6.1.
Finite bias triangles can be measured in transport experiments, as already discussed
in chapter 2, for eVsp > kg7, and eVsp larger than the energy broadening of the
Coulomb resonances of the quantum dots due to tunnel coupling. We compare the
results of the DC measurements with the corresponding microwave measurements
for which we use the techniques described in chapter 6.

In Fig. A.1 a set of current measurements through the double quantum dot is
shown for different source-drain voltages (Vsp). We vary the two side gate voltages
Vi and Vg (see Fig. 6.1) to change the electrostatics in the double quantum dot.
The onset of finite bias triangles is observed. Their size and the current through
the dots increase with Vsp. As the voltages applied to the two side gates do not
only change the electrostatic potential of the two dots but also decrease the tunnel
coupling to the leads, the current for more pinched off gate voltages is smaller.

We observe additional structures in the current signal through the quantum dots
in some of the triangles. These features are especially pronounced for the triangles
in the upper left corner when a negative bias voltage is applied (Fig. A.2 (b,d,f)).
The most likely origin of these discrete resonances in the current signal is a tunneling
process involving an excited state [2].

The edges of the triangles are smeared out due to the finite electron temperature
(T.). We also recognize that the cotunneling lines become more pronounced with
bias voltage which can also lead to a deformation of the triangles.

We repeat measurements at different finite source-drain voltages for the same
topgate voltages as shown in Fig. A.1 but record the relative transmission amplitude
and phase (see Fig. A.2) through the resonator. We observe that the positions in
gate voltage space of the interdot charge transfer lines, which form the base lines of
the triangles, are at the same position as in the DC measurements. In addition the
lengths of the base lines increase with the applied bias voltage. In the transmission
amplitude signal in Fig. A.2 (a-f) a faint outline of finite bias triangles can be
recognized. In all triangles the base lines cause the most pronounced change in the
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Figure A.1: Current measurements through the double quantum dot shown in
Fig. 6.1 for the following six different voltages (Vsp) applied between the source and
the drain contacts. (a) Vep = 100 ¢V, (b) Vgp = —100 pV, (¢) Vsp = 150 pV, (d)
Vsp = —150 pV, (e) Vsp = 250 pV and (f) Vsp = —250 pV.

amplitude signal and in some cases the tips of the triangles (e. g. in (d,e)) are also
visible. Our interpretation for this observation is that in these cases electrons can
resonantly leave or enter the quantum dots leading to a change of the transmission
amplitude signal. For some of the triangles, especially the top right triangle in (c,f),
there is also a slight reduction of the transmission amplitude observable within the
triangles. We guess that due to the limited electron lifetime in the quantum dots
by the non-resonant current flow within the triangles, an additional loss channel
for the resonator is created leading to a reduction of the transmission amplitude.
For the bottom right and top left triangles in (a), the tips of the triangles are not
pronounced but a rather well distinct continuous line parallel to the base line can
be observed.

A discrete set of lines is visible in the transmission phase (Fig. A.2 (g-1)) but not
the outline of the triangles. We observe that the distance between the lines does
not change with the applied bias. As for the transmission amplitude the base line
is clearly detectable. The origin of the signal can be explained due to the presence
of two quantum dot states with an energy difference close to the energy of the
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Figure A.2: Relative transmission amplitude and transmission phase change mea-
surement of the microwave resonator for different source-drain voltages (Vsp) for the
same topgate voltage settings (Vco, Vip, Vip) as used for the measurements shown
in Fig. A.1; (a,g) Vep = 100 pV, (b,h) Vep = 150 uV, (c,i) Vesp = 200 uV, (d,j)
Vsp = —100 ,uV, (e,k) Vep = —150 ;LV, (f,l) Vep = —200 ;LV.

microwave photons. This causes a shift of the resonator as explained in chapter 7.
We speculate that the discrete lines of the transmission phase change or transmis-
sion amplitude change within the finite bias triangles are related to the presence of
possible transitions between the two dots involving excited states. Our assumption
is motivated by comparing the top left triangle in the DC measurement (Fig. A.1
(a)) with the corresponding microwave measurement in Fig. A.2 (a). The distance
between the resonance within the triangle and the base line in the gate voltage
space is about the same in the DC case and in the microwave case. This suggests
a relation of the resonances within the triangles of the microwave measurements to
excited states. The reason why there is additional structure seen in the microwave
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measurements but not in direct current measurements could be explained by the
fact that these excited states do not couple to the leads well and therefore cannot
be detected in transport experiments.

We also measure the microwave signal at zero source-drain bias for the same
topgate voltages as used in Figs. A.1, A.2 and plot the results of the relative trans-
mission amplitude in Fig. A.3 (a) and the change in phase in Fig. A.3 (b).

In the phase signal we observe that in three cases it changes sign when crossing
the interdot charge transfer line whereas in one case there is only a negative phase
shift in the vicinity of the interdot charge transfer line. The origin of the charac-
teristic behavior in the phase signal is assumed to be the same as discussed for the
data in chapter 7. In the amplitude signal (Fig. A.3 (a) top left) two pronounced
lines, caused by a change in the transmission amplitude, are measured. They are
parallel to the interdot charge transfer line.

We investigate this double feature in the amplitude signal in more detail. The
measurement results are displayed in Fig. A.3 (¢,d). In (d) we again see the change
of the sign of the phase when we cross the interdot charge transfer line. We note that
the shift in the phase signal is more pronounced between the two triple points than
in the vicinity of the triple point. We therefore speculate that the size of the phase
shift is related to the coherence time of the charge state which is longer between
than at the triple points. This is plausible because between the triple points electron
exchange with the leads is prohibited to first order [2].

We obtain a split interdot charge transfer line in the amplitude signal. The
bottom end of the upper line is more pronounced than the top end and the opposite
is observed for the lower line. A measurement doubling the power sent through the
microwave resonator did not change the size of the splitting.

To continue our investigation we measure full resonator transmission spectra
along the black dashed line indicated in Fig. A.3 (c,d). The resonance spectra
always display a Lorentzian line shape and the corresponding fit allows us to extract
the change of the resonance frequency (Ary) and the broadened resonator line width
k*. We observe the characteristic change of the resonance frequency as discussed
in detail in chapter 7. A double peak structure is clearly visible for the resonator
linewidth x* which is different from the other datasets which we obtained so far.
The splitting is estimated to be roughly the energy of the microwave photons by
comparing it to gate characterization measurements at DC.

The shift of the resonator frequency, around 100 kHz at maximum, and the
change of the resonator linewidth x* are rather small compared with the datasets
shown in Fig. 7.5. We know from the simulations done for the datasets shown in
Fig. 7.5 that a double peak structure in the resonator linewidth signal indicates a
smaller decoherence rate than used for the simulations of the datasets in chapter 7.
The splitting between the two peaks would be related to the detuning between the
energy of the photons in the resonator and the tunnel coupling energy between the
two dots.

An increase of the coherence would however be rather surprising because in this
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Figure A.3: (a) Relative transmission amplitude measurement for the same topgate
voltages as used in Fig. A.2 but Vsp = 0 V and (b) corresponding transmission phase
measurement. (c¢,d) Zoom-in measurement of the relative transmission amplitude (c)
and the transmission phase (d) as indicated in (a), (b) respectively. (e) Broadened
resonator linewidth x* measured along the dashed line shown in (¢,d). (f) Measured
resonator frequency shift Ay along the dashed line shown in (c,d).

region the coupling to the leads is stronger than for the previously examined datasets
(Fig. 7.5), and cotunneling currents were claimed to be a major source of decoherence
for charge qubits [89]. Concerning the other sources of decoherence for charge states
such as coupling to phonons, fluctuations in the wafer material etc., it is not obvious
why they should change compared to the corresponding measurements performed
in this thesis.

While we do not have a clear explanation for the double feature in the linewidth
and future investigations are necessary to clarify the origin of this signal, a possible
explanation is that an excited state is involved in these measurements. The energy
difference between an excited state and the ground state could be similar to that of
the microwave photons. In the finite bias case we concluded that excited states can
cause a change of the microwave signal.

For completeness we mention that split interdot charge transfer lines in double
quantum dot structures were also observed in charge sensing measurements using
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quantum point contacts [118].

B Microwave measurements of quantum dot prop-
erties for very low tunnel coupling to the leads

In this section we present measurements in which the tunnel coupling to the leads is
significantly decreased in comparison to the settings used in chapter 7. The aim is
to improve the coherence properties of the charge states by increasing the isolation
of the quantum dots from the environment.

The two side gate voltages V1, and Vg (Fig. 6.1) are swept and the relative change
of the transmission amplitude and the relative change in phase are recorded as shown
in Fig. B.4. The two side gate voltages mainly modify the tunnel coupling to the
leads. Due to the finite capacitive cross coupling they also tune the electrostatic
potential in the dots, which alters the number of electrons in the quantum dots as
discussed in chapter 6.
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Figure B.4: Microwave transmission measurements of the double quantum dot
charge stability diagram using the sample shown in Fig. 6.1. Relative amplitude
transmission measurements (a,c,e) and corresponding measurements of the phase
change (b,d,f) in dependence on the side gate voltages V1, and Vi. Rectangles in (a)
and (b) mark regions for the detailed measurements shown in (c,d) (red) and (e,f)
(green).
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At around V;, < —130 mV and Vg < —190 mV we notice a characteristic change
in the amplitude as well as in the phase signal. For less negative voltages and
therefore larger tunnel coupling we only observe the interdot charge transfer lines as
discussed in the context of Fig. 6.3. However, for smaller tunnel coupling the area
where we measure a change of the microwave transmission signal begins to extend
and a set of parallel lines shows up.

We investigate this region with the small dot-lead tunnel rates, which we refer to
as region V from now on, in more detail and compare it to the other region labeled
IV defined in Fig. 6.3. The two positions for the detailed measurements are outlined
with a green dashed rectangle for region IV and a red dashed rectangle for region V.
The corresponding data is shown in Fig. B.4 (c,d) for region V and (e,f) for region
IV.

In region IV a set of distinct interdot charge transfer lines are visible in the
amplitude and in the phase signal as expected from the overview measurement. We
refer to chapter 7 for the interpretation of the origin of the signal.

For region V a set of parallel distinct lines is visible both in the amplitude as
well as in the phase signal as anticipated from Fig. B.4 (a) and (b). The individual
lines have a substructure consisting of a set of shorter lines especially pronounced in
the gate voltage region for Vi, = —185 mV to V, = —195 mV and Vg = —220 mV
to Vg = —235 mV.

We continue to investigate region V to explore the properties of this novel obser-
vations in the charge stability diagram. A set of experiments, in which the averaging
time of the microwave signal as well as the sweep direction of the gate voltages were
changed, are presented in Fig. B.5. The influence of these parameters on the trans-
mission properties of the microwave resonator is investigated in detail. The results
in Fig. B.4 suggest that the transition between the two regions is related to the
tunnel coupling rate to the leads in comparison to the inverse of the measurement
time.

For the measurements shown in Fig. B.5, the side gate voltages are fixed at
Vr = —200 mV and V, = —155 mV - close to the transition between regions IV and
regions V. The two plunger gates are used to change the electrostatic potential in the
quantum dots. The use of the plunger gates has the benefit that the modification
of the tunnel coupling to the leads is minimized.

The dataset, which is shown in Fig. B.5 (a,b), is used as a reference measurement.
The left plunger gate voltage (Vip) is always swept in the same direction, afterwards
the right plunger gate voltage Vgp is stepped before a new sweep of the left plunger
gate is started. The sweep and step direction is towards more negative gate voltages.
All datasets, which are shown in Fig. B.5, are recorded with an estimated average
photon number of the order of 20 in the resonator. To extract the /- and Q-
quadratures from a single time trace without averaging would take about 20 us. In
(a,b) each measured point is averaged 4096 times to increase the signal to noise ratio
resulting in a total measurement time per point of approximately 82 ms.

We observe that the microwave signal consists of extended lines with discrete
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Figure B.5: Measurement of the relative transmission amplitude (a,c,e,g) and the
corresponding change in phase (b,d,f,h) in dependence on the right and left plunger
gate (Vip, Vrp) for different parameters (stated further below) for the sample shown
in Fig. 6.1. Roman numbers indicate different characteristic measurement regions
(see text for details). (a,b) Reference measurement with Vg = —200 mV, V;, =
—155 mV, Vg = —120 mV. To record one single point of the measurement takes
approximately 82 ms. (c,d) as (a,b) but averaging the microwave signal four times
more and double the number of points along each axis. (e,f) as (a,b) but inverse
the stepping direction of the right plunger gate (Vgp). (g,h) as (a,b) but both gates
(VLp, Vrp) swept in opposite direction.

jumps at the start of a new line. The amplitude signal of the majority of these
lines is the most pronounced at the beginning of each line. The interspace between
the start of two different lines is about equal to the distance between two sets of
neighboring triple points in region IV. This indicates that the discrete jumps are
related to a new set of charge states in the quantum dots which are energetically
possible to be occupied by electrons tunneling from the leads.

A peculiarity in the phase signal is that some of the observed lines change their

79



characteristics. This is most pronounced for the signal starting at around Vip =
—208 mV and Vgp = —188 mV in Fig. B.5 (b). At the beginning of the line
(indicated with a red arrow in Fig. B.5 (d)) we observe a change of the sign in the
phase when the line is crossed. However, only a negative phase shift is measured
when the plunger gate voltages are further reduced (blue arrow in in Fig. B.5 (d)).
We use the same interpretation as in chapter 7 for the origin of the phase sign change.
In one case the resonator is above the transition frequency of the involved quantum
dot charge states and vice versa. We conclude that the tunnel rate between the
two dots changes for these measurements. A possible explanation for the different
tunnel coupling strengths could be that due to the different electrostatic potential,
the position of the wave functions of the two charge states is altered leading to a
stronger coupling between them. Another reason could be that the tunnel coupling
between the two dots is not independent of the mean energy € of the double quantum
dot, but gets stronger with €. Note that we also changed the microwave power by a
factor of four but no influence on the measurements could be detected.

In Fig. B.5 (c¢,d) we increase the number of points by a factor of two along each
axis and increase the number of averages by a factor of 4 to check the influence of
the time during which the electron has the possibility to tunnel into the leads. We
observe that the signal to noise increases but otherwise no significant change can be
found.

The influence of the sweep and step direction is investigated in Fig. B.5 (e,f)
and (g,h). In (e,f) the step direction of the right plunger gate is reversed but the
sweep direction of the left plunger gate is kept as in (a,b). In (g,h) the step and the
sweep direction are inverted in comparison to the measurements shown in (a,b). In
both cases we cannot find any influence on the measurement results due to these
parameters. We conclude that time-constants related to loading of the quantum
dots are not relevant for these sets of experimental data.

To further explore the properties of region V we use the same measurement
parameters as in Fig. B.5 (a) but add a bias voltage of 100 uV or —100 V. The
results of the two bias voltages are overlayed in Fig. B.6 to simplify the comparison.
No onset of finite bias triangles can be observed which is ascribed to the small tunnel
rate to the leads. The difference between the two measurement sets is a slight offset
which we interpret as the capacitive influence of the leads.
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Figure B.6: Overlay of two microwave transmission measurements for two different
DC voltages - 100 ©V (red color scale) and —100 pV (blue color scale) - applied
between the source and the drain contact. The rest of the settings are the same as
used in Fig. B.5 and further details are discussed in the text.

C Single electron double quantum dot devices

In the next step of the experiment the goal is to study if there is an influence of the
number of electrons in the double quantum dot on the coherence properties of the
hybrid quantum devices. Double quantum dots operated at the last electron have
been implemented in a variety of experiments [103, 119]. Recently the decoherence
properties of a double quantum dot tuned to contain only one electron were studied
in detail [97]. A coherence time of about 7 ns was found at the charge degeneracy
point using a quantum point contact as charge detector.

We start with a gate geometry proven to be tunable to the last electron [119] as
starting point for our device design implementation. The corresponding resonator
double-quantum dot sample is shown in Fig. C.7 (a). The resonator design is slightly
modified in comparison to the design shown in Fig. 6.1. The coupling of the resonator
to the microwave leads is increased. According to simulations the resonator should
be overcoupled, which is beneficial for the signal to noise ratio. In addition the
on-chip inductor is now fabricated on the other side of the resonator, so that the
DC signals come from one side of the chip and the microwave signals come from
the other side. This simplifies the bonding step in the fabrication process of the
sample. The double quantum dot is shown in Fig. C.7 (b). It is orientated on the
mesa such that it is possible to couple the left plunger gate to the resonator. This
way we keep the specific coupling of the microwave signal to only one of the dots as
discussed in chapter 6. The DC voltage on the left plunger gate is set via the on-chip
inductor. The two plunger gates have extensions that partially cover the dots to
increase the coupling strength between the resonator and the double quantum dot.
This is expected to help in reaching the strong coupling regime. A nearby quantum
point contact is implemented in the design as well, to be able to detect the last
electron with charge detection techniques.
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Figure C.7: Photography of a hybrid quantum device, displaying the microwave
resonator (R) and the quantum dot circuit, consisting of a two dimensional electron
gas (2DEG) (dark brown parts) with the four corresponding ohmic contacts (O). The
golden squares mark topgate contacts (C). The center conductor of the resonator
can be DC biased using an on-chip inductor with the corresponding contact marked
(I). (b) Scanning electron microscope picture of the double quantum dot structure
and the nearby quantum point contact (QPC) tuned using the voltage Vopc. The
resonator gate (RG) connects the center conductor of the microwave resonator to
the left plunger gate (LP). The other gate voltages are used to form the appropriate
potential landscape for the double quantum dot. (c) Charge stability diagram of
a similar double quantum dot structure as shown in (b) recorded with the nearby
charge detector. The electron number within each hexagon is indicated by (M,N)
for the (left, right) dot. Parts of (b) and (c) adapted from [120].

In Fig. C.7 the transconductance signal of the charge detector is plotted versus

the two plunger gates for a similar sample as the one shown in Fig. C.7. Both dots

could be emptied to the last electron as illustrated with the numbers (M,N) in the

hexagons. However, we could not measure finite bias triangles. This indicates that
the two plunger gates do not only change the electrostatic potential in the dots,
but also decrease the tunnel coupling between the two quantum dots. The charge
detector is sensitive to the occupation of an additional electron on the quantum

dot. However, based on our measurements shown in Fig. C.7 (c) it is not possible

to distinguish between a process where the electron only tunnels between the lead
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and the dot back and forth and a process where the electron actually traverses the
quantum dot. This problem could be solved in recent measurements by careful
tuning of the tunnel barrier between the two dots [121].

To further study the influence the plunger gates have on the tunnel coupling, we
form only the left quantum and investigate Coulomb diamonds as shown in Fig. C.8.
By careful tuning it is possible to observe resonances to the leads down to the last
electron at finite bias voltages. But the visibility of the outlines of the diamonds
changes with electron number. This indicates that the tunnel coupling to the leads
is changed. The resonance of the first electron with the source contact is visible
(indicated with a white arrow in Fig. C.8) but not with the drain contact. For the
transition between the third and the fourth electron only the resonance to the drain
lead is observable (indicated with a black arrow). This indicates that the tunnel
rates are modified by the change of the plunger gate voltage between these two
situations, resulting in a non symmetric coupling. Therefore the complete outline
of the diamonds is not visible in the charge detector signal. More details on the
tunability of double quantum dots to the last electron can be found in Ref. [120], in
which different double quantum dot designs are investigated and compared.

1
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-380F =
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0
-420 S
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-440
-150

4 2 o0 2 4
so[MV]

Figure C.8: Coulomb diamond measurements of a similar structure as shown in
Fig. C.7(b) forming only the left quantum dot. The data is recorded with charge
detection techniques. The electron number is indicated in the center of the diamonds
and the outline of one diamond is highlighted. Figure partly adapted from Ref. [120].

D Fabrication recipe

In the following we give the explicit parameters that we used to fabricate quantum-
dot resonator samples on shallow 2DEG wafers as shown in Fig. 6.1.
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Resonator and Quantum Dot Process (with split gates)

1.0 Cleave and clean

| Cleave wafer without resist protection (9x8.2mm) |

2.0 Resist Spinning

1 min acetone, US power 4, rinse in [PA and dry.

Prebake for 5 minutes 117-120 °C, cool to RT.

Setup spinner: 5000/5/45.

Spin AZ5214E.

Touch corners of chip with swab of acetone to remove
lumps at the corners. Remove resist from back of
wafer as well if necessary.

Bake 120 s @ 90 °C.

3.0 Mesa Photolithography

Warm up MA6 mask aligner (20 min to stabilize).

Measure UV intensity @ 365 nm.

Edge bead removal (EBR), align & expose substrate.
MAG soft contact, CP mode.
200 mJ/em® @ 365 nm (typically 30-45 s).

Develop: AZ726MIF for ~40 s.

Visual inspection and removal of lumps at corners if
necessary.

MAG6 vacuum mode, 60 mJ/cm’ @ 365 nm
(typically 10-15 s).

Reversal bake 60 s @ 117 °C (accurate temperature).

Flood expose 200 mJ/cm” @ 365 nm.
Divide into 3 sessions, press Multisession on MAG,
enter time for a single session (around 10-15s).

Develop: AZ726MIF for around 20 s.

4.0 Mesa Etch

Prepare fresh solution of H,SO,:H,0,:H,0, 3:1:100.

Etch for 30s (should give 40nm etch depth).

Stop process in water, blow dry with N,

Remove resist with DMSO @ 80 °C, 20 mins.

Rinse chip in acetone then IPA, moving it well, dry.

5.0 Ohmic Contacts

1 min acetone, 10s US power 4, rinse in IPA and dry.

Spin as described above.

EBR, align and expose as above.

Develop: AZ726MIF for ~40 s.

Visual inspection, remove corner lumps.

MA 6 vacuum mode, 60 mJ/cm’ @ 365 nm.

Bake 60 s @ 117 °C.
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Flood expose 200 mJ/cm” @ 365 nm,
divided into 3 sessions.

Develop: AZ726MIF for ~20 s.

Do not plasma ash, it is totally unnecessary.

HCl dip 1 s, stopped in water, dry with N,

Evaporation Plassys II  Ge/Au/Ge/Au/Ni/Au.
15/40/15/40/35/100.

6.0 Liftoff

20 min DMSO @ 80 °C.

Blow metal away with pipette — it should come easily
away in one piece from each chip.

Leave for further 5 min in hot DMSO.

10 s ultrasound, power 2, in clean acetone, rinse in [PA.

Put chips in petri dish of IPA and check in cheap
microscope for remaining metal flakes before drying.

7.0 Anneal

Use slow annealer due to the large chip size.

Set temperature 430 °C for 10s when desired
temperature is reached, overshoot of temperature up to
~445 °C, forming gas pressure 0.5 bar, flow 9 cuft/hr.

Test contacts with probe station (without light in the
room).

8.0 Gates

1 min Acetone, 10s US power 4, rinse in IPA and dry.

Spin as described above.

EBR, align and expose as above.

Develop: AZ726MIF for ~40 s.

Visual inspection, remove corner lumps.

MAG6 vacuum mode, 60 mJ/cm’ @ 365 nm.

Bake 60 s @ 117 °C.

Flood expose 200 mJ/cm” @ 365 nm,
divided into three sessions.

Develop: AZ726MIF for ~20 s.

Visual check and further develop if necessary.

Evaporate Ti/Au 5/55nm on Plassys II, at 1/5 A/s rates.

Liftoff in hot DMSO as before.

9.0  E-beam lithography of inductors and alignment marks

Bake 5 min @ 120 °C.

Check spinner bowl is not strongly contaminated with
photoresist, and replace otherwise.

Spin PMMA:EL 4:1 5000/5/45.

Remove resist from back of chip with acetone/swab if
necessary.

Bake 5 min @ 180 °C.

EBL. 30 kV acceleration, 10 um aperture. Dose 3.0 for
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250 nm width inductor line and alignment marks.
Polygons dose range 2.25-2.75 depending on size.
Write field 500 um, step size 8 nm for inductor, WF 100
um, step size 4 nm for alignment marks. Contamination
dot diameter 50 nm should be achievable.

Develop 50s in 3:1 IPA:MIBK, rinse in IPA.

Evap. Ti/Au 3/40nm on Plassys Il at 1 /2.5 A/s rates.

Liftoff in hot DMSO as before, taking extra care to
check for remaining metal flakes before drying, since
PMMA is much harder to remove than photoresist.

10.0 Resonator processing

1 min Acetone, 10s US power 4, rinse in [PA and dry.

Spin as described above.

EBR, align and expose as above.

Develop: AZ726MIF for ~40 s.

Visual inspection, remove corner lumps.

MAG6 vacuum mode, 60 mJ/cm’ @ 365 nm.

Bake 60 s @ 117 °C.

Flood expose 200 mJ/cm” @ 365 nm,
divided into three sessions.

Develop: AZ726MIF for ~20 s.

Visual check and further develop if necessary.

Evap. Ti/Al 3/200nm on Plassys 11, at 1/5 A/s rates.

Liftoff in hot DMSO as before.

11.0  E-beam lithography of split gates to define quantum dots

Bake 5 min @ 120 °C.

Check spinner bowl is not strongly contaminated with
photoresist, and replace otherwise.

Spin PMMA:EL 1:1 5000/5/45.

Remove resist from back of chip with acetone/swab if
necessary.

Bake 5 min @ 180 °C.

EBL. 30 kV acceleration, 10 um aperture. Dose 4.75
for single pixel line tunnel barriers. Polygons dose
range 1.75-2.3 depending on size.

WF 100 um, step size 4 nm. Contamination dot
diameter 25 nm should be achievable.

Develop 50s in 3:1 IPA:MIBK, rinse in IPA.

Evap. Ti/Au 3/25nm on Plassys II, at 1/1 A/s rates.

Liftoff in hot DMSO as before, again taking care to
check for remaining flakes due to PMMA liftoff.
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Publications

Publications relevant for the thesis:

Quantum dot admittance probed at microwave frequencies with an
on-chip resonator

T. Frey, P. J. Leek, M. Beck, J. Faist, A. Wallraff, K. Ensslin, T. Ihn,
M. Brttiker

Phys. Rev. B 86, 115303 (2012)

Dipole coupling of a double quantum dot to a microwave resonator
T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, A. Wallraff
Phys. Rev. Lett. 108, 046807 (2012)

Characterization of a microwave frequency resonator via a nearby
quantum dot

T. Frey, P. J. Leek, M. Beck, K. Ensslin, A. Wallraff, T. Ihn

Appl. Phys. Lett. 98, 262105 (2011)

Contributions to other publications

Transport through a strongly coupled graphene quantum dot in per-
pendicular magnetic field

J. Guttinger, C. Stampfer, T. Frey, T. Ihn, K. Ensslin

Nanoscale Research Letters, 6, 253 (2011)

Spin States in Graphene Quantum Dots
J. Guttinger, T. Frey, C. Stampfer, T. Ihn, K. Ensslin
Phys. Rev. Lett. 105, 116801 (2010)

Graphene single-electron transistors
T. Ihn, J. Giittinger, F. Molitor, S. Schnez, E. Schurtenberger, A. Jacobsen,
S. Hellmaller, T. Frey, S. Droscher, C. Stampfer, K. Ensslin
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Materials Today 13, 44 (2010)

e Graphene quantum dots in perpendicular magnetic fields
J. Gittinger, C. Stampfer, T. Frey, T. Ihn, K. Ensslin
Physica Status Solidi B 246, 2553 (2009)

e Electron-Hole Crossover in Graphene Quantum Dots
J. Giittinger, C. Stampfer, F. Libisch, T. Frey, J. Burgdorfer, T. Ihn,
K. Ensslin
Phys. Rev. Lett. 103, 046810 (2009)
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