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ABSTRACT

This work presents experiments carried out in a framework called circuit quantum elec-
trodynamics, which could serve to implement a viable quantum computer or quantum
simulator. The quantum bits (qubits for short) which make up such a system are realized
as superconducting circuits called transmons. The transmon is connected to a coplanar
transmission line resonator (or a three-dimensional cavity) for manipulation and readout.

Controlling a qubit is tantamount to manipulating its wave function, in particular the
phase. In addition to the familiar dynamic phase, which is the time-integral of the energy
of the qubit, there is also the so-called geometric phase, which depends neither on the
energy of the qubit nor on total evolution time, but only on the sequence of quantum
states the qubit traverses.

This thesis experimentally explores various novel aspects of the adiabatic and cyclic
geometric phase, termed Berry phase, where the control parameters of the Hamiltonian
governing qubit evolution are changed cyclically and slowly in time. Using a coherent mi-
crowave drive (which serves as control field), the qubit is brought to acquire a determined
amount of phase. It is found that due to the weakly anharmonic energy level structure of
the transmon, the energy levels outside the computational subspace sizeably contribute
to the geometric phase acquired by the qubit. These findings apply to any weakly anhar-
monic quantum system.

Then, the influence of noise in the control field of the qubit is examined. We find that
the geometric phase is resilient to noise as long as it preserves the adiabaticity of the qubit
evolution. A direct comparison with the dynamic phase shows that the dynamic phase is
more affected by decoherence than the adiabatic geometric phase when exposed to the
same kind of noise.

Finally, by applying different types of correlated noise, we explicitly show that the geo-
metric dephasing of a qubit depends on the direction in which the control field traces out
a path, making the geometric nature of geometric dephasing manifest. This somewhat
tautological finding has profound implications for the state of the qubit: the geometric
operation can either induce decoherence or restore coherence.
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CONDENSÉ

Cette thèse présente des expériences réalisées dans un système appelé électrodynamique
quantique en circuit. Ce système est fondé sur des circuits supraconducteurs et pourrait
servir à réaliser un ordinateur quantique ou un simulateur quantique. Les deux niveaux
énergétiques les plus bas d’un atome artificiel nommé transmon servent de bit quantique
(en abrégé : qubit). Pour le manipuler et pour le mesurer, le qubit est relié à un résonateur
à ligne de transmission planaire ou à une cavité à trois dimensions.

Contrôler un qubit revient à manipuler sa fonction d’ondes, notamment la phase. Or,
une fonction d’onde peut acquérir deux genres de phase, la phase dynamique et la phase
géométrique. Tandis que la phase dynamique est simplement l’intégrale sur le temps de
l’énergie du système, la phase géométrique est indépendante de l’énergie et du temps to-
tal. Elle dépend seulement de la séquence des états que parcourt le qubit.

La présente thèse explore plusieurs aspects nouveaux de la phase géométrique cy-
clique et adiabatique, appelée phase de Berry. Dans ce cas-ci, les paramètres de contrôle
de l’hamiltonien qui décrit l’évolution du qubit sont changés lentement au fil du temps.
Ici, un signal micro-onde sert de champ de contrôle et est utilisé pour manipuler le qu-
bit de sorte qu’il acquière une phase déterminée. On trouve que la structure des niveaux
d’énergie peu anharmonique du transmon fait que la phase géométrique accumulée par
le qubit comporte une partie de taille qui relève des niveaux d’énergie supérieurs inusités.
Ce modèle s’applique a tout système peu anharmonique.

Ensuite, l’influence de bruit dans les paramètres du champ de contrôle du qubit est
étudiée. On trouve que la phase géométrique du qubit est résistante au bruit tant que
l’évolution du qubit demeure adiabatique. Une comparaison directe avec la phase dyna-
mique montre que celle-ci est davantage touchée par la décohérence que la phase géomé-
trique adiabatique exposée au même bruit.

Finalement, une série de bruits corrélés différemment sert à démontrer que le dépha-
sage géométrique du qubit dépend de la direction dans laquelle le champ de contrôle
traverse un trajet. Cette expérience corrobore la nature géometrique de ce gerne de dé-
phasage et a de profondes conséquences pour l’état du qubit : une opération géometrique
peut soit induire de la décoherence, soit restaurer de la cohérence.
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PREFACE

A certain, quite fundamental concept of quantum mechanics had managed to lay quiet,
hidden in the Schrödinger equation, for about fifty years. At times, someone (Pancharat-
nam, 1956; Mead and Truhlar, 1979) caught a fleeting glimpse of it, but its true nature
remained elusive. Finally, though, after it had caught Berry’s (1984) eye, it immediately
took the spotlight in the physicists’ community.

It is surprising that no-one had noticed the geometric phase for so long, since it per-
vades physics. It appears in the quantum Hall effect (Thouless et al., 1982; Simon, 1983)
and the Aharonov-Bohm effect can be described in terms of a geometric phase change
(Berry, 1984). Its analogue in classical mechanics, the Hannay angle (Hannay, 1985), can
be used to explain the precession of Foucault’s pendulum. Geometric phases are also
thought to play a role in oscillations of neutrino flavours (Blasone et al., 1999).

This thesis presents new findings about the Berry phase, a kind of geometric phase,
which were gained in an experimental framework known as circuit quantum electrody-
namics (Blais et al., 2004). Part I provides background information on quantum informa-
tion theory, geometric phases and circuit quantum electrodynamics. It also introduces
the experimental setup as well as basic measurement techniques. In part II, the main re-
sults of this thesis are presented. The appendices in part III provide details on technical
aspects.
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INTRODUCTION

1.1 Quantum information

This section introduces some fundamental notions of quantum information theory which
are relevant for this thesis. The quantum unit of information, the quantum bit or qubit for
short, and its extension to three levels, the qutrit, are introduced. For more background,
refer to the monographs by Nielsen and Chuang (2000) or by Peres (2002), which also gives
an introduction to measurement theory.

1.1.1 The quantum bit
In classical information theory, information is encoded in bits. A bit can take on only two
distinct values, 0 or 1. In contrast, its quantum mechanical analogue, the qubit can be
in a superposition state, i.e. a linear combination of the basis states |0〉 and |1〉. The wave
function |ψ〉 of a qubit is a vector of the form

|ψ〉 =α|0〉+β|1〉 =
(
α

β

)
(1.1)

with α,β ∈C. To accommodate the interpretation of α and β in eq. (1.1) as probability am-
plitudes to observe the qubit in state |0〉 respectively |1〉, it is the required that |α|2+|β|2 = 1.
Sometimes |α|2 is called population of the ground state, and |β|2 population of the excited
state. Even though a projective measurement of a qubit state has only two outcomes, |0〉
and |1〉, superposition states can be used during computation. This parallelism inherent
to quantum computation is an advantage of quantum bits over classical bits.

In practice, the computational states |0〉 and |1〉 are mapped directly to the two states of
a spin one-half system, or to two singled out levels of an anharmonic many-level-system.
Nakahara and Ohmi’s (2008) text gives an introduction to major physical implementations
of qubits. In this thesis, the two lowest energy levels of an artificial atom called transmon
(Koch et al., 2007) are used as a qubit (see sec. 1.3).

5



6 Chapter 1. Introduction

Figure 1.1: (a) The wave function |ψ〉 of a two-level system can be represented as a point on the Bloch sphere.
(b) The wave function of a three-level system is a point in the product space of a torus and an octant of a sphere
S2.

1.1.2 The Bloch sphere
The wave function eq. (1.1) can be written as

|ψ(θ,ϕ)〉 = e iγ
(
cos

(
θ

2

)
|0〉+e iϕ sin

(
θ

2

)
|1〉

)
,

where γ, θ and ϕ are real. The expectation value of an observable O with respect to the
state |ψ〉 is defined as 〈O〉|ψ〉 = 〈ψ|O|ψ〉. From this, it appears that the global phase e iγ

cannot be observed directly, so we drop it. We define the Bloch vector r as

r = (〈X 〉,〈Y 〉,〈Z 〉) = (sinθcosϕ, sinθ sinϕ,cosθ) (1.2)

via expectation values of the Pauli matrices

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

It can be shown (Nakahara, 2003) that there is a bijection between |ψ(θ,ϕ)〉 and the r(θ,ϕ)
for 0 ≤ θ ≤π and 0 ≤ϕ< 2π. The state of a qubit |ψ(θ,ϕ)〉 can thus be visualized as a point
r(θ,ϕ) on the unit sphere S2 ⊂ R3. In quantum information theory, the set of all vectors r
is called Bloch or Poincaré sphere (see Fig. 1.1(a)). These vectors describe the pure states.

1.1.3 Density matrices
The states corresponding to a vector lying inside the Bloch sphere,

r = (r sinθcosϕ,r sinθ sinϕ,r cosθ), r ∈ [0,1[, (1.3)

are called mixed states. These cannot be described in terms of wave functions |ψ〉, but only
in terms of density matrices.

A density matrix describing a qubit state is a complex two-by-two matrix which is pos-
itive semi-definite and fulfils trρ = 1. A pure state |ψ〉 is associated with the density matrix

ρ = |ψ〉〈ψ|. (1.4)
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For mixed states, there is no wave function |ψ〉 satisfying eq. (1.4).
Any density matrix ρ describing a qubit state can be written as (Nielsen and Chuang,

2000)

ρ = 1

2
(id+ r ·σ) . (1.5)

where expectation values 〈X 〉 of the spin projection operator X with respect to the state
ρ are defined as tr(Xρ) (and similarly for 〈Y 〉 and 〈Z 〉; cf. eq. (1.2)). The dot · denotes
the standard dot product. When ρ describes a pure state, ρ = |ψ〉〈ψ|, we have ρ2 = ρ

and therefore |r| = 1. When ρ describes a mixed state, |r| < 1. Thus, mixed states can be
visualized as points lying within the Bloch sphere.

1.1.4 The qutrit
The representation of a pure state of a two-level system as a point on the Bloch sphere
can be generalized to three-level systems, called qutrits. (Arvind et al., 1997). Any pure
three-level state |ψ〉 = α|0〉+β|1〉+γ|2〉 can be written in a manner analogous to eq. (1.5)
as

ρ = 1

3

(
id3 +

p
3r ·λ

)
,

where r is a unit vector in R8 and λ= (λ1, . . . ,λ8) are the Gell-Mann matrices. These eight
Hermitian, traceless and orthogonal1matrices are the generators of SU (3) and therefore
play a role similar to the Pauli matrices for the two-dimensional case. Explicitly, they are

λ1 =
 0 1 0

1 0 0
0 0 0

 , λ2 =
 0 −i 0

i 0 0
0 0 0

 , λ3 =
 1 0 0

0 −1 0
0 0 0

 ,

λ4 =
 0 0 1

0 0 0
1 0 0

 , λ5 =
 0 0 −i

0 0 0
i 0 0

 , λ6 =
 0 0 0

0 0 1
0 1 0

 ,

λ7 =
 0 0 0

0 0 −i
0 i 0

 , λ8 = 1p
3

 1 0 0
0 1 0
0 0 −2

 .

Each pure state therefore can be bijectively mapped to a point on S7, the seven-
dimensional unit sphere embedded in R8. For mixed states, we have

ρ = 1

3

(
id3 +

p
3cr ·λ

)
,

where c ≤
p

3
2 csc(ϕ+ π/3) for some ϕ ∈ [π/6,π/2]. The value of ϕ can be computed

from an invariant involving r and a product ⋆ based on the anticommutation relations
of SU (3) (Mallesh and Mukunda, 1997). More concretely, we define completely symmetric
d-symbols by

{λa ,λb} =λaλb +λbλa = 4

3
δab +2dabcλc

1w.r.t. the Hilbert-Schmidt inner product (λi ,λ j ) = tr(λ†
i λ j )



8 Chapter 1. Introduction

where δab is the Kronecker delta, and the product ⋆ by

(r⋆ r)a =p
3dabc rb rc .

Then, r · r⋆ r =−sin(3ϕ).
Leaving out the global phase, any pure three-level state can be written as

|ψ〉 = e ıχ1 sinβ1 cosβ2|0〉+e ıχ2 sinβ1 sinβ2|1〉+cosβ1|2〉,

where χ1 ∈ [0,2π[ is the phase of the ground state and χ2 ∈ [0,2π[ the phase of the first
excited state relative to the phase of the second excited state, and β1 ∈ [0,π/2[, β2 ∈ [0,π/2]
parameterize the populations. Therefore every state can be represented as a point in the
product manifold of a torus S × S and an octant of the unit sphere S2. The phase of |0〉
with respect to |2〉 is well-defined except for the case where β2 = π/2 (and therefore χ1 is
undefined). The phase of |1〉 with respect to |2〉 is well-defined except for the case where
β2 = 0 (and therefore χ2 is undefined). The local parametrization forms a subset of S7 and
includes all pure three-level states, with the exception of the points with vanishing third
component (i.e. β1 = π/2). When considering only these omitted states, the Bloch sphere
is recovered.

Note that, as opposed to the two-level case where mixed states correspond to points
lying within the Bloch sphere, the mixed states of a three-level system are not the points
within the torus and the octant, but the set of points {r ∈ R8;r · r = 1,r⋆ r = r} ⊂ S7 (Arvind
et al., 1997; Khanna et al., 1997).

1.2 Geometric phases

The state of a quantum system acquires a phase as the system evolves in time. When the
Hamiltonian H governing the evolution is time-independent, for an eigenstate of H this
phase is simply the dynamic phase, that is, up to constants, the time-integral of the energy
of the system. When the Hamiltonian is time-dependent, there can also be a geometric
phase in addition to the dynamic phase. It constitutes a ‘“memory” of the evolution the
system has undergone’ (Anandan, 1992). It is independent of both the energy of the eigen-
state and the rate of the evolution; what matters is only the sequence of quantum states
the system has traversed (Anandan, 1992).

When final |ψ′〉 and initial state |ψ〉 are related via |ψ′〉 = e iγ|ψ〉, the evolution is said
to be cyclic. Since |ψ〉 and |ψ′〉 only differ by a phase factor, they lie in the same ray of the
Hilbert space H (see Fig. 1.2(a)) and are classically indistinguishable. The curve C traced
out by |ψ(t )〉 in the Hilbert space is open (meaning the states have a different phase), while
the curve Ĉ in the projective Hilbert space P is closed.

1.2.1 The Berry phase
If the evolution of the Hamiltonian H is not only cyclic but also adiabatic2, by virtue of
Ehrenfest’s adiabatic theorem3 an eigenstate at t = 0 evolves into an eigenstate at t = T .

2Here: slow with respect to the energy scales involved.
3See, for example, Messiah (1991).
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Figure 1.2: (a) After a cyclic and adiabatic evolution of the Hamiltonian, the state vectors |ψ(0)〉 and |ψ(T )〉 lie in
the same ray of the Hilbert space, but their phase can be different. (b) Example of parallel transport on a sphere,
in which a vector transported along a closed path returns to its original position rotated.

What about the phase at time T ? In addition to the usual dynamic part, there is a geometric
contribution which is called the Berry phase (Berry, 1984). The brief derivation which
follows is based on Nakahara (2003).

Let λ denote the parameters on which the Hamiltonian H depends, and assume that
these change adiabatically over time, λ=λ(t ). The Schrödinger equation

H(λ(t ))|ψ(t )〉 = iħ d

d t
|ψ(t )〉. (1.6)

describes the time evolution of the state |ψ〉 in time. How does the nth normalized eigen-
state, |ψ(0)〉 = |n,λ(0)〉, where

H(λ(0))|n,λ(0)〉 = En(λ(0))|n,λ(0)〉,

evolve in time, assuming the eigenvalues are not degenerate? Inserting the ansatz

|ψ(t )〉 = exp
{
iγ(t )− iδ

} |n,λ(t )〉

with the dynamic phase δ= ∫ t
0 d t ′En(λ(t ′))/ħ into eq. (1.6) gives

γ̇(t ) = i 〈n,λ(t )| d

d t
|n,λ(t )〉.

Integrating from t = 0 to t = T leads us to the Berry phase of the nth eigenstate

γ= i
∫ λ(T )

λ(0)
dλ〈n,λ(t )|∇λ|n,λ(t )〉. (1.7)

If the integrand in eq. (1.7) is not a total derivative, γ may be nonzero. From the normal-
ization of the state, d

d t (〈n,λ(t )|n,λ(t )〉) = 0, it follows that γ is real. Its invariance under

local gauge transformations |n,λ(t )〉 7→ e iα(t )|n,λ(t )〉 follows from eq. (1.7) because non-
degenerate eigenvalues can only differ by a phase which is an integer multiple of 2π. The
invariance of eq. (1.7) under reparametrization of the integral implies that γ is indepen-
dent of the rate of traversal of the path C =λ([0,T ]).
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Defining the Berry connection A = i 〈n,λ(t )|∇λ|n,λ(t )〉 (Berry, 1984), eq. (1.7) can be
rewritten as

γ=
∫ λ(T )

λ(0)
dλ ·A =

∮
C

dλ ·A. (1.8)

The Berry phase is thus the integral of the Berry connection along the path C .
The archetypal geometric phase (which happens to be relevant for this thesis) is the

Berry phase of a spin one-half particle with spin σ = (X ,Y , Z ) in a magnetic field B, a
situation described by the Hamiltonian

H =ħσ ·B/2 (1.9)

where B is in units of angular frequency. The parameters upon which H depends areλ(t ) =
B(t ), and the parameter space is the three-dimensional space describing the magnetic
field B. This field is changed over time, slowly and cyclically, to trace out a loop C . Then,
as derived in Berry (1984), the geometric phase acquired by the spin one-half is simply

γ=±α(C )/2, (1.10)

where α is the solid angle enclosed by the path C in parameter space, as seen from the
origin. This illustrates why this phase is called geometric phase: only the solid angle sub-
tended by C matters. Neither the shape of the contour, nor the speed of traversal play a
role.

1.2.2 Berry phase & parallel transport
In a plane, parallel transporting a vector along a curve simply amounts to moving the vec-
tor along the curve while preserving its magnitude and direction. A vector v f parallel-
transported along closed loop is identical to the initial vector vi . On a curved surface, in
every infinitesimal step of the parallel transport, the following should be kept constant:
(i) the length of the vector, (ii) its direction, and (iii) the angle between the vector and the
surface normal. Still, interesting things can happen. In Berry’s words,

[t]ake a pencil, lay it on the north pole of a globe and point it in the direc-
tion of any of the meridians [...]. Move the pencil down along the line to the
equator and, keeping it perpendicular to the equator, slide it to another line
of longitude. Move the pencil back to the north pole along the new meridian,
and you will find that although the pencil has been returned to its starting
point and at no time was rotated, it no longer points along the original line of
longitude. M.V. Berry (1988)

In this example, the globe represents the curved space, namely a sphere, and the pencil
represents the vector (see Fig. 1.2(b)). The vector is rotated by an angle α equal to the solid
angle enclosed by the curve. For instance, if the angle between the meridians is ϕ = π/4,
the subtended solid angle is π/2 and so is α.
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1.2.3 Generalizations of the Berry phase
For a quantum system to acquire a Berry phase, three conditions must be fulfilled: (i) λ
should be modified adiabatically so that (ii) it traces out a closed curve C ; and (iii) the
energy eigenstates must not be degenerate. Geometric phases appear in a more general
settings, when one ore more of these requirements are dispensed with.

Aharonov and Anandan (1987) and Nakagawa (1987) have independently demon-
strated that the motion of the quantum system need not be adiabatic. As long as the
evolution of the system itself is cyclic, an identical phase factor can be associated with
all curves C in the Hilbert space H which project to the same closed curve Ĉ in the pro-
jective Hilbert space P . Samuel and Bhandari (1988) have shown that the evolution need
not be cyclic. Then, C is open, and the geometric phase is given by the surface inside the
projection Ĉ of C closed by the shortest geodesic curve between the projected initial and
final states. For a less formal interpretation, the reader may refer to Aitchison and Wanelik
(1992), or to García de Polavieja and Sjöqvist (1998) for worked examples. Both generaliza-
tions, the one by Aharonov and Anandan (1987) as well as the one Samuel and Bhandari
(1988), are based on the work by Pancharatnam (1956).

As seen in above in sec. 1.2.1, when the energy eigenstate of the Hamiltonian is non-
degenerate, a cyclic and adiabatic evolution will map a state back to itself, times a phase
factor,

|ψ(T )〉 = exp

{
− i

ħ
∫ T

0
E(t )d t

}
exp(iγ)|ψ(0)〉. (1.11)

When the eigenstates are degenerate, this is not necessarily true. The generalization of
the Berry phase for this case has first been studied by Wilczek and Zee (1984). If the N
degenerate levels do not cross other levels during the evolution, a degenerate state will be
mapped to the subspace of the degenerate levels. The phase it acquires is not a complex
number γ ∈U (1), but a matrix Uαβ ∈U (N ):

|ψα(T )〉 =
N∑

β=1
exp

{
− i

ħ
∫ T

0
E(t )d t

}
Uαβ|ψβ(0)〉. (1.12)

The non-adiabatic generalization of this case has been treated by Anandan (1988).
Further generalizations exist. Geometric phases for mixed states were introduced by

Uhlmann (1986) and an alternative formulation was provided by Sjöqvist et al. (2000). The
off-diagonal geometric phases by Manini and Pistolesi (2000) and the generalization by
Filipp and Söqvist (2003) treat the case where initial and final state are orthogonal and the
usual definition of the geometric phase is not applicable. Simon (1983) has worked out
the connection between the Berry phase and differential geometry. Customarily, authors
work in the Schrödinger picture, but Kuratsuji and Iida (1985) discuss the Berry phase in
the path-integral formalism.

To conclude this section, a few works of reference on geometric phases: Anandan
(1992) has written a short review on geometric phases. Berry has written popular arti-
cles on the geometric phase itself (Berry, 1988) and its heralds (Berry, 1990). A collec-
tion of ground-breaking papers (both theoretical and experimental) on quantal geometric
phases can be found in Wilczek and Shapere (1989). The books by Bohm et al. (2003),
and Chruscinski and Jamiolkowski (2004) provide the eager reader with a mathematically
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rigourous exposition to the topic. The monographs by Pachos (2012) and Nakahara (2003)
are broader in scope; Pachos addresses topological quantum computation in general but
provides a neat, not too technical introduction to geometric phases and their applications.
Nakahara is more formal and gives a compendium of geometrical and topological con-
cepts in physics. The first pages of Resta’s (2000) review start off with the Pancharatnam
phase (the ‘discrete’ or ‘projective’ version of the Berry phase) and illustrate the connection
between the Aharonov-Bohm effect and the Berry phase. Quantum mechanics textbooks
usually shun geometric phases. The newer editions of the texts by Bohm (1993) and Saku-
rai (1994) are exceptions.

1.2.4 Experimental observations of geometric phases
The Berry phase was first observed for a spin one particle in photons in an optical fibre
(Tomita and Chiao, 1986) and for a spin one-half particle using spin-polarized neutrons
(Bitter and Dubbers, 1987). Suter et al. (1988) have observed the non-adiabatic but cyclic
geometric phase in a system of two proton spins coupled by magnetic dipolar interac-
tions using NMR interferometry. The non-cyclic geometric phase was measured in spin-
polarized neutron experiments (Weinfurter and Badurek, 1990; Wagh et al., 1998)4.

Other systems where the Berry phase was measured include: in solid state, a CPB qubit
(Leek et al., 2007) and a superconducting charge pump (Möttönen et al., 2008); graphene
(Zhang et al., 2005); in optics, optical fibres (Tomita and Chiao, 1986), laser interferom-
etry (Bhandari and Samuel, 1988), and single optical photons (Kwiat and Chiao, 1991);
neutrons (Bitter and Dubbers, 1987; Richardson et al., 1988); and NMR (Suter et al., 1987).
The anomalous Hall effect in frustrated ferromagnets can be explained in terms of Berry
phases acquired by electrons hopping between atoms (Taguchi et al., 2001).

Tycko (1987) has measured the non-Abelian but cyclic and adiabatic geometric phase
using spin 3/2 chlorine nuclei in a crystal of sodium chlorate. The full non-Abelian gauge
structure was revealed in an experiment by Zwanziger et al. (1990). The demonstration
that the phase factors acquired by a degenerate state along two different closed paths do
not commute has been achieved by Abdumalikov et al. (2013) in a circuit QED experiment.
As of winter 2014, no experimental measurement of non-cyclic non-Abelian geometric
phases has been carried out.

For the convenience of the reader, the first theoretical and experimental explorations
of the various types of geometric phases have been assembled in table form in Fig. 1.3.

1.2.5 Geometric quantum computation
Using geometric phases to perform circuit-based quantum computation is known as ge-
ometric quantum computation (Sjöqvist, 2008). The theoretical groundwork carried out
by Zanardi and Rasetti (1999) shows that adiabatic loops in control parameters of a suit-
able Hamiltonian can be used to perform universal quantum computing. The first experi-
mental geometric quantum computation (more specifically, a controlled phase-shift gate)
was implemented by Jones et al. (2000). Universal single qubit operations based on non-
Abelian phase factors arising in adiabatic evolution have been observed by Toyoda et al.

4According to Wagh et al. (1998), Weinfurter and Badurek (1990) have not measured the noncyclic geometric
phase, but rather the amount of precession of the neutron spin. Sjöqvist (2001) concurs.
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Figure 1.3: Overview of the first theoretical discussion (in roman letters) and the first experimental realizations
(in italics) of a variety of geometric phases. Mixed-state geometric phases, off-diagonal geometric phases, and
geometric phases in open quantum systems are not represented.

(2013) in a trapped single Ca+ ion. The authors have also demonstrated robustness against
parameter variations.

A drawback of adiabatic gates is the long duration of the evolution. Non-adiabatic ge-
ometric quantum computation is a faster alternative. Sjöqvist et al. (2012) have proposed
one- and two-qubit gates for universal quantum computation using a Λ-system. The one-
qubit gates have been experimentally realized by Abdumalikov et al. (2013) in a circuit QED

setup. Zu et al. (2014) claim to have implemented a two-qubit gate using nitrogen-vacancy
centres in diamond.

1.3 Circuit quantum electrodynamics

1.3.1 Introduction
Cavity quantum electrodynamics (cavity QED), the study of coherent interactions between
matter and light, can be traced back to the 1940s (Dutra, 2005; Haroche and Raimond,
2006). The fundamental idea is to increase the interaction strength between the electro-
magnetic field and the atoms by confining the field in a cavity and having atoms flying
through the cavity. Strong coupling came about in the nineties, with the observation of
vacuum Rabi splitting (Thompson et al., 1992) and vacuum Rabi oscillations (Brune et al.,
1996).

Blais et al. (2004) have proposed the circuit QED architecture, a variant of cavity QED

which makes use of a one-dimensional coplanar waveguide resonator (CPW resonator)
coupled to superconducting electrical circuits acting as artificial atoms, instead of the
usual three-dimensional cavity with transiting atoms. In circuit QED, the ‘atoms’ stay in
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place, and the confined geometry enhances their coupling to the electromagnetic field.
Wallraff et al. (2004) have carried out a pioneering experiment in which a single photon
is coherently coupled to a single artificial atom. At the same time, Chiorescu et al. (2004)
observed Rabi oscillations between a superconducting flux qubit coupled to a capacitively
shunted SQUID which acts as a harmonic oscillator.

This section gives a brief introduction to circuit QED. For a more thorough treatment,
see e.g. the thesis by Baur (2012).

1.3.2 Superconducting qubits
In a superconductor, the Cooper pairs form a condensate described by a single wave func-
tion with two variables, phase and density. Two superconducting electrodes brought to-
gether but separated by a thin insulating oxide layer through which Cooper pairs can tun-
nel form a Josephson junction (Tinkham, 1996). It is fully described in terms of the dif-
ference in phase and in Cooper pair number of the condensates on either side (Feynman
et al., 1971). The junction has a capacity C J and a Josephson energy E J = Icħ/(2e), where
Ic is the critical current of the junction.

Superconducting qubits (Clarke and Wilhelm, 2008; Devoret and Schoelkopf, 2013)
rely on Josephson junctions. The field took off with the observation of the energy spectrum
of a coherent superposition of two charge states (Nakamura et al., 1997). In the following
years, various types of superconducting qubits have been developed, encoding quantum
states in the charge, phase or flux degree of freedom.

1.3.3 Transmon qubit
The transmon qubit is a kind of charge qubit (Makhlin et al., 2001). In its simplest form,
the charge qubit (also known as Cooper pair box qubit) consists of a superconducting elec-
trode (‘island’) sandwiched in between a Josephson junction connected to an other elec-
trode (‘reservoir’) and a capacitance to ground (Cg , ‘gate’, see Fig. 1.4(a) for a circuit dia-
gram). Usually, to form a qubit a gate voltage Vg is applied to produce two nearly degen-
erate charge states (i.e., with almost the same number of Cooper pairs). The degeneracy is
lifted due to the Josephson energy.

Replacing the Josephson junction by a SQUID (superconducting quantum interference
device, a superconducting loop containing two Josephson junctions in parallel) results in
the split Cooper pair box (Fig. 1.4(b)). It behaves like a Cooper pair box whose Josephson
energy E J (Φ) = E J ,max|cos(πΦ/Φ0)| depends on the magnetic flux Φ flowing through the
SQUID-loop. Φ0 = h/(2e) is the magnetic flux quantum.

When the effective offset charge5 ng =Cg Vg /(2e) is set to 1/2 (in units of Cooper pairs
2e), the qubit transition frequency is insensitive to charge noise to first order. At this opti-
mal working point (‘sweet spot’), coherence times are much improved (Vion et al., 2002).
However, jumps and drifts in the offset charge induced by the environment (charge noise)
will affect the qubit transition frequency and induce decoherence.

The transmission-line shunted plasma oscillation qubit, usually abbreviated to trans-
mon, is a variation on the charge qubit (Koch et al., 2007). Its most distinguishing char-
acteristic is a large shunting capacitor with capacitance CB between island and reservoir
which reduces its sensitivity to charge noise (see Fig. 1.4(c)).

5It is sometimes also called gate charge.



1.3. Circuit quantum electrodynamics 15

CPB split CPB

(a) (b)Vg
Cg

CJ EJ

Vg
Cg

CJ EJ

Φ

transmon

Vg
Cg

CJ EJ

Φ

CB

(c)

Figure 1.4: Electric circuit diagrams of (a) a Cooper pair box , (b) a split Cooper pair box, and (c) a transmon.

Transmon Hamiltonian
The Hamiltonian of the transmon can be cast in a form identical to the one describing a
Cooper pair box,

H = 4EC (n −ng )2 −E J cosϕ, (1.13)

with the operator n of the difference in the number of Cooper pairs across island and reser-
voir, and the operator ϕ of the difference in phase. EC = e2/(2CΣ), the charging (or electro-
static) energy, describes how much energy an electron needs to tunnel across the junction
with total capacitance CΣ = C J +CB +Cg , the sum of the capacitances of the Josephson
junction C J , the shunting capacitor CB and the gate capacitor Cg . Unlike the Cooper pair
box qubit, a transmon has a large ratio E J /EC . The Mathieu functions solve the transmon
Hamiltonian eq. (1.13) in the phase basis exactly. In Fig. 1.5(a-c), the three lowest lying en-
ergy eigenvalues Em , m = 0,1,2 of eq. (1.13) are shown for different ratios E J /EC , low and
high values corresponding to the Cooper pair box and the transmon, respectively.

Anharmonicity
By luck of by foreordination, increasing the ratio E J /EC causes an exponential decrease
in the charge dispersion (the variation of the transition frequencies as a function of gate
charge), but only an algebraic reduction in the anharmonicity6 (the energy difference α

between the two lowest-energy transitions E01 and E12 = E01+α). Even though the energy
level structure of the transmon is only weakly anharmonic, transitions can be addressed
individually in relatively short times (∼ 8ns), which is crucial for utilizing it as a qubit.
Nonetheless care must be taken to avoid unwanted leakage into other energy levels, and to
include sufficiently many energy levels in models of the system. (See e.g. Fink et al. (2008),
Chow et al. (2009), Motzoi et al. (2009) and ch. 3 of this thesis; or Steffen et al. (2003) for a
discussion in the context of phase qubits.)

For the Cooper pair box operated at ng = 0.5, the anharmonicity α= E12 −E01 is posi-
tive: the level spacing increases with energy. For large ratios E J /EC , that is, when going to
the transmon regime, α is negative: the level spacing decreases with energy. Asymptoti-
cally, α=−EC (see Fig. 1.5(d)). In practice, E J /EC is typically about 60 and α≈−1.2EC .

6The anharmonicity is actually due to the cosine potential in the Hamiltonian eq. (1.13).
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Approximate energy levels
When E J /EC is large, perturbation theory applied to eq. (1.13) gives the approximations
E0,m = m

√
8E J EC − (m+1)m

2 EC , m = 1,2,3, ... and Em−1,m = √
8E J EC −mEC , m = 1,2,3, ...,

with the useful special cases

E01 ≈
√

8E J EC −EC , E12 ≈
√

8E J EC −2EC . (1.14)

The transmon is usually realized as a split transmon, that is, it comprises a SQUID instead
of a single Josephson junction. Then, its transition energies are flux-tunable because E J =
E J ,max|cos(πΦ/Φ0) |; they are periodic with a period of one flux quantum Φ0 and maximal
when the flux Φ is a half-integer. The formulas eq. (1.14) break down if the Josephson
energy is flux-tuned to low values and E J /EC ≫ 1 no longer holds.

1.3.4 Coplanar waveguide resonators
The coplanar waveguide resonator is a planar structure consisting of a centre conducting
strip separated from the ground planes on either side by narrow gaps (Wen, 1969; Simons,
2001; Pozar, 2012). A sketch of a CPW resonator is shown in Fig. 1.6(a). It can thus be
viewed as a longitudinal section of a coaxial cable. Its geometry is set by the width w of the
centre strip and the separation s between centre strip and ground planes (see Fig. 1.6(b)).
The article by Göppl et al. (2008) gives extensive information about CPW resonators in the
context of circuit QED.

Since the wavelength of the microwave radiation it supports are comparable with the
dimensions of the CPW resonator itself, transmission line theory is used to describe it—
voltage and current vary along the CPW resonator. Nevertheless, the equivalent lumped
circuit representation allows to model it using circuit theory (Pozar, 2012), which is con-
venient for quantizing the resonator (Devoret, 1997).

A coplanar waveguide can support two modes, an even mode (which is a quasi-TEM
mode) and an odd mode (or slot mode) which also has field components in longitudinal
direction (Wolff, 2006). We suppress the odd mode by keeping both ground panes on the
same potential via bonding wires or airbrigdes (Steffen, 2013).



1.3. Circuit quantum electrodynamics 17

finger gap(a) (b) s sw

wglf
l

h1

h2ε2

Figure 1.6: (a) Top view of a CPW resonator with ground planes (top and bottom) and centre strip with finger and
gap capacitors. (b) Vertical section of the CPW. The two ground planes separated by the centre conductor (light
green) lie on top the dielectric plane (dark green).

Design
The centre strip conductor (of length l ) is coupled to transmission lines by capacitors with
different geometries. In terms of capacitance Cl and inductance Ll of the transmission
line per unit length, its impedance Z0 =

√
Ll /Cl is a function of the ratio s/(s+2w), which

allows to connect it e.g. to a printed circuit board (PCB) without impedance mismatches by
adapting its dimensions continuously (Simons, 2001). For a dielectric and non-magnetic
substrate, Ll depends only on the geometry of the CPW resonator (Simons, 2001)7. Cl is
a function both the geometry and the effective permittivity ϵeff of the CPW resonator. An
analytical expression for the quantity ϵeff exists (Gevorgian et al., 1995), but typically, Cl is
determined in a finite element electromagnetic simulation, from which ϵeff can be com-
puted.

Here, the CPW resonator is patterned in a niobium film of thickness h2 = 200nm and
has dimensions w = 10µm, s = 4.5µm. The substrate is a sapphire (Al2O3) wafer of thick-
ness h1 = 430µm and permittivity ϵ∥ = 11.1 along the optical axis and ϵ⊥ = 8.9 perpen-
dicular to it (Harman et al., 1994). The sapphire being cut perpendicularly to the optical
axis, in calculations of ϵeff the value

p
ϵ∥ϵ⊥ should be used (Collin, 2000, ch. 3). From this,

Cl ≈ 10−10 F/m, ϵeff ≈ 6, Ll ≈ 10−7 H/m and an impedance Z0 ≈ 50Ω are obtained8.

Resonance frequency
The frequency of the fundamental mode of the resonator is

ν0 = cp
ϵeff

1

2l
, (1.15)

with c the speed of light in vacuum, and the harmonics are at νn−1 = n f0.

Coupling
Here, we consider input and output lines which are symmetrically coupled to the CPW

resonator with a capacitance Cκ. Asymmetric coupling is treated in Steffen (2013).
The coupling capacitance depends on the geometry of the coupling (such as the gap

width wg , the finger length l f ) and is calculated with finite element simulations. The

7The impedance of a superconductor is the sum of the temperature-independent geometric inductance
and the temperature-dependent kinetic inductance. Here however, the kinetic inductance is small and can be
neglected (Göppl et al., 2008).

8The other components in the setup have an impedance of 50Ω, but the resonator could in principle have
any impedance. However, making it 50Ω allows us to reuse the designs for transmission line experiments (van
Loo et al., 2013) without causing impedance mismatches.
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loaded quality factor QL = ν0/δν and the resonance frequency ν0 are obtained by fitting a
Lorentzian with transmission peak power Pr and full width half maximum δν

P (ν) = Pr
1

1+ (ν−ν0
δν/2

)2

to the transmission spectrum of the resonator (Göppl et al., 2008). The loaded quality
factor is connected to the decay rate κ through

κ/(2π) = ν0/QL = δν

and obeys the relation
1/QL = 1/Qint +1/Qext,

with internal Qint and external Qext quality factors. Equivalently in terms of decay rates,
we have

κL = κint +κext.

The external decay rate κext goes with the square of the coupling capacitance, κext ∝ C 2
κ,

and is thus chosen by design. The internal decay rate κint is probably limited by dielectric
losses arising at the metal surface. Radiation losses and resistive losses are thought to be
negligible in a superconducting CPW resonator (Göppl et al., 2008).

In the undercoupled regime κext ≪ κint, the main contribution to the loaded decay
rate stems from the intrinsic losses of the resonator. Measurements of the internal decay
rate excepted, all experiments are conducted in the overcoupled regime κext ≫ κint, where
the loaded decay rate is dominated by the external decay rate and therefore κL ∝C 2

κ. The
coupling of a resonator is an important design parameter of a circuit QED experiment,
since keeping κL small makes for a long-lived resonator, but extracting information about
it is time-consuming.

In typical experiments the loaded quality factor is a few thousand, and the internal
quality factor a few hundred thousand. Quality factors exceeding 106 have been achieved
(Megrant et al., 2012). The coupling capacitance lies in a range from 0.1fF to 20fF, with
fingers of length l f = 100µm and gaps of width wg from 1µm to 30µm (Steffen, 2013).

1.3.5 Transmon coupled to a resonator
The prototypical circuit QED experiment consists of a transmon coupled to a resonator.
Here, a CPW resonator is considered. Alternatively, three-dimensional cavity resonators
can be used (Paik et al., 2011).

Jaynes-Cummings-Hamiltonian
The interaction between a M-level atom and a quantized field is described by the general-
ized Jaynes-Cummings-Hamiltonian (Jaynes and Cummings, 1963; Koch et al., 2007)

H/ħ=ωr

(
a†a + 1

2

)
+

M−1∑
j=0

ω j | j 〉〈 j |+
M−1∑
i , j=0

gi , j |i 〉〈 j |
(
a† +a

)
. (1.16)

The first term in eq. (1.16) describes the quantized field as a harmonic oscillator with res-
onator frequency ωr , photon creation operator a† and photon annihilation operator a.
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The second term describes the bare transmon with states |i 〉 of energy ωi = Ei /ħ in units
of ħ. The third term couples the transmon to the cavity field.

The coupling term in eq. (1.16) can be simplified (Koch et al., 2007) by dropping cou-
plings gi , j with |i − j | > 1 (which are either zero or small for a transmon) and applying the
rotating wave approximation (which amounts to ignoring the terms describing simulta-
neous creation or annihilation of an excitation in both the resonator and the atom). Then,

H/ħ=ωr

(
a†a + 1

2

)
+

M−1∑
j=0

ω j | j 〉〈 j |+
M−2∑
j=0

g j , j+1

(
| j 〉〈 j +1|a† +h.c.

)
, (1.17)

with coupling strengths

g j , j+1 = 2βeVrms〈 j |n| j +1〉 ≈ 2βeVrms

√
j +1

2

(
E J

8EC

)1/4

. (1.18)

The capacitance ratio β = Cg /CΣ describes what part of the voltage in the resonator is

seen by the transmon. The root-mean-square voltage Vrms =
√ħωr /2Cr (with the effective

capacitance of the resonator Cr = Cl l/2) arises from equating the electrostatic energy of
the resonator with its zero-point energy:

Cr V 2
rms =ħωr /2.

Thus, the coupling strength scales with the root of the resonator mode number (see
eq. (1.15)) and the root of the excitation level.

Strong coupling regime
The strong coupling regime is achieved when the relaxation and decoherence rates of both
the transmon and the photon field in the resonator are much smaller than their mutual
coupling. The states of the resonator and the transmon hybridize when on resonance,
leading to vacuum Rabi mode splitting (Wallraff et al., 2004; Fink et al., 2008), and vac-
uum Rabi oscillations (Johansson et al., 2006; Mlynek et al., 2012), where excitations are
swapped repeatedly between them. For more details on this topic, see e.g. Fink (2010).

Dispersive limit
The dispersive limit is attained when (Boissonneault et al., 2010)

〈a†a〉≪∆2
i /(4g 2

i ), (1.19)

in other words, when the mean photon number is much lower than the critical photon
number ncrit =∆2

i /(4g 2
i ), where ∆i = (ωi+1 −ωi )−ωr are detunings between the i th tran-

sition and the resonance frequency of the resonator. Pictorially, in the dispersive regime,
there is little photonic part (∝ gi /∆i ) in the transmon states (Blais et al., 2004, eqs. (2)-(6)),
and save for some frequency shifts, the resonator and the transmon are decoupled.

In this limit, the Hamiltonian eq. (1.17) can be developed in the small parameter λi =
gi /∆i . To third order, one obtains (Boissonneault et al. (2010), see also Bianchetti et al.
(2010))

H/ħ=ωr a†a +
M−1∑
i=0

(
ωi |i 〉〈i |+Li |i 〉〈i |+Si |i 〉〈i |a†a

)
(1.20)
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with Lamb-shift and AC-Stark coefficients

Li ≈χi−1, Si ≈χi−1 −χi .

These are given in terms of the pull coefficients χi = g 2
i /∆i , letting χi = 0 if i ∉ {0,1, . . . , M −

2}. When expanding to fourth order in λi , self-Kerr terms ∝ |i 〉〈i |(a†a)2 appear in
eq. (1.20). Although they become relevant for high-power readout of the transmon, they
can safely be neglected here (Reed et al., 2010; Boissonneault et al., 2010).

For a two-level system (M = 2) eq. (1.20) simplifies to

H/ħ=ωr a†a +ω0|0〉〈0|+
(
ω1 +χ0

) |1〉〈1|+ (−χ0|0〉〈0|+ (χ0 −χ1)|1〉〈1|)a†a.

Regrouping the terms gives

H/ħ= (ωr −χ0)a†a +ω0|0〉〈0|+ (ω1 +χ0)|1〉〈1|+ (2χ0 −χ1)|1〉〈1|a†a. (1.21)

We identify the quantity ω′
r = ωr −χ0 as the renormalized resonator frequency—the fre-

quency of the resonator when the transmon is in the ground state9. The Lamb-shifted
transition frequency of the transmon is ω′

01 =ω01+χ0. The last term in eq. (1.21) describes
the AC Stark shift: the transition frequency ω′

01 is shifted by 2χ0−χ1 for every photon in the
cavity. Or, equivalently, the resonator frequency ω′

r is shifted by 2χ0 −χ1 when the trans-
mon is in the excited state |1〉. This is the foundation of dispersive readout (Blais et al.
(2004), see also sec. 2.5.1).

For three transmon levels (M = 3), eq. (1.20) leads to

H/ħ = (ωr −χ0)a†a +ω0|0〉〈0|+ (ω1 +χ0)|1〉〈1|+ (ω2 +χ1)|2〉〈2|
+(

(2χ0 −χ1)|1〉〈1|+ (χ0 +χ1 −χ2)|2〉〈2|)a†a.

In addition to the terms in eq. (1.21), we find the Lamb-shifted |0〉 ↔ |2〉 transition ω′
02 =

ω02 +χ1 of the transmon (and thus ω′
12 = ω12 +χ1 −χ0), as well as the ac-Stark shift χ0 +

χ1 −χ2 of the second excited state.
Since the renormalized quantities are experimentally more relevant than the bare

ones, in the remainder of this document we drop the prime off the renormalized quan-
tities, so that e.g. ωr refers to the renormalized resonator frequency.

9Koch et al. (2007) use a different convention, ω′
r = ωr −χ1/2. This frequency has no immediate physical

interpretation, but it distributes the pull χ1 equally on the states |0〉 and |1〉, so that H/ħ = ω′
r a†a + (ω′

01 Z )/2+
χ′Z a†a, with renormalized quantities ω′

01 =ω1 −ω0 +χ0 and χ′ =χ0 −χ1/2.
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EXPERIMENTAL ASPECTS

In this chapter, the fabrication of the quantum devices and the experimental setup (en-
compassing cryogenic as well as microwave aspects) are described.

2.1 Sample fabrication

The samples used in circuit QED experiments are fabricated in the FIRST cleanroom at
ETH Zurich. Larger structures, for instance the CPW resonator, and gate lines, are fabri-
cated in a positive-resist photolithography process (Steffen, 2013) on a commercially ac-
quired niobium-coated sapphire wafer. The smaller structures, such as the transmon, are
made by patterning their structure into a positive resist with electron-beam lithography
and then evaporating aluminium. The double-angle shadow-evaporation is interrupted
by a static oxidation to create an aluminium oxide layer serving as tunnel barrier in the
Josephson junctions (Fink et al., 2010). The duration of the oxidation step determines the
Josephson energy E J of the junction: the longer the oxidation time, the larger the oxide
layer, the smaller E J . The size of the Josephson Junction (∼ 100×100nm) gives additional
control over E J . A measurement of the normal state resistance allows to infer E J (Ambe-
gaokar and Baratoff, 1963; Fink et al., 2010). For an optical image of a sample, refer to
Fig. 2.2.

2.2 Cryogenic aspects

Typically, the circuit QED building blocks (transmon, resonator, paramp, etc.) have transi-
tion frequencies ν ∼ 7GHz, corresponding to a temperature T = hν/kB ∼ 340mK. When
performing experiments, these structures are initialized in the ground state by cooling

21
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them well below T . This is achieved by placing them in a dilution refrigerator and shield-
ing off environmental radiation.

2.2.1 Cryostat
The sample is mounted on the base temperature plate of a 3He-4He dilution refrigerator
Triton 200 from Oxford Instruments. Simply put, four layers of shielding and evacuating
the interior of the cryostat to 10−3 mbar at room temperature provide protection from ther-
mal radiation and heat transfer through conduction, convection and thermal radiation.
Two stages of a pulse tube cooler (from Cryomech) provide cooling to 40K respectively
4K. The 3He-4He circuit brings the temperature on the base temperature plate down to
about 20mK at the innermost and coldest stage, the mixing chamber. The sample is ther-
mally anchored to this stage. To shield it from stray radiation, it rests in a closed copper
box (see sec. 2.2.3). All copper parts are made of oxygen-free high-conductivity copper
which is well-suited for thermalization of the sample.

Since the transition frequency of the transmon depends on the magnetic flux enclosed
by the SQUID loop, shielding from fluctuating magnetic fields is also required. This is
achieved by encasing the sample holder in two shields made of cryoperm, an alloy with
high permeability at low temperatures. A picture of the cryostat (all shields removed ex-
cept for the cryoperm ones) and a schematic of the wiring of the cryostat is shown in
Fig. 2.1.

2.2.2 Microwave wiring
The sample is controlled and read out with microwave signals. These are connected to the
electronics outside the cryostat via coaxial cables with a diameter of 85 mil (2.2 mm). The
materials of the inner conductor and of the outer conductor are a compromise between
low loss and low thermal conductivity. Outside the cryostat and at the mixing chamber,
tin-plated copper/copper cables (UT-85-TP1, low loss and high thermal conductivity) are
used. All other cables are made of stainless steel/stainless steel (UT-85-SS-SS, high loss
and low thermal conductivity) to reduce the heat load to the cryostat.

There is one exception: In the output line where the measurement signal travels, low
losses are paramount and different cables with low losses and low thermal conductivity
are used. After the sample, the microwave signal is routed through to two circulators ter-
minated at the third port by means of a 50 Ω termination, effectively acting as isolators.
This is to avoid signal leaking back into the cavity due to impedance mismatches along
the line and due to input voltage noise of the amplifiers in the output line. A NbTi cable,
superconducting up to ≈ 7K, brings the signal from the 20mK-stage to the input port of
a high-electron mobility transistor (HEMT) amplifier attached to the 4K-stage of the cryo-
stat. It typically provides a gain of 35 dB with a noise temperature of 4K to 10K. It is
powered by a low-noise power supply (Bianchetti, 2010, app. A.5) A stainless steel/silver-
plated copper weld cable (UT-85-SS) then connects the output of the HEMT amplifier to
the room temperature stage.

In some recent experiments, before travelling to the HEMT amplifier the signal is
pre-amplified at the 20mK-stage using a parametric amplifier (Yurke and Buks, 2006;

1The number indicates the diameter of the cable in mils. TP stands for tin-plated.
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Figure 2.1: (a) Schematic of the cryostat wiring. The symbol ¸ indicates what portion of the setup is modified
when using a parametric amplifier (see sec. 2.5.2). (b) Photograph of the cryostat without shields.

Castellanos-Beltran and Lehnert, 2007; Yamamoto et al., 2008). These amplifiers have a
smaller noise temperature and dissipate less power than HEMT amplifiers (see sec. 2.5.2
and ch. 5).

Further details, such as values of the attenuation per unit length of the coaxial cables
can be found in sec. 4.3.3 of Fink et al. (2010). A discussion of the cryogenic heat flows can
be found in app. A of Bianchetti et al. (2010).

Johnson noise (the dominant source of noise for temperatures above 100mK, caused
by the thermal motion of charge carriers) and thermal radiation should be suppressed in
the microwave lines. 20dB of attenuation along the microwave lines are sufficient to bring
the thermal noise from room temperature down to 4K. Between the 4K-stage and the
20mK-stage, an additional 40dB of attenuation are installed to bring the thermal popula-
tion in the sample down to about 0.05 photons in the cavity (Fink et al., 2010), respectively
≈ 2% of population in the excited state of the transmon. To thermalize the inner conductor
of the coaxial cable, we use attenuators which are normal conducting even at 20mK and
which connect the inner conductor and the outer conductor via a resistor. The attenua-
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(a) (b) (c) (d) (e)

Figure 2.2: Sample and sample holder. (a) A U5 coin for size comparison. (b) Bottom of the sample holder. On
its bottom side, there is a cutout (not visible here) in which the miniature coils are fitted. (c) The sample: PCB

with soldered SMP connectors (golden) leading to the circuit QED chip (dark rectangle). (d) Sample cover with
holes for the SMP connectors, and cutouts for the lines in the PCB and the sample. (e) Top of the sample holder
with holes for the microwave cables.

tors are wrapped in unfluxed desoldering braid made of copper, a copper clamp is affixed
to firmly hold the braid in place, and the braid is connected to a plate of the cryostat, thus
creating thermal contact. A balance sheet of loss and gain along a typical microwave line
can be found in sec. 3.1 of Bianchetti (2010).

2.2.3 Sample holder
The sample is mounted inside a copper box, which is fixed to a threaded rod of copper
screwed to the mixing chamber plate. The bottom part of the box contains a cutout in
its centre to accommodate up to three miniature superconducting coils (Bianchetti, 2010,
sec. 3.5). These are used to create a static magnetic field for flux-biasing SQUID loops e.g. in
a split transmon or a parametric amplifier. To avoid magnetic flux noise, they are battery-
powered and filtered with low-pass RC filters with a cut-off frequency of about 10Hz (see
Fig. 2.3(b)).

The sample itself (the sapphire chip with the microfabricated circuit) is glued and wire-
bonded to a specially designed PCB. The PCB contains coplanar waveguides from the chip
to PCB-mount SMP connectors which are soldered onto the PCB. The latter is screwed on
the bottom part of the box, and closed off with a copper cover. The cover lies on the PCB

but has cutouts for the chip and along the waveguides on the PCB. In absence of a cover,
there are cavity modes in the space between sample and top of the box (Liu, 2012). The
assembled parts (bottom, sample, cover) are connected with screws to the top of the box.
The top of the box has holes through which microwave lines are connected. This connec-
tion is realized with SMP bullets placed in the PCB-mount SMP connectors.

2.3 Signal generation

As mentioned above, the microwave signals for controlling and reading out the qubit are
created at room temperature and sent into the cryostat and to the sample through coaxial
lines. To create microwave pulses with a square envelope, it is sufficient to use the pulse
modulation option on a analogue signal generator (such as Agilent2 E8257D).

2Agilent is now operating under the name Keysight.
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Figure 2.3: Signal generation and measurement setup. (a) Schematic of the upconversion setup. See text for
details. (b) Photograph of the measurement racks. The equipment is (1) an AWG, (2) a microwave signal generator,
(3) a digital delay generator, (4) DC power sources for the amplifiers in the measurement chain (5) a frame with
DC source modules (for the static qubit flux bias), (6) the computer for data acquisition. The rubidium frequency
standard and the DC source modules (for biasing the mixers and operating the switches) are not shown. The
upconversion board rests on top of the rack on the right.

Generation of phase- and amplitude-controlled pulses is done with an in-
phase/quadrature mixing (IQ-mixing, sometimes also called quadrature IF mixing): the
signals from two analogue channels of an arbitrary waveform generator (AWG, such as
Tektronix 5014C) are fed into the in-phase (I) and quadrature (Q) ports of an IQ-mixer and
upconverted to an microwave signal. A signal generator serves as local oscillator (LO) to
drive the mixer. The signals on the I and Q ports are either at DC (‘direct modulation’) or at
an IF frequency of typically 100MHz (‘single sideband upconversion’). To avoid applying
potentially damaging voltages to the I and Q ports and to improve the impedance match-
ing at these ports, the IF signals from the AWG are attenuated by 3dBm (or sometimes by
10dBm). If the amplitude of the microwave signal generated by the mixer is insufficient, it
is amplified further by first attenuating it suitably (typically 13dBm) and then amplifying
it with a wideband amplifier ZVA-183+ from Mini-Circuits. If different microwave signals
are to be fed into the same microwave line, they are combined using a splitter/combiner.

To correct for imperfections in the IQ-mixers, a DC offset (. 20mV) is applied to the I
and Q ports. To do so, the outputs of an analogue DC source (such as the NI 9264 mod-
ule) are connected to the ‘add input’ ports of the AWG channels. Details on the operating
principle of an IQ-mixer, as well as mixer calibration are given in app. A.
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Figure 2.4: (a) Picture and (b) schematic of the downconversion board. See text and Tab. 2.2 for details.

All measurements are triggered. An AWG with a low sampling rate (such as the model
33250A from Agilent with a bandwidth of 80MHz) produces a trigger which sets the rep-
etition rate (typically 25kHz) of the experiment. Usually, this trigger is given to an AWG

with a larger sampling rate, which distributes it to the other instruments using the marker
channels. Alternatively, the AWG with a low sampling rate triggers a digital delay generator,
whose triggers can be a timed on a ps timescale before being distributed further. This can
serve to remove jitter in the AWG analogue outputs, which happens if the raising edge of
the trigger arrives at the AWG at an unfortunate time.

To avoid phase drifts in between instruments, the clocks of all devices are phase-locked
with a rubidium frequency standard (at 10MHz). A schematic and a photograph of the
instruments involved in signal generation are shown in Fig. 2.3.

2.4 Data acquisition

The microwave signal transmitted through the cryostat is amplified, filtered and down-
converted to IF before it is digitized on a data acquisition board and forwarded to a field-
programmable gate array (FPGA).

The amplification is achieved by cascading amplifiers, making sure that the output is
not compressed by attenuating the signal judiciously. According to Friis’ cascade law (Hill,
2008, ch. 6), the total noise figure of a chain of linear amplifiers is dominated by the first
amplifier in the chain if its gain is large enough. Therefore, the amplifier with the lowest
noise (the HEMT amplifier, or the parametric amplifier, when applicable) is placed at the
beginning of the chain. The amplification stages are also interspersed with filters to filter
out the noise at frequencies outside the relevant band (and also remove higher harmonics
generated by the amplifiers).



28 Chapter 2. Experimental aspects

Ta
b

le
2.

2:
C

o
m

p
o

n
en

ts
in

th
e

d
ow

n
co

n
ve

rs
io

n
ch

ai
n

,
an

d
th

ei
r

m
ai

n
sp

ec
ifi

ca
ti

o
n

s.
A

b
b

re
vi

at
io

n
s

u
se

d
in

th
is

ta
b

le
:

ga
in

G
,

n
o

is
e

fi
gu

re
N

F,
o

u
tp

u
t

o
n

e-
d

B
co

m
p

re
ss

io
n

p
o

in
tP

1
d

B
,t

h
ir

d
-o

rd
er

in
te

rc
ep

tp
o

in
tI

P
3

,i
so

la
ti

o
n

I.
T

h
e

n
u

m
b

er
s

in
th

e
fi

rs
tc

o
lu

m
n

re
fe

r
to

th
e

la
b

el
s

in
F

ig
.2

.3
.

n
o.

n
am

e
&

m
an

u
fa

ct
u

re
r

p
ar

tn
u

m
b

er
sp

ec
ifi

ca
ti

o
n

s

1
D

C
b

lo
ck

A
er

o
fl

ex
In

m
et

80
39

IL
≤

0.
5

d
B

2
U

lt
ra

lo
w

n
o

is
e

am
p

lifi
er

M
it

eq
A

F
S3

-0
40

00
80

0-
10

-U
LN

4
to

8
G

H
z,

G
=

28
d

B
,

N
F
=

1
d

B
,P

1
d

B
=

10
d

B
m

,I
P

3
=

20
d

B
m

–
B

an
d

-p
as

s
fi

lt
er

M
in

i-
C

ir
cu

it
s

V
H

F
-3

80
0+

4.
25

to
10

G
H

z,
IL

≤
2

d
B

D
C

to
3.

2
G

H
z,

IL
≥

20
d

B

–
A

tt
en

u
at

o
r

M
in

i-
C

ir
cu

it
s

B
W

-S
3W

2+
D

C
to

18
G

H
z,

IL
=

3
±0

.4
d

B

3
Lo

w
n

o
is

e
am

p
lifi

er
M

it
eq

A
F

S3
-0

01
01

20
0-

42
-L

N
1

to
12

G
H

z,
G
=

27
d

B
N

F
=

4.
2

d
B

,P
1

d
B
=

10
d

B
m

,I
P

3
=

20
d

B
m

4
Sw

it
ch

M
in

i-
C

ir
cu

it
s

M
SP

2T
A

-1
8X

L
D

C
to

18
G

H
z,

IL
≤

0.
5

d
B

,I
≥

60
d

B
,f

ai
ls

af
e

–
Is

o
la

to
r

D
it

o
m

D
3I

60
12

6
to

12
.4

G
H

z,
IL

≤
0.

6
d

B
,I

≥
17

d
B

–
A

tt
en

u
at

o
r

M
in

i-
C

ir
cu

it
s

B
W

-S
10

W
2+

D
C

to
18

G
H

z,
IL

=
10

±0
.6

d
B

5
M

ix
er

M
ar

ki
M

ic
ro

w
av

e
IQ

-4
50

9M
X

P
LO

an
d

R
F

4.
5

to
9

G
H

z,
IF

fr
o

m
D

C
to

50
0

M
H

z
IL

≤
7.

0
d

B
,I

n
p

u
tC

P
=

6
d

B
m

–
Lo

w
-p

as
s

fi
lt

er
M

in
i-

C
ir

cu
it

s
V

LF
-1

05
+

D
C

to
10

5
M

H
z,

IL
≤

1
d

B
25

0
M

H
z

to
4.

75
0

G
H

z,
IL

≥
20

d
B

6
Lo

w
n

o
is

e
am

p
lifi

er
M

in
i-

C
ir

cu
it

s
Z

F
L-

50
0L

N
+

0.
1

to
50

0
M

H
z,

G
=

24
d

B
N

F
=

2.
9

d
B

,P
1

d
B
=

5
d

B
m

,I
P

3
=

14
d

B
m

–
Lo

w
-p

as
s

fi
lt

er
M

in
i-

C
ir

cu
it

s
SL

P-
50

+
D

C
to

48
M

H
z,

IL
≤

1
d

B
70

to
20

0
M

H
z,

IL
≥

20
d

B



2.5. Experimental basics 29

Because the microwave signal cannot be digitized as is, a mixer identical to the up-
conversion one serves as a downconverter. Heterodyne downconversion (νLO = νRF ±νIF)
is favoured over homodyne downconversion (νLO = νRF, where the signal is converted to
DC) because then DC offsets of either the mixer itself or the setup in general do not matter.
Furthermore, there is less 1/ f -noise of the electronics at higher frequencies.

The signal is thus downconverted to 25MHz before being fed into the ADC of the data
acquisition board Nallatech XtremeDSP, which samples the signal with 100 MS/s. On the
FPGA (Xilinx Virtex 4), it is then digitally downconverted to DC and filtered to eliminate
aliased components of the signal and the peak at DC. For details on the FPGA and the
firmware developed at the Quantum Device Lab, see Lang et al. (2013).

More concretely, the microwave signal is processed as follows: it goes through a DC

block, is amplified with an ultra low noise amplifier (ULNA), bandpass filtered (BPF), atten-
uated, amplified with a low noise amplifier (LNA). Then, it travels through a switch (used
for mixer calibration, see app. A), an isolator and an attenuator, at which point it is down-
converted. Finally, it is lowpass filtered (LPF), amplified and lowpass filtered again before
it goes to the ADC of the FPGA board through a DC block. A picture and a schematic of the
downconversion board (used in the experiments presented in part II) are shown in Fig. 2.4.
The components of the downconversion chain are tabulated in order in Tab. 2.2.

2.5 Experimental basics

2.5.1 Dispersive readout & population reconstruction
The dispersive readout of the transmon is based on frequency shifts occurring between its
transitions and the resonator because of their mutual coupling (see sec. 1.3.5 and e.g. Blais
et al. (2004); Koch et al. (2007); Bianchetti et al. (2009)). If the transmon-resonator interac-
tion is sufficiently weak (see eq. (1.19)) but not too weak, the resonance frequency of the
resonator is shifted by the amount 2χ0−χ1 (in angular frequency), when the transmon is in
|1〉, compared to when it is in |0〉. Experimentally, this shift is determined by measuring ωr

in a transmission measurement after preparing either |0〉 or |1〉. This generalizes to higher
energy levels of the transmon, e.g. for |2〉, the shift amounts to χ0+χ1−χ2. Fig. 2.5(a) shows
transmission spectroscopy of the resonator after preparing the transmon in either |0〉, |1〉
or |2〉. Note that because the excited states sequentially decay into the lower-lying states,
there are three peaks in the transmission measurement for |2〉, and two peaks for |1〉.

The populations pi = 〈|i 〉〈i |〉 of the various transmon states can be inferred by record-
ing the averaged resonator response s(t ) as a function of time and comparing it to the re-
sponses si (t ) from the |0〉, |1〉 and |2〉 states. If the state to be measured is a superposition
of |0〉 and |1〉 only, the first excited state population p1 of any state ρ is proportional to the
area enclosed between the time-traces s0(t ) and s1(t ). Similarly, if the state is a superpo-
sition of |1〉 and |2〉 only, p2 is proportional to the area between s1(t ) and s2(t ) (Bianchetti
et al., 2009).

It is important to note that this procedure assumes that the calibration measurements
si (t ) are exact. This assumption is reasonable although in reality the transmon is ≈ 2%
thermally populated3 and the qubit preparation pulses are not perfect. The coupled dy-

3In a recent experiment (Jin et al., 2014), the residual population in the first excited state is shown to be 0.1%
when the sample is cooled below 35mK.
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Figure 2.5: (a) Pulsed transmission spectroscopy and (b) time traces s0(t ), s1(t ) and s2(t ) of the resonator with
the qubit prepared in |0〉, |1〉 or |2〉.

namics of transmon, cavity and drive are captured by a set of coupled differential equa-
tions for the wanted expectation values (Bianchetti et al., 2009), e.g. 〈a+a†〉, which is pro-
portional to the voltage in the cavity. These equations do account for imprecision in qubit
preparation but also neglect thermal population. However, solving them is computation-
ally more expensive than the area method outlined above; thus they were not consistently
used in this thesis.

Here, the readout tone is applied at the frequency ωr , the resonant frequency of the
resonator with the transmon in |0〉. The optimal measurement frequency, allowing to max-
imize the distinguishability of a population of interest and minimizing the error, however,
is different from ωr . It depends in a complicated fashion on the decoherence rates and the
dispersive shifts (Bianchetti, 2010, sec. 5.3). In the experiments presented in this thesis,
the measurement frequency was not optimized.

2.5.2 Parametric amplifier
As mentioned in the section about data acquisition, sec. 2.4, in a chain of amplifiers the
first one determines the most part of the noise figure. The HEMT amplifiers have a noise
temperature of about 4K and drown out the signal from the resonator. Josephson para-
metric amplifiers (JPA) operating at the quantum limit (Yurke et al., 1988) provide relief.
For an introduction to the parametric amplifiers used here, see e.g. Castellanos-Beltran
and Lehnert (2007), Bergeal et al. (2010), and also Eichler and Wallraff (2014) and the ref-
erences therein. A JPA is a weakly non-linear LC circuit, where the nonlinearity is provided
by Josephson junctions, and it works in reflection. Its nonlinearity implies that the phase
of the reflected signal not only depends on the frequency, but also on the power of the
input signal. Using a strong microwave signal as pump, the JPA is biased at a point where
a small input signal detuned from the pump (the signal to be amplified) induces a large
change in the output signal.

In this thesis, parametric amplification was used only for the experiments presented
in ch. 5, in the form of a Josephson parametric dimer (JPD, Eichler et al. (2014)). The JPD

amplifier is a development of the JPA which allows for an increased detuning between
pump frequency and resonator frequency. It consists of two capacitively coupled lumped-
element resonators with a series of SQUIDs providing a non-linearity, and it is integrated
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in the readout chain (see Fig. 2.6) as follows: the output signal from the sample goes to
the JPD amplifier via two circulators and a directional coupler. The circulators prevent
reflected signals in the output line from leaking into the cavity and separate the ampli-
fied signal reflected off the JPD amplifier from the input; the directional coupler is used
to operate the JPD amplifier: a tone is split, the first half pumps the JPD amplifier and the
second is phase-shifted and attenuated (with a variable phase shifter and a variable atten-
uator) so that it cancels the pump tone in the amplified signal. Two additional circulators
terminated on one port and a band-pass filter (BPF) prevent noise from leaking back into
the JPD amplifier. Tuning of the working frequency of the JPD is achieved by changing the
static flux bias through the SQUIDs.

2.5.3 Microwave control
The transmon is controlled by microwave tones applied either indirectly via the resonator
or directly via a charge gate line. For an optical image of these elements, refer to Fig. 3.2.

Hamiltonian of a driven two-level system
Considering only the lowest transition of the transmon at ω01 coupled to a single drive
E (t )cos(ωd t +φ), and going to a frame rotating at the drive frequency ωd , we find (see
Blais et al. (2007), or ch. 2 of Boissonneault (2007) for more details)

H = ħ
2

(Ωx X +Ωy Y +∆Z ), (2.1)

with the two quadratures of the drive

Ωx =Ωcosφ Ωy =Ωsinφ
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given in terms of the induced Rabi frequency Ω∝ E , and the detuning between the |0〉↔
|1〉-transition of the transmon and the drive,

∆=ω01 −ωd .

The Hamiltonian eq. (2.1) describes a spin one-half particle in an effective magnetic field

H =ħσ ·B/2. (2.2)

with components B = (Ωx ,Ωy ,∆) given in units of angular frequency. In the Bloch sphere
picture of the |0〉-|1〉 subspace, the two quadratures of the drive induce rotations around
the X - and Y -axes, while the detuning induces rotations around the Z -axis. This is a key
ingredient of the measurements of the Berry phase presented in part II of this thesis.

Operations on a single two-level system
A series of measurements are routinely performed to calibrate the basic operations on a
two-level system (qubit). Pulse schemes and measurement data are shown in Fig. 2.7. All
measurements start with a series of microwave pulses to manipulate the qubit, and end
with a readout pulse to determine its excited state population. A more detailed discussion
of these, and of qubit characterization in general can be found in Baur (2012) for a two-
level system or in Bianchetti (2010) for a three-level system.

Rabi oscillations. Rabi flops of the qubit are measured by applying a resonant microwave
pulse E (t ) = E0(t )cos(ω01t ) for varying maximal amplitudes of the envelope function
E0(t ). Typically, the envelope has the shape of a truncated Gaussian with a standard de-
viation of s = 2 to 5ns and a duration of 4s. To avoid populating the higher levels of the
transmon, a technique called DRAG is used for short (. 12ns) pulses (Motzoi et al. (2009),
see also below in sec. 2.5.3). From this measurement, the amplitude required for a π/2-
and a π-pulse are extracted.

Ramsey interferometry. The Ramsey experiment is an interferometric measurement of
the phase acquired by the qubit. It consists of two π/2-pulses separated by a waiting time
T . If the pulses are on resonance (∆ = 0), we see an exponential decay of the population
in |1〉 from 1 to 0.5 as T is increased. The decay constant is the decoherence time T ⋆

2 of
the two-level system in an ensemble measurement (here, read: temporal average of a sin-
gle two-level system). If the pulses are off-resonant, the exponential decay in population
appears to be modulated with a frequency ∆. Thus, in addition to determining T ⋆

2 , this
measurement enables us to determine the resonance frequency ω01 to within ∼ 50kHz.

Calibration of the scaling parameter q . The truncated Gaussians have frequency com-
ponents with a spread inversely proportional to their standard deviation s. If the anhar-
monicity of the low-level system is low and s is small, the pulse not only drives the transi-
tion at ω01, but also that at ω12. The scheme known as derivative removal by adiabatic gate
(DRAG, see Motzoi et al. (2009) and Gambetta et al. (2011)) avoids this spurious driving by
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burning a hole in the Fourier spectrum at ω12. This is achieved by applying a compen-
sation pulse with an envelope proportional to the derivative of the original pulse enve-
lope. The compensation pulse is applied with a phase-shift of π/2 at the same time as
the original pulse. The envelopes of the I and Q quadratures of an uncompensated pulse
with s= 5ns, duration 4s= 20ns is shown in Fig. 2.8(a). In panel (b), the same pulse with
DRAG -compensation optimized for an anharmonicity of α/2π = −150MHz is shown. In
panel (c), we plot the absolute values of the Fourier transform of a pulse with and with-
out DRAG compensation assuming s = 2.5ns. It is clear that the frequency component
at ω12 = ω01 +α is suppressed when using DRAG compensation. In panel (d), s = 5ns is
assumed and as expected the fourier spectrum is narrower. Although the DRAG pulse sup-
presses the frequency components in the vicinity of ω12, there is not as clear cut a dip at
ω12 as in (c).

In principle, the amplitude of the compensation pulse is inversely proportional to the
anharmonicity α. In practice however, the optimal value is somewhat off; it is qα, with
some scaling parameter q . The scaling parameter is determined by applying a π/2-pulse
followed by a πa-pulse in quick succession for various values of q . This measurement is
carried out with three different rotation axes a = x, y,−y of the second pulse. If q is off,
phase errors resulting from the first pulse will be mapped into population by the second
pulse. For the optimal value of q , the excited state population is 0.5.
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Spin-echo experiment. The spin echo experiment is, simply speaking, a Ramsey exper-
iment with a π-pulse in the middle. If there is low-frequency noise in the transition fre-
quency ω01, this pulse will refocus the spins in an ensemble measurement and thus filter
out the low-frequency noise. In that case, the observed decay time T echo

2 is larger than T ⋆
2 .

If there is no noise to be filtered out, T echo
2 = T ⋆

2 .

Decay time measurement. The decay time T1 describes how fast the two-level system
decays from excited to ground state. It is determined by preparing the excited state and
measuring the remaining excited state population for various measurement delays.

Calibration of a three level-system. When using the lowest three levels |0〉, |1〉, |2〉 of the
transmon, one first calibrates the transition from |0〉 to |1〉. The transition from |1〉 to |2〉
is then calibrated similarly. The pulse sequences are identical to those shown in Fig. 2.7,
but they are preceded by a π-pulse on ω01 to prepare |1〉, and all other pulses are applied
at ω12 instead of ω01. See Bianchetti (2010) for details.
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3
BEYOND THE TWO-LEVEL APPROXIMATION

Geometric phases are commonly studied in two-level systems (see sec. 1.2 for examples).
Here, we study the Berry phase in a transmon qubit, which is a weakly anharmonic and
strongly driven multi-level system.

Recently, the geometric aspects of multi-level systems have attracted increased atten-
tion. The geometric phase has been observed in NMR interferometry in a three-level sys-
tem (Chen et al., 2009). A superconducting phase qudit has been employed as an effective
four-level system to show the symmetry of spinors under 2π-rotations, which can be in-
terpreted as a geometric phase (Neeley et al., 2009). Schemes to perform non-adiabatic
holonomic quantum computation have been studied theoretically (Sjöqvist et al., 2012)
and experimentally (Abdumalikov et al., 2013; Zu et al., 2014).

In contrast to previous measurements in this group by Leek et al. (2007) of the Berry
phase in superconducting circuits, where a CPB qubit was used, we now employ a trans-
mon qubit (Koch et al., 2007), where the transition between |1〉 and |2〉 is in close vicinity
to the transition between |0〉 and |1〉. Therefore, whereas the CPB qubit can safely be ap-
proximated as a two-level system, the transmon cannot. Higher transmon levels affect
the qubit dynamics (see sec. 2.5.3), but can also be employed as a resource for quantum
gates (DiCarlo et al., 2009; Fedorov et al., 2012), to improve single-shot readout (Mallet
et al., 2009), or to implement a single-photon router (Hoi et al., 2011). Quantum optical
experiments involving three levels have been carried out (Baur et al., 2009; Sillanpää et al.,
2009; Abdumalikov et al., 2010) and their controlled preparation and tomography has been
demonstrated (Bianchetti et al., 2010).

In the first part of this chapter, measurements of the geometric phase of a transmon
are presented. It is found that the difference in the level structure between the transmon
and an effective two-level system significantly affects the geometric phase. In the follow-
ing theory section, time-independent perturbation theory is used to model the geometric

39



40 Chapter 3. Beyond the two-level approximation

phase of a weakly anharmonic multi-level system. Finally, the dependence of the geomet-
ric phase on evolution time in both the adiabatic and non-adiabatic regime is analysed.

3.1 Experiment

3.1.1 Experimental idea
We consider the Hamiltonian of a driven n-level qubit in a frame corotating at the drive
frequency ωd ,

H(φ)/ħ=
n∑

j=0
( j∆+α j )| j 〉〈 j |+ 1

2
Ω

n−1∑
j=0

(
√

j +1e−iφ| j +1〉〈 j |+h.c.), (3.1)

where α j is the anharmonicity defined through the energy of the j th qubit energy level
ω0 j = jω01 +α j (with α0 = α1 = 0), Ω is the strength of the drive expressed in units of
angular frequency and φ its phase. ∆ = ω01 −ωd denotes the detuning between the fre-
quency ω01 of the |0〉 ↔ |1〉 transition and the drive frequency ωd . The increase of the
coupling strength ∝ √

j +1 follows from the off-diagonal matrix elements of the charge
operator (see eq. (1.18)). In the two-level approximation, we restrict the Hamiltonian to
the computational subspace of the qubit spanned by |0〉 and |1〉:

H ≈ħ(XΩx +Y Ωy +Z∆)/2 =ħσ ·B/2,

with Ωx = Ωcosφ, Ωy = Ωsinφ, and the Pauli matrices X ,Y , Z . We have thus recovered
from eq. (3.1) the result from sec. 2.5.3: In an appropriate frame, a two-level system with
a classical drive is effectively described by the Hamiltonian of a spin-half particle in an
magnetic field B = (Ωx ,Ωy ,∆).

By tuning amplitude and phase of the microwave drive, the qubit is guided along a
circular path C with constant detuning ∆. At first, the drive field is ramped up, tilting B
so that it forms an angle ϑ = arctan(Ω/∆) with respect to the Bz -axis. Then, the phase
of the drive is swept by 2π, causing B to rotate once around the Bz -axis, either clockwise
or anticlockwise. Finally, the drive is ramped back to zero. The time evolution of both
quadratures of the drive is plotted in Fig. 3.1(a), the path of the effective magnetic field in
parameter space is shown in Fig. 3.1(b).

During this sequence, the solid angle subtended by the path as seen from the origin
is A = 2π(1− cosϑ). We then repeat the measurement for different driving strengths Ω,
thereby changing the solid angle A. If qubit evolves adiabatically, the states |0〉 and |1〉
follow the instantaneous eigenstates of eq. (3.1.1), and A, the solid angle enclosed by B in
parameter space, is equal to the solid angle A′ the states |0〉 and |1〉 enclose in the Hilbert
space of the qubit (Fig. 3.1(c)). In the adiabatic case, the parameter space can be identified
with the Hilbert space and therefore A = A′. However, in general the geometric phase is
determined by A′, not A.

3.1.2 Sample and setup
For manipulation and readout, the transmon is coupled to a coplanar transmission line
resonator of quality factor Q = 2155 via a gate capacitance Cg. An optical microscope



3.1. Experiment 41

ωr

ωq

ω01-Δ

π/2 π/2π

T

(a) (b) (c)

Ωx Ωy

Δ

θ B(t)

θ

γ
x

y

z

|B|

B(t)C+C-

C+ C-Ωx

Ωy

C±

Figure 3.1: (a) Sketch of the microwave pulse sequence used in a geometric phase measurement, consisting of a
series of resonant (ω01) and off-resonant (ω01 −∆) pulses applied either on the x-quadrature (dark blue) or the
y-quadrature (light blue). The geometric phase is generated by the adiabatic evolution of the qubit between the
resonant pulses. (b) Path of the effective magnetic field B(t ) in parameter space (Ωx ,Ωy ,∆). When performing
the loop C+ or C−, it forms an angle ϑ with the ∆-axis. (c) Evolution of the state vector of the qubit on the
Bloch sphere as the effective magnetic field B(t ) performs a loop C± adiabatically in parameter space. In this
illustration, the parameter space of the effective magnetic field and the projective Hilbert space of the qubit are
overlaid. The state vector precesses around the instantaneous axis B(t ) at a rate |B(t )|, acquiring a total phase γ.
During a loop C±, B(t ) traces out a loop C±. The graphics in (b) and (c) are adapted from Leek et al. (2007).

(a)

(b)

500 μm

50 μm

Figure 3.2: (a) Optical mi-
croscope image of the sample
with two transmons coupled to
a coplanar waveguide resonator
with individual capacitively cou-
pled microwave gate lines. (b)
Close-up of the transmon used in
the experiments.

image of the sample is shown in Fig. 3.2. The sample is mounted in a dilution refriger-
ator and operated at a temperature of 20mK. The transition frequency of the transmon
is tunable by externally applied magnetic flux Φ, generated using superconducting coils
mounted underneath the sample. The transmon state is manipulated using resonant and
off-resonant microwave tones (of frequency ω01 and ω01 −∆, respectively) created by AC

modulation of an in-phase/quadrature-mixer. This provides individual control of both
quadratures (x and y) of the driving microwave signal, which couples capacitively to the
transmon via a local charge gate line.

From spectroscopic measurements, we have determined a maximum Josephson en-
ergy E J /h = 13.96GHz and a charging energy EC /h = 0.36GHz, which corresponds to a
maximum transition frequency ω01,max/2π = 5.95GHz, and a coupling strength g /2π =
360MHz to the fundamental mode of the resonator. To reduce the Purcell effect and op-
timize coherence properties, ω01,max was designed to lie below the fundamental mode of
the resonator (Houck et al., 2008). The experiment is carried out in the dispersive regime,
where the transmon, biased at ω01,max, is non-resonantly coupled to the resonator (at fre-
quency ωr /2π = 6.662GHz with the qubit in the ground state) and can be read out via
a state-dependent change in the microwave tone of frequency ωr transmitted through
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Figure 3.3: (a) Extracted phase γ as a function of solid angle A. Shown is the experimental data for C−+ (cir-
cles), C−− (diamonds) and C+− (triangles), as well as the geometric phase obtained with second-order pertur-
bation theory (solid lines, eq. (3.5)) and the prediction for a two-level system (dashed lines). The off-resonant
pulses were applied with detuning ∆/2π = −35MHz. (b) Extracted phase γ as a function of detuning ∆. The
experimental data for solid angles A ≈π/4,3π/4, and 5π/4 (indicated by circles, triangles and diamonds, respec-
tively, and also indicated by arrows in (a)) is shown alongside the geometric phase calculated using second-order
perturbation theory (solid lines) and the prediction for a two-level system (dashed lines). In both panels, the
measurement uncertainties are smaller than the size of the markers.

the resonator (see sec. 2.5.1). Since E J /EC = 39 ≫ 1 and the anharmonicity is α2/2π =
−423MHz, our sample is operated well within the transmon regime. Charge dispersion is
expected to amount to about 100kHz for ω01 and about 2.9MHz for ω12. We have mea-
sured an energy relaxation time T1 = 0.84µs, a phase coherence time T ∗

2 = 1.03µs and a
spin-echo phase coherence time T2,echo = 1.11µs.

3.1.3 Measurement of the geometric phase
To determine the geometric phase experimentally, we employ an interferometric mea-
surement (see Fig. 3.1(a)). The leading and trailing resonantπ/2-pulses implement a Ram-
sey measurement, while the resonant spin-echo π-pulse in the centre serves to cancel the
dynamic phase (Jones et al., 2000; Leek et al., 2007). After preparing an equal superposition
of the |0〉 and |1〉 states, the qubit traverses the path C− (see fig:phasepulsescheme(c)) and
the relative phase 2(γd −γg ) acquired between |0〉 and |1〉 comprises both a dynamic (γd )
and a geometric (γg ) contribution (see Fig. 3.4(a)). The spin-echo π-pulse then effectively
flips the sign of the phase. As it traverses the second loop in the opposite direction, C+, the
qubit acquires the phase 2(γd +γg ) since the dynamic phase, unlike the geometric phase,
is independent of the direction of evolution. Thus, after following the contours C−+, dy-
namic phase contributions cancel out and the qubit state has acquired a phase γ = 4γg

which is purely geometric. Tracing out the contours in opposite direction, C+−, simply in-
verts the sign of the phase, while following the contours twice in the same direction, C++
or C−−, results in zero phase and serves as a control experiment (see Fig. 3.3(a)).

During the off-resonant pulse sequences C±, the drive Ω is strong (corresponding to
induced Rabi-frequencies . 110MHz) and therefore the higher levels of the qubit are pop-
ulated as well. In order to visualize this population leakage, we consider the Hilbert space
of a three-level system. Neglecting a global phase, any three-level state can be written as
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Figure 3.4: Simulated adiabatic evolution (green line) of the ground state subjected to the off-resonant drive
along the path C−, visualized in the Hilbert space of a three-level system and on the Bloch sphere, the approxi-
mate two-level equivalent (see text for details).

|ψ〉 = e ıχ1 sinβ1 cosβ2|0〉+e ıχ2 sinβ1 sinβ2|1〉+cosβ1|2〉, where χ1,2 ∈ [0,2π] are the phases
of the ground and first excited state, respectively, relative to the phase of the second ex-
cited state, and β1,2 ∈ [0,π/2] parameterize the populations. Therefore, every state can be
represented as a point in the product manifold of a torus and an octant of a unit sphere
(see sec. 1.1.4). Observing that β1 ̸= π/2 while the ground state is subjected to the off-
resonant drive C− (see Fig. 3.4), we conclude that the instantaneous ground state leaves
the computational subspace. The population of second excited state reaches up to ≈ 12%,
showing the necessity to consider the higher levels in our experiment. It is important to
note that all resonant pulses effectively act in the subspace spanned by |0〉 and |1〉: in order
to avoid exciting higher energy levels with the resonant pulses, we use DRAG-pulses (see
sec. 2.5.3). Furthermore, to ensure that the second excited state |2〉 is depleted before the
resonant pulses are applied, the off-resonant drive is adiabatically ramped down.

After qubit manipulation, which takes approximately 700ns, the population pz =
(1− Z )/2 of the first excited state is extracted by a dispersive readout (see sec. 2.5.1). The
phase γ the qubit has acquired during evolution is reconstructed with state tomography.
The second π/2-pulse of the Ramsey sequence rotates the qubit about either the x or y
axis, and serves as tomography pulse. In the absence of decoherence, the phase γ is given
by arctan(〈Y 〉/〈X 〉) with 〈X 〉 = cosγ, 〈Y 〉 = sinγ and 〈Z 〉 = 0. The same expression approx-
imates γ well even in the presence of decoherence, which reduces the size of the Bloch
vector (〈X 〉,〈Y 〉,〈Z 〉) to 0.47 in our experiments, while keeping the ratio 〈Y 〉/〈X 〉 constant.
Therefore, the geometric phase remains unaltered by the decoherence in our experimen-
tal setting.

In keeping with Berry’s predictions for a two-level system, γ= 2A, we measure a phase
γ which is approximately twice the solid angle A subtended by the path (see Fig. 3.3(a)).
However, the data clearly shows that γ increasingly deviates from Berry’s predictions as A
(and therefore also the amplitude of the drive Ω) increases: the measured geometric phase
is observed to be up to 15% larger than expected.
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3.2 Theory

These deviations can be explained by the presence of higher transmon levels. In this sec-
tion, the couplings between the levels |2〉, |3〉, . . . are treated as a perturbation and an ex-
pression quantifying their effect on the geometric phase of a two-level-system is derived.
The calculations are based on Pechal (2010).

3.2.1 Perturbative treatment of higher levels
Defining the operator N = ∑n

j=0 j | j 〉〈 j |, the Hamiltonian in eq. (3.1) can be rewritten as

H(φ) = e−iφN H(0)e iφN . It follows that, given an eigenvector |Φ(0)〉 of H(0), |Φ(φ)〉 =
e−iφN |Φ(0)〉 is an eigenvector of H(φ). For the circular path C described above, the ge-
ometric phase γΦ(0) acquired by the eigenvector |Φ(0)〉 is then found to be via eq. (1.7)

γ|Φ(0)〉 = i
∫ 2π

0
〈Φ(φ)| d

dφ
|Φ(φ)〉dφ= 2π〈Φ(0)|N |Φ(0)〉. (3.2)

From eq. (3.2), one indeed recovers the expression γ(0)
± = π(1± cosϑ) for the geometric

phase of a two-level system, where the sign ± corresponds to the positive and negative
eigenvalue of H(0), respectively. To compute the geometric phase for a multi-level system,
we divide the Hamiltonian H(0) = H0+V into a block-diagonal part H0 coupling the lowest
two transmon levels, and a perturbative part V coupling the remaining levels:

H0 = ħ
n∑

j=0
( j∆+α j )| j 〉〈 j |+ ħΩ

2
(|1〉〈0|+h.c.),

V = ħΩ
2

n−1∑
j=1

(
√

j +1| j +1〉〈 j |+h.c.),

which is, pictorially,

H = H0 +V =


⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ . . .
. . . . . .

=


⋆ ⋆

⋆ ⋆

⋆

⋆

. . .

+


⋆

⋆ ⋆

⋆ . . .
. . .

 .

Substituting the expansion of the eigenvectors in V, |Φ j 〉 = |Φ(0)
j 〉+ |Φ(1)

j 〉+ |Φ(2)
j 〉+ . . .,

into eq. (3.2) and retaining terms up to second order, one finds

γ j = 2π
(
〈Φ(0)

j |N |Φ(0)
j 〉+2Re〈Φ(0)

j |N |Φ(1)
j 〉+〈Φ(1)

j |N |Φ(1)
j 〉+2Re〈Φ(0)

j |N |Φ(2)
j 〉

)
. (3.3)

Considering that

|Φ(0)
− 〉 = cos(ϑ/2) |0〉− sin(ϑ/2) |1〉,

|Φ(0)
+ 〉 = sin(ϑ/2) |0〉+cos(ϑ/2) |1〉,

|Φ(0)
j 〉 = | j 〉, 2 ≤ j ≤ n
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the first term in eq. (3.3), 〈Φ(0)
j |N |Φ(0)

j 〉, yields π(1∓cosϑ) for n =± and 2πn for 2 ≤ j ≤ n.

In other words, it gives the two-level geometric phase for the two lowest energy levels and
an unobservable contribution for the higher energy levels. The second term in eq. (3.3),
vanishes for the following reasons: If 2 ≤ j ≤ n,

Re〈Φ(0)
j |N |Φ(1)

j 〉 = j Re〈Φ(0)
j |Φ(1)

j 〉 = 0,

because of the normalization of the perturbed states, Re〈Φ(0)
j |Φ(1)

j 〉 = 0. If, on the other

hand, j =±, we notice that due to the form of V ,

|Φ(1)
± 〉 = ∑

k ̸=±

〈Φ(0)
k |V |Φ(0)

± 〉
E (0)
± −E (0)

k

|Φ(0)
k 〉∝ |2〉,

and that therefore the matrix elements 〈Φ(0)
± |N |Φ(1)

j 〉 vanish.

In order to compute the remaining terms in eq. (3.3), we refer to the formulae for the
first and second order corrections to the eigenvectors:

|Φ(1)
j 〉 = ∑

k ̸= j

Vk j

Ek j
|Φ(0)

k 〉, (3.4a)

|Φ(2)
j 〉 = ∑

k,l ̸= j

Vkl Vl j

Ek j El j
|Φ(0)

k 〉− ∑
k ̸= j

Vk j V j j

E 2
k j

|Φ(0)
k 〉− 1

2
|Φ(0)

j 〉 ∑
k ̸= j

V j kVk j

E 2
k j

, (3.4b)

where Vk j = 〈Φ(0)
k |V |Φ(0)

j 〉 and Ek j = E (0)
j −E (0)

k . In this case, since V has no diagonal ele-

ments, the second term in eq. (3.4b) is zero.
The correction to the geometric phase now boils down to

∆γ j

2π
≡ γn −γ(0)

n

2π
= 2Re〈Φ(0)

j |N |Φ(0)
j 〉+〈Φ(1)

j |N |Φ(1)
j 〉

= 2Re
∑

k,l ̸= j

Vkl N j kVl j

Ek j El j
− ∑

k ̸= j

Vk j N j j V j j

E 2
k j

+ ∑
l ,k ̸= j

V j l NlkVk j

Ek j El j

where Nk j = 〈Φ(0)
k |N |Φ(0)

j 〉. Taking into account the matrix elements of V , and specializing

for j =±, we find
∆γ j

2π
= V j 2V2 j

E 2
2n

(N22 −Nnn)+2Re
Nnn̄Vn̄2V2n

En̄nE2n
,

where n̄ denotes the sign opposite to n. Substituting the matrix elements

V2− = g12 sin(ϑ/2), V2+ = g12 cos(ϑ/2)

N++ = cos2(ϑ/2), N−− = sin2(ϑ/2), N−+ = N+− = sin(ϑ/2)cos(ϑ/2),

we obtain the expressions

∆γ−
2π

= ħ2Ω2|g12|2
4E 2

2−

(
sin2(ϑ/2)+ 2E2−+E+−

E+−
sin2(ϑ/2)cos2(ϑ/2)

)
∆γ+
2π

= ħ2Ω2|g12|2
4E 2

2+

(
sin2(ϑ/2)+ 2E2++E−+

E−+
cos2(ϑ/2)cos2(ϑ/2)

)
.



46 Chapter 3. Beyond the two-level approximation

Finally, we want to express all quantities in terms of the angle ϑ. To this effect, we note
that, because cosϑ=∆/

p
∆2 +Ω2, the energies can be written as

E (0)
− = −ħ

√
∆2 +Ω2 sin2(ϑ/2) =−ħ∆sin2(ϑ/2)/cosϑ,

E (0)
+ = +ħ

√
∆2 +Ω2 cos2(ϑ/2) =+ħ∆cos2(ϑ/2)/cosϑ,

E (0)
2 = ħ(2∆+α2) =−ħ∆/cosϑ,

and therefore
E2− = E (0)

− −E (0)
2 =−ħ(∆+ (2α2 +3∆)cosϑ)/2cosϑ.

For the deviation in the geometric phase, we then find the central result of this section

∆γ±
2π

= k|g12|2 sin2ϑ

4

2k(1±cosϑ)+ (2k ∓ (3k +2)cosϑ)sin2ϑ

(k ∓ (3k +2)cosϑ)2 , (3.5)

where k ≡ ∆/α2 is the ratio of detuning to anharmonicity. We note that this deviations
stems from the second excited state only. Due to the nature of the experimental mea-
surement of the geometric phase, i.e. a Ramsey sequence including a spin-echo pulse,
the measured geometric phase deviation is the quantity ∆γ ≡ 2(∆γ− −∆γ+). Expanding
eq. (3.5) to first order in k gives

∆γ≈ π∆|g 2
12|

α2

sin4ϑ

cosϑ

which vanishes for large α2 as expected.

3.2.2 Applicability to experiment
Since in the experiment k ≈ 1/8 is small and |Ω/α2| ≪ 1, the expansion coefficients of
|Φ(1)

j 〉 and |Φ(2)
j 〉 are small, and perturbative treatment is justified. To verify the validity

of the perturbative treatment, we simulated the qubit evolution for the pulse sequence in
Fig. 3.1(a), retaining four energy levels in a quantum master equation simulation, thereby
taking into qubit population decay, decoherence and non-adiabatic effects arising from
finite evolution time (Ai et al., 2009). Also, the Hamiltonian in eq. (3.1) with n = 4 was nu-
merically diagonalize to compute the geometric phase in the limit of perfect adiabaticity.
We found that the perturbatively computed geometric phase γ using eq. (3.5) differs from
both simulations and numerical results by less than 2%. Furthermore, we have measured
γ for a range of detunings ∆ and have found good agreement with the geometric phase
computed using perturbation theory (see Fig. 3.3(b)).

It was also verified that the geometric phase does not depend on the dispersive cou-
pling of the transmon to the resonator by tuning ω01 such that δ=ωr −ω01 = 1.58GHz and
comparing the data to the case shown in Fig. 3.3(a), where δ= 0.71GHz.

The quantities appearing in eq. (3.5), namely k = ∆/α2, the angle ϑ and the coupling
g12 can be determined with great accuracy (≈ 200kHz for k and g12, ≈ 2◦ for ϑ). As a result,
both the computed correction ∆γ to the Berry phase and the experimental data in Fig. 3.3
have small errors, and the observed deviation in geometric phase from Berry’s prediction
for a two-level system is meaningful despite its small size.
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Figure 3.5: (a) Measured phase γ as func-
tion of precession period T for the solid an-
gle A = π/4 at detuning ∆/2π = −45MHz.
The dashed line is the phase obtained by nu-
merically calculating the unitary time evo-
lution of a four level transmon using the
Schrödinger equation. The adiabaticity pa-
rameters a for a given T are indicated on the
upper horizontal axis. (b) Fidelity of the geo-
metric phase gates shown in (a) as a function
of T .

3.3 Adiabaticity

Finally, the transition from the adiabatic regime to the non-adiabatic regime was exam-
ined by measuring the acquired phase γ at fixed solid angle A = π/4, changing only the
phase precession period T (Fig. 3.1(a)) but keeping the duration of the total sequence con-
stant. The data in Fig. 3.5(a) show that γ is constant, i.e., independent of evolution time for
T larger than about 50ns, or equivalently, for adiabaticity parameters a = φ̇sin(ϑ)/|B|.
0.1. The measured γ also agrees well with the result obtained by numerically solving the
Schrödinger equation. For values of a > 0.1, when entering the non-adiabatic regime, we
observe that γ oscillates and varies by more than 50%. In this regime, γ is a combination
of dynamic and geometric phase because the spin-echo technique fails to cancel the dy-
namic phase: for non-adiabatic evolution, the state after the spin-echo π-pulse does not
necessarily correspond to the initial state with |0〉 and |1〉 interchanged.

In the context of quantum information processing, the manipulation sequence could
serve as a single qubit phase gate. Its performance can be assessed by computing the fi-

delity F = tr
√
ρ1/2σρ1/2, where ρ is the experimental density matrix processed with max-

imum likelihood (Ježek et al., 2003) and σ is the expected density matrix for perfectly adi-
abatic evolution. We find that the fidelity of the gate averages F = 90% in the adiabatic
regime (Fig. 3.5(b)). There, about 8% of the loss in fidelity can be attributed to qubit decay,
whereas inaccuracies in qubit preparation and qubit dephasing account for the remaining
2%. In the non-adiabatic regime a significant decrease in fidelity is observed, as expected.

3.4 Conclusion

In conclusion, we have measured the geometric phase in a multi-level system with small
anharmonicity and observed that the two-level approximation breaks down for strong
drives, as evidenced in our experiment by deviations of the geometric phase from the
expected linear dependance on solid angle. We have modelled the contributions from
the second excited state to the adiabatic geometric phase using time-independent per-
turbation theory. By examining Berry’s phase in the adiabatic limit and going to the non-
adiabatic regime, we have shown that it is independent of evolution time for adiabaticity
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parameters . 0.1. The phase in the non-adiabatic limit could potentially inherit some of
the adiabatic phase’s noise resilience, suggesting further experimental tests on how it is
affected by noise in the control parameters.
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NOISE RESILIENCE OF THE BERRY PHASE

Noise is ubiquitous in physical systems—be it thermal noise in electrical circuits (Robin-
son, 1974), electronic shot noise in mesoscopic conductors (Blanter and Buttiker, 2000),
vacuum noise of radiation fields (Glauber, 1963), or low-frequency (1/ f −) noise in solid
state systems (Dutta and Horn, 1981; Bylander et al., 2011). Noise is troublesome, as it
prevents quantum coherence to persist on long time scales and hinders the development
of a large-scale quantum computer (Schlosshauer, 2007; Joos et al., 2003), and significant
effort is needed to control and maintain fragile quantum superposition states (Ladd et al.,
2010).

Quantum dissipative systems also call into question the nature of the Berry phase:
noise may screen out geometric effects and makes defining adiabaticity difficult. Fortu-
nately, there are many ways to address these concerns. For one, noise can be modeled by
adding non-geometric dissipative rates to the equations of motion (see e.g. Ellinas et al.
(1989)). Whitney and Gefen (2003) alleviate the latter concern—a gapless spectrum does
not necessarily annul the Berry phase.

The Berry phase is a potential building-block for noise-resilient quantum operations
(Sjöqvist, 2008). Although the effect of noise on the Berry phase has been well studied in
theory, (Blais and Tremblay, 2003; De Chiara and Palma, 2003; Whitney et al., 2005; Whit-
ney and Gefen, 2003; Carollo et al., 2003; Solinas et al., 2010; Villar and Lombardo, 2011;
Solinas et al., 2012), so far there have been only a few experiments studying the dephasing
it causes (Leek et al., 2007; Filipp et al., 2009; Cucchietti et al., 2010; Wu et al., 2013). Here,
adiabatic artificial fluctuations in the path of the control field are introduced to induce
dephasing in a two-level system. The measurements show that only fluctuations which
distort the path lead to dephasing originating from fluctuations of the Berry phase. In a
direct comparison with the dynamic phase we observe that the Berry phase is less affected
by noise-induced dephasing.

49
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The first part of this chapter introduces analytical expressions for noise-induced de-
phasing. The second part presents the experiments and compares data to calculations.

4.1 Analytical expressions

4.1.1 Noise-induced dispersion in phase
We derive the effect noise has on the phases of a two-level system along the lines of
De Chiara and Palma (2003). The idea is to see how noise on the control parameters affects
the Berry connection, and thus also the Berry phase.

The Hamiltonian of a spin-half particle in a magnetic field is (see also sec. 2.5.3)

H =ħσ ·B/2, (4.1)

with B expressed in units of angular frequency. When the magnetic field is varied adiabat-
ically, the instantaneous energy eigenstates follow the direction of the magnetic field by
virtue of the adiabatic theorem. They are

|+〉 = cos
ϑ

2
|1〉+e iφ sin

ϑ

2
|0〉, |−〉 = sin

ϑ

2
|1〉−e iφ cos

ϑ

2
|0〉

where |0〉 and |1〉 are the eigenstates of the Pauli matrix Z . According to eq. (1.8), the Berry
phase of |+〉 after a cyclic evolution is γ+ = ∮

A+ ·dλ, where A+ = i 〈+|∇λ|+〉 is the Berry
connection and λ are the control parameters. We consider a path in which the magnetic
field has a constant magnitude and precesses around the Bz -axis at an angle ϑ. Thus, the
control parameters are the angles ϑ and φ. The components of the connection are

A+
φ =−A−

φ = i 〈+| ∂

∂φ
|+〉 = 1

2
cosϑ, A+

ϑ =−A−
ϑ = i 〈+| ∂

∂ϑ
|+〉 = 0,

and the geometric phase is

γ+ =−γ− =
∫ 2π

0
A+
φdφ=πcosϑ.

We now add a fluctuating field K to the magnetic field B. The Hamiltonian eq. (4.1) be-
comes

H =ħσ · (B+K)/2.

The noise K modifies both the connection A and the control parameters λ. Expanding the
connection around the polar angle ϑ0 with no noise gives

Aφ(ϑ) = Aφ(ϑ0)+ ∂Aφ

∂ϑ
δϑ= 1

2
(cosϑ0 −δϑsinϑ0),

where δϑ are the fluctuations caused by the noise. The change in the line element is ex-
panded similarly:

dλ= φ̇d t ≈ (φ̇0 +δφ̇)d t ,
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where φ̇= 2π/T is the average precession velocity. Combining both expansions yields an
expression for the Berry phase:

γ =
∫ T

0
(Aφ(ϑ0)+δAφ)(φ̇0 +δφ̇)d t

≈ γ(0) + 2π

T

∫ T

0
δAφd t + Aφ(ϑ0)δφ̇(T )

= γ(0) − π

T

∫ T

0
sinϑ0δϑd t + Aφ(ϑ0)(δφ(T )−δφ(0)).

The last term gives a contribution if K (T ) ̸= 0. Then, the definition of the non-cyclic
geometric phase by Samuel and Bhandari (1988) should be used. In this case, the last
term vanishes under the assumption K (0) = 0. In order to compute the geometric phase
γ ≡ γ0 +δγ, we wish to express the fluctuations δϑ in terms of the noise applied in radial
direction δρ and in azimuthal direction δφ. To this effect, we go to cylindrical coordinates:

B = (ρ0 cosφ0,ρ0 sinφ0, z0),

and ϑ0 = arctan(ρ0/z0). Also,

δϑ= ∂ϑ

∂ρ
δρ = z

B 2 δρ ≈ cosϑ0

B
δρ,

where we have defined B = |B|. Then, assuming that the fluctuations in radial direction
are described by an Ornstein-Uhlenbeck process with bandwidth Γρ and variance σρ (see
app. B), the average of the fluctuations is

〈δϑδϑ′〉 = cosϑ0

B

⟨
δρδρ′⟩= cosϑ0

B
σ2
ρe−Γρ |t−t ′|.

Since 〈δγ〉∝ 〈δρ〉 = 0, the variance σ2
γ = 〈(δγ)2〉−〈δγ〉2 of the geometric phase is

σ2
γ =

(
πsinϑ0

T

)2 ∫ T

0
d t

∫ T

0
d t ′〈δϑδϑ′〉

= 2σ2
ρ

(
πcosϑ0 sinϑ0

B

)2 ΓρT −1+eΓρT

(ΓρT )2 . (4.2)

From eq. (4.2), it appears that the variance vanishes for θ0 ∈ {0,π}, and that the geometric
phase is insensitive to in-plane noise at these two points: when θ0 = 0, the geometric phase
vanishes, and when θ0 =π/2, the solid angle is A = 2π, no matter the path.

The effect of noise on the dynamic phase is found in a similar way. To compute the
dynamic phase, we assume B = (0,0,B0) and write K = (Kx ,Ky ,Kz ). Seeing that

〈H〉|1〉 = B/2+B ·K/2B

and that 〈H〉|0〉 =−〈H〉|1〉, the dynamical phase is

δ= δ0 +δδ=
∫ T

0
(〈H〉|1〉−〈H〉|0〉)d t = BT +

∫ T

0

B ·K

B
d t . (4.3)
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To compute δδ for the noise here, we compute Ki = ∂Bi
∂φ + ∂Bi

∂ρ + ∂Bi
∂z for i =φ,ϑ,ρ and find

K = (−ρ sinφdφ+cosφdρ,ρ cosφdφ+ sinφdρ,0). Thus,

δδ=
∫ T

0
sinϑ0dρd t .

The variance σ2
δ
= 〈(δδ)2〉−〈δδ〉2 evaluates to

(σδ)2 = (sinϑ0)2
∫ T

0
d t

∫ T

0
d t ′〈δρδρ′〉

= 2σ2
ρ(sinϑ2

0)
ΓρT −1+eΓρT

Γ2
ρ

. (4.4)

Note that while σ2
γ ∝ 1/T , σ2

δ
is proportional to T . With longer evolution times, the ge-

ometric phase rids itself of the influence of noise, while the dynamic phase completely
decoheres.

4.1.2 Noise-induced dephasing
The density matrix of a qubit state allows us to see what dephasing is induced by the vari-
ance in the acquired phase during a Ramsey-type interferometric experiment (see also
sec. 3.1. Starting with an arbitrary state |Ψ〉 = a|0〉+b|1〉, the state after the adiabatic and
cyclic evolution is |Ψ′〉 = ae iα|0〉+be−iα|1〉, with α being the acquired phase (geometric
and/or dynamic). Depending on whether there is noise or not, the phase is distributed
differently.

Phase in absence of noise
When there is no noise, the phase is peaked at a value α0:

P (α) = δ(α−α0). (4.5)

The density matrix describing the state is found by averaging |Ψ′〉〈Ψ′| weighted with the
distribution P (α):

ρ =
∫ ∞

−∞
|Ψ′〉〈Ψ′|P (α)dα=

( |b|2 e2iα0 ab̄
e−2iα0 āb |a|2

)
.

Therefore, the expectation values of the Pauli operators are

〈X 〉 = 2Re
(
e2iα0 ab̄

)
, and 〈Y 〉 =−2Im

(
e2iα0 ab̄

)
,

and the coherence is
ν0 =

√
〈X 〉2 +〈Y 〉2 = 2|ab|. (4.6)
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Phase in presence of noise
When there is noise, the phase is gaussian distributed

P (α) = 1p
2πσ2

exp

(
− (α−α0)2

2σ2

)
.

with a variance σ2 (given by eq. (4.4) or eq. (4.2)) around a mean α0. The density matrix
follows as

ρ =
∫ ∞

−∞
|Φ′〉〈Φ′|P (α)dα=

(
|b|2 e−2σ2

e2iα0 ab̄

e−2σ2
e−2iα0 āb |a|2

)

because
∫ ∞
−∞ e2iαP (α) = e−2σ2

e2iα0 . With

〈X 〉 = 2e−2σ2
Re

(
e2iαab̄

)
, and 〈Y 〉 =−2e−2σ2

Im
(
e2iαab̄

)
,

the coherence is
ν= e−2σ2 ·2|ab| = e−2σ2

ν0. (4.7)

It is thus reduced by a factor e−2σ2
in comparison to the phase not affected by noise,

eq. (4.6). Note that eq. (4.6) can also be obtained from eq. (4.7) in the limit σ→ 0. From
eq. (4.6), it also appears that the coherence is maximal when one chooses a =±1/

p
2 and

b =±1/
p

2. Then, ν= 1.
When performing a spin-echo experiment, where the evolution is repeated a second

time mirrored around the π-pulse, the standard deviation is doubled due to the second
exposition to noise, σ→ 2σ (Filipp, 2006, ch. 5.3). Therefore

ν= e−2(2σ)2 ·2|ab| = e−8σ2
ν0. (4.8)

Comparing eq. (4.8) and eq. (4.7), it appears that the ratio of the coherences after a Ramsey
experiment (with one exposition to noise) and a spin-echo experiment (with two exposi-

tions to noise) is e−6σ2
.

4.2 Experiments

4.2.1 Experimental idea
To study the influence of noise on the Berry phase and on the dynamic phase of a spin
one-half particle, we use a scheme similar to the experiments presented in ch. 3: the two
lowest energy levels of a transmon dispersively coupled to a resonator serve as a qubit, and
a classical drive provides an effective magnetic field (see sec. 2.5.3). However, our findings
are independent of the specific implementation, and apply to any system in which Berry
phases can be observed. The system is effectively described by the familiar Hamiltonian
of a spin one-half particle in a magnetic field,

H =ħσ ·B/2, (4.9)

As in ch. 3, we consider an effective field evolving along a circular path with radius Bρ =√
B 2

x +B 2
y at constant Bz and with precession period T (Fig. 4.1). This path encloses a
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Figure 4.1: Fluctuating magnetic fields. (a) The path of the effective magnetic field (green line) describes a circle
in the Bx -By -plane at constant Bz . Noise in x and y directions with noise powers Px and Py can be decomposed
into noise in ρ and φ directions with noise powers Pρ and Pφ. (b,c) The path of the effective field without noise
(dashed green lines lying in the plane with constant Bz ) is drawn alongside the same path exposed to two kinds
of noise (solid green lines): angular noise in (b), where the velocity of precession is proportional to line thickness,
and radial noise in (c). The projection of the paths on the unit sphere |B| = 1 is also shown. In (b), the difference
in solid angle due to non-cyclic evolution is highlighted in red.

solid angle A = 2π(1−cosϑ), with the polar angle ϑ= arctan(Bρ/Bz ), so the ground |0〉 and
excited |1〉 state of the qubit acquire a Berry phase γ0 ≈±A/2 if the evolution is adiabatic.

In experimental situations, the field components fluctuate about their mean values
and these fluctuations induce dephasing. Changes in field strength will cause dynamic
dephasing, while modifications in solid angle will cause dephasing due to fluctuations in
the Berry phase1. Clearly, noise directed in azimuthal direction (angular noise, Fig. 4.1(b))
does not modify the solid angle and thus, no such dephasing is expected. In contrast,
noise directed in radial direction (radial noise, Fig. 4.1(c)) will induce such dephasing. By
artificially adding noise in radial (or azimuthal) direction to the field in our experiment,
we are thus able to maximize (or minimize) dephasing originating in fluctuations of the
Berry phase and investigate its properties for different angles ϑ and noise powers.

To model realistic uncorrelated noise with a given bandwidth, we generate fluctua-
tions conforming to Ornstein-Uhlenbeck processes, i.e. stationary, gaussian and Marko-
vian noise processes with a Lorentzian spectrum of bandwidth Γi and noise power Pi

(i = ρ,φ). See app. B for details.
In the experiment, the precession frequency and the noise bandwidth are chosen to

be small compared to the amplitude B = |B| of the effective field, i.e. 1/T,Γi ≪ B , to study
adiabatic processes. In this case, the derivation in sec. 4.1 of the variance of the geometric
phase from a perturbative treatment is valid. From eq. (4.2), it is clear that to first order
only variations δρ in radial direction contribute to σ2

γ.

4.2.2 System parameters
The qubit is manipulated using microwave fields applied via a capacitively coupled charge
bias line. Using spectroscopic measurements, we have determined the maximum Joseph-
son energy E J ,max/h = 11.4GHz, the charging energy EC /h = 0.26GHz and the cou-
pling strength g /2π = 360MHz of the qubit to the resonator. The experiments are per-
formed at a qubit transition frequency ω01/2π= 4.68GHz, with an energy relaxation time
T1 = 2.65µs, a phase coherence time T2 = 1.35µs and a spin-echo phase coherence time

1Although this kind of dephasing stems from fluctuations in the Berry phase, it is itself not geometric. We
discuss geometric dephasing in ch. 5.
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Figure 4.2: Sketches of the pulse schemes (amplitude vs. time) used to measure (a) Berry and (b) dynamic phases
with radial noise. Detuned pulses applied along the X - and Y -axis are shown in blue and light blue, respectively.
The readout pulse concludes the sequence after t ≈ 400ns.

T2,echo = 2.15µs. The sample is operated in a dilution refrigerator at a base temperature of
20mK. The fundamental mode of the resonator being at ωr /2π= 6.600GHz, the is qubit in
dispersive regime and the Hamiltonian eq. (4.9) is applicable. The effective magnetic field
is B = (Ωcosφ,Ωsinφ,∆). It is determined by amplitude Ω, phase angle φ and detuning
∆=ω01 −ωd of the drive.

4.2.3 Measurement scheme
As in ch. 3, a Ramsey-type interferometric sequence containing a spin-echo pulse to can-
cel the dynamic phase is employed to measure the Berry phase acquired by the two-level
system (Fig. 4.2(a)). A series of resonant pulses (of frequency ω01) implement the spin-
echo sequence, while off-resonant pulses (of frequency ωd =ω01 −∆) guide its state adia-
batically along the paths shown in Fig. 4.1(b,c).

All presented Berry phases are measured at a detuning ∆ = −50MHz. The acquired
Berry phase is varied from 0 rad to 6.9 rad by increasing the solid angle A via the drive
amplitude Ω. The strength of the noise is quantified by the normalized noise amplitude
sρ =√

Pρ/Bρ for radial noise and by sφ =√
Pφ for angular noise. These definitions ensure

that fluctuations in radial or azimuthal directions have identical amplitudes if sρ = sφ.
The phases with noise are obtained by repeating the experiment with different noise

patterns. Identical noise patterns are used before and after the spin echo pulse to
ensure cancellation of the dynamical phase. The pulse sequences, consisting of two
intermediate-frequency quadratures x and y , are numerically created: noise conforming
to an Ornstein-Uhlenbeck process is generated and added to the pulses describing the
noiseless evolution of the field (see app. B for details). An arbitrary waveform generator
synthesizes these quadratures, which are upconverted to a microwave-frequency signal
using an in-phase/quadrature mixer. After the manipulation sequence, the state of the
qubit is determined in a dispersive readout (see sec. 2.5.1) through the resonator and re-
constructed using state tomography (Paris and Řeháček, 2004). To overcome noise in the
detection, each individual noise realization is measured 106 times.

4.2.4 Histograms
Histograms of the measured Berry phases for four solid angles are shown in Fig. 4.3(a,c).
For radial noise, the Berry phases of the individual noise realizations have—as discussed
above—a gaussian distribution with a mean equal to the Berry phase γ0 without noise.
For angular noise, we observe that the widths of the phase distributions are, as expected,
almost zero. The expectation values of the Bloch-vector components 〈X 〉 and 〈Y 〉 for
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Figure 4.3: Measurements of the geometric phase in the presence of noise. (a) Histograms of Berry phases
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Figure 4.4: Measurements of the
geometric phase in the presence
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individual noise realizations are distributed on the equatorial plane of the Bloch sphere
(Fig. 4.3(b,d)), reflecting the spread of the measured phases. They lie on a circle with ra-
dius ν0 ≈ 0.80 < 1, which is a result of the intrinsic noise present in the system.

4.2.5 Dependence of coherence on solid angle
Distributions akin to those shown in Fig. 4.3(b,d) are used to compute the coherence

eq. (4.8)ν=
√
〈X 〉2 +〈Y 〉2 = e−8σ2

γ as a function of solid angle (Fig. 4.4(b)). Intrinsic noise is
present, but not relevant for discussing the influence of the fluctuating effective magnetic
field. How to eliminate its effect on the measured coherences? Assuming that intrinsic
noise causes a reduction in coherence by a factor νint, the coherence measured after a
spin-echo sequence is ννint with applied noise and νint without applied noise. By taking
the ratio of these, the effect of the added noise can be isolated. Therefore, for every data
point of coherence shown, a reference measurement without noise is performed, and the
intrinsic noise is divided out.

We observe that for radial noise the coherence decreases and then stabilizes as a func-
tion of solid angle, while it is approximately unity for angular noise. This is an immediate
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Figure 4.5: Experimentally mea-
sured coherence ν of the Berry
phase and phase difference ∆γ =
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consequence of the nature of the Berry phase: radial noise modifies the solid angle A caus-
ing dephasing and a decrease in coherence. In contrast, angular noise hardly affects A.

For both kinds of noise, the difference ∆γ = γ−γ0 . 0.2 rad in the mean Berry phase
with and without noise is very small (Fig. 4.4(a)). The measured coherences agree well
with equation (4.2) and numerical results obtained by solving the unitary dynamics of the
Hamiltonian in eq. (4.9). The measured Berry phase γ0 itself (not shown) agrees well with
the prediction for a transmon-type qubit (see ch. 3), with a discrepancy of 0.20 rad across
all solid angles for the data in Fig. 4.4(a,b).

4.2.6 Varying the noise amplitude
To illustrate the effects of noise quantitatively, both the Berry phase and the dynamic
phase are measured for varying noise amplitudes s. For the Berry phase, we observe that

the coherence follows the expected dependence e−(4as)2/2 for radial noise (Fig. 4.5(c,e))
and that angular noise has a lesser effect on the coherence than radial noise. For both
types of noise, and for normalized noise amplitudes . 0.5, the Berry phase with and with-
out noise have the same value.

4.2.7 Coherence of the dynamic phase
Just as for the Berry phase, the coherence of the dynamic phase σ2

δ
in eq. (4.4) only de-

pends on radial variations if the noise amplitude is small. Due to these fluctuations, the
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dynamic phase is gaussian distributed around the noiseless dynamic phase δ0. Noise in
azimuthal direction does not change the magnitude of the field and hence does not cause
fluctuations in the dynamic phase.

The coherence of the dynamic phase was recorded using a spin-echo sequence con-
taining a single off-resonant pulse (Fig. 4.2b), and therefore its variance was scaled by a
factor to allow for direct comparison with the Berry phase. From Fig. 4.5(c), it is evident
that the coherence of the dynamic phase starts decreasing at weaker noise amplitudes
than the Berry phase, demonstrating the superior noise resilience of the Berry phase. It is
also observed that the mean dynamic phase δ starts deviating from δ0 already at s ≈ 0.2.
The measured coherences for both dynamic and Berry phase are in very good agreement
with the predictions based on eq. (4.2) and eq. (4.4) for radial noise. For angular noise, fits

to e−(4as)2/2 agree with the observed behaviour of the coherences. Indeed, while according
to eqs. (4.2) and (4.4) the coherences are expected to be insensitive to angular noise to first
order, non-adiabatic and higher-order effects (Lupo and Aniello, 2009) still affect the co-
herences. In particular, the evolution of the field can be non-cyclic (Samuel and Bhandari,
1988), which adds a small contribution to dephasing (see Fig. 4.1(b) and De Chiara and
Palma (2003)).

4.2.8 Comparison of dynamic and geometric phase
Finally, we directly compare the coherence of dynamic and Berry phases in the presence
of radial noise. The Berry phase γ is recorded at a solid angle A = 0.37π, where the effect
of noise on γ is strongest. For long evolution times T , the Berry phase is more resilient
against radial noise than the dynamic phase because its variance σ2

γ decreases with evolu-

tion time (Filipp et al., 2009), whereas the variance of the dynamic phase σ2
δ

grows linearly
in evolution time (cf. eq. (4.2) and eq. (4.4), as well as Fig. 4.6). Both phases have equal
coherences when σ2

γ =σ2
δ

, i.e.
T =πcos(ϑ)/B , (4.10)

and the dynamic phase is more coherent than the Berry phase only for even shorter evo-
lution times (T < 13ns according to equation (4.10) and T < 20ns according to the experi-
mental data in Fig. 4.6). Note that the variance of the dynamic phase is independent of the
value of the dynamic phase. This is why it was recorded using the same drive amplitudes
as for the Berry phase gates. The data in Fig. 4.6 agrees with calculations. The standard de-
viation σδ of the dynamic phase starts differing significantly from computed predictions
at evolution times T & 100ns, when the recorded phases are spread across 2π and their
variance saturates.

4.3 Conclusion

In conclusion, we have demonstrated that the Berry phase is less affected by noise along
the path in parameter space than by noise perpendicular to it. Given a system with known
noise properties, this can potentially be exploited to realize noise-resilient geometric op-
erations. Both kinds of noise leave the mean of the geometric phase unchanged. Shifts
of the mean Berry phase are theoretically expected (Whitney et al., 2005), but are beyond
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Figure 4.6: (a) Standard deviation σγ of the Berry phase (blue circles) and σδ of the dynamic phase (purple
squares) as a function of evolution time T , based on 300 noise realizations with Γ = 10MHz and sρ = 1/15. The
solid lines result from calculations based on eq. (4.2) and eq. (4.4). The dashed grey line approximately separates
the non-adiabatic from the adiabatic regime. (b) Coherence ν versus evolution time T of the Berry phase (blue
circles) and the dynamic phase (purple squares).

current experimental precision. We have also shown that the geometric phase is less af-
fected by decoherence than the dynamic phase when evolving adiabatically (evolution
times & 1/B). Our results illustrate fundamental properties of the geometric phase and
serve as a stepping-stone for further investigations of geometric phases as a resource for
quantum computation (Rong et al., 2011) or for precision measurements (Mur-Petit et al.,
2012; Martín-Martínez et al., 2013).

The analysis presented here, as well as the work by De Chiara and Palma (2003), con-
sider a quantum system evolving unitarily. Lombardo and Villar (2014) study the Berry
phase under the influence of noise in the case of nonunitary evolution. In keeping with
literature (Leek et al., 2007; Filipp et al., 2009), they find that the effect of weak noise on
the geometric phase is almost imperceptible. Li and Shi (2013) consider the more general
case of non-Markovian noise and find that, as in the Markovian case, the coherence of the
Berry phase is not lowered for adiabatic high-frequency noise.
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5
GEOMETRIC DEPHASING

Although the dephasing observed in the previous chapter originates from fluctuations in
the Berry phase, it is itself not geometric. The concept of geometric dephasing has been
introduced by Whitney et al. (2005). Indeed, decoherence in quantum systems stems not
only from the stochastic evolution of the dynamical phase of the system’s wave function
(dynamical dephasing), but also from geometric effects.

In this chapter, we consider a qubit in a noisy environment and find that the measured
dephasing is partly of geometric nature. As in ch. 4, the two lowest energy levels of a trans-
mon dispersively coupled to a resonator serve as a qubit, and a microwave tone provides
an effective magnetic field B = (Ωx ,Ωy ,∆) precessing at a rate ωB > 0 slow enough for the
qubit to evolve adiabatically. The Hamiltonian of the driven qubit in the rotating frame is,
as usual,

H =ħσ ·B/2. (5.1)

where σ= (X ,Y , Z ) are the Pauli matrices.
We find that with stochastic Gaussian noise on the effective magnetic field, the length

ν=
√

〈X 〉2 +〈Y 〉2 +〈Z 〉2 of the qubit state vector is given by

ν= exp
{−D(T )

(
a+bsgn(n)ωB + cω2

B + ...
)

/2
}

. (5.2)

In this equation, T ≡ 2π|n|/ωB is the duration of the time evolution, n ∈ Z is the oriented
number of loops of the magnetic field, 2π/ωB is the time needed for a single loop, and
D(T ) characterizes the spectral properties of the noise. The first term in eq. (5.2) is in-
dependent of ωB and represents dynamic dephasing. The second term is proportional
to sgn(n)ωB and represents geometric dephasing. The third term goes as ω2

B and stands
for non-geometric non-adiabatic dephasing. It is especially noteworthy that the second
term can either increase or decrease the total dephasing, depending on the sign of n. This
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Figure 5.1: Bloch vectors (green arrows) de-
scribing the qubit state after evolving adi-
abatically in an precessing noisy magnetic
field. When the qubit state evolves adi-
abatically, its Hilbert space can be identi-
fied with the parameter space of the Hamil-
tonian, viz. the three-dimensional effective
magnetic field. The magnetic field (white
line) follows a closed loop n times. In (a), the
number of loops is n =+1, in (b) it is n =−1.
Due to geometric dephasing, the Bloch vec-
tors are fanned out more in (a) than in (b).

makes the geometric nature of this term explicit (see Fig. 5.1). The contributions to de-
phasing stemming from the first and the third term are independent on the sign of n and
are therefore not geometric.

5.1 Experiment

5.1.1 System and setup
The sample (Fig. 5.2) is an artificial atom of the transmon type coupled to a coplanar
waveguide resonator (CPW; Koch et al. (2007)). A miniature coil mounted below the sam-
ple is used to set the lowest transition of the transmon to a frequency ω01 = 7.0335GHz.
Its coupling to the resonator can be tuned using a static bias current applied to a flux line
(Srinivasan et al., 2011). Here, it is tuned to g /2π= 38MHz at the outset of the experiment
and then kept constant. The artificial atom has an anharmonicity of α/2π= 90MHz.

The fundamental mode of the resonator is at a frequency ωr /2π = 7.347GHz and has
a loaded quality factor of Q = 3600, so we can readily dispersively read out the quantum
state of the artificial atom by monitoring the transmission of a rf-signal at frequency ωr

trough the resonator (g /∆= 0.12; see Bianchetti et al. (2009) and also sec. 2.5.1). The input
port of the resonator is coupled less strongly to the transmission line than the output port
to increase the SNR of the readout.

Via two circulators and a directional coupler, the output signal of the resonator goes to
an amplifier based on a Josephson parametric dimer (JPD, see Eichler et al. (2014) and also
sec. 2.5.2), with a gain of 18.4 dB at a bandwidth of 28 MHz centred around 7.348GHz. The
first circulator prevents reflected signals in the output line from leaking into the cavity; the
second circulator separates the output of the JPD amplifier from the input. The directional
coupler is used to operate the JPD amplifier: a tone is split, the first half pumps the JPD

and the second is phase-shifted and attenuated to cancel the pump tone in the amplified
signal. The pump tone was at ωp = 7.564GHz, detuned 217MHz from the resonator.

The signal is then bandpass filtered (4 to 8 GHz) and amplified with a high-electron-
mobility transistor (HEMT) amplifier providing 35 dB of gain. At room temperature, the
signal is amplified further, filtered and downconverted to 25 MHz before it is digitized at a
rate of 100 MS/s and analysed with a field-programmable gate array (FPGA).

We use direct modulation of an in-phase/quadrature mixer to generate the microwave
pulses for qubit state manipulation. The pulses are applied through a capacitively coupled
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Figure 5.2: (a) Micrograph of the sample. Resonator input (dark blue), resonator output (light blue), resonator
(green), charge line (red), flux line (violet) and artificial atom (orange), and zoom on the artificial atom (inset).
(b) Schematic of the measurement setup. See text for details.

charge bias line. The I and Q quadratures are synthesized with an arbitrary waveform
generator (AWG). The pulses resonant with the qubit transition have a gaussian envelope
with a standard deviation of s= 10ns. They are symmetrically truncated to a length of 4σ.
Measuring Rabi oscillations allows us to extract the amplitudes of π- and π/2-pulses. We
perform Ramsey interferometry experiments to calibrate the frequency of these pulses,
and also serve to extract the dephasing time T ⋆

2 = 770ns and echo-decay-time T echo
2 =

1520ns of the ω01-transition. Its lifetime is found to be T1 = 1330ns.

5.1.2 Experimental idea
To get rid of the large dynamical phase the qubit acquires during evolution, a spin-echo
technique is employed. Note that geometric dephasing can be present as soon as the qubit
state traverses a path in its projective Hilbert space—the spin-echo is merely a tool used
in our measurement. We consider two alternative echo protocols. In the first protocol,
which is often used to observe the Berry phase (Jones et al. (2000), Leek et al. (2007); see
also ch. 3 and ch. 4), the direction of the conical motion of the magnetic field is reversed in
the second half of the echo sequence. We therefore call is protocol R (for ‘reversed’). From
now on, n denotes the number of loops in the first half of the echo sequence. The second
protocol is a ‘total’ spin echo, in which the direction of precession of the magnetic field is
preserved in the second half of the spin echo sequence. We refer to it as protocol P (for
‘preserved’). To illustrate the protocols, schematics of the pulse sequences are shown in
Fig. 5.3.

As in ch. 4, artificial noise conforming to an Ornstein-Uhlenbeck process (see app. B)
with intensity σ2 and correlation time 1/Γ is added to the drive to mimic noise in the mag-
netic field. We consider fluctuations δφ in angular direction δΩ and in radial direction, so
that Ω(t ) =Ω0 +δΩ and φ(t ) = (n/|n|)ωB t +δφ. In our setup, these correspond to ampli-
tude and phase noise in the signal driving the qubit. The time correlations of the artificial



64 Chapter 5. Geometric dephasing

π/2 π/2
π Q

C+

C-

C-

C+

T

I read. C+C+

C- C-

DPDP DPDP

protocol R protocol P

C+-

C-+

DP

C++

C--

DP

Figure 5.3: Pulse sequences for protocols R and P. The π- and π/2-pulses implementing the spin-echo are on
resonance with the qubit transition frequency ω01 (purple). At the end of the sequence, the state of the qubit
is read out by applying a tone at frequency ωr (orange). The components Ωx and Ωy of the magnetic field are
shown in dark and light blue. ∆ is kept constant and is not shown. The labels ‘+‘ and ‘–’ in C+ and C− denote
sgn(n), the orientation of the loops of the magnetic field, i.e. its direction of precession. The label D.P. denotes a
magnetic field which does not precess (ωB = 0). In protocol R, the direction of precession is inverted during the
second window of the echo, leading to pulse sequences C+− or C−+. In protocol P, the direction of precession
is preserved, giving C++ or C−−. In the pulse sequences ‘R, D.P.’ and ‘P, D.P.’ (which are identical), the qubit
acquires only dynamic phase during the off-resonant evolution. In all other sequences, the qubit acquires both
dynamic and geometric phase.

noise may be controlled, in particular those between the first time window, 0 < t < T ,
and the second time window, T < t < 2T . For convenience, we let δΩ1(t ) ≡ δΩ(t ) and
δΩ2(t ) ≡ δΩ(t +T ).

Four types of time-correlations of the noise are considered. First, perfectly cor-
related noise (δΩ1(t ) = δΩ2(t )), when the correlation time is much larger than the
time-scale of the experiment. Second, anticorrelated noise (δΩ1(t ) = −δΩ2(t )). Third,
uncorrelated noise, when correlation times are shorter than the spin-echo timescale
(〈δΩ1(t1)δΩ2(t2)〉 = 0 and 〈δΩ1(t1)δΩ1(t2)〉 = 〈δΩ2(t1)δΩ2(t2)〉), typical e.g. for white
noise (Ithier et al., 2005; Paladino et al., 2014). Fourth, the case with noise in the first
window of the echo only (δΩ2(t ) ≡ 0), to measure the dephasing experienced by the qubit
in a Ramsey experiment.

5.1.3 Experimental results
We now present the experimental results. Phase and coherence of the qubit after the echo
sequence have been recorded as a function of solid angle for both protocols. In every mea-
surement, the solid angle is swept from π/16sr to 3π/4sr in steps of π/16sr, the normal-
ized noise amplitude is σ/(Ω2

x+Ω2
y )1/2 = 0.1, the noise bandwidth Γ= 10MHz, the winding

number n = 1, the precession period T = 100ns (or T = 160ns). There are 400 realizations
of noise per data point. The off-resonant pulses have a detuning of ∆/2π = −35MHz, in-
trinsic dephasing due to a finite decoherence rate of the qubit is calibrated out as in ch. 4,
and care is taken that the magnetic field evolves adiabatically (see sec. 5.2.6).

After the pulse sequences of protocol R, the qubit has acquired some geometric phase
if ωB ̸= 0. When there is no noise, the measured geometric phases (top row of Fig. 5.4)
agree with the theoretical predictions for a weakly anharmonic multi-level system (see
ch. 3). Even with noise (middle row of Fig. 5.4), the phases agree, showing that as expected
the mean of the geometric phase is not affected if the noise is weak enough (normalized
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Figure 5.4: (a,b,c) Measured coherence and phase as a function of solid angle for protocol R with correlated noise
(T = 100ns). The solid lines are theory curves in panels (a,b) and fits in panel (c). The phase measured without
noise in the magnetic field is shown in panel (a). The one with noise is shown in panel (b). (d,e,f) Ditto, but with
anticorrelated noise. (g,h,i) Ditto, but with uncorrelated noise. (j,k,l) Ditto, but with noise in the first window
only. (m,n,o) Ditto, but with noise in the first window only and T = 160ns.

noise amplitude σ/(Ω2
x +Ω2

y )1/2 = 0.1 < 0.5; see ch. 4 for details). However, when noise-
induced dephasing becomes so strong that the coherence drops below ≈ 0.2, the phase
can no longer be extracted reliably. At this point, the measured geometric phase starts
to deviate from the model. We also note that noise-induced corrections to the geometric
phase (Whitney et al., 2005) are small with respect to systematic errors in the measured
phase and cannot be resolved.

The bottom row of Fig. 5.4 displays the coherence ν of the qubit as a function of solid
angle for protocol R. When there is noise in the first window only (panels (l) and (o)), ge-
ometric dephasing is clearly present: depending on the direction of precession sgn(n),
geometric dephasing reinforces or counteracts dynamic dephasing. For other noise corre-
lations (panels (c), (f) and (i)), the observed coherences for C+− and C−+ are independent
of sgn(n) and coincide with those for D.P., meaning that the dephasing is purely dynamic.
For correlated noise (panel b), non-geometric non-adiabatic dephasing is present as ex-
pected for C+− and C−+ only. Comparing the measurements with noise in the first window
only for different evolution times (T = 100ns in panel h and T = 160ns in panel j), we see
that dynamic dephasing is stronger for larger T and that geometric dephasing is present
for both cases.
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Figure 5.5: This figure is as Fig. 5.4(a-l), but for protocol P. (a,b,c) Measured coherence and phase as a function
of solid angle with correlated noise (T = 100ns). The solid lines are theory curves in panels (a,b) and fits in panel
(c). The phase measured without noise in the magnetic field is shown in panel (a). The one with noise is shown
in panel (b). (d,e,f) Ditto, but with anticorrelated noise. (g,h,i) Ditto, but with uncorrelated noise. (j,k,l) Ditto, but
with noise in the first window only.

As for the phase acquired during protocol P, it vanishes not only when there is no noise
in the effective magnetic field and but also when there is noise, as supported by the data
in the upper and middle rows of Fig. 5.5. Indeed, as far as the phase is concerned, proto-
col P is a complete echo and no deterministic phase (neither dynamic nor geometric) is
acquired.

The data for protocol P (bottom row in Fig. 5.5) show that both dynamic and geomet-
ric dephasing is present for all types of noise correlations except for correlated noise. It is
noteworthy that there is dephasing even when no phase is acquired. For correlated, the
protocol is a perfect spin echo because the effective magnetic field and the noise are iden-
tical in both halves. Provided the evolution is adiabatic, no decoherence is to be expected.

5.2 Theory

In this section, the various contributions of the dephasing observed in Fig. 5.4 are quanti-
fied. It generalizes the results from sec. 4.2.1, where the coherence of the qubit is studied
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for noise perfectly correlated in both halves of the echo. To derive an expression for the
coherence ν of the qubit after the echo sequence, we go to a frame rotating at ωd +ωB by
applying the transformation R = exp(iωB Z /2) to the Hamiltonian eq. (5.1):

H̃ = RHR† + i ṘR† =ħ(
∆− sgn(n)ωB −δφ̇

)
Z /2+ħ(Ω+δΩ)X /2. (5.3)

This equation shows that angular noise enters only via δφ̇. Its effect on dephasing is sup-
pressed by ω2

B at low frequencies and it therefore induces dephasing less efficiently than
the radial noise. We have therefore only considered radial fluctuations δΩ.

5.2.1 Ramsey experiment
From eq. (5.3) with δϕ= 0, the total relative phase acquired by the eigenstates of the qubit
in a Ramsey interferometric experiment in the time interval [0,T ] is

γ=
∫ T

0
d t

√
(∆− sgn(n)ωB )2 + (Ω0 +δΩ(t ))2. (5.4)

Expanding this phase to first order in δΩ and in ωB gives

γ=
∫ T

0
d t

[√
∆2 +Ω2

0 − sgn(n)ωB cosθ−δΩsinθ+δΩ
sgn(n)ωB√
∆2 +Ω2

0

cosθ sinθ+ . . .

]
. (5.5)

In the experiment, we measure the expectation value 〈e iγ〉, whose argument is the rela-
tive phase between |0〉 and |1〉, and whose modulus is the coherence of qubit state vector.
Making use of the fact that the phase in the presence of noise follows a gaussian distribu-
tion

P (γ) = 1√
2π〈(δγ)2〉

exp

(
− (γ−γ0)2

2〈(δγ)2〉
)

with mean γ0 and variance 〈(δγ)2〉, we find

〈e iγ〉 =
∫ ∞

−∞
dγP (γ)e iγ = e iγ0 e−

1
2 〈(δγ)2〉.

The expectation value of the phase 〈γ〉 is thus equal to

〈γ〉 = γ0 =
∫ T

0
d t

(√
∆2 +Ω2

0 − sgn(n)ωB cosθ

)
,

the sum γ0 of dynamic and geometric phase in absence of noise, viz. the first two terms in
eq. (5.5). The coherence is

ν= e−
1
2 σ

2
. (5.6)

In a next step, the variance 〈(δγ)2〉 is evaluated by squaring δγ from eq. (5.5), giving

〈(δγ)2〉 =
∫ T

0
d t1

∫ T

0
d t2 CΩ1 (t1 − t2)

[
a(sinθ)2 +b

2p
∆2 +Ω2

cosθ(sinθ)2

·sgn(n)ωB +c
1

∆2 +Ω2 (cosθ sinθ)2ω2
B

]
(5.7)
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where CΩ1 (t1 − t2) = 〈δΩ1(t1)δΩ1(t2)〉 is the correlation function of the noise. The coeffi-
cients a,b,c are all equal to one in a Ramsey experiment, but in a spin-echo experiment
they reflect the time-correlations of the noise. Defining the integrated time-correlator of
the noise as

D(T ) =
T∫

0

d t1

T∫
0

d t2CΩ1 (t1 − t2), (5.8)

and combining eqs. (5.6) and (5.7), we recover the expression of eq. (5.2) for the coherence
of the qubit to first order in the noise δΩ,

ν= exp
{−D(T )

(
a+bsgn(n)ωB + cω2

B

)
/2

}
(5.9)

describing the length ν =
√
〈X 〉2 +〈Y 〉2 +〈Z 〉2 of the state vector of the qubit. The func-

tions

a= a(sinθ)2,

b= b
2p

∆2 +Ω2
cosθ(sinθ)2,

c= c
1

∆2 +Ω2 (cosθ sinθ)2

(5.10)

appear in the three first terms in eq. (5.7), which represent dynamic dephasing, geometric
dephasing, and non-geometric non-adiabatic corrections, respectively. The dimension-
less universal decoherence factors a, b, c in eqs. (5.10) serve to accommodate different
types of experimental protocols. We point out that geometric dephasing is present (b ̸= 0)
in the limits of fast noise (short correlation time compared to evolution time) and slow
noise (long correlation time compared to evolution time; see sec. 5.2.2). Most notably, ge-
ometric dephasing is not due to imperfect adiabaticity of the qubit evolution: it does not
vanish in the extreme adiabatic limit T →∞.

For a specific type of noise, D(T ) can be explicitly evaluated. Considering for instance
an Ornstein-Uhlenbeck process with intensity σ2 and correlation time 1/Γ, the correlation
function is CΩ1 (t1 − t2) =σ2e−Γ|t1−t2|. It follows that

D(T ) = 2

(
2πΓ

ωB
−1+e

− 2πΓ
ωB

)
/Γ2.

Thus, we find that Ornstein-Uhlenbeck noise suppresses the qubit coherence by a factor

ν= exp

−σ2(a+bsgn(n)ωB + cω2
B )

2πΓ
ωB

−1+e
− 2πΓ

ωB

Γ2

 , (5.11)

where a,b,c are defined in eqs. (5.10).

5.2.2 Short and long correlation-time limits
A priori, it cannot be ruled out that D(T ) introduces a time-dependence in eq. (5.9) so that
there is no geometric dephasing. In the following, an arbitrary noise process is considered,
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Figure 5.6: Dynamic (solid line), geomet-
ric (dashed line) and non-geometric non-
adiabatic (dotted line) contributions to de-
phasing, as they appear in the exponent of ν
in eq. (5.11), as a function of precession pe-
riod T in the case of an Ornstein-Uhlenbeck
process. The curves are computed with the
parameters of protocol R with noise in the
first window only and correspond to the data
shown in Fig. 5.4(l,o) for A = π/2. The val-
ues for dynamic and geometric dephasing
extracted from the fits in Fig. 5.4 are indi-
cated by dots. The vertical lines indicate the
periods T = 0.1,0.16µs used there.

characterized by its intensity σ2 (the integral of its power spectral density) and its correla-
tion time τ. We show that only the second term ∝ (ωB )1 represents geometric dephasing
by estimating the coherence suppression factor ν in two limiting cases: noise with short
correlation time, ΓT ≫ 1 and noise with long correlation time, ΓT ≪ 1.

For a short correlation time, ΓT ≫ 1 and therefore D(T ) ∝σ2T /Γ. We thus obtain

ν= exp

{
−const · 2πσ2

Γ

(
a

ωB
|n|+bn + cωB |n|+ ...

)}
(5.12)

and see that only the second term depends on the sign of n and represents geometric
dephasing.

For a long correlation time, ΓT ≪ 1, and we obtain D(T ) ∝σ2T 2, leading to

ν= exp

{
−const · (2πσ)2

(
a

ω2
B

|n|2 + b

ωB
|n|n + c |n|2 + ...

)}
. (5.13)

Again, only the second term contributes to geometric dephasing. To sum up, there is a
geometric contribution to dephasing regardless of the correlation time of the noise (or,
put differently, regardless of the duration of the evolution).

The three contributions to dephasing appearing in the coherence suppression factor
from eq. (5.11) are plotted in Fig. 5.6 as a function of precession period T for an Ornstein-
Uhlenbeck process. The factors a,b,c are specified in eqs. (5.10) and T = 2π|n|

ωB
is the dura-

tion of one half of the echo. Fig. 5.6 shows that the dynamic contribution (∝ a) grows with
T , while the geometric contribution (∝ b) saturates in the limit of short correlation times
ΓT ≫ 1. The non-geometric non-adiabatic contribution (∝ c) vanishes in this limit.

In the experiment the noise amplitude and evolution time are carefully chosen so that
geometric dephasing is remains visible in the observed coherences: For long evolutions
or strong noise, dynamical dephasing becomes too important and geometric dephasing
cannot be resolved.
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Table 5.1: Computed values for the coefficients a,b,c determining the dynamic, geometric and non-adiabatic
non-geometric contributions to dephasing. For the measurements where the qubit acquires only dynamical
phase, ωB = 0 and therefore b and c do not contribute to dephasing.

protocol R protocol P

correlation of noise a b c a b c

correlated, δΩ1 = δΩ2 0 0 4 0 0 0
anticorrelated, δΩ1 =−δΩ2 4 0 0 4 4 4
uncorrelated, 〈δΩ1δΩ2〉 = 0 2 0 2 2 2 2
1st window, δΩ2 = 0 1 1 1 1 1 1

5.2.3 Protocol R: ‘geometric’ echo
Similarly to the above section, where the expectation value of the phase and the coher-
ence were computed for a Ramsey-type experiment, these quantities can be computed for
the two protocols used in this experiment. The total phase accumulated by the qubit in
protocol R is

γR =
∫ T

0
d t

√
(∆− sgn(n)ωB )2 + (Ω0 +δΩ(t ))2 −

∫ 2T

T
d t

√
(∆+ sgn(n)ωB )2 + (Ω0 +δΩ(t ))2.

(5.14)
Expanding eq. (5.14) to first order in ωB , δΩ1 and δΩ2 gives

γR ≈
∫ T

0
d t

[
−2sgn(n)ωB cosθ− (δΩ1 −δΩ2)sinθ+ (δΩ1 +δΩ2)

sgn(n)ωBp
∆2 +Ω2

cosθ sinθ

]
.

(5.15)
The variance 〈(δγR )2〉 is evaluated by squaring δγR from eq. (5.15), giving

〈(δγR )2〉 =
∫ T

0
d t1

∫ T

0
d t2

[⟨(
δΩ1(t1)−δΩ2(t1)

)(
δΩ1(t2)−δΩ2(t2)

)⟩
(sinθ)2

+
⟨(
δΩ1(t1)−δΩ2(t1)

)(
δΩ1(t2)+δΩ2(t2)

)⟩ 2p
∆2 +Ω2

cosθ(sinθ)2 sgn(n)ωB

+
⟨(
δΩ1(t1)+δΩ2(t1)

)(
δΩ1(t2)+δΩ2(t2)

)⟩ 1

∆2 +Ω2 (cosθ sinθ)2ω2
B

]
. (5.16)

Which of the three ensemble averages 〈 . . .〉 in eq. (5.16) vanish and which ones do not
depends on the correlations between δΩ1 and δΩ2. For instance, if the noise in the two
halves of the echo is perfectly correlated, δΩ1(t ) = δΩ2(t ) and the first and the second
ensemble average vanish. The third one is 4〈δΩ1(t1)δΩ1(t2)〉 = 4CΩ1 (t1 − t2). Compar-
ing eq. (5.16) with eqs. (5.7) and (5.10), we can read off the universal decoherence factors
a,b,c. They are tabulated in the left half of Tab. 5.1.

Note that if one defines an effective z-component of the magnetic field ∆̃ = ∆−ωB in
eq. (5.3), it is possible to re-interpret all geometric manipulations as dynamic phenomena
(ac-stark shifts) in the frame of reference of eq. (5.3). Both this description and the one in
the frame of eq. (5.1) are equally valid. Choosing one or the other rests with the reader.
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5.2.4 Protocol P: ‘complete’ echo
In protocol P, the magnetic field follows the same path in both windows of the echo. There-
fore this protocol is a complete echo. The phase acquired by the qubit is found from
eq. (5.14) by flipping the sign of ωB under the second square root,

γP =
∫ T

0
d t

√
(∆− sgn(n)ωB )2 + (Ω0 +δΩ(t ))2 −

∫ 2T

T
d t

√
(∆− sgn(n)ωB )2 + (Ω0 +δΩ(t ))2.

Again, expanding the above equation to first order in ωB , δΩ1 and δΩ2 gives

γP ≈
∫ T

0
d t (δΩ1 −δΩ2)sinθ

(
1+ sgn(n)ωBp

∆2 +Ω2
cosθ

)
. (5.17)

There is no term to zeroth order in the noise, implying that all average phases 〈γP 〉 are
cancelled out by the echo pulse. However, because 〈(δγP )2〉 ̸= 0 dephasing is still there.
Carrying out the same steps as for protocol R leads to eq. (5.11) with coefficients a,b,c
given in the right half of Tab. 5.1.

5.2.5 Discussion of parameter estimates for a,b,c
For correlated noise, neither dynamic nor geometric dephasing is present (a= b= 0) and
non-adiabatic contributions only play a role in protocol R (c ̸= 0). In the complete spin
echo (protocol P), all fluctuations cancel out (a= b= c= 0). The effect of correlated noise
has been observed by Filipp et al. (2009) (the term in c in eq. (5.7)) and in ch. 4 (terms in a
and c). For the other types of noise correlations (anticorrelated noise, uncorrelated noise
and noise in the first window), there is dynamic dephasing (a ̸= 0) in protocols R and P,
and there is geometric dephasing (b ̸= 0) in protocol P. In protocol R, geometric dephasing
is only present when there is noise in the first window.

Fig. 5.7 shows parameter estimates for a and b (quantify dynamic and geometric de-
phasing, respectively) extracted from the data shown in Fig. 5.4 and Fig. 5.5. The ob-
served dynamic dephasing agrees well with eq. (5.2), and the observed geometric dephas-
ing (quantified by b) is somewhat larger than predicted. For those measurements of proto-
col R and P where only dynamic phase is measured, b is not extracted from a fit but rather
set to zero. The fitting procedure is described in detail in sec. 5.2.7. Note that as predicted,
dynamic and geometric dephasing is present in protocol P as well, that is, even when the
qubit does not acquire any deterministic phase.

The time-dependence in eq. (5.2) describes the experimental data in Fig. 5.4 well.
Fits to the measurements of coherences for protocol R with noise in the first window for
T = 160ns (Fig. 5.4(o)) give a = 1.13±0.02 and b = 1.46±0.05. These are similar to what
is obtained for T = 100ns (Fig. 5.4(l)), namely a = 1.14± 0.02 and b = 1.46±0.05. In ad-
dition, the data support the fact that dephasing is largest for anticorrelated noise, smaller
for uncorrelated noise, even smaller for noise in the first window only, and smallest for
correlated noise (Fig. 5.7).

In the measurements presented, the influence of the parameter c is very small. It is
therefore only fitted for the protocols with correlated noise, where a = b = 0. For protocol
R, c = 2 is expected and c = 2.25±0.25 is found, while for protocol P, c = 0 is expected and
c = 0.24±0.54 is found. In all other measurements, c is neglected. We refer to De Chiara
and Palma (2003), Filipp et al. (2009) and ch. 4 for detailed studies.
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Figure 5.7: Left half: parameters estimates for a and b extracted from both fits to data in Fig. 5.4 under the
constraint a,b,c > 0. The area is proportional to the number; theory (black circles & numbers) and fit parameter
(coloured disks & numbers). Right half: same, without constraints. For the unconstrained fit to the data of
protocol R with D.P., b′′ =−0.08±0.08 is found.

5.2.6 Considerations about adiabaticity
The adiabaticity parameter is defined according to Solinas et al. (2010). The Hamilto-
nian being H(t ), we can define an instantaneous (adiabatic) basis such that H(t )|ψn(t )〉 =
En(t )|ψn(t )〉. Writing D(t) for the transformation from a fixed basis (given e.g. by H(0)) to
the instantaneous basis, the Hamiltonian in the instantaneous basis is D−1(t )H(t )D(t )+
ħw , with w = −i D−1(t )Ḋ(t ). In the adiabatic case, w vanishes. The adiabatic parameter

is defined as s(t ) =ħ∥w(t )∥/
√
Ω2

0 +∆2, where ∥w(t )∥ = tr
√

w†(t )w(t ) is the trace norm of

w(t ). Evolution is adiabatic if s ≪ 1.
The off-resonant pulses are shaped such that s is constant over time and independent

of the solid angle when the drive Ω is increased or decreased (that is, beginning and end
of the pulses). For larger solid angles, the pulses need to be longer to keep s constant
across solid angles. When the magnetic field precesses (central part of the pulses), s varies
from solid angle to solid angle because ωB is kept constant. The data in Fig. 5.8 show
that s(t ) is always smaller than 0.28 and thus adiabaticity is maintained during the whole
off-resonant pulse-sequence, even when noise is applied. As expected, s is smaller for
ωB /2π|n| = T = 160ns than for T = 100ns.

Going to the extreme adiabatic limit s → 0 is not desirable. Although geometric de-
phasing is still present in this limit, it cannot be resolved experimentally because dynamic
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Table 5.2: Fitting functions used to obtain the fit estimates for a and b presented in Fig. 5.7. The upper half
of the table is for the constrained fit, the lower half for the unconstrained fit. Reading example: When the fit is
unconstrained, the coherences for protocol R with correlated noise and C+− are fitted using the function ν from
eq. (5.2) with coefficients a → 0, b →−b′ and c → 4c.

protocol R protocol P

C+− D.P. C−+ C++ D.P. C−−

correlated (0,0,4c) (0,0,0) (0,0,4c) (0,0,c ′) (0,0,c ′) (0,0,c ′)
anticorrelated (4a,0,0) (4a,0,0) (4a,0,0) (4a,−4b,0) (4a,0,0) (4a,4b,0)
uncorrelated (2a,0,0) (2a,0,0) (2a,0,0) (2a,−2b, ) (2a,0,0) (2a,2b,0)
1st window (a,−b,0) (a,0,0) (a,b,0) (a,−b,0) (a,0,0) (a,b,0)

correlated (0,−b′,4c) (0,b′′,0) (0,b′,4c) (0,b′,c ′) (0,b′,c ′) (0,b′,c ′)
anticorrelated (4a,−b′,0) (4a,b′′,0) (4a,b′,0) (4a,−4b,0) (4a,b′,0) (4a,4b,0)
uncorrelated (2a,−b′,0) (2a,b′′,0) (2a,b′,0) (2a,−2b,0) (2a,b′,0) (2a,2b,0)
1st window (a,−b,0) (a,b′,0) (a,b,0) (a,−b,0) (a,b′,0) (a,b,0)

dephasing increases linearly with time (see sec. 5.2.2).

5.2.7 Fitting the measured coherences
This section describes the fit models used to extract the parameters a, b and c quantifying
dynamic and geometrical dephasing.

In the fitting procedure, first the effective normalized noise amplitude is found by fit-
ting the function eq. (5.2) describing the coherence ν to the data from protocol R with
noise in the first window and dynamic phase (D.P.) only, assuming a = 1,b = 0,c = 0 and
with the normalized noise amplitude as only fit parameter. In this way, a normalized noise
amplitude of σ/Ω2

0 = 0.085 was determined, which is slightly smaller than the set value 0.1.
Second, all data from protocol R are fitted simultaneously for coefficients a and b of

the functions a and b. Where the theory predicts b = 0, we do not constrain the fitting
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function by setting b = 0; rather, the same fitting function with a separate variable is used.
For example, according to Fig. 5.7 no geometric dephasing (b = 0) is expected for protocol
R with anticorrelated noise and C−+. Therefore, a fitting function with b → b′ is used and
the fit ideally produces b′ = 0. Moreover, a similar variable b′′ is introduced for protocol R,
D.P. to avoid conflating b′ with it, as this would prevent b′ from taking values other than
zero in the fits to protocol R, C+− and C−+. Finally, the proportionality factors of a and b
in the fitting functions are fixed across the measurements. For instance, protocol R with
anticorrelated noise uses 4a and protocol R with uncorrelated noise uses 2a. The data
from protocol P is fitted similarly.

Third, the parameter c is only fitted for protocol R, correlated noise, C±, where a and
b vanish. This is the only measurement where it is relevant,

Fourth, the fitting parameters b′ and b′′ are set to zero in the fit we call ‘constrained’.
When dropping this constraint, the fitted values for a and b increase slightly (by maximally
6%, see Fig. 5.7); in turn, b′ and b′′ become negative. Simply put, the ‘unconstrained’
model (where b′ and b′′ are free parameters) trades off some fitting parameters against
each other in order to obtain the best fit. If theory was in perfect agreement with exper-
imental data (no noise, no systematic errors), this trade-off would not be possible. How-
ever, due experimental imperfections the fit produces an unphysical result, namely ‘neg-
ative’ dynamic dephasing (b′,b′′ < 0). To avoid this effect, we have opted for presenting
the constrained model in the main text. Comparing the parameter estimates in Fig. 5.7,
it becomes apparent that both models yield similar parameter estimates. In addition, as
discussed in the following paragraphs, both models (constrained and unconstrained) have
empirical support.

The normal probability plots (Chambers et al., 1983) of the residues of the models,
Fig. 5.9, show that the residues fall near the line describing the identity function, with the
exception of a few residues which are larger than expected. Therefore, they are normally
distributed. This holds for protocols R and P in both models (constrained and uncon-
strained). The underlying normal probability distributions of the residuals assume a mean
0 and use the standard deviation computed from the residuals:

σ(R)
unc. = 0.0425, σ(R)

con. = 0.0427, σ(P )
unc. = 0.0319, σ(P )

con. = 0.0326. (5.18)

To estimate if constrained and unconstrained models fit similarly well, we consider the
Akaike information coefficient (AIC) (Burnham and Anderson, 2002). The number of fit-
ting parameters is

K (R)
unc. = 6, K (R)

con. = 4, K (P )
unc. = 5, K (P )

con. = 4, (5.19)

where we taken into account the fact that the variance of the residuals eq. (5.18) is esti-
mated from the model. Since the number of fitting parameters K is not very small com-
pared to the sample size N = 3 ·4 ·12 = 144 (the number of measured coherences), we use
AICc , the finite-sample-corrected AIC. Because the residuals are normally distributed, and
assuming the variance of the residuals is constant, AICc takes on the simple form

AICc = N ln(RSS/N )+2K + 2K (K +1)

N −K −1
, (5.20)

with the residual sum of squares RSS. When comparing two models, the better model has
the smaller AICc value. As a rough rule of thumb (Burnham and Anderson, 2002), if the
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difference in AICc with the second model lies between 0 and 2, that model has substantial
empirical support, if between 4 and 7, it has less support, and if larger than 10 it should not
be considered. Here, for protocol R the unconstrained model is the better model and the
difference in AICc with the constrained model is 2.41. For protocol P, the converse is true:
The constrained model is a better model and the difference in AICc with the unconstrained
model is 4.31. To sum up, for both protocols the constrained model and the unconstrained
one have some empirical support.

In addition, a t-test has been performed to assess the significance of the parameters
a,b,b′,c,c ′ in the unconstrained model. With a sample size of N = 144 and k(R)

unc. = 5, re-
spectively k(P )

unc. = 4 degrees of freedom, we find (for both) a threshold t = 1.97 at which a
parameter value has a non-zero value with 95% of significance in a two-sided t-test. Given
that

t (R)
a = 55.53, t (R)

b = 12.79, t (R)
b′ = 0.88, t (R)

c = 9.18, (5.21)

and
t (P )

a = 65.22, t (P )
b = 28.14, t (P )

b′ =−2.56, t (P )
c ′ = 2.56, (5.22)

it can be asserted that in both protocols the parameters a quantifying the dynamic de-
phasing and b quantifying the geometric dephasing are significant. Furthermore, the t-
values for the parameter b′ are close to zero (as it should be, since we expect b′ = 0), indi-
cating that in this measurement there is no geometric dephasing. Finally, the value t (R)

c in-
dicates significance of the parameter c in protocol R, where non-geometric non-adiabatic
dephasing is present. In protocol P, where c ′ = 0 is expected, it is only weakly significant.

We note that fitting for the parameters a, b and c for individual data sets with n = 12
(such as protocol R with correlated noise and C−+) or groups of data sets with n = 36 (such
as protocol R with correlated noise and either C−+, C+− or D.P.) does not produce useful
parameter estimates. The same phenomenon as described above, the trading off of some
geometric dephasing against dynamic dephasing, is exacerbated and the fit values are not
significant.

5.3 Conclusion

In conclusion, we have reported on the first observation of geometric dephasing. The ex-
periment is carried out on a qubit efficiently isolated from the environment, whose cou-
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pling to an artificial noise source is under full control. In order to eliminate the dynamic
phase, two different echo protocols are employed. Measurements of a variety of noise cor-
relations show good agreement with theoretical predictions.

Typically, geometric dephasing will accompany the Berry phase. We have shown that
the dependence on the sign of the trajectory’s winding number implies that geometric
dephasing may either reinforce dynamic dephasing or partially suppress it.

Given the broad spectrum of systems whose time evolution involves geometric phases,
the presence of geometric dephasing is expected to be commonplace. A particularly in-
triguing aspect is the effect of geometric dephasing on the effective braiding phase of topo-
logical excitations, when the separation of the braiding particles is similar to the noise
amplitude.



CONCLUDING REMARKS

In this thesis, three experiments on the adiabatic geometric phase have been presented.
In the following, instead of summing these up once again, I will suggest a few ideas and
list some proposals for experiments which could be implemented in a circuit QED setup.
Some of them are within easy reach, others require more effort.

Considering the current limits set by the coherence times of superconducting qubits,
quantum computation based on adiabatic geometric phases (holonomic quantum com-
putation) is too slow to be attractive. The efforts by Abdumalikov et al. (2013), Feng et al.
(2013), and Zu et al. (2014), where non-Abelian non-adiabatic geometric gates have been
realized based on a proposal by Sjöqvist et al. (2012), are the first step towards imple-
menting universal geometric quantum computation. Using non-adiabatic gates speeds
up algorithms, but one question: ‘how do non-adiabatic gates fare experimentally in the
presence of noise?’ remains open and decidedly deserves further attention. The devel-
opments by Johansson et al. (2012) suggest that non-adiabatic gates become noise re-
silient when the pulses are short enough, but this is yet to be tested in vivo. From this
point of view—fast evolution leading to better coherence—the non-adiabatic gates are
uncannily similar to the dynamical phase, pressing an investigation on their relationship
and possibly their equivalence in an appropriately chosen frame of reference. In pass-
ing, we note that in addition to the aforementioned article by Sjöqvist et al. (2012), where
non-Abelian non-adiabatic geometric phases are investigated in a generic three-level Λ
configuration, there are schemes for quantum dots and single-molecule magnet devices
(Mousolou et al., 2014), and for a cyclic chain of four qubits with tunable interactions
(Mousolou and Sjöqvist, 2014).

Another approach to deal with noise in non-adiabatic holonomic quantum compu-
tation is to employ decoherence-free subspaces (Lidar et al., 1998) or its generalization,
noiseless subsystems (Knill et al., 2000). Xu et al. (2012) propose a set of universal gates
for decoherence-free subspaces, and Zhang et al. (2014) extend this to noiseless subsys-
tems so that collective decoherence can be tackled. There, at least four physical qubits are
needed to implement a logical qubit in a noiseless subsystem. Logical two-qubit gates can
be implemented with eight physical qubits.

Putting considerations about algorithm speed and limitations due to coherence times
aside, holonomic quantum computation based on non-Abelian adiabatic geometric gates
is also worth investigating. The universal single qubit gates implemented by Toyoda et al.
(2013) are proven to be noise-resilient. They are based on a tripod system, which consists
of a state coupled to three others (Unanyan et al., 1999; Duan et al., 2001). Similar propos-
als for two-qubit gates exist for trapped ions (Duan et al., 2001), superconducting circuits
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(Faoro et al., 2003) and semiconductor quantum dots (Solinas et al., 2003), but they have
not been realized yet. Kamleitner et al. (2011) have developed a scheme tailored to circuit
QED, where the tripod Hamiltonian allowing to implement universal single qubit gates is
recovered in a system consisting of a resonator mode coupled to three flux-driven qubits.

Geometric phases themselves are a lively research field in fundamental physics. Many
of types of phase have never been observed in superconducting circuits or even never
been observed at all. The extension of geometric phases to mixed states can be defined in
terms of purifications (Uhlmann, 1986) or operationally (Sjöqvist et al., 2000), and these
definitions are equivalent under certain conditions (Rezakhani and Zanardi, 2006). Al-
though the Uhlmann phase has been observed in NMR (Zhu et al., 2011), and the Sjöqvist
phase in NMR (Du et al., 2003) as well as in optics (Ericsson et al., 2005), neither has been
measured in superconducting qubits. However, its generalization to nonunitary evolution
(Tong et al., 2004) has been observed by Cucchietti et al. (2010) in NMR by simulating a
qubit coupled to a bath (another qubit). The authors find that the Berry phase is signifi-
cantly affected if the environment is quantum critical (Quan et al., 2006).

Finally, geometric phases can also be used for metrological applications: Rong et al.
(2011) use the Aharonov-Anandan phase in a phase-estimation protocol. Martín-Martínez
et al. (2013) have thought up an interferometric experiment where an atom flies in one
branch through a known hot source and in the other branch through an unknown cold
source. From the Berry phase it acquires, the unknown temperature can be extracted. At
the frontier between quantum mechanics and gravitation, there are some more proposals.
For instance, Pikovski et al. (2012) suggest an optomechanical experiment to set a bound
on a correction to the Heisenberg uncertainty relation due to quantum gravity, whereby
a displaced resonator acquires a geometric phase. Martín-Martínez et al. (2011) propose
to detect the Unruh effect (Unruh, 1976) by comparing the Berry phase acquired by an
inertial detector to the phase of an accelerated one.
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ASPECTS OF MICROWAVE MIXERS

Microwave mixers are an important component of a circuit QED setup. They are used for
upconverting IF signals to microwave frequency and for downconverting the readout sig-
nal before it is digitized and analysed. In this appendix, after a brief theoretical description
of the operating principle of IQ mixers and of their imperfections, we show measurements
of the higher harmonics created during upconversion and measurements of the linearity
of IQ mixers. We also give a detailed description of the mixer calibration procedure.

For further details, the interested reader may refer to ch. 13 of Pozar (2012) and the
references therein, or to ch. 12 of Collin (2000). Belov et al. (2012) give an overview of the
commercially available products in chapters 8 and 9.

A.1 Operating principle of a mixer

A.1.1 Three-port mixer
A ideal frequency mixer is a three-port non-linear device which combines two input sig-
nals so that the output signal is the product of the two input signals. The ports are
named local oscillator (LO), radio frequency (RF) and intermediate frequency (IF) port.
A schematic is shown in Fig. A.1(a). The LO port serves exclusively as an input port and
acts as a on/off switch: the mixer is on when the LO signal is on, and off otherwise. The
other two ports are for information-bearing signals and can serve both as input and out-
put port, depending on the intended use. For upconversion, also called modulation, the
RF port outputs two microwave-frequency signals at frequencies symmetric around νLO,
that is, νRF = νLO ±νIF. This can be seen as follows. The mixer multiplies the LO signal
sLO = cos(ωLO t ), which acts as a carrier wave, with the signal on the IF port, sIF = I cos(ωIF t ).
The output signal on the RF port is

sRF = sLO sIF = I (cosω+t +cosω−t )/2.

81



82 Appendix A. Aspects of microwave mixers

90° hybrid 0° hybrid

Z0

(a) (b)

sRFsLO
sLO sRF

sLO
(I)

sLO
(Q) sRF

(Q)

sRF
(I)

Z0

sIF
(Q)

sIF
(I)

sIF
(I)

Figure A.1: (a) Schematic of a three-port mixer. (b) Schematic of an IQ mixer. See text for details.

The component with the higher frequencyω+ =ωLO+ωIF is called the right sideband (RSB),
while the component with the lower frequency ω− = ωLO −ωIF is called the left sideband
(LSB). The left and right sidebands are sometimes referred to as lower and upper side-
bands. Double sideband modulation retains both sidebands, while single sideband mod-
ulation (SSB) eliminates one of the sidebands. A realistic frequency mixer is based on a
non-linear element, such as a transistor or a diode (Pozar, 2012). In addition to the de-
sired sidebands, it also generates spurs, that is, unwanted signals created during the mix-
ing process with frequencies ωLO ± jωIF ( j = 2,3,...), 2ωLO, etc.

The mixer can be operated by applying either AC pulses on the IF port (ωIF > 0, ‘side-
band modulation’) or by applying DC pulses (ωIF = 0, ‘direct modulation’). In the latter
operating mode, the frequency of the RF signal will be equal to the LO frequency and there
will be no sidebands.

When using the mixer for downconversion, or demodulation, the roles of the RF and IF

ports are interchanged. The downconverted signal, which is on the IF port, has a frequency
ωIF = |ωLO −ωRF|, since

sIF = sLO sRF = I
[

cos
(
(ωRF +ωLO)t

)+ sgn(ωRF −ωLO)cos
(
(|ωRF −ωLO|)t

)]
/2.

and the component with the higher frequency ωRF −ωLO are usually filtered out.

A.1.2 IQ mixer
When using a mixer for upconversion with sideband modulation, e.g. to create pulses for
qubit manipulation, it is desirable to retain solely one sideband, say with frequency νRF =
νLO +νIF, and to do away with the image response (the unwanted sideband) at frequency
νRF = νLO −νIF. The frequency difference between the two responses being 2νIF, the image
response can easily be filtered out whenνIF is large. If the IF frequency is small and filtering
is difficult, an IQ mixer can be used. It produces only one of the two sidebands and also
allows for controlling the phase of the upconverted signal without adjusting the phase of
the LO signal. An IQ mixer consists of two three-port mixers, a 0◦ hybrid and a 90◦ hybrid.
A 3dB 90◦ hybrid (also called quadrature hybrid) is a directional coupler with a 90◦ phase
difference in the two output ports and a coupling factor of 3dB, meaning that the power
at the input port will be equally distributed to the two output ports. The 0◦ hybrid acts like
the 90◦ hybrid, but without phase shift—it is an in-phase power combiner.

The circuit of an IQ mixer is shown in Fig. A.1(b). The LO signal is split by the 90◦
hybrid and routed to the LO ports of the three-port mixers. The two upconverted signals
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are combined in the 0◦ hybrid. In mathematical terms, the inputs at the LO ports are

s(I )
LO = K cos(ωLO t ) and s(Q)

LO = K cos(ωLO t −π/2). (A.1)

At the three-port mixers, s(I )
LO is mixed with the IF signal s(I )

IF = I cos(ωIF t +φI ) and s(I )
LO is

mixed with s(Q)
IF =Q cos(ωIF t +φQ ). This yields

s(I )
RF = s(I )

LO s(I )
IF = K I

[
cos(ω+t +φI )+cos(ω−t +φI )

]
/2,

s(Q)
RF = s(Q)

LO s(Q)
IF = KQ

[
cos(ω+t +φQ −π/2)+cos(ω−t +φQ +π/2)

]
/2.

The in-phase power combiner adds these signals to form the output signal of the IQ mixer,

sRF = s(I )
RF + s(Q)

RF = K I
[
cos(ω+t +φI )+cos(ω−t +φI )

]
/2

+KQ
[
cos(ω+t +φQ −π/2)+cos(ω−t +φQ +π/2)

]
/2.

(A.2)

Looking at eq. (A.2), we observe that it is possible to eliminate the image response by
choosing

I =Q and φI −φQ =−π/2 (A.3a)

in case the RSB of frequency ω+ =ωLO +ωIF is desired, and by choosing

I =Q and φI −φQ =π/2 (A.3b)

in case the LSB of frequency ω− = ωLO −ωIF is desired. In brief, it is possible to perform
SSB modulation with an IQ mixer by applying to the I and Q ports two pulses of identical
amplitude with a relative phase shift of π/2.

With eqs. (A.2) and eq. (A.3a), the upconverted signal (when utilizing the RSB) is found
to be

sRF,RSB = KQ
[
cos(ω+t +φQ −π/2)

]
/2+KQ

[
cos(ω+t +φQ −π/2)

]
/2

= KQ cos(iω+t +φQ −π/2).

It has amplitude KQ and phaseφQ . In other words, both amplitude and phase of the signal

sRF can be set by adjusting the amplitudes I ,Q and the phases φI ,φQ of the signals s(I )
IF and

s(Q)
IF . The same holds for the LSB: combining eqs. (A.2) and eq. (A.3b) gives

sRF,LSB = KQ
[
cos(ω−t +φQ +π/2)

]
/2+KQ

[
cos(ω−t +φQ +π/2)

]
/2

= KQ cos(ω−t +φQ +π/2).

Note that when DC-modulating the mixer, ωIF = 0, ϕI = ϕQ −π/2 and therefore sRF =
KQ cos(ωLO t +φQ ).
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Figure A.2: (a) Scheme of the
pulses as they arrive at the mixer
on the LO, I and Q ports for direct
modulation (left); scheme of the
power spectral density (PSD) of
the output spectrum of the mixer
(right). The frequency of the up-
converted signal is ωRF = ωLO .
(b) The same, but for single side-
band modulation when using the
right sideband. The frequency of
the upconverted signal is ωRSB =
ωLO +ωIF . The mirror image is at
ωLSB =ωLO −ωIF

A.2 Mixer calibration for sideband modulation

The relations (A.3) assume an ideal mixer consisting of ideal components. Real devices
however show some imperfections. For instance, when doing downconversion, due to
imperfections in the hybrid couplers the I and Q quadratures are not be perfectly orthog-
onal and their amplitudes do not match, giving rise to what is called quadrature imbal-
ance. These imperfections not only distort the signal, but also affect the cancellation of
the mirror image. In addition, there is LO leakage, meaning that some of the signal sLO is
transmitted to the RF port even when no voltage is applied to the I and Q ports.

Schematics of pulses implementing single sideband modulation and direct modula-
tion are shown in Fig. A.2. In this example, the phases are set to φQ =π/8 and φI =−3π/8
so that φI −φQ = −π/2. Therefore, when ωIF ̸= 0 the RSB is used and the LSB is cancelled.
The upconverted signal has a phase of π/8 with respect to the LO. For direct modulation,
the signal applied to the LO port is pulsed to avoid LO leakage, that is, leakage of the signal
from the the LO port through the mixer to the RF port. Because the pulses applied to the
I and Q ports have a finite duration, their frequency spectrum (see Fig. A.2) is not a delta-
peak at a certain frequency. It follows a sinc function if the pulses have a square envelope.
For sideband modulation, the frequency spectrum contains not only the desired upcon-
verted signal at ωRSB but also LO leakage at ωLO and a spur at the frequency of the mirror
image ωLSB.

A.2.1 Removing the mirror image
To model the imperfections of the mixer, we consider I and Q inputs which are offset in
amplitude (by additive terms ∆I and ∆Q) and phase shifted (by ∆φI and ∆φQ ) compared
to the ideal I and Q inputs in eq. (A.1),

s(I )
LO = K (1+∆I )cos(ωLO t +∆φI )

s(Q)
LO = K (1+∆Q)cos(ωLO t +∆φQ −π/2).
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The output of the mixer sRF then becomes (and should be compared with eq. (A.2)),

sRF = K I (1+∆I )
[
cos(ω+t +φI +∆φI )+cos(ω−t +φI −∆φI )

]
/2

+KQ(1+∆Q)
[
cos(ω+t +φQ +∆φQ −π/2)+cos(ω−t +φQ −∆φQ +π/2)

]
/2.

Cancelling the LSB is achieved by choosing

I =Q
1+∆Q

1+∆I
and φI −φQ =−π/2+∆φI −∆φQ (A.4a)

while the RSB is eliminated by letting e.g.

I =Q
1+∆Q

1+∆I
and φI −φQ =+π/2+∆φQ −∆φI (A.4b)

Note that eqs. (A.4) indeed reduce to eqs. (A.3) in the limit of an ideal mixer,
viz. ∆I ,∆Q,∆φI ,∆φQ → 0. When using the RSB, the resulting signal is, via eq. (A.2.1) and
eq. (A.4a),

sRF,RSB =Q(1+∆Q )cos(∆φI −∆φQ )cos(ω+t +φQ −π/2+∆φI ).

For the LSB, eq. (A.2.1) together with eq. (A.4b) give

sRF,LSB =Q(1+∆Q )cos(∆φI −∆φQ )cos(ω−t +φQ +π/2+∆φI ).

In the experiment, we most often use mixers IQ-4509MXP or IQ-0714MXP from Marki
Microwave. Their bandwidth is ωRF,LO/2π ∈ [4.5,9]GHz and ωRF,LO/2π ∈ [7,14]GHz, re-
spectively, with an IF bandwidth of 500MHz. The signals for the I and Q ports are usually
generated with an arbitrary waveform generator (AWG) Tektronix 5014, allowing to gener-
ate signals with a bandwidth of 500MHz.

The optimal parameters eq. (A.4) to cancel the mirror image are determined by min-
imizing the signal measured at its frequency. This is achieved by sweeping the relative
amplitude and phase of the I and Q channels (ideally being 1 and ±π/2) when generat-
ing the patterns for the AWG. Typically, when not calibrated, the mixers have an image
rejection of 20 to 25dB. Calibrating the mixer increases the image rejection to about 40dB.
Note that the optimal parameters gained in the calibration procedure depend strongly on
ωLO and ωIF.

A.2.2 Suppressing LO leakage
Typically, the mixers IQ-4509MXP or IQ-0714MXP provide an isolation from LO to RF of
about 25dB. When doing sideband modulation and operating with IF frequencies of
100MHz to 200MHz, the leakage is somewhat detuned from the RF output of the mixer
(coinciding with e.g. a qubit transition), but still drives the transition off-resonantly. This
is undesirable, but crude experiments, such as measurements of the coherence time of
the qubit, still work out. However, this constant off-resonant driving makes experiments
impossible when doing direct modulation—see below in sec. A.4.

LO leakage can be suppressed by adding a small DC bias voltage to signals of the I and
Q ports of the mixer. Normally, a bias of a few millivolt is sufficient. The bias is applied
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either by using a bias tee to combine the IF signal from the AWG with a DC signal, or by
feeding a DC signal to the ‘add input’ port on the back panel of the Tektronix 5014 AWG

(see sec. 2.3), which adds it to the IF output of the AWG. When doing sideband modulation,
both implementations perform equally well. When doing direct modulation, one must use
the ‘add input’ port because the RF port of the bias tee filters out the step-like signal from
the AWG.

A.3 Higher harmonics of sideband mixing

As mentioned above, the output spectrum of an IQ mixer used to upconvert a DC IF signal
displays not only the desired upconverted signal, but also spurious higher harmonics cre-
ated during the upconversion process. In this paragraph, the output spectrum of a mixer
IQ-0714MXP is analysed in typical conditions for circuit QED experiments. The upconver-
sion setup is as shown in Fig. 2.3. The Tektronix AWG 5014 generates two continuous sine
waves I and Q with a frequency νIF = 100MHz, which are input to the I and Q ports of the
IQ mixer in order to use the right sideband. The frequency of the local oscillator (operated
in c.w. mode) is set to ωLO = 7GHz. The mixer is driven at ≈ 15dBm (for a recommended
driving level 13dBm to 16dBm). Measurements at other LO frequencies (which provide
similar results) can be found in Abadal (2014). The mixer IQ-0714MXP supports IF fre-
quencies as large as 500MHz. However, the larger the IF frequency, the larger the conver-
sion loss. This is why usually IF frequencies between 100MHz and 300MHz are used.

The calibration for DC offsets and mirror image removal is carried out for using the RSB

at νRSB = 7.1GHz with a peak-to-peak voltage Vpp = 400mVpp on the AWG analogue out-
puts (equivalent to a peak voltage Vp = 200mVp). The mixer is only calibrated for this volt-
age, where it is expected to still behave linearly; it is not recalibrated when other, smaller
voltages are applied to the I and Q ports. Before looking at the output frequency spectrum
of the mixer, the voltages at the AWG need to be converted into voltage at the IF ports of
the mixer. The AWG outputs sinusoidal waveforms with a certain peak voltage Vp. The
corresponding rms voltage is

Vrms =Vp/
p

2.

The RG-58 BNC cable connecting the AWG outputs to the mixer has a length of 2m and
a loss of about 0.33dB at 100MHz. Losses at connectors can be ignored. Then, we have
installed 10dB of attenuation at the IF port. Therefore, a single IF port sees a rms voltage1

V =Vrms −10.33dB =Vp/
p

2−10.33dB. (A.5)

Assuming that the quadratures are more or less balanced, the voltage applied to the IF

ports I and Q is about the same. The total power delivered to the mixer is then doubled,
and therefore the total voltage is

p
2 times the voltage in eq. (A.5)2:

V =p
2
(
Vp/

p
2−10.33dB

)
. (A.6)

1To do the conversion between voltage and power, a resistance of 50Ω is assumed. To compute the voltage V ,
Vrms must first be expressed in the unit of dB assuming a resistance of 50Ω, before the losses and the attenuation
can be subtracted.

2In the following equation, one must first compute the bracket and then multiply by
p

2.



A.4. Mixer calibration for direct modulation 87

Figure A.3: (a) Power spectral density of the upconverted sinusoidal signal as a function of frequency for total
voltages input to the mixer ranging from 15mVrms (brown curve in front) to 304mVrms (purple curve at the back)
in steps of 15mVpp. The curves are offset horizontally and vertically for better legibility. (b) Relative power of the
sideband peaks compared to the power of the RSBas a function of the voltage applied to the I port of the mixer.

The voltage used for calibration Vp = 200mVp corresponds to a total input voltage of
61mVrms.

The output spectrum of the mixer is recorded by connecting a spectrum analyser (Ag-
ilent E4407) to the RFport of the mixer. At the input port of the spectrum analyser, there is
a DC-block. The spectrum analyser is used to record the power spectrum of the mixer out-
put in the frequency range νLO ±500MHz = [6.5,7.5]GHz. A power spectrum is recorded
for AWG output voltages from 100mVpp to 2000mVpp in steps of 100mV, corresponding to
total mixer input voltages from 15mVrms to 304mVrms. The maximal mixer input voltage
exceeds the voltage at which it is was calibrated—this is because we calibrate the mixer at a
low input voltage so that it is linear, but here exceptionally wish to apply higher voltages to
test its linearity. The data in Fig. A.3(a) clearly shows higher harmonics, placed at integer
multiples of νIF around νLO. At the maximal AWG output voltage, third-order harmonics
can be seen. Their amplitude increases with the AWG output voltage.

The suppression of the different higher harmonics with respect to the RSBare plotted
as a function of the voltage on the I port of the mixer in Fig. A.3(b). The suppression of the
higher harmonics is at least 40dBm. The suppression of the LO is lowest when the carrier
signal is weak, that is, for low voltages on the I port (−15dBc or equivalently −57dBm). At
higher voltages, it improves to about 40dBc.

A.4 Mixer calibration for direct modulation

Fig. A.3 shows that the spectrum of a signal created by upconversion with an IQ mixer
displays various spurs. As described above in sec. A.2, there are two types of spurs when
performing sideband modulation: the higher harmonics created during the upconversion
process, as well as leakage of the LO signal. To avoid off-resonant driving of the qubit or
any other system under investigation, two things are done: the mirror image is minimized



88 Appendix A. Aspects of microwave mixers

by optimizing the relative amplitude and phase of the signals applied to the I and Q ports,
and the LO leakage is minimized by adding a DC bias to these.

For direct modulation, there is no sideband mixing and therefore no higher harmon-
ics. However, there still is quadrature imbalance, that is, the amplitude of the upconverted
RF signal depends on its phase φ. For the experiment this is bothersome because, say, the
amplitude of a πx -pulse (φ= 0) and the amplitude of a πy -pulse (φ=π/2) are different. In
addition, the LO leakage is on resonance with the transition of the system under investiga-
tion, always slightly driving the transition even when the mixer is closed and thus making
measurements of the geometric phase impossible. The solution is to gate the LO, that is,
using pulse modulation3of the signal generator so that the LO signal is on only when the
mixer opens and switched off as soon as the mixer is closed. Typically, gating times of
20ns to 40ns are chosen. This procedure has the drawback that the mixer DC bias cannot
be calibrated with the standard routine (applying a small DC offset on the I and Q ports of
the mixer while leaving the LO on, and measuring the RF signal using the FPGA) because
the FPGA acquires only a few tens of nanoseconds of signal, and the signal-to-noise ratio
is too low.

A.4.1 Mixer calibration procedure
It is possible to calibrate both the LO leakage and the quadrature imbalance of the mixer
operated in the DC regime by using the qubit as a calibration tool. The idea is to determine
the amplitude of the signal needed to induce a π-flip in the qubit for different quadrature
phase angles φ. To do so, Rabi oscillations between the ground and first excited state of the
qubit, as presented in sec. 2.5.3, are recorded by applying pulses with increasing amplitude
for various φ. In the following we present the protocol and experimental data.

1. Set the mixer calibration to default: no DC bias voltage, and relative phase and am-
plitude of I and Q not optimized.

2. Choose the length of the LO gating pulse (typically 20ns) and use an oscilloscope to
time the arrival of the LO gating pulse at the mixer with the arrival of the I and Q
pulses from the AWG. The length of these pulses should be equal to the length of the
LO gating pulse. When using a Tektronix 5014 AWG with a signal generator Agilent
E8257, the gating pulse should typically arrive at the signal generator ≈ 80ns before
the AWG starts outputting the pulses for I and Q.

3. Record Rabi oscillations by applying pulses on the I quadrature (quadrature phase
angle φ = 0) with increasing amplitude. The pulse duration is to be kept constant.
Repeat this measurement for n ≥ 5 different values of φ. It is preferable, albeit not
strictly necessary, to distribute the values equally in the IQ plane, that is, choose
φ j = 2π j /n,0 ≤ j ≤ n −1.

For an ideal mixer, when drawing the excited state population pe of the qubit as a
function of the pulse amplitude along I and Q, the maxima of pe (the π-pulse ampli-
tudes rπ) describe a circle centred at the origin of the IQ plane. LO leakage shifts the
center of the circle, while quadrature imbalance squeezes the circle into an ellipse.

3All signal generators Agilent E8257 come with narrow pulses modulation (minimal modulation time 20ns)
for frequencies above 3.2GHz. Between 10MHz and 3.2GHz the option 1E6 is required .
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4. An ellipse in a plane is completely defined by five parameters. (This is why at least
five measurements rπ are needed.) In polar coordinates, these parameters are the
centre of the ellipse (a0,φ0), the semidiameters a and b, and the angle φ′ between
the axis a and the line defined by φ≡ 0. The ellipse is thus parameterized as r (φ) =
(P (φ)+Q(φ))/R(φ), where 0 ≤φ≤ 2π and

P (φ) = a0
[(

b2 −a2)cos(φ+φ0 −2φ′)+ (
a2 +b2)cos(φ−φ0)

]
Q(φ) =p

2ab
√

R(φ)−2a2
0 sin2(φ−φ0)

R(φ) = (
b2 −a2)cos(2φ−2φ′)+a2 +b2.

(A.7)

The ellipse describing the quadrature imbalance of the mixer is found by fitting the
parametrization in eqs. (A.7) to the measured points rπ(φ j ).

5. Use the parameter estimates for a0 and φ0 to determine what DC bias voltages on I
and Q are required in order to recentre the ellipse. Apply the DC bias voltages needed
to centre the ellipse on the origin of the IQ plane. Roughly speaking, +100mV ap-
plied in front of a 1 : 10 voltage divider shift the origin by +3mV with 10dB of atten-
uation at the I and Q ports.

6. Repeat the Rabi measurements. With eqs. (A.7), determine the ellipse defined by
the π-pulse amplitudes rπ(φ j ). The ellipse should now be centred on the origin. If
not, repeat the previous step until the ellipse is centred with desired accuracy. This
completes the calibration of the DC bias voltage.

7. From the centred ellipse, extract its tilt φ′ and its semimajor and semiminor axes
a and b. In order to balance the quadratures (read: map the ellipse to a circle) the
relative amplitude of the signals applied to the I and Q ports must be adjusted. We
thus rescale these signals by a factor s = s(φ). As a reference point where s = 1, we
choose the amplitude r (φ= 0) of the π-pulse applied on the I quadrature. Then, the
scaling factor is s(φ) = r (φ)/r (0), the fitted π-amplitude r (φ) divided by r (0).

8. After integrating the scaling function s(φ) into the pattern generation routine, repeat
the Rabi measurements once again and extract the ellipse defined by the π-pulse
amplitudes. The calibration is successful if the amplitudes rπ(φ j ) of the π-pulses
define a circle centred at origin of the IQ plane.

We illustrate such a calibration procedure with three sets of Rabi oscillations ( j = 8, see
Fig. A.4) recorded with a mixer IQ-4509 MXP at a frequency of 4.944GHz. The extracted

parameters are listed in Tab. A.4.1. There, the eccentricity ϵ =
√

1− (a/b)2 of the ellipse
and the ‘amplitude imbalance’ AI = 20log10 a/b are also indicated.

The first set is recorded with default mixer calibration (step 2, Fig. A.4(a)). The quadra-
ture imbalance as well as the LO leakage are immediately apparent: The points rπ(φ) de-
fine an off-centre ellipse. The amplitude imbalance is AI = 1.89dB, which is much larger
than the typical 0.3dB given in the data sheet of the mixer. From the ellipse, the DC bias
voltage required to minimize the LO leakage is determined to be about 3mV. The mea-
sured qubit populations pe , which were computed by solving the Cavity-Bloch equations,
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Figure A.4: Resonant mixer calibration. First excited state population 〈pe 〉 as a function of the voltage applied
to mixer I and Q ports. 〈pe 〉 is extracted from amplitude Rabi measurements along fixed phase angles φ. The
voltages rπ(φ j ) corresponding to a π-pulse are marked by black squares, the ellipse fitted to the rπ(φ j ) is also
shown (dashed line). The point where zero voltage is applied on both the I and Q ports of the mixer is indicated
by a white cross. (a) Populations measured with zero DC bias voltage and relative amplitude/phase of signals on
I and Q not optimized. (b) Populations measured with DC bias voltage. (c) Populations measured with DC bias
voltage and optimized amplitude and phase of signals on I and Q.

Table A.1: Parameter estimates for the ellipses shown in Fig. A.4 during the various stages of mixer calibration,
as well as the parameters for an ideal mixer.

calibration a0 φ0 a b ϵ φ′ AI
[mV] [rad] [mV] [mV] [rad] [dB]

none 2.98 0.10 21.3 16.8 0.61 2.00 1.89
only DC bias 0.29 −0.32 21.3 16.8 0.61 2.00 1.89
fully calibrated 0.01 −0.53 17.1 17.2 0.11 0.17 −0.18

ideal mixer 0 — — — 0 — —

are not always between 0 and 1. This is because the calibration pulses used to compute
the populations are off since at this point the mixer is not calibrated.

The second set of Rabi measurements, with optimal DC bias (steps 5 and 6, Fig. A.4(b)),
shows an almost centred ellipse with an amplitude imbalance AI = 1.89dB. The DC bias is
almost optimal (a0 = 0.29mV instead of 2.98mV before calibration). The third set of Rabi
oscillations, taken with a fully calibrated mixer, shows fully balanced I and Q quadratures
with minimized LO leakage (step 8, Fig. A.4(c)). The amplitude imbalance is now only
AI =−0.18dB. The calibrated mixer compares favourably with an ideal mixer with a0 = 0
and vanishing amplitude imbalance ϵ= 0. It should be pointed out that the quality of the
calibration achieved in this example is representative of this calibration procedure—the
level of accuracy reached here can routinely be achieved (e.g. at different qubit frequencies
or with a different mixer). Furthermore, assuming that the transition frequency of the
qubit is stable, the qubit itself does not affect the calibration of the mixer.
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Figure A.5: Off-resonant mixer calibration. First excited state population 〈pe 〉 as a function of the voltage applied
to mixer I and Q ports. Scale for 〈pe 〉 and symbols are as in Fig. A.4. (a) Populations measured with calibrated DC

bias voltage. (b) Populations measured with full calibration.

A.4.2 Off-resonant mixer calibration
The above calibration protocol can also be used when the mixer is not operated at the tran-
sition frequency ω01 of the qubit, but at some slightly detuned frequency, |ωLO −ωg e | .
80MHz—for instance when generating the off-resonant pulses in the geometric phase
measurements presented in part II of this thesis. The main difference between the off-
resonant and the resonant calibration is the fitting function. When driving a two-level
system off-resonantly with constant drive Ω and detuning ∆, the excited-state population
is (Foot, 2007, ch. 7)

pe = Ω2

Ω2 +∆2 sin

(
1

2

√
Ω2 +∆2t

)
, (A.8)

which for ∆= 0 reduces to the familiar function used to fit resonant Rabi oscillations

pe = sin

(
1

2
Ωt

)
. (A.9)

Because eq. (A.8) assumes constant amplitudes, square pulses have to be used for off-
resonant mixer calibration. For a finite detuning ∆, pe < 1 and points other than the rπ(φ j )
have to be used to fit the ellipse describing the mixer. Using a local maximum reached
by the function pe (Ω) in eq. (A.8) is a good choice. Otherwise, the calibration protocol
is unchanged: Record Rabi oscillations using pulses with different phases φ, extract an
ellipse describing the LO leakage and quadrature imbalance, correct for it by adding a DC

bias voltage and scaling the pulses on I and Q.
To illustrate that this protocol works, data from an off-resonant mixer calibration per-

formed at a detuning of∆/2π=−50MHz is shown in Fig. A.5. A mixer IQ-4509 is used, with
ωLO = 7.084GHz and ω01 = 7.034GHz. In Fig. A.5(a), the LO leakage has already been cor-
rected for. From the parameter estimates of the ellipse we find a0 = 1.15mV and ϵ= 0.42.
In panel (b), where the mixer is fully calibrated, a0 = 0.76mV and ϵ= 0.19.
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A.5 Linearity of mixer

Ideally, mixers obey a linear input-output relation, i.e. the power measured at the RF port
is linear in the power fed on the I and Q ports. For small input powers, this is the case,
but for large input powers the output signal is compressed. The mixer models IQ-4509
or IQ-0714MXP have an input 1dB compression point lying between 4dBm and 6dBm.
To quantify how linear the response is and what voltages can be applied before the mixer
starts to compress, we use the power spectral density measurements similar to those in
Fig. A.2. When doing experiments, it is preferable to work in the linear regime far below
the 1dB compression point. For instance, in part II of this thesis, the solid angle enclosed
by the effective magnetic field is a function of the amplitude Ω of an upconverted signal,
which is calibrated using a Rabi measurement. If the mixer response is non linear, the
effectively enclosed solid angle differs from the desired solid angle.

The device under test is an IQ-0714MXP mixer, driven continuously at ωLO = 7GHz
with a power of 16dBm. There are 10dB of attenuation at each of the IF ports. The mixer
is sideband-modulated with ωIF = 100MHz and calibrated as described in sec. A.2 for use
of the RSB at 400mVpp. Thirty-two power spectra are recorded, one for each AWG output
voltage from 100mVpp to 3200mVpp in steps of 100mV. The voltages at ωRSB extracted
from these are shown in Fig. A.6. Although these measurements are performed at the edge
of the band of the mixer, the results are very similar to what is obtained at frequencies lying
in the center of the band Abadal (2014).

To asses how linear the mixer is, thirty-two linear fits fi are made to data sets consisting
of the i lowest voltages, i = 1, . . . ,32. For each fi the coefficient of determination r 2 is
computed (Draper and Smith, 1998, ch. 5). The coefficients plotted in Fig. A.6(a) show that
r 2-value starts dropping at i = 8 (121mVrms of total voltage on the IF ports, 400mVp at the
AWG outputs with the configuration used here). This somewhat arbitrarily sets the point
where we say the mixer response becomes nonlinear. In the same figure, we also show a
linear fit to the lowest eight voltages, extrapolated to cover the whole voltage range, and
an empirical fit of all voltages to a quadratic function.

Fig. A.6(b) shows the same information on a doubly logarithmic scale. This allows us
to determine the input 1dB compression point P1dB by looking at the difference between
these two fits. We extrapolate P1dB = 8.42dBm (equivalently 590mVrms on the IF ports,
or 1936mVp at the AWG output). The specifications of the mixer indicate a typical value
of P1dB = 6dBm which is slightly lower that what is found here. Defining a ‘0.5dB com-
pression point’, we locate it at −2.29dBm (172mVrms on the IF ports, 564mVp at the AWG

output).
For an ideal mixer (linear, no conversion loss), the function describing the relation be-

tween output power and input power is the identity function. In a doubly logarithmic plot
such as Fig. A.6(b), non-zero conversion loss simply vertically offsets the identity func-
tion. Here, a conversion loss of 5.1dB is found. This is somewhat better than the typical
performance of such a mixer (6dB at 7GHz) but still plausible.

In principle, a characterization of the linearity of the mixer response may be used to
extend the useful range of the mixer: one can correct the voltages output by the AWG as
a function of the desired RF output voltage according to the mixer response. However,
the mixer response needs to be measured anew at for every mixer and for every operating
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Figure A.6: Linearity of mixer response. (a) Voltage measured at the RF port of the mixer at the frequency of the
RSB as a function of the rms voltage applied to the IF ports. The blue line is a linear fit to the full dots, the red line
a quadratic fit to the empty dots. The crosses show the coefficient of determination r 2 of a linear fit to the lowest
voltage up to the given voltage. (b) The same, but with powers on a logarithmic scale instead of voltages. The
black line is a linear mixer with no conversion loss (CL). The extrapolated input 1dB compression point P1dB is
marked by a dashed line.

frequency of the mixer, which is rather time-consuming. It is preferable to use a mixer
with a high 1dB compression point.
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NOISE GENERATION

In ch. 4 and ch. 5, synthesized noise is applied to the effective magnetic field used to guide
the qubit. In this appendix, we describe the mathematics behind the generation of the
noise and provide calibration data.

B.1 Ornstein-Uhlenbeck process

The noise considered is a continuous Markov process X (t ). For a pedagogical introduction
to this type of noise, see the article by Gillespie (1996). In the following, we lean on this
article to provide a minimum of definitions.

A random variable X has a density function P if P (x)d x is equal to the probability that
a sampling of X gives a value in the interval between x and x +d x. In other words, the
density function P specifies the shape of the histogram one obtains by sampling X many
times. The density function fully specifies a random variable. The average of a function f
with respect to a random variable X (characterized by a density function P ) is defined as

〈 f (X )〉 =
∫ ∞

−∞
f (x)P (x)d x.

The expression 〈X k〉 is the kth moment of X . The first moment 〈X 〉 is called the mean of X .
The variance of X is defined as 〈(X −〈X 〉)2〉 = 〈X 2〉−〈X 〉2. The square root of the variance
is called the standard deviation of X . The normal (or Gaussian) random variable N has a
density function given by

P (n) = 1p
2πσ2

exp

(
− (n −m)2

2σ2

)
.
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This random variable has mean m, standard deviation σ and variance σ2. A normal ran-
dom variable with m = 0 and σ= 1 is called unit random variable.

A stochastic process is a random variable whose density function P depends on time
t . A stochastic process is a memoryless (or Markov) process if at any time t , X (t + d t )
depends only on the time t , the infinitesimal time increment d t and the value of X at time
t . Assuming that the increment X (t +d t )−X (t ) depends smoothly on t , d t and X (t ), and
that the increment vanishes in the limit d t → 0, it can be shown (Gillespie, 1996) that any
Markov process takes on the analytical form

X (t +d t ) = X (t )+ A(X (t ), t )d t +
√

D(X (t ), t )N (t )
p

d t . (B.1)

The above equation, called the Langevin equation for the process X , is an update formula:
it can be used to compute X (t +d t ) given X (t ). In eq. (B.1), N (t ) is a unit random variable
which is temporally uncorrelated. The function A(x, t ) is called the drift function of the
process. D(x, t ), which has to be nonnegative, is called the diffusion function.

A continuous Markov process with drift and diffusion functions of the form

A(x, t ) =−1

τ
x and D(x, t ) = c with τ,c > 0

is called Ornstein-Uhlenbeck process with relaxation time τ and diffusion constant c. Its
solution is a normal random variable with mean and variance

m = x0e−(t−t0)/τ and σ2 = cτ

2
(1−e−2(t−t0)/τ). (B.2)

In the limit t →∞, the mean relaxes to m → 0 and the variance σ2 → cτ
2 . The Ornstein-

Uhlenbeck process in this limit is called fully relaxed. Now, in order to generate an
Ornstein-Uhlenbeck process numerically, one could make use of the update formula
eq. (B.1) and the closed form of the process eq. (B.2). To create the whole process at once
instead of using a series of updates, a different approach is needed.

B.2 Spectral density function

Let X be a stationary process with vanishing mean1. Its second moment 〈X 2(t )〉 = σ2 is
called the intensity of X . The auto-covariance (or correlation function) of this process is
defined by

CX (t ′) = 〈X (t )X (t + t ′)〉.
It is independent of t because X is stationary. Its Fourier representation is

CX (t ′) =
∫ ∞

0
SX (ν)cos(2πνt ′)dν.

Letting t ′ = 0 in the above equations gives the Wiener-Khintchine theorem,

〈X 2(t )〉 =
∫ ∞

0
SX (ν)dν,

1The Ornstein-Uhlenbeck process is not stationary. The fully relaxed process is.
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i.e. the spectral density function (also called power spectrum) SX (ν) tells us what portion
of the intensity of X is due to the frequencies between ν and ν+dν. The fully relaxed
Ornstein-Uhlenbeck process has an exponentially decaying auto-covariance

CX (t ′) = cτ

2
e−t ′/τ. (B.3)

Its spectral density function

SX (ν) = 2cτ2

1+ (2πτν)2 (B.4)

describes a Lorentzian with full width at half-maximum 1/2πτ.

B.3 Numerical generation of the noise

This section describes how an Ornstein-Uhlenbeck process with specific properties is nu-
merically generated. Measurements of the noise with a spectrum analyser show that the
noise indeed is as desired.

B.3.1 Fourier representation
We can write a Ornstein-Uhlenbeck process X (t ) as a the sum of its Fourier components
(Rice, 1944),

X (t ) =
K∑

k=0
(ak cos(2πνk t )+bk sin(2πνk t )),

with ak and bk independent random variables normally distributed around zero with a
variance σ2 = SX (ν)∆ν, where νk = n∆ν. To minimize computational effort, it is recom-
mended to rewrite the above as

X (t ) =
K∑

k=0
ck cos(2πνk t +ϕk ), (B.5)

with ck =p
2SX (ν)∆ν and ϕk a random phase angle uniformly distributed in the interval

[0,2π[. To represent X (t ) faithfully, the sums should have infinitely many terms (K =∞).
For practical reasons, we choose to cut off the sum when all significant contributions are
present, for example, following Filipp (2006), at

νmax = 7/τ. (B.6)

At this point, 98.56% of the total power of the process is included.
The discrete frequency interval ∆ν has to be chosen so that the period of the Fourier

series representation of X , eq. (B.5), is larger than the duration of the experiment (about
500ns). Letting K = 55 and τ = 100ns (or equivalently Γ = 10MHz), we have ∆ν =
νmax/(K − 1) = 1.30MHz, and a period 1/∆ν = 771ns. Also, the fastest oscillations have
a frequency of νmax = 70MHz, which is well below the effective output frequency of the
Tek 5014 AWG (480MHz) and the IF bandwidth of the IQ mixers (500MHz). Fig. B.1 shows a
realization of a process with these parameters and diffusion constant c = 80V2Hz created
using eq. (B.5). The corresponding spectral density function eq. (B.4) is shown, too.
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Figure B.1: (a) Example of an Ornstein Uhlenbeck process X (t ) with relaxation time τ= 100ns (corresponding to
a bandwidth Γ= 10MHz) and diffusion constant c = 80V2Hz (corresponding to a standard deviation of σ= 2V).
The period of the process (indicated by vertical lines) is determined by K = 55 and νmax = 7/τ = 70MHz as
1/∆ν = K /νmax ≈ 771ns. (b) Spectral density function SX (ν) on a doubly logarithmic scale. SX is flat for low
frequencies and has a knee at ν = 1/2πτ = 1.59MHz (dashed vertical line). The trailing part has a slope of −2,
characteristic of the quadratic decay of a Lorentzian. The cutoff at νmax = 70MHz is indicated by a dash-dotted
line.

A way to test the numerically generated Ornstein-Uhlenbeck process is to compute is
auto-covariance function and to compare it to theory, eq. (B.3). To this effect, a process
with parameters as in Fig. B.1 is generated according to eq. (B.5) and the auto-covariance
is computed by numerically integrating (T = (K −1)/νmax, see Rice (1944) on p. 31)2

CX (t ′) = 1

T

∫ T

0
X (t )X (t + t ′)d t . (B.7)

Fitting the auto-covariance function eq. (B.3) to the data thus obtained gives parameter
estimates for the diffusion constant and the relaxation time which agree very well with
the desired values (see Fig. B.2(a)). The correlation function however has a vertical offset
which should be zero in theory. The value of this offset changes from noise realization to
noise realization, and its mean tends to zero when K →∞. For K = 55, it is about 0.5V2.
This means that there the noise exhibits some correlations at DC frequencies because of
the finite number of Fourier components used to represent it.

B.3.2 Smoothing of the noise envelope
Ultimately, the noise process X (t ) will be added to an unperturbed signal during a certain
time interval. To avoid discontinuities in the combined signal at those points ti , t f in time
where the noise is ‘turned on’, X (t ) needs to be forced to zero at ti and t f . Therefore, X (t )
is multiplied with a smoothing function—in principle, any function which is zero at ti ,
rises to one, stays at one until shortly before t f , when it smoothly falls to zero.

Here, a type of Fermi-Dirac distribution f (β,µ, t ) = 1/(1+ e−β(t−µ)) was used. For the
ascending part of the smoothing function, an interval of ±β around the inflexion point of

2This reference gives the definition CX (t ′) = limT→∞ 1
T

∫ T
t=0 X (t )X (t + t ′)d t , which, in the case of periodic

functions, reduces to eq. (B.7).
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Figure B.2: (a) Auto-covariance function CX of an Ornstein Uhlenbeck process X(t) with parameters identical to
Fig. B.1 (τ= 100ns,c = 80V2Hz). The process has a period K /νmax ≈ 771ns, and so does CX . Dots and squares are
computed values of CX . The blue line is a fit of the expected function eq. (B.3) to the dots solely; the fitting func-
tion includes an additional vertical offset. The parameter estimates are printed in the plot. (b) Mean offset of the
auto-covariance function as a function of the number of components K included in the Fourier decomposition
of X (t ). For each value of K , thirty auto-covariance functions were considered.

f is excerpted, shifted and stretched out vertically to fit the image range [0,1]:

f̃ (β,µ, t ) = f (β,µ, t +µ/2)− f (β,0,−µ/2)

f (β,0,µ/2)− f (β,0,−µ/2)
.

For the descending part, this function is mirrored and shifted in time. The resulting
smoothing function is

f̂ =


f̃ (β,µ, t + ti +µ/2) if ti < t ≤ ti +µ

1 if ti +µ< t ≤ t f −µ

f̃ (β,µ,−t + t f +µ/2) if t f −µ≤ t f

0 else

As mentioned above, the duration of ramp can be controlled by adjusting the ‘chemical
potential’ µ, and its steepness by the ‘inverse temperature’ β. For the experiments pre-
sented in ch. 4 and ch. 5, µ = 10ns was chosen as a compromise between adiabatically
turning on the noise and keeping the ramp duration short. Setting β = 500MHz then re-
sults in a moderately steep ramp. A sample of six noise processes smoothed by this func-
tion in the interval [ti = 0, t f = 0.5µs] is shown in Fig. B.3(a); the smoothing function itself
is shown in Fig. B.3(b). One sees that, as it should, the smoothing functions forces the
noise process to 0 at t = 0 and at t = 0.5µs in 10ns but does not affect it at other times.

When the smoothing functions reaches one, there is a discontinuity in its derivative.
Although this kink does not matter, it could be avoided by using a squared sine instead of
a Fermi-Dirac-like function.

B.3.3 Measurements with spectrum analyser
Whether the noise numerically generated via eq. (B.5) conforms to the design parameters
can be tested with the help of the spectrum analyser. An AWG pattern of 5µs length with
noise (no DC component, Γ = 10MHz and a variance of 10% of the dimensionless ampli-
tude, output set to 2Vpp) is created and run continuously on a channel of the AWG . This
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Figure B.3: (a) Six realizations of a noise process (coloured wiggly lines) smoothed by the function shown in
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signal is then upconverted to 8GHz using an IQ mixer and measured with the spectrum
analyser.3

The spectral density function of this signal is shown in Fig. B.4. The signal was recorded
with a resolution bandwidth RBW of 3MHz and a video bandwidth of 10kHz. The video
bandwidth was chosen very low in order to make the noise measurement less noisy (Ag-
ilent, 2012). A fit to the Lorentzian eq. (B.4) gives the parameters tabulated in Tab. B.1.
For convenience, the expected values and the parameters describing the Lorentzian in the
more standard form

A

1+
(
ν−ν0
δν0/2

)2 (B.8)

are also given. In eq. (B.8), ν0 is the centre frequency, δν0 the full width at half maximum
(FWHM) and A the ‘amplitude’ of the Lorentzian (in units of a power spectral density).
The signal is symmetric around the peak at 8GHz. It vanishes at 8GHz±70MHz (which

3Note that for noise measurements the spectrum analyser (Agilent E4407B) by default indicates dBm/RBW
as a function of frequency, which can be converted to a spectral density function (dBm/Hz) by subtracting
10log10 RBW.
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Table B.1: Parameters of the noise process as set at generation, and as extracted from the fit (with corresponding
uncertainties).

parameter set actual error

center frequency ν0 [GHz] 8 8.000 3 ·10−6

relaxation time τ [ns] 100 99.78 0.27
diffusion constant c [W Hz] — 39.04 0.17

intensity σ2 = cτ/2 [µW] — 1.948 0.010
‘amplitude’ A = 2cτ2 [fW/Hz] — 388.7 2.7
FWHM δν0 = 1/πτ [MHz] 3.184 3.190 0.008
noise bandwidth Γ= 1/τ [MHz] 10 10.02 0.03

corresponds to the cutoff-frequency from eq. (B.6), viz. νmax = 7/τ = 70MHz), at which
point the spectrum analyser records the noise floor at −131dBm. The spectral density
function is well-described by a Lorentzian, and the relaxation time extracted from the fit
agrees very well with the expected value.

Determining the variance of the noise is somewhat more involved. The intensity com-
puted from the fitted values for c and τ is σ2 = 1.948µW, resulting in a standard deviation√

50Ω ·σ2 = 9.87mV. (B.9)

of the noise at the input port of the spectrum analyser. This numerical value should be
compared with variance one obtains by tracking the variance chosen at the generation of
the noise through the upconversion chain.

First, the upconversion losses must be determined. All the components in the upcon-
version chain (from the output of the AWG to the input of the spectrum analyser) are listed
in Tab. B.2. The combined losses are ℓ ≈ 20.72dB. For the semi-rigid coaxial cables, the
loss constant at 8GHz is α= 2dB/m.

The upconversion losses can also be determined directly, e.g. by generating white
noise in the band from 0 to 100MHz with the AWG and (i) determining its power Pdc with
the spectrum analyser, and (ii) first upconverting it to 8GHz and then determining its
power Pac. A continuously run white noise pattern on an AWG Tek 5014 with Vrms = 1V
and run at 1Vpp gives a ratio

ℓ′ = 10log10
Pdc

Pac
= 10log10

1.2 ·10−11 W

1.0 ·10−13 W
≈ 20.8dB.

Note that ℓ′ reflects the losses nos.1 to 11 in Tab. B.2: the last semi-flexible coaxial cable,
no.12, is not included in ℓ′ because it is present in both measurements (i) and (ii). However
in (ii) the signal at 8GHz incurs losses in no.12 not present in (i) where the signal is at DC.
These effects roughly compensate each other and so ℓ can be compared to ℓ′. They agree
rather well—this is perhaps coincidental seeing how sensitive these power measurements
are.
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Table B.2: Components in the upconversion chain, and their losses.

no. name part number loss [dB]

AWG Tek 5014 output
1 semi-flexible coaxial cable at d.c. (small)
2 flange-mount connector (small)
3 semi-rigid coaxial cable MicroCoax UT-85-TP 0.2
4 SMA(m) connector AEP 9401-1583-010 (small)
5 attenuator Mini-Circuits BW-S10W2+ 9.97
6 IQ mixer Marki Microwave IQ-0714MXP 6.3
7 SMA(f)-SMA(f) adapter SWMI 231-502SF (small)
8 switch SHX 801-02-L-3-1-15 0.3
9 semi-rigid coaxial cable UT-85-TP 0.2
10 SMA(f) connector AEP 9402-1583-010 (small)
11 DC block Aeroflex Inmet 8039 ≤0.5
12 semi-flexible coaxial cable at 8 GHz 2.75

spectrum analyser

total upconversion loss 20.72 to 21.22

Second, the expected voltage (i.e. the standard deviation of the noise) can be com-
puted from the variance of the noise at the output of the AWG

σoutput = variance in terms of dimensionless amplitude

· 1

2
peak-to-peak voltage set on AWG

= 10% · 1

2
·2V = 0.1V =̂ −6.99dB,

and from there, the standard deviation at the input port of the spectrum analyser is found
to be

σ=σoutput −ℓ=−6.99dB−20.72dB =−27.71dB =̂ 9.20mV,

in reasonable agreement with eq. (B.9).
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