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Abstract

Quantum information processing has long been a field in which progress has
been made mostly on its theoretical aspects. In the last decades, however,
superconducting circuits have proven to be a promising candidate for the
implementation of a scalable quantum information processing architecture.

In this thesis, several quantum information processing experiments with
superconducting circuits are demonstrated. In order to perform quantum
experiments with superconducting circuits, a setup is needed that protects
the circuits from uncontrolled interactions with their environment, while
still allowing to manipulate and measure the quantum state. The setup,
as well as the design and fabrication of chips containing such circuits are
discussed.

The building blocks of every quantum algorithm are quantum gates. We
demonstrate and characterize several gates, including our realization of the
Toffoli gate. This is a three-qubit gate that can be used to implement
universal quantum computing and is an important part in quantum error
correcting schemes.

The standard method for characterizing quantum gates and processes
is known as quantum process tomography. However, with increasing sys-
tem size, quantum process tomography becomes infeasible. The number of
experiments to be performed as well as the computational cost for post-
processing the experimental data increases exponentially with the number
of qubits. In this thesis, an alternative approach known as Monte Carlo
process certification is implemented on different two- and three-qubit gates
and compared to quantum process tomography.

In the final part of the thesis, the implementation of quantum telepor-
tation in superconducting circuits is discussed. Quantum teleportation is
an algorithm which transfers an unknown quantum state between two par-
ties without transferring the physical carrier of information itself. For the
realization of this experiment, the setup has been extended with quantum
limited amplifiers allowing to faithfully measure the qubit state in every
single experiment and feed-forward electronics performing operations on a
qubit based on measurement outcomes analyzed in real-time. This real-
ization constitutes the first implementation of the complete teleportation
protocol in any solid-state system and shows the highest rate of successful
teleportation events observed so far in any system.
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The presented results demonstrate the power of the superconducting cir-
cuit architecture for quantum information processing applications and con-
stitute a small step further along the way of realizing a quantum computer.
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Zusammenfassung

Quanteninformationsverarbeitung war lange ein Forschungsgebiet, auf dem
der Fortschritt hauptsächlich theoretischer Natur war. Innerhalb der let-
zten Jahrzehnte haben sich jedoch supraleitende Schaltkreise als potentielle
Kandidaten erwiesen, um eine skalierbare Architektur zur Quanteninforma-
tionsverarbeitung zu realisieren.

In dieser Abhandlung werden verschiedene Experimente aus dem Ge-
biet der Quanteninformationsverarbeitung mit supraleitenden Schaltkreisen
vorgestellt. Um Experimente durchzuführen, welche erlauben Quantenef-
fekte in supraleitenden Schaltkreisen zu beobachten und zu kontrollieren,
wird ein spezieller Messaufbau benötigt. Dieser muss einerseits die Schalt-
kreise von unkontrollierten Wechselwirkungen mit der Umgebung abschir-
men, andererseits aber auch das Manipulieren und Auslesen der Quanten-
zustände erlauben. Der Messaufbau und das Design sowie die Herstellung
von Chips mit supraleitenden Schaltkreisen werden in dieser Abhandlung
diskutiert.

Die Grundbausteine jedes Quantenalgorithmus sind die Quantengatter.
In dieser Abhandlung werden verschiedene Quantengatter in supraleitenden
Schaltkreisen realisiert und charakterisiert, unter anderem auch unsere Im-
plementation des Toffoli-Gatters. Dieses Gatter wirkt auf drei Quantenbits.
Es bildet die Grundlage für universelle Berechenbarkeit im quantenmecha-
nischen Sinne und ist ein wichtiges Element in der Quantenfehlerkorrektur.

Quantenprozess-Tomographie ist die herkömliche Methode, um Quan-
tengatter und Quantenprozesse zu charakterisieren. Diese Methode wird
allerdings undurchführbar bei wachsender Systemgrösse. Die Anzahl Ex-
perimente, die durchgeführt werden müssen und auch die für die Nach-
bearbeitung nötige Rechenleistung steigt exponentiell mit der Anzahl in-
volvierter Quantenbits. In dieser Abhandlung wird eine alternative Meth-
ode, Monte Carlo Quantenprozess-Zertifizierung, implementiert. Verschie-
dene Quantengatter werden mit dieser Methode und mit Quantenprozess-
Tomographie charakterisiert und die Resulate miteinander verglichen.

Im letzten Teil der Abhandlung wird die Implementierung von Quanten-
teleportation mit supraleitenden Schaltkreisen diskutiert. Quantentelepor-
tation erlaubt den Transfer eines unbekannten Quantenzustandes zwischen
einem Sender und einem Empfänger, ohne dass dabei der physikalisch In-
formationsträger selbst übermittelt werden muss. Um dieses Experiment zu
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realisieren wurde der Messaufbau erweitert. Quantenlimitierte Verstärker
erlauben das genaue Auslesen der Quantenbits bei jeder Einzelmessung und
eine vorwärtsgekoppelte Regelung kontrolliert den Zustand der Quantenbits
aufgrund von Messresultaten, die in Echtzeit ausgewertet werden. Diese Re-
alisierung der kompletten Quantenteleportation ist die erste überhaupt in
einem Festkörpersystem und weist die höchste Rate an erfolgreichen Tele-
pontationsereignissen auf, die bis anhin gemessen wurde.

Die vorliegenden Resultate demonstrieren das Potential von supraleit-
enden Schaltkreisen für die Anwendung im Bereich der Quanteninforma-
tionsverarbeitung. Die Arbeit ist ein kleiner Schritt auf dem Weg zur Re-
alisierung eines Quantencomputers.
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1
Introduction

Quantum phenomena do not occur in a
Hilbert space. They occur in a laboratory.

— Asher Peres in Quantum theory:
concepts and methods, p. 373

The field of quantum information and quantum computing [Nielsen00] emer-
ged in the second half of the 20th century. During the time when Bell’s in-
equalities [Bell64] were studied in detail, the point of view on quantum sys-
tems underwent a change. They were no longer just considered as systems
given by nature, whose properties can be studied and explained. But the
possibility of designing and manipulating quantum systems was explored.
This led to a proposal on how to test the predictions of quantum mechan-
ics [Clauser69] and in the following, first experiments using polarization
states of photons have been performed and refined [Freedman72, Aspect82],
demonstrating the validity of quantum mechanical predictions.

In 1982, Feynman [Feynman82] published the first idea on how to use
quantum systems to solve problems efficiently. He proposed to use quan-
tum systems to simulate other quantum systems, since this cannot be done
efficiently on a classical computer. Three years later, Deutsch [Deutsch85]
described and investigated the properties of a “universal quantum com-
puter”.

1



1. Introduction

A major step in the field of quantum information processing was the dis-
covery of quantum key distribution [Bennett84] in 1984. This is a protocol
allowing to distribute a key which can be used for encryption in a provably
secure way. The protocol demonstrated the possibility to use the prop-
erty of quantum entanglement in order to solve a problem (i.e. secure key
distribution) which cannot be solved with classical resources.

In the following years, huge progress has been made on the theoretical as-
pects of the field of quantum information and computing. In 1992, Deutsch
and Josza [Deutsch92] described a “problem which can be solved more ef-
ficiently by a quantum computer than by any classical computer”. The
presented algorithm can solve this particular problem always exponentially
faster on a quantum computer than on a deterministic classical computer.
However, although the problem is a nice example of quantum speed-up, it
is of low practical relevance. This changed when Shor [Shor94] presented
an algorithm which allows to factorize large numbers in polynomial time
on a quantum computer and Grover [Grover96] described how quantum
computers could be used to search entries in a large database faster than
any classical computer. Especially Shor’s algorithm had a great impact,
since the security of one of the most frequently used cryptographic algo-
rithms (RSA [Rivest78]) depends on the fact that the factorization of large
numbers is a computationally hard task on a classical computer.

In the year 2000, Nielsen and Chuang [Nielsen00] published their famous
book about quantum information and quantum computing. At that time,
the book gave an almost complete overview of the field, “bringing readers
near to the forefront of research”. Since then, a lot of progress has been made
in the field. But the most impressive progress is probably the one made
on the experimental side. Various different implementations of quantum
bits [Schumacher95] – quantum mechanical two-level systems which form
the basic unit of quantum information – have been realized and quantum
gates and algorithms demonstrated.

Amongst these implementations are such diverse systems [Ladd10] as
the polarization states of single photons [Kok07], electronic states in Ry-
dberg atoms [Saffman10] or trapped ions [Häffner08, Duan10, Monroe13],
nuclear spins used in NMR experiments [Vandersypen04], quantum dots
in solids [Hanson07, Awschalom13], electron spins in point defects of dia-
monds [Bernien13] and superconducting circuits [Clarke08, Devoret13].

The latter one – superconducting circuits – is the system used for the
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experiments presented in this thesis. Quantum information processing
with superconducting circuits has made tremendous progress in the last
few years. Since the first spectroscopic measurement of a superconducting
qubit in 1997 [Nakamura97], the lifetime of a single qubit was increased
about four orders of magnitude – from a few nanoseconds to the order of
100 µs [Rigetti12] within 15 years! An important step was the adoption of
cavity QED [Dutra05, Haroche06] – where an atom is strongly coupled to
the electromagnetic field inside an optical cavity – to the field of supercon-
ducting circuits in a realization called circuit QED [Blais04, Wallraff04].
Coupling superconducting qubits to superconducting microwave resonators
not only protects the qubit from decaying quickly but also offers the possibil-
ity to read out the qubit states [Bianchetti09, Filipp09] and couple several
qubits [Majer07]. Today, several labs around the world perform experi-
ments with multiple superconducting qubits [Reed12, Lucero12, Ristè13,
Dewes12, Chow12, Steffen13], step-by-step approaching the realization of a
real quantum computer [Devoret13].

Outline of the thesis

This thesis is a contribution to the steadily proceeding field of quantum
information processing with superconducting circuits. It is organized as
follows: Chap. 2 serves as an overview over the basic concepts of quantum
information processing and superconducting circuits. At first it introduces
the concepts of quantum information, quantum gates and algorithms. In
a second part superconducting circuits are described with a focus on the
transmon qubit and coplanar waveguide resonators. A significant part of
the work performed in the course of this thesis consists in designing and
fabricating these circuits which is the topic of Chap. 3. Once the circuits
are fabricated they have to be characterized and measured. In Chap. 4 the
setup which was used to perform the experiments for this thesis is described.
This setup also allows to control and manipulate the quantum states of our
circuits as explained in Chap. 5. The implemented quantum states and
processes can be characterized in different ways as shown in Chap. 6. Since
the complete characterization of a quantum process is an inefficient task,
i.e. the time needed scales exponentially with the number of qubits, a way
to efficiently verify a process will become important in the future. Such

3



1. Introduction

a method, called Monte Carlo process certification, has been implemented
in the course of this thesis for the first time in any quantum system. The
method and its implementation is the main topic of Chap. 7. It is tested on
different two- and three-qubit gates, including our realization of the three-
qubit Toffoli gate. Chap. 8 describes our implementation of the quantum
teleportation protocol which is the first realization of this algorithm in any
solid-state system. Finally, Chap. 9 gives a short outlook on the topic of
quantum information processing with superconducting circuits.

4



2
Quantum information processing with

superconducting circuits

This chapter gives an introduction into the concepts which this thesis is
built upon. In the first section the basic knowledge about quantum in-
formation and quantum computation is summarized. The two subsequent
sections introduce the physical system used to realize the experiments pre-
sented in this thesis: Superconducting transmon qubits in a circuit quantum
electrodynamics setup.

2.1. Quantum information and algorithms
In this section a summary of the basic concepts of the vast topic of quantum
information and quantum computing is presented. The quantum bit, the
fundamental unit of quantum information is introduced followed by a dis-
cussion of single- and multi-qubit operations, which play an important role
in this thesis. As a profound introduction into the topic I can recommend
the excellent book of Nielsen and Chuang [Nielsen00], which most of this
section is based on.

2.1.1. Quantum bit
The fundamental unit of information in classical computation is a binary
digit (bit). The only property of a bit is its state. There are only two dif-
ferent states – usually referred to as 0 and 1 – a bit can have. A quantum
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2. Quantum information processing with superconducting circuits

bit, or qubit, is an analogous concept in the framework of quantum compu-
tation. It can be in a state |0〉 or |1〉, but moreover, it can also be in any
superposition of these states: |ψ〉 = α |0〉+β |1〉, where α and β are complex
numbers. However, such a superposition state is not directly measurable.
If a measurement is performed, the result will be either 0 with probability
|α|2, or 1 with probability |β|2. Since the two probabilities sum up to 1,
the coefficients α and β have to fulfill the condition |α|2 + |β|2 = 1. This
allows to rewrite the state of a qubit as

|ψ〉 = eiγ
(

cos θ2 |0〉+ eiϕ sin θ2 |1〉
)
,

where θ, ϕ and γ are real numbers. Since the global phase factor eiγ has
no observable effects, i.e. no physical meaning, it can be omitted such that
the prefactor of |0〉 is always real:

|ψ〉 = cos θ2 |0〉+ eiϕ sin θ2 |1〉 . (2.1)

The two real numbers θ and ϕ defining the state of a qubit can be inter-
preted as the spherical coordinates of a point on a sphere, the Bloch sphere,
as depicted in Fig. 2.1 (a). The |0〉 state is represented by the point on the
north pole, the |1〉 state by the point on the south pole. These two states are
the most common basis states for describing qubits. Other frequently used
bases are the pairs of states {|+〉 , |−〉} = 1/

√
2 {|0〉+ |1〉 , |0〉 − |1〉} and

{|i〉 , |−i〉} = 1/
√

2 {|0〉+ i |1〉 , |0〉 − i |1〉}, which represent the states lying
on the x- and y-axis respectively, see Fig. 2.1 (b). These three basis pairs
are an example of mutually unbiased basis states [Ivanović81, Bengtsson06],
since for each of these states, all outcomes of measurements in one of the
other bases occurs with equal probability.

2.1.2. Single-qubit gates

In the Bloch sphere picture, every operation (or gate) on a single qubit can
be interpreted as a rotation around an axis of the sphere. As an example,
consider the operation depicted in Fig. 2.2 (a) where the initial state |1〉 is
rotated by an angle π/2 around the x-axis and ends up along the y-axis in
the state |i〉.

6



2.1. Quantum information and algorithms

(a)

θ

(b)

ϕ

|0〉

|1〉
|+〉

|−〉
|i〉

|−i〉

Figure 2.1: (a) Graphical representation of a single qubit quantum state
|ψ〉 on the Bloch sphere. (b) The positions of the six standard mutually
unbiased basis states |0〉, |1〉, |+〉, |−〉, |i〉, and |−i〉 are indicated.

Mathematically, quantum states can also be represented as vectors and
operations as matrices. The state |ψ〉 = α |0〉+ β |1〉 is then written as[

α
β

]
.

Since operations on single qubits can be described as unitary 2×2 matrices,
the above example reads as follows:

1√
2

[
1 −i
−i 1

]
︸ ︷︷ ︸

R
π/2
x

[
0
1

]
︸ ︷︷ ︸
|1〉

= 1√
2

[
−i
1

]
︸ ︷︷ ︸

|i〉

=̂ 1√
2

[
1
i

]
︸ ︷︷ ︸

|i〉

,

where the last equivalence is due to the irrelevant global phase factor.
In analogy to classical logic circuits, quantum circuits can also be depicted

as wire diagrams. The circuit of the above example looks as follows:

|1〉 R
π/2
x |i〉

7



2. Quantum information processing with superconducting circuits

In general, rotations around the different axes can be expressed in the
following way:

Rθx = e−i
θ
2 σ̂x =

[
cos θ2 −i sin θ

2
i sin θ

2 cos θ2

]
,

Rθy = e−i
θ
2 σ̂y =

[
cos θ2 sin θ

2
sin θ

2 cos θ2

]
,

Rθz = e−i
θ
2 σ̂z =

[
e−iθ/2 0

0 eiθ/2

]
,

where σ̂x,y,z are the Pauli matrices. The Pauli matrices themselves are
also important single-qubit gates, since they are equivalent to π-rotations
around the corresponding axis:

X = σ̂x =
[

0 1
1 0

]
,

Y = σ̂y =
[

0 −i
i 0

]
,

Z = σ̂z =
[

1 0
0 −1

]
.

Moreover, every single qubit operation (which is nothing else than a rotation
around an arbitrary axis with an arbitrary angle) can be decomposed as a
series of rotations around the z- and x-axis in the form RαzR

β
xR

γ
z .

The last important single-qubit gate which is introduced in this section
is the Hadamard gate,

H = 1√
2

[
1 1
1 −1

]
.

In terms of rotations on the Bloch sphere, this gate corresponds to a π-
rotation around the axis defined by the points (0, 0, 0) and (1, 0, 1), see
Fig. 2.2 (b). Its importance comes from the fact that it acts as a basis-
changing gate which transfers the states |0〉 and |1〉 to the states |+〉 and
|−〉, respectively and vice-versa. A state |ψ〉 = α |0〉+ β |1〉 is transformed
by the Hadamard gate to the state H |ψ〉 = α |+〉 + β |−〉, with the same
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2.1. Quantum information and algorithms

(a) (b)

|1〉

|i〉

Figure 2.2: (a) Single-qubit operations can be interpreted as rotations on
the Bloch sphere. (b) Action of the Hadamard gate which transforms (blue
curved arrows) the |0〉 and |1〉 states (blue straight arrows) to the |+〉 and
|−〉 states (red straight arrows) and vice-versa (red curved arrows). The
thick black line represents the rotation axis.

coefficients α and β, but a different basis. This will become important in
the discussion about the use of this gate in experiments. Like every ideal π-
rotation, applying the Hadamard gate twice in series compensates its effect
and leaves the state unchanged (i.e. H2 = 1).

2.1.3. Multi-qubit gates and algorithms

An n-qubit state is the tensor product of n single-qubit states: |ψ〉 = |ψ1〉⊗
· · · ⊗ |ψn〉. A vector describing the state of an n-qubit system contains 2n
entries defining the complex probability amplitudes α0, . . . , α2n−1 of a set
of basis states. In the context of qubits, one usually writes a state in
the computational basis consisting of all 2n possible combinations of states
where qubit i is either in the ground or the excited state. In this case a
state vector contains the probability amplitudes in binary order as follows:

9



2. Quantum information processing with superconducting circuits


|0 · · · 00〉 α0
|0 · · · 01〉 α1

...
...

|1 · · · 11〉 α2n−1


Processes can be represented as unitary 2n × 2n matrices describing how

a given input basis state is transformed to an output combination of basis
states.

The controlled-not or cnot gate is one of the most fundamental two-
qubit gates. Its importance comes from the fact that it forms together with
arbitrary single qubit operations a universal set of gates. This means that
all multi-qubit gates can be decomposed in a sequence of single-qubit gates
and cnot gates. The cnot gate acts on two qubits, a control qubit and a
target qubit. During the action of the cnot gate, the state of the target
qubit is flipped if the control qubit is in state 1. Otherwise, if the state
of the control qubit is 0, the target qubit is left unchanged. The circuit
symbol and the unitary 4× 4 matrix representing the cnot gate are

•
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
where • stands for the control qubit and ⊕ for the target qubit. It is
interesting to note that the unitary matrix of the gate can also be seen as the
classical truth table describing the action of the gate on the computational
basis states |00〉 , |01〉 , |10〉, and |11〉.

Another important two-qubit gate is the controlled-phase (or cphase)
gate, since it is locally equivalent to a cnot gate (see below). It flips the
phase of the two-qubit state if both qubits are in the state 1. Since both
qubits act as control qubits and from all computational basis states it only
modifies the |11〉 state, its circuit symbol and matrix representation are
defined as follows:

•

•
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

10



2.2. Superconducting transmon qubits

The action of the cphase gate is particularly interesting, if the input
state of the first qubit is in the |1〉 state and the second qubit is |+〉 or |−〉,
i.e. either |1+〉 = 1/

√
2(|10〉+|11〉) or |1−〉 = 1/

√
2(|10〉−|11〉). In this case,

the cphase gate just switches the |1+〉 and the |1−〉 states, acting effec-
tively as a cnot gate with the control qubit in the {|0〉 , |1〉}-basis and the
target qubit in the {|+〉 , |−〉}-basis. Since a Hadamard gate can be used to
switch from the computational basis to the {|+〉 , |−〉}-basis (see Sec. 2.1.2),
the cnot gate can be decomposed into a Hadamard gate, changing the ba-
sis of the target qubit, a cphase gate acting as cnot gate on the new basis,
and a final Hadamard gate to change back to the computational basis as
follows:

•
=

•

H • H

.

Finally, an example of a three-qubit gate is discussed, namely the Toffoli
gate, which has been implemented as part of this thesis (see Sec. 7.2):

•

• =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

It acts as a controlled-controlled-not (or ccnot) gate, since it flips the
state of a target qubit if and only if both of the control qubits are in the
state |1〉. It is an important gate in classical computing where it enables
reversible computation as well as in quantum computing, since together
with the Hadamard gate it forms a set of universal gates [Shi03]. Our
implementation in superconducting circuits is discussed in detail in Sec. 7.2.

2.2. Superconducting transmon qubits
In the previous section we have described a number of basic conceptional
aspects of qubits. Real experiments however, request for real physical im-
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2. Quantum information processing with superconducting circuits

plementations of qubits that are controllable and measurable. This section
introduces the physical realization of qubits used for the experiments pre-
sented in this thesis, the superconducting transmon qubit. After a brief
overview of the field of superconducting circuits, inspired by [Clarke08],
the most relevant properties of the transmon qubit are explained, closely
following [Koch07].

2.2.1. Superconducting qubits

It is an remarkable fact that macroscopic structures can show quantum me-
chanical behavior, known normally only from atomic-scale structures. The
reason is that all the Cooper pairs in a given superconductor are condensed
into a single macroscopic state described by one wavefunction. This leads
to the quantization of the magnetic flux Φ through a superconducting loop
and a phenomenon called Josephson tunneling [Josephson62, Josephson74]:
Cooper pairs can tunnel coherently through a barrier (a small insulating
layer) between two superconductors, a so-called Josephson junction. The
two relevant quantum mechanical variables for a Josephson junction are the
difference between the phases of the two superconductors ϕ̂ (which is asso-
ciated with the Josephson coupling energy EJ) and the Cooper pair number
difference n̂ across the capacitance formed by the junction (associated with
the charging energy EC).

The field of superconducting qubits [Clarke08] emerged in the 1980’s with
the observation of the first signs of quantum behavior in Josephson junc-
tions, namely macroscopic quantum tunneling [Voss81, Devoret85] and en-
ergy level quantization [Martinis85]. The “birth” of superconducting qubits
is marked by the experiments described in [Nakamura97], which showed for
the first time the superposition of two macroscopic quantum states differing
by the number of Cooper pairs on a superconducting island.

In the years following this experiment several different types of supercon-
ducting qubits have been built and studied [Clarke08]: Flux-, phase-, and
charge qubits. Flux qubits consist of a superconducting loop interrupted
by usually three Josephson junctions. The two qubit states relate to the
clockwise or anti-clockwise circulating supercurrent in the loop. The phase
qubit consists of a single current-biased Josephson junction. The potential
energy as a function of the phase difference ϕ̂ resembles a tilted washboard.
Thus the lowest two energy levels in one of the potential wells can form
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2.2. Superconducting transmon qubits

the qubit. The charge qubit (also known as Cooper pair box) consists of a
superconducting island connected with a Josephson junction to a reservoir
(e.g. electrical ground). In its simplest form, the qubit states correspond to
two subsequent number of Cooper pairs on the island.

2.2.2. Transmon qubit
The transmon qubit [Koch07] is a modified form of the Cooper pair box
(CPB) [Bouchiat98]. Like the CPB it consists of an island that is connected
via a Josephson junction to a reservoir. But in addition, it has a large shunt-
capacitance CB to decrease the charging energy EC . As shown later in this
section, this makes the transmon relatively insensitive to charge noise and
as another consequence, the energy eigenstates are a combination of many
CPB charge states. In our realizations of the transmon, the Josephson
junction with a fixed Josephson energy EJ is replaced by two Josephson
junctions in parallel forming a loop, a so called dc-SQUID, see Fig. 2.3. It
acts as an effective Josephson junction with an EJ = Emax

J | cos (πΦ/Φ0) |
which is tunable by the magnetic flux Φ threading the loop, where Φ0 =
h/(2e) is the magnetic flux quantum.

The effective Hamiltonian of the transmon can be written in the same
form as the one for the CPB [Koch07],

Ĥ/~ = 4EC(n̂− ng)2 − EJ cos ϕ̂. (2.2)

Here ng = Qr/2e+CgVg/2e is the effective offset charge in units of Cooper
pairs 2e, with Vg and Cg the gate voltage and capacitance, and Qr the
environment-induced offset charge. Due to the additional large capacitance
CB, the charging energy EC = e2/2CΣ, where CΣ = CJ + CB + Cg can be
made small compared to the Josephson energy. This allows to operate the
transmon in a regime where EJ/EC � 1, in contrast to the standard CPB
where EJ/EC � 1.

By using Mathieu functions the transmon Hamiltonian Eq. (2.2) can be
solved exactly in the phase basis. The eigenvalues are given by

Em(ng) = ECa2[ng+k(m,ng)](−EJ/2EC), (2.3)

where ar(x) is Mathieu’s characteristic value and k(m,ng) is a function
appropriately sorting the eigenvalues (see [Koch07] for details).
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Figure 2.3: (a) False colored micrograph of a transmon qubit consisting
of an island (top, blue) and reservoir (bottom, green), (b) Zoom-in of the
dc-SQUID, (c) SEM-image of one of the Josephson junctions, (d) effective
circuit diagram of a transmon qubit with a SQUID-loop.

It can be shown, that these eigenvalues become less sensitive to charge
noise for increasing EJ/EC , see Fig. 2.4 (a-c). Indeed, in the large EJ/EC
limit,

∂Em
∂ng

∝ εm sin(2πng), (2.4)

with εm the peak-to-peak value for the charge dispersion of the mth energy
level, which decreases exponentially fast with the EJ/EC ratio,

εm ∝ e−
√

8EJ/EC . (2.5)

The cost of the decreased sensitivity to charge noise are a lower anhar-
monicity α = (E12 − E01)/~, i.e. the spacing between the energy levels
becomes more harmonic. Nevertheless, for using the lowest two energy lev-
els of a transmon as a qubit, a sufficient anharmonicity is required which
ensures the individual addressability of the level transitions.

For the CPB the anharmonicity is positive, i.e. the level spacing increases
for higher levels. It first decreases with increasing EJ/EC and changes sign
at EJ/EC ≈ 9, see Fig. 2.4 (d). For larger values of EJ/EC the transition
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Figure 2.4: (a-c) Eigenenergies Em (first three levels, m = 0, 1, 2) of the
qubit Hamiltonian as a function of the effective offset charge ng for different
ratios EJ/EC . Energies are given in units of the transition energy E01 at
the point ng = 1/2. (d) Anharmonicity in units of EC as a function of
EJ/EC . Figure adapted from [Koch07].

energy E12 is therefore smaller than E01. Asymptotically, the anharmonic-
ity approaches α/~ ' −EC for EJ/EC →∞. In this limit, it is also possible
to find an approximation for the eigenenergies of the transmon depending
on the quantum number m:

Em ' −EJ +
√

8ECEJ
(
m+ 1

2

)
− EC

12
(
6m2 + 6m+ 3

)
. (2.6)

Together with the flux-dependent effective Josephson energy, this re-
sults in the following formula to calculate the transition energy between
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2. Quantum information processing with superconducting circuits

the ground and excited states (used as the qubit):

E01 = E1 − E0 ≈
√

8ECEmax
J | cos (πΦ/Φ0) | − EC . (2.7)

This last equation also describes the tunability of the transition frequency
by means of a magnetic flux. It is periodic with the number of flux quanta
penetrating the SQUID loop, with the highest frequency for integer numbers
of flux quanta and the lowest frequency for half-integer number of flux
quanta. As a remark, since the approximation Eq. (2.7) is only valid for
EJ/EC � 1, it also breaks down if the effective EJ becomes low due to
the flux tuning. The exact diagonalization of the Hamiltonian shows that
for half-integers the transition energy vanishes EΦ=0.5

01 = 0. Nevertheless, in
real implementations this is not the case due to a finite junction asymmetry,
see [Koch07] for details.

Although the flux tunability is in general a wanted and useful feature,
it should be considered that it makes the qubit also sensitive to flux noise.
Only for integer values of flux quanta, the sensitivity vanishes to first or-
der ∂Em/∂Φ = 0. Especially near half-integer flux quanta, this value can
become significant, leading to additional dephasing of the qubit.

2.3. Circuit quantum electrodynamics
In order to implement gates and algorithms with transmon qubits, one
needs a framework which protects the qubits from the environment while
still allowing the controlled interaction of many qubits as well as the pos-
sibility to read out the qubit states. Such a framework, known as cavity
quantum electrodynamics (cavity QED) [Haroche06], has been developed in
a different physical realization: atoms coupled to an electromagnetic field
in a cavity defined by highly reflective mirrors. The cavity provides a small
mode volume for the electromagnetic field. This can enhance its coupling
to an atom inside the cavity such that the coupling strength is much larger
than the decay rates of the atom or the electromagnetic field. This concept
has been adapted to superconducting circuits and is usally referred to as
circuit QED. It was first theoretically described [Blais04] and then imple-
mented experimentally [Wallraff04] with a CPB as an “artificial” atom and
a transmission-line resonator as cavity. The field of circuit QED gives the
unique possibility to engineer the properties of the involved structures to
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2.3. Circuit quantum electrodynamics

a high degree. Since these first experiments, the methods of circuit QED
have been intensively used to investigate the interactions between matter
and photons.

In this section at first a general model describing multi-level systems
coupled to a cavity, the generalized Janes-Cummings model, is summarized.
It is followed by a description of our actual realization of the circuit QED
system with transmon qubits as multi-level systems and coplanar waveguide
resonators as cavities.

2.3.1. Generalized Jaynes-Cummings model
The Hamiltonian describing a multi-level atom (or atom-like structures,
e.g. a transmon) coupled to a single mode of the electromagnetic field ex-
pressed in the basis of the uncoupled atom states is

Ĥ/~ =
∑
j

ωj |j〉 〈j|︸ ︷︷ ︸
Ĥtransmon

+ωrâ
†â

︸ ︷︷ ︸
Ĥres

+
∑
i,j

gij |i〉 〈j| (â+ â†)
︸ ︷︷ ︸

Ĥint

. (2.8)

Here, Ĥtransmon is the Hamiltonian of the transmon with the jth energy
level having the energy Ej = ~ωj , Ĥres describes the cavity as a harmonic
oscillator with resonance frequency ωr, and Ĥint describes the interaction of
the different level transitions with the cavity with coupling strength gij . It
can be shown [Koch07] that the last term can be simplified in the case of a
transmon: Only considering nearest-neighbor coupling gi,i+1 and applying
the rotating wave approximation yields

Ĥ/~ =
∑
j

ωj |j〉 〈j|+ ωrâ
†â+

(∑
i

gi,i+1 |i〉 〈i+ 1| â† + h.c.
)
. (2.9)

This is the so-called generalized Jaynes-Cummings (JC) Hamiltonian,
which includes many transmon levels with nearest-neighbor coupling in
contrast to the regular JC-Hamiltonian [Walls08] which describes only a
two-level system coupled to a harmonic oscillator. Also in contrast to the
regular JC-Hamiltonian the one in Eq. (2.9) cannot be solved analytically
but has to be treated numerically. However, it can be solved analytically
in the so called dispersive limit where the detunings between transmon and
cavity ∆i = ωi,i+1 − ωr are large.
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In this limit, the effective Hamiltonian can be written [Koch07] as

Ĥdisp/~ = ω′01
2 σ̂z + (ω′r + χσ̂z)â†â, (2.10)

with the dispersive shift χ = χ01−χ12/2, and the renormalized frequencies
ω′01 = ω01 + χ01 and ω′r = ωr − χ12/2, where the “partial” dispersive shifts
are

χij =
g2
ij

ωij − ωr
. (2.11)

The renormalized parameters come from the fact that this Hamiltonian
models the transmon as an effective two-level system (qubit) but includes
the effects on these levels introduced by the interaction with the third level.
In the transmon limit (EJ/EC � 1), the dispersive shift χ can be approxi-
mated as

χ ' −g2
01EC

∆0(~∆0 − EC) . (2.12)

The term ω′r + χσ̂z shows that the effective resonator frequency ω′r,eff =
ω′r±χ depends on the state of the qubit. This can be exploited to read out
the state of the qubit as described later in Sec. 4.3.

2.3.2. Coplanar waveguide resonators
So far the cavity was just modeled as a harmonic oscillator. This subsec-
tion describes our actual implementation of the cavity as a superconduct-
ing coplanar waveguide resonator. At first, general properties of coplanar
waveguides are introduced, followed by a discussion about the implemen-
tation of a one-dimensional cavity in such a system. The basics (and much
more) of microwave engineering needed to understand this structures is dis-
cussed in [Pozar11]. For a detailed study of coplanar waveguide circuits I
recommend the two books [Simons01] and [Wolff06]. The use of coplanar
waveguides for superconducting circuits is studied in [Göppl08].

The coplanar waveguide (CPW) [Wen69, Simons01] is a type of transmis-
sion line [Pozar11] supporting quasi-TEM modes [Wolff06]. It is the planar
counterpart of a co-axial cable, having the ground and the center conductor
in the same plane, as shown in Fig. 2.5 (a). The geometry is defined by the
center conductor width W and the gap width S. Alternatively, the half-
width of the center conductor a and the half-with of the whole structure b
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can used to describe the CPW. Other important design parameters are the
relative permittivity ε1 and the height h of the substrate. Another param-
eter would be the thickness of the conducting film, however, it is normally
much smaller than the other involved dimensions and the conducting layer
is therefore usually modeled as flat.

The characteristic impedance Z0 for a lossless transmission line can be
written [Pozar11] in terms of its capacitance and inductance per unit length
C` and L` as

Z0 =
√
L`
C`
. (2.13)

For a CPW on a dielectric (and non-magnetic) substrate one can calcu-
late the capacitance per unit length C` by using conformal mapping tech-
niques [Gevorgian95, Simons01] which results in

C` = 4ε0εeff
K(k0)
K(k′0) , (2.14)

where εeff is the effective relative permittivity discussed below, K the com-
plete elliptic integral with modulus k0 = W/(W + 2S) and k′0 =

√
1− k2

0.
By using the following expressions for the phase velocity vph [Pozar11,
Simons01]

vph = 1√
L`C`

= c
√
εeff

, (2.15)

an expression for the inductance per unit length can be found:

L` = εeff
c2C`

= µ0
4
K(k′0)
K(k0) . (2.16)

The inductance L` hence solely depends on the geometry of the CPW in
contrast to the capacitance C`, which also depends on the effective relative
permittivity εeff . Combining Eqs. (2.13), (2.14), and (2.16) leads to the
following expression for Z0 for coplanar waveguides,

Z0 = 1
4

√
µ0
ε0εeff

K(k′0)
K(k0) . (2.17)

The effective relative permittivity εeff depends on the geometry of the
CPW, the height h of the substrate and the relative permittivity ε1 of the
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Figure 2.5: (a) Schematic representation of a CPW, (b) CPW resonator
with the electric field of the first three modes indicated.

substrate. It can be shown [Gevorgian95] to be

εeff = 1 + ε1 − 1
2

K(k1)
K(k′1)

K(k′0)
K(k0) , (2.18)

with k1 = sinh(πW/4h1)/ sinh [(π(W + 2S)) /4h1] and k′1 =
√

1− k2
1. In

the limit where h1 →∞, k1 becomes k0 and

lim
h1→∞

εeff = 1 + ε1 − 1
2 = 1 + ε1

2 . (2.19)

This can be intuitively interpreted as that half of the electric field energy
between ground planes and center conductor is in the vacuum (εr = 1) and
the other half is in the substrate (εr = ε1), hence the effective permittivity
is just the mean value of both.

For sapphire as a substrate, as used in our experiments, the relative
permittivity is anisotropic. We use sapphire that is cut perpendicular to
the C-axis of the crystal, such that the in-plane permittivity is isotropic,
but different from the permittivity along the vertical axis of the wafer.
The permittivity perpendicular and parallel to the C-axis of the crystal is
εxy = 9.3 and εz = 11.5 at room temperature, respectively. At cryogenic
temperatures they are slightly lower [Krupka94]. A value of εeff ≈ 5.8 was
found to agree with the experimental data.

Based on these values we used a CPW with dimensions W = 10 µm
and S = 4.5 µm, which results in a characteristic impedance of Z0 ≈ 50 Ω
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compatible with the rest of the microwave equipment in our setup (see
also Chap. 4).

A cavity is formed by introducing gaps into the center conductor of the
coplanar waveguide as schematically shown in Fig. 2.5 (b). The gaps impose
boundary conditions onto the electromagnetic field: the current vanishes at
the gaps and accordingly the electric field has an antinode. The lowest
possible mode for a standing electromagnetic wave is where the length l of
the resonator is half of the wavelength, i.e. l = λ0/2, therefore this type
of resonator is also called a λ/2-resonator. The fundamental frequency is
given by

f0 = c
√
εeff

1
2l , (2.20)

and the higher harmonics fn−1 = nf0 are integer multiples of the funda-
mental frequency.

For frequencies close to a resonance f ≈ fn, the CPW can be mapped to
a parallel RLC-circuit [Pozar11, Göppl08] with the following substitutions:

Ln−1 = 2L`l
n2π2 , C = C`l

2 , R = Z0
αl
, (2.21)

with α an attenuation constant. By neglecting the loss, this circuit cor-
responds to a harmonic LC-oscillator which can be described quantum-
mechanically by the Hamiltonian

Ĥ = ~ω0

(1
2 + â†â

)
, (2.22)

with ω0 = 2πf0 the angular resonance frequency and â(†) the usual ladder
operators for a harmonic oscillator.

2.4. Conclusion
In this chapter, we have discussed quantum bits as quantum mechanical two
level systems and represent the quantum analog to bits, capable of storing
quantum information. Operations can be performed on single qubits or also
on multiple qubits. The qubits used for the experiments presented in this
thesis are implemented as the two lowest energy levels of a transmon. This
is a circuit which has a quantized anharmonic level-spectrum and consists
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of two superconducting islands interconnected by Josephson junctions. Cir-
cuit QED is an appropriate framework to protect the transmon from the
environment while still allowing to read out its state and couple it to other
qubits. The implementation of this framework needs an additional build-
ing block, the coplanar waveguide resonator. This chapter serves as an
overview of the presented topics. As further reading or for a more detailed
introduction, I recommend the following books: The introduction for quan-
tum information and quantum computation is the book by Nielsen and
Chuang [Nielsen00]. The book by D. M. Pozar [Pozar11] is a comprehen-
sive introduction into microwave engineering in general. The two books
specifically focused on coplanar waveguides are [Simons01] and [Wolff06].
In the following chapters, these building blocks and the mechanisms which
allow to perform quantum computing experiments are discussed in more
detail.
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Sample design and fabrication

The transmon and the coplanar waveguide resonator, introduced in Sec. 2.2
and Sec. 2.3, are the main building blocks of the circuits used for the exper-
iments presented in this thesis. In addition, the circuits contain bias lines
which also consist of coplanar waveguides — their functionality is discussed
in Chap. 5. One focus of this thesis was the design and fabrication of the
coplanar waveguide structures, i.e. the resonators and bias lines, which is
the topic of this chapter. The design and fabrication of the transmon qubits
are described in [Göppl09, Fink10a, Burkhard12].

3.1. Sample design

3.1.1. Resonator coupling

The resonator is normally coupled to input- and output-transmission lines
that allow to measure the transmission of microwaves through the res-
onator. A transmission measurement [Göppl08] shows a Lorentzian line
shape around the resonance frequency f0:

FLor(f) = A0
δf2

4(f − f0)2 + δf2 , (3.1)

where A0 is the amplitude at resonance frequency f0, and δf is the full
width at half maximum. From such a measurement, one can also extract
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the loaded quality factor QL = f0/δf which is linked to the photon decay
rate κ/2π = f0/QL.

The quality factor (or the photon decay rate) is an important design
property. It influences the time with which a transmission measurement
can be performed and also the time with which coherent operations be-
tween a qubit and the cavity can be performed. Smaller Q allow a faster
population of the resonator and therefore shorter readout times, while larger
Q (i.e. larger photon lifetime) allow longer resonant qubit-resonator oper-
ations. The resonator is capacitively coupled to the in- and output leads
(c.f. Fig. 3.1 (a)), either by a gap capacitor with variable width or with fin-
ger capacitors with variable length and number of fingers [Göppl08]. The
capacitances of a certain design can be simulated with finite-element meth-
ods (using e.g. the software Ansoft Maxwell 3D). For typical designs, these
values are in the range of 1 fF – 0.1 fF for gap capacitors of width 1 µm –
30 µm, and 1 fF – 20 fF for finger capacitors with up to 5 fingers of length
100 µm.

In the following, a formula for the quality factor for asymmetrically cou-
pled resonators is derived, similarly as for the formula for symmetrically
coupled resonators in [Göppl08].

As known from Eqs. (2.21), the resonator itself can be approximated
as a parallel RLC circuit. The quality factor for an RLC circuit is given
as Q = R

√
C/L = ω0RC [Pozar11]. In our model, we approximate the

coupled resonator as an RLC circuit coupled via two capacitances Cin, Cout
to a load resistance usually equal to the characteristic impedance of the
circuitry RL = 50 Ω, as shown in Fig. 3.1 (a). To map the whole circuit to
an equivalent RLC circuit, we first map the capacitances and resistances in
series (Cin,out, RL) onto equivalent parallel circuit elements (C∗in,out, R

∗
L), as

shown in the green parts of Fig. 3.1 (a,b). By rearranging the elements, we
get an equivalent RLC circuit for the coupled resonator with the effective
parameters

Ceff = C + C∗in + C∗out, Reff = 1
1
R + 1

R∗
in

+ 1
R∗

out

, ω∗n = 1√
Ln+1Ceff

, (3.2)

with

C∗in,out = Cin,out
1 + ω2

nR
2
LC

2
in,out

, R∗in,out =
1 + ω2

nR
2
LC

2
in,out

ω2
nRLC2

in,out
. (3.3)
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Figure 3.1: (a) Circuit diagram of the resonator modeled as an RLC cir-
cuit, coupled (green background) with in- and output capacitances Cin, Cout
to a load impedance RL. (b) Equivalent parallel circuit of (a). (c) Rear-
ranging (b) gives the RLC circuit of the coupled resonator.

From 1 � ω2
nR

2
LC

2
in,out(≈ 10−4 for ω/2π = 7 GHz, RL = 50 Ω, Cin,out =

5 fF) it follows that Ceff ≈ C and ω∗n ≈ ωn are good approximations and
one can write the loaded quality factor QL as

QL = ωnReffC = ωnC
1

1
R + 1

R∗
in

+ 1
R∗

out

. (3.4)

The loaded quality factor can be considered as a combination of the internal
quality factor Qint only depending on the intrinsic losses of the resonator,
and the external quality factor Qext defined by the coupling capacitors,

1
QL

= 1
ωnCR︸ ︷︷ ︸
1/Qint

+ 1
ωnCR∗in

+ 1
ωnCR∗out︸ ︷︷ ︸

1/Qext

. (3.5)

Since the resonators used in this thesis are designed to be in the overcoupled
regime where Qext ∼ 103 � Qint ∼ 105, the loaded quality factor will be
governed by Qext. Using ωn = 1/

√
LnC, Eqs. (2.21), and Z0 =

√
L`/C`

one can write
ωnC = C√

LnC
= nπ

2Z0
, (3.6)
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3. Sample design and fabrication

and combining this with Eqs. (3.5), (3.3) and ωn−1 = nω0 leads to an
expression for Qext that does only depend on the mode number n (n = 1
for the fundamental mode), the characteristic impedance of the resonator
Z0, the load impedance RL and the input and output capacitances Cin,out
as follows:

Qext,n−1 = nπ

2Z0

1
n2ω2

0RL

(
1 + n2ω2

0R
2
LC

2
in
) (

1 + n2ω2
0R

2
LC

2
out
)

C2
in
(
1 + n2ω2

0R
2
LC

2
out
)

+ C2
out
(
1 + n2ω2

0R
2
LC

2
in
) .

(3.7)
For Cin = Cout = Cκ, the formula for symmetric coupling given in [Göppl08]
is recovered:

Qsym,n−1 = nπ

4Z0

( 1
n2ω2

0RLC2
κ

+RL

)
. (3.8)

It is also possible to not couple the resonator to input and output leads,
but terminate each end with a CPW-open (i.e. a small capacitance to
ground). In this case the resonator quality factor will be close to the intrin-
sic quality factor, unless it is coupled to other structures (like transmons,
gate lines etc.) which provide loss channels. Such a resonator is used in the
teleportation experiment, see Chap. 8.

3.1.2. Airbridges
In our experiments we usually want to couple the transmon qubits to a
single mode of the electromagnetic field approximated as a harmonic oscil-
lator. We therefore want to suppress any other parasitic modes which the
transmon could also couple to. In this subsection, we discuss two possible
parasitic modes, the slot-line mode and parasitic modes induced by gate
lines, and how to suppress those with airbridges. Subsequently the use of
airbridges to enable resonator cross-overs is discussed.

Parasitic mode suppression

Coplanar waveguides are capable of supporting two types of modes, the
even- and odd-modes (sometimes also referred to as coplanar waveguide
modes and slot-line modes), see Fig. 3.2 (a,b). In our experiments we want
the CPW to support only the even mode. The odd mode shows a much
stronger dependence of its effective dielectric constant on frequency and
geometry than the even mode [Wolff06]. It is therefore harder to predict
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Figure 3.2: (a) Even (coplanar waveguide) mode and (b) odd (slot-line)
mode of the CPW. Top: Excitation of the modes. Middle: Schematic of the
transversal electric field. Bottom: Schematic of the transversal magnetic
field. (c) Schematics of an airbridge connecting the two ground planes,
suppressing the odd mode.

its exact frequencies. The odd mode can be effectively suppressed by using
airbridges [Koster89, Simons01, Wolff06], metallic bridges connecting the
ground planes on both sides of the center conductor, see Fig. 3.2 (c).

Another possibility for introducing parasitic modes are gate lines, leading
from the edge of the chip to the transmon qubit. The gate lines cut the
ground plane into several possibly unconnected areas which hinders the
electromagnetic wave in the CPW to propagate in the desired way and
introduces unwanted modes. This can also be avoided by using airbridges
placed over the gate lines to connect the different ground plane areas with
each other as depicted in Fig. 3.3.

Airbridges introduce an additional capacitance and therefore locally change
the characteristic impedance of the underlying CPW. By numerically sim-
ulate the additional capacitance between the CPW and ground due to the
presence of the airbridge, the characteristic impedance for the part of the
CPW below the airbridge was calculated to be ≈ 40 Ω. There are known
possibilities [Wolff06] to correct for this impedance mismatch. Since the
length on which this impedance mismatch occurs is small compared to the
wavelength, and the impedance mismatches introduced due to the trans-
mon gaps are even larger, this effect has been neglected when designing the
chips.

The designed airbridges have a height H = 2 µm (see Fig. 3.2 (c) for
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gate line
airbridges

(a) separated 
ground planes

Figure 3.3: (a) A gate line can split the ground plane in two unconnected
parts, disturbing signal propagation in the resonator. (b) Airbridges re-
connect the ground planes and enable proper signal propagation.

the dimensions), a width W = 10 µm, and a length L = 40 µm. The part
connected to the ground has a length of Lg = 30 µm. For suppressing the
odd mode, one or two airbridges per resonator placed symmetrically around
the center of the resonator showed the complete extinction of the odd mode.
For the gate lines the airbridges are placed every 100 µm – 200 µm to ensure
a good connection between the different ground planes.

Resonator cross-overs

Airbridges can also be used to cross two resonators. This allows to design
complex networks of resonators [Helmer09] which would not be possible
in a fully planar geometry. A chip with crossed resonators is used for the
teleportation experiment discussed in Chap. 8. A micrograph of a cross-over
is depicted in Fig. 3.7 (a).

3.2. Fabrication

The fabrication of the resonators, gate-line structures, and airbridges is per-
formed by photolithography in the FIRST cleanroom at ETH Zurich. This
technique requires masks (a patterned chromium layer on a glass substrate)
which have to be fabricated beforehand1 on the basis of digitized graphics
data. During the thesis, a Mathematica program has been developed which

1Our masks have been fabricated by the commercial supplier ML&C GmbH, Jena, D
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3.2. Fabrication

(a) (b) (c)

Figure 3.4: (a) Mathematica output of the mask design for a resonator
cross-over with space for a transmon qubit which is fabricated in a separate
step, see also Chap. 8 for a discussion of this sample. (b) After conversion
to GDS-format. Different colors correspond to different masks. Filled areas
will be transparent on the final masks. (c) Zoom-in of (b)

simplifies the task of generating the digital mask data by providing flexi-
ble drawing functions. The program outputs connected lines in a DXF -file
format [Autodesk] (Fig. 3.4 (a)). This file can then be converted to an
industry-standard GDSII-file [Rubin94] (Fig. 3.4 (b)), where the connected
lines are transformed to areas. This areas will become transparent on the
final mask, everything else stays opaque.

The fabrication of the airbridges requires two additional photolithography
masks, one defining the area where the bridge contacts the metal layer of
the chip (grey areas in Fig. 3.4 (b,c)) and one for the bridge outline (green
areas in Fig. 3.4 (b,c)).

After the photolithography process, large unmetallized gaps are left into
which a transmon qubit can be fabricated (large red area in Fig. 3.4). The
transmons are fabricated in a separate step with an electron-beam lithog-
raphy process.

In the following, the two fabrication processes for the CPW structures
and the airbridges are explained. The detailed recipes are provided in Ap-
pendix A.
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3. Sample design and fabrication

(a) (b) (c) (d)

(e)

Figure 3.5: Resonator and gate-line etch process. (a) Spin resist layer. (b)
Exporsure. (c) Development. (d) Reactive ion etching. (e) Resist stripping.

3.2.1. Resonators, gate lines

To efficiently fabricate many devices usually a whole 2-inch wafer is pro-
cessed at once. We use sapphire (crystalline Al2O3) wafers with a thickness
of 500 µm and a diameter of 2 inches, cut parallel to the C-plane of the crys-
tal. The smallest standard chip we use has dimensions of 2 mm× 7 mm.
A mask can contain 88 of these chips with a spacing of 300 µm between
each chip needed for dicing. Larger chips have dimensions such that they
use the same space on the mask/wafer as a multiple of the smallest chip,
i.e. 4.3 mm× 7 mm and 6.6 mm× 7 mm.

The fabrication starts with a sapphire wafer coated with a 150 nm thick
layer of niobium (Nb) from a commercial supplier2, see Fig. 3.5 for a graph-
ical representation of the fabrication steps. After spinning a positive re-
sist (a), the wafer is pressed against the photolithography mask and ex-
posed in a mask aligner (b). In the exposed areas (clear areas on the mask)
the resist becomes soluble in the appropriate developer and is removed (c).
The Nb layer is then removed in a reactive ion-etching process with a mix-
ture of argon (Ar) ions and sulfur hexafluoride (SF6) ions (d). As a final
step, the remaining resist is removed chemically (with DMSO or acetone)
or with oxygen plasma (e).

As a photoresist either one of the positive resists AZ 5214 E [Clariant GmbH]
2STAR Cryoelectronics, Santa Fe, NM
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.6: Airbridge process. (a) Spin PMMA layer. (b) Exporsure in
DUV. (c) Development. (d) Reflow. (e) Spin AZ5214E layer. (f) Exposure
in UV. (g) Image reversal bake. (h) Flood exposure. (i) Development. (j)
Ar sputtering. (k) Al evaporation. (l) Final lift-off.

or PMMA 950K [MicroChem Corp.] is used. The first one has the advantage
that it is more resistant to the reactive ion etching process, it is therefore
appropriate for structures of size ≥ 2 µm. PMMA is etched at a similar
rate as the niobium but allows a better resolution and should be used if the
resolution is critical.

3.2.2. Airbridge fabrication

Once the resonator/gate line structures are fabricated the airbridge pro-
cess can be performed. The airbridge process is schematically depicted
in Fig. 3.6. In the first step the patterned wafer is spin coated with
PMMA 950K (a). This layer defines the height of the bridges above the
niobium layer (typically 2 µm). The first exposure (b) in deep ultra-violet
(DUV) light at 220 nm defines the bridge support, i.e. the contacts to the
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(a) (b)

100 µm 10 µm

200 µm

10 µm

Figure 3.7: (a) Resonator crossing and transmon gap, zoom-in of air-
bridges at the crossing, (b) Two ports of a beam splitter and an additional
gate line going upwards, zoom-in of an airbridge at a T-junction of the
beam-splitter.

metal layer of the chip (see also grey areas in Fig. 3.4 (b,c)). The exposed
areas become soluble in the appropriate developer and are removed (c).
The resist is then heated to 180 ◦C which causes it to soften and rounds off
the edges (reflow), defining a continuous bridge profile (d). To define the
planar structure of the bridge a second photolithography step is necessary.
For this step, the photoresist AZ 5214E is chosen. It can be exposed at
UV-light with a wavelength of 365 nm which does not expose the underly-
ing PMMA and it can be used as an image reversal resist [Clariant GmbH],
allowing an undercut-profile which is needed for the metal evaporation. Af-
ter spin coating (e) the area around the bridge is exposed (f), but not the
area of the bridge itself as can be seen from the mask design (green areas
in Fig. 3.4 (b,c)). By heating the sample above 110 ◦C the exposed areas
get cross-linked and become insoluble in the developer (g). A flood expo-
sure (exposure without mask) makes the previously unexposed parts of the
resist soluble in the developer (h). Developing will result in a negative wall
profile, i.e. an undercut (i). The wafer is then transferred into a physical
vapor depositon (PVD) system with included ion gun. There it is sput-
tered with Ar ions which remove the oxide layer on the Nb film (j), before
it is coated with a 800 nm thick aluminum (Al) film (k). A final lift-off in
DMSO, acetone and isopropyl alcohol removes the remaining resist and the
Al structures which are not connected to the Nb film (l).

A micrograph of the final airbridges is shown in Fig. 3.7, where im-
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age (a) corresponds to the part of the mask shown in Fig. 3.4. Image (b)
shows an airbridge at a CPW T-junction connecting all three ground planes
with each other. The structures in (b) were fabricated for the experiments
in [Bozyigit11, Lang13b] (not discussed here).

For the experiments presented in this thesis, the aluminum airbridges
have a thickness of 800 nm. Despite the high thickness the airbridges are
sensitive and sometimes collapse during dicing or transmon fabrication. We
also tested airbridges made from titanium (Ti) which are much more stable
(for 400 nm thick and 40 µm long Ti-bridges we never observed a collapsed
bridge). But the Ti film did not become superconducting at cryogenic tem-
peratures, hinting at a non-optimal film quality. This is however a crucial
requirement for using the airbridges in resonator cross-overs. A possibility
for enhancing the stability while maintaining the superconductivity is to
fabricate bridges with different layers, e.g. an aluminum layer with a thin
titanium layer on top.

3.3. Conclusion

In this chapter the design and fabrication of the CPW structures and air-
bridges has been presented. The CPWs are used to implement the cavity
to which the transmon qubits couple and provide a method for reading out
the qubit state as discussed in Sec. 4.3. Asymmetrically coupled cavities
with a higher coupling at the output port than at the input port offer the
possibility to increase the readout efficiency for a given quality factor. A
method to estimate the quality factor for such cavities has been presented.
During the course of this thesis, several samples with asymmetric cavity
coupling have been designed and fabricated, e.g. the samples used and de-
scribed in [Bozyigit11, Baur12b, Lang13b]. CPW structures can also be
used to create charge- and flux-bias lines for individual qubit control (see
Chap. 5), λ/4-resonators for the implementation of parametric amplifiers
(see Sec. 4.4) or the implementation of on-chip microwave beam-splitters
as used in [Bozyigit11, Lang13b].

The airbridges crossing a CPW serve mainly to suppress spurious CPW
modes. In contrast to manually placed wirebonds, the fabrication of air-
bridges produces uniform and reproducible results. This was a key element
in [Lang13b] where it was important to obtain two resonators with nearly

33



3. Sample design and fabrication

identical resonance frequencies. In the chip used for the teleportation ex-
periment (see Chap. 8) airbridges are used to create resonator cross-overs
which allow to build complex resonator networks with arbitrary connecting
topology in a planar technology.
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4
Measurement setup and principles

To observe the quantum mechanical properties of an electrical circuit, all
interactions with its environment must be well controlled. Uncontrolled
interaction of a quantum system with its environment alters the state in an
unpredictable and possibly irreproducible way. The design of the measure-
ment setup and its working principles are therefore crucial factors for the
success of a quantum experiment and are discussed in this chapter.

In our system the energy scales are in the GHz range, therefore one of
the key points is to protect the structures on our chip from thermal GHz
radiation. Since the temperature scale associated with a single photon of
a frequency ν = 5 GHz is T = hν/kB = 240 mK, the ambient temperature
of the chip must be well below this temperature to allow the qubits to
be in the ground state. In our setup this is accomplished by operating
the chip inside a dilution refrigerator at a temperature of T ≈ 20 mK.
In contrast, the electronics to generate the signals for manipulating and
measuring the qubits and resonators are at room temperature. Therefore
a careful design of the cryogenic setup is required in order to maintain a
low temperature while enabling the control and readout of the quantum
systems, as discussed in Sec. 4.1. An important aspect of the setup is
the sample holder which is discussed in Sec. 4.2. Apart from being the
connection between the chip and the rest of the cryogenic setup, it also
shields the chip from electromagnetic radiation and residual magnetic fields.
The working principle of the readout by transmission measurements and its
implementation in our setup is described in Sec. 4.3. For the teleportation
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experiment (see Chap. 8) we extended the readout circuitry to perform
single-shot readout by including Josephson parametric amplifiers into the
setup, as explained in Sec. 4.4.

4.1. Cryogenic setup

The sample is mounted at the lowest temperature stage of a 3He/4He-
dilution refrigerator (Oxford Instruments Kelvinox 400HA). This system
consists of an inner vacuum chamber (IVC) which is pre-cooled to 4.2 K by
immersing it into a bath of liquid helium (He). A small part of the He in the
bath is transferred to the 1K pot, a pot with a needle valve for admitting
liquid He which is constantly cooled by evaporative cooling (i.e. pumping
on it). This allows to pre-cool the second stage of the cryogenic system
to about 1.5 K. The main part inside the IVC is the dilution unit (DU)
in which a mixture of the two helium isotopes 3He and 4He is circulated.
During operation most of the mixture is condensed in the mixing chamber
at the base plate, where it forms two phases, a 3He-rich phase which floats
on top of a 3He-poor phase. The concentration of 3He in the two phases is
constant for a given temperature. By actively pumping 3He out of the 3He-
poor phase a phase transition of the 3He from the 3He-rich into the 3He-poor
phase is induced which removes energy from the environment. One can also
consider this process as evaporative cooling process where 3He is evaporated
from one phase into the other. Heat exchangers at different stages in the
DU use the cooling power of the upwards flowing 3He to gradually cool
down the downwards flowing 3He and effectively produce a temperature
gradient along the DU [Oxford Instruments, Pobell06].

Since all the electronics for signal generation is located at room tempera-
ture, wiring inside the IVC is needed that respects the following two points:
First, since the cables provide a connection between the sample and room
temperature they cause a heat load onto the base plate, adversely affecting
the lowest achievable temperatures. Second, the cables directly transmit
thermal radiation at the qubit/resonator frequencies from room tempera-
ture to the sample, inducing excitation or emission of the qubits/resonators.
In the following we explain how these points are considered in the design
of the wiring.

There are four main types of lines used in our setup, two to perform
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Figure 4.1: Schematic of the cryogenic wiring of typical components: Res-
onator in- and output line (Rin, Rout), qubit charge- (C) and flux- (F) bias
line.

transmission measurements of the resonator (an input- and an output line)
and two different types of bias lines to control the qubits, a charge bias line
coupling capacitively to the qubit and a flux bias line coupling inductively
to the qubit. A graphical representation of the components used in the lines
is shown in Fig. 4.1.

The resonator input line and the charge gate line are designed in the
same way, since the purpose of both of these lines is to bring a coher-
ent microwave signal to the chip. The required signal at the chip has a
very low power, e.g. down to −140 dBm for the resonator input line, which
is lower than the Johnson-Nyquist (thermal) noise at room temperature
(Pth = 4kBT∆f ≈ −110 dBm for T = 300 K and ∆f = 1 MHz). The
straightforward solution would therefore be to generate a signal that has
a much higher power than the thermal noise power and attenuate it at
the lowest temperature stage, where the added thermal noise is low due
to the small temperature. However attenuation always means that power
is dissipated which can heat up the environment. As the lowest temper-
ature stage has also the lowest cooling power it makes it unfavorable to
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dissipate energy there. As shown in [Bianchetti10a], a good solution is to
distribute the power dissipation in a way such that the attenuated noise is
on the order of the thermal noise generated at a certain temperature stage.
This is implemented by installing a 20 dB attenuator at 4 K, another 20 dB
attenuator at the 100 mK stage and a 10 dB attenuator at the base stage.
To reduce the heat load onto the base plate, all cables connecting different
temperature stages are made from stainless steel whose thermal conductiv-
ity is about 103 times lower at low temperatures than that of copper. The
inner conductor of each cable is thermalized via the attenuators, which are
thermally connected with copper clamps and copper braid to the respective
temperature stage. Additionally, the outer conductor is thermally anchored
at every temperature stage with copper braid.

The flux bias lines have to carry a current pulse to the sample with
a current of ∼ 1 mA at the sample. It is therefore not possible to use
attenuators at lower temperature stages, since the power dissipation would
be much too high. The only attenuator (20 dB) is placed at the 4 K-stage
which has a high cooling power from the liquid helium bath. Instead of
the attenuators, coaxial low-pass filters with a 40 dB stopband in the range
of 2 GHz to 20 GHz are placed at the base stage of the cryostat, efficiently
shielding noise in the relevant frequency range. The coaxial cables are either
of stainless steel or NbTi which becomes superconducting below 9 K. The
superconducting cable allows the application of a constant current which
would produce a too high heat dissipation in stainless steel cables while still
having a low thermal conductivity comparable to that of stainless steel.

The resonator output line fulfills a set of different requirements. While
it should provide an as high as possible transmission of the signal from
the low temperature stage to room temperature, the transmission in the
reverse direction should be suppressed as much as possible. This can be
implemented by using circulators with one of the three ports terminated
with a resistor matching the characteristic impedance of the transmission
lines (50 Ω). A circulator used in this way allows the upwards going signal
to pass with an insertion loss of typically only ∼ 0.5 dB while the noise going
downwards is dumped in the matched load, effectively leading to an isolation
of ∼ 20 dB due to some finite cross coupling between the ports. Since the
signal transmitted through the resonator for qubit measurements is very
small (typically −140 dBm) it has to be amplified in order to be detectable.
Therefore we installed a high-electron-mobility transistor (HEMT) amplifier
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at the 1.5 K stage (1K pot) which has a noise temperature of ∼ 4 K and a
gain of 35 dB. In Sec. 4.4 it is explained how the readout wiring is modified
to include Josephson parametric amplifiers allowing amplification at base
temperature.

4.2. 16-port sample holder

For the experiments performed in our lab before the teleportation exper-
iment (see Chap. 8) we used a sample holder which allows to connect
8 coaxial cables to a PCB on which the chip is mounted. This sample
holder is described in [Baur12a]. In this section the sample holder with
16 connections which has been developed for the new generation of experi-
ments [Häusler12, Liu12] is described.

The sample holder consists of several parts as shown in Fig. 4.2. The
sample is glued into a cutout of a printed circuit board (PCB) with silver
paint or PMMA and the on-chip CPWs are connected to CPWs on the
PCB with wirebonds. The PCB is then mounted onto the bottom part
of the sample holder (a). To suppress standing waves in a cavity which is
formed by the PCB/bottom cover and the top cover of the sample holder, a
cover [Marx09, Liu12] which has 500 µm deep cutouts around the region of
the chip and the CPWs is placed on top of the PCB (a,b). In the next step,
SMP bullets are inserted into the SMP-PCB-connectors and the bottom
part is connected with the top part (c) through which the coaxial cables
are fed through via an SMP connector. The bottom and top part as well as
the PCB cover are made from oxygen-free copper (OFC) and are connected
with an OFC copper rod to the base plate of the cryostat to maximize
thermal conductivity.

The bottom part of the sample holder (c) has slots which allow to insert
miniature superconducting coils [Bianchetti10a] to provide static flux offsets
for the transmon qubits.

The housing of our sample holder provides also a good protection of the
sample from external radiation. This can be concluded from experiments in
which the 8-port version of the sample holder was covered by an absorptive
medium (Eccosorb CR-124 ) protecting it better from external radiation
but no effect on the qubit lifetime was observed [Peterer12]. This is in
contrast to the experiments described in [Córcoles11], where this technique
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(a) (b) (c)

Figure 4.2: (a) 16-port PCB mounted on bottom part of the sample
holder. Lid for covering the PCB. (b) Bottom part of the sample holder
with PCB and attached lid. (c) Bottom part with coils inserted into top
part of the sample holder.

applied to a sample holder which provided bad shielding resulted in drastic
improvements of the qubit lifetime. However, the fact that we did not
observe an improvement of the qubit lifetime might just show that our
sample holder protects the qubit well enough such that another (unknown)
factor is dominating the qubit decay. Once this factor has been identified
and eliminated, a better shielding might still be necessary to further increase
qubit lifetimes.

Since the sample is sensitive to magnetic fields it is necessary to protect
it from external magnetic field fluctuations. This is done by cylindrical
shields made from a metal alloy with high magnetic permeability (Cryop-
erm), reducing the external magnetic field at the location of the sample.
The shields for the 8-port and 16-port-sample holder have a wall thickness
of 1 mm, an inner diameter of 48 mm and 65 mm and a length of 188 mm
and 200 mm, respectively. For the measurements where only the 8-port
sample holder is used, both shields are mounted to provide better magnetic
shielding.
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4.3. Readout schemes

The readout of the qubit state is based on the dispersive shift which affects
the effective resonator frequency to be ω′r,eff = ω′r ± χ, depending on the
state of the qubit, see Eqs. (2.10)–(2.12). By measuring the transmission of
the resonator it is therefore possible to infer the state of the qubit. In the
first part of this section the technical aspects of resonator transmission mea-
surements in our setup is discussed, followed by an explanation of the exper-
imental procedures for reading out the qubit state. A detailed description of
the dispersive qubit-state readout is given in [Bianchetti09, Bianchetti10a],
and an approach to understand this measurement in terms of density oper-
ators is presented is Sec. 6.2.1.

The resonator transmission is measured with a microwave signal at a fre-
quency νRF close to the resonance frequency (4 GHz to 10 GHz). The path of
the signal inside the cryostat is described in Sec. 4.1 and depicted in Fig. 4.1.
The output signal is then processed further at room temperature. The cor-
responding circuitry is displayed in Fig. 4.3. At first the signal is further
amplified by 25 dB with an ultra-low noise amplifier (ULN, Miteq AFS3-
ULN ), high-pass filtered to suppress (amplified) low-frequency noise before
amplified again by 27 dB with a low noise filter (LN, Miteq AFS3-LN ). The
additional 3 dB attenuator suppresses standing waves between the two am-
plifiers. The signal is then down-converted to an intermediate frequency
(IF) of typically 25 MHz or 10 MHz with an IQ-mixer (Marki IQ-0714 or
Miteq IRM0408LC2Q) and a local oscillator. This IF-frequency signal is
then low-pass filtered and amplified again with a low-noise filter (LN, Mini-
Circuits ZFL-500LN+), before it is digitized in a data acquisition (DAQ)
board (Acquiris AP240 or Nallatech XtremeDSP with a Xilinx Virtex 4 -
FPGA). The DAQ boards have a sampling rate of 1 GS/s and 100 MS/s,
respectively, and are capable of averaging the recorded time traces. The
averaging is needed when the signal-to-noise ratio is small, which is typi-
cally the case except for the single-shot measurement when using Josephson
parametric amplifiers (see Sec. 4.4). DC blocks (Inmet 8039 ) isolate the
down-conversion circuitry from the cryostat and the data-acquisition hard-
ware to avoid ground loops in the system.

An example of a resonator transmission readout is shown in Fig. 4.4 (a),
where the transmission of a signal is shown as a function of drive frequency
and time (blue for low transmission, red for high transmission). The signal
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Figure 4.3: Schematics of the down-conversion circuitry. The resonator
output Rout (see also Fig. 4.1) is amplified and filtered several times down-
converted to an intermediate frequency and finally digitized in a data ac-
quisition board. See text for details.

is turned on at a time τ = 1.5 µs after the beginning of the measurement.
Every time trace is a result of many (typically 104 to 105) averages over the
same experimental settings. Far away from the resonance at a frequency
ν = 7.67 GHz the transmission stays low after turning on the measurement,
while at the resonance frequency νr0 = 7.695 GHz the transmission rises to
a higher value for the rest of the measurement. By integrating every time
trace from 1.5 µs to 2.5 µs the spectral lineshape shown in Fig. 4.4 (c) (blue
dots) is obtained.

The readout of the qubit state is based on the dispersive shift which
changes the effective resonator frequency ω′r,eff = ω′r ± χ, depending on the
state of the qubit, see Eqs. (2.10)–(2.12). The dispersive shift can be mea-
sured experimentally with pulsed spectroscopy. In addition to the measure-
ment above, the same experiment is performed with the qubit transferred
to the excited state just before the transmission measurement. In this case
the effective resonator frequency is shifted by 2χ/2π as shown in Fig. 4.4 (b)
and (c) (red dots). These measurements also show that the qubit is decay-
ing during the measurement. For increasing time, the transmission signal
at the resonance frequency for the qubit in the excited state νr1 = 7.69 GHz
becomes weaker while the transmission at the resonance frequency for the
qubit in the ground state νr0 becomes stronger. When calculating the spec-
trum from the time traces the decay is visible as a small peak as indicated
with the black arrow in (c). This peak becomes stronger as the integration
time is increased.
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Figure 4.4: (a) Transmission measurement as a function of time for vary-
ing resonator drive frequencies with the qubit in the ground state and (b)
the qubit in the excited state. (c) Transmission spectra extracted from the
measurements in (a,b) and Lorentzian fits (solid red lines). The decay of
the excited state is visible in the spectrum (black arrow).

Inferring the excited-state population of an arbitrary qubit state is pos-
sible by comparing the time trace of a cavity response of this state to time
traces where the qubit is prepared in the ground and excited states. The
excited-state population is proportional to the area between the ground
state curve and the curve of the state to test, see Fig. 4.5. The linear de-
pendence of the excited state population on the area under the time trace
can be understood easiest in the context of single measurements. For ev-
ery point in time for each single measurement the qubit is either in the
ground or the excited state with a certain probability. An average over
many realizations gives therefore in time a value which depends linearly on
the fraction of qubits that were in the excited state for each point in time.

It should be noted that by using this technique to infer the excited
state population, one implicitly assumes that the reference measurements
(Fig. 4.5 (a)) are exact. In reality there is typically a small thermal popula-
tion which leads to a finite probability that the qubit is in the excited state
although it is assumed to be in the ground state and vice versa. However
this thermal population is not discernible in the presented way of averaged
only measurements. Only with single shot measurements it becomes easily
possible to detect and quantify it.
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Figure 4.5: (a) Measured time traces for the qubit in the ground (blue
dots) and excited (red dots) state. The black lines are fits to cavity Bloch
equations [Bianchetti10a]. (b) The area between the time trace of an ar-
bitrary state and the ground state response is proportional to the excited
state population.

4.4. Josephson parametric amplifiers
The readout circuitry based on conventional semiconductor amplifiers pre-
sented in Sec. 4.3 allows to infer the expectation value of the state of one
or several (c.f. Sec. 6.2) qubits by averaging over many measurement out-
comes. But due to the low signal-to-noise ratio it is not possible to extract
useful information from a single measurement. The bottleneck of the read-
out circuitry is the HEMT-amplifier with a noise temperature of 4 K. The
added noise constitutes the dominant part of the measured signal, since it
exceeds the signal power coming from the resonator measurement typically
by a factor of ∼ 40. However, several protocols (e.g. the teleportation pro-
tocol presented in Chap. 8) require single-shot readout explicitly, whereas
for all other protocols single-shot readout is at least no disadvantage.

The ability to perform single-shot readout in circuit-QED experiments
[Mallet09, Vijay11] came only up recently thanks to development of low-
noise amplifiers based on Josephson junctions such as Josephson bifur-
cation amplifiers [Siddiqi04, Vijay09] or Josephson parametric amplifiers
(JPA) [Castellanos-Beltran08, Yurke06]. These amplifiers made from su-
perconducting circuits can be operated at the lowest temperature stage of
the dilution refrigerator and can amplify a certain signal with theoretically
no additional noise.
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4.4. Josephson parametric amplifiers

In this section JPAs are introduced as building blocks enabling single-shot
readout and their integration into our measurement setup is described.

4.4.1. Working principle and design

The JPAs were first realized in the QUDEV-Lab by Christopher Eichler
as part of his PhD thesis [Eichler13a]. A detailed introduction into the
topic can be found therein, a summary of the relevant parts is also given
in [Eichler13b].

The JPAs used in our experiments are realized as CPW λ/4 resonators
shunted by an array of SQUIDs, see Fig. 4.6. In contrast to a λ/2 resonator
(Sec. 2.3.2), a λ/4 resonator has a capacitance on only one end and is
shorted to ground on the other end. This imposes the condition that it can
support only modes with a voltage anti-node at the capacitor and a voltage
node at the short. In a regular λ/4-resonator the incident wave is reflected
and the phase of the reflected wave depends only on the frequency. Since
the inductance of SQUIDs depends on the current flowing through them,
shunting a λ/4-resonator with SQUIDs realizes a non-linear oscillator. Its
reflection coefficient therefore additionally depends on the power of the
incident signal. Amplification can be achieved in such a device when it
is constantly driven at a frequency and power at which the phase of the
reflected signal depends sensitively on the power. In this case an additional
small signal at the input will induce a large change in the reflected signal.

The SQUIDs also provide flux tunability of the effective resonator fre-
quency. Since the band of amplification is usually a small range around the
resonator frequency, the flux tunability allows to match the amplification
band to the frequency of the signal to be amplified.

4.4.2. Integration into the setup

To operate a JPA it is necessary to drive (“pump”) it at a certain frequency
and power. The frequency at which the JPA is operated is determined
by the readout frequency of the associated resonator. Therefore the two
parameters that have to be tuned are the magnetic flux through the SQUIDs
and the applied pump power. This requires additional circuitry inside the
cryostat and – as shown later in this section – also on the room temperature
end of the setup.
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(a) (b)

500 µm 50 µm

Figure 4.6: (a) Micrograph of one of the used chips with a λ/4-resonator
terminated by an array of 11 SQUIDs. (b) Zoom of the SQUID-array.

The additional cryogenic wiring needed for the integration of one JPA
is depicted schematically in Fig. 4.7 (a). In our setup we implemented two
JPAs, allowing to read out two resonators at different frequencies in parallel.
A photograph of this implementation is shown in Fig. 4.7 (b,c).

The flux tuning is realized with miniature superconducting coils mounted
at the bottom of the sample holder as presented in Sec. 4.2. The pump tone
(P) is applied to the λ/4-resonator using a directional coupler. The signal
coming from the sample is directed by a circulator (C2 in Fig. 4.7) through
the directional coupler (D) into the resonator where it is amplified and
reflected. Passing the directional coupler again it is then guided by the
circulator (2) towards the room temperature circuitry.

Since the reflected (amplified) signal has a high power compared to the
measurement tone applied to the resonator (∼ +20 dB) and the circulator
has a only a finite isolation between its port (∼ 20 dB), a signal of similar
power as the measurement tone would be applied to the sample from its
output port, inducing a measurement itself. Therefore, another circulator
(1) is placed in between the sample and circulator 2 to further isolate the
sample from the leaking amplified signal.

To suppress the reflected pump signal in steady state (i.e. if no measure-
ment signal is applied) a cancellation tone (Cn) is applied to the directional
coupler which cancels the reflected pump signal by destructive interference.
The cancellation tone must have the same frequency as the pump tone but
an amplitude and phase adjusted to cancel the pump tone. This is achieved
with the circuitry depicted in Fig. 4.8 (a). The signal form a generator (RF
1/2) is split with a power splitter such that one half of the signal is guided to
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Figure 4.7: (a) Schematic of cryogenic circuitry of the JPA pump and can-
cellation. (b) Wiring and components connected to the base plate (20 mK)
of the dilution refrigerator. (c) Dilution unit and wiring of the cryostat
between the base plate (20 mK), 100 mK-plate and still-plate (800 mK).
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Figure 4.8: (a) Schematic of the room temperature JPA pump and can-
cellation circuitry. (b) Photograph of the implementation.

the pump line and the other half goes through computer-controlled variable
attenuator and phase shifter which allow to adjust the cancellation tone.
A circulator is included into the cancellation path to suppress reflections
coming from the variable attenuator and phase shifter. To automate the
calibration of the JPAs and the cancellation circuitry and to make it inde-
pendent of the used sample, another signal generator (Test) is connected to
the pump lines of both JPAs which can be used to inject a signal simulating
the measurement signal into the λ/4 resonator.

Typical characterization measurements for one of the JPAs used in the
teleportation experiment (Chap. 8) are shown in Fig. 4.9. In (a) the reso-
nance frequency of the λ/4 resonator is shown as a function of the applied
magnetic field. This measurement is performed in the linear regime, i.e. in
the regime with a very weak power dependence of the reflection. The fact
that it shows an irregular behavior comes from the anisotropic coupling
of the SQUIDs to the coil. In general, if more SQUIDs are used the flux
dependency of the resonance frequency becomes more irregular. The plot
in (b) shows the reflection coefficient of the real and imaginary part at one
particular coil bias voltage. In (c), a characterization of the system noise is
shown in analogy to the measurements in [Eichler11]. From this measure-
ment a system noise Nsystem ≈ 29 noise photons dominated by the HEMT
amplifier noise can be extracted.
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Figure 4.9: (a) Measured resonance frequency versus magnetic coil bias
voltage. (b) Measured real (blue dots) and imaginary (red diamonds) parts
of the reflection coefficient Γ in the linear regime. (c) Measured gain G∆
(blue dots) and power spectral density (red dots) for a fixed pump tone as
a function of detuning ∆.

Once a coil bias voltage with the desired resonance frequency has been
found, the pump power and the coil bias are swept around this point in
order to find the optimal settings. The coil bias has also to be swept, since
due to the current dependent inductance of the SQUIDs, the pump power
also changes the resonance frequency. For a chosen pair of coil bias/pump
power one can then record the gain curve of the JPA at this point. This is
done by measuring the reflection as a function of the test-signal frequency,
once with the pump tone on, and once without the pump tone to calculate
the absolute amplification. The gain curves for the two JPAs at the points
used for the teleportation experiment are shown in Fig. 4.10. Whereas the
gain curve shown in (a) shows a Lorentzian line shape (red line), the curve
in (b) shows a broadened curve. This behavior can occur when higher-
order non-linearities become significant and can no longer be explained by
a simple model [Eichler13a].

As a remark it should be noted that even with the JPA circuitry im-
plemented it is still possible to perform measurements without using the
JPA, since turning off the pump tone will just reflect any incoming signal
of a given frequency with a constant phase shift. However, there will be
an extra loss due to the additional components in comparison to a circuit
without the JPA.
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Figure 4.10: Gain curves of the two parametric amplifiers at the frequen-
cies used for the teleportation experiments. The red curve in (a) is a
Lorentzian-shaped fit. The dashed lines are drawn 3 dB below the max-
imal gain.

4.4.3. Single-shot readout

An example of single-shot traces is shown in Fig. 4.11. At first the data
acquisition is turned on (I.) without a measurement pulse applied to the
resonator. It shows the noise coming mostly from the various amplification
stages. Then a first measurement pulse of 500 ns length is sent to the
resonator (II.). In this measurement the readout was tuned such that the
amplitude is either higher (|1〉) or lower (|0〉) than the noise signal. In
most cases the qubit is measured to be in the ground state as expected
(colored traces). However in ≈ 5 − 10 % of the traces, depending on the
exact qubit frequency, the qubit is found to be in the excited state due
to thermal excitation (black trace). This first measurement can be used
to herald a proper ground state before doing any operations. In post-
processing the measurements where the qubit did not start in the ground
state can be discarded. After this heralding measurement operations can be
executed while the measurement tone is off (III.) before the measurement
tone is turned on again to measure the final qubit state (IV.). In the data
shown either no pulse has been applied (blue trace) or a π pulse has been
applied (other traces) to the qubit. It can be seen that the blue curve
(no pulse) is still in the |0〉 state while the other colored curves show the
qubit to be in the |1〉-state. The qubit that was in the |1〉 state before
the operation (black curve) has been transferred to the |0〉-state. It is also
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Figure 4.11: Different single-shot traces. (I.) The data acquisition is run-
ning but no measurement pulse is applied to the resonator. (II.) A mea-
surement pulse is applied to herald the ground state. (III.) Either no pulse
(blue trace) or a π pulse (other traces) is applied to the qubit, followed by
turning on the measurement signal again (IV.).

visible that the excited state decays at random times, with a distribution
related to the energy relaxation time. However during measurement the
qubits normally decay faster than with the typical energy relaxation time
T1 since with high measurement power, non-linear interactions neglected
in the dispersive approximation become apparent [Boissonneault08]. These
spontaneous “quantum jumps” have been first observed in superconducting
circuits in [Vijay11].

For obtaining the final qubit state, every trace in (IV.) is integrated for
a time τint and the resulting value is compared to a threshold determin-
ing whether the qubit is in a |0〉 or |1〉 state. The optimal threshold can
be found as follows. By preparing the qubit in a state |0〉 and |1〉 and
integrating many time traces, one obtains histograms which show the dis-
tribution of integrated values for the two cases, as shown in Fig. 4.12 (a,b).
By integrating the counts and normalizing the value to the number of total
counts, the “S curves” shown in (c) are obtained. The difference of the
two curves is a measure for the readout fidelity as a function of the chosen
threshold. The maximum is at the optimal threshold for distinguishing the
two states for the integration time τint. The data in Fig. 4.12 has been in-
tegrated for 200 ns, to find the overall maximum readout fidelity, the same
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Figure 4.12: Histograms of the integrated single-shot traces when prepar-
ing the qubit in the (a) |0〉 and (b) |1〉 state. (c) The integrated counts of
the two histograms in (a,b) allow to calculate the readout fidelity F (d).
Its maximum Fmax = 87.3 % is at the optimal threshold (dashed line) for
distinguishing |0〉 and |1〉 states.

measurements have to be performed for different integration times.
The histogram in (b) when the qubits are prepared in the excited state

shows more false counts (small peak on the left) than the histogram for the
ground state (a). This indicates that the readout fidelity is limited by the
qubit decay.

As mentioned in Sec. 4.3, by passive initialization (i.e. waiting for a long
time such that the qubit decays into the ground state) the measurements
which are not initialized properly are nevertheless averaged with the other
measurements. By normalizing to reference measurements these effects are
corrected implicitly and are not discernible in the final data. Single-shot
readout however allows to observe the amount of thermally excited qubits
and can be used for heralding the ground state.

The heralding can be viewed as an initialization by measurement [Ristè12b]
in contrast to passive initialization which does not provide a high-quality
ground state. In addition, active initialization schemes have been imple-
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mented in superconducting circuits using sideband-cooling [Valenzuela06],
coupling to spurious two-level systems [Mariantoni11], temporal control of
the relaxation rate [Reed12], or using a feed-back loop [Ristè12a].

4.5. Conclusion
In this chapter our setup is presented which is used to measure samples
with a circuit QED architecture. To be able to observe quantum effects
in the sample, it has to be cooled down to millikelvin temperatures with
a dilution refrigerator. Carefully designed cabling allows to send control
and readout microwave signals to the sample while still isolating it from
room-temperature noise. To be able to implement a new generation of
experiments, a sample holder and a PCB were introduced which allow to
connect up to 16 microwave transmission lines to a chip. The method to
read out the qubit state is based on a transmission measurement of the
resonator. Since the effective resonance frequency of the cavity depends on
the qubit state, the transmission of a microwave signal contains information
about the qubit state. By repeatedly preparing a certain qubit state and
recording the time-resolved cavity transmission, the expectation value of the
excited state population of the qubit can be inferred. Finally the Josephson
parametric amplifier is introduced which amplifies the signal transmitted
through the cavity while at the same time introducing only a negligible
amount of noise. This allows to perform single-shot measurements, a crucial
element of the teleportation experiment in Chap. 8.
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5
Qubit manipulation

In this chapter we show how to manipulate a transmon qubit in order to
implement single- and multi-qubit gates. We use two different methods to
control the qubit: Applying microwave radiation to control the state of the
qubit and changing the magnetic flux to control the transition frequency.
For both methods we implemented individual control lines which couple to
a specific qubit and have little cross-talk to other qubits.

5.1. Microwave control
The state of a qubit is controlled by applying a coherent microwave signal
with frequency ωd/2π near the qubit transition frequency ωq/2π. For a
qubit drive with drive amplitude E(t) and phase ϕ, the effective Hamiltonian
for a qubit in a frame rotating at the drive frequency ωd/2π can be written
as [Blais07, Baur12a]

Hdrive = ∆q
2 σ̂z + ΩRabi(t)

2 (cos(ϕ)σ̂x + sin(ϕ)σ̂y) , (5.1)

with ∆q = ωq − ωd the detuning of the qubit transition frequency from
the drive and ΩRabi(t) ∝ E(t) the Rabi frequency. This Hamiltonian shows
several important aspects of the qubit drive. At first since the operators σ̂x
and σ̂y represent rotations around the x- and y-axis of the Bloch sphere,
qubit rotations around arbitrary axes lying on the equator of the Bloch
sphere can be realized by changing the phase ϕ of the qubit drive. Second,
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5. Qubit manipulation

a detuning between the drive and qubit frequency induces a rotation about
the z-axis of the Bloch sphere.

In practice, a drive pulse is generated by amplitude and phase modu-
lation of a coherent and phase-stable constant microwave signal. This is
implemented with an IQ-mixer which multiplies the coherent signal with
the complex amplitude of an envelope function generated by an arbitrary
waveform generator (AWG) [Schmidlin09, Baur12a].

The pulses are applied to the transmon qubit via charge gate lines. These
are CPW transmission lines which couple capacitively to the qubit as shown
in Fig. 5.1. The gap between the end of the transmission line and the trans-
mon qubit allows for some flexibility in choosing the coupling during the
design/fabrication of the transmon by changing the length of the extension
from the transmon to the gate line. The coupling properties of a charge
bias line to a transmon qubit are discussed in [Steffen08].

In the Hamiltonian (5.1) the transmon is approximated as a two-level
system. For short pulses however, this approximation becomes inaccu-
rate since the bandwidth B = 1/2πσ of a Gaussian pulse with standard
deviation σ can become similar to the anharmonicity of the transmon
(e.g. B = 320 MHz for σ = 2 ns). In this case a pulse can induce a
temporary population of the |2〉-level during the pulse inducing an addi-
tional phase rotation which reduces the pulse fidelity. This problem can
be eliminated by using optimal pulse control as theoretically described
in [Motzoi09, Gambetta11] and first used in [Chow10a]. In addition to
the normal pulse envelope used to modulate one field quadrature (I), the
so-called DRAG pulse uses the derivative of this envelope to modulate the
other drive field quadrature (Q).

The standard single-qubit gate calibration measurements are shown in
Fig. 5.2. In a Rabi oscillation experiment [Rabi37, Vion03] (a) a sin-
gle Gaussian shaped microwave pulse with constant length (typically σ ∈
[2, 5] ns) is applied and the resulting |1〉-population is measured as a func-
tion of the pulse amplitude. According to Eq. (5.1), this induces a rotation
around the x-axis of the Bloch sphere for the time of the pulse. Since
the speed of this rotation – the Rabi frequency ΩRabi – is proportional to
the drive amplitude, the |1〉-population evolves sinusoidally with the drive
amplitude. A sinusoidal fit (red line in (a)) can be used to extract the
amplitude for π/2 and πpulses. As an alternative, the Rabi experiment
can also be performed with constant amplitude and varying pulse length
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Figure 5.1: (a) Micrograph of a transmon qubit coupled to a resonator
and a charge bias line, (b) simplified equivalent circuit.

as described in [Bianchetti09]. It should be mentioned that all these mea-
surements are averaged measurements which potentially suffer from some
residual thermal population as discussed in Sec. 4.3 and Sec. 4.4.

The Ramsey experiment [Ramsey50, Vion03] (b) consists of two π/2
pulses around the x-axis with a variable time delay τ between the pulses,
and a measurement of the excited state population directly after the sec-
ond pulse. The first π/2 pulse will bring the qubit to a superposition state
(equator of the Bloch sphere). In case of no delay time (τ = 0) the second
pulse immediately brings the qubit to the excited state. From Eq. (5.1) it
can be seen that if the drive frequency is detuned from the pulse frequency
a rotation around the z-axis is induced, even if the pulse amplitude is zero,
i.e. also during the waiting time. The action of the second π/2 pulse onto
the qubit can also be interpreted as that it maps the population of the
y-axis onto the z-axis. Therefore the result shows the |i〉 population just
before the application of the second pulse. The measured population there-
fore oscillates with the detuning frequency and can be used to extract the
exact qubit frequency. An exponentially damped sinusoidal fit allows to
extract the detuning as well as the decoherence time T ∗2 (see Appendix B).
In order to calibrate the drive frequency, a certain offset (typically 4 MHz)
is set intentionally in order to facilitate the fitting since a low frequency
oscillation can be hard to distinguish from decay.

The experiment presented in (c) serves to calibrate the DRAG [Motzoi09,
Chow10a, Gambetta11] pulse. As stated above, the pulse envelope on the
Q quadrature is the derivative of the envelope of the I quadrature, but mul-
tiplied by a constant factor (Q scaling factor) which needs to be determined
in a calibration measurement. To do so, two consecutive pulses are applied,
the first one a π/2 pulse around the x-axis and the second one a π pulse
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Figure 5.2: Pulse schemes and data of standard single-qubit calibration
measurements: (a) Rabi oscillations for calibrating π and π/2 pulses
(dashed lines), (b) Ramsey oscillations for calibrating the detuning, (c)
Q-scale measurement for calibrating the DRAG pulses (see text for more
details).

around the x-, y- or −y-axis respectively. For the case in which both pulses
are around the same axis the resulting |1〉-population is always 1/2 (blue
dots) independent of the scaling factor, since it is calibrated with the Rabi
experiment to behave in such a way. However if the first pulse induces a
phase error, this can be made visible when the second pulse rotates around
the y or −y axis (red and yellow dots, respectively). The deviation of the
final population from 1/2 is expected to depend linearly from the scaling
factor and is opposite for y- and −y-rotations, respectively. A linear fit (red
lines) to these deviations allows to extract the scaling factor at which all
three pulse sequences result in a population of 1/2 as expected.

During the calibration procedure, these experiments are performed iter-
atively since a change in one parameter might influence the optimal setting
for another parameter.

5.2. Magnetic flux control

As mentioned in Sec. 4.2 the sample holder has miniature superconducting
coils attached to it which can provide a flux offset to tune the qubits to
a certain operation frequency. But due the large inductance of the coils
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and the low pass filtering of the bias voltage, they can only be used to
provide a static offset, changeable on timescales of milliseconds. Our ex-
periments however require qubit transition frequency control on a timescale
of nanoseconds. Fast frequency modulation during the experiment can be
achieved with on-chip flux bias lines [DiCarlo09]. These are implemented
as CPW transmission lines which pass near the SQUID loop of the trans-
mon qubit. A current applied to the flux bias line induces a magnetic field
changing the flux in the SQUID loop and therefore modulating the tran-
sition frequency of the qubit. Two different flux line designs used in our
lab are shown in Fig. 5.3. The design shown in (a) consists of a CPW
transmission line passing by the SQUID. The current is guided away from
the transmon to the edge of the chip where the flux line is shorted to the
ground of the PCB. This flux line design provides a high bandwidth since
the line on the chip has an impedance of 50 Ω everywhere. A drawback
of this design is its high capacitive coupling to the qubit which leads to
an increased decoherence (c.f. Appendix B). The ground in between the
flux line and the SQUID loop was put to decrease the capacitive coupling.
The flux line shown in (b) goes into a narrow constriction shortly before
the transmon structure passing by the SQUID loop and is then shorted to
ground on the chip. This type of flux line has a lower capacitive coupling
compared to the type in (a) but since its impedance changes gradually it
reflects a part of the current pulse.

The current pulses are generated with an arbitrary waveform generator
(Tektronix AWG 5014) which has a sampling rate of 1.2 GS/s and a band-
width of 600 MHz. Since the wiring and other components of the setup act
as a filter for these pulses distorting their pulse shape, special care has to be
taken in order to control the effective pulse shape that is seen by the qubit.
From measuring the response of the setup to a short pulse it is possible
to infer corrections that have to be applied to the generated pulse. This
procedure is described in detail in [Bozyigit10].

The fast flux lines allow control over the qubit transition frequencies and
their interaction with each other through their frequency dependent inter-
action with the resonator, or the interaction of a qubit with the resonator.
By detuning the qubit for a certain time τ by a frequency ∆ν, the excited
state acquires a phase φ = τ∆ν, similar to a Ramsey experiment. We use
this technique to implement z-rotations e.g. in the Toffoli gate as described
in Sec. 7.2. In the following Sec. 5.2.1 it is shown how to use the frequency
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(a) (b)
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Figure 5.3: Micrograph of two different fast flux bias line designs. Current
flow is indicated with blue arrows, magnetic flux with red arrows. (a) Flux
bias line which guides the current away from the chip and is shorted to
ground at the PCB (b) flux bias line which is shorted to ground directly on
chip.

tuning to allow a controlled interaction of the qubit with the resonator to
investigate its properties. In Sec. 5.2.2 the fast flux tuning is used to realize
two-qubit gates.

5.2.1. Qubit-resonator interaction

Solving the Jaynes-Cummings Hamiltonian Eq. (2.8) for a two-level sys-
tem and a single mode of the electromagnetic field (see e.g. [Yamamoto99,
Walls08, Scully97]) reveals the phenomenon of vacuum Rabi oscillations: If
the system is prepared in a state |1〉 ⊗ |n = 0〉 = |1, n = 0〉 where the qubit
is in the excited state and the cavity is empty, then as soon as the Jaynes-
Cummings interaction is turned on the two systems start to coherently
exchange the excitation with an (angular) frequency ΩR =

√
(2g)2 + ∆2

0,
called the vacuum Rabi oscillation frequency, with ∆0 = ω01 − ωr the de-
tuning.

The exchange of the excitation is however only complete when the qubit
and cavity are on resonance ∆0 = 0. In the case of a finite detuning the
maximal theoretical cavity population will be (2g)2/((2g)2 + ∆2

0). This
allows to control the strength of the interaction by tuning the frequency
of the qubit into or out of the resonator, effectively turning the interaction
on or off. Of course the analog conditions apply in the situation where the
cavity is initially in the one-photon Fock state and the qubit in the ground
state.
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5.2. Magnetic flux control

In spectroscopic measurements, these oscillations manifest themselves as
the vacuum Rabi mode splitting (or normal-mode splitting) and have been
first observed in a cavity QED experiments with atoms in a cavity reported
in [Thompson92] and in superconducting circuits in [Wallraff04]. Time
resolved vacuum Rabi oscillations have been first observed in [Brune96] in
cavity QED and in [Johansson06, Hofheinz08] in superconducting circuits.
It should be noted that the observation of a vacuum Rabi mode splitting
or oscillations is only possible in systems with strong coupling, i.e. where
the coupling g is larger than the cavity or qubit decay rates.

In our experiments performed in [Fink10b], we used this technique to
tune a qubit in the ground state into a resonator to which white noise
with different power spectral densities Sn was applied as shown in the pulse
sequence in Fig. 5.4 (a). The noise generates a quasi-thermal field inside the
cavity with an average photon number nth = Sn/~ωr + n0 with n0 ≈ 0.04
photons the thermal background field. This thermal photon number can
also be expressed in terms of an equivalent cavity field temperature Tc
through nth = [exp (~ωr/kBTc)− 1]−1.

By measuring the qubit population after bringing the qubit into reso-
nance with the resonator as a function of the interaction time we can ob-
serve vacuum Rabi oscillations with a low final qubit population as shown
in Fig. 5.4 (b). By fitting the measured data to a master equation simula-
tion (see Appendix B) incorporating two qubit states, six cavity states, the
qubit and cavity decay the equivalent cavity field temperature Tc can be
extracted for different noise powers Sn =−214 dBm/Hz to −202 dBm/Hz
in steps of 3 dBm/Hz.

The oscillations at low noise power show long coherence times but low
contrast. For an increasing thermal field, the amplitude of the coherent
oscillations increases while the coherence time decreases, as expected for a
thermal distribution of photon numbers. For higher noise powers the qubit
approximation breaks down and one would have to measure the population
of the higher excited transmon states to reliably fit the data. However
with spectroscopic measuremnts it is possible to fit the spectrum of the
system where the qubit is permanently tuned into the cavity for equivalent
resonator field temperatures of up to Tc ∼ 100 K as discussed in detail
in [Fink10b, Fink10a].
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Figure 5.4: (a) Pulse sequence for measuring the qubit excited state pop-
ulation as a function of the resonant cavity interaction time τ , (b) data
(dots) and master equation simulation (lines) for different noise levels.

5.2.2. Two-qubit gates

Mulit-qubit gates are necessary for implementing quantum algorithms. Since
a two-qubit cphase-gate together with arbitrary one-qubit operations form
a universal set of quantum gates, this gate is particularly interesting for an
implementation.

In the dispersive regime the Hamiltonian of two qubits coupled to a single
mode of a cavity can be written as [Blais07]

H2q/~ =
∑
j=1,2

ω
(j)
01
2 σ̂(j)

z + (ωr +
∑
j=1,2

χj σ̂
(j)
z )â†â+ J00(σ(1)

− σ
(2)
+ + σ

(2)
− σ

(1)
+ ).

(5.2)
In addition to the terms known from Eq. (2.10), the last term (called J-
coupling or transverse coupling) describes a coupling between the |01〉 ↔
|10〉-states of the qubits which enables a coherent exchange of a single quan-
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tum between them at a rate

J00 = g
(1)
01 g

(2)
01 (∆(1)

01 + ∆(2)
01 )

2∆(1)
01 ∆(2)

01
, (5.3)

where g(i)
01 and ∆(i)

01 are the qubit-resonator coupling and the qubit-resonator
detuning for qubit i, respectively.

This coupling is an effective qubit-qubit coupling mediated via the ex-
change of virtual cavity photons [Blais04, Gywat06]. It is present in the
complete absence of any direct qubit-qubit coupling and allows to use the
cavity as a “quantum bus” [Majer07, Sillanpää07] for long-range non-local
interactions between two or more distant qubits. In addition, since only
virtual photons are exchanged via the cavity, the cavity-induced relaxation
(Purcell effect, see Appendix B) does not affect this type of interaction.
Furthermore, the coupling term is only energy conserving when both qubits
have the same transition frequencies. This process is effectively suppressed
when the detuning between the qubits becomes large compared to J . This
gives us the possibility to control this process by controlling the qubit tran-
sition frequencies.

In the case of transmon qubits coupled to a cavity, similar processes
are present also for non-computational states. In particular the coupling
between the |11〉 ↔ |20〉 states is interesting as it allows to implement a
cphase-gate. This mechanisms was first proposed in [Strauch03] and then
implemented in superconducting circuits in [DiCarlo09, DiCarlo10]. The
relevant coupling term in this case is J10(|20〉 〈11|+ |11〉 〈20|), where J10 is
analog to J00 in Eq. (5.3) but with coupling constant g12 =

√
2g01 [Fink08]

and detuning ∆12 = ω12 − ωr for the first qubit. In case of large qubit-
resonator detuning where ∆01 ≈ ∆12 this gives J10 ≈

√
2J00.

In experiments this can be used to implement a cphase-gate (see Sec. 2.1.3)
as follows. The qubits are tuned to idle frequencies, i.e. kept at constant fre-
quencies, such that their interaction is strongly suppressed. This is done by
applying a flux offset with the miniature coils such that the states |01〉 and
|10〉 are well separated in frequency space, typically >0.5 GHz to 1 GHz. A
fast current pulse applied to the magnetic flux line of one qubit changes its
frequency such that the |11〉 state becomes degenerate with the |20〉 state.
This is the case when ω

(1)
01 + ω

(2)
01 = ω

(1)
02 = 2ω(1)

01 + α which leads to the
condition ω

(2)
01 = ω

(1)
01 + α(1). Note that the anharmonicity α is a negative
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number for transmons and hence the transition frequency ω
(1)
01 of |10〉 is

higher than ω(2)
01 of |01〉. If the state of the qubits was |11〉 before the pulse,

it will now start to coherently oscillate between the |11〉 and the |20〉 state.
In time steps of π/2J10 the state of the two qubits will evolve as

|11〉 → i |20〉 → − |11〉 → −i |20〉 → |11〉 , (5.4)
returning to the original state after a time 2π/J10. A cphase-gate is re-
alized if the interaction is turned off after a time π/J10, when the initial
state of the system |11〉 has evolved to − |11〉. All other computational
basis states |00〉, |01〉 and |10〉 have not been affected since neither at the
idle frequency nor the |11〉 ↔ |20〉 position do these states interact with
any other state.

So far, the dynamical phase has not yet been considered. As can be seen
from Eq. (5.1), a detuning of the qubit from the drive frequency induces a
rotation around the z-axis, i.e. it corresponds to a phase-gate, changing the
relative phase between the |0〉 and |1〉 state. Tuning the frequency of a qubit
with a flux pulse will induce such a phase gate with a phase proportional to
the detuning and the time of the pulse. However the extra phase acquired
of the qubit that is tuned can be compensated by another phase-gate just
after the pulse. This phase-gate can also be implemented by changing the
phase of all succeeding single-qubit pulses (which is equivalent to redefining
the x- and y-axis on the Bloch sphere). In the experiment we always have
to adjust the phases of both qubits, since a finite cross-coupling of the flux
lines (typically on the order of 1 – 10 %) also shifts the ideally static qubit.

In general a cphase gate can be realized either with the |11〉 ↔ |20〉 or
the |11〉 ↔ |02〉 interaction. It is however favorable to tune the qubits in
such a way that the |10〉 and |01〉 levels do not cross, i.e. the sign of their
relative detuning is not changed. Otherwise the |01〉 ↔ |10〉 interaction
can induce additional phases that cannot be compensated with additional
phase-gates.

In this thesis we always tune the qubits non-adiabatically into and out
of the interaction as first realized in [DiCarlo10]. However, adiabatic gates
using the discussed transitions are also possible and have been implemented
e.g. in [DiCarlo09] or (by also incorporating the third excited state |3〉)
in [Reed12].

The calibration of the flux pulse works as follows, see also Fig. 5.5. A
pattern is applied where at first both qubits are excited such that the system
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Figure 5.5: Calibration of the flux pulse amplitude and length. (a) Color
density plot of an pulse amplitude and length sweep, (b) extracted oscil-
lation frequencies, (c) data and fit of the trace in (a) with the smallest
frequency (red dashed line in (a,b)), (d) pulse scheme for the calibration
procedure.

is in the |11〉-state. Then a flux pulse of varying length and amplitude is
applied, finally π pulses are applied to both qubits, see (d) for the pulse
sequence. After the flux pulse the system is in a superposition state of the
form |ψ〉 = α |11〉 + β |20〉. The final π pulses will change this state to
|ψ〉 = α |00〉+ β |21〉 which shows a better contrast in the readout.

For every pulse amplitude one can observe an oscillation between these
states with a frequency Ω/2π =

√
(2J10)2 + ∆2/2π, where ∆ = ω|20〉−ω|11〉

is the detuning between the two levels. In (a) a color density plot of such a
measurement is shown. The corresponding oscillation frequencies, plotted
in (b), are extracted by fitting sinusoidals to each time trace. When the two
levels are exactly on resonance (∆ = 0) the oscillation frequency is minimal
Ωmin/2π = 2J10/2π (red line). From the time trace (c) of the corresponding
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amplitude one can extract the interaction time. The population in (c) does
not go to |00〉 since the temporal distance between the two π pulses on each
qubit is kept constant for every experiment (typically ≈ 200 ns) such that
a decay of the initial |11〉 state is visible as a small offset.

The procedure described above gives a good first estimate for the time
and amplitude to use for implementing a cphase gate. In a next step these
parameters are fine tuned with a Ramsey type experiment where on one
qubit two π/2 pulses are applied with a fixed delay between them and on
the other qubit two π pulses are applied at the same times as the pulses on
the first qubit. By varying the phase of the second π/2 pulse an oscillating
population for the first qubit is observed. For an optimal cphase gate
the flux pulse applied in between the two π/2 pulses should result in an
oscillation of the population with a phase shift of 180◦ compared to the
case without flux pulse. The pulse amplitude and time are then changed
adaptively until this condition is fulfilled.

5.3. Conclusion
We have seen in this chapter how the quantum states of single and multiple
transmon qubits can be manipulated. Microwave pulses applied to gate
lines coupling capacitively to the transmon qubits allow to perform single-
qubit rotations around an arbitrary axis in the xy-plane of the Bloch sphere.
Current pulses applied to gate lines coupling inductively to the SQUID loop
allow to tune the qubit transition frequency on a nanosecond timescale.
This can be used to implement rotations of the qubit around the z-axis or
to tune a qubit to a frequency at which it interacts with the resonator or
other qubits by real or virtual photon exchange. This mechanism allows to
implement two-qubit cphase gates.
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Measurement of quantum states and processes

In the previous chapters we reviewed how to fabricate a sample with su-
perconducting circuits and implement it into a setup in which it is possible
to manipulate the state of a single qubit, perform two-qubit gates and read
out the excited state population of a qubit.

In this chapter we will focus on how to characterize quantum states and
processes and will present different ways how to visualize this information.
In Sec. 6.1 we will see how to describe quantum states, represent this in-
formation graphically and how to compare different states. The process of
extracting this information from a given quantum state in an experiment
is explored in Sec. 6.2 for single-qubit as well as multi-qubit states. Con-
siderations similar as to the ones for quantum states can also be made for
quantum processes. This is explained in Sec. 6.3.

6.1. Representation of quantum states

6.1.1. Density matrix and Pauli set

In Sec. 2.1, any one-qubit state was always described as a pure state |ψ〉, a
state on the surface of the Bloch sphere. In reality, however, one can rarely
be certain that a given system is in a known pure state. Decoherence in
the system or residual coupling of the qubit to the environment reduce our
knowledge about the precise nature of the state. Rather we just know that
the system is in a certain state |ψi〉 with some probability pi.
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The appropriate way how to describe quantum systems when the exact
state is not known with certainty is to use density matrices (or “density
operators”) which are defined as [Nielsen00]

ρ =
∑
i

pi |ψi〉 〈ψi| . (6.1)

The density matrix of a single qubit state is a 2× 2 matrix of the form[
a c+ id

c− id b

]
, (6.2)

with a, b, c, d ≤ 1 real numbers and a + b = 1. The entries a, b represent
the probability to find the qubit in the state |0〉,|1〉 respectively. The state
which is represented by a vector ~r = (rx, ry, rz) on the Bloch sphere (Bloch
vector) can be written in the form of a density matrix as

ρ = 1 + ~r · ~σ
2 , (6.3)

with ~σ = (σ̂x, σ̂y, σ̂z) the vector of Pauli matrices. In the Bloch sphere
picture, states described by a density matrix can also lie inside the Bloch
sphere, i.e. |~r| ≤ 1, whereas for pure states |~r| = 1.

One special state is the completely mixed state, the state lying in the
center of the Bloch sphere,

ρcm = 1 + (0, 0, 0) · ~σ
2 =

[
1/2 0
0 1/2

]
, (6.4)

representing the state of a qubit of which we do not have any information.
Its density matrix is distinguished from other states on the xy-plane by
having vanishing off-diagonal elements.

The state of one qubit can be graphically represented in several dif-
ferent ways as shown in Fig. 6.1. In (a), the equal superposition state
|ψ〉 = 1/

√
2 |0〉 + (1 + i)/2 |1〉 is shown as a point on the Bloch sphere by

calculating the relevant angles as in Eq. (2.1). A graphical representation
of the corresponding density matrix is shown in (b) as bar charts of the
real and imaginary part respectively. Another way to display the state of a
qubit is shown in (c). This is the so called “Pauli set” [Chow10b], the expec-
tation values of the Pauli operators X = σ̂x, Y = σ̂y, Z = σ̂z. In terms of
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Figure 6.1: Graphical representation of a single-qubit state. State repre-
sented as (a) a point on the Bloch sphere, (b) bar charts of the real and
imaginary parts of the density matrix, (c) the expectation values of the
Pauli operators.

optics, these are also called “Stokes parameters” [Stokes52, Collett93] (and
the Bloch sphere is known as “Poincaré sphere”). As expected from a state
on the equator of the Bloch sphere, the diagonal elements of the density
matrix are both 1/2 and the expectation value of the σz-operator vanishes.
It is worth to note that for one qubit the Pauli set is just a description of
the Bloch vector ~r. Hence, since the depicted state lies on the line bisecting
the x- and y-axes in the Bloch sphere picture, it has the same expectation
values for the Pauli X and Y operators.

In the case of many qubits there is no equivalent of a Bloch sphere picture,
but the depiction of the density matrix and the Pauli set can give comple-
mentary insights (although they contain exactly the same information) as
discussed in the following.

The density matrix for n qubits can be expanded in terms of the compu-
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6. Measurement of quantum states and processes

tational basis states

ρn =
2n∑
i,j

mij |i〉 〈j|

=



|0 · · · 00〉 |0 · · · 01〉 · · · |1 · · · 11〉
|0 · · · 00〉 a0···00

|0 · · · 01〉 a0···01
... . . .
|1 · · · 11〉 a1···11

 (6.5)

with mij the entries of the matrix where the diagonal elements ai = mii

are real and the off-diagonal elements mij = m∗ji are complex numbers, and
i, j are a binary representation of an n-qubit computational basis state.
This gives a total of 4n parameters (or 4n − 1 if the condition Tr[ρ] = 1 is
considered) that are needed to describe the state of an n-qubit system.

The Pauli set for n qubits is the analog of the generalized Stokes parame-
ters in optics. In superconducting circuits it has been first used in [Chow10b]
and later in [DiCarlo10, Neeley10]. It is the set of expectation values for
all possible operators σ̂i1⊗ . . .⊗ σ̂in where each σ̂i is one of the three Pauli
matrices and the identity, resulting in 4n different expectation values that
describe an n-qubit quantum state. The n-qubit identity operator which is
built only from single-qubit identity operators is usually not shown, since
its expectation value is always 1 for any n-qubit state.

6.1.2. Fidelity
For an experimentally implemented quantum state, it is usually interesting
to compare it to an ideally expected state. The fidelity of two states is
a quantification of the similarity of two states. In terms of experimental
quantum information processing usually the the fidelity F of a measured
density matrix ρ and a pure state |ψ〉 is defined as the trace of the product
of the two corresponding density matrices:

F = Tr[ρ |ψ〉 〈ψ|]. (6.6)

Note that this definition differs from the definition usually used in theory
books (e.g. [Nielsen00]), where the fidelity F ′ =

√
F is defined as the square
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root of our definition. Since F ≤ 1, F always has a smaller value than F ′.

6.2. Measurement of quantum states

In this section, the process of measuring the state of a qubit is explained for
three different cases. Sec. 6.2.1 describes the basic case in which one qubit is
coupled to a readout resonator. In the case of more than one qubit there are
two different possibilities which are examined. The case when two qubits
couple to one readout resonator is described in Sec. 6.2.2. The case when
two qubits couple to different readout resonators is fundamentally different
from the aforementioned case and is the topic of Sec. 6.2.3.

6.2.1. Single-qubit states

The excited-state population of a single qubit in state ρ can be inferred by
comparing averaged integrated time-traces of the resonator transmission as
described in Sec. 4.3. Here we first revisit this technique in terms of density
matrices and explain in the following how to obtain a complete description
of a single-qubit quantum state.

The expectation value of a measurement of an observable (measurement
operator) M̂ in the state ρ is 〈M̂〉 = Tr[ρM̂]. Since in our setup we can
directly infer the expectation value of the excited-state population from
repeated measurements, we effectively perform a measurement in the com-
putational basis. Therefore the measurement operator can be written as

M̂1qb = α0 |0〉 〈0|+ α1 |1〉 〈1| , (6.7)

where α0 and α1 are the integrated signals of a ground- and excited state
response of the resonator, respectively. Integrating the averaged time-trace
over many realizations of a state ρ gives an expectation value 〈M̂1qb〉ρ =
Tr[ρM̂1qb] from which the excited state population P1(ρ) can be calculated
as

P1(ρ) =
〈M̂1qb〉ρ − 〈M̂1qb〉ρ=|0〉

〈M̂1qb〉ρ=|1〉 − 〈M̂1qb〉ρ=|0〉
= 〈M̂1qb〉ρ − α0

α1 − α0
. (6.8)

Since the polarization along the z-axis of the Bloch sphere is related to
the excited-state population as 〈σ̂z〉 = −2(P1 − 1/2), our measurement is
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6. Measurement of quantum states and processes

equivalent to a measurement of 〈σ̂z〉. This can also be seen by rewriting
the measurement operator in Eq. (6.7) as

M̂1qb = α0 + α1
2 1 + α0 − α1

2 σ̂z. (6.9)

The measurement of 〈σ̂z〉 alone is not sufficient for the complete charac-
terization of a single-qubit state. One needs the expectation value of the
three Pauli matrices (i.e. the Bloch vector) to calculate the density matrix
according to Eq. (6.3). If a π/2 rotation around the x-axis of the Bloch
sphere is performed just before the measurement, the state is rotated such
that the original polarization along the y-axis now lies on the z-axis. A
subsequent measurement allows to infer the polarization along the y-axis
before the last π/2 rotation. Such a measurement, including the π/2 pulse
can therefore be used to obtain an estimate of the expectation value 〈σ̂y〉.
In the same way, a π/2 rotation around the y-axis just before the measure-
ment allows to estimate 〈σ̂x〉. In a more formal way this can be understood
as

〈M̂k〉 = Tr[ρ Û †kM̂Ûk︸ ︷︷ ︸
M̂k

] = Tr[ÛkρÛ †k︸ ︷︷ ︸
ρk

M̂], (6.10)

where M̂ is the measurement operator of the system and Ûk is one of the
mentioned rotations. In the experiments however we always use the four
different operators {Ûk} = {1, e−iπ4 σ̂x , e−iπ4 σ̂y , e−iπ2 σ̂x}, leading to the ex-
pectation values of the operators M̂k = {σ̂z, σ̂y,−σ̂x,−σ̂z}. Having these
expectation values and putting the following relation (which is a general-
ization of Eq. (6.3)) into Eq. (6.10),

ρ = r11 + r2σ̂x + r3σ̂y + r3σ̂z
2 , (6.11)

we can solve for all the ri and then calculate the density matrix ρ. The
advantage of this method using four measurements is that we do not assume
Tr[ρ] = 1, and any deviation from this value hints at systematic errors in
the measurement.

As an example of this method typically referred to as quantum state to-
mography the evolution of a quantum state has been measured as shown
in Fig. 6.2. The qubit has been driven with a finite detuning to an initial
superposition state and then state tomography was performed as a function
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Figure 6.2: Evolution of the state during a Ramsey type experiment. Blue
dots are measured data, red solid line is a master equation simulation. (a)
General view, (b) view on the xy-plane shows the decoherence, (c) view
along the z-axis shows the energy relaxation.

of the waiting time. At first, the detuning is visible as a rotation around
the z-axis, the dephasing is visible as the decreasing radius of the spiral
and finally also the energy relaxation shows a decrease of z-polarization.
To simulate the behavior, we used a master equation (see Appendix B) in-
corporating the finite detuning, the dephasing- and energy-relaxation times
obtained from independent measurements. The good agreement of the data
(blue points) with the master equation simulation (red line) shows that the
system is well described by the used model.

6.2.2. Joint qubit readout

In the case of n qubits the decomposition of the density matrix in Eq. (6.11)
can be generalized to

ρ =
∑
~v rv1,...,vn(σ̂v1 ⊗ σ̂v2 ⊗ · · · ⊗ σ̂vn)

2n , (6.12)

where the sum is over all vectors ~v whose entries are vi ∈ {0, x, y, z} and
σ̂0 ≡ 1. In order to obtain the 4n different coefficients rv1,...,vn , one has
to measure 4n linearly independent expectation values to reconstruct the
density matrix. But measuring single expectation values with joint readout
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6. Measurement of quantum states and processes

is not as straightforward as in the case for a single qubit or if separate qubit
readout would be available (see Sec. 6.2.3).

The measurement operator for two qubits coupled to a resonator reads
as follows [Filipp09, DiCarlo09, Chow10b]

M̂2qb = β001⊗ 1 + β10σ̂z1 ⊗ 1 + β011⊗ σ̂z2 + β11σ̂z1 ⊗ σ̂z2, (6.13)

with σ̂zk the Pauli z-operator for qubit k and βij constants that depend
on the resonator decay κ, the dispersive shifts χq1, χq2, the relaxation time
of the qubits T1,q1, T1,q2 and the integration time. In the experiment the
constants βij are derived from time-resolved transmission measurements of
the four computational basis states |00〉 , |01〉 , |10〉 , and |11〉, similarly to
the case for one qubit described in Sec. 4.3. The integrated signal gives the
constants αij from the measurement operator

M̂2qb = α00 |00〉 〈00|+ α01 |01〉 〈01|+ α10 |10〉 〈10|+ α11 |11〉 〈11| . (6.14)

By subtracting the ground-state response and appropriate scaling, the co-
efficients can always be chosen such that α00 = 0 and α11 = 1. The coeffi-
cients βij can then be calculated as

βij = 1/4
(
α00 + (−1)jα01 + (−1)iα10 + (−1)i+jα11

)
. (6.15)

Single-qubit operations Ûk = Ûk1 ⊗ Ûk2 are used to effectively transform
the Pauli z-operators σ̂z in Eq. (6.13) into other Pauli operators as described
in Sec. 6.2.1, allowing to get the required 4n different measurement oper-
ators. However, single-qubit operations alone cannot be used to generate
non-trivial correlation terms like σ̂z⊗ σ̂z from terms containing the identity
operator 1 since e.g. Û †k(1 ⊗ σ̂z)Ûk = 1 ⊗ (Û †k2σ̂zÛk2). Therefore it is im-
portant that none of the βij vanishes. Otherwise some coefficients rij of the
density matrix ρ would not be determined as Tr[(σ̂k⊗σ̂l)(σ̂m⊗σ̂n)] = δkmδln,
for k, l,m, n ∈ {0, x, y, z} [Filipp09], and full state tomography would not
be possible.

As an example for this approach we present a measurement of all four
maximally entangled two-qubit states (Bell states) as shown in Fig. 6.3
with an average fidelity for the states of F = 94.8 % (after a maximum
likelihood procedure [Ježek03, Smolin12, Baur12a] which assesses the most
likely physical state for the given measurement data). For this experiment
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the qubits Q1 and Q2 of the sample for the teleportation experiment were
used. The sample and its parameters are described in Chap. 8. The Bell
states are prepared by using single qubit rotations and the cphase gate
described in Sec. 5.2.2. The first qubit is prepared in a superposition state
|ψ1〉 = |0〉+ |1〉 and the second qubit in one of the states |ψ2〉 = |0〉∓ |1〉 by
applying π/2 pulses around the ±y-axis to the qubits. After the cphase
gate they are in a state |ψ12〉 = |00〉 ∓ |01〉 + |10〉 ± |11〉. Applying a
−π/2 pulse to the first qubit and either no pulse or a π pulse around the
y-axis to the second qubit allows to generate all four Bell states |Φ±〉 =
1/
√

2 (|00〉 ± |11〉), |Ψ±〉 = 1/
√

2 (|01〉 ± |10〉). A circuit diagram of this
Bell-state preparation algorithm looks as follows:

|0〉 R
π/2
y • R

π/2
−y


|Φ±〉 , |Ψ±〉

|0〉 R
π/2
±y • Rπ,0y

In Fig. 6.4 the Pauli sets of the same measurement data as used to generate
Fig. 6.3 is presented. It can be easily calculated from the density matrix ρ as
〈σ̂i ⊗ σ̂j〉 = Tr[ρ(σ̂i ⊗ σ̂j)], for i, j ∈ {0, x, y, z}. As expected for maximally
entangled states, the single-qubit terms vanish, the only non-zero terms are
two-qubit correlations.

The procedure for joint readout is theoretically easily extendable to n
qubits. However in practice it will become difficult to perform joint readout
with many qubits in one resonator. Not only the number of measurements
scales exponentially with the number of qubits, but also the properties
of the qubits (i.e. dispersive shifts) need to be such that the qubits can
be easily distinguished according to their time trace. Currently, no more
than three-qubit joint readout has been implemented [DiCarlo10, Baur12b,
Fedorov12, Steffen12].

6.2.3. Separate qubit readout

In the sample described in Chap. 8 it is also possible to create Bell states
between the two qubits Q2 and Q3. These qubits couple to a common
resonator used as quantum bus for generating entanglement. But this res-
onator does not couple to any in- and output leads and can therefore not
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Figure 6.3: Measured real parts of the density matrices of the four Bell
states (a-d)

∣∣Φ+〉 , |Φ−〉 , |Ψ−〉 , ∣∣Ψ+〉. Wireframes are ideally expected val-
ues, colored bars measurement data, the fidelity is indicated in the black
boxes.
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be used to read out the two-qubit state. Instead, each qubit also couples to
an individual readout resonator. In this configuration it is not possible to
reconstruct the complete two-qubit density matrix by performing an aver-
aged readout of the individual qubits. The measurement operator for each
qubit is the same as for a single qubit, see Eq. (6.9). By only averaging
the measurement outcomes for each qubit separately it is therefore not pos-
sible to retrieve any information about the correlation term σ̂z ⊗ σ̂z, but
only the expectation values for the individual Pauli operators. As seen in
Sec. 6.2.2 the measurement of the correlation term is also not achievable
by performing single qubit rotations on the individual qubits. Since every
single-qubit measurement realizes a measurement of the σ̂z operator, it is
possible to get a measurement of the σ̂z ⊗ σ̂z operator by multiplying the
individual qubit measurement outcomes before the averaging. Note that in
our system the measurement value is derived from the area under the time
trace, this means one would have to multiply the area of both traces and
not the time traces.

For the experiments presented here we exploit the possibility to perform
single-shot readout enabled by the JPAs in the setup, see Sec. 4.4. This al-
lows us to obtain a measurement value of ±1 for every single measurement
of the σ̂z operator on each qubit separately, and then obtain the corre-
sponding value for the correlation σ̂z ⊗ σ̂z by multiplying the two single-
measurement outputs. Averaging the single- and two-qubit operators gives
directly the expectation values of the corresponding Pauli operator, i.e. the
components of the Pauli set. Again, single-qubit operations performed be-
fore the measurement allow to infer all combinations of the 4n−1 non-unity
Pauli operators.

As seen in Sec. 4.4, an important difference between the averaged readout
and the single-shot readout is that with averaged readout one implicitly
corrects for measurement errors due to finite thermal excitation of the qubits
and spontaneous qubit relaxation.

In single-shot readout this is not the case. The finite thermal excitation
can be suppressed by heralding the ground state as shown in Sec. 4.4.
The finite readout fidelity due to qubit relaxation or excitations occurring
during qubit operation is however not corrected implicitly. Qubits that
decay before or during the measurement will induce measurement errors
that reduce the fidelity of the final state compared to an averaged readout.
To be able to compare the fidelities of the two readout methods, one can
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correct the results from the single-shot measurements for these errors. In
the following the error-correction procedure, similar to the one described in
the supplementary material of [Steffen06a, Bialczak10], is described.

For one qubit, let f0 and f1 be the probabilities of correctly identifying
the states |0〉 and |1〉, respectively. These probabilities can be determined
experimentally. By repeatedly preparing and measuring these states in
single-shot experiments, one can extract f0 and f1 as the fraction of correct
identifications. By defining P0 and P1 as the real ground- and excited-state
populations of the qubit, the measured populations Pm0 and Pm1 can be
written as [

Pm0
Pm1

]
︸ ︷︷ ︸

~Pm

=
[

f0 1− f1
1− f0 f1

]
︸ ︷︷ ︸

F

[
P0
P1

]
︸ ︷︷ ︸

~P

. (6.16)

The real (or rather the corrected) populations can now be calculated as
~P = F−1 ~Pm with

F−1 = 1
f0 + f1 − 1

[
f1 f1 − 1

f0 − 1 f0

]
. (6.17)

To calculate the corrected polarization 〈σ̂z〉corr from the measured ones
〈σ̂z〉meas, one can use the fact that 〈σ̂z〉 = −2(P1 − 1/2) or equivalently
〈σ̂z〉 = P0−P1, since P0 +P1 = 1. This leads then to an expression for the
corrected polarization

〈σ̂z〉corr = P0 − P1 = 〈σ̂z〉meas + f1 − f0
f0 + f1 − 1 . (6.18)

For the single-qubit terms, it is not relevant whether the single measure-
ments are averaged before or after the correction. For the two-qubit terms
〈σ̂z ⊗ σ̂z〉corr however, the correction of the single-qubit terms has to be
performed before averaging:

〈σ̂z ⊗ σ̂z〉corr = 1
N

N∑
i

〈σ̂(1)
z 〉imeas + f

(1)
1 − f (1)

0

f
(1)
0 + f

(1)
1 − 1

· 〈σ̂
(2)
z 〉imeas + f

(2)
1 − f (2)

0

f
(2)
0 + f

(2)
1 − 1

,

(6.19)
where the superscript (j) indicates the qubit number j and 〈σ̂z〉imeas is the
measurement outcome of the ith single-shot measurement (with result ±1)
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out of a total of N measurements. Alternatively, by first calculating all
two-qubit populations (~Pm,2qb = {Pm00, Pm01, Pm10, Pm11}) out of the mea-
surement data, a similar procedure as described above can be performed
with ~P2qb = {P00, P01, P10, P11} = (F ⊗ F )−1 ~Pm,2qb. The corrected value
for the correlation term reads then

〈σ̂z ⊗ σ̂z〉corr = P00 + P11 − P01 − P10. (6.20)

As an example, the measurement of the |Ψ−〉-state is shown in Fig. 6.5. In
(a, b) the real part of the density matrix and the Pauli set of the uncorrected
data is shown. The fidelity is F = Tr[ρmeas |Ψ−〉 〈Ψ−|] = 75.4 % which
is considerably lower than for the states measured with joint readout on
similar qubits (see Sec. 6.2.2). After the readout correction the fidelity is
increased to F = 94.2 %, see (c, d). This is close to the fidelity measured
with joint readout for similar qubits, and shows that the entangling gate
itself works fine, the observed lower fidelity in the uncorrected case is purely
due to the initialization and readout errors.

6.3. Description of quantum processes

6.3.1. Process tomography

Process matrix

It is possible to characterize quantum processes experimentally in a sim-
ilar way as quantum states. The procedure is known as quantum process
tomography and has been first described in [Chuang97].

Every quantum process E(ρ) acting on a state ρ can be decomposed as

E(ρ) =
∑
mn

ẼmρẼ
†
nχmn, (6.21)

where Ẽi are a basis set of operators and χmn are the complex components
of the chi matrix (also referred to as the process matrix). The matrix χ
is a positive Hermitian matrix and is a complete description of the process
for a given given set of operators Ẽi. It describes how any given input
density matrix is transformed to an output density matrix and therefore
also includes dissipation and other non-unitary behavior.
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Figure 6.5: (a) Real part of the measured density matrix of the |Φ−〉-
state when using separate qubit readout. (b) Pauli set of (a). (c,d) Density
matrix and Pauli set of the data in (a,b) after correcting for readout errors.
The fidelities are indicated in the black boxes.
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The operators normally chosen for a process acting on an n-qubit state
are all possible combinations of Pauli operators Ẽ = {I,X, Ỹ , Z}⊗n =
{1, σ̂x,−iσ̂y, σ̂z}⊗n. The Pauli y-operator is multiplied by −i to have only
real elements in χ when the corresponding process can be described by an
operator U with only real entries.

The χ matrix of an n-qubit system can be measured in an experiment by
performing state tomography on the output of the process for a set of 4n lin-
early independent input states, usually the set of states {|0〉 , |1〉 , |+〉 , |−〉}⊗n,
leading to a total of 42n different experimental settings. This can be under-
stood as follows. Let {ρ̃j} be a set of linearly independent basis states for
the space of 2n × 2n matrices. The measured output of all E(ρ̃j) can also
be written as a linear combination of the basis states,

E(ρ̃j) =
∑
k

λjkρ̃k, (6.22)

from which the matrix λ can be calculated. Since one can also express the
term Ẽmρ̃jẼ

†
n as combinations of basis states

Ẽmρ̃jẼ
†
n =

∑
k

βmnjk ρ̃k, (6.23)

for which βmnjk can be calculated from the set of {Ẽi}, one can write the
following equation:

E(ρ̃j) =
∑
mn

Ẽmρ̃jẼ
†
nχmn =

∑
mn

∑
k

βmnjk ρ̃kχmn =
∑
k

λjkρ̃k. (6.24)

This shows that once the matrices λ and β have been calculated, the χ
matrix can be obtained with linear inversion from the equation∑

mn

βmnjk χmn = λjk. (6.25)

The process fidelity [Schumacher96], a measure of the similarity between
an experimentally implemented process χexp and the ideal process χideal is
given by

F = Tr[χexpχideal]. (6.26)
Note that this fidelity is sometimes also called “entanglement fidelity”.

Processes can be represented graphically as bar charts of the correspond-
ing χ matrix. An example of such a graphical representation is the χ matrix
of a cphase gate is shown in Fig. 6.6. It is the same implementation which
is analyzed in more detail in Sec. 7.1.
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Figure 6.6: Real (a) and imaginary (b) part of the χ matrix of a cphase
gate with fidelity F ≈ 86 %.

Pauli transfer matrix

An alternative visualization of a process has been introduced as the Pauli
transfer matrix (PTM) in [Chow12]. The Pauli transfer matrix R of a
process describes how this process transfers an input Pauli set to an output
Pauli set. Formally this can be described by defining a Pauli state vector ~p
whose components are the expectation values of the n-qubit Pauli operators
{1, σ̂x, σ̂y, σ̂z}⊗n. The Pauli transfer matrix can then be used to calculate
the Pauli state vector ~pout of an output state, given a Pauli state vector ~pin
of an input state as ~pout = R~pin. Note that the components of the Pauli
set and the Pauli state vector are identical (by definition), but the order
in which the elements are displayed can differ. Pauli sets normally show
all one-qubit terms before showing the two-qubit terms and so on. The
elements of the Pauli state vector can be in the “lexicographic order” for
the Pauli operators. In Fig. 6.7 the cphase gate form Sec. 6.3.1 is shown
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Figure 6.7: Experimental (a) and ideal (b) PTM of the cphase gate (same
data as Fig. 6.6). As an example, the effect of the gate on an input state
|00〉+ |11〉 is show by plotting the in- and output Pauli state vector ~pin/out.
The figure is adapted with our own data from [Chow12].

as a PTM, both the (a) measured and (b) ideal case.
According to [Chow12], the advantages of the PTM over the χ matrix are

that they consist only of real numbers, it is simple to tell whether the map
is trace preserving (RII,jk = δIjδIk for all j, k ∈ {I,X, Y, Z}) and unital
(Rjk,II = δIjδIk). The elements are bounded by ±1, and for all Clifford
operations there is exactly one ±1 element in each row and column.

The gate fidelity between a measured PTM R and the ideal PTM Rideal
stated in [Chow12] is Fg = (Tr[R†idealR]+d)/(d2 +d) with d = 2n (note that
in the original paper it is stated wrongly as d = 2n). However this is not the
process fidelity F as defined in Eq. (6.26) but corresponds to the average
output state fidelity, related to the process fidelity as F = (d+1)Fg−1

d . The
process fidelity can be directly calculated from the Pauli transfer matrix as
F = Tr[R†idealR]/d2.

The PTM is a nice alternative to the χ matrix. However, since both
PTM and χ-matrices have 42n elements, it becomes impractical for systems
with many qubits. For example, for five qubits (n = 5), the PTM (and also
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6.3. Description of quantum processes

the χ matrix) is a 1024× 1024 matrix. At this level it becomes impossible
to understand such a matrix “by looking at it.”

6.3.2. Randomized benchmarking
Process tomography is a powerful tool to characterize a given gate. How-
ever, it has several drawbacks. The gate is only examined as an isolated
gate. Process tomography does not tell us anything about the stability
of the error behavior when the gate is used in long sequences. More-
over, state preparation and measurement (SPAM) errors limit the capa-
bility of process tomography. A method that overcomes these drawbacks
is called randomized benchmarking (RB). It has been developed and first
implemented with trapped ions [Knill08] for estimating the error rate of
single-qubit gates. Later is has also been implemented with superconduct-
ing circuits [Chow09] for single-qubit gates. The extension to multi-qubit
gates followed, first with trapped ions [Gaebler12] and then also with super-
conducting circuits [Córcoles13]. A related method that allows to measure
the error rate of one particular gate independent of SPAM errors is called
interleaved RB [Magesan12]. In the following, a short description of ran-
domized benchmarking – following the description in [Knill08, Chow09] –
together with experimental data from our setup is presented.

The main idea behind RB is that a random sequence of gates of varying
length is applied to a standard initial state. The last gate is also chosen
randomly but such that the qubit is ideally in a computational basis state.
A subsequent measurement is performed and the outcome is compared to
the expected value. This gives a measure of the accumulated error in long
sequences. The average error per gate is deduced from the increase of
the error probability as a function of sequence length. It turns out to be
sufficient if the random gates are taken from the Clifford group, i.e. all
possible π/2-rotations e±iσ̂π/4 where σ̂ is an n-qubit Pauli operator.

The following recipe [Knill08] describes how to generate the pulse se-
quences for RB in an experiment:

1. Choose a maximum length lNl of the computational sequence.

2. Choose NG different computational sequences {G1, . . . GlNl} of length
lNl (the maximum length) and sequence elements Gi. The computa-
tional sequences in the one-qubit case are just a sequence of random
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6. Measurement of quantum states and processes

π/2 rotations around the x- or y-axis of the Bloch sphere, i.e. e±iσ̂iπ/4
with σ̂i ∈ {σ̂x, σ̂y}.

3. Truncate every computational sequence at Nl different lengths l1 <
l2 < . . . < lNl .

4. Add a final gate R such that for every length every computational
sequence transforms the initial state |0〉 into an eigenstate of the Pauli
z-operator, i.e. a computational basis state.

5. Add “Pauli randomization pulses”. For every length lk of every se-
quence choose NP random sequences {P1, . . . Plk+2} of Pauli pulses,
i.e. π pulses of the form e±iσ̂π/2 with i = 0, x, y, z. Put these pulses
alternately to the computational pulses. The Pauli randomization
pulses ensure that the outcomes are not correlated with a subsequence
of pulses and randomize the errors.

6. Apply each sequence Plk+2RPlk+1GlkPlk . . . G1P1 to the state |0〉, see
Fig. 6.8, and measure its expectation value.

In total there are NG different computational sequences, each truncated
to Nl different length with, each randomized with NP Pauli randomization
sequences, in total NGNlNP different experimental settings. Additionally
every sequence is averaged Ne times, which gives a total of NGNlNPNe
experimental runs.

The analysis proceeds as follows:

1. Calculate the expected outcome for each sequence.

2. Compare the expectation with the measured expectation value.

3. Calculate the fidelity of the output states (1 - probability of incorrect
measurement outcome).

4. The fidelity of the output state versus the number of computational
gates decays exponentially to a value of 0.5. This decay constant is
fitted and the error per gate ε is extracted.

The last step is understood as follows. The data is fit to a function 1/2(1 +
ekl) with l the number of computational gates and k the fit parameter.
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Figure 6.8: Example of an RB sequence of length lk for one qubit.

With an error per gate ε, the gate fidelity is Fg = (1− ε)l. When the gate
fidelity approaches zero Fg → 0, the output state fidelity Fout → 0.5. It can
therefore be written as Fout = 1/2

(
1 + (1− ε)l

)
, which gives the relation

between the fit parameter k and the error per computational gate ε as
ε = 1 − ek ≈ −k. A computational gate consists of a Pauli randomization
gate and an element of the Clifford group, i.e. a π and a π/2 pulse. The
average error per single-qubit rotation εrot is therefore linked to the error
of a computational gate as ε = 1− (1− εrot)2 ⇒ εrot ≈ ε/2 = −k/2.

We implemented the randomized benchmarking procedure with the same
parameters used in the original implementation [Knill08], namely NG = 4
random computational sequences truncated to Nl = 17 different lengths
{2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 96} and randomized
each sequence NP = 8 times which leads to a total of 544 different pulse
sequences. An example measurement is shown in Fig. 6.9. The exponential
fit gives a single-qubit rotation error of εrot = 0.8 %.

6.4. Conclusion

We have seen that the state of a quantum system can be completely char-
acterized by its density matrix. A completely equivalent way to describe a
state of qubits is the Pauli set, the set of expectation values of the Pauli op-
erators. In an experiment, the density matrix of a repeatedly prepared qubit
state can be determined using quantum state tomography. It requires the
measurement of the qubit with different measurement operators. This pro-
cedure can be generalized to multi-qubit systems. However it is important
that one has access to the correlation information of the different qubits. In
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Figure 6.9: Example of an RB data analysis. The colored dots are mea-
surements of different computational sequences, the black squares are the
average fidelities of all computational sequences with the corresponding
length, the red solid line is an exponential fit.

the case where many qubits couple to the same readout cavity, this is nat-
urally given even in the case of averaged measurements. When the qubits
couple to separate readout cavities, one has to resort to single-shot analysis
to have access to the correlation information. The similarity of a measured
quantum state to an ideal one can be quantified with a measure known as
fidelity. Quantum processes can be characterized in a similar way with a
procedure called quantum process tomography. The procedure requires to
perform state tomography on the output states of the process for a set of
different input states. The two most often used ways to describe quantum
processes are the χ matrix and the Pauli transfer matrix. Quantum process
tomography is useful to characterize a single process, however it is sensitive
to state preparation and measurement errors. A method insensitive to these
errors is randomized benchmarking. It allows to determine the average gate
error in a long computational sequence.
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7
Monte Carlo process certification

and the Toffoli gate

Monte Carlo quantum process certification is a method which allows to
measure the fidelity of an experimentally implemented process relative to
an ideal one in a way that is much more efficient than quantum process
tomography. This method has been proposed in [Flammia11, daSilva11]
and experimentally implemented in the course of this thesis [Steffen12]. In
Sec. 7.1.1, the general principles of the method are described. Sec. 7.1.2
presents the sample with which the measurements shown in this chapter
have been performed. The properties of the sample impose some experi-
mental constraints which require a special protocol to perform Monte Carlo
process certification, this is discussed in Sec. 7.1.3. The protocol was used
to characterize two-qubit and three-qubit gates as presented in Sec. 7.1.4.

Monte Carlo process certification has also been applied to our imple-
mentation of the Toffoli gate [Fedorov12], where its higher efficiency com-
pared to process tomography has been demonstrated. The experimental
implementation of the Toffoli gate is presented in Sec. 7.2.1 and its char-
acterization with Monte Carlo process certification and quantum process
tomography is discussed in Sec. 7.2.2.
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7.1. Monte Carlo process certification
7.1.1. Principle of process certification
As discussed in Sec. 6.3, quantum process tomography of an n-qubit state
requires to measure the expectation value of 42n different experimental set-
tings. In addition the computational cost of the post-processing increases
also exponentially with the number of qubits. With the ongoing experi-
mental progress and growth in system size, quantum process tomography is
already impractical and will soon become infeasible in state-of-the-art ex-
periments. Even the most recent tomography algorithms would need days
of data post-processing in order to yield a process tomography estimate for
as few as 8 qubits [Smolin12].

There are more drawbacks to the approach of quantum process tomog-
raphy: Statistical fluctuations in the measured expectation values must be
dealt with in order for the estimated process matrix to be physical. How-
ever, the most appropriate method to produce a physical estimate from a
perturbed dataset is still under active debate [Blume-Kohout10]. The re-
sulting exponential amount of data is often reduced to a single number, the
average fidelity, which quantifies the similarity between the experimental
process and some ideal physical process, and thus the exponential amount
of data collected is extremely redundant. Monte Carlo process certifica-
tion [Flammia11, daSilva11] has been proposed as an efficient method to
estimate the average fidelity of an experiment to a large class of ideal pro-
cesses while completely sidestepping the exponential overhead associated
with the reconstruction of process matrices. This method estimates the
fidelity of an implemented process to an ideal one without completely char-
acterizing the process. Hence the ideal process has to be chosen before
doing the experiment, i.e. the experimental settings depend on the ideal
process, as described in the following.

Monte Carlo process certification relies on the fact that an n-qubit process
E can be described by a 2n-qubit density matrix ρ̂E , known as the Choi
matrix [Jamio lkowski72, Choi75] via

ρ̂E = (1⊗ E)(|φ〉〈φ|) (7.1)

where |φ〉 = 1√
d

∑d
i=1 |i〉 ⊗ |i〉 is a maximally entangled state and d = 2n

is the dimension of the Hilbert space used to describe the states of the
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system. When comparing an experimentally realized process Eexp to an
ideal unitary process Eideal, the fidelity expression for the two Choi matri-
ces [Schumacher96] simplifies to

F (ρ̂Eideal , ρ̂Eexp) = Tr
[
ρ̂Eideal ρ̂Eexp

]
, (7.2)

which in turn is related to the unitarily invariant average fidelity by F =
(dF + 1)/(d+ 1) [Horodecki99]. The problem of determining the fidelity of
a process is therefore identical to finding the fidelity of a state. The fidelity
of an experimentally implemented state σ̂ with respect to a theoretical pure
state ρ̂ can be written as

F (ρ̂, σ̂) = Trρ̂σ̂ =
∑
i

ρiσi
d
, (7.3)

where ρi = Trρ̂P̂i, σi = Trσ̂P̂i, d the dimension of the Hilbert space, and P̂i
an orthonormal Hermitian operator basis chosen as the 4n tensor products
of the Pauli matrices and the identity. By defining the relevance distribution
Pr(i) = ρ2

i
d , one can write the fidelity as

F (ρ̂, σ̂) =
∑
i

Pr(i)σi
ρi
, (7.4)

where the sum is taken over only the i with ρi 6= 0. The distribution
Pr(i) = ρ2

i
d reflects the relevance of the observation of P̂i for the fidelity

calculation. In particular, observables with zero expectation value in the
ideal case do not contribute to the fidelity and need not be measured in ac-
tual experiments. One can then estimate the fidelity by randomly sampling
from the observables to be measured according to the relevance distribution
Pr(i). The number of observables required for an estimate with error ε is
independent of n [Flammia11, daSilva11], unlike tomography which would
require 42n different experiments. The scaling of the precision with which
each observable must be measured depends on the process in question, but
for Clifford group [Gottesman97, Gottesman99] operations such as cnot
and cphase, this scaling is independent of the number of qubits.

The straightforward implementation of Monte Carlo process certification
as described above is rather impractical, since the preparation of the state
ρ̂E , representing the Choi matrix of the process E , would require preparing
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|ai〉∗
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Figure 7.1: (a) Straightforward implementation of the algorithm requires
the preparation of a 2n-qubit entangled state and the application of E on the
second half of this state. (b) Illustration of the effect of the measurement
on the first half of the state |φ〉 on the second half. (c) Experimentally
implemented algorithm. Figure adapted from [daSilva11].

the maximally entangled state |φ〉 = 1√
d

∑d
i=1 |i〉 ⊗ |i〉, where d = 2n the

dimension of the state Hilbert space, to obtain ρ̂E = (1⊗ E)(|φ〉〈φ|). This
requires 2n qubits for an n-qubit gate, as well as perfect storage of the n
ancillary qubits, see Fig. 7.1 (a).

A more experimentally relevant approach is to prepare and measure only
the n-qubit states on which E acts [Flammia11, daSilva11]. The key idea
(Fig. 7.1 (b)) is that the effect of the measurement of the first half of the
state |φ〉, on which no gate is applied, corresponds to a projection of the
second half of the state |φ〉 onto complex conjugates (in the computational
basis) of eigenstates of the first half of the measurement operator. The
measurement of ρ̂E with randomly chosen operators P̂i = Â ⊗ B̂, where
Â, B̂ are tensor products of n Pauli matrices or identities, can be expressed
as

Tr
[
(Â⊗ B̂)ρ̂E

]
= Tr

[
(Â⊗ B̂)(1⊗ E)(|φ〉〈φ|)

]
= 1
d

d∑
i=1

aiTr
[
B̂ E(|ai〉〈ai|)

]
. (7.5)

Here |ai〉 is the complex conjugate of the ith eigenstate of the operator Â
with eigenvalue ai. This final expression corresponds to the action of the
process E on the state |ai〉 followed by a measurement of the observable B̂
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(Fig. 7.1 (c)). The results for different input eigenstates are then summed
up to obtain an estimate of Tr

[
(Â⊗ B̂)ρ̂E

]
.

7.1.2. The sample

The sample used for the experiments presented in this chapter is shown in
Fig. 7.2. It has been used for experiments published in [Baur12b, Fedorov12,
Steffen12]. It consists of three superconducting transmon qubits (A,B,C)
coupled to a coplanar waveguide resonator. The resonator has a bare
resonance frequency νres = 8.625 GHz and a quality factor Q = 3300.
The qubits were tuned to their maximum transition frequencies νmax

A,B,C =
{6.714, 6.050, 4.999} GHz. They have charging energies EC/h = {0.264,
0.296, 0.307} GHz and coupling strengths to the resonator g/2π = {0.36,
0.30, 0.34} GHz. At these bias points the energy relaxation times are
T1 = {0.55, 0.70, 1.10} µs and the phase coherence times are T ∗2 = {0.45,
0.60, 0.65} µs. All three qubits are equipped with individual charge and
flux gate lines that allow to implement one-qubit and two-qubit operations
as described in Chap. 5.

 (a)

 (b)  (c)

B A

C

1 mm

100 mm

20 mm

Figure 7.2: (a) Optical microscope image of the sample [Baur12b] used for
the experiments discussed in this chapter. (b) Magnification of qubit B with
individual charge- and flux-bias lines. (c) Magnification of the SQUID-loop
of qubit B.
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7.1.3. Experimental protocol
The approach described in Sec. 7.1.1 allows us to implement Monte Carlo
quantum process certification with our sample for processes involving up to
three qubits. The following recipe summarizes the experimental protocol
we used. It is generally applicable for measuring the fidelity of an n-qubit
process in any n-qubit system:

1. For a given ideal process E calculate the Choi matrix ρ̂Eideal .

2. Find Pauli operators P̂i = Âi ⊗ B̂i which have non-vanishing expec-
tation values ρi = Trρ̂EidealP̂i 6= 0.

3. For every Pauli operator P̂i find the |ai1〉 , |ai2〉 , . . . , |aid〉 (complex
conjugates of the eigenvectors of Âi, c.f. Appendix C.1.1 for an exam-
ple), and do the following:

a) Prepare the input of the gate operation in the state
∣∣∣aij〉.

b) Apply the process Eexp to the state prepared in (a).
c) Measure the expectation value of B̂i given the output of (b).
d) Compute the weighted average of the expectation value of B̂i

over all the complex conjugates of the eigenstates, using the cor-
responding eigenvalues as the weight. This gives an estimate of
σi for the computation of the gate fidelity.

4. Calculate the average of the estimated outcomes σi weighted with the
relevance distribution Pr(i) according to Eq. (7.4).

Our 3-qubit system is small enough such that we can measure all relevant
operators and do not need to resort to random sampling. This still allows
for a significant saving in the number of measurements because many of the
measurements required to perform process tomography are irrelevant for the
fidelity estimate. In other words, we measure all operators which have a
non-zero expectation value for the ideal gate, and calculate the accordingly
weighted average to compute the gate fidelity.

The protocol requires the preparation of qubits in eigenstates of Pauli
operators Â and the measurement of Pauli operators B̂. The preparation
of the qubit input states is straightforward by using amplitude and phase
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controlled coherent microwave pulses applied to the individual charge con-
trol lines. In our setup, the implementation of the measurement using joint
dispersive readout of all qubits is a more complex procedure than it would
be if single-qubit readout would be available. The measurement operator
is

M̂ =
∑

i1,...,in∈{0,1}
αi1,...,in |i1〉〈i1| ⊗ |i2〉〈i2| ⊗ · · · ⊗ |in〉〈in| , (7.6)

where |0〉 , |1〉 are the computational basis states. The coefficients αi1,...,in
are obtained from measurements of the resonator transmission amplitude
for each computational basis state [Filipp09, Bianchetti10a, Chow10b]. M̂
expressed in terms of individual qubit identity and σ̂z Pauli operators is

M̂ =
∑

ĵ1,...,ĵn∈{1,σ̂z}

βj1,...,jn ĵ1 ⊗ ĵ2 ⊗ · · · ⊗ ĵn, (7.7)

with coefficients βj1,...,jn calculated as combinations of the αi1,...,in . By
averaging many measurement outcomes of the same operator, we are able to
perform a measurement of the expectation value of the operator in question.

In general, the measurement operator has 2n different elements. However,
in Monte Carlo process certification for each input state the expectation
value of only one specific element is needed. This element can be obtained
by adding measurement outcomes with different signs of σ̂z operators of
different qubits, realized by π pulses applied to the corresponding qubits
just before the measurement. Since the first element 1⊗ · · ·⊗1 has always
an expectation value of one, one needs to measure 2n−1 different expectation
values to extract a single operator B̂. We emphasize that this particular
property and the overhead associated with it relate to our joint readout,
and are not a consequence of the Monte Carlo certification method.

As an example, the joint readout procedure of the operator σ̂y ⊗ σ̂x for
two qubits is presented in the following. The joint readout operator is

M̂ = α00 |0〉〈0| ⊗ |0〉〈0|+ α01 |0〉〈0| ⊗ |1〉〈1|
+α10 |1〉〈1| ⊗ |0〉〈0|+ α11 |1〉〈1| ⊗ |1〉〈1| ,

(7.8)

which is equivalent to

M̂ = β001⊗ 1 + β011⊗ σ̂z + β10σ̂z ⊗ 1 + β11σ̂z ⊗ σ̂z. (7.9)
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The prefactors βij are determined from measurements of the αij as de-
scribed above. To measure the given combination of Pauli operators, we
rotate the measurement basis of the individual qubits accordingly. For the
example above, we apply a −π/2 rotation around the x-axis to the first
qubit and a π/2 rotation around the y-axis to the second qubit. The re-
sulting measurement operator is

M = β001⊗ 1 + β011⊗ σ̂x + β10σ̂y ⊗ 1 + β11σ̂y ⊗ σ̂x. (7.10)

To extract only the last term in the measurement operator, a second mea-
surement with an additional π pulse on both qubits is performed. This
results in a measurement operator with two minus signs:

M = β001⊗ 1− β011⊗ σ̂x − β10σ̂y ⊗ 1 + β11σ̂y ⊗ σ̂x. (7.11)

Adding the measurement outcomes of the two experiments (for the same
input state) results in the expectation value for the operator 2(β001⊗ 1 +
β11σ̂y ⊗ σ̂x). Since the expectation value for 1⊗ 1 is always equal to 1 and
β00 and β11 are known, the expectation value of σ̂y ⊗ σ̂x can be extracted
in this way.

Hence, it is possible in our experiments to extract any expectation value
of two-qubit Pauli operators from two measurements (or three-qubit Pauli
operators from four measurements), using the corresponding single qubit
rotations. Having found the expectation values σi = Tr

[
ρ̂EexpP̂i

]
, the fi-

delity can be directly calculated using Eq. (7.4).
According to Eq. (7.5), a measurement of one of the expectation values

σi consists of averaging measurement outcomes over different input states.
To achieve this, one can also Monte Carlo sample from the eigenvectors to
be prepared as input states. The weighting factor for the sampling is given
by the absolute value of the eigenvalue. Since the system size is small in our
experiments but a high accuracy is desired, we measured all eigenstates.

The fact that we use joint readout in our setup increases the number of
different expectation values that we have to measure. This is a particular
property of our readout scheme and not of the Monte Carlo certification
method and is explained in more detail below.

To extract a single operator B̂ from a joint readout in our experiments,
we sum the expectation values of 2n−1 different measurement operators M̂ .
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For each measurement operator M̂ , we prepare the qubits in a different
initial state and then average many outcomes to obtain the corresponding
expectation value. This means that the number of different measurement
settings to obtain the expectation value of an operator B̂ increases expo-
nentially with the number of qubits. However the total number of mea-
surements (including averages) does not need to grow exponentially as long
as the number of averages to measure the expectation value of one opera-
tor M̂ is large compared to the number of different measurement settings
(i. e. 2n−1): In this case one can just reduce the number of averages to
measure the expectation value of one M̂ , such that the total number of av-
erages for all measurements used to calculate the operator B̂ stays constant.
This approach has been taken for the experiments presented here, since the
number of averages for a single expectation value of M̂ is on the order of
105 − 106 whereas the number of different expectation values which need
to be measured for obtaining one specific operator B̂ is 2 and 4 (for n = 2
and n = 3 respectively). The implementation of simultaneous single-shot,
single-qubit readout [Steffen06b, Mallet09, Vijay11, Groen13] would over-
come these restrictions and would allow to measure the expectation value
of an operator B̂ with only one experimental setting, independent of the
number of qubits n.

7.1.4. Experimental implementation

We tested Monte Carlo process certification on 2-qubit cnot and cphase
gates, on the sequential application of two cphase gates on three qubits
and as described in Sec. 7.2 on the Toffoli gate. The cnot and the cphase
gates are particularly interesting for Monte Carlo process certification, since
these gates map elements of the Pauli group to other elements of the Pauli
group. Such gates are Clifford operations and their Choi matrices are stabi-
lizer states [Gottesman97, Gottesman99] for which the number of relevant
Pauli operators is minimal with uniform relevance distribution. For any
stabilizer state ρ̂E there is a subgroup S of the Pauli group with elements
Ŝi such that the pure state corresponding to ρ̂Eideal is an eigenvector of all
Ŝi with eigenvalue +1. The expectation value of each operator in this sta-
bilizer group is +1. Therefore, the relevance distribution Pr(i) = 1/4n is
uniform for all i ∈ {1, . . . , 4n}. All other operators of the Pauli group have
expectation value zero, and therefore have no impact on the estimation of
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7. Monte Carlo process certification and the Toffoli gate

the fidelity of a gate.
All experimentally realized gates have been characterized by calculating

their fidelity using Monte Carlo process certification (FMC), unconstrained
tomography data (Ftom) and tomography data constrained by maximum-
likelihood [Smolin12, Baur12a] estimation (FML).

The cnot gate, which changes the state of a target qubit if the control
qubit is in the state |1〉, is described by a Choi matrix whose stabilizer
group is generated by

g1 = σ̂x 1 σ̂x σ̂x,
g2 = σ̂z 1 σ̂z 1,
g3 = 1 σ̂x 1 σ̂x,
g4 = 1 σ̂z σ̂z σ̂z.

(7.12)

This indicates that, e.g. eigenstates of the σ̂x ⊗ 1 operator are mapped to
eigenstates of the σ̂x ⊗ σ̂x operator by the cnot operation. The relevant
Pauli operators are products of the elements of each subset of these gener-
ators. A complete list of the relevant operators is shown in Tab. 7.1 (a). A
visualization of the expectation value of the 16 Pauli operators with non-
vanishing relevance distribution is shown in Fig. 7.3 (a), where each row of
the plot corresponds to a block of four operators in Tab. 7.1 (a). For the
cnot gate, the total number of different measurement settings is 120. For
each of the 15 non-unity Pauli operators we prepare 4 different input states
and measure 2 different operators (required only by the joint readout). In
contrast, the total number of different measurement settings for process
tomography is 4(2×2) = 256.

The cphase gate, which changes the phase of the |1〉 state of the target
qubit by π if the control qubit is in the state |1〉, has been characterized
in a way similar to the cnot gate as these gates are locally equivalent.
The relevant Pauli operators are found with the same procedure as for the
cnot gate and are listed in Tab. 7.1 (b). A visualization of the expectation
value of the 16 Pauli operators with non-vanishing relevance distribution is
shown in Fig. 7.3 (b).

A sequence of 2 cphase gates first acting on qubits 1 and 2, and then
on qubits 2 and 3 was characterized as an example of a 3-qubit gate with a
stabilizer state Choi matrix. This Choi matrix has 43 = 64 Pauli operators
with non-vanishing expectation value. The stabilizer group generators as
well as a list of the relevant Pauli operators are presented in Appendix C.1.2.
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7.1. Monte Carlo process certification

(a) 1 1 1 1

1 σ̂x 1 σ̂x
1 σ̂y σ̂z σ̂y
1 σ̂z σ̂z σ̂z
σ̂x 1 σ̂x σ̂x
σ̂x σ̂x σ̂x 1

σ̂x σ̂y σ̂y σ̂z
σ̂x σ̂z σ̂y σ̂y
σ̂y 1 σ̂y σ̂x
σ̂y σ̂x σ̂y 1

σ̂y σ̂y σ̂x σ̂z
σ̂y σ̂z σ̂x σ̂y
σ̂z 1 σ̂z 1

σ̂z σ̂x σ̂z σ̂x
σ̂z σ̂y 1 σ̂y
σ̂z σ̂z 1 σ̂z

(b) 1 1 1 1

1 σ̂x σ̂z σ̂x
1 σ̂y σ̂z σ̂y
1 σ̂z 1 σ̂z
σ̂x 1 σ̂x σ̂z
σ̂x σ̂x σ̂y σ̂y
σ̂x σ̂y σ̂y σ̂x
σ̂x σ̂z σ̂x 1

σ̂y 1 σ̂y σ̂z
σ̂y σ̂x σ̂x σ̂y
σ̂y σ̂y σ̂x σ̂x
σ̂y σ̂z σ̂y 1

σ̂z 1 σ̂z 1

σ̂z σ̂x 1 σ̂x
σ̂z σ̂y 1 σ̂y
σ̂z σ̂z σ̂z σ̂z

Table 7.1: All relevant Pauli operators for the verification of a (a) cnot
and a (b) cphase gate.
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7. Monte Carlo process certification and the Toffoli gate

For each of these operators we sample 8 different eigenvectors, each by mea-
suring 4 different operator combinations required by the joint readout. In
total this gives 2016 different measurement settings, again without making
use of random sampling. In contrast, process tomography for any three-
qubit gate requires 42×3 = 4096 different measurement settings. A visual-
ization of the expectation value of the 64 relevant Pauli operators is shown
in Fig. 7.3 (c).

All resulting fidelities are summarized in Tab. 7.2. Errors are stated as
90 % confidence intervals. For Monte Carlo process estimation the error was
calculated by Gaussian error propagation of the errors of the single mea-
surements. For the error of the process tomography, the confidence interval
of the distribution of fidelities was calculated based on a resampling of the
measurement outcomes according to the inferred error statistics of the ex-
periments. All fidelities found with Monte Carlo process certification have
tighter error bounds than the fidelities obtained from process tomography.
This is mainly due to the fact that the post-processing for the Monte Carlo
certification only consists of averaging the relevant measured values whereas
full process tomography must impose collective physical constraints on the
entire dataset, and errors of the expectation values from the irrelevant ob-
servables can only add to the errors relating to the relevant observables.

Gate FMC Ftom FML
cnot 81.7± 2.1 % 80± 3 % 79± 3 %
cphase 86.6± 3.0 % 86± 4 % 83± 4 %
2 cphases 65.0± 0.8 % 67± 5 % 67± 5 %

Table 7.2: Fidelities obtained by Monte Carlo process certification (FMC)
compared to the values obtained with process tomography (Ftom) and sub-
sequent application of a maximum likelihood algorithm (FML).

7.2. Implementation of the Toffoli gate
The Toffoli gate is a three-qubit operation which inverts the state of a
target qubit conditioned on the state of two control qubits. It is there-
fore sometimes referred to as a controlled-controlled-not (ccnot) gate.
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Figure 7.3: Hinton diagrams [Hinton86] of the measured data for (a) a
two-qubit cnot-gate, (b) a two-qubit cphase-gate, and (c) a three-qubit
2-cphase-gate. The thin border shows the ideal expected values, the col-
ored squares are the estimated values. The (00, 00) and (00, 0000) entries
are the expectations of the identity, so they have sizes corresponding to ab-
solute value 1 and the area of the other squares are adjusted proportionally.
The column label corresponds to the most-significant digits of the binary
expansion of the index of the observable, while the row label corresponds
to the least significant digits. The order of the operators corresponds to
the order in Tab. 7.1 and Tab. C.2 shown in the appendix.
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7. Monte Carlo process certification and the Toffoli gate

It enables universal reversible classical computation [Toffoli80] and forms a
universal set of gates in quantum computation together with the Hadamard
gate [Shi03]. It is also a key element in quantum error correction schemes
(for theoretical aspects of quantum error correction see [Nielsen00], imple-
mentations are described e.g. in [Cory98, Knill01, Chiaverini04, Pittman05,
Aoki09, Reed12]).

The Toffoli gate can be constructed out of two-qubit and single-qubit
gates. If one is restricted to cnot gates as two-qubit gates, the optimal
decomposition of the Toffoli gate needs six cnot gates and ten single qubit
operations [Nielsen00, Shende09] as depicted in Fig. 7.4. If one has the
possibility of implementing arbitrary two-qubit gates, the optimal decom-
position consists of five two-qubit gates [Barenco95], two cnot gates and
three controlled-

√
not(†) gates as shown in Fig. 7.5.

•

• =

• • • • T

• • T † T † S

H T † T T † T H

Figure 7.4: Decompositon of the Toffoli gate into two-qubit cnot-gates
and single-qubit gates. Here, T = R

π/4
z , S = R

π/2
z and H is the Hadamard

gate.

•

• =

• • •

• •

V V † V

Figure 7.5: Decompositon of the Toffoli gate into the minimal possible
amount of two-qubit gates. Here, V =

√
not.
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7.2. Implementation of the Toffoli gate

7.2.1. Experimental realization

During the course of this thesis we experimentally implemented the Toffoli
gate using the chip described in Sec. 7.1.2. The work described in this
section closely follows the original publication [Fedorov12].

Besides our implementation, in superconducting circuits a Toffoli-class
gate (i.e. a gate switching the state of the target qubit if at least one of
the control qubits is in the |1〉 state) has been implemented using two
qubits and a resonator [Mariantoni11]. However, the characterization was
limited to the phase fidelity since full process tomography including the
resonator state was not available. Also, a Toffoli gate (i.e. a controlled-
controlled-eiφZ gate) has been implemented using the third excited state
of the transmon qubits and used to demonstrate three-qubit quantum error
correction [Reed12].

In our experimental realization of the Toffoli gate, we exploit the presence
of additional (non-computational) higher excited states in the energy level
spectrum of the transmon. Using the transmons as quantum mechanical
three-level systems (qutrits), allows us to implement the Toffoli gate with
only two qubit-qutrit gates, one two-qubit gate and two single-qubit gates.

In the conventional realization of the Toffoli gate, a not operation is
applied to the target qubit (C) if the control qubits (A, B) are in the state
|11〉. In our setup it is more natural to realize a variant of the Toffoli gate
shown in Fig. 7.6 (a) in which the state of the target qubit is inverted if
the control qubits are in |01〉. This gate can easily be transformed to the
conventional Toffoli gate by a redefinition of the computational basis states
of qubit A or by adding two π pulses on qubit A.

The Toffoli gate can be constructed from a controlled-controlled-phase
gate (ccphase) sandwiched between two Hadamard gates acting on the
target qubit as shown in Fig. 7.6 (a). A ccphase gate leads to a π phase
shift for the |1〉 state of the target qubit if and only if the control qubits
are in the state |01〉. This corresponds to a sign change of only one out of
the 8 computational three-qubit basis states: |011〉 ↔ − |011〉.

The basic idea of ‘hiding’ states into non-computational states to simplify
the implementation of a Toffoli gate was theoretically proposed in [Ralph07,
Borrelli11] and experimentally implemented for linear optics and ion trap
systems [Monz09, Lanyon09]. The implementation of the scheme of [Ralph07]
in our setup would require 3 cphase gates, 6 single-qubit and 2 single-qutrit
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Figure 7.6: (a) The Toffoli gate which changes the state of the target qubit
(⊕) when the control bits are in state ‘0’ (◦) or ‘1’ (•) can be decomposed
into Hadamard- and ccphase-gates (top). The ccphase-gate is imple-
mented as a sequence of two-qubit and qubit-qutrit gates (see text for de-
tails). (b) Pulse sequence used for the implementation of the Toffoli gate.

operations. Instead, we construct the controlled phase gate from a single
two-qubit cphase gate and two qubit-qutrit gates denoted as a π-swap
and a 3π-swap shown in Fig. 7.6 (a). The application of a single cphase
gate on qubits B and C (shown in the blue frame) inverts the sign of both
the |111〉 and |011〉 states. To create the ccphase operation the computa-
tional basis state |111〉 is transferred to the non-computational state i |201〉
by the first π-swap (shown in left red frame), effectively ‘hiding’ it from the
cphase operation acting on qubits B and C. After the cphase operation,
the |111〉 state is recovered from the non-computational level i |201〉 by an
additional 3π-swap. Also, alternative approaches using optimal control of
individual qubits for implementing a Toffoli gate in a single step have been
theoretically proposed [Spörl07] and recently analyzed in the context of the
circuit QED architecture [Stojanović12].

All three-qubit basis states show three distinct evolution paths during
our ccphase gate (see also Tab. 7.3). Only the input state |011〉 is affected
by the cphase gate acting on qubits B and C which transfers |011〉 to the
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7.2. Implementation of the Toffoli gate

Initial state after π-swap after cphase after 3π-swap

|011〉 |011〉 − |011〉 − |011〉

|110〉 i |200〉 i |200〉 |110〉

|111〉 i |201〉 i |201〉 |111〉

|x0y〉 |x0y〉 |x0y〉 |x0y〉

|010〉 |010〉 |010〉 |010〉

Table 7.3: Evolution of the three-qubit states during the ccphase gate.
The state |011〉 acquires a phase shift of π during the cphase pulse; the
states |11x〉 are transferred to i |20x〉, “hiding” them from the cphase gate;
and the initial states |x0y〉 (with x, y ∈ {0, 1}) and |010〉 do not change
during the sequence.

desired state − |011〉. The states |11x〉 (x ∈ {0, 1}) are transferred by the
π-swap gate to the states i |20x〉. The following ccphase gate then has no
influence on the resulting state. The last gate, a 3π-swap, transfers i |20x〉
back to |11x〉. The two swap gates (π and 3π) realize a full 4π rotation
such that the state |11x〉 does not acquire any extra phase compared to the
other states. The states of the last group (|010〉 , |x0y〉 with x, y ∈ {0, 1})
do not change during the cphase gate sequence.

The actual experimental implementation of the Toffoli gate consists of
a sequence of microwave and flux pulses applied to the qubit local control
lines (Fig. 7.6 (b)). The rotations about the x- and y-axes are realized with
resonant microwave pulses applied to the charge gate line at each qubit.
We use 8 ns long Gaussian-shaped DRAG pulses [Motzoi09, Gambetta11]
to prevent population of the third level during the single-qubit operations
which would lead to phase errors. Few nanosecond long current pulses
passing through the transmission line next to the SQUID loop of the re-
spective qubits control the qubit transition frequency realizing z-axis ro-
tations. All two-qubit/qutrit gates are implemented by tuning a qutrit
non-adiabatically to the avoided crossing between the |11x〉 ↔ |20x〉 or
|x11〉 ↔ |x20〉 states, respectively (see Sec. 5.2.2). During this time the
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7. Monte Carlo process certification and the Toffoli gate

system oscillates between these states with a frequency 2JAB/BC11,20 . With in-
teraction times π/(2JAB11,20) = 7 ns, 3π/(2JAB11,20) = 21 ns and 2π/(2JBC11,20) =
23 ns we realize a π-swap and a 3π-swap between qubits A and B and a
cphase gate between qubits B and C, respectively. The use of qubit-qutrit
instead of single-qutrit operations allows for a more efficient construction of
the Toffoli gate. Direct realization of the scheme proposed in [Ralph07] in
our system would require 8 additional microwave pulses (used to implement
6 single-qubit and 2 single-qutrit gates) with a two-fold increase of over-
all duration of the pulse sequence with respect to our scheme. The pulse
sequence used introduces dynamical phases which we compensated for as
described in Appendix C.2.1.

7.2.2. Characterization

We have characterized the performance of the realization of the Toffoli gate
described above using three methods: By measuring the truth table, by
full process tomography, and by Monte Carlo process certification. The
truth table depicted in Fig. 7.7 shows the population of all computational
basis states after applying the Toffoli gate onto each of the computational
basis states prepared at the input of the circuit. It clearly reveals the
characteristic properties of the Toffoli gate, namely that a not operation is
applied on the target qubit (C) if the control qubits (A,B) are in the state
|01〉. The fidelity of the output states show a significant dependence on
qubit lifetime. In particular, input states with qubit A (with the shortest
lifetime) in the excited state exhibit generally the worst fidelity, indicating
that the protocol is mainly limited by the qubit lifetime. The fidelity of the
measured truth table, F = (1/8)Tr [UexpUideal] = 76.0 %, shows the average
performance of our gate when acting onto the eight basis states.

To completely characterize the quantum features of the Toffoli gate,
we have performed full three-qubit process tomography and reconstructed
the process matrix χexp, overcoming the limited characterization provided
by measurements of the phase fidelity only [Mariantoni11]. The process
matrix χexp reconstructed directly from the data has a fidelity of F =
Tr[χexpχideal] = 70 ± 3 % (the error represents a 90 % confidence interval).
Using a maximum likelihood procedure [Ježek03, Smolin12] to correct for
unphysical properties of χexp the obtained process matrix χML

exp has a fidelity
of F = Tr[χML

expχideal] = 69 % with errors expected on the level of 3 %. The
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Figure 7.7: Barchart of the measured truthtable showing the population
of the output state (right axis) given a certain input state (front axis).
The state of qubit C is inverted if qubits A and B are in the state |01〉.
Wireframes show ideally expected populations.

measured process matrix χexp displays the same key features as the ideal
process matrix χideal as demonstrated in Fig. 7.8.

We also used Monte Carlo process certification to characterize our im-
plementation of the Toffoli gate. The Choi matrix of the Toffoli gate is
not a stabilizer state. Therefore, the list of relevant Pauli operators has
no group structure and the relevance distribution Pr(i) is not uniform. We
find that there are 232 Pauli operators with non-zero expectation value of 1
or ±0.5 out of 4096 possible ones. The list of all relevant operators is given
in Appendix C.1.3. The total number of different relevant experimental
settings is 231× 8× 4 = 7392, since for each of the 231 different non-unity
Pauli operators we prepare 8 different input states and measure 4 different
operators.

For the Monte Carlo process estimation, we averaged each measurement
setting ∼ 330 000 times, resulting in a total number of ∼ 2.4 × 109 mea-
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(a)

(b)

0.
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Figure 7.8: Bar chart of the absolute value of the (a) measured and (b)
ideal process matrix χ of the Toffoli gate. The 4096 elements are displayed
in the operator basis {III, IIX, IIỸ , . . . , ZZZ}. The process fidelity is
F = 69± 3 %.
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7.2. Implementation of the Toffoli gate

surements and an error of the fidelity of 0.5 %, whereas for the process
tomography we averaged each measurement setting for ∼ 790 000 times,
resulting in a total number of ∼ 3.2 × 109 measurements and an error of
the fidelity of 3 %. This shows that even without random sampling, the
total number of measurements (including repeated measurements used for
averaging) to achieve a smaller error is less for Monte Carlo process certi-
fication than for process tomography. The measurement outcomes for the
different operators are shown in Fig. 7.9.

As discussed before, the significant advantage of Monte Carlo process
estimation is that one can estimate the fidelity of a process also without
sampling over all relevant Pauli operators, at the expense of a higher un-
certainty. If all relevant Pauli operators have been measured like in our
experiments, the only error in the fidelity is due to the experimental uncer-
tainty in the estimation of the different expectation values. In the case that
an incomplete set of Pauli operators is sampled, there is an additional error.
An asymptotic bound for this error is calculated in the supplementary ma-
terial of [daSilva11], and it is shown that these bounds scale polynomially

00
00

0
00

10
0

01
00

0
01

10
0

10
00

0
10

10
0

11
00

0
11

10
0

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

�1.

�0.5

0.

0.5

1.

Figure 7.9: Hinton diagram of the measured expectation values of all rel-
evant operators of the Toffoli gate Choi matrices. The thin border shows
the ideally expected values, the colored squares are the estimated values.
The (000, 00000) entry is the expectation of the identity, so they have sizes
corresponding to absolute value 1 and the area of the other squares are ad-
justed proportionally. The column label corresponds to the most-significant
digits of the binary expansion of the index of the observable, while the row
label corresponds to the least significant digits (see Appendix C.1.3).
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with the number of measured samples. However, the bounds are not tight
and therefore too pessimistic to be used in the calculation of error bars. The
error in the fidelity estimate when performing non-exhaustive sampling of
the Pauli operators can be obtained by non-parametric resampling methods
such as bootstrapping [Efron81]. However, given that we have measured all
the relevant Pauli operators for each of the gates we characterized, we can
simply gather statistics for estimates with non-exhaustive sampling. The
corresponding data for the Toffoli gate is shown in Fig. 7.10. For our data
one finds e. g. an additional error of 2 % for sampling 100 Pauli operators or
an additional error of 3.2 % when sampling only 50 Pauli operators. This
illustrates that Monte Carlo sampling leads to significant reduction in the
number of measurements required to determine the fidelity with a given
error bound.
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Figure 7.10: (a) Mean of the estimated average output fidelity of a Toffoli
gate as a function of the number of sampled observables. The error bars cor-
respond to the 90 % confidence interval, which in turn gives an estimate of
the additional error due to the non-exhaustive sampling of relevant observ-
ables. (b) Half width of the 90 % confidence intervals vs. the corresponding
number of samples.
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7.3. Conclusion
Monte Carlo process certification allows to estimate the fidelity of an exper-
imentally implemented process to an ideal one more efficiently than with
quantum process tomography. It estimates the fidelity without completely
characterizing the process since operators which do not contribute to the
fidelity are not measured. In this way we characterized different two- and
three-qubit gates, namely our implementation of the cnot and cphase
gate, a combination of two cphase gates on three qubits as well as the
Toffoli gate. Monte Carlo process certification allows also to estimate the
fidelity without measuring all operators which actually would contribute
to the fidelity. In this case the random non-complete sampling induces an
additional error which has been characterized experimentally for the Toffoli
gate. We compared the results from full process tomography with Monte
Carlo process certification and found that they give consistent results, but
Monte Carlo process certification gives more accurate estimates of the fi-
delity with fewer measurements. In future systems with more qubits, Monte
Carlo process certification could become an important method for the es-
timation of the fidelity of multi-qubit gates and processes since performing
process tomography will become impossible due to the exponential scaling.
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8
Quantum teleportation of a solid-state qubit

Everybody really knows if you are ever going
to make a real quantum computer,

it must be solid state.

— Benjamin Schumacher

One of the most interesting and also surprising quantum algorithms is
quantum teleportation, since it allows to transfer a quantum state without
transporting the actual information carrier. In this chapter we describe
the implementation of this algorithm with superconducting circuits. The
reported experiments demonstrate the first implementation of the full tele-
portation algorithm in any solid-state system.

The teleportation algorithm is explained in Sec. 8.1 accompanied by an
overview of the implementations of the protocol in other systems (Sec. 8.1.1).
In Sec. 8.1.2 the optimal simulation of the teleportation algorithm with
only classical resources is described. Our implementation of the proto-
col [Steffen13] is presented in detail in Sec. 8.2.

8.1. Quantum teleportation
Quantum teleportation [Bennett93] describes the process of transferring an
unknown quantum state between two parties at two different physical lo-
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8. Quantum teleportation of a solid-state qubit

cations without transferring the physical carrier of quantum information
itself. This especially means that neither the physical carrier of informa-
tion itself is transferred nor a swap-operation between the sender and the
receiver is performed. Instead teleportation makes use of the non-local cor-
relations provided by an entangled pair shared between the sender and the
receiver and the exchange of classical information. This concept plays a
central role in extending the range of quantum communication using quan-
tum repeaters [Gisin02, Briegel98] and can also be used to implement logic
gates for universal quantum computation [Gottesman99].

In the original teleportation protocol [Bennett93], the unknown state
|ψin〉 of qubit Q1 in possession of the sender is transferred to the receiver’s
qubit Q3 (Fig. 8.1 (a)). To enable this task, sender and receiver prepare
in advance a maximally-entangled (Bell) state between an ancillary qubit
Q2 which remains with the sender and Q3 which is located at the receiver.
Then the sender performs a measurement of Q1 and Q2 in the Bell basis
which projects the two qubits in the sender’s possession onto one of the four
possible Bell states |Φ±〉 = (|00〉 ± |11〉) /

√
2 and |Ψ±〉 = (|01〉 ± |10〉) /

√
2.

As a consequence, the receiver’s qubit Q3 is projected, instantaneously and
without ever having interacted with the senders qubit Q1, onto a state
|ψout〉 = {1, σ̂x, σ̂z, iσ̂y} |ψin〉, which differs from the input state |ψin〉 only
by a single qubit rotation, depending on the four possible measurement
results. To always recover the original state |ψin〉 the receiver may rotate
the output state of Q3 conditioned on the outcome of the Bell measurement
communicated to the receiver as two bits of information via a classical
channel. This final step is frequently referred to as feed-forward, since the
outcome of a measurement performed on one part is used to control the
other part of the same quantum system. This is in contrast to acting back
on the same quantum system, which we call a feed-back process.

The protocol we implemented is shown in Fig. 8.1 (b) and is equivalent
to the original teleportation protocol as described in Sec. 8.2.

8.1.1. Realization of quantum teleportation in other systems

In pioneering work, the teleportation protocol was first implemented with
single photons [Bouwmeester97] over lab-scale distances and later also over
km-scale distances in free space [Marcikic03, Yin12, Ma12]. However, in
these experiments only two out of four Bell states were distinguished un-
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Figure 8.1: (a) Standard protocol of the teleportation scheme. The stan-
dard protocol starts with the preparation of a Bell state between Q2 and
Q3 (blue box) followed by the preparation of an arbitrary state |ψin〉 (green
box) and a Bell state measurement of Q1 and Q2 (red box). The classical
information extracted by the measurement of Q1 and Q2 is transferred to
the receiver to perform local gates conditioned on the measurement out-
comes. After the protocol Q3 is in a state |ψout〉 which ideally is identical
to |ψin〉 (also colored in green). (b) Implemented scheme. The protocol
implemented in our experiment uses cphase gates and single-qubit rota-
tions. To finalize the teleportation we either post-select on any single one
of the four measurement outcomes 00, 01, 10, 11, or we deterministically use
all four outcomes which we then may use to implement feed-forward. The
feed-forward operators X and Y are applied to Q3 conditioned on the four
measurement outcomes according to the table presented in the figure. At
the end, quantum state tomography (QST) is performed to characterize the
output state.
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8. Quantum teleportation of a solid-state qubit

ambiguously, limiting the efficiency of the protocol to 50 % at best. A proof
of principle experiment which can distinguish all four Bell states was im-
plemented using non-linear photon interaction [Kim01] but the efficiency of
the detection step was much below 1 %. With photonic continuous-variable
states teleportation has been achieved deterministically for all measure-
ment outcomes and the final conditional rotation has been implemented
to complete the teleportation protocol [Furusawa98, Lee11]. Along with
the publication of the results presented in this chapter [Steffen13], the de-
terministic teleportation of photonic qubits was reported in [Takeda13] by
using a continuous-variable technique. In atomic qubits, fully deterministic
quantum teleportation has been realized over micrometer scale distances
with ions in the same trap [Riebe04, Barrett04]. Non-deterministically,
the protocol has also been implemented between ions in different traps
[Olmschenk09], in atomic ensembles [Bao12], and single atoms [Nölleke13].
Using nuclear magnetic resonance techniques for spin ensembles a teleportation-
like protocol was implemented over interatomic distances by replacing the
readout and feed-forward step with dephasing and conditioned unitary op-
erations [Nielsen98].

8.1.2. Optimal classical algorithm

By fully implementing the teleportation protocol it is possible to always
recover the initial state with unit fidelity. Moreover, although two bits of
classical information are needed to recover the original state, they do not
provide any information about the original state itself. In this subsection
we discuss how well one can classically simulate a teleportation protocol.

A “classical” version of the teleportation protocol does not make use of
an entangled state shared by the two parties. Instead the only resources
are the projective measurement of the initial state and a classical commu-
nication channel. In [Massar95] it is shown that the information extracted
from the projective measurement of one qubit allows to recreate the qubit
state with an average fidelity of 〈F〉 = 2/3. In the classical protocol the
initial state can therefore be transferred only with a limited fidelity and
the information transferred over the classical channel contains information
about the original state.

Another point of view is presented in [vanEnk07], where teleportation is
discussed as a method to verify entanglement. Indeed, if a teleportation
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8.1. Quantum teleportation

protocol is executed and the average output state fidelity is above 2/3, it
unambiguously shows that the two parties shared an entangled state (not
considering a potential hidden-variable model [vanEnk07]).

An algorithm which achieves this classically optimal state transfer can
be implemented as follows: The sender performs a projective measurement
of the qubit and sends the outcome to the receiver who prepares his qubit
just in the state which was measured at the sender. We now calculate
explicitly the average fidelity achieved by this algorithm to demonstrate
that it achieves the theoretically maximal value of 〈F〉 = 2/3. Assume
the unknown state is |ψ〉 = α |0〉 + β |1〉, where α = cos(θ/2) and β =
eiφ sin(θ/2). Since the density matrix of this state is

ρ =

 α2 αβ∗

βα∗ β2

 , (8.1)

the fidelity Fσ = tr[ρ.σ] of this state relative to the ground (excited) state
|0〉 (|1〉) is F0 = α2 (F1 = β2). A projective measurement onto the z-axis
of the Bloch-sphere will give the outcome “0” with probability α2 and the
outcome “1” with probability β2. If the target qubit is then prepared in
the measured state, its expected fidelity relative to the original state |ψ〉 is

Fψ = α2α2 + β2β2 = cos(θ/2)4 + sin(θ/2)4. (8.2)

It is easy to see that the fidelity of our guess is always F0,1 = 1 if the
original state was one of the basis states |0〉 , |1〉 (θ = 0, π). For an equal
superposition state (θ = π/2), the expected fidelity is always Fθ=π/2 = 0.5.
To get the expected fidelity for an arbitrary input state, one has to integrate
Eq. (8.2) over the whole Bloch sphere S:

〈F〉 = 1
4π

∫
cos(θ/2)4 + sin(θ/2)4dS

= 1
4π

∫ π

θ=0

∫ 2π

φ=0

(
cos(θ/2)4 + sin(θ/2)4

)
sin θdθdφ

= 2/3. (8.3)

However, this threshold is only valid if one samples a large number
of points equally distributed over the Bloch sphere. For finite sets of
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8. Quantum teleportation of a solid-state qubit

states, the threshold depends on the chosen set and is generally higher
than 2/3 [vanEnk07]. If one tests only the four states typically used for
quantum process tomography (|0〉 , |1〉 , |0〉 + |1〉 , |0〉 + i |1〉), the classical
threshold would be 3/4 (since |0〉 and |1〉 can be reproduced with unit fi-
delity and {|0〉+ |1〉 , |0〉+ i |1〉} with fidelity 1/2 each).

As pointed out in [Fuchs03], finite sets of states exist for which the classi-
cal threshold can be the theoretical minimum, i.e. 2/3. These are all sets of
states, whose representation on the Bloch sphere are the corners of a Pla-
tonic solid, e.g. a tetrahedron, a cube, or an octahedron. Since the states
defined by the intersection of the the Bloch sphere with the x, y, z-axes form
an octahedron (|0〉 , |1〉 , |0〉 + |1〉 , |0〉 + i |1〉 , |0〉 − |1〉 and |0〉 − i |1〉), it is
sufficient to show that the average fidelity of these six states is higher than
2/3. A set of such states is also called a set of six mutually unbiased basis
states [Bengtsson06]. This means that every state belonging to one of the
bases is in an equal superposition state with respect to the other two bases.

8.2. Realization of the teleportation protocol

In superconducting circuits, the coherent part of teleportation protocol
(i.e. the part before the single-shot measurement, c.f. Fig. 8.1) has previ-
ously been implemented and characterized in our lab [Baur12b, Baur12a].
Performing full three-qubit quantum state tomography shows that the re-
sulting state of all qubits right before measurement is a genuine tripartite
entangled state. By projecting this three-qubit state onto the four ba-
sis states of the sender’s qubits and subsequently tracing out the sender’s
qubits, the teleported states can be reconstructed with an average fidelity
of F = 86 %.

The implementation of fully deterministic quantum teleportation with
feed-forward places additional requirements on the sample and the setup:
The possibility to read out the sender’s qubits independently of the re-
ceiver’s qubit, the ability to perform single-shot readout of the Bell-state,
as well as an active feed-forward circuitry. In the following we show how
these tasks have been addressed in our lab in order to successfully demon-
strate deterministic quantum teleportation with feed-forward.
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8.2. Realization of the teleportation protocol

8.2.1. Sample and protocol

In order to enable separate readout of the sender’s and receiver’s qubits, a
novel sample geometry has been developed. Based on ideas in [Helmer09],
we have realized a circuit QED based architecture in which cross-overs allow
to create complex networks with arbitrary connecting topology in a planar
technology. A design of the sample is shown in Fig. 8.2 (a). The sample con-
sists of three superconducting transmon qubits (Q1, Q2, Q3) capacitively
coupled to three superconducting coplanar waveguide resonators (R1, R2,
R3). The individual resonators R1 and R3 allow the sender and the receiver
to perform independent measurements of their qubits as detailed below. In
addition, Q2 and Q3 are coupled to R2. The resonators R2 and R1 act as
quantum buses to realize two-qubit controlled-phase (cphase) gates used
to create a shared Bell state distributed between the sender and the receiver
and to perform a deterministic Bell state analysis at the sender. Airbridges
are used to realize cross-overs for the resonator lines which enhances scala-
bility of this planar design and to suppress spurious electromagnetic modes
by connecting the ground planes across the coplanar wave guides.

Each quibt has individual charge gate lines to perform single qubit ro-
tations as well as individual fast flux bias lines to control its transition
frequency. In total 12 ports are used for connecting the qubit charge- and
flux-gate lines and the resonator in-/output lines to coaxial cables. This
requires the use of the new sample holder discussed in Sec. 4.2 which pro-
vides 16 ports — twice as many as the one used during the past few years
by our group.

The resonators R1 and R3 have bare resonance frequencies νr = {7.657,
9.677}GHz, respectively. They are coupled by gap- and finger capacitors
to their in- and output lines. The overcoupled resonator decay rates are
measured to be κ/2π = {2.4, 2.5}MHz. The coupling capacitances are de-
signed asymmetrically such that the decay rate through the input port is
approximately 100 times lower than through the output port. The res-
onator R2 is not coupled to any in- or output line. Its resonance fre-
quency is approximately 8.7 GHz and its decay rate is expected to be
close to the internal decay rate of κ < 50 kHz [Göppl08]. From spectro-
scopic measurements we determine the maximum transition frequencies
νmax = {6.273, 7.373, 8.390} GHz and charging energies EC/h = {0.297,
0.303, 0.287}GHz of the qubits Q1, Q2, and Q3, respectively, where h is
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Q1
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R2

R3
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Figure 8.2: Schematics of the sample. (a) Chip-design including three
resonators R1, R2 and R3 (black) with corresponding in- and output lines
(red) used for readout and coupling of three transmon qubits Q1, Q2 and
Q3 (orange). The fourth qubit in the lower right corner of the chip is not
used. The local microwave charge gate lines (green) are used for single-
qubit rotations while the local flux-bias lines (blue) allow for nanosecond
time control of the qubit frequencies to implement two-qubit operations.
(b, c) False-color micrographs of Q1 coupled to resonator R1 and of Q2
coupled to both resonators R1 and R2. The micro-fabricated aluminum
airbridges visible as bright white strips.

Planck’s constant.
Qubits Q1 and Q2 are coupled to resonator R1 with coupling strengths

g/2π = {0.260, 0.180} GHz, and Q3 is coupled to resonator R3 with a
coupling strength of g/2π = 0.240 GHz. The coupling of Q2 and Q3 to
R2 is estimated from the transverse coupling strength (see below) to be
g/2π = 0.2 GHz each.
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8.2. Realization of the teleportation protocol

For the presented experiments, the qubits were tuned to idle state tran-
sition frequencies ν = {4.776, 5.311, 6.354} GHz with miniature supercon-
ducting coils mounted underneath the chip [Bianchetti10a]. At these fre-
quencies we have determined the qubit energy relaxation T1 = {5.5, 3.6,
2.5}µs and coherence times T2 = {1.6, 1.1, 1.4}µs.

The dynamical phases arising from the flux pulses can be compensated
just by adjusting the phase of all single qubit gates following a flux pulse
(this is in contrast to the Toffoli gate, see Sec. 7.2 and Appendix C.2.1).
As an example, the procedure for determining the dynamical phase of Q1
is depicted in Fig. 8.3 (a). A Ramsey-type experiment is performed on
Q1, where the temporal separation between the pulses stays constant, but
the phase of the second pulse is varied. Depending on the initial state of
Q2 and Q3, one either expects (in the absence of dynamical phases) no
phase shift (for Q2 in the |0〉 state) or a 180◦ phase shift (for Q2 in the
|1〉 state) compared to the case when no flux pulse is present. The addi-
tional phase shift observed in the measurement (Fig. 8.3 (b)) corresponds
then to the dynamical phase. The full calibration procedure is discussed in
Appendix C.3.1.
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Figure 8.3: (a) Pulse sequence for the calibration of the dynamical phase
of Q1. On Q1 a Ramsey-type experiment is performed where the phase of
the second pulse is varied. (b) Experimental data for which Q2 and Q3 are
at the beginning of the sequence in the state |11〉 (blue solid dots), |10〉 (red
open squares), |01〉 (yellow solid triangles), |00〉 (green open diamonds).
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8. Quantum teleportation of a solid-state qubit

As an essential part of the protocol, we perform a Bell measurement of
qubits Q1 and Q2. Since a measurement in our setup is naturally a projec-
tive measurement in the computational basis |00〉 , |01〉 , |10〉 , |11〉 [Blais04,
Filipp09], the Bell measurement (Fig. 8.1, red part) consists of a map-
ping of the Bell basis onto the computational basis and a subsequent mea-
surement in the computational basis as first described and implemented
in [Brassard98, Nielsen98]. We realize this basis transformation by using
single-qubit rotations and a cphase gate. Then we perform a projective
joint readout of the states of Q1 and Q2 by measuring the transmission
amplitude and phase of resonator R1. A given Bell state is transformed to
the corresponding computational basis state resulting in the corresponding
output state |ψout〉 = {1, σ̂x, σ̂z, iσ̂y} |ψin〉 of Q3 as follows:

∣∣Φ−〉⇒|00〉 −→ |ψout〉 = |ψin〉∣∣Ψ−〉⇒|01〉 −→ |ψout〉 = σ̂x |ψin〉∣∣∣Φ+
〉
⇒|10〉 −→ |ψout〉 = σ̂z |ψin〉∣∣∣Ψ+

〉
⇒|11〉 −→ |ψout〉 = iσ̂y |ψin〉 . (8.4)

In our realization (Fig. 8.1 (b)) the cnot gate of the original protocol
(Fig. 8.1 (a)) is decomposed into a cphase gate and two single-qubit oper-
ations, and the Hadamard gate is replaced by an appropriate single-qubit
rotation. This protocol is implemented with the pulse scheme depicted in
Fig. 8.4. In the figure, Gaussian shaped sinusoids represent the microwave
pulses applied to the respective charge bias lines of the qubits, sinusoids
on the resonators represent the readout tones, and the squares labeled
“cphase” represent the flux pulses that shift the frequency of a qubit to im-
plement a controlled-phase gate between the marked qubits, where the in-
teraction is mediated through the resonator indicated with a bar of the same
color as the flux pulse. Single-qubit rotations are implemented by 12 ns long
resonant gaussian-shaped DRAG microwave pulses [Motzoi09, Gambetta11]
with average fidelity of greater than 98% as determined by randomized
benchmarking (see Sec. 6.3.2). The controlled-phase gate is implemented
by shifting the qubits with fast magnetic flux pulses to the avoided level
crossing between the |11〉 and |02〉 states of the involved qubits as described
in Sec. 5.2.2. The transverse coupling strengths of JQ1,Q2

11,02 /2π = 11.0 MHz
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8.2. Realization of the teleportation protocol

(between qubits Q1 and Q2) and JQ2,Q3
11,02 /2π = 10.5 MHz (between Q2

and Q3) lead to pulse lengths for the cphase gates of t = {45.6, 47.6} ns,
respectively.

The Bell measurement (Fig. 8.4, red elements) allows to map any of the
four Bell states to the |00〉 state by adding π pulses to Q1 and Q2 to flip
their states right before commencing the measurement. Instead of applying
these π pulses directly we change the phases of the preceding π/2 pulses
accordingly, which can easily be verified to be equivalent.

8.2.2. Experimental setup

A schematic of the experimental setup is shown in Fig. 8.5 (a). The main
components shown in (b-e) are described in the following: (b) Amplitude
and phase controlled microwave pulses are applied to the qubits using
side band modulation of an up-conversion in-phase quadrature (I,Q) mixer
driven by a local oscillator (LO) and modulated by an arbitrary waveform
generator (AWG). (c) The measurement signals transmitted through R1
and R3 are amplified using JPAs (see Sec. 4.4) pumped by an LO through
a directional coupler (D), which is also used for phase (φ) and amplitude (A)
controlled cancellation of the pump leakage, and coupled to and isolated
from the sample by two circulators (C) (see also Sec. 4.4). (d) The signal
is further amplified by high-electron-mobility transistor (HEMT) amplifiers
at 4 K and chains of ultra low noise (ULN) and low noise (LN) room tem-
perature (RT) amplifiers. (e) The transmission signal of both resonators is
down-converted to an intermediate frequency (IF) in an IQ mixer pumped
by a dedicated LO, digitized, and fed into field programmable gate array
(FPGA) logic for real-time data analysis and triggering the conditioned
feed-forward step (see Sec. 8.2.6).

A total of nine signal generators are used – three for controlling the qubits,
two to pump the two JPAs, and four for the readout of the two resonators
(one drive and one LO for each resonator). Eight AWG channels are used to
control the qubits – for each qubit two channels for the amplitude and phase
controlled microwave pulses and two more channels for the flux pulses on
Q1 and Q2. In addition four AWG channels are used for the feed-forward
loop described in Sec. 8.2.6.
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Figure 8.4: Pulse sequence of the teleportation protocol with feed-forward.
The color code of the preparation circuit is identical to the one in Fig. 8.1.
The inset shows the time used for implementing the conditional feed-
forward rotations. The total feed-forward time is the sum of the ramp
up time of the measurement tone, the integration time of the measurement
signal and the delay times induced by the FPGA signal processing, the
AWG trigger and the cables.
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Figure 8.5: (a) Simplified schematic of the measurement setup with the
same color code as in Fig. 8.2. (b) – (e) show individual components as
described in the text.
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8. Quantum teleportation of a solid-state qubit

8.2.3. Single-shot readout

In order to realize single-shot measurement, the output signals of resonators
R1 and R3 are amplified by individual Josephson parametric amplifiers as
described in Sec. 4.4. The maximum frequencies for the two parametric
amplifiers are νmax = {8.349, 10.141} GHz for R1 and R3 respectively. To
provide a fast response large input capacitors were fabricated which result in
a measured JPA linewidth of κ/2π = {334, 548} MHz in the linear regime.
For the experiments the parametric amplifiers were tuned to a maximum
gain of G = {25.4, 22.2} dB with a 3 dB bandwidth of B/2π = {9, 61} MHz
at the frequencies νexp = {7.690, 9.740} GHz.

We also use the single-shot measurement technique to herald the ground
state of the three-qubit system as described in Sec. 4.4.3. Before each
individual experimental realization of the teleportation protocol, we apply
a 500 ns long measurement tone to both resonators, to verify that all the
qubits are in their ground states. This heralds the ground state with a total
efficiency of more than 60%.

8.2.4. Teleportation with post-seletion

To perform a post-selected teleportation protocol, it is sufficient to distin-
guish only one of the four Bell states, say |00〉, ideally occurring with a
probability of 1/4, with high fidelity from all other states (|01〉 , |10〉 , |11〉).
For this purpose we amplify a measurement tone applied to R1 with a JPA
operated in the phase sensitive mode in which no or only very little noise
is added to the signal [Castellanos-Beltran08]. The transmission of R1 was
measured at the readout frequency νro = 7.686 48 GHz which is the mean
value of the effective resonator frequencies for the qubits Q1 and Q2 in
the states |00〉 and |01〉. The parametric amplifier is used in the phase-
sensitive mode by tuning its transition frequency such that the maximum
gain was achieved at the readout frequency νro at which it was also pumped.
Preparing the four computational basis states |00〉 , |01〉 , |10〉 , |11〉, applying
a measurement tone to R1 and integrating the amplified transmission signal
for 160 ns results in a distribution of the integrated measurement signals as
shown in Fig. 8.6 (a). Since we optimized for the readout contrast between
|00〉 and and all other states, the mean values of the distributions of the
integrated signals for these two states (blue and yellow bars in Fig. 8.6 (a))
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8.2. Realization of the teleportation protocol

have the largest separation. However due to the finite qubit lifetime, some
of the |01〉 and |10〉 population decays into the ground state and are visible
in the data as such. We choose a threshold for the integrated quadrature
values to discriminate 00 from all other measurement outcomes 01, 10, 11
with a fidelity of 91.0 ± 0.1 %, where the error represents the statistical
error.

If the measurement of Q1 and Q2 returns 00, qubit Q3 is instantaneously
projected to the desired state |ψin〉 not requiring any additional rotations
at the receivers qubit to complete teleportation. As described above, by
adding π pulses to Q1 and Q2 right before the measurement we map any of
the Bell states to the |00〉 state. This allows us to post-select individually
on any of the four Bell states. To characterize the state transfer from Q1 to
Q3 we performed full process tomography (see Sec. 6.3.1) to determine the
corresponding process matrices χ00,01,10,11. We use six different input states
|ψin〉 = |0〉 , |1〉 , (|0〉+|1〉)/

√
2, (|0〉−|1〉)/

√
2, (|0〉+i |1〉)/

√
2, (|0〉−i |1〉)/

√
2

in order to meet even the most strict criteria when comparing to classical
thresholds (c.f. Sec. 8.1.2).

The experimentally obtained process matrices (Fig. 8.8 (a)) agree well
with the expected processes. The average output state fidelity F̄ps

s = (81.6±
1.2) % of all four processes is clearly above the classical limit of 2/3. This
results in an average process fidelity of F̄ps

p = (72.3 ± 0.7) % when post-
selecting on a single Bell state, well above the classical limit of 1/2. The
output state fidelity is predominantly limited by relaxation and dephasing
of our qubits which affects both the effective gate- and readout fidelity (see
Appendix C.3.2).

8.2.5. Deterministic teleportation

To uniquely and simultaneously identify the four randomly distributed out-
comes of the Bell state measurement at the sender in a deterministic way
(instead of using post-selection) we use high fidelity dispersive single-shot
qubit readout enabled by a Josephson parametric amplifier operated in the
phase preserving mode [Eichler11].

The readout frequency νro = 7.6836 GHz is chosen to be the mean of the
effective resonator frequencies for the qubits Q1 and Q2 in the state |01〉 and
|10〉. The parametric amplifier is operated in the phase-preserving mode
by detuning the pump frequency 6.25 MHz from the readout frequency. In
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Figure 8.6: (a) Histogram of the integrated signal quadrature amplitude
amplified phase sensitively when preparing the states |00〉 (blue), |01〉 (red),
|10〉 (yellow), and |11〉 (green). (b) Scatter plot of integrated (I,Q) quadra-
tures of the measurement signal amplified in the phase preserving mode
when preparing the states |00〉 (blue), |01〉 (red), |10〉 (yellow), and |11〉
(green).
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00 01 10 11

|00〉 0.91 0.06 0.01 0.02

|01〉 0.13 0.81 0.03 0.03

|10〉 0.02 0.04 0.83 0.11

|11〉 0.05 0.02 0.09 0.83

Table 8.1: Probabilities of identifying a prepared input state (rows) as
the indicated output state (columns). Correct identifications are diagonal
elements, misidentifications are off-diagonal elements.

this way the gain G = 19.8 dB at the readout frequency and the effec-
tive bandwidth are smaller than for phase sensitive amplification, but both
quadratures of the electromagnetic field are amplified. By preparing the
computational basis states and integrating the transmitted signals of both
quadratures (I,Q) simultaneously for 160 ns, we can map every measure-
ment outcome to a point on the complex plane. The choice of integration
time digitally filters out the parametric amplifier pump tone which is de-
tuned by 6.25 MHz from the measurement tone. By adjusting the pump
power and the readout power we find settings which maximize the distin-
guishability of all four states by their location in the complex plane, see
Fig. 8.6 (b).

Adjusting the phase of the local oscillator and implementing small linear
offsets directly in the FPGA we are able to choose the I = 0 and Q =
0 axes of the complex plane as thresholds to identify the four different
output states in real-time (Fig. 8.6 (b)). By assigning our best estimate
of the corresponding states to every measurement outcome according to a
quadrant in the I,Q-plane, we identify (84.6±0.4) % of the prepared states
correctly. The probabilities of either correctly identifying a prepared state
or misidentifying it as a different state are listed in Tab. 8.1 for all four
input basis states.

Correlating the four single-shot Bell state measurement outcomes at the
sender with the single-shot measurement outcomes at the receiver and per-
forming state and process tomography we find an average deterministic
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8. Quantum teleportation of a solid-state qubit

output state fidelity of the transferred state of F̄det
s = (78.1 ± 0.9) % and

an average process fidelity of F̄det
p = (67.2 ± 0.5) % well above the classi-

cal limits of 2/3 and 1/2, respectively. The process matrices (Fig. 8.8 (b))
prominently show the characteristic features of the expected processes. The
fidelities obtained with this method are lower compared to the post-selected
teleportation due to the lower fidelity of the deterministic Bell state readout
(see Appendix C.3.2).

8.2.6. Feed-forward

To implement the feed-forward, the measurement data of the Bell measure-
ment is analyzed in real-time and based on its result, a certain operation
has to be performed on Q3. For the real-time analysis, our custom built
firmware for the FPGA used for data acquisition was extended. The im-
plementation of this firmware was performed by Yves Salathe [Salathe13]
based on previous work by Christian Lang [Lang13a]. Depending on the
measurement outcome, the FPGA triggers up to two different arbitrary
waveform generators (AWGs) which realize σx- and σy-rotations.

The implementation also requires additional hardware for the control of
Q3. A schematic of the extended part of the setup is depicted in Fig. 8.7 (a).
In order to ensure phase stability of the pulses applied to Q3, there is only
one signal generator providing the carrier signal for all mixers. Its signal
is split by two power splitters to pump three different IQ-mixers. The two
additional mixers are modulated with Tektronix AWG 520 arbitrary wave-
form generators. The reason for using this type of AWG is their small delay
of 38 ns between the arrival of a trigger and the output of the stored pat-
tern, compared to ∼ 400 ns for the AWG 5014 model. Since the AWG 520
does not allow to set bias voltages for each channel individually, the bias
voltages for the mixer inputs were added to the AWG outputs using bias-
tees. The outputs of all mixers were combined again with power combiners
before they are fed into the line connected with the charge gate line of Q3.
Not shown in Fig. 8.7 (a) are attenuators to equalize all mixer input powers
and suppress standing waves, and DC-blocks (inner- and outer-conductor)
to prevent ground loops.

The pulses generated with the different AWGs in general have different
absolute phases. In order to realize phase controlled pulses, the relative
phases between the pulses from different AWGs is compensated for. We
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Figure 8.7: (a) Simplified schematic of the room-temperature feed-forward
circuitry. Three different IQ-mixers (⊗) are driven by the same source (RF)
via power splitters/combiners (P) and modulated via three different AWGs
(5014, 520). For more details see text. (b) Calibration measurement of the
phase between the different AWGs: The pulse sequence (inset) consists of a
π/2 pulse around the x-axis given by the first AWG (5014, green) followed
by a π/2 pulse on one of the feed-forward AWGs (520, purple). The phase
of this second pulse is varied. The dots are measurements with the relative
phase uncalibrated (blue) and calibrated (red), solid lines are sinusoidal fits
from which the relative phase is extracted.

measure these phases with a Ramsey-type experiment (Fig. 8.7 (b)) in which
the first pulse is always a π/2 pulse with no extra phase, given by the
AWG 5014, and the second pulse is a π/2 pulse whose phase is varied,
generated by one of the feed-forward AWGs. The relative phase is then
determined by fitting the resulting oscillation to a sinusoid. This phase is
then added to all pulses generated with the corresponding AWG.

The total time needed for the feed-forward loop is crucial, since the qubit
decay during the waiting time lowers the fidelity of the process. In order
to minimize the time needed for data analysis within the FPGA, it assigns
a certain state to a measured signal solely based on the quadrant of the
complex plane it lies in, see Fig. 8.6 (b). To optimize the readout fidelity
we calibrate the phase of the down-conversion local oscillator to rotate the
data such that the four different states can be distinguished by thresholds
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8. Quantum teleportation of a solid-state qubit

parallel to the I- and Q-axes of the complex plane. Additionally a small
offset is subtracted digitally before the real-time analysis is completed.

With a fixed integration time of 160 ns (see above) we experimentally de-
termine a maximum readout fidelity by starting the integration time 140 ns
after the initial rise of the pulsed measurement tone applied to the res-
onator. A finite delay to achieve the optimal readout fidelity is expected,
since the signal-to-noise ratio during the rise time of the resonator is re-
duced. The FPGA board used for data analysis and the AWG used for
generating the feed-forward pulses introduce a combined delay of 140 ns
and the total cable delay is 65 ns. As a result, the conditional rotations
are applied to Q3 505 ns after the measurement tone has been applied to
the readout resonator R1 (Fig. 8.4). To mitigate dephasing of Q3 during
this feed-forward delay time, we apply a series of four dynamical decou-
pling pulses to Q3 (see Appendix B for more information about dynamical
decoupling).

We have also fully characterized the fidelity of the feed-forward process.
After preparing the state indicated in the rows of Tab. 8.2 and performing
the conditional rotations indicated in the columns of Tab. 8.2, the fidelity
of the applied feed-forward process was determined. The diagonal elements
indicate the fidelity of the desired feed-forward operations occurring with
the probabilities shown in Tab. 8.1. The off-diagonal elements indicate
the fidelity of the unwanted rotations, occurring with a smaller probability
(Tab. 8.1) but a similar fidelity.

We analyzed more than 250 000 single-shot experiments and found a de-
terministic state transfer fidelity of F̄ff

s = (69.5 ± 0.1) % with a process
fidelity Fff

p = (54.2 ± 0.1) %, clearly above the classical thresholds. The
limited fidelity can be traced back to the fidelities of single- and two-qubit
operations, the readout fidelities and the time required for the feed-forward
in relation to the coherence times of the employed qubits.

When averaging and appropriately normalizing the measurement results
of Q3 directly in the FPGA we are able to circumvent the limited single-shot
readout fidelity of Q3 (see also Sec. 6.2.3). In this case, the deterministically
teleported states including the feed-forward step have an average fidelity
of F̄avg

s = (78.5 ± 1.0) % with a corresponding process fidelity of Favg
p =

(67.7± 0.6) %.
Fig. 8.9 shows the measured density matrices of the teleported states for

post-selection and averaged readout using deterministic teleportation with
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feed-forward.

I X Y Z

|00〉 ⊗ |ψ〉 0.75 0.59 0.70 0.67

|01〉 ⊗ σ̂x|ψ〉 0.66 0.74 0.67 0.68

|10〉 ⊗ σ̂z|ψ〉 0.70 0.75 0.71 0.67

|11〉 ⊗ iσ̂y|ψ〉 0.68 0.75 0.70 0.72

Table 8.2: Process fidelities of the feed-forward pulses. After preparing
the indicated input states (rows) and performing the conditional operations
(columns), the fidelity of the expected process is determined (elements of the
table). The rows indicate the fidelity of the performed rotation conditioned
on the measurement result of Q1 and Q2, which occur with the probabilities
shown in Tab. 8.1. Note that the off-diagonal elements are calculated with
fewer events, leading to a higher variation in the fidelity.
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Figure 8.8: State transfer process matrix for quantum telepor-
tation. The experimentally obtained (solid bars) absolute values of the
process matrices |χ| describing the state transfer from Q1 to Q3 by tele-
portation are displayed for: (a) Post-selection on any single one of the
Bell-measurement outcomes 00, 01, 10, 11, (b) simultaneous deterministic
measurement of all four outcomes, and (c) with feed-forward. The respec-
tive process fidelities are indicated in black boxes. The ideal |χ| is indicated
by wire frames.

8.2.7. Comparison with other implementations

Our implementation of the quantum teleportation protocol stands out due
to the high efficiency and high rate at which teleportation events take place.
To illustrate this, a comparison of different implementations of quantum
teleportation with qubits is presented in Tab. 8.3. Approximate numbers
(with the “≈” sign) are estimated from data provided in plots of the original
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8.2. Realization of the teleportation protocol

publications. For several experiments, no number for the distance between
the two parties is given in the publication, but something on the order of
1 m seems to be a reasonable distance for a quantum-optics experiments
(indicated with (≈ 1)). Compared are at first the success probability of
an experiment, the repetition rate and the product of these two quantities
which is the number of successful events per second. Comparing these prop-
erties, our implementation teleports ≈ 100 times more qubits per second
than the implementation with the highest number of events before (ions in
one trap). Also the success probability of 0.6 of our implementation, limited
due to the passive ground state preparation, is only outperformed by the
implementation with ions in one trap. Further compared are the distance,
the average state fidelity (the number for our experiment is the one with
feed-forward) and whether the teleportation was deterministic (i.e. all four
Bell states could be distinguished) and whether feed-forward was used (for
at least two states).

In addition to the teleportation of qubits, continuous-variable teleporta-
tion [Vaidman94, Braunstein98] has been realized [Furusawa98, Lee11] in
optical systems. There the teleported states are not qubits, but continuous-
variable states as e.g. coherent states. In contrast to qubit teleportation,
also the information transmitted over the classical channel consists of con-
tinuous variables, e.g. an analogue photocurrent. These experiments are
usually driven continuously and work therefore only on narrow frequency
bandwidths which made them unable to be used with (broad frequency
bandwidth) photonic qubits as input states. Published simultaneously with
our results, Takeda et al. reported in [Takeda13] the first qubit teleporta-
tion using a continuous-variable setup. They used a broadband continuous-
variable teleporter combined with a compatible narrowband time-bin qubit
and reached a deterministic teleportation rate of ≈ 5000 s−1.

Figure 8.9: (next page) Characterization of the output states. Real
(blue) and imaginary (red) parts of the reconstructed density matrices of the
state |ψout〉 for the indicated input states |ψin〉 obtained from state tomogra-
phy when (a) post-selecting data on a 00 outcome of the Bell measurement
(b) using averaged readout on Q3 while performing fully deterministic tele-
portation with feed-forward. The ideally expected outcomes are indicated
with wireframes. The state fidelities are indicated in the black boxes.
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Implementation Success Rate Events Distance Avg. state Det FF

probability [Hz] [1/s] [m] fidelity

Photons first1 ≈ 3× 10−10 76× 106 ≈ 0.025 (≈ 1) 0.68 – –

furthest2 ≈ 3× 10−10 80× 106 ≈ 0.026 143 103 0.863 – –

furthest2 ≈ 3× 10−10 80× 106 ≈ 0.026 143 103 0.78 – X

determ.3 ≈ 8× 10−11 82× 106 ≈ 0.007 (≈ 1) 0.83 X –

Ions one trap4 1 250 250 5 10−6 0.78 X X

two traps5 2.2 10−8 75 000 1.65 10−3 1 0.9 – –

Neutral atoms 6 10−3 10 000 10 (≈ 1) 0.789 – –

Atomic ensembles 7 10−4 71.4 0.007 150 0.95 – –

Circuit QED 0.6 40 000 24 000 0.006 0.695 X X

Table 8.3: Comparison of different implementations of quantum teleportation with qubits. “Det” indi-
cates whether all four Bell states could be separated, “FF” indicates whether feed-forward was imple-
mented for at least two Bell-state outcomes.

1 [Bouwmeester97] 2 [Ma12] 3 [Kim01]
4 [Barrett04] 5 [Olmschenk09] 6 [Nölleke13]
7 [Bao12]
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8. Quantum teleportation of a solid-state qubit

8.3. Conclusion
The experiments presented in this chapter demonstrate the first implemen-
tation of quantum teleportation with solid-state qubits. We implemented
a novel device geometry, two independent single-shot readout channels and
a feed-forward loop. The independent single-shot readout channels are re-
alized with two Josephson parametric amplifiers connected to two readout
resonators. The feed-forward step is implemented with an FPGA with
custom firmware that analyzes the outcome of the Bell measurement in
real-time and triggers up to two different AWGs.

The results demonstrate the progress made in the field of supercon-
ducting circuits and mark an important step on the way to the realiza-
tion of quantum computing and quantum communication with supercon-
ducting circuits. The presented scheme may find application in quan-
tum repeaters [Gisin02] or schemes allowing universal quantum computa-
tion [Gottesman99].
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Conclusion and Outlook

9.1. Conclusion

The presented thesis summarizes the quantum information processing ex-
periments I have been working on in the QUDEV-Lab at ETH Zürich dur-
ing the last years. At the beginning we performed characterization mea-
surements of one [Bianchetti09, Baur09, Bianchetti10b] and two [Filipp09]
qubits. Increased control over the quantum systems was gained by the
implementation of charge [Leek09, Leek10] and flux [Fink10b, Bozyigit11]
gate lines. Extending the setup to operate a three qubit quantum proces-
sor allowed us to demonstrate and characterize quantum gates and algo-
rithms [Baur12a, Fedorov12, Steffen12]. Finally, the inclusion of paramet-
ric amplifiers [Eichler11] and real-time feed-forward led to the deterministic
teleportation of a qubit in superconducting circuits [Steffen13].

9.2. Outlook

9.2.1. General outlook

The field of superconducting circuits has made extraordinary progress in
the last few years. But still it is a long way towards the implementation of
a quantum computer than can solve problems faster (on an absolute time
scale) than a classical computer.

At the current state of the art, superconducting circuits are at a stage
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where simple multi-qubit algorithms have been demonstrated [DiCarlo09,
Steffen13] and first error correcting schemes have been implemented [Reed12].

The next big step on the way to a fault-tolerant [Preskill97] quantum
computer will involve the implementation of a logical qubit with a longer
lifetime than the physical qubits which it is made of [Devoret13]. This
however requires also the continuous development and improvement of more
“basic” properties such as longer coherence times, more stable single- and
two-qubit operations or novel device topologies.

The coherence times of superconducting qubits improved steadily over the
last few years. The limiting factor at the current stage is suspected to be the
surface loss from metal-substrate and substrate-air interfaces [Martinis05,
Wenner11]. Addressing this issue e.g. through novel device geometries us-
ing three-dimensional cavities [Paik11] or stripline cavities [Sandberg13],
advances in fabrication [Chang13] or new qubit designs [Barends13] has
shown promising results. The approach of placing a transmon qubit into
a three-dimensional cavity [Paik11] has demonstrated coherence time on
the order of 100 µs [Rigetti12], which are the highest reported with trans-
mon qubits so far. In these three-dimensional cavities most of the elec-
tromagnetic energy is stored in the vacuum, thus minimizing the surface
loss from interfaces. This geometry has been used successfully in several
experiments [Ristè12b, Kirchmair13, Abdumalikov13, Murch13, Ristè13].

Also single- and two-qubit operations are further developed. By us-
ing microwave-only control with fixed-frequency single-junction transmon
qubits, a universal set of quantum gates approaching fault-tolerant thresh-
olds [Chow12] has been demonstrated. New schemes of entangling gates
exploiting non-computational states in fixed-frequency qubits have been
proposed and implemented [Chow13]. Moreover, potentially noise-resilient
geometric gates have been realized [Abdumalikov13].

Novel device architectures have been proposed [DiVincenzo09, Helmer09,
Steffen11] which allow to increase the complexity of on-chip networks to
reach scalability and fault-tolerance, and first implementations have been
studied [Underwood12, Steffen13]. More complex architectures, like imple-
mentations of surface codes [Fowler12] are also studied theoretically in the
context of superconducting circuits.

Besides the efforts to pursue this “conventional” way of gate-based quan-
tum computing, a different approach known as quantum annealing is ex-
plored experimentally with superconducting circuits [Johnson11, Dickson13].
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Quantum annealing [Das08] is a sort of “analog quantum computation” used
to solve certain hard optimization problems. The solution of the prob-
lem is thereby encoded in the ground state of the final Hamiltonian, into
which the system is adiabatically transferred. It has been shown [Boixo13b]
that present realizations of quantum annealers (e.g. D-Wave System’s D-
Wave One [Johnson11]) indeed perform quantum annealing with more than
one hundred qubits, despite the limited qubit coherence time of tens of
nanoseconds [Boixo13a]. However, it should be noted that these devices
are not universal quantum computers but special purpose quantum opti-
mizers [Troyer13].

In addition to the progress on superconducting quantum processors, other
hardware is developed and refined steadily: Current advances made in the
development of quantum limited amplifiers based on superconducting cir-
cuits [Eichler13b, Abdo13, Mutus13] allow for increasingly faithful readout
of quantum states. Combining these with recent advances in feed-back
techniques [Ristè13, Campagne-Ibarcq13, Steffen13] enables superior con-
trol over the quantum systems.

But the field is not limited to more and more powerful superconducting
chips. Hybrid systems, superconducting circuits coupled to other quan-
tum systems [Xiang13], are promising candidates for realizing quantum
memories. These “other systems” include e.g. Rydberg atoms [Hogan12],
semiconductor quantum dots [Frey12] or nitrogen-vacancy centers in di-
amonds [Kubo11]. Combining superconducting “CPUs” with a memory
made from any of these systems (and using e.g. teleportation for the state
transfer) could allow to implement a hybrid quantum von Neumann archi-
tecture [Mariantoni11].

Besides quantum information processing, superconducting circuits could
also be used in quantum communication by using propagating microwave
photons [Eichler13a, Pechal13, Srinivasan13]. Once larger distances can
be overcome, the schemes demonstrated in this thesis will allow the con-
struction of quantum repeaters [Gisin02] for quantum communication at
microwave frequencies or might even allow to realize a loophole-free test of
Bell’s inequality [Bell64].
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9.2.2. Next experiments

There are several possible experiments with superconducting circuits that
could be realized in the near future. Using the same sample as used for
the teleportation experiment (Fig. 8.2), it will be possible to implement
e.g. digital quantum simulations of spin chain models [Las Heras13]. A
quantum simulator [Georgescu13] allows to model the behavior of a certain
quantum system, for instance a chain of spins. Digital in this context
means that the corresponding Hamiltonian can be approximated by discrete
stepwise unitaries. Models like the Heisenberg model or the frustrated
Ising model only need nearest neighbor interaction and could therefore be
implemented using one- and two-qubit gates.

Amongst the experiments which involve or develop further the telepor-
tation experiment is e.g. entanglement swapping [Żukowski93]. Entan-
glement swapping is a key resource (together with entanglement distilla-
tion [Bennett96a, Bennett96b]) for the realization of a quantum repeater,
which allows to distribute entanglement over large distances. The working
principle of entanglement swapping can be described as follows: Two re-
mote parties, (A and B) have each a pair of entangled qubits. Each party
sends one part of its entangled pair to an intermediate party (C) which
then performs a quantum teleportation to transfer the state of A’s qubit
to B. Hence, A and B share an entangled pair of qubits. The modification
of the chip design (see Fig. 8.2) needed for this experiment would be the
possibility to read out resonator R2. Initially entangling Q1 and Q2 as well
as Q3 and Q4 (the qubit not labeled in Fig. 8.2) and then performing a tele-
portation of the state of Q2 to Q4 would leave Q1 and Q4 in an entangled
state, thus realizing entanglement swapping.

Entangling qubits on different chips can be used for the above men-
tioned distribution of entanglement via quantum repeaters or the telepor-
tation of information between a “processor”-chip and a “memory”-chip. In
order to realize entanglement on different chips, a faithful conversion of
stationary qubits (e.g. transmons) to flying qubits (e.g. propagating mi-
crowave photons) and vice versa will be a key resource in future experi-
ments. First experiments demonstrating photon shaping have already been
carried out [Pechal13, Srinivasan13], and ongoing research will soon enable
also the absorption of a propagating microwave qubit and the mapping of
its state to a stationary qubit.

142



9.2. Outlook

9.2.3. Quantum engineering
The field of superconducting circuits has now matured to a point where
it is not only investigating fundamental physics, but it is now one of the
most active topics in quantum engineering. Several companies do research
on exactly this topic (groups at IBM, Raytheon BBN, NEC ) or it is even
their core business (D-Wave Systems).

Quantum engineering has already arrived in everyday live. Many tech-
nical applications rely on the exploitation of quantum effects, e.g. the use
of quantum tunneling in flash memory cells [Pavan97]. But taking quan-
tum effects into account will become even more important in future tech-
nologies, as shrinking structures more and more automatically leads to an
emergence of “quantum behavior”. From there, it is only a small step to
actively engineering quantum systems. Quantum computing is thereby not
the only application. Novel technologies based on quantum engineering –
such as quantum dot solar cells [Kamat08] or highly efficient light-emitting
diodes [Sun07] based on quantum dots, to give two examples – have the
potential to dramatically change the future.
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Fabrication recipes

A.1. Resonators, gate lines
The following recipes can be used for fabricating resonators and gate lines
as described in Sec. 3.2.1. The etching parameters are for a 150 nm thick
Nb layer. At first the process is given where the AZ5214E resist is used as
a positive resist, followed by the process where PMMA is used as resist.

AZ5214E positive process

Process step Description Comments

Chip cleaning Acetone, ultrasonic bath for
5 min, 50 ◦C

Isopropanol, ultrasonic bath
for 5 min, 50 ◦C

Rinse with DI water for 2 min

N2 blow dry

Resist spinning Prebake on hot plate for
10 min, 180 ◦C
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Cool down for 3 min

Set up spinner Step 0: 500 rpm, 2 s, 2 s ramp up
time

Step 1: 4000 rpm, 45 s, 3 s ramp up
time

Spin AZ5214E

Revome resist from back of
the wafer

Bake on hotplate for 60 s at
105 ◦C

Cool down for ≥ 3 min Thickness should be ≈ 1.4 µm

Photo lithogra-
phy

Warm up MA6 mask aligner

Measure intensity at 365 nm Typically ≈ 5 mW/cm2

Set exposure time for a dose
of 50 mJ/cm2 at 365 nm

Align mask and expose Use “Vacuum contact” mode

Develop for 30 s in MIF 726

Rinse under flowing DI water
for 60 s

N2 blow dry for 60 s Inspect wafer under microscope

RIE etching Load sample into RIE etcher Use microscope slides to stabilize
wafer

Run “Nb-etch” recipe for
2’30”

Ar: 10 sccm, SF6: 20 sccm; pressure:
130 µbar, 150 W RF power
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Cleaning Clean with Acetone and Iso-
propanol in ultrasonic bath
each for 5 min at 50 ◦C

PMMA positive process

Process step Description Comments

Chip cleaning Acetone, ultrasonic bath for
5 min, 50 ◦C

Isopropanol, ultrasonic bath
for 5 min, 50 ◦C

Rinse with DI water for 2 min

N2 blow dry

Resist spinning Prebake on hot plate for
10 min, 180 ◦C

Cool down for 3 min

Set up spinner Step 0: 1000 rpm, 2 s, 2 s ramp up
time

Step 1: 2000 rpm, 90 s, 2 s ramp up
time

Spin PMMA 950K in EL

Revome resist from back of
the wafer

Bake on hotplate for 180 s at
180 ◦C

Cool down for ≥ 3 min Thickness should be ≈ 400 nm
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DUV photo
lithography

Warm up DUV mask aligner,
use 220 nm mirror, DUV
channel and CP mode

Measure intensity at 220 nm Typically ≈ 20 mW/cm2

Set exposure time for a dose
of 6400 mJ/cm2 at 220 nm

Align mask and expose

Develop for 60 s in MIBK:IPA
1:1

Rinse under flowing DI water
for 30 s

N2 blow dry for 30 s Inspect wafer under microscope

RIE etching Load sample into RIE etcher Use microscope slides to stabilize
wafer

Run “Nb-etch” recipe for
2’30”

Ar: 10 sccm, SF6: 20 sccm; pressure:
130 µbar, 150 W RF power

This will also etch PMMA!

Cleaning Flood exposure with a dose
> 6400 mJ/cm2 at 220 nm in
DUV mask aligner

Clean with Acetone and Iso-
propanol in ultrasonic bath
each for 5 min at 50 ◦C
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A.2. Airbridges
The following process is used to fabricate the airbridges as described in
Sec. 3.2.2. They have a height above the waver of ∼ 2 µm and are stable
up to a length of 50 µm. Some points to consider:

• “Rounder” bridges (longer reflow time) are more stable than rectan-
gular bridges.

• Do not use ultrasound for cleaning devices with air bridges, they will
also be “cleaned” away.

• Do not plasma ash devices with air bridges in the Tepla asher or
any other asher with a magnetron. These will produce random fields
inducing currents on the chip which can burn the air bridges. For
plasma clean the samples use the reactive ion etcher with just oxygen
plasma, since the fields produced parallel to the wafer are constant at
a given point of time.

Air bridge process

Process step Description Comments

Chip cleaning Acetone, ultrasonic bath for
5 min, 50 ◦C

Isopropanol, ultrasonic bath
for 5 min, 50 ◦C

Rinse with DI water for 2 min

N2 blow dry

Spinning of the
support layer

Prebake on hot plate for
10 min, 180 ◦C

Cool down for 3 min
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Set up spinner Step 0: 500 rpm, 2 s, 2 s ramp up
time

Step 1: 5000 rpm, 45 s, 5 s ramp up
time

Spin PMMA(8.5)MAA in
EL 12

Use separate PMMA spinner bowl

Wait 3 min

Revome resist from back of
the wafer

Bake on hotplate for 180 s at
180 ◦C

Cool down for 1 min

Repeat 4 times, each layer
adds ≈ 500 nm

Bake last layer for 300 s Final layer thickness is 2 µm

DUV photo
lithography

Warm up DUV mask aligner,
use 220 nm mirror, DUV
channel and CP mode

Measure intensity at 220 nm Typically ≈ 20 mW/cm2

Set exposure time for a dose
of 7700 mJ/cm2 at 220 nm

Align bridge foot mask and
expose

Check alignment in contact vacuum
mode

Develop for 60 s in MIBK:IPA
1:1

Rinse under flowing DI water
for 30 s

N2 blow dry for 30 s Inspect wafer under microscope
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Reflow Bake on hotplate for 10 min at
180 ◦C

Visual inspection

Spinning of the
image reversal
layer

Set up spinner Step 0: 500 rpm, 2 s, 2 s ramp up
time

Step 1: 3000 rpm, 50 s, 30 s ramp up
time

Step 2: 5500 rpm, 2 s, 2 s ramp up
time

Spin AZ5214E

Wait 3 min

Revome resist from back of
the wafer

Bake on hotplate for 60 s at
100 ◦C

Cool down for 1 min

Photo lithogra-
phy

Warm up MA6 mask aligner

Measure intensity at 365 nm Typically ≈ 5 mW/cm2

Set exposure time for a dose
of 50 mJ/cm2 at 365 nm

Align bridge definition mask
and expose

Use “Vacuum contact” mode

Image reversal bake on hot-
plate for 50 s at 112 ◦C

This is a critical step!
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Flood exposure, 200 mJ/cm2

at 405 nm

Wait 5 min

Develop for 60 s in MIF 726

Rinse under flowing DI water
for 60 s

N2 blow dry for 60 s Inspect wafer under microscope

Metal deposi-
tion

Place samples in Plassys PVD
system

Run ion gun recipe 300 V, 10 mA, 180 s

Deposit 800 nm of aluminum

Visual inspection

Lift-off DMSO for 2-3 h at 70 ◦C in a stirrer, 150 rpm

Visual inspection in IPA

Acetone for 10 min at 50 ◦C in a stirrer, 150 rpm

IPA for 5 min at 50 ◦C in a stirrer, 150 rpm

N2 blow dry for 60 s Inspect wafer under microscope
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B
Decoherence & Co.

This chapter introduces different terms and concepts used in the context
of decoherence. A profound introduction into the subject, especially in the
framework of superconducting circuits, is presented in the PhD-thesis of
G. Ithier [Ithier05a]. A detailed discussion of decoherence, including power
spectral densities and dynamical decoupling sequences can be found in the
lecture notes by W. D. Oliver [Oliver13]. The subsequent sections mostly
follow these two sources.

B.1. Depolarization, decoherence and dephasing

This section introduces the relaxation processes occurring during free evo-
lution of a qubit and explains how they are characterized in the experiment.
The main processes are longitudinal relaxation (usually called depolariza-
tion or energy relaxation) characterized by the time T1 and transverse re-
laxation (decoherence) characterized by the time T2.

B.1.1. Longitudinal relaxation, T1

The longitudinal relaxation describes the random switching of the qubit
state (|0〉 ↔ |1〉), i.e. the rate at which the qubit depolarizes. In general the
depolarization rate Γ1 includes both random excitations (|0〉 → |1〉) with
rate Γ1↑ as well as random relaxations (|1〉 → |0〉) with rate Γ1↓. However
at low temperatures, the relaxation process |1〉 → |0〉 dominates and Γ1 is
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therefore usually referred to as “energy relaxation” rate. The characteristic
time associated to this process is the energy relaxation time T1 defined as

Γ1 ≡
1
T1

= Γ1↓ + Γ1↑. (B.1)

Energy relaxation comes from the coupling of the qubit to noise at the qubit
frequency, e.g. thermal noise from the environment to which the qubit is
coupled capacitively. This noise is usually “well behaved” [Oliver13] in su-
perconducting circuits, i.e. short-correlated and weakly coupled. Therefore
the polarization of a qubit shows an exponential decay. In the experiment,
the time T1 is measured by exciting the qubit and measuring the popu-
lation as a function of the waiting time after preparation. A fit to the
observed exponential decay gives directly the energy relaxation time T1,
see Fig. B.1 (a).

B.1.2. Transverse relaxation, T2

The transverse relaxation or decoherence describes the loss of quantum co-
herence. For a qubit this means that the phase information between the
states |0〉 and |1〉 is lost, or equivalently in terms of the Bloch sphere, the
azimuthal angle of the state is randomized. In a density matrix this corre-
sponds to a decrease in magnitude of the off-diagonal terms.

In the regime of weak coupling between the qubit and its environment and
short-correlated noise, the decoherence rate Γ2 has two contributions, de-
scribed by the Bloch-Redfield approach [Ithier05b, Wangsness53, Redfield57]:
The depolarization rate Γ1 and the pure dephasing rate Γϕ combined as

Γ2 = 1
2Γ1 + Γϕ. (B.2)

The pure dephasing rate Γϕ describes the longitudinal low-frequency noise,
e.g. flux noise which shifts the qubit frequency and therefore introduces an
unknown phase. In this approach, the decay of the coherence is exponen-
tial, and the characteristic decay time is T2 = 1/Γ2. However, in general
the dephasing can be non-exponential, especially in the presence of 1/f -
noise [Ithier05a]. In this case, T2 is defined as the time at which the initial
population in a Ramsey experiment is decayed by a factor e−1.

The experimental procedure to measure the decoherence time is the Ram-
sey experiment (see also Sec. 5.1). The pulse sequence (Fig. B.1 (b)) consists
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Figure B.1: Measurement of (a) the energy relaxation time T1 and (b)
decoherence time T ∗2 . The blue dots are measured values, the red lines are
exponentially decaying fits.

of two π/2 pulses with a varying time delay in between. Usually a finite de-
tuning between the qubit and drive frequency is introduced which produces
the characteristic oscillations as shown in Fig. B.1 (b). Without detuning
the data would just show an exponential decay of the population as a func-
tion of the waiting time. In this situation the experiment is also referred to
as “free-induction decay” [Ithier05b]. However, since low frequency detun-
ing and decay are hard to distinguish, the experiment is usually performed
with a detuning (typically 4 MHz) which is higher than the decoherence
rate. The data can be fitted with an exponentially damped sinusoid, giving
directly the Ramsey decay time T ∗2 . The Ramsey decay time T ∗2 generally
differs from the “intrinsic” decay time T2 since it is the result of an ensem-
ble measurement. The ensemble in the case of superconducting qubits is
the temporal ensemble formed by the repeated and averaged experiments
of a single qubit, which is necessary to acquire sufficient data [Clarke08].
Fluctuations on the timescale of a single experimental run then lead to a
reduced observed coherence time T ∗2 < T2. In Sec. B.2 it is shown how to
measure a more intrinsic decay time.
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B.2. Dynamical decoupling

Dynamical decoupling refers to different methods for prolonging the deco-
herence time in qubit systems. The first pulse sequence was implemented
in the context of nuclear magnetic resonance to refocus a spatial ensemble
of spins and is referred to as Hahn echo or spin echo [Hahn50]. In supercon-
ducting qubits it was first studied in [Vion03, Bertet05]. The sequence is a
modified Ramsey sequence with a π pulse in the middle of the waiting time
as depicted in Fig. B.2. Low frequency noise causing a drift of the transi-
tion frequency will induce a random rotation of the qubit state during the
waiting time. The π pulse turns the rotated state such that in the following
waiting time, the state will rotate back to its original position. Hence, noise
that does not change on the timescale of one experimental sequence can be
filtered out. The resulting decay time T2E measured with this method is
closer to the intrinsic decay time T2 than T ∗2 .

In a next step, more π pulses can be added as shown by Carr, Purcell,
Meiboom and Gill [Carr54, Meiboom58]. In these “CPMG”-sequences, the
spacing between the π pulses is always twice as large as the spacing between
the π/2 and π pulse, see Fig. B.3. For a given total sequence length, the
time between two refocusing pulses is shorter with increasing number of
pulse. Such sequences therefor shift the filter function which defines the
noise affecting the qubit to higher frequencies [Bylander11]. The resulting
decay times T (N)

2 for a sequence with N π pulses approach the intrinsic
decay time for increasing N .

The results of an experimental implementation of free-induction decay (a
Ramsey sequence without detuning), Hahn echo and CPMG sequences with
N = 2 and N = 3 π pulses is shown in Fig. B.4. In (a) a sample was used
which showed high sensitivity to flux noise due to a superconducting loop
formed around the qubit by wirebonds and the ground plane. It showed a
T ∗2 ≈ 95 ns much smaller than T1 = 650 ns. Spin echo pulses increased the
measured coherence time efficiently up to a factor of 4.8 to T (3)

2 ≈ 460 ns.
The black lines in Fig. B.4 (a) are Gaussian fits, indicating a 1/f -noise
environment [Ithier05a, Oliver13]. The measurements shown in (b) are
performed with a qubit almost insensitive to flux noise. It has a T ∗2 = 670 ns
and a T1 = 900 ns. The exponential decay (black lines) hint at a white noise
environment, which cannot be filtered out efficiently with CPMG sequences.
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(a) (b) (c)

(d) (e) (f)

π/2x π/2xπy

(a) (b) (c) (d) (e) (f)

Figure B.2: Spin echo sequence: Pulse sequence (top) and evolution of
the qubit state (bottom). The qubit starts in the ground state (a), and is
excited to an equal superposition state (b). In the first waiting time, the
state rotates due to random low-frequency noise (c). A π pulse switches the
rotated state (d) which then refocuses in the subsequent waiting time (e).
A final π/2 pulse (f) ideally always brings the qubit to the excited state.
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τ

Figure B.3: Pulse sequence for (from top to bottom) a Ramsey experi-
ment, Hahn-echo and CPMG with 2 and 4 π pulses. The spacing between
the π pulses is always twice as large as the spacing between the π/2 and π
pulse.
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Figure B.4: Free-induction decay (FID), Hahn echo and CPMG experi-
ments with N = {0, 1, 2, 3} π pulses between the π/2 pulses for (a) a qubit
tuned to a point with high flux noise sensitivity and (b) a qubit tuned a
point of low flux noise sensitivity. Black lines are (a) Gaussian and (b) ex-
ponential fits.
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B.2. Dynamical decoupling

An improved sequence — Uhrig dynamical decoupling (UDD) — similar
to the CPMG sequence but with non-uniform spacing between the π pulses
was presented in [Uhrig07, Uhrig08] and implemented in ion traps [Biercuk09b,
Biercuk09a], single spin in diamond [deLange10] and superconducting cir-
cuits [Bylander11], where it showed better performance in certain noise
environments than the CPMG sequence.

In superconducting circuits, spin echoes and CPMG sequences have also
been studied [Vion03, Bertet05, Steffen07, Gustavsson12], used for pro-
longing the lifetime of a qubit [Leek07, Steffen13] or to perform noise spec-
troscopy [Bylander11].
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Supplementary Material

C.1. Monte Carlo process certification

C.1.1. Input states

In the protocol for Monte Carlo process certification one has to prepare
complex conjugates of eigenstates of a Pauli operator Âi as input states.
Every n-qubit Pauli operator has 2n eigenstates, half of them with eigen-
value 1, the other half with eigenvalue −1 (except for the identity operator,
where all eigenvalues are 1). Both eigenspaces corresponding to the respec-
tive eigenvalue are spanned by sets of product states built from the products
of the corresponding single-Pauli-operator eigenstates. It is therefore suffi-
cient to prepare all the aforementioned product states as input states. A list
of the complex conjugates of the single-Pauli-operator eigenstates is given
in Tab. C.1.

To illustrate this, let’s consider an example. According to Tab. 7.1, one
of the relevant Pauli operators for the cnot gate is P̂ = σ̂x ⊗ σ̂x ⊗ σ̂x ⊗ 1.
This means, that complex conjugates of eigenstates of the two-qubit Pauli-
operator Â = σ̂x ⊗ σ̂x have to be prepared. Subsequently the cnot op-
eration is applied and the resulting states are measured with the operator
B̂ = σ̂x ⊗ 1. According to Tab. C.1, the complex conjugate eigenstates of
Â corresponding to the eigenvalue 1 are |++〉 and |−−〉, the ones corre-
sponding to eigenvalue −1 are |+−〉 and |−+〉. It is sufficient to prepare
and measure these four states, since all other eigenstates are linear combi-
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Pauli operator Eigenvalue Compl. conj. eigenstate

1 1
|0〉

|1〉

σ̂x
1 |+〉

-1 |−〉

σ̂y
1 |−i〉

-1 |i〉

σ̂z
1 |0〉

-1 |1〉

Table C.1: List of the complex conjugates of the single-Pauli-operator
eigenstates with the corresponding eigenvalue. Note that the complex con-
jugation affects only the eigenstates of the σ̂y operator.

nations of these. For example the Bell state
∣∣Φ+〉 = |00〉+ |11〉, which is a

+1 eigenstate of σ̂x ⊗ σ̂x is a linear combination of the aforementioned +1
eigenstates

∣∣Φ+〉 = |++〉+ |−−〉.

C.1.2. Relevant operators for two sequential cphase gates

A sequence of two cphase-gates overlapping on the middle qubit has sta-
bilizer group generators

g1 = σ̂x 1 1 σ̂x σ̂z 1,

g2 = σ̂z 1 1 σ̂z 1 1,

g3 = 1 σ̂x 1 σ̂z σ̂x σ̂z,

g4 = 1 σ̂z 1 1 σ̂z 1,

g5 = 1 1 σ̂x 1 σ̂z σ̂x,

g6 = 1 1 σ̂z 1 1 σ̂z.

(C.1)
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The relevant Pauli operators found from these generators are listed in
Tab. C.2.

C.1.3. Relevant operators for the Toffoli gate

Since the Choi matrix of the Toffoli gate is not a stabilizer state, the list of
relevant Pauli operators has no group structure and the relevance distribu-
tion Pr(i) is not uniform. By calculating explicitly the expectation value
for all 4096 possible Pauli operators, we find only 232 operators which are
non-zero. The corresponding operators are listed in Tabs. C.3 and C.4,
labeld consistently with the measured values shown in Fig. 7.9.

1 1 1 1 1 1 σ̂x 1 1 σ̂x σ̂z 1 σ̂y 1 1 σ̂y σ̂z 1 σ̂z 1 1 σ̂z 1 1

1 1 σ̂x 1 σ̂z σ̂x σ̂x 1 σ̂x σ̂x 1 σ̂x σ̂y 1 σ̂x σ̂y 1 σ̂x σ̂z 1 σ̂x σ̂z σ̂z σ̂x

1 1 σ̂y 1 σ̂z σ̂y σ̂x 1 σ̂y σ̂x 1 σ̂y σ̂y 1 σ̂y σ̂y 1 σ̂y σ̂z 1 σ̂y σ̂z σ̂z σ̂y

1 1 σ̂z 1 1 σ̂z σ̂x 1 σ̂z σ̂x σ̂z σ̂z σ̂y 1 σ̂z σ̂y σ̂z σ̂z σ̂z 1 σ̂z σ̂z 1 σ̂z

1 σ̂x 1 σ̂z σ̂x σ̂z σ̂x σ̂x 1 σ̂y σ̂y σ̂z σ̂y σ̂x 1 σ̂x σ̂y σ̂z σ̂z σ̂x 1 1 σ̂x σ̂z

1 σ̂x σ̂x σ̂z σ̂y σ̂y σ̂x σ̂x σ̂x σ̂y σ̂x σ̂y σ̂y σ̂x σ̂x σ̂x σ̂x σ̂y σ̂z σ̂x σ̂x 1 σ̂y σ̂y

1 σ̂x σ̂y σ̂z σ̂y σ̂x σ̂x σ̂x σ̂y σ̂y σ̂x σ̂x σ̂y σ̂x σ̂y σ̂x σ̂x σ̂x σ̂z σ̂x σ̂y 1 σ̂y σ̂x

1 σ̂x σ̂z σ̂z σ̂x 1 σ̂x σ̂x σ̂z σ̂y σ̂y 1 σ̂y σ̂x σ̂z σ̂x σ̂y 1 σ̂z σ̂x σ̂z 1 σ̂x 1

1 σ̂y 1 σ̂z σ̂y σ̂z σ̂x σ̂y 1 σ̂y σ̂x σ̂z σ̂y σ̂y 1 σ̂x σ̂x σ̂z σ̂z σ̂y 1 1 σ̂y σ̂z

1 σ̂y σ̂x σ̂z σ̂x σ̂y σ̂x σ̂y σ̂x σ̂y σ̂y σ̂y σ̂y σ̂y σ̂x σ̂x σ̂y σ̂y σ̂z σ̂y σ̂x 1 σ̂x σ̂y

1 σ̂y σ̂y σ̂z σ̂x σ̂x σ̂x σ̂y σ̂y σ̂y σ̂y σ̂x σ̂y σ̂y σ̂y σ̂x σ̂y σ̂x σ̂z σ̂y σ̂y 1 σ̂x σ̂x

1 σ̂y σ̂z σ̂z σ̂y 1 σ̂x σ̂y σ̂z σ̂y σ̂x 1 σ̂y σ̂y σ̂z σ̂x σ̂x 1 σ̂z σ̂y σ̂z 1 σ̂y 1

1 σ̂z 1 1 σ̂z 1 σ̂x σ̂z 1 σ̂x 1 1 σ̂y σ̂z 1 σ̂y 1 1 σ̂z σ̂z 1 σ̂z σ̂z 1

1 σ̂z σ̂x 1 1 σ̂x σ̂x σ̂z σ̂x σ̂x σ̂z σ̂x σ̂y σ̂z σ̂x σ̂y σ̂z σ̂x σ̂z σ̂z σ̂x σ̂z 1 σ̂x

1 σ̂z σ̂y 1 1 σ̂y σ̂x σ̂z σ̂y σ̂x σ̂z σ̂y σ̂y σ̂z σ̂y σ̂y σ̂z σ̂y σ̂z σ̂z σ̂y σ̂z 1 σ̂y

1 σ̂z σ̂z 1 σ̂z σ̂z σ̂x σ̂z σ̂z σ̂x 1 σ̂z σ̂y σ̂z σ̂z σ̂y 1 σ̂z σ̂z σ̂z σ̂z σ̂z σ̂z σ̂z

Table C.2: All relevant Pauli operators for the verification of two sequen-
tial cphase gates
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000 001 010 011

00000 1 1 1 1 1 1 1 σ̂y 1 σ̂z σ̂y σ̂x σ̂x 1 σ̂x σ̂x σ̂z 1 σ̂x σ̂y 1 σ̂y σ̂x σ̂x

1 1 σ̂x 1 1 σ̂x 1 σ̂y σ̂x 1 σ̂y 1 σ̂x 1 σ̂x σ̂x σ̂z σ̂x σ̂x σ̂y σ̂x σ̂x σ̂y 1

1 1 σ̂y 1 1 σ̂y 1 σ̂y σ̂x 1 σ̂y σ̂x σ̂x 1 σ̂y σ̂x 1 σ̂y σ̂x σ̂y σ̂x σ̂x σ̂y σ̂x

1 1 σ̂y 1 σ̂z σ̂y 1 σ̂y σ̂x σ̂z σ̂y 1 σ̂x 1 σ̂y σ̂x σ̂z σ̂y σ̂x σ̂y σ̂x σ̂y σ̂x 1

00100 1 1 σ̂y σ̂z 1 σ̂y 1 σ̂y σ̂x σ̂z σ̂y σ̂x σ̂x 1 σ̂y σ̂y 1 σ̂z σ̂x σ̂y σ̂x σ̂y σ̂x σ̂x

1 1 σ̂y σ̂z σ̂z σ̂y 1 σ̂y σ̂y 1 σ̂x σ̂z σ̂x 1 σ̂y σ̂y σ̂z σ̂z σ̂x σ̂y σ̂y σ̂x σ̂x σ̂z

1 1 σ̂z 1 1 σ̂z 1 σ̂y σ̂y 1 σ̂y σ̂y σ̂x 1 σ̂z σ̂x 1 σ̂z σ̂x σ̂y σ̂y σ̂x σ̂y σ̂y

1 1 σ̂z 1 σ̂z σ̂z 1 σ̂y σ̂y σ̂z σ̂x σ̂z σ̂x 1 σ̂z σ̂x σ̂z σ̂z σ̂x σ̂y σ̂y σ̂y σ̂x σ̂y

01000 1 1 σ̂z σ̂z 1 σ̂z 1 σ̂y σ̂y σ̂z σ̂y σ̂y σ̂x 1 σ̂z σ̂y 1 σ̂y σ̂x σ̂y σ̂y σ̂y σ̂y σ̂z

1 1 σ̂z σ̂z σ̂z σ̂z 1 σ̂y σ̂z 1 σ̂x σ̂y σ̂x 1 σ̂z σ̂y σ̂z σ̂y σ̂x σ̂y σ̂z σ̂x σ̂x σ̂y

1 σ̂x 1 1 σ̂x 1 1 σ̂y σ̂z 1 σ̂y σ̂z σ̂x σ̂x 1 σ̂x σ̂x 1 σ̂x σ̂y σ̂z σ̂x σ̂y σ̂z

1 σ̂x 1 1 σ̂x σ̂x 1 σ̂y σ̂z σ̂z σ̂x σ̂y σ̂x σ̂x 1 σ̂x σ̂x σ̂x σ̂x σ̂y σ̂z σ̂y σ̂x σ̂z

01100 1 σ̂x 1 σ̂z σ̂x 1 1 σ̂y σ̂z σ̂z σ̂y σ̂z σ̂x σ̂x 1 σ̂y σ̂y 1 σ̂x σ̂y σ̂z σ̂y σ̂y σ̂y

1 σ̂x 1 σ̂z σ̂x σ̂x 1 σ̂z 1 1 σ̂z 1 σ̂x σ̂x 1 σ̂y σ̂y σ̂x σ̂x σ̂z 1 σ̂x 1 1

1 σ̂x σ̂x 1 σ̂x 1 1 σ̂z σ̂x 1 σ̂z σ̂x σ̂x σ̂x σ̂x σ̂x σ̂x 1 σ̂x σ̂z 1 σ̂x 1 σ̂x

1 σ̂x σ̂x 1 σ̂x σ̂x 1 σ̂z σ̂y 1 1 σ̂y σ̂x σ̂x σ̂x σ̂x σ̂x σ̂x σ̂x σ̂z 1 σ̂x σ̂z 1

10000 1 σ̂x σ̂x σ̂z σ̂x 1 1 σ̂z σ̂y 1 σ̂z σ̂y σ̂x σ̂x σ̂x σ̂y σ̂y 1 σ̂x σ̂z 1 σ̂x σ̂z σ̂x

1 σ̂x σ̂x σ̂z σ̂x σ̂x 1 σ̂z σ̂y σ̂z 1 σ̂y σ̂x σ̂x σ̂x σ̂y σ̂y σ̂x σ̂x σ̂z σ̂x σ̂x 1 1

1 σ̂x σ̂y 1 σ̂x σ̂y 1 σ̂z σ̂y σ̂z σ̂z σ̂y σ̂x σ̂x σ̂y σ̂x σ̂x σ̂y σ̂x σ̂z σ̂x σ̂x 1 σ̂x

1 σ̂x σ̂y 1 σ̂y σ̂z 1 σ̂z σ̂z 1 1 σ̂z σ̂x σ̂x σ̂y σ̂x σ̂y σ̂z σ̂x σ̂z σ̂x σ̂x σ̂z 1

10100 1 σ̂x σ̂y σ̂z σ̂x σ̂y 1 σ̂z σ̂z 1 σ̂z σ̂z σ̂x σ̂x σ̂y σ̂y σ̂x σ̂z σ̂x σ̂z σ̂x σ̂x σ̂z σ̂x

1 σ̂x σ̂y σ̂z σ̂y σ̂z 1 σ̂z σ̂z σ̂z 1 σ̂z σ̂x σ̂x σ̂y σ̂y σ̂y σ̂y σ̂x σ̂z σ̂y σ̂x 1 σ̂y

1 σ̂x σ̂z 1 σ̂x σ̂z 1 σ̂z σ̂z σ̂z σ̂z σ̂z σ̂x σ̂x σ̂z σ̂x σ̂x σ̂z σ̂x σ̂z σ̂y σ̂x σ̂z σ̂y

1 σ̂x σ̂z 1 σ̂y σ̂y σ̂x 1 1 σ̂x 1 1 σ̂x σ̂x σ̂z σ̂x σ̂y σ̂y σ̂x σ̂z σ̂y σ̂y 1 σ̂z

11000 1 σ̂x σ̂z σ̂z σ̂x σ̂z σ̂x 1 1 σ̂x 1 σ̂x σ̂x σ̂x σ̂z σ̂y σ̂x σ̂y σ̂x σ̂z σ̂y σ̂y σ̂z σ̂z

1 σ̂x σ̂z σ̂z σ̂y σ̂y σ̂x 1 1 σ̂x σ̂z 1 σ̂x σ̂x σ̂z σ̂y σ̂y σ̂z σ̂x σ̂z σ̂z σ̂x 1 σ̂z

1 σ̂y 1 1 σ̂y 1 σ̂x 1 1 σ̂x σ̂z σ̂x σ̂x σ̂y 1 σ̂x σ̂y 1 σ̂x σ̂z σ̂z σ̂x σ̂z σ̂z

1 σ̂y 1 1 σ̂y σ̂x σ̂x 1 σ̂x σ̂x 1 1 σ̂x σ̂y 1 σ̂x σ̂y σ̂x σ̂x σ̂z σ̂z σ̂y 1 σ̂y

11100 1 σ̂y 1 σ̂z σ̂y 1 σ̂x 1 σ̂x σ̂x 1 σ̂x σ̂x σ̂y 1 σ̂y σ̂x 1 σ̂x σ̂z σ̂z σ̂y σ̂z σ̂y

Table C.3: Elements 00000000 to 01111100 of the relevant operators for
the verification of the Toffoli gate.
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100 101 110 111

00000 σ̂y 1 1 σ̂y 1 1 σ̂y σ̂x σ̂z σ̂x σ̂y σ̂z σ̂y σ̂z σ̂y σ̂y 1 σ̂y σ̂z σ̂x σ̂z 1 σ̂y σ̂y

σ̂y 1 1 σ̂y 1 σ̂x σ̂y σ̂x σ̂z σ̂y σ̂x σ̂z σ̂y σ̂z σ̂y σ̂y σ̂z σ̂y σ̂z σ̂x σ̂z σ̂z σ̂x σ̂z

σ̂y 1 1 σ̂y σ̂z 1 σ̂y σ̂x σ̂z σ̂y σ̂y σ̂y σ̂y σ̂z σ̂z σ̂x 1 σ̂y σ̂z σ̂x σ̂z σ̂z σ̂y σ̂y

σ̂y 1 1 σ̂y σ̂z σ̂x σ̂y σ̂y 1 σ̂x σ̂x 1 σ̂y σ̂z σ̂z σ̂x σ̂z σ̂y σ̂z σ̂y 1 1 σ̂y 1

00100 σ̂y 1 σ̂x σ̂y 1 1 σ̂y σ̂y 1 σ̂x σ̂x σ̂x σ̂y σ̂z σ̂z σ̂y 1 σ̂z σ̂z σ̂y 1 1 σ̂y σ̂x

σ̂y 1 σ̂x σ̂y 1 σ̂x σ̂y σ̂y 1 σ̂y σ̂y 1 σ̂y σ̂z σ̂z σ̂y σ̂z σ̂z σ̂z σ̂y 1 σ̂z σ̂y 1

σ̂y 1 σ̂x σ̂y σ̂z 1 σ̂y σ̂y 1 σ̂y σ̂y σ̂x σ̂z 1 1 σ̂z 1 1 σ̂z σ̂y 1 σ̂z σ̂y σ̂x

σ̂y 1 σ̂x σ̂y σ̂z σ̂x σ̂y σ̂y σ̂x σ̂x σ̂x 1 σ̂z 1 σ̂x σ̂z 1 σ̂x σ̂z σ̂y σ̂x 1 σ̂y 1

01000 σ̂y 1 σ̂y σ̂x 1 σ̂z σ̂y σ̂y σ̂x σ̂x σ̂x σ̂x σ̂z 1 σ̂y 1 1 σ̂y σ̂z σ̂y σ̂x 1 σ̂y σ̂x

σ̂y 1 σ̂y σ̂x σ̂z σ̂z σ̂y σ̂y σ̂x σ̂y σ̂y 1 σ̂z 1 σ̂y 1 σ̂z σ̂y σ̂z σ̂y σ̂x σ̂z σ̂y 1

σ̂y 1 σ̂y σ̂y 1 σ̂y σ̂y σ̂y σ̂x σ̂y σ̂y σ̂x σ̂z 1 σ̂y σ̂z 1 σ̂y σ̂z σ̂y σ̂x σ̂z σ̂y σ̂x

σ̂y 1 σ̂y σ̂y σ̂z σ̂y σ̂y σ̂y σ̂y σ̂x σ̂x σ̂y σ̂z 1 σ̂y σ̂z σ̂z σ̂y σ̂z σ̂y σ̂y 1 σ̂x σ̂z

01100 σ̂y 1 σ̂z σ̂x 1 σ̂y σ̂y σ̂y σ̂y σ̂x σ̂y σ̂z σ̂z 1 σ̂z 1 1 σ̂z σ̂z σ̂y σ̂y 1 σ̂y σ̂y

σ̂y 1 σ̂z σ̂x σ̂z σ̂y σ̂y σ̂y σ̂y σ̂y σ̂x σ̂z σ̂z 1 σ̂z 1 σ̂z σ̂z σ̂z σ̂y σ̂y σ̂z σ̂x σ̂z

σ̂y 1 σ̂z σ̂y 1 σ̂z σ̂y σ̂y σ̂y σ̂y σ̂y σ̂y σ̂z 1 σ̂z σ̂z 1 σ̂z σ̂z σ̂y σ̂y σ̂z σ̂y σ̂y

σ̂y 1 σ̂z σ̂y σ̂z σ̂z σ̂y σ̂y σ̂z σ̂x σ̂x σ̂z σ̂z 1 σ̂z σ̂z σ̂z σ̂z σ̂z σ̂y σ̂z 1 σ̂x σ̂y

10000 σ̂y σ̂x 1 σ̂x σ̂y 1 σ̂y σ̂y σ̂z σ̂x σ̂y σ̂y σ̂z σ̂x 1 1 σ̂x 1 σ̂z σ̂y σ̂z 1 σ̂y σ̂z

σ̂y σ̂x 1 σ̂x σ̂y σ̂x σ̂y σ̂y σ̂z σ̂y σ̂x σ̂y σ̂z σ̂x 1 1 σ̂x σ̂x σ̂z σ̂y σ̂z σ̂z σ̂x σ̂y

σ̂y σ̂x 1 σ̂y σ̂x 1 σ̂y σ̂y σ̂z σ̂y σ̂y σ̂z σ̂z σ̂x 1 σ̂z σ̂x 1 σ̂z σ̂y σ̂z σ̂z σ̂y σ̂z

σ̂y σ̂x 1 σ̂y σ̂x σ̂x σ̂y σ̂z 1 σ̂y 1 1 σ̂z σ̂x 1 σ̂z σ̂x σ̂x σ̂z σ̂z 1 σ̂z σ̂z 1

10100 σ̂y σ̂x σ̂x σ̂x σ̂y 1 σ̂y σ̂z 1 σ̂y 1 σ̂x σ̂z σ̂x σ̂x 1 σ̂x 1 σ̂z σ̂z σ̂x σ̂z σ̂z σ̂x

σ̂y σ̂x σ̂x σ̂x σ̂y σ̂x σ̂y σ̂z 1 σ̂y σ̂z 1 σ̂z σ̂x σ̂x 1 σ̂x σ̂x σ̂z σ̂z σ̂y 1 1 σ̂y

σ̂y σ̂x σ̂x σ̂y σ̂x 1 σ̂y σ̂z 1 σ̂y σ̂z σ̂x σ̂z σ̂x σ̂x σ̂z σ̂x 1 σ̂z σ̂z σ̂y 1 σ̂z σ̂y

σ̂y σ̂x σ̂x σ̂y σ̂x σ̂x σ̂y σ̂z σ̂x σ̂y 1 1 σ̂z σ̂x σ̂x σ̂z σ̂x σ̂x σ̂z σ̂z σ̂y σ̂z 1 σ̂y

11000 σ̂y σ̂x σ̂y σ̂x σ̂x σ̂z σ̂y σ̂z σ̂x σ̂y 1 σ̂x σ̂z σ̂x σ̂y 1 σ̂x σ̂y σ̂z σ̂z σ̂y σ̂z σ̂z σ̂y

σ̂y σ̂x σ̂y σ̂x σ̂y σ̂y σ̂y σ̂z σ̂x σ̂y σ̂z 1 σ̂z σ̂x σ̂y 1 σ̂y σ̂z σ̂z σ̂z σ̂z 1 1 σ̂z

σ̂y σ̂x σ̂y σ̂y σ̂x σ̂y σ̂y σ̂z σ̂x σ̂y σ̂z σ̂x σ̂z σ̂x σ̂y σ̂z σ̂x σ̂y σ̂z σ̂z σ̂z 1 σ̂z σ̂z

σ̂y σ̂x σ̂y σ̂y σ̂y σ̂z σ̂y σ̂z σ̂y σ̂x 1 σ̂z σ̂z σ̂x σ̂y σ̂z σ̂y σ̂z σ̂z σ̂z σ̂z σ̂z 1 σ̂z

11100 σ̂y σ̂x σ̂z σ̂x σ̂x σ̂y σ̂y σ̂z σ̂y σ̂x σ̂z σ̂z σ̂z σ̂x σ̂z 1 σ̂x σ̂z σ̂z σ̂z σ̂z σ̂z σ̂z σ̂z

Table C.4: Elements 10000000 to 11111100 of the relevant operators for
the verification of the Toffoli gate.
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C.2. Toffoli gate

C.2.1. Calibration procedure

Temporarily changing the frequency of a qubit by means of a flux pulse
will introduce a dynamical phase between the |0〉 and the |1〉 state (see
Sec. 5.2.2). This dynamical phase can be compensated for by changing the
phase of all microwave pulses (including the tomography pulses) following
the flux pulse.

In the Toffoli gate however, the state of the first transmon “qutrit” can
be |2〉 for some finite time during the algorithm, see Sec. 7.2.1. The dy-
namical phase between the states |0〉 and |2〉 is in general different from the
dynamical phase between |0〉 and |1〉. Therefore these phases cannot both
be compensated by adjusting the phases of subsequent microwave pulses.

In other words, the phase acquired by qubit B differs, depending on the
state of qubit A. The dynamical phase of the two-qubit state of qubits A
and B acquired during the Toffoli gate sequence therefore depends on the
input state of these qubits as

|00〉 → |00〉

|10〉 → eiϕA |10〉

|01〉 → eiϕB |01〉

|11〉 → eiϕ2 |11〉,

where ϕ2 6= ϕA + ϕB in general. To compensate for this effect, we adjust
the phase ϕB such that the condition ϕ2 = ϕA + ϕB (mod 2π) is fulfilled.
This is done by an additional flux pulse just before the cphase gate. This
flux pulse shifts the qubit to a frequency where it does not interact with
any other qubit, but only acquires a dynamical phase. The amplitude and
length of this pulse are calibrated in a Ramsey type experiment similar to
the one presented in Fig. 8.3. The π/2 pulses are applied to qubit A, and
the extra flux pulse is tuned such that the resulting traces for the input
states |0〉 and |1〉 of qubit B are in phase.

166



C.3. Quantum teleportation

C.3. Quantum teleportation

C.3.1. Calibration procedure

The standard calibration procedure for the teleportation experiment is as
follows: First the single qubit operations are calibrated, followed by the
calibration of the cphase gates (see Sec. 5.2.2) and the parametric ampli-
fiers (see Sec. 4.4). In the experiments where feed-forward is used, this has
been calibrated as presented in Sec. 8.2.6. In the following, we explain the
calibration procedure for single qubit gates in detail.

Once the qubits are tuned to their approximate working frequency (de-
termined by spectroscopic measurements), the IQ-mixers are calibrated at
this frequency (see [Schmidlin09, Baur12a]). Subsequently, the following
sequence of experiments is performed for each qubit individually (see also
Sec. 5.1):

• Rabi oscillations: From this measurement the π/2 pulse amplitude is
extracted which is used in the next experiment.

• Ramsey oscillations: The drive frequency is detuned by 4 MHz from
the qubit frequency determined by spectroscopic measurements. The
deviation of the oscillation frequency from the detuning allows to
determine the exact qubit frequency.

• Rabi oscillations: Extract the amplitude for π and π/2 pulses at the
exact qubit frequency.

• Q scaling factor needed for DRAG pulses is measured [Motzoi09,
Gambetta11, Baur12a].

• Rabi oscillations to find the final amplitudes for the π and π/2 pulses.

After each experiment, the extracted parameter is used to generate the
patterns of the next experiment, therefore iteratively calibrating the π and
π/2 pulses. Automatizing this task1 has reduced the amount of interac-
tion needed to operate the experiment and greatly sped up the calibration
procedure.

1The automatization of the calibration routine was implemented by Tim Menke, Jo-
hannes Heinsoo and Andreas Landig
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C.3.2. Error budget
The finite coherence and dephasing times of our qubits are a source of
error which limit the output-state fidelity. The fidelity of the measurement
of Q3 through R3 affects the state fidelity of |ψout〉 directly. From the
measured probabilities of correctly identifying the states |0〉 and |1〉 on Q3
we calculate the limit of the output-state fidelity through this source of
error to be F̄s = 94 %. In addition, the misidentification of the Bell states
of Qb1 and Qb2 leads to an effective dephasing of |ψout〉. This limits the
fidelity further to F̄s = 89 % and F̄s = 84 % for the respective cases in
which we post-select on one Bell state only and in which we distinguish all
Bell states in each measurement. Because both of these numbers are about
7−8 % higher than the actually measured fidelities, it is plausible to assign
the remaining errors to the limited gate fidelities. Determining the gate
errors independently shows that we perform single-qubit operations with a
fidelity greater than 98 % and create Bell states with a fidelity of 92 % using
two-qubit cphase gates with a process fidelity of 90%.
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[Spörl07] A. Spörl, T. Schulte-Herbrüggen, S. J. Glaser, V. Bergholm, M. J.
Storcz, J. Ferber, and F. K. Wilhelm. “Optimal control of coupled
josephson qubits.” Physical Review A, 75, 012302 (2007). Cited
on page 104.

[Srinivasan13] S. J. Srinivasan, N. M. Sundaresan, D. Sadri, Y. Liu, J. M. Gam-
betta, T. Yu, S. M. Girvin, and A. A. Houck. “Time-reversal sym-
metrization of spontaneous emission for high fidelity quantum state
transfer.” arXiv:1308.3471 (2013). Cited on pages 141 and 142.

[Steffen06a] M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero,
R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M.
Martinis. “Measurement of the entanglement of two superconduct-
ing qubits via state tomography.” Science, 313, 1423–1425 (2006).
Cited on page 79.

187

http://dx.doi.org/10.1103/PhysRevA.54.2614
http://www.rintonpress.com/journals/qiconline.html#v9n56
http://dl.acm.org/citation.cfm?id=2011508.2011515
http://dl.acm.org/citation.cfm?id=2011508.2011515
http://link.aps.org/abstract/PRL/v93/e207002
http://link.aps.org/abstract/PRL/v93/e207002
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1103/PhysRevLett.108.070502
http://dx.doi.org/10.1103/PhysRevLett.108.070502
http://dx.doi.org/10.1103/PhysRevA.75.012302
http://arxiv.org/abs/1308.3471
http://www.sciencemag.org/content/313/5792/1423.full


Bibliography

[Steffen06b] M. Steffen, M. Ansmann, R. Mcdermott, N. Katz, R. C. Bialczak,
E. Lucero, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Marti-
nis. “State tomography of capacitively shunted phase qubits with
high fidelity.” Physical Review Letters, 97, 050502 (2006). Cited
on page 97.

[Steffen07] L. Steffen. Spin Echo Measurements in a Superconducting Qubit.
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L. Steffen, A. Blais, A. Wallraff, “Dynamics of dispersive single-qubit

199



readout in circuit quantum electrodynamics”, Physical Review A 80,
043840 (2009)

22. J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp,
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M. Göppl, L. Steffen, J. M. Gambetta, A. Blais, A. Wallraff, “Two-
Qubit State Tomography Using a Joint Dispersive Readout”, Physical
Review Letters 102, 200402–4 (2009)
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