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Abstract

Superconducting qubits present a completely artificial platform in which
quantum behaviour can be investigated. The tunability of the properties
of such a system, either in fabrication or in-situ, makes them suitable for
a variety of experiments. Research groups around the world are now using
superconducting qubits to make steps towards building a quantum com-
puter, to investigate atom-photon interactions, and scientists are starting
to use superconducting qubits to simulate other quantum systems.

In this thesis, superconducting transmon qubits are coupled to an open
transmission line in order to investigate the coupling of distant qubits via
photons, analogous to how distant atoms couple in open space. This re-
search departs from previous experiments on superconducting qubits, in
which the qubits where either placed in a resonator, coupling them to a
single mode, or in which the qubits were placed in free space and are cou-
pled by being in very close proximity.

First, experiments were done to characterize the properties of a single trans-
mon qubit in an open transmission line. The high reflection coefficient at
low drive powers implies a high coupling between the line and the qubit.
When investigating the interactions between multiple qubits, we use the
ability to tune the transition frequencies of the qubits as a means to vary
the effective distance between the qubits, allowing us to investigate the
photon-mediated interactions versus effective distance.

Tuning two qubits into resonance and measuring the elastically scattered
radiation, we find no anti-crossing which would be indicative of an exchange
interaction, but instead interference patterns that can be replicated by semi-
classical models which treat the individual qubits quantum mechanically,
but in which all photon-mediated interaction is due to interference.

Using a high-bandwidth analog-to-digital converter and the fast electronics
provided by a Virtex-6 FPGA, resonance fluorescence measurements can
be performed in order to investigate the spectrum of inelastically scattered
radiation. When tuning two qubits into resonance, the spectrum depends
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on the effective inter-qubit separation. We observe that when the qubits are
three quarters of their emission wavelength apart, a low-power resonance
fluorescence measurement reveals a level splitting due to an exchange in-
teraction. When the qubits are tuned one wavelength apart, a dark- and a
bright state emerge, with the dark state living a factor 100 longer than the
bright state. Both phenomena can be understood from intuitive arguments.
A quantitative understanding of these phenomena was developed in collab-
oration with theorists. The theory is based on a master equation, in which
the qubit-qubit interactions appear as a second-order effect from qubit-
photon interactions. This theory predicts the same interaction phenomena
as observed in experiment, and moreover predicts them to be oscillatory in
the inter-qubit distance.
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Zusammenfassung

Supraleitende Qubits stellen eine neuartige durch Menschenhand geschaf-
fene Moglichkeit dar, um quantenmechanisches Verhalten zu untersuchen.
Durch die grosse Auswahl an realisierbaren Eigenschaften solcher Systeme,
entweder im Fabrikationsprozess oder durch Parametereinstellung bei ihrer
Verwendung, eignen sie sich fiir eine Vielzahl von Experimenten. Forschungs-
gruppen rund um die Welt benutzen heutzutage supraleitende Qubits, um
erste Schritte in Richtung des Baus eines Quantencomputers zu bewerkstel-
ligen, um Wechselwirkung zwischen Photonen und Atomen zu untersuchen
und Wissenschaftler fangen an supraleitende Qubits zur Simulation von an-
deren Quantensystemen zu verwenden.

In dieser Doktorarbeit wurde eine spezielle Art von supraleitenden Qubits,
sogenannte Transmonqubits, kapazitiv an eine Transmissionsleitung fiir
Mikrowellenphotonen gekoppelt. Ziel war die Wechselwirkung zwischen
rdumlich entfernten Qubits mittels Photonen zu untersuchen, in Analogie
zur Untersuchung der Kopplung zwischen Atomen im freien Raum. Dies
unterscheidet diese Forschungsarbeit von fritheren Experimenten, bei denen
die Qubits sich in einer Mikrowellenkavitidt befanden und mit einer einzel-
nen Mode des Resonators wechselwirkten oder bei denen die Qubits sich
im freien Raum sehr Nahe beieinander befanden und dadurch miteinander
gekoppelt wurden.

Erste Experimente wurden durchgefiithrt um die Eigenschaften eines einzel-
nen in der Néhe einer Transmissionsleitung realisierten Transmons zu charak-
terisieren. Der hohe Reflektionskoeffizient des Mikrowellenfeldes in der
Transmissionsleitung bei niedriger eingestrahlter Leistung lasst auf eine
starke Kopplung zwischen den beiden Systemen aus Qubit und Transmis-
sionsleitung schliessen.

Bei der Untersuchung der Wechselwirkung zwischen mehreren Qubits be-
nutzen wir die Moglichkeit die Ubergangsfrequenz der Qubits zu verin-
dern, was einer Verdnderung des effektiven Abstands zwischen den Qubits
gleichkommt und uns die Méglichkeit erffnet die durch die Photonen ver-



mittelte Kopplung in Abhéngigkeit vom effektiven Abstand zu untersuchen.
Wenn die Qubits in Resonanz gebracht werden und wir die elastisch gestreute
Mikrowellenstrahlung mittels der Transmissionsleitung messen, finden wir
keine anticrossings. Dies wiére ein Indiz fiir Austauschwechselwirkung zwis-
chen den Qubits. Wir beobachten stattdessen Interferenzmuster, die mit
einem semiklassischen Models beschrieben werden kénnen, das die einzelnen
Qubits quantenmechanisch, aber die durch die Photonen hervorgerufene
Wechselwirkung auf Grund von Interferenz beriicksichtigt.

Unter Verwendung eines Analogdigitalwandlers mit hoher Bandbreite und
schneller Elektronik, die mit einem Virtex-6 FPGA realisiert wurde, kon-
nten Resonanzfluoreszenzmessungen durchgefithrt werden, um das Spek-
trum der unelastisch gestreuten Mikrowellenstrahlung zu untersuchen. Wenn
zwei Qubits in Resonanz gebracht werden, hingt das Spektrum vom effek-
tiven Abstand der Qubits ab. Wir beobachten im Fall eines Qubitabstands
von dreiviertel Mal ihrer Emissionswellenlédnge bei Resonanzfluoreszenzmes-
sung mit kleiner Mikrowellenleistung eine Aufspaltung der Qubitenergien-
iveaus auf Grund von Austauschwechselwirkung. Wenn der effektive Qubitab-
stand auf eine volle Wellenldnge eingestellt wird, tritt ein dark state und
ein bright state auf, wobei die Lebenszeit des dark states um den Faktor
100 lénger ist, als die des bright states. Beide Phénomene kénnen mittels
eines anschaulichen Bildes erklart werden.

Ein quantitatives Verstdndnis dieser Phidnomene wurde in Zusammenar-
beit mit theoretischen Physikern entwickelt. Die theoretische Beschrei-
bung basiert auf einer Mastergleichung, in der die Qubit Qubit Wech-
selwirkung als ein Effekt zweiter Ordnung der Qubit Photonen Wechsel-
wirkung auftritt. Diese Theorie sagt die gleichen Wechselwirkungsphénomene
voraus, die auch im Experiment beobachtet wurden und prognostiziert,
dass die Kopplungsstérke oszillierend vom Abstand zwischen den Qubits
abhangt.
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1 Introduction

Quantum mechanics is a very capricious theory. Even a century after its
foundations were laid, its predictions of how nature behaves at small energy
scales continue to confuse and baffle those who learn about it. The diffi-
culties in developing an intuition for the ways of quantum physics are best
summarized by David Mermin’s answer to the question how to interpret
quantum mechanics: ‘Shut up and calculate’. However, it turns out that
quantum mechanics quickly becomes hard to calculate when the system
under consideration is larger than just a few elementary particles.

The fact that nature on small scales behaves so weird that surrealist art
looks normal in comparison makes quantum mechanics so interesting to
investigate. An example of quantum weirdness is a single particle that is
spread out in space, effectively being at many different positions at once,
until its position is measured, upon which it will have one fixed position.
A second example is that particles in a specific type of state that is called
‘entangled’ show instantaneous correlated behaviour at a distance, defying
the Einsteinian belief that correlations, like information, must travel no
faster than the speed of light. However, maybe the biggest philosophical
repercussion of quantum mechanics is that it obliterates possibility of a de-
terministic world. (It is interesting to note that this blow to determinism
came almost at the same time as Godel’s incompleteness theorem [Godel31],
which proves that for any sufficiently complete set of axioms forming a log-
ical language, that language will contain statements that cannot be proven
to be true or false. This dealt a similarly crushing blow to the philosophy
of logic and mathematics.)

Because it is so hard to develop an intuition for quantum mechanics, it is
still possible to find an experimental system behaving in a surprising way,
even though the fundamental laws are well known. The weirdness of quan-
tum mechanics, and the reluctance of physicists to believe its predictions,
are one of the reasons for it remaining an object of intense research.
Theoretically, physicists still hope to find a more satisfying, more under-
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standable theory of nature that shows the same high level of agreement to
experimentally observed phenomena as quantum mechanics. This dissatis-
faction leads to theoretical investigation towards more intuitive underlying
principles from which quantum mechanics would emerge, and to efforts to
find other interpretations of the laws of quantum mechanics. On the ex-
perimental side, the Bell test [Bell64], which would ascertain that there are
no hidden variables that would lead back to a predictable version of na-
ture, is still investigated intensely. So far quantum mechanics has always
been proven right by experimental Bell tests, but no test has been done
that closes all possible loopholes. Thus, performing a loophole-free Bell
test remains a holy grail in experimental quantum physics.

1.1 Quantum two-level systems

Another motivation for experimentally investigating quantum mechanics
is that it presents the ultimate challenge in engineering. Inspired by the
famous words of Feynman: “There is plenty of room at the bottom”, ut-
tered during a lecture Caltech in 1959, physicists, both theoretical and
experimental, have been trying to get closer to controlling single atoms and
photons, have been investigating how they interact, and have been trying
to engineer quantum systems with well-defined interactions. The simplest
quantum system to study is a two-level system. These systems are called
quantum bits, or qubits for short, and are the quantum-mechanical coun-
terpart of the classical two-valued bit. Some properties of qubits are rather
different from classical bits. For example, whereas a classical bit can have
the value 1 or 0, the qubit can hold both of these values at once (called a
superposition state), but it can for example have 'more’ of the value 0 than
1. All possible states of a qubit can be described by

1) = al0) + B[1), (1.1)

where o and 3 are complex numbers with |a|? + |3|?> = 1. The state of a
qubit can be visualized as a position on a sphere, as shown in Fig. 1.1. An-
other difference between classical and quantum bits is how the information
scales with the number of bits. A system of n qubits can be in a super-
position of 2™ different states. That means that to describe such a state,
we would need 2" complex numbers. Since the number of atoms in the
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universe is estimated to be smaller than 2°°°, a 500-qubit memory contains
more information than any conceivable classical memory could store, not
even if we were able to store one complex number on each atom in the uni-
verse. These are not the only differences between a classical and a quantum
bit, but rather than giving a grossly oversimplified and incomplete account
here, we refer the reader to the excellent introduction given in [Nielsen00].
Quantum two-level systems come in many different shapes, with many dif-
ferent properties. A few examples of qubits under intense investigation are
so-called photonic qubits, where the properties of a photon implement a
qubit [Kok07], quantum dots, where a single electron spin is trapped in a
small volume in a 2-dimensional electron gas, carbon nanotube or nanowire,
defined by an applied electrostatic potential [Hanson08], ions trapped in a
field, cold atoms trapped in a periodic potential [Ritschl3], or nitrogen-
vacancy centers in diamonds [Doherty13]. The latter example exhibits the
extraordinary property of maintaining the coherence of its qubits for sig-
nificant amounts of time even at room temperature. Finally, in this work
we will be concerned with superconducting circuits that behave like a qubit
[Clarke08].

Superconducting qubits make use of the fact that electrons in a supercon-
ductor pair up into Cooper pairs, which are bosons. These bosons condense
into a single ground state, a phenomenon known as Bose-Einstein conden-
sation. The collective of all Cooper pairs can be described by a single
wave-function, characterized by the order parameter ¢ [Tinkham96]. It is
because of this extraordinary property of superconductors that a macro-
scopic device can behave quantum-mechanically as a two-level system. Be-
cause these qubits are implemented as man-made circuits, the properties
of the qubits can be adapted to fit specific experiments, giving the experi-
menter an amount of control over the experimental system which is absent
in other qubit technologies.

The research done with qubits (of any type) is mainly focused on three
goals: quantum computing, quantum simulations, and quantum optics. A
short introduction to each of these is presented below.
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Figure 1.1: The state of a qubit can be visualised as a unit vector pointing
from the center of a sphere to any position on its surface. The
coordinates, here chosen to be # and ¢ determine the qubit
state.

1.1.1 Quantum computing

In quantum computing, the strange behaviour of quantum mechanics —
such as the ‘spooky action at a distance’ Einstein did not believe in, caus-
ing him to construct the thought experiment known as the EPR paradox
[Einstein35] — is harnessed to perform certain computations much more
efficiently than classical computers. The most famous example of this is
Shor’s algorithm [Shor97], which causes an exponential speedup in finding
the prime factors of a number compared to present-day algorithms running
on classical computers. Getting Shor’s algorithm to work on a quantum
computer is a highly relevant goal, as current encryption technologies are
based on the fact that classical computers are inefficient at calculating prime
factors. A sufficiently large quantum computer running Shor’s algorithm
could break current encryption methods, rendering online banking unsafe,
and making online privacy even more questionable than it already is. How-
ever, to run such an algorithm is a huge challenge as it needs thousands of
qubits with low information loss. It is believed that error correction will
have to be implemented to make running Shor’s algorithm a possibility.
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Current state-of-the-art quantum computing experiments use just a few
qubits. It seems, therefore, that running a technologically relevant version
of Shor’s algorithm will need much improvement in quantum computing
technology.

Other quantum algorithms include a database search known as Grover’s
algorithm [Grover96] and an algorithm to solve systems of linear equations
[Harrow(09]. Another very interesting new possibility is the recent work
done on quantum machine learning [Lloyd13, Rebentrost13], which could
warrant privacy in large databases — users would be able to obtain infor-
mation about patterns in the database without having access to specific
details. For example, a database storing DNA would allow users to access
the prevalence of certain pieces of genetic code without allowing access to
the DNA of any individual. This application of quantum technology is
made more appealing by the fact that it would need only tens of qubits
for its implementation, and therefore presents a goal much closer to the
cutting edge of quantum technology than implementing Shor’s algorithm
for encryption-sized primes. However, which things can be done using a
quantum computer and which cannot is very much an open question, and
it is expected that many more quantum algorithms will be found.

The computing power of a quantum computer compared to a conventional
computer is however still unknown, and of great interest to computer sci-
entists. The quantum computer can efficiently factor numbers, which is
a problem in complexity class NP (problems which cannot be solved effi-
ciently, but of which the solutions can be efficiently checked), and which
can hence not be efficiently solved on classical computers with current-day
algorithms. This does not prove that the quantum computer is more pow-
erful than its classical counterpart as it is hard to prove that no classical
algorithms exist that are also able to efficiently factor numbers. Another
complexity class is NP-complete. If a solution is found for any NP-complete
problem, that solution can be adapted to solve all other problems in NP.
It is hoped that a quantum algorithm will be found that can solve an NP-
complete problem. A famous example of a problem in the NP-complete
class is the travelling salesman problem.

Another interesting computer science question that could be solved by a
quantum computer is as follows: classical computers can efficiently solve
the class of BPP problems (problems that can be solved in polynomial
time to a limited precision). This class is a subset of the larger complexity
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class PSPACE, which comprises problems that can be solved by a finite-
sized computer in unlimited time. It remains an open question whether
the size of these complexity classes is actually different. We define a third
complexity class which we call BQP, which contains the class of problems
efficiently solvable on a quantum compute. It is known that BQP must lie
within BPP. If quantum computers are in fact more powerful than classical
computers, this would imply that BQP > BPP, and therefore that BPP #
PSPACE. The equality of these two complexity classes is a long-standing
open question in computer science. For a more complete overview of quan-
tum computing and some of the most famous algorithms, see [Nielsen00].

1.1.2 Quantum simulation

Using quantum systems to simulate other quantum systems is an idea fa-
mously coined by Feynman [Feynman82]. Since it is very hard to calculate
anything about a quantum mechanical system involving more than just a
few atoms or photons using classical computers, the idea is to instead use
quantum mechanical systems over which we have some amount of control
for simulating other quantum systems which are less accessible. The orig-
inal proposal of Feynman mentioned the simulation of field theories using
spins in a solid state system. A more recent proposal [Jordanl2]| contains
such an algorithm, and predicts future algorithms simulating the standard
model of physics.

1.1.3 Quantum optics

The field of quantum optics focuses on the interaction between light and
matter, and is studied using a myriad of systems such as cavity QED, quan-
tum dots, NV-centers and more recently superconducting qubits. Qubits,
consisting of only two levels, can be seen as the most simple version of an
atom. When using an artificial system such as a superconducting qubit,
qubits are therefore sometimes called artificial atoms. Artificial atoms or
qubits, like natural atoms, absorb and emit radiation at the same energy as
the energy difference between its ground state and excited state. As such,
artificial atoms present a fully engineered system with which the funda-
mental interactions between light and matter can be investigated. In this
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thesis, we will focus on research in this direction. More explicitly, we will
be investigating the interaction of two of these artificial atoms which are
placed some distance apart in a one-dimensional space.

Performing quantum optics experiments using superconducting qubits is
a relatively new trend, which started with strongly coupling a qubit to a
resonator [Wallraff04]. The strength of the interaction between microwave
photons and a superconducting qubit opens up a range of experiments not
easily done with other qubit technologies. Moreover, the availability and
maturity of radio-frequency technology due to its prevalence in industry
has been a great boon to the development of experiments in microwave
quantum optics and quantum computing.

Since the demonstration of strong coupling between a superconducting
qubit and microwave photons, examples of quantum optics experiments
using superconducting qubits include the observation of the Lamb shift
[Fragner08], investigating the statistics of microwave photons [Bozyigitl1,
Eichler11], performing the Hong-Ou-Mandel experiment at microwave fre-
quencies [Langl3], shaping microwave photons [Pechall3, Srinivasanl3],
and observing resonance fluorescence and electromagnetically induced trans-
parency for a qubit coupled to a transmission line [Astafiev10a, Abdumalikov10].

1.2 Josephson junctions

In order to make a qubit, it is imperative to be able to address two specific
energy levels of a quantum system selectively. Therefore, the system needs
to be nonlinear, such that its eigenenergies exhibit an anharmonic structure.
In superconductors, such a nonlinearity is readily available in the Josephson
junction.

In 1962, Josephson predicted that a superconductor interrupted by a non-
superconducting layer has the following zero-voltage current [Josephson62].

I; = I.sinp, (1.2)

in which I. denotes the critical current — the maximum supercurrent the
Josephson Junction can sustain — and ¢ is the gauge-invariant phase differ-
ence across the junction. He also predicted that the relation between the
phase difference over such a Josephson junction is related to the voltage by:

d£_2eV

dt  h (13)
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The energy building up in the junction due to the transport through it is
then calculated by using equation (1.2) and (1.3) as:

Ej; —/ I,Vdt = —/ smcpd(p Lk —5(1 —cos ), (1.4)
dt 2e

where the value of the integration constant was determined by the assump-
tion that no energy should be stored in the junction when there is no phase
difference across it. The prefactor hl./2e is also known as the Josephson
energy Fj.
If a voltage develops over a junction, equation (1.4) is not enough to describe
the physics of it. To understand the transport through a realistic Joseph-
son junction, the so-called RCSJ model is used. The acronym stands for
‘resistively and capacitively shunted junction’, which is exactly what the
model entails. The direct transport through the weak link is modeled as
a resistive transport path parallel to the ideal junction, while the super-
conducting leads on both sides of the non-superconductor form a capacitor
(Fig. 1.2). In the case of aluminium / aluminium-oxide / aluminium S-I-S

(@) L (b)
x—» rll x — x —>

Figure 1.2: (a) A realistic Josephson junction is described by the RCSJ
model: transport through it is equal to transport through an
ideal junction, a resistor and a capacitor in parallel. (b) Two
Josephson junctions in parallel create a superconducting quan-
tum interference device or SQuID.

junctions — which will be the junctions used for the experiments presented
here — the value of the resistor, which determines the amount of dissipa-
tion in the junction, can be approximated to be infinite. These junctions
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are then described by an ideal junction placed in parallel to a capacitor.
The energy developed by the capacitor when a voltage is applied over the
junction is described by:

where the dot on the ¢ denotes taking the time derivative, and ®y = h/2e is
the flux quantum. For more on Josephson junctions, an excellent treatment

Aluminum
= Aluminum & \

Oxide \ 2

- - - - . -

Figure 1.3: A Josephson junction can be created by shadow evaporation: a
layer of aluminium is evaporated onto a substrate (the grid in
this figure) through a mask. The aluminium is allowed to oxi-
dize for a controlled time. The angle of evaporation is changed
before evaporating a second layer of aluminium, creating a dis-
placement between the two layers leading to a partial overlap.
This results in a superconductor-insulator-superconductor in-
terface in which Cooper pairs tunnel through the insulator.

is given in [Tinkham96].

1.3 Superconducting quantum interference devices

We will now give a short introduction to superconducting quantum interfer-
ence devices or SQuIDs (we will drop the capitals in the following). A squid
consists of two junctions in parallel (Fig. 1.2b). The transport in a squid
can be divided into a circular current and a current through the squid:

. . I. . .
I, = I.(sing; + sinys) Iy = Ec(smcpl — singq), (1.6)
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Figure 1.4: Scanning electron microscopy images for (a) a Josephson junc-
tion and (b) a superconducting quantum interference device or
squid. Images courtesy of Arkady Fedorov.

where we assume the junctions to be identical. We can now use the fact
that the flux through the loop is quantized: the circulating current acts to
shield some of the flux through the squid loop such that the remaining net
flux is an integer amount of flux quanta. When the self-inductance of the
loop can be neglected, this can be written as ¢1 — o = 2w/ Py with ¢ the
flux through the loop. Applying this to (1.6) results in new expressions for
the current through the squid:

Iy = 21, cos(mop/Pg) sin(p1 — m/Po)
Liy = I.sin(m¢/®g) cos(p1 — md/Po), (1.7)

from which we see that the maximum current through the squid is given by

cos (32 (1.8)

Comparing these relations to the equations describing a Josephson junction,
we see that the squid is equivalent to a Josephson junction with a flux-
tunable critical current.

Isq,maac = 210

1.4 Superconducting qubits

Having the Josephson Junction as a nonlinear element, it is possible to build
various types of superconducting qubits, such as phase qubits, flux qubits

10
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[Orlando99], charge qubits [Biittiker87] and the closely related transmon
qubits [Koch07], and more recently fluxonium qubits [Manucharyan09]. A
good treatise describing several of these qubits is given in [Wendin05]. Here,
we will be dealing with the transmon qubit which is a special type of Cooper
pair box. Hence, the Cooper pair box will be introduced first, after which
the transmon regime will be explained.

1.4.1 Cooper pair box

For the experiments we will be discussing, the transmon qubit was used. To
understand the transmon qubits, we first need to understand the Cooper
pair box qubit. The Cooper pair box was one of the earliest qubits, being
proposed in 1987 [Biittiker87], and first measured in 1998 [Bouchiat98]. In
this section we will introduce the Cooper pair box, and in the next section
we will discuss the transmon regime.

The simplest version of the Cooper pair box consists of a voltage source
connected in series to a capacitor and a Josephson junction (see Fig. 1.5a).
A charge island is formed between the junction and capacitor. For a system

— Gate charge, ng

Figure 1.5: (a) Simplified schematic of a Cooper pair box. (b) Energy level
diagram from the first two levels of a Cooper pair box. Figure
from [Wallraff04].

consisting of a capacitor and a junction, the Kirchhoff laws dictate that the
currents arriving at the island must add up to zero. We equate the current
due to the capacitors I = Q = C;V with the current due to the junction

11



1 Introduction

(1.2), and write the variables into flux using (1.3) and ¢ = <p2° to get:

—Q Cyé = —I.sin (27“25) (1.9)
N0
We have assumed the voltage due to the voltage source to be constant. It
should be kept in mind here that the charge on the island is quantized as
we are dealing with Cooper pairs in a superconductor (Q = 2eN, N € Z).
We compare (1.9) with the Euler-Lagrange equation

o0L oL
ot oz  Ox’
where x is the canonical coordinate of choice. Here, we choose to use the
flux ¢ as a canonical coordinate. The shape of (1.10) strongly resembles

the two rightmost terms in (1.9). Integrating (1.9) according to (1.10), we
find the Lagrangian of this system.

(1.10)

+ I.—cos . (1.11)
T

In this integration, we can introduce an extra term which is constant in
order to take the electrostatic energy due to the constant voltage V, from
the voltage source into account. The energy stored in the capacitor due
to this voltage is equal to Cy(V, — V))2/2, where V is the voltage over the
junction, equal to ¢. This alters the Lagrangian to read

L= G ((]'b—CgV) —i—I;D cos ¢, (1.12)

with Uy, = Cj + Cy. We can then find the canonical momentum conjugate

to ¢:
oL .
—_— = CZ]QZ) - Cg% = Q == 26Ntot7 (113)
o9
with @ the charge on the island, and Ny, the total number of charges on
the island Ny = N — Ny, with Ny a constant amount of charge caused by

the voltage source. The Hamiltonian of the system is given by:

A Iy ®g
Hepp =) —qﬁqﬁ L= *¢2 92 9 C

os(p). (1.14)
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1.4 Superconducting qubits

We can rewrite ¢ in terms of @, the conjugate variable to ¢, as ¢ = (Q+
C4Vy)/Cs. Using this, the Hamiltonian becomes:

Iy®g

Hepp = Z—¢¢— 20 (Q+C,V,)* - cos(9), (1.15)
where we have used the fact that it is allowed to add a constant term to
a Hamiltonian, and have added a term —C’gi /2. We now define Ec =
(€)2/2Cs;, the energy needed to move a charge across a capacitor, and use
that the energy associated with moving a Cooper pair across a junction is
E; = 162% Furthermore, we use the relation between ¢ and N to write the
charge part of the Hamiltonian as a function of N, and define the charge
number due to the gate voltage as Ny, = —C,V,/2e. These modifications

alter the expression for the Hamiltonian to read

Hepp = 4E0(N — N,)? — Ejcos(9). (1.16)

We can impose the usual commutation relation. We rewrite the commu-
tation relation into the variables N and ¢, the number of Cooper pairs on
the island and the phase across the junction

[6,Q = ifi = [, N] = i. (1.17)
To find the eigenenergies of this system, we have to solve
I’AICPB‘W,> = Ek\n> (118)

Before discussing the solutions of (1.18), we discuss a useful modification
of the Cooper pair box qubit. This modification is to use a squid in-
stead of a single junction. Replacing the junction in our equation with
squids is a simple procedure, as a squid loop with two identical junctions
is equivalent to a single junction with a flux-dependent Josephson energy
Ej(¢) = Ejmaz| cos(md/Po)|, with Ejmes = 2E s, Ejs being the single-
junction Josephson energy. A Cooper pair box thus modified is sometimes
referred to as a ‘split Cooper pair box’. As can be seen from (1.13), the
number and phase operators have a similar relation to each other as the
position and momentum operator of a quantum oscillator. It might there-
fore not be surprising to find that the number operator in the phase basis
can be expressed as

.0

N = 1.1
“55 (1.19)
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1 Introduction

similar to the usual momentum operator in the position basis. The eigen-
value problem to be solved to find the spectrum of the Cooper pair box
(1.18) is then defined by multiplying Schrodinger’s equation from the left

by (¢|
E,(¢pln) = (p|Hepplh) —

0 2 ,
Erﬂ/}n(@) = <4EC <7fa¢ - Ng) - EJ(¢) COS(@)) Tﬂn(@a (120)

with ¥, () the wavefunction of eigenstate n in the phase basis. This differ-
ential equation has a known solution in the Mathieu equations (for details,
see [Cottet02]), which provides us both with the eigenenergies E,, and wave-
functions .

Although the phase basis allows for analytically solving the Hamiltonian,
the charge basis is more intuitive to look at, and relatively easy to calculate
numerically. The eigenvalue problem can now be stated as N|n) = N|n),
where we remember that N denotes the number of Cooper pairs on the
island, which is quantized (N € Z). As usual, the states of canonical mo-
menta are related to each other by Fourier transform

1 2T e
m =5 [ e, (1.21)

from which it follows that
eFPn) = |n T 1). (1.22)

The Cooper pair box Hamiltonian can then be written completely in the
charge basis as

crn = 3 (LEC(N = Nyl = 5L () -+ 1]+ n + 1)) )
N
(1.23)

The first few eigenenergies are plotted in Fig. 1.5b as a function of the tun-
able gate charge N,. The transition energy is seen to depend strongly on
the offset charge N,. This means that charge fluctuations will strongly in-
fluence the qubit. The sensitivity of the Cooper pair box to charge noise is a
problematic property when trying to build a quantum computer. However,

14



1.4 Superconducting qubits

when tuning N, to integer numbers, 0E /0N, — 0 so that at these points
the qubit is insensitive to small changes in Ny to first order. The Cooper
pair box is therefore often operated at this point, colloquially known as its
sweet spot. At the sweet spot, the transition energy of the qubit is mini-
mal and equal to E;. When a split Cooper pair box is used, this minimal
transition energy can be varied by changing the flux through the squid loop.

1.4.2 The transmon regime

The transmon qubit is a Cooper pair box which is modified by placing a
capacitor in parallel to the squid loop (Fig. 1.6). This changes the ratio
between E; and E¢ [Koch07]. The Hamiltonian for the system does not
change, except that in the expression for E¢ the capacitor term is replaced
by the equivalent combination of the capacitors in parallel to the junc-
tion. The effect of changing this ratio is shown in Fig. 1.7. The change
in transition energy due to a change in offset charge (the charge disper-
sion) decreases exponentially with increasing ratio of E;/E¢, making the
transmon very insensitive to charge noise at E;/E¢ ratios of the order of
50. The transition energy of the transmon then only depends on the flux
through the squid loop. For transmon qubits, which have a high ratio of
Ej/E¢c due to the extra capacitor, the energy levels can be approximated
by

Ege ~ \/8ECEJ,maz

Cos <7T¢>‘ — Ec. (1.24)
D
This comes at the cost of anharmonicity, which increases algebraically with
Ec/E;. Typical numbers for the anharmonicity (defined here as wef — wye,
with g, e and f denoting the ground, first excited and second excited state
respectively) are around 300 MHz, much smaller than typical transition
frequencies, which are usually in the GHz range. This means that if we
want to use this system as a qubit, only addressing the lowest two energy
states, we have to take special care not to drive the transition between the
first and second excited state. This sets a limit on the frequencies that can
be involved in coherently driving qubit transitions. Much effort has been
put into finding pulse shapes that minimize the loss of information about
the qubit state due to the presence of higher levels, with the most commonly
used pulse shape being the DRAG-Gauss pulse described in [Motzoi09].
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Figure 1.6: (a) An optical microscope picture of a recent transmon design.
In recent transmon designs, the capacitor gap size was increased
to reduce the field density between the capacitor plates, which is
hoped to decrease coupling of the field to two-level fluctuators.
(b) The circuit diagram of a transmon qubit is almost identical
to that for a split Cooper pair box, except for the large capacitor
in parallel to the squid.

1.4.3 The two-level approximation

When talking about quantum bits, we inherently imply that our quantum
system has two levels. As we have discussed, the transmon is only weakly
anharmonic, and therefore care needs to be taken to stay in the subsystem
spanned by its lowest two eigenenergies. If we are sufficient careful such
that we can ignore the presence of higher levels, we can use a more elegant
description for the transmon qubit

o hwge
H= ?ga (1.25)

where the Larmor frequency wge is given by (1.24).

1.5 A qubit in a resonator — the Jaynes-Cummings
model

To use a transmon for experiments, we have to be able to address it and
read it out. The most used method for that is to place it in a coplanar
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Figure 1.7: The first three energy levels of a transmon qubit for different ra-
tios of Ej/E¢. The change in in transition frequency as a func-
tion of charge goes down exponentially with increasing E;/E¢,
while the anharmonicity decreases algebraically. The image is
from [Koch07].

waveguide resonator (coplanar waveguide transmission lines will be intro-
duced in 3.1.1). The resonator, formed by interrupting the center conductor
of a coplanar waveguide transmission line in two places (see 1.8a), supports
only modes of light at integer multiples of its fundamental frequency, which
is set by its spatial dimensions. This allows for coupling a qubit to a single
mode of light via dipole coupling. This system is a completely man-made
analogue to cavity quantum electrodynamics (cavity QED) [Haroche89],
where an atom (or multiple atoms) are strongly coupled to a single mode of
light contained by a high-finesse cavity. This artificial analogue, where both
the cavity and the atoms are replaced by superconducting circuits, is called
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1 Introduction

circuit QED. The coupling between a single mode of light and a two-level
system is of great fundamental interest, and due to the relative simplicity
of the system it can be described very elegantly by the Jaynes-Cummings
Hamiltonian [Jaynes63]:

X hw 1
Hjc = 296 65 + huw, (a*a + 2) + hg (a‘f&* + &+a) : (1.26)

where wge is the transition frequency of the atom or qubit (we will use
the terms ‘atoms’ and ‘qubits’ interchangeably here for quantum two-level
systems) and w, is the resonator frequency. 6% and 6~ denote the atomic
raising and lowering operators, and @ and 4! the photonic annihilation and
creation operators, respectively. g denotes the coupling strength between
the atoms and photons. In the last term we see that if the coupling between
the photons and the atom is not zero, a photon can be absorbed resulting
in the atom being excited, and that the atom can relax from the excited
state resulting in the creation of a photon.

Another advantage to placing the qubit in a coplanar waveguide is that
its electrodynamic environment is dominated by the resonator mode. The
noise in the transmission line which is not at the frequency of the resonator
gets rejected by the resonator, and therefore does not couple to the qubit.
This is known as Purcell protection [Purcell46].

1.6 Multiple qubits in a resonator: the
Tavis-Cummings model
In (1.26) we described the coupling between a single atom and a single mode

of light using the Jaynes-Cummings model. For multiple atoms, there is
another model named after its inventors Tavis and Cummings [Tavis68].

.\ i hw; o
Hre = hwyala + Z (2‘70'37]' + hg;(al 5+ ;ra)) . (1.27)
J

The only difference with (1.26) is that we sum over all j qubits positioned
in the resonator. In 1.8b such a system is depicted schematically.

We have now described a single qubit in a resonator in equation (1.26)
and multiple qubits in a resonator in equation (1.27), but there are still
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1.7 The 3D cavity
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Figure 1.8: The coupling of two-level systems to a single mode of light has
been studied in cavity QED using atoms and high-finesse optical
cavities, and analogously in circuit QED using superconducing
qubits and coplanar waveguide transmission line resonators. A
system of one qubit coupled to one photonic mode (a) is de-
scribed by the Jaynes-Cummings model. Having two or more
qubits (b) is described by the Tavis-Cummings model.

more combinations of resonators and qubits, such as the Jaynes-Cummings-
Hubbard model which describes many coupled cavities which each house
one qubit. In state of the art circuit QED experiments, there is usually a
mix of having multiple coupled resonators (not necessarily resonant), each
of which can have more than one qubit. An example of such a sample is
shown in 1.9.

1.7 The 3D cavity

Another environment to embed superconducting qubits in has recently re-
ceived much attention: the so-called 3D cavity [Paik11l]. These resonators
consist of a block of metal with a cigar-shaped cavity machined out. Due
to the much bigger mode volume in these cavities, the electric field den-
sity is much smaller, resulting in better coherence properties of the qubits
through a decreased coupling of the field to two-level fluctuators. On the
other hand, the size of the capacitor plates of the transmon qubit(s) needs

—_
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Figure 1.9: State-of-the art circuit QED experiments use multiple res-
onators and multiple qubits. This chip, used for teleporting
the state of a qubit [Steffen13], features three resonators and
four qubits, two of which are shared between two resonators.

to be increased to still achieve a strong coupling between the cavity mode
and the qubit. Since there is usually no direct way to locally apply small
fluxes to a squid loop, these qubits consist of a single junction between
two large capacitor plates. While it is technologically harder to selectively
address and read out qubits in such an architecture, the much higher co-
herence times (71 ~ 100 us [Rigettil2] instead of a few s in traditional
circuit QED experiments) have made sure that superconducting qubits in
3D cavities are being researched in labs around the world.

1.8 Qubits in an open transmission line

Another possibility is to place the qubit in an open transmission line. This
was first suggested by Shen [Shen05b], and first experimentally implemented
by Astafiev and coworkers [Astafiev10al], who used a flux qubit coupled to
a transmission line by means of kinetic inductance. What makes this sys-
tem so interesting for experimental investigation is that it is completely
analogous to having a real atom in a one-dimensional space. However, us-
ing superconducting qubits and transmission lines makes it much easier to
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1.8 Qubits in an open transmission line

construct such a one-dimensional space, and to achieve a strong coupling
between the photons propagating in the one-dimensional continuum and
the artificial atom. After the initial experiments, which measured reso-
nance fluorescence of a single artificial atom [Astafiev10a], the same group
has measured time-resolved dynamics [Abdumalikov11] and electromagnet-
ically induced transparency [Abdumalikov10] in the same system. Further-
more, the Per Delsing group used a single transmon in an open transmission
line to measure the giant cross-kerr effect [Hoil3a], to measure the second
order correlation functions [Hoil2], and to implement a single-photon router
[Hoill].

In this work we will concern ourselves with multiple qubits in a transmission
line. Such a system is particularly well-suited for studying photon-mediated
interactions between distant quantum systems in an open environment. Re-
search on such systems was previously done in trapped ions [DeVoe96], but
interaction effects were small. When atoms interact in a 3D space, the
probability of a photon emitted by atom A to hit atom B is given by the
solid angle formed by the scattering cross-section of atom B divided by 4,
the solid angle of the full spherical shell. If the two atoms are now placed
in a one-dimensional space, the situation changes drastically. A photon
emitted by qubit A can now either go left — away from atom B, or right
— towards atom B. The probability for a photon emitted by A to hit B is
therefore much higher in a one-dimensional space, and does not depend on
distance. The interaction effects between atoms due to photon exchange are
therefore greatly increased when reducing the dimensionality of the experi-
mental system. Multiple artificial atoms which couple strongly to a shared
transmission line thus form an experimental system extremely well suited
for studying the interactions of atoms in an open space.

Investigating such a system also seems to be logical from a historical view-
point, as schematically represented in Fig. 1.10. Interactions between a
single photonic mode and an atom were thoroughly experimentally investi-
gated in cavity QED, and later in its on-chip sibling circuit QED. Subse-
quently, the number of atoms was increased, and the interactions between
atoms mediated by a single mode were investigated. Similarly, the number
of atoms could be kept constant while increasing the number of modes cou-
pling to the atom. The next logical step, indicated by the grey arrows in
Fig. 1.10 is then to investigate the coupling of multiple atoms via multiple
photonic modes.
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Figure 1.10: First the interactions between a single mode and a single atom
were investigated (left upper panel). Experiments looking at
interactions between a single mode and multiple atoms (left
lower panel) and between a single atom and multiple modes
(right upper panel) followed later. Now, we investigate the
coupling of multiple atoms to multiple modes.

1.9 The structure of this thesis

This thesis is structured as follows. After the introduction, of which this is
the last section, the experimental setup is explained in chapter 2, includ-
ing several measurement methods used to obtain the experimental results
presented later. In chapter 3, expressions are derived for the transmission
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and reflection coeflicients of a single qubit in an open transmission line,
and experiments are presented exhibiting the behaviour of a single quan-
tum system coupling to a continuum of modes. In chapter 4, we will use
the expressions for single qubits to construct a transfer-matrix-based theory
to explain the elastic scattering properties of two qubits in a transmission
line. In chapter 5, we will explain the full quantum mechanical theory of N
qubits in a transmission line, followed by experimental results that confirm
the predictions of this theory. In chapter 6, we allow ourselves to speculate
about the future experiments and technologies building on this work.
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2 Experimental setup and
measurement techniques

Performing measurements on quantum systems always presents a challenge.
Quantum phenomena are most apparent at small scales, and a quantum sys-
tem is often easily perturbed by the thermal environment or by the act of
measuring it. Much care must be taken to reduce noise as much as possible,
and to improve the signal-to-noise ratio where possible. In our experimen-
tal setup, several precautions are taken to reduce unwanted interactions
between the quantum system and the environment, which otherwise would
result in a loss of information about our quantum system leaking out to the
environment.

One way to reduce the coupling of the environment to the quantum system
involves placing the qubits in a magnetic shield made out of a nickel-iron
alloy with high magnetic permeability (see Fig. 2.1a). This reduces the
coupling of stray magnetic fields (for example magnetic fields caused by
magnets in other experiments) to the qubits. To reduce the coupling of ex-
ternal microwave radiation and thermal radiation to the sample, we embed
it in a closely fitting copper box which we call sample box. The different
parts of the sample box are shown in Fig. 2.1b,c. The printed circuit board
(PCB) containing the sample (labeled with ‘4" in 2.1) is fixed to the first
part (‘1”in 2.1), which also houses the coils used for applying magnetic fields
to the qubits. The second part (part ‘2’ in Fig. 2.1) fits closely around the
chip and the coplanar waveguides on the PCB to prevent the formation of
whispering gallery modes. The third part (part ‘3’ in 2.1) affixes the total
assembly to the cryostat and contains adaptors for connecting the sample
to the microwave lines, which are used for manipulating and measuring the
quantum system. The total assembly — the sample bonded onto the PCB,
and the PCB mounted inside the sample box, is fixed inside a dilution cryo-
stat which cools the chip down to temperatures between 40 to 90 mK, in
order to make sure that the thermal energy of the immediate environment
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2 Experimental setup and measurement techniques

is much smaller than the qubits’ transition energy (k7" < hwge).

Figure 2.1: Protecting the sample: (a) the sample box is placed in a shield
made out of a high magnetic permeability alloy. The sample,
mounted on a printed circuit board (d) is put into a tightly
fitting sample box (b,c). The sample box consists of three parts.
The printed circuit board with sample and the coils for magnetic
biasing are mounted on part one (d). Part two closely covers the
sample and lines to avoid whispering gallery modes. Part three
closes the assembly and allows for microwave cables to connect.

2.1 Magnetic biasing of the qubits

For most experiments, the qubits need to be tuned to specific frequencies.
As discussed in section 1.4.2, the transmon eigenenergies depend on the
flux through the squid loop. There are two different strategies in common
use for applying flux to the qubit. The first strategy involves placing small
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2.1 Magnetic biasing of the qubits

superconducting coils close to the qubits, with a specific coil preferably
coupling much stronger to one qubit than to the other qubits. The second
strategy involves fabricating a local flux control line on the chip close to
the squid loop. The current through a straight line causes a cylindrical
magnetic field around it, changing the flux through nearby squid loops.
This second strategy has two advantages: it generally allows for very fast
flux pulses, tuning the qubit frequencies in nanoseconds, and moreover is
usually more qubit-selective. A disadvantage is that applying a current
through non-superconducting parts of the setup can heat up the sample,
especially when such a current is applied continuously. When applied for
very short times, one has to very carefully characterize the lines through
which the currents are applied, lest the pulse shape at the qubit be different
from the desired pulse shape.

For the experiments presented here we were interested in a static tuning
of the qubit transition frequencies, and thus we used superconducting coils
mounted below the chip. A voltage is applied at room temperature to a
home-made voltage-to-current converter which also acts as a low-pass filter
(see Fig. 2.2). The total resistance of the converter is designed to convert
the range of the voltage source (-20 to 20 Volts) to a flux through the
nearest qubit in the order of two flux quanta. The capacitor serves to route
high-frequency noise to ground.

In practice, each qubit will be affected by the magnetic field due to any
single coil. To still be able to tune the qubits separately, the coupling
between each qubit and each coil must be known, such that cross-coupling
effects can be compensated for. In order to do that, the mutual inductances
between all coils and qubits need to be known. They are measured by by
sweeping the voltages on each coil one by one and fitting the qubit curves,
the fitting parameters being the mutual inductances between each qubit and
coil (N*M inductances for N coils and M qubits) and the flux offsets from
the environment (M offsets for M qubits). One such measurement with fit
curves is shown in Fig. 2.3. For three qubits, we have the following relation
between the voltages applied by the room-temperature voltage source and
the fluxes seen by the qubit:

®1 My Mo Mg i D
G2 | =|Mar My Mo | -|Va|+|P2]. (2.1)
®3 M31 M3y Mss Vs 3
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2 Experimental setup and measurement techniques

Figure 2.2: (a) The schematic of a voltage-to-current converter and filter,
containing two resistors in series and a capacitor to ground for
each of its two lines. Here we show only the inductance between
coil ¢ and qubit j, but each coil couples to each qubit. (b)
When soldering such a filter, care must be taken not to have
any contact between the two lines.

where M;; denotes the mutual inductance between qubit ¢ and coil j. Using
the approximate identity for calculating the qubit transition frequencies
(1.24), we have for qubit j

cos (W(M V+ <I_5)J>

— Fc; 2.2
(I)O C.5s ( )

Weg,j R \/ 8Ec j Ermaz,j

where M is the matrix of mutual inductances, V the vector of voltages on
the coils, and ® the vector of flux offsets at the qubits. While (2.2) shows
the approximate expression for finding the qubit frequencies from the fluxes
for clarity, for the experiments presented later we used the Mathieu func-
tions to calculate the exact qubit frequencies (up to the assumption that
the junctions in the squid are equal).

Full control over the individual qubit fluxes is only possible if the number
of coils used for biasing the qubits is at least equal to the number of qubits.
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0
Voltage on coil C (V)

Figure 2.3: Spectroscopy for three qubits while sweeping the voltage over
one coil. Color denotes the transmitted power through the sys-
tem. The continuous lines are manual fits used to determine
the mutual inductances between coils and qubits. Here, the
voltage over the big coil was swept, which has a similar mutual
inductance with each qubit.

Three different coil sizes where available for the experiments presented in
this thesis. The so-called ‘big coils’ usually couple to all qubits with almost
equal strength since the coil size is bigger than the chip size. There are also
‘small coils’, of which two can be placed in the cutout in the sample holder
(see Fig. 2.4a), and which couple much more strongly to the qubits they
are placed closest to due to their smaller size. Usually, one or two small
coils are placed in the cutout on the sample box, after which a big coil is
mounted on top. Finally, there are so-called 'tiny’ coils available, of which
three fit in the cutout in the sample holder. These, together with one big
coil, can be used to individually tune up to four qubits.

The qubits regularly need to be tuned to specific frequencies for a specific
experiment. Inverting (2.2), the qubits can simultaneously be tuned to ar-
bitrary frequencies. An example of this control is given in Fig. 2.5 where
we have used two qubits to draw [¢) in frequency space. The precision
of this procedure depends on the resolution of the voltage source and the
shape of the mutual inductance matrix. In the presented experiments, the
resolution of the voltage source resulted in a resolution of ~ 1 MHz in the
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Figure 2.4:

Figure 2.5:

30

(a) There is a cutout in the bottom of the sample holder, which
can hold either two ’small’ or three 'tiny’ coils. The big coil is
then mounted on top. (b) A big and a small coil.
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After finding the mutual inductances between coils and qubits

and the flux offsets for each qubit, the qubits can be tuned to
arbitrary frequencies. Here two qubits were used to write |1))
in a spectroscopy plot. The color scale was tuned to increase
the clarity of the picture. When the spectroscopy tone is not
resonant with a qubit, the transmittance [¢|? ~ 1.



2.2 Microwave setup

frequency of the qubit coupled most strongly to this coil. When tuning mul-
tiple qubits, the uncertainty in the qubit frequencies due to limited voltage
source precision is increased, as any qubit will be affected by the limited
resolution in setting each coil. One way to improve the resolution is to use
multiple voltage sources per coil, with the second source being connected
to a filter box with a higher resistances, resulting in smaller currents at the
coils. These first source would then be used for coarse-grained flux-tuning
of the qubit, after which the second source would be used to fine-tune the
qubit to the right frequency. A disadvantage of this method would be the
increased noise resulting from using two voltage sources and two resistive
filter boxes.

2.2 Microwave setup

The transition energy of the qubit is in the microwave regime. From an en-
gineering point of view, having a system sensitive to RF frequencies is an ad-
vantage due to the availability of high-quality RF sources and components.
However, a disadvantage is that such low frequencies necessitate cooling
down the sample to millikelvin temperatures to ensure that hw > kgT.
The microwave setup can be considered to consist of three parts: the first
part contains lines and components between the microwave sources and the
dilution refrigerator, the second part consists of the lines and components
within the dilution refrigerator, and a third part connects output lines from
the cryostat to a down-conversion setup and finally to an analog-to-digital
converter and data-acquisition card.

2.2.1 Driving the qubits

For most experiments presented in this work, the qubits were driven via
the transmission line. Due to the symmetric setup with circulators on
either side of the sample (Fig. 2.8), both reflected and transmitted fields
can be measured (Fig. 2.9). The generators are connected to the dilution
refrigerator as in Fig. 2.6.
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Figure 2.6: A schematic for the microwave setup used for driving and mea-
suring the quantum system. Only one down-conversion board
is shown. The second board is identical except that it has no
connection to the Virtex-6 FPGA. The two different FPGA’s
were used for different measurements, for details see text.

2.2.2 Cold setup — reducing the Johnson-Nyquist noise

The superconducting circuits under investigation are cooled down to tem-
peratures of 40 to 90 mK, reducing thermal noise due to the environment.
However, the electronics used for controlling and measuring the quantum
system cannot be cooled down to these temperatures. The room temper-
ature control electronics exhibit room temperature noise characteristics,
which would randomize the quantum system if placed in direct contact.
To prevent that, we use high-amplitude signals at room temperature, such
that the signal-to-noise ratio is high, and attenuate that signal at lower
temperatures. Each time the signal is attenuated, so is the noise. But each
attenuator also adds its own (50Q-equivalent) noise at its own physical
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2.2 Microwave setup

Figure 2.7: To reduce noise, the incoming signal is passed through attenu-
ators which are thermalized to local dilution cryostat temper-
ature using copper connections. This is done at the 4K, 0.1K
and base stage.

temperature (an attenuator can be described in the framework of quantum
mechanics as follows: for an input signal a at the attenuator, the output
signal is vVAa + 1 — AiL, with A the annihilation operator for the noise
added by the attenuator and A the attenuation factor). As can be seen in
figure 2.8, we attenuate the signal with —20dB or a factor hundred in power
at the 4 Kelvin stage, the 0.1 Kelvin stage, and at the baseplate, which was
at temperatures between 40 mK and 90 mK during the presented experi-
ments. The noise at the baseplate due to room temperature electronics is
10~ times the room temperature noise plus 10~ times the noise added
by the first attenuator, which is equivalent to the noise caused by a 50 Q2
resistor at 4K. The attenuators at lower temperatures still add 1072 times
the attenuator noise at 0.1K plus attenuator noise at the baseplate. How
Johnson Nyquist noise affects the qubit is discussed later in section 3.1.3.
A quantum mechanical explanation for Johnson-Nyquist noise (in the low
temperature limit) was devised by Caldeira and Leggett [Caldeira83], and
a concise introduction is given in [Devoret97].
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Figure 2.8: (a) The Vericold dilution refrigerator when the shields are taken
off. (b) Schematic of the Vericold lines. Here only one charge
and flux line are shown as all are identical.

2.2.3 Readout technology

Since research on qubits deals with single quantum systems emitting single
photons, the measured signals are necessarily very small in amplitude. The
signal-to-noise ratio is typically much smaller than one, and averaging is
necessary to obtain a signal which can clearly be distinguished from the
noise. However, even if we can average out noise that is fast compared to
the measurement time, it still will not result in a usable signal unless the
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2.3 Amplification

Figure 2.9: Radiation is applied from one side. Both reflection and trans-
mission can be measured.

noise at lower frequencies is relatively small, including known low-frequency
disturbances to the system such as temperature or flux drifts. In other
words, the system needs to be stable during the entire time over which the
measurements are repeated. Hence it is imperative to optimize the signal-
to-noise ratio in order to decrease measurement time, and to increase the
probability that a measurement can be done within the amount of time the
system can be considered to be stable.

As can be seen in figure 2.8, signals coming from the sample are routed
towards low-temperature high electron-mobility transistor (HEMT) ampli-
fiers. After amplification, the signal enters the room-temperature down-
conversion setup shown in 2.6 in order to perform heterodyne measure-
ments, which are explained in section 2.4.

2.3 Amplification

Because typical signals in our experiments are small, they need to be am-
plified. It is important to realize what effect this has on the signal. For a
signal @ coming from the sample, an amplifier will magnify this signal by
the amplifier gain G, but will also add noise. The commutation relation for
the annihilation operator @ is [af, a] = 1. After the amplifier with gain G we
have a signal described by signal operator §. Because the commutator has
to be equal to one, this signal operator is not simply given by vGéa. We have
to add another term proportional to the creation operator ht of the added
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2 Experimental setup and measurement techniques

noise: 8(t) = VGa(t) + /G — 1ht(t) (Fig. 2.10). By adding this second
term, with ht the fluctuation creation operator, the commutator [§T, §] is
still unity. We can now calculate the power of the noise due to the amplifier
from its gain G by setting the signal to zero and calculating the power spec-
tral density. We assume the noise to be thermal. It then follows that the
autocorrelation function is (31(£)3(0)) = (G — 1)(h(t)h(0)). The thermal
noise is approximately white, and contains no correlation between its values
at different times. Therefore we have that <;L(t)?LT(t)> =(t)(N +1), and

the autocorrelation function of the signal is <§T(t)§> =(G-1(t)(N+1).
The power spectral density of the noise, which is given by the Fourier trans-
form of its autocorrelation function, is then S(w) = (G — 1)(N + 1), with
N the number of noise photons.

at) N V@a(t) + V& —Thi(t)

>~

Figure 2.10: An amplifier provides gain, increasing the signal amplitude,
but simultaneously adds noise.

2.4 Heterodyne measurements

The coherently scattered light is detected using a heterodyne measurement
scheme. A circulator was placed on either side of the sample, so that ra-
diation could be applied and measured from both sides of the chip. This
way, both the reflected and transmitted fields could be measured. A sim-
plified schematic of the heterodyne measurement setup is shown in fig-
ure 2.11. The full warm part of the measurement system is given in fig-
ure 2.6. The electric field at the output of the system is proportional to
E(t) i (&(t) + &T(t)). If we look at a mode of the field at frequency w

we can write the field in the Heisenberg picture as (a(t)e ™! 4 af (t)e?) /2,
with a(t) changing much slower with time than w. Such a signal (not lim-
ited to a single mode) enters our down-conversion setup at position 1 in
figure 2.11. We then perform analog down-conversion by using a mixer to
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2.4 Heterodyne measurements

modulate the input signal with an oscillating signal cos(wp,ot), where LO is
an acronym for local oscillator. The resulting signal is a multiplication of
the two input signals at the mixer. At position 2 in 2.11 we therefore have
%(@e*i(w*ww)t + deHwtwro)t 4 gfeilw—wio)t o gieilwtwiolt) (a quantum-
mechanical description of a mixer can be obtained by considering it as an
attenuator with a time-dependent attenuation factor). The low-pass fil-
ter removes the terms containing the sum frequencies, such that we have
%(&e*i(‘”f“’w)t +afei@—wLolt) at position 3 in the figure. Finally, in the dig-
ital down-conversion (DDC), the signal is digitized, and two copies of the
signal are processed in parallel. One copy is multiplied with a cosine func-
tion, and we call the result the I quadrature. The other copy is multiplied
with a sine function, resulting in the QQ quadrature. The signal then gets
reconstructed from the quadratures as I + (). Since we have the identity
e™! = cos(wt) + isin(wt), it is clear that the combination of these opera-
tions is identical to multiplying the signal at position 3 in figure 2.11 with
et If we now choose the frequency of the digital down-conversion equal
t0 w — w0, this results in 2 (a+ afe?©@~Lo)t). The last of these terms gets
digitally filtered out, so that at the end of our measurement chain we have
I+1iQ x a.

It should be stressed here that the field at the input of the analog-to-digital
converter contains both electric and magnetic field contributions. The ADC
only measures the real part of the electric fields only, which is akin to mea-
suring a single quadrature of the field. However, as we record an oscillating
field as a function of time, we are able to extract both quadratures of the
field due to the time-correlations within the signal.

cos(wrot)

\ 3 ! T_'T' 4 digital\ 5
lowpass bbC lowpass

filter Q "L“1 filter

Figure 2.11: A schematic of a heterodyne detection scheme, as explained in
section 2.4.
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2.5 Coherently scattered radiation

Measurements of coherently scattered radiation were done using the Virtex-
4 Field-Programmable Gate Array (FPGA) for data acquisition and pro-
cessing. The data is digitized at a rate of 100 MHz, or one data point every
10 ns, for 1024 (or 219) consecutive points. A set of consecutively measured
points will be referred to as a trace in the following. These measurements
are repeated every 12.5us. The digital down-conversion (DDC) is done by
multiplying the signal with a four-point sine (0,1,0,-1) and cosine (1,0,-1,0)
as shown schematically in figure 2.11. This way, only sign-flips and multi-
plications by 0 are needed, making the DDC computationally very efficient.
To get a good signal-to-noise ratio, multiple traces are measured and aver-
aged. The averaged trace gives us the expectation value (a) as a function
of time.

So far we have not discussed noise. We can take into account that any
measured signal § contains noise by stating § = a+ iLT, where @ is the signal
annihilation operator, and ht the noise creation operator. After averag-
ing we then find (8) = (a) 4+ (h'), but since the noise fluctuates randomly
around zero, we get that <7LT> = 0, such that only the signal remains.

The act of averaging has a second effect. When the heterodyne detection
scheme was explained in section 2.4, we only looked at a single mode of the
field at a certain frequency. However, in reality there will be modes at any
frequency at the input port of the mixer, some of which will be due to noise,
and some of which will be due to the system under investigation. When
measuring coherently scattered light, we choose the LO frequency and the
frequency at which the DDC is done (also known as the IF or intermediate
frequency) such that they add up to the frequency with which we drive
the system. Besides coherently scattered radiation, the quantum system
can scatter light incoherently. The random phase of such incoherently scat-
tered radiation will cause it to average to zero when the measurement is
done many times.

Averaging also affects the bandwidth of radiation that is detected. If a sin-
gle trace is measured, the bandwidth of radiation that will be detected is set
by the length of this trace T'. Signals which are detuned from the vro + v
by more than 1/7" will average out, so the measurement bandwidth for this
detection scheme is ~ 1/T. Increasing the number of averages by N has
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2.5 Coherently scattered radiation

the same effect as as increasing the length of the measurement to NT', and
therefore reduces the bandwidth to 1/NT.

2.5.1 Background subtraction

Not only the qubits exhibit frequency-dependent transmission and reflec-
tion coefficients. While the components used in our setup are ideally per-
fectly impedance-matched in their working bandwidth of 4 to 8 GHz, in
reality there are always some imperfectly matched cables, and the compo-
nents often have a frequency-dependant attenuation. To clearly see which
signatures in a measurement are due to the qubits, and which are due
to impedance mismatches, we subtract the spectrum of the components
and lines from the signal. To measure the background spectrum, we tune
the qubits out of the bandwidth of our setup, and measure how much of
our input signal is transmitted and reflected by the components and lines
as a function of frequency. These background transmission and reflection
amplitudes can then be used to calculate the transmittance (normalized
transmitted power) and reflectance (normalized reflected power) due to the
qubits from the measured transmitted and reflected amplitude according to

1tz d

t2 L measure 2.3
o = 1012 2
‘T|2 _ |T|$neasured (24)

b' —_— .
T g + [l

The suffix 'bg’ denotes background measurements. Typical traces of the
background spectra in reflection and transmission are shown in Fig. 2.12.
While we cannot be conclusive based just on the background reflection
and transmission, the non-flat background indicates that the qubit might
be subject to an electromagnetic environment which does not have the
completely uniform density of states that is expected for an open one-
dimensional environment. In section 3.1.2 we will come back to this point.
It should also be pointed out that it matters which frequencies the qubits
are tuned to during the background spectrum measurements. Usually, for
measuring background traces, the qubits are tuned to frequencies below the
bandwidth such that only one background trace is needed for any measured
trace within the bandwidth. However, it makes a difference for the back-
ground if a qubit is tuned below or above the measured frequency. The
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Figure 2.12: The power reflected and transmitted by the lines and compo-
nents as a function of frequency. The transmitted and reflected
powers are not normalized.

qubits can form weak standing modes with any impedance mismatches in
the entire setup. Therefore, if the qubits are tuned to low frequencies dur-
ing a background measurement, harmonics of weak standing modes at these
lower frequencies will be included in the background measurement but not
in the measurement with the qubit tuned to its frequency of interest. In
such a case, part of the background that will be subtracted is not part of the
actual background during the experiment. In Fig. 2.13 this is most clearly
seen when looking at both sides of the line caused by the lowest-frequency
qubit — the ripples in the background are more pronounced on the right side
of this qubit than on the left side. The quality of background subtraction
is therefore dependent on the specific measurement done. Fig. 2.13 shows a
more affected background than is typically the case, usually the ripples in
the background are less pronounced after background subtraction. These
effects could be prevented by tuning the qubits to higher frequencies during
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2.6 Power spectral density measurements and resonance fluorescence

background measurements. The qubits used in the presented experiments,
however, did not have high enough maximum transition frequencies, so that
we were not able to tune all qubits above the measurement range of interest.

™ =
T T
e U]
o) &
o) &
3 3
g g
"8 6 4 2 0 2 4 6 8 "8 6 4 2 0 2 4 6 8
Voltageon Coil A (V) Voltageon Coil A (V)

Figure 2.13: The frequencies of three qubits are shown as a function of the
voltage applied to coil A before (a) and after (b) background
subtraction. The non-uniform background in (b) shows that
background subtraction was far from ideal in this case.

2.6 Power spectral density measurements and
resonance fluorescence

As mentioned in section 2.5, averaging the measured voltages proportional
to § causes incoherently scattered light to cancel. This necessarily includes
all inelastically scattered light. Inelastically scattered light can however
reveal interesting properties of the system under investigation, such as its
power spectral density S(w).

To understand how to measure power spectral densities, we start off with
recalling that after the digital down-conversion but before averaging, we
have that (I +iQ)(t)  §(t) = a(t) + ht. Using the fast electronics of the
Virtex-6 FPGA, we perform a fast Fourier transform (FFT) on the data
(details are given in section 2.6.3), resulting in FT(3(t)) = a(w)~+hf(w). We
multiply this result with a complex conjugated copy of itself to get FT (5(¢))-
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2 Experimental setup and measurement techniques

FT((t) = 5(w)éT(w) = [8(w)|?> = St [w]. Using the convolution theorem
we know that this is equal to the Fourier transform of the autocorrelation
function, which is given by the convolution of a signal with itself: R, (7) =
(8(t) % 8T(=1)) (1) = [, 3(t)8T(t — 7). Our system is assumed to be time-
translation invariant, as we expect the system to reach a steady state well
within the measurement time, such that (3(t)57(t — 7)) = (5(7)57(0)). We
can write out the relation between the power spectral density function and
the autocorrelation function as

Ssstlw] = FT [(351)] = FT [Ryt(7) (2.5)

Writing the field operators in their signal and noise creation and annihila-
tion operators, we have R i (T) = Ryt (T) + Ran(T) + Ryipt (T) + Rpip (7).
The signal and noise are independent such that (ah) = (a)(h), and since
(h) = 0, only the autocorrelation terms for the signal and noise remain.
The experiment is then repeated many times and averaged, after which we
obtain the expected autocorrelation functions (331) = (aat) + (Ath), or, us-
ing the linear nature of the Fourier transform, we obtain the power spectral
densities (Sgt[w]) = (Saat(w]) + (Sjip[w]). For a more rigorous and com-
plete account of how PSD measurements are performed in our experimental
setup, we refer to [Langl1].

2.6.1 Diffmode measurements

In experiments where a quantum signal is amplified by a HEMT amplifier
before it is measured, the noise is usually much bigger than the signal. This
is due to the HEMT amplifier. We therefore expect the signal of interest
R4+ to be drowned in the autocorrelation of the noise R;;;. To counteract
this, we use a measurement mode known as ’diffmode’. In diffmode, for
each set of parameters, we first measure the autocorrelation function of the
system with the drive switched on, yielding (aa') + <}ALT;L>, and then repeat
the measurement with the drive tone off, yielding (hfh). Where diffmode
differs from usual measurements is that when adding the Power spectral
densities in order to obtain a result proportional to the average, each trace
is multiplied by a factor —1", with n the trace number, where we start
counting at 0. In other words, each background trace gets subtracted from
the preceding signal trace to give (aaf).

The practical implementation of diffmode is as follows. The timing and
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Figure 2.14: (a) An AWG, a microwave source and an FPGA are used to
perform diffmode measurements. (b) Pulse schematic for diff-
mode measurements.

triggering is done by a pattern which is loaded onto an arbitrary waveform
generator (AWG). The triggers, generated at the 'marker’ channels of the
AWG, are connected to the microwave source and the FPGA (Fig. 2.14).
The trigger input on the microwave source is set to ‘inverted’, such that a
low level on the marker results in the microwave source being switched on,
and vice versa. Typical rise times of the output signal of the microwave
generator are less than 100 ns, and the times it takes for it to react to a
trigger can be as long as 200 ns. The diffmode trigger sequence consists of
two patterns. The first pattern starts with the microwave source already on.
After 220 ns, the FPGA is triggered to start its measurement, for which any
trigger length longer than 8 ns can be used. The Virtex-6 FPGA measures
for 8192 ns. The measurement stops, and the source stays on until the end
of the pattern. The second pattern starts 12.5 us after the start of the first
pattern. It switches the microwave source off at the start of the pattern
(at t = 0), and the FPGA is triggered to measure at t = 220 ns. 8192 ns
later, the FPGA stops measuring. At ¢ = 11us, the microwave generator is
switched back on, which is ~ 1.7us before the next measurement, such that
the rise time of the microwave source is not seen in the next measurement.

We have now shown how we measure (S(w)) = <}"T [<&(7‘)&J’(O)>} >, but
it is not yet clear what measuring a power spectral density reveals about
the dynamics of the artificial atoms. In order to investigate that, we need
to look at the derivation of resonance fluorescence, which is lengthy but
widely available in the literature. For the full derivation we refer to stan-
dard quantum optics textbooks [Scully97, Loudon00, Yamamoto99]. Here

43



2 Experimental setup and measurement techniques

we limit ourselves to a summarized recipe for deriving resonance fluores-
cence, mostly in order to emphasize the conditions that have to be met by
our system for the derivation to be valid - i.e. to make sure the measured
result is equal to resonance fluorescence.

To calculate resonance fluorescence, one starts with the optical Bloch equa-
tions (see also section 3.1.4), which are solved for an atom initially in the
ground state. The quantum regression theorem is used to get the two-time
correlation functions for the atomic operators, where it is assumed that
the system under investigation has evolved to a steady state. This sets
the condition that the system should be measured after the drive has been
on for a time much longer than any timescale involved in the dynamics
of our system. Deriving the quantum regression theorem for finding the
time-dependence of two-time averages (Q;(t)Q(t')) (with Q; any operator)
only requires that (h;(t)Q(t')) = 0, with h the fluctuation operator (see
[Yamamoto99], section 7.4). This condition is met for noise with very short
correlation times, which for our system was already assumed earlier in this
chapter. Thus, all conditions necessary for resonance fluorescence to be
equal to the power spectral density of our system are met.

2.6.2 Background subtraction for power spectral density
measurements

While using the diffmode measurement method results in measuring the
power spectral density of the signal only, excluding noise, the data is still de-
formed by an effective filter imposed on the signal by the various frequency-
dependent attenuation and gain factors due to all microwave components
between sample and FPGA. We will call this the ’background filter’. To
counteract for that, we measure the spectrum of the background filter sep-
arately and divide it out. The background filter can be measured by switch-
ing off diffmode, switching off the drive tone, but leaving the LO tone on in
order to make sure that the background filter is measured around the right
frequency. We are thus measuring the noise as deformed by this filter func-
tion. The effect of the filter is divided out by simply dividing a measured
power spectral density by the power spectral density of the background fil-
ter. An example of a typical filter function is shown in figure 2.15.

To summarize the two procedures used to separate our signal from the
noise: diffmode subtracts the power spectral density of the noise from each
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2.6 Power spectral density measurements and resonance fluorescence

measurement. Another separate measurement is done without a signal to
measure the frequency-dependent gain of the setup. The result of the diff-
mode measurement is divided by this second measurement.

Sef -
<

400 -200 0 200 400
Detuning from LO+IF (MHz)

Figure 2.15: The signal from the sample goes through an effective filter
due to the frequency-dependant attenuation of the microwave
components between the sample and the ADC, and is modified
by the analog and digital down-conversion. The spectrum of
a typical 'background filter’ is plotted. The LO frequency was
set to 4.75 GHz.

2.6.3 Dividing and conquering the Fourier transform

To perform the Fourier Transform, we used the line connecting the sample
to the Virtex-6 FPGA in figure 2.6. This line is connected to an analog-
to-digital converter with a 1 GHz sampling rate. One time-trace, measured
with the Virtex-6, is 8192 or 2'3 ns long. The Virtex-6 itself has a clock
speed of 125 MHz, and therefore cannot process the incoming data stream
directly. Instead, the data is split into eight parallel channels of 125 MHz
bandwidth which are Fourier transformed separately and recombined us-
ing the Cooley-Tukey algorithm. This algorithm - based on a recursive
divide-and-conquer technique - is usually attributed to Cooley and Tukey
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[Cooley65], but an equivalent algorithm was already invented by Gauss
in (presumably) 1805 for interpolating movement of celestial bodies, even
before Fourier published his groundbreaking work on harmonic analysis.
Gauss however did not publish these results during his lifetime, they were
instead published in his collected works after he passed away [Gauss66].
How such an algorithm works is not hard to see. We will show it be-
low for unraveling the Fourier transform in two strands. To unravel into
eight strands, simply apply the same procedure twice more on all resulting
strands. To apply a full Fourier Transform, keep unraveling until arriving
at size-two discrete Fourier Transforms.

The unraveling of the Fourier Transform is much like opening a zipper: we
split the DFT into a part with even and a part with odd indices

= 2m
Xk = Z Tne N

N/2—1 N/2-1
Z Tome iN 2m)k+ Z Tomi1e ZN(2m+1)k. (2.6)
m=0

In the last term, the '+1’ in the exponent can be factored out to give

N/2-1 . N/2-1
E Tome MK 4 omiTk E Tomi1€ X7 M= B4 e TR0,
= n=0

(2.7)
where Ej, denotes the Fourier transform on the even components of Z and
Oy, is the transformation applied on the odd components. The number of
components in X is now however only N /2. To get all N components,
we use that the DFT is periodic in N: X,y = X [Oppenheim97]. That
this property holds can be seen immediately from the definition in (2.6):
adding N to any index k is equivalent to multiplying the expression by
RN = 1. Similarly, when the DFT goes from index k =0,--- ,N/2 — 1,
the periodicity of the DFT imposes that X;H_N/Q = Xj. The phase factor
in front of the odd components in (2.7), for components N/2 —1 < k < N
changes to e R RHEN/2) = o~k gim = _e=Rk Therefore, for k > N/2,
the result of the Fourier transform is the same as in (2.7), except for a

46



2.7 A note on using charge lines in waveguide QED

minus sign in front of the odd part

5 _ | Bure TEO, k< N/2 2.5
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Thus, due to the periodicity of the DFT, after splitting the data into two
strands, only half of the number of components needs to be calculated.
Moreover, this splitting up can be applied recursively. This way of calcu-
lating a DF'T is therefore more efficient than simply performing a DFT on
the entire data.

The algorithm used by the FPGA running Xilinx’s implementations of FF'T
is a so-called radix-2 butterfly streaming FFT [Xilinx11]. Here streaming
denotes that the FFT results are generated while the time-domain data is
coming in. The ’radix-2 butterfly’ denotes the most simple variant of a
Cooley-Tukey algorithm: butterfly denotes recursively going down until ar-
riving at two-point DF'Ts, 'radix 2’ denotes unzipping the data in two equal
even/odd strands at each recursion. For more details on how the Virtex-6
FPGA is programmed to enable for high-bandwidth Power Spectral Density
measurements, see [Salathéll].

2.7 A note on using charge lines in waveguide QED

The results presented in this thesis were obtained on a sample that did not
contain charge lines (local control lines used to apply high-frequency elec-
tric fields to individually manipulate qubits). While charge lines have been
implemented in a later sample (shown in Fig. 2.16), that particular sample
did not produce interesting results. It did however clarify that much care
must be taken when designing a sample containing qubits in an open trans-
mission line with charge lines. When charge lines are used in circuit QED,
the resonator rejects off-resonant tones, and therefore the charge line only
couples to the qubit it is directly connected to without coupling strongly to
other qubits. However, in an open transmission line, there is no such rejec-
tion, and therefore the charge line couples relatively strongly to all qubits.
There seems to be no obvious way to prevent this, but a second charge line
could be used to apply radiation which could destructively interfere with
the radiation from the first charge line leaking into the transmission line
via a qubit. Tuning the phase and amplitude of the second charge line, it
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should be possible to completely cancel the radiation coupled into the trans-
mission line by the first charge line. We propose to fabricate extra charge
lines that couple directly to the open transmission line, with the express
purpose of cancelling microwave radiation leaking into the transmission line
via a charge-line-driven qubit.

Figure 2.16: A waveguide QED sample with charge lines. Wire bonds were
used to equalize the potential at the ground planes on opposite
sides of charge lines and the open transmission line.
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3 A single qubit in a transmission
line

In this chapter, we first present the theory for a single qubit in a trans-
mission line, after which we show the experimental results, and how they
compare to theory.

3.1 Theory of a single qubit in a transmission line

In this section, we derive the reflection and transmission coefficient of a
Transmon qubit in a transmission line. We will start by considering the
circuit for a transmission line and see how the telegraph equations are af-
fected by introducing the qubit as a dipole. We solve the 1D wave equation
for the total voltage; the sum of the driving voltage and the voltage due to
the dipole rotating in the AC field. To find the magnitude of this ‘scatter-
ing’ voltage, we find a relation between the noise-induced relaxation and the
atomic dipole moment. Then we find the expectation value of the atomic
lowering operator, which we achieve by finding the steady state solution of
the optical Bloch equations for our system. Combining these results, we get
an expression for the reflection coefficient of a qubit in a line. The result
turns out to be the same as for a flux qubit [Astafiev10a] in a transmission
line, even though the details in the derivation are not identical. We have
followed the reasoning by Astafiev in this chapter to arrive at an expression
for the single-qubit reflection coefficient. Another way to arrive at the same
results is shown in [Peropadrel3].

3.1.1 The 1D wave equation for a qubit in a transmission line

A coplanar waveguide transmission line can be modeled by a lumped ele-
ment circuit as shown in figure 3.1. A lossless transmission line is governed
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Figure 3.1: (a) Lumped-element circuit equivalent of a transmission line.
(b) Schematic of a transmission line with a transmon qubit
(blue) embedded in it. The red crosses are the Josephson Junc-
tions.

by the telegraph equations [Pozar93]:

axV - —latI
Opl = —cO,V. (3.1)
Here [ and ¢ are the inductance and capacitance of the line per unit length,
and 0, and J; denote the partial derivatives with respect to x and t. We
introduce a superconducting transmon qubit into the transmission line as a
dipole with dipole moment ¢ by modifying the telegraph equations to read:
0,V = =101 + ¢d(x)
Ol = —cOV — 0yd (), (3.2)
where ¢ is the dipole moment of our qubit, and 0(x) is the Kronecker delta
function. Taking the partial derivative with respect to = of the first of these,

a partial derivative to t of the second of these and recombining, we get the
one-dimensional wave equation for our system:

1
(9sz - ﬁaﬁgv = latt¢(5($), (33)

where v is the speed of light in the transmission line, given by v = 1/+/1c,
and we have a linear dispersion relation k = w/v
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3.1 Theory of a single qubit in a transmission line

3.1.2 An atomic dipole in a rotating field

When driving the system with a coherent tone at a single frequency w, the
voltage in the transmission line as a function of time and space is given by

Vin = Vpe'themet), (3.4)

The qubit or dipole, which we place at x = 0, thus is subjected to a rotating
voltage. It will rotate with this input field and in doing so create its own
field with magnitude V. which propagates symmetrically in both directions
such that the total voltage is

V= Voez‘(ka;—wt) + ‘/écei(k|$‘_Wt). (3_5)

Due to the absolute value of x in the rightmost part of this equation, the
voltage created by the dipole interferes differently with the input field in the
direction of transmission and reflection. It is destructive or constructive for
transmission depending on the sign of V., which we will find to be negative.
In the reflection direction we get a field of the shape V = e (Ve +
Vsce*ik””), which, when Vj ~ Vg, is a sinusoidal function in space that
rotates in time (Fig. 3.2). After this signal passes through a circulator the
input field and scattered field are separated and the reflected field looks like
V, = Viee ™% How complete the destructive interference in transmission
is, and how big the reflected signal compared to the input signal, depends
then on the magnitude of V.. To find V., we first substitute (3.5) into the
one-dimensional wave equation (3.3):

1 )
OaaV — —0uV = §(x) Vaeike' Flzl=et). (3.6)

The atomic dipole, which rotates with the field, can be written as

(B(t)) = pu (6_) ™", (3.7)

where 67 is the atomic lowering operator |g)(e|, and ¢y, is the waveguide-
QED equivalent of the coupling strength of the qubit to the line

hepee = 2Be|(iln[k)], (3.8)
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3 A single qubit in a transmission line

Figure 3.2: The qubit can be seen as a rotating dipole in the applied drive
field. Its own field interferes destructively in the onwards (trans-
mission) direction.

with [(i|n|k)| the transition matrix element coupling state k to state i.
When considering transitions between the ground and excited state, this
can be written out as

E;

" 1/4
o 225 (1) (39)

with all the variables as in chapter 1. For those familiar with the lingo of
circuit QED, (3.9) can be seen to match g/Vyms with g as in [Koch07].
Equation (3.7) can be substituted into the right part of equation (3.3) and
compared to the result in (3.6) to give

ikVie = —w?lhy (6_) . (3.10)

3.1.3 Relaxation due to Johnson-Nyquist noise

The quantity of light that can be scattered by the artificial atom is intu-
itively expected to be limited by the relaxation rate — once the atom has
absorbed a photon, it will have to emit the photon before it can absorb and
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3.1 Theory of a single qubit in a transmission line

emit another. In this system, the main noise is expected to be the Johnson-
Nyquist noise due to the transmission line and microwave components, as
the qubit is expected to couple much stronger to the transmission line than
to noise sources elsewhere.

Sv(w,T) = 2hwRe[Z] coth ( i ), (3.11)

2kpT
where Sy is the spectral density of the voltage noise, w the frequency under
consideration (for relaxation we need only consider noise resonant to the
qubit), Z = /l/c the impedance of the transmission line, 7' the temperature
of the noise source and kp the Boltzmann constant. Even when taking
care to thermalize the microwave lines to minimize this noise, the noise
temperature of the transmission line will always be higher than the physical
temperature of the system, because each attenuation that reduces of noise
at a higher temperature adds noise at the temperature of that attenuator
(this is discussed in more detail in section 2.2.2). The noise couples to the
quantum system :

Hnoise = ¢trvnoise6x- (3'12)

The relaxation rate of the qubit can then be obtained using Fermi’s golden
rule [Sakurail0]:

2 .
I = E‘(f’Hnoise’mQva (3.13)

with ¢ the initial and f the final state, and py the density of final states.
We take the excited state as the initial state, the groundstate as the fi-
nal state, and go into the rotating frame at the qubit frequency such that
the expression simplifies to I'; = %qb%rvrfoisepf. The density of final states

is given by py = 1/(hdw), and the definition for the noise spectral den-
2
sity is %‘;dw = (V2 such that I'y = Ouy Svy. Substituting Sy given by

noise>7 2h?
expression 3.11, we get

hp?.wRe[Z] hw
Iy = o2 oth
! 2 ot (szT

). (3.14)

We are in the quantum regime where hw > kpT. If this condition is not
met, thermal energy populates the system. We then have that that

_ hé2 wRe[Z]

I 72

. (3.15)
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3 A single qubit in a transmission line

Substituting this expression into equation (3.10) results in a formula for the
scattered voltage in terms of the relaxation rate of the qubit:

iy

Vie(w,t) = i—— (&_) eilklzl=wty, (3.16)

tr

3.1.4 Optical Bloch equations

The next step is to find the expectation value of the atomic lowering oper-
ator: (67) = Tr[p6~] = p21. In order to find this expectation value, we will
solve the optical Bloch equations under the assumption that our system is
in a steady state. We start by writing down the Hamiltonian of a two-level
system in a frame rotating with the frequency of a drive tone:

A h
H= —g(dwﬁz + Q6,), (3.17)
where 6, and &, are the Pauli matrices, dw is the detuning between the
Larmor frequency of the qubit and the drive frequency, and € the drive
strength, which is connected to the input voltage through i) = ¢ Vy. In
the presence of losses, the dynamics of the system are captured by a master
equation in Lindbladian form:

dp A

— =——H,p|+ L|p 3.18
with £ being the Lindblad superoperator, governing the losses. Both re-
laxation and pure dephasing are expected to play a role in our system.
The Lindblad superoperator acting on the density operator p can then be
written out to read:

2

A AA An A A A A Yo rn an A
(26_p6, —po,6_—6,6_p)+ ?Lp(azpaz - ), (3.19)

Llp]
where 6_ = |e)(g| is the lowering operator, and 6, = 6~ the climbing
operator. The last term denotes pure dephasing with the pure dephasing
rate v,. Using the definition I'y = % + 7, this can be written in a shorter
form:

‘C[m = _Fl@Pe - FQ(&—i-peg + &_pge)~ (320)
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3.1 Theory of a single qubit in a transmission line

When substituting equations (3.20) and (3.17) into the master equation
(3.18) and writing the 6 terms in matrix form, we get

dp _ i ( Qpeg — pge) Qpe — pg) + 25wpge>+< T'1pe _F2pge>
dt 2 \Q(pg — pe) — 20wpey Qpge — Peg) —Topeyg  —T1pe )

(3.21)
Rewriting the density matrix as a vector of length four, we can write a
matrix R that captures the system dynamics as dp/dt = Rp.

Py 0 —Q Q —2Ty Pg
pge | _ 1 [—Q 2(iT2 + dw) 0 Q Pge
peg | 2| Q 0 2(i0y — dw) -0 Peg
Pe 0 Q —Q 2il' Pe

(3.22)
Only three of the four equations are linearly independent. Since we have
that (6,) = Tr[p6,] = pge, (6_) = Tr[p6_] = peg and (6.) = Tr[p6.] =
pg — Pe, we can reorder (3.22) to give the dynamics of the atomic operators:

5 —6w + il 0 g 5 0
op | =i 0 dw+ily —$|-| 6, |+]| 0 . (3.23)
o Q —Q i G —il

These equations are known as the optical Bloch equations [Breuer02], and

can be summarized as 6 = Ré + (0,0, —il'1), with & the vector of expec-
tation values ((6_),(6,),(6:)), and R the matrix from equation (3.23).
Solving for the steady state, we find that

<6 > - Fl(rg — zéw)Q
Tss 2F1(F% + 5w2) + 2F292.

(3.24)

We can now define the reflection and transmission coefficients (r and t) as
Vse = =1V, and Vy + Vie = tV), and therefore r +¢ = 1. This last equation
might seem counterintuitive as this means that |r|? +|¢|? # 1, meaning that
power in the photonic mode at frequency w is not conserved. However,
as we started from the telegraph equations, the voltages need to obey the
Kirchhoff laws, i.e., the current must be conserved.

To get an expression for the reflectance coefficient, we use that hQ2 = ¢ Vo
so that Vie = —rh€)/¢,. The steady state solution for (6_) given by (3.24)
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3 A single qubit in a transmission line

can then be substituted into equation (3.16), and after some rewriting we
get
I 1 —idw/Ty
r=_— .
29 1 + (5w/F2)2 + QQ/FIFQ

We can now define two distinct decay channels for the qubit: +; will denote
radiative decay, or decay into the transmission line. There will also be other
sources for qubit decay, giving rise to a non-radiative decay 7,r, where non-
radiative does not mean the qubit does not radiate, but merely that the
radiation is emitted into other channels than the transmission line. We
can then define the ratio of emission into the transmission line compared
to total emitted radiation as 7 = v:/(7: + Yur)- The maximum reflection
coefficient is then given by ro = nI'1/2I'y. This quantity can be brought
very close to one by ensuring a strong coupling between the qubit and the
transmission line (7, > ~y,). The expression for the reflection coefficient of
the qubit now can be written in the same form as in [Astafiev10al:

(3.25)

— 0 1—i5w/F2
~ 0T (bw/T2)2 + Q2T Ty

(3.26)

If the pure dephasing rate v, = 0 and n = 1, the reflection coefficient goes to
1. In other words, the scattered voltage which interferes destructively with
the transmitted light (see figure 3.2), has the same magnitude as the input
field, such that the destructive interference is complete, and all radiation is
reflected. Thus, the qubit functions as a mirror. An obvious application of
a single qubit is to make a single-photon router or switch, as also proposed
in Astafievs pioneering paper on this topic [Astafievl0a] and realized by
Io-Chun Hoi [Hoill]. A nonzero pure dephasing rate will have the effect
that the radiation loses its phase during the time it resides as an exciton
in the artificial atom. Upon being emitted, the photon will interfere with
the input field with a random phase. When this experiment is repeated,
the dephased contribution to the radiation will average out, resulting in
7|2 + [t|?> # 1 — the reflected plus transmitted power do not add up to be
equal to the input power. Similarly, when € > 0, the artificial atom will
get saturated, resulting in inelastically scattered radiation. This radiation
will have a randomized phase and a different frequency than the input field,
and is excluded from the expression for the reflection coefficient.
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3.2 Experiments on one qubit in a transmission line

3.2 Experiments on one qubit in a transmission line

In the first part of this chapter we have seen how to understand the be-
haviour of a single qubit in an open one-dimensional space from a semi-
classical point of view. In this chapter, that theory will be used to explain
the experimentally observed behaviour of a transmon qubit in an open
transmission line. We want to emphasize that these experiments were not
done on a chip containing only one qubit. The interaction effects between
qubits will be covered in the next chapters in this thesis, but for now it
suffices to state that when multiple qubits are detuned from each other by
a frequency much larger than their line width, their interactions can be
ignored. An exception to this statement occurs when the qubit under in-
vestigation is tuned to frequencies higher than the ignored qubits. In such
a case, these lower qubits can form weak standing modes with impedance
mismatches in the lines (as discussed in chapter 2), and the harmonics of
such standing modes can interact with the qubit under investigation. In
this chapter, most of the presented results were measured on the sample
which was also used for the paper [vanLool3] published about two qubits
in a transmission line, unless stated otherwise.

3.2.1 Characterizing the qubits

The first step in any experiment involves characterizing the system to be
experimented upon. For a multi-qubit system, this involves finding the
maximum frequencies of all qubits, their anharmonicities, and the mutual
inductances to all the coils used for magnetic flux biasing, which is described
in section 2.1. To find the maximum frequencies, the voltage on one of the
coils is swept, preferably a coil that couples strongly to all qubits. Such a
sweep can be seen in figure 3.3, from which the maximum frequencies were
found to be 6.890, 6.835 and 6.310 GHz for the qubits labeled A, B and C
respectively.

The anharmonicity of the qubits can be measured by performing continuous-
wave two-tone spectroscopy. The qubit is tuned to its maximum frequency,
and one microwave source is used to drive the |g)-|e) transition contin-
uously. This induces a population in the excited state, the amount of
which depends on the drive strength and the relaxation rate. A second
microwave source is used simultaneously to perform spectroscopy on the
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Figure 3.3: Sweeping a coil that couples to all qubits reveals their maxi-
mum frequencies. This picture was shown in chapter 2, and is
repeated here for convenience.

le)-|f) transition. The anharmonicity « is given by the difference between
these transition frequencies. To measure the anharmonicity, we can drive
the |e)-|f) transition strongly and look at the transmission of the |g)-|e)
drive tone, resembling an electromagnetically induced transparency experi-
ment. Alternatively, the |g)-|e) drive can be strongly driven while observing
the transmission of a spectroscopy tone scanning over the |e)-|f) transition
(Fig. 3.4). The qubit anharmonicities were found to be 338, 337 and 341
MHz for qubits A, B and C respectively. From these numbers, the max-
imum Josephson energy E; and the charging energy E¢ were calculated;
the Josephson energies were found to be 21.5, 21.2 and 18.2 GHz, while
the charging energies were 302, 301 and 301 MHz for qubits A, B and C
respectively.

3.2.2 Measuring the dipole moment of a transmon qubit

To investigate the various decay rates involved in the qubit dynamics, we
can fit the spectrum of elastically scattered radiation with (3.26). The de-
tails of that will be discussed in section 3.2.3. However, the dipole moment
of the qubit enters equation (3.26) as a parameter, and we will need to find
a reliable value for it before we can fit qubit spectra. This dipole moment
is given by equation (3.9), and after determining F; and E¢, for which
knowledge of the dipole moment is not needed, the only unknown variable
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Figure 3.4: (a) The anharmonicity « is measured by means of continuous-
wave two-tone spectroscopy: a drive is applied for the |g)-|e)
transition, and spectroscopy is performed simultaneously on the
le)-|f) transition. (b) Both the |g)-|e) transition and the |e)-|f)
transition are visible in a two-tone measurement, with the |e)-
|f) transition appearing at wge — a.

in this equation is 8, which is a combination of capacitances determined by
the design of the transmon [Koch07].
To determine [, we can use the fact that I'y depends on both w and
the dipole moment ¢;.. When transmittance is measured at low powers
(@ <« TI'y), the line width is a good indicator for the relaxation rate of
the qubit. Using the inverted coil matrix (see section 2.1), the qubit was
moved in a straight line through frequency space as shown in figure 3.5.
The transmittance dip was fitted with (3.26) using that |t|*> = |1 —r|?, and
using an initial guess for 8 according to the design of the transmon used in
these experiments. These fits result in a series of values for I'y as a function
of frequency, which can be fitted with the equation for I'; as a function of
frequency (3.15), where 3 is the fitting parameter. The data and fit are
shown in Fig. 3.6. This new value of § is then used anew to fit the qubit
spectra, giving a new set of values for I'y as a function of frequency. This
process of fitting the qubit line shape and I'1(w) is performed iteratively
until the value of 8 converges. This way, we found that § = 0.151.

Except for providing a value for 5, Fig. 3.6 shows another interesting

59



3 A single qubit in a transmission line

(o2}

(63}

Frequency (GHz)

o o0 oo o N

N

Combination of voltages on coils

Figure 3.5: The qubit was shifted through frequency space in a straight line
(except for the kind in the center of the figure) while the other
qubits were tuned out of range. This was done using a combi-
nation of voltages on the three coils calculated from the mutual
inductance matrix between qubits and coils. The background
was subtracted. Red means the transmission is close to 1, while
dark blue is close to zero.
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Figure 3.6: I'; is fitted using equation (3.26) for transmittance peaks at
different frequencies. The resulting line is then fitted to find ¢.
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feature. We observe that I'y behaves differently as a function of frequency
than expected; it fluctuates around the theoretically expected relaxation
rate. These fluctuations are probably caused by weak standing waves in
our experimental setup as a result of parts that are not perfectly impedance
matched. The ripples in Fig. 3.6 are consistent with the ripples observed in
background measurements shown in Fig. 2.12 in chapter 2, supporting the
hypothesis that they are caused by standing modes in the microwaves lines.
The fluctuations have a wavelength of ~ 265 MHz, which corresponds to a
piece of transmission line of 0.75 m if the speed of light in the coaxial cables
is assumed to be 2¢/3 with ¢ the speed of light in vacuum. The source of
these standing waves was not found during the experiments. There are a
few equivalent ways for interpreting this effect in a way that ties in with our
theoretical description of a qubit in a transmission line. It would for exam-
ple be valid to say that the impedance causing Johnson Nyquist noise — so
far assumed to be a 50 (Q resistor at a certain temperature — has an effective
resistance that fluctuates around 50 ) with frequency due to impedance
mismatches in the lines. The interpretation we prefer, though, is that the
density of states observed by the qubit is a function of frequency. It should
also be pointed out here that due to the nature of standing waves, this fluc-
tuating density of states is expected to be different for qubits at a different
position.

3.2.3 The spectral shape of a qubit

Theoretically, the line shape of a qubit is determined by equation (3.26).
In Fig. 3.7, the qubit transmittance and reflectance are shown at various
drive powers, for a qubit tuned to its maximum frequency. The powers
quoted in the figure are the drive powers at the qubit. Fitting the qubit
shape with (3.26) reveals information about the properties of the qubit.
The maximum peak in reflectance indicates the strength of the coupling:
the pre-factor in formula (3.26), nI'1/(2T'2) determines the maximum re-
flection at resonance. As a reminder, 7 is given by the emission rate of the
qubit into the transmission line divided by the total qubit emission rate:
7 = Y%/( + Ynr). These decay mechanisms are related to the observed
qubit lifetime as I'y = 4y + 4. The ratio I'; /2T indicates the effect of
pure dephasing, as is clear from the definition I'y = I'y/2 + 7,. The pre-
factor giving the maximum reflection coefficient at zero drive power, r¢, can
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Figure 3.7: The reflectance (a) and transmittance (b) of a single qubit at
its sweet spot at 6.89 GHz.

then be written out in the various decay rates as ro = 7r/(7r + Yar + 27,)-
A striking feature in figure 3.7 is that the transmittance approaches zero
at low drive powers. Similarly, the reflectance almost reaches unity for the
qubit tuned to its sweet spot. The very high reflection coefficient of a qubit
in a transmission line makes it a useful tool for quantum communication:
the qubit can be used as a switchable mirror. Using a charge gate to switch
the qubit between ground and excited state, the qubit can be made to re-
flect or transmit on demand. This effect was used in [Hoill] to implement
a single-photon router using a qubit and a circulator. It should be empha-
sized that in their experiment, low-power coherent tones were reflected or
transmitted by the qubit, rather than the single photons one might be led
to expect from the words ”single-photon router”.
The qubit peaks in Fig. 3.7 seem to have a Lorentzian shape, but, as we
can see from (3.26), the expression for the reflectance |r|? of the spectrum
deviates from that of a Lorentzian. Non-radiative decay, pure dephasing
and drive power all have the effect of making the peak more blunt than a
Lorentzian peak, and these effects are very hard to distinguish. To still get
a good estimate for the pure dephasing rate of a qubit and its relaxation
rate we used a somewhat elaborate fitting procedure, in which we assumed
the non-radiative decay rate to be negligible (n = 1). This assumption will
be validated later in this thesis.
To extract information about the various qubit decay rates at any fixed
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transition frequency, we measure the reflectance and/or transmittance as a
function of power, resulting in traces such as seen in Fig. 3.7. As the back-
ground transmittance and reflectance scale with power in a not completely
linear manner (the reason for that remains unknown), the background was
subtracted separately at each drive power. After that, a three-step method
is used for getting reliable information out of the fits. In the first step, the
drive power ) in equation (3.27) is fixed to the experimentally used drive
power, and I't, 7, and wy, are fitted using equation (3.26), which we repeat
here for convenience:

1= idw)T
N 29 1 + ((5(,0/1—‘2)2 + Q2/F1F2.

(3.27)

In the second step, wge is fixed as per the fit of step one, and it is as-
sumed that the pure dephasing rate v, does not vary with the drive power.
At drive powers low enough such that the transmittance peak amplitude
does not change with power, the transmittance peak shape (i.e., its width
compared to its maximum amplitude, not the maximum amplitude itself)
does not depend on pure dephasing. I'; is expected to be constant at a
single frequency, and is extracted by fitting these low-power transmittance
curves. The pure dephasing rate is subsequently obtained from low-power
reflectance measurements. A third step is used to check if the obtained
values are consistent: fits are done for transmittance curves at different
drive powers keeping the dephasing rate and relaxation rate constant at
the values extracted in step 1, while using the drive power  as a fit pa-
rameter. If the extracted drive rates are correct, the step size in €2 from the
fits should be the same as the step size in drive power set at the microwave
source. If these step sizes are not consistent, the dephasing rate is changed
iteratively until this condition is satisfied. When the stepsize of the applied
drive power and drive power found from fits is consistent, we can also ob-
tain the total attenuation between the microwave source and the qubit, as
it is given by the offset between fitted drive rates and the experimentally
applied drive powers.

Using this fitting method, the data in figures 3.7, 3.8 and 3.9 reveals that
the relaxation rate is I'; /27 = 13 £ .3 MHz at 4.8 GHz, 26 + 1 MHz at
6.4 GHz and 33+ 1 MHz at 6.89 GHz. From equation (3.15), the relaxation
rates are expected to increase by a factor 1.75 rather than a factor 2 be-
tween 4.8 GHz and 6.4 GHz. The difference is attributed to weak standing
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Figure 3.8: The reflectance (a) and transmittance (b) of a single qubit at
6.4 GHz at various powers.
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Figure 3.9: The reflectance (a) and transmittance (b) of a single qubit at
4.8 GHz at various powers.

modes in the transmission line, causing a non-flat density of states as was
discussed in section 3.2.2. The pure dephasing rate is found to be approxi-
mately 1 MHz at 6.4 GHz and 1.5 MHz at 4.8 GHz.

Dephasing can be caused by slow fluctuations in the magnetic field: the
fluctuations in magnetic field cause changes in the qubit transition energy,
which in turn changes the Larmor precession frequency. Unknown changes
in this frequency cause unknown phases at the end of an experiment, when
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these fluctuations are slower than the duration of one trace in the experi-
ment. Given a source of magnetic fluctuations, the dephasing rate depends
on how strong the magnetic fluctuations influence the qubit transition fre-
quency. For transmon qubits, dwge/d¢ is higher at lower transition fre-
quencies, and therefore the dephasing rate is expected to be higher at lower
qubit frequencies, which is indeed observed.

There is a way to obtain a lower bound on 7. Since qubit dephasing is min-
imal when dw/d¢ is minimal, tuning the qubit to its sweet spot minimizes
qubit dephasing. When driving the qubit at very low power and at reso-
nance, the reflectance is given by r = nI'1 /(2I'2), or r = v/ (% +Ynr + 27y)-
In Fig. 3.7A we see that the maximum reflectance is higher than 0.94. This
implies that the maximum reflection coefficient exceeds 0.97. Assuming
that v, is zero at the qubit sweet spot (an assumption we know not to be
valid, but which we will take here in order to find an upper bound on ),
we have that n > 0.97. As 7 denotes the ratio of radiation emitted by the
qubit into the transmission line rather than into other channels, we have
that 7 = /(7% + 7ur). Having a lower bound for 7 thus gives us an upper
bound for the non-radiative decay: v, < 0.03[';y ~ 1 MHz.

Another way to quantify the coupling strength between a two-level system
and a one-dimensional space is given by the Purcell factor for one dimen-
sion as defined in [Chang07]: Pip = 7/Yr = nl'1. The upper bound on
~Ynr NOW translates into a lower bound on the Purcell factor: Pip > 33. We
would like to stress here that we do not expect vy, to be close to this upper
bound, as we know that v, # 0. We do expect ~,, to be close to zero, as the
high relaxation rate of our system dictates that v, < I'y, but as it is also
true that v, < I'1, our estimate for the non-radiative decay rate is very
sensitive to the pure dephasing rate being nonzero. When investigating a
two-qubit system, we will have an opportunity to get a better estimate for
Yar-

The same reasoning can be applied to the transmittance data in Fig. 3.7B.
However, there we find that the minimum transmittance |¢|? is about 1.7%,
from which we find that ¢,,;, = 0.13, and a Purcell factor 'y /vy, > 7.6.
The reason for the disparity in estimates for v, and Pip is believed to be
due to the noise which is added to the signal. In an ideal measurement of
elastically scattered radiation, after averaging, the expectation value of the
noise in the signal is (h) = 0. However, when averaging for only a finite
amount of time, there will be some contribution to the measured signal by
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3 A single qubit in a transmission line

the noise. In our measurements we look at either the absolute amplitude of
the signal \/12? + Q2 or the power 1?4+ Q2. The signal we expect to measure
is a fluctuating voltage due to the transmitted radiation. The power trans-
mitted by any system is always positive. However, the added voltage due
to noise can be either positive or negative. As long as the measured signal
is larger than zero by more than a few standard deviations of the noise, the
observed signal will fluctuate randomly around the expected signal. How-
ever, if the signal gets very close to zero (to within a standard deviation
of the noise), our method of calculating the signal amplitude as /12 + Q2
backfires. Suppose we measure the transmitted signal as a function of time,
and that we have exactly zero transmission. In that case the noise fluc-
tuates around zero. As we take the absolute amplitude of this measured
signal, these fluctuations will show up as positive, and the averagely mea-
sured signal will therefore also be positive. Similarly, for signals very close
to zero, the noise will add a finite and positive contribution to the signal.
Due to the noise setting a lower limit to the minimum transmittance ob-
served, it limits the lower bound on the Purcell factor as calculated from
the minimum transmittance.

In Fig. 3.10, the amplitude of the dip in transmittance is fitted for different
powers at 4.8 GHz (panel a) and 6.4 GHz (panel b). The points in the
figure show the fitted maximum reflectance and transmittance amplitudes.
At each power, a single-qubit spectrum was fitted with equation (3.27) to
find the maximum in reflectance or minimum in transmittance. The line
through them is another fit using equation (3.27) for the power-dependence
of this dip. We observe that at low powers, the transmittance dip ampli-
tude is constant and very close to unity (i.e., the transmittance is close to
zero). As the drive power increases, the transmittance dip decreases, until
the transmittance finally is equal to its baseline of 1 (i.e., the transmittance
dip amplitude is zero). This phenomenon can be understood by considering
that the qubit is a quantum two-level system: once the qubit has absorbed
a photon from the coherent drive tone, the qubit is in the excited state.
When the qubit is in the excited state, it cannot absorb another photon
of the same frequency, as the system is anharmonic (it can however absorb
photons at different frequencies, as was shown in the two-tone measure-
ments used to determine the anharmonicity). The qubit will be able to
absorb another photon at the same frequency when it has relaxed into the
ground state by emitting a photon at its transition frequency. In other
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3.2 Experiments on one qubit in a transmission line

words, the amount of radiation that is maximally scattered by the qubit
is bound by its relaxation rate I'1. In figure 3.10 this manifests as follows:
at very low drive powers (2 < I'7), all of the incoming radiation can be
absorbed and re-emitted by the qubit. When the drive power approaches
the relaxation rate, the stochastic nature of spontaneous emission dictates
that there will be incidences in which the qubit is still excited when the
second photon arrives, such that some of the photons will be transmitted.
However, when 2 > I'y, the qubit will not be able to scatter radiation at a
rate higher than I';, and therefore the dip size in transmittance will start
to decrease, and eventually, under a very strong drive, the scattering rate
of the qubit becomes negligible compared to the rate of incoming photons
such that the transmittance dip vanishes.

The main difference observed between panels a and b in Fig. 3.10 is the dif-
ferent level at which the reflectance saturates when 2 < I'y. The maximum
reflectance is mainly given by the ratio (T';/(T'; 4 27,))?, assuming that 7
does not vary very strongly with frequency. When comparing this ratio for
qubits at 4.8 GHz and 6.4 GHz, we see that at the former frequency the
pure dephasing rate is higher while the relaxation rate is lower, both of
which contribute to a lower maximum reflectance.

140 130 120 110 150 140 130 120 110

Power (dBm) Power (dBm)

Figure 3.10: Reflectance and transmittance as a function of power at
4.8 GHz (a) and 6.4 GHz (b). Lines are fits with equation
(3.26). Note that the x-axes do not have the same range.
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Figure 3.11: (a) A strong coherent tone splits a two-level system into four
levels. (b) The power spectral density (PSD) of a strongly
driven two-level system results in a Mollow triplet. The black
line is a fit with theory, and the sharp peak in the center is the
elastically scattered drive tone.

3.2.4 Resonance fluorescence of a single artificial atom

When a two-level system is strongly driven by a coherent field, its two levels
(lg) and |e)) split into four levels (Fig. 3.11a). This splitting is also often re-
ferred to as ‘dressing’ the qubit states with the coherent drive tone. Within
those four levels, the only transitions allowed are those preserving the num-
ber of total excitations (atomic and photonic combined), leaving four al-
lowed transitions. Of these four, two have the same frequency as the |g)-|e)
transition of the qubit (green arrows in Fig. 3.11a), while the other two tran-
sitions differ from wye by Qg and —{2g, which is the drive strength or Rabi
flopping rate (blue and red arrows in Fig. 3.11a). This results in a three-
peak structure known as the Mollow triplet, after the person who first calcu-
lated the resonance fluorescence spectrum of a two-level system [Mollow69].
A derivation of the expected shape of the Mollow triplet can be found in any
quantum optics text, such as [Scully97, Yamamoto99, Loudon00]. Here we
choose to use the same expression as used in Astafiev’s paper [Astafiev10a],
as that form explicitly includes the qubit dephasing rate.

i hwl™q 27¢ Vs

_ s
S(“’)_zw 8 ((5w—|—QR)2+’Y§+5W2+73+(5W—QR)2+7§>7
(3.28)
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3.2 Experiments on one qubit in a transmission line

with 75 = (I'1 + I'2)/2 the width of the side peaks and 7, = I'y the width
of the main peak. It should be noted that this expression is only valid for
strong drives (2 > I'1), and for a two-level systems. For a weakly anhar-
monic oscillator such as the transmon, this expression can therefore only
be used when I'] < Qr < a.

In Fig. 3.12, the Mollow triplet is shown at different drive powers, showing
the dependence of the location of the sidebands on drive power. In this
figure, the Rabi rate was fitted for only one curve. Knowing the Rabi rate
and the drive power for a single curve, the Rabi rates for the other curves
could be calculated from the drive powers. We see in Fig. 3.12 that the
measured data shows the same power dependence as the calculated curves,
except when Qg < 7,, where equation (3.28) is invalid.

Measuring the Mollow triplet serves an additional purpose: calibrating the
applied power at the qubit. While care can be taken to measure the at-
tenuation in the lines as precisely as possible using a network analyzer,
the attenuation of the lines and microwave components changes when the
cryostat is cooled down. However, by performing a resonance fluorescence
measurement and fitting the outcome with (3.28), the drive power applied
to the qubit can be extracted from fitting for the Rabi rate. In the re-
mainder of this thesis, the drive strength will sometimes be stated in MHz
instead of dBm. In those cases, a single-qubit Mollow triplet was measured
and fitted with (3.28) at the frequency of the experiment to extract which
drive power was experienced by the qubit.
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Figure 3.12: Resonance fluorescence of a single artificial atom at different
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drive powers. The Rabi rate was fitted for one curve, for the
other curves the Rabi rate was calculated from the drive power.
Red lines are data, black lines theory.



4 Elastic scattering properties of a
system of multiple qubits

While the behaviour of single qubits in a transmission line is very interest-
ing, it has already been investigated thoroughly [Astafiev10a, Abdumalikov10,
Abdumalikov1l, Hoill, Hoil2, Hoil3a, Hoil3b, Koshinol3]. Our work de-
parts from other experimental work for qubits in a transmission line by look-
ing at more than a single qubit. As qubit-qubit interactions are expected
to be strongest when the qubits are in resonance, we focus on experiments
for qubits close to or in resonance. We start by showing how two qubits
behave when tuning them into and out of resonance, and then look at the
behaviour of the two-qubit system in resonance. We focus on the qubit
frequencies of 4.8 GHz and 6.4 GHz, as these frequencies are equivalent to
an effective inter-qubit distance of 3\, /4 and A, with A, the wavelength of
a mode resonant with the qubits (Fig. 4.1), which is where we intuitively
expect to see extrema in qubit interaction phenomena. After showing the
experimental observations, we discuss two semi-classical models which treat
the single qubits as separate quantum systems and takes the interference
of the radiation emitted by them into account. These models are used to
explain the experimentally observed phenomena.

4.1 Elastic scattering properties for a system of two
distant artificial atoms

To investigate the interaction effects for two (or more) qubits, the first
experiment is to tune those qubits into resonance, do spectroscopy and ob-
serve if an avoided level crossing emerges between the qubit lines. The result
of such an experiment at intermediate drive powers is shown in Fig. 4.2.
Both qubits were placed at either 4.8 or 6.4 GHz. A coil was chosen that
couples much more strongly to one qubit than the other, and the current
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4 Elastic scattering properties of a system of multiple qubits

3N4
e

Figure 4.1: In experiment, we cannot change the physical distance between
qubits. Instead, we change the frequencies of both qubits, keep-
ing them in resonance, which changes the effective distance —
the distance expressed in numbers of wavelengths A,., where A,
is the wavelength of radiation in resonance with the qubits.

through this coil was varied. Hence, one qubit — the one that does not
couple strongly to the coil used — is almost fixed in frequency, while the
other qubit is tuned from slightly below to slightly above that frequency,
resulting in Fig. 4.2.

There are several features in this figure that need explaining. First, the
situation seems very different when looking at Figs. 4.2B and D. Whereas
in Fig. 4.2B it seems that |r|? + |[t|*> = 1, in Fig. 4.2D this is obviously not
the case. These measurements were done at the same output drive power
of the microwave source: -24 dBm at both 4.8 GHz and 6.4 GHz. However,
this results in a very different effective drive power for both qubits due to
two reasons. The first reason is that the attenuation in the lines is approx-
imately 5 dBm lower at 4.8 than at 6.4 GHz - the drive power at the qubit
positions at 4.8 GHz for this experiment is estimated to be -131 dBm, while
it is -136 dBm at 6.4 GHz. These rates can be expressed in MHz by mea-
suring a power spectral density for the qubits at high drive, and extracting
the Rabi rate from the separation between center and side peaks in the
observed Mollow triplet. This has to be done at the same drive frequen-
cies as the measurement for which the power is to be converted to MHz
was done at (this procedure was explained in more details in section 3.2.4).
The drive rates are found to be 8.7 MHz for qubits tuned to 4.8 GHz, and
7.5 MHz when the qubits are at 6.4 GHz. When discussing the behaviour
of a qubit in an open transmission line, a more convenient quantity for de-
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Figure 4.2: Reflectance spectra |r|? of the two-qubit system at (A,B) d ~ A,
and at (C,D) d ~ 3\, /4 (red data sets). In (B,D) the transmit-
tance [t|? is also shown (blue data sets). In panels (A,C), the
frequency of one qubit is tuned by applying the indicated volt-
ages to mm size coils integrated in the sample mount while the
other qubit is kept at a fixed frequency. Close to resonance,
interference effects cause the qubit peaks to become asymmet-
ric. (B,D) show spectra at coil voltages indicated by arrows in
(A,C). Colored lines are data. Black lines are theory, see text
for details.

scribing drive power is Qg /T'1, as the ratio of these rates shows how close
to qubit is to being saturated — its value is an indicator for what fraction
of the radiation gets scattered inelastically rather than elastically. As the
decay rates are '}®/27 = 13 MHz and I'{*/27 = 26 MHz, we find dimen-
sionless drive strengths of 0.67 and 0.29 at 4.8 and 6.4 GHz respectively.
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4 Elastic scattering properties of a system of multiple qubits

The latter number being low means that a relatively large amount of light
gets scattered elastically such that |r|? + [t|> ~ 1. The much higher drive
strength at 4.8 GHz means that a significant fraction of the radiation will
be scattered inelastically, such that |r|> + [¢|> do not add up to one. The
split peak observed in the same figure is due to a dressing the two-qubit
system by the strong drive, not a signature of qubit-qubit interaction.
Both in Fig. 4.2B and D, the peak shapes of the qubits are asymmetric.
This asymmetry is caused by a small detuning between the qubits. When
tuning the frequency of one of the qubits by varying the voltage over a coil,
the finite step size of the voltage source results in a finite step size in qubit
frequency. Thus, the qubits were very close to resonance at the spots indi-
cated by arrows in Figs. 4.2A and C, but not exactly in resonance, resulting
in a slightly asymmetric peak shape. We will investigate if a small detuning
leads to the observed asymmetry by simulation in section 4.2.

The reflectance and transmittance away from qubit resonance, which should
be 0 and 1 respectively (we will refer to this as the ’baseline’), is highly
asymmetric around the qubit in Fig. 4.2B. This was a recurring problem
with measurements at high qubit frequencies. Due to the limited maximum
frequencies of the qubits in the sample under investigation, the qubits could
not be tuned above the range of interest during a background measurement.
Instead, the qubits had to be tuned to frequencies below the range of in-
terest. The qubits, being themselves small impedance mismatches in the
transmission lines, then form weak standing waves with other impedance
mismatches in the circuit. These weak standing modes will therefore be
measured in the background measurement but not in the experiment with
the qubits tuned to the frequencies of interest. The measured background
is therefore different from the background during the experiment. This is
thought to be the main cause for the slanted baseline in Fig. 4.2B.
Finally, Fig. 4.2 is not completely symmetric around the qubits in reso-
nance, mostly so in Fig. 4.2A. This is because the qubits do not move in
straight lines through the figure, but instead as w o /cos(V)?, with V the
voltage on the coil.

An experiment was carried out to determine the power arriving at the
right qubit when driving two qubits in resonance from the left. It might
first be naively assumed that the power at qubit B is given by |t1]?Pi,
but due to the possibility of multiple reflections between the qubits, this
is not the case. The transmittance and reflectance of qubit A and qubit B

74



4.1 FElastic scattering properties for a system of two distant artificial atoms

1.0t (a) —— Qubit A 1.0F (b)
—— Qubit B
08¢ ——Qubit A&B 08¢
~ 0.6 ~ 06}
0.4F 0.4 e Qubit A
0.2 0.2 —— Qubit B
® ——QubitA&B
0.0 . . 0.0 . . .
140 130 120 110 140 130 120 110
Power (dBm) Power (dBm)

Figure 4.3: Reflectance (a) and transmittance (b) for qubit A, qubit B,
and for both qubits in resonance at 4.8 GHz. As fit param-
eters, we used I'f/2r = T'F/2r = 13 MHz, and 7(3/271’ =
75/271':1.4 MHz.

were separately measured as a function of drive power and frequency. After
that, both qubits were tuned into resonance, and the reflectance and trans-
mittance of the two-qubit system were measured versus drive power and
frequency (Figs 4.3 and 4.4). This was done both at 4.8 GHz and 6.4 GHz.
For each point in these figures, a transmittance or reflectance curve was
measured as a function of drive frequency at a single drive power, and fit-
ted with the formula for reflection (3.26) to find the maximum reflectance
or transmittance. This was done for various drive powers to see how the
maximum reflectance and transmittance depend on drive power. The re-
sulting curve was fitted once again using equation (3.26), now fitting only
for an offset drive power and pure dephasing. The two-qubit spectra (red in
the figures) do not have the same shape as a single-qubit reflection curve,
resulting in a bad match between the fit and the data.

For two qubits tuned to 4.8 GHz (Fig. 4.3) the two-qubit peak has a lower
transmittance and reflectance at a given power when compared to single
qubit numbers. The lower transmittance is expected, as there are now mul-
tiple locations at which light can be reflected. The lower reflection is more
surprising, and is thought to be due to interference: radiation transmitted
by qubit A and reflected by qubit B will accumulate a phase of 37, and will
therefore interfere destructively with the directly reflected radiation.
When looking at qubits tuned to 6.4 GHz, radiation transmitted by the
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Figure 4.4: Reflectance (a) and transmittance (b) for qubit A, qubit B, and
for both qubits in resonance at 6.4 GHz. T{ /27 = 28 MHz,
I'B /27 = 26 MHz, ’}/('2/277' = 0.9 MHz, 75/271’ = 0.4 MHz.

first and reflected by the second qubit accumulates a phase of 47, and
is therefore expected to interfere constructively with the input field. In
Fig. 4.4(a), we see that the reflectance of the two-qubit system is indeed
increased compared to single qubits, while transmittance is decreased.

4.2 Multiple qubits in a transmission line:
interference effects

Assuming that cooperative two-qubit effects are caused by interference, we
can construct a semi-classical model to simulate the transmittance and re-
flectance of a two-qubit system. We use the steady-state solution of the
master equation presented in section 3 to find the reflection and transmis-
sion of a single qubit, and construct a scattering matrix for a single qubit.
We also construct a scattering matrix for the fixed distance between the
two qubits. These scattering matrices can then be transformed to transfer
matrices, which have the convenient property that they can be multiplied
to give an equivalent two-port system for all components combined. There-
fore, the reflection and transmission coefficient of the total system can be
obtained from the product of transfer matrices of all subsystems. This ap-
proach was inspired by references [Shen05b, Shen0O5a], but our approach
differs in that we do not assume our systems to be lossless, and we allow
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Figure 4.5: The scattering matrix couples outputs b; and by to inputs a;
and as.

for high input powers.

4.2.1 Scattering matrices

A scattering matrix connects the outputs of a two-port network to its out-

puts according to
by S11 Sz ay
= . 4.1
< by ) lsm 522] < as ) (41)

where all variables are as in Fig. 4.5. To construct a scattering matrix for
an object, we need to know its reflection and transmission coefficient. The
reflection coefficient for radiation coherently scattered by a two-level system
in a transmission line is given by (3.26), and the transmission coefficient is
t=1-—r.

For a single qubit, we have that S11 = S5, = —r, and S12 = =55, =t. To
investigate interference effects between two distant qubits, we also need a
scattering matrix for this distance, as the applied radiation acquires a phase
between the qubits that depends on this distance. The scattering matrix
for the distance between the qubits is given by S11 = Soo = ei2mw/ wd  and
S12 = S21 = 0. Here w is the frequency of the input field, and wy = 27v/d
is the frequency whose corresponding wavelength is equal to the distance
between the qubits.

4.2.2 Transfer matrices

Even when the scattering matrices for all parts of a system are known, it
is not trivial to calculate the reflection and transmission coefficients of the
total system. KEach scattering matrix can however be transformed into a
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so-called transfer matrix, and these transfer matrices can be multiplied to
give the total system response (see Fig. 4.6 for a schematic). To calculate
the reflection and transmission of a multi-qubit system, therefore, we need
but find the transfer matrices of all components. For a qubit, the transfer
matrix has the following shape [Shen05al:

-
Tqubitl Td Tqubit2
D S —_—

Figure 4.6: The single qubits and the distance between them can each be
characterized by a transfer matrix. The product of transfer
matrices is equal to the transfer matrix of the total system.

[+t >

Tq = t: tl* ’ (42)
i t

with r(w, ) as in equation (3.26), and t = 1 — r. It should be noted here
that there are some differences between the definitions we use here and those
used in [Shen05b]. In their paper, Shen et. al. construct a scattering matrix
for a two-level system that is unitary. However, there are three conditions
under which we do not expect the scattering to be unitary: when the pure
dephasing rate v, # 0, part of the radiation couples into the environment,
leading to losses. Pure dephasing will cause the scattered radiation to be
out of phase with the incoming beam, causing a random phase that is aver-
aged out under multiple measurements, and therefore to a loss in the total
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4.2 Multiple qubits in a transmission line: interference effects

amount of detected radiation. Similarly, a nonzero non-radiative decay rate
will lead to loss of radiation out of the system. Moreover, when driving the
system with Q &« I'1, inelastic scattering will start to become important —
radiation will be scattered at different frequencies than the drive frequency,
and due to the randomized phase and the different frequency of inelasti-
cally scattered light these contributions will not be observed, again causing
a loss of the total amount of observed radiation. Each of these effects means
that our transfer matrix should not be unitary. This is implemented in the
transfer matrix by the multiplication of 711 with |r|? + |¢|2.

Moreover, we differ from [Shen05b] in the locations of minus signs in (4.2),
but this is merely due to a difference in the definition of the reflection co-
efficient r, for which we have chosen to follow [Astafiev10a].

The transfer matrix that accounts for the phase accumulated by radiation
travelling between the two qubits is given by

127 -

e wd 0
Ty = . (4.3)

2w

0 e wq

As an example, the transfer matrix for a system of three equidistant qubits
in a transmission line is now simply given by the product of the transfer
matrices of the subsystems

Tiotal = TqAT¢TqBT¢TqC- (44)

The total transfer matrix is then a function of all parameters determining
the qubit reflection and transmission (see equation (3.26)), the distance be-
tween the qubits and the frequency of radiation sent into the system. The
transmission and reflection coefficients of the total system can be extracted
from the total transfer matrix according to equation (4.2).

There are two potential issues with these calculations. The first is that de-
phasing of the photon is not taken into account. However, photon dephasing
is not expected to be important in our experiments. The second issue is
more problematic; when using this transfer matrix approach, the output
fields which give information about the reflectance and transmittance of
the total system, are functions of the input fields when all parameters that
go into the system are known. However, these parameters include the re-
flection and transmission coefficients of qubit A and B, which depend on
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the local fields at qubit A and B. These local fields are not accessible from
the transfer matrix of the total system. For now we will assume that the
drive powers at qubits A and B are equal to the input power, and see how
well such a model agrees to experiment. Later, in section 4.2.4 we will re-
linquish the convenience of the transfer matrix approach and calculate the
fields at qubits A and B directly, taking into account multiple reflection
and transmission events.

In Fig. 4.7 we show the result of using transfer matrices to calculate the
reflectance and transmittance of a two-qubit system. These figures were
obtained using the same parameters as their experimental counterparts
in Fig. 4.2: at 4.8 GHz, I'1/2r = 13 MHz, 7,/2r = 2 MHz, and the
drive power at the qubit is -131 dBm. At 6.4 GHz, I'1/2r = 26 MHz,
vo/2m = 0.5 MHz, and the drive power at the qubit is -136 dBm. Com-
paring the simulation results to the experimental results we observe a good
agreement, although there are some differences. Omne of the more obvi-
ous differences between the simulations and the experimental results is the
shape of the crossing at 6.4 GHz, in the center of panel a in Fig. 4.7. The
experimental crossing is darker (higher reflectance) and sharper than the
transfer matrix theory predicts. For qubits tuned to 4.8 GHz, qualitative
agreement is good.

The asymmetry in the peaks in reflectance observed in experiment (Fig. 4.2B
and D) was thought to be due to a small detuning between the qubits. In-
troducing a small detuning in the transfer matrix simulations results in
asymmetric peaks as shown in Fig. 4.8, confirming the hypothesis that the
asymmetry is caused by a small detuning of the qubits.

4.2.3 Simulating reflectance and transmittance for multiple
qubits

For all simulations presented below, the qubit parameters were set to be
the same as in experiment. The qubits are separated by a distance equal
to one wavelength at 6.4 GHz. The pure dephasing rate 7,/2m was set
to 2 MHz at 4.8 GHz and 0.5 MHz at 6.4 GHz, the qubits relax at rates
of I'1/2m = 12.9 MHz at 4.8 GHz and 26 MHz at 6.4 GHz. The detuning
marked on the horizontal axis for Figs. 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 is the
detuning between the center frequency in the figure, and the qubit tuned
along the diagonal of the figure. All other qubits are detuned according
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Figure 4.7: Simulation of a two-qubit system using transfer matrices. In (a),
One qubit is kept at 6.4 GHz while another qubit is tuned into
and out of resonance. The reflectance of the system is shown
in color. In (b) the reflectance and transmittance are shown
when the qubits are in resonance. (c) and (d) show the same
for qubits at 4.8 GHz

to a;0w, with dw the detuning of the qubit along the diagonal, and a; a
arbitrarily chosen constant with which qubit ¢ is detuned as a function of
the x-axis. This way, all of the qubits are detuned simultaneously with
different slopes, which was done in order to increase the visibility of inter-
ference effects when the qubits all get close to resonance. The first four of
these figures (Figs. 4.9, 4.10, 4.11 and 4.12) show the reflectance and trans-
mittance of three qubits in resonance at 4.8 and 6.4 GHz, first for similar
drive powers as the experiments presented in Fig. 4.2, and then for lower
powers, at which interference effects are more pronounced because the loss
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Figure 4.8: Simulation of a two-qubit system using transfer matrices. (a)
Two qubits detuned by 1 MHz at 4.8 GHz. (b) Two qubits
detuned by 2 MHz around 6.4 GHz.
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Figure 4.9: The reflectance (a) and transmittance (b) as calculated using
transfer matrices for three qubits in resonance at 4.8 GHz,
driven at a power of -129 dBm. (c) shows line cuts through
the figures in (a) and (b) when all qubits are in resonance.

of radiation from the system when €2 <« I'; leads to a decreased contrast.
When the number of qubits is further increased (the easiness with which
that can be done is one of the main appealing features of using transfer
matrices), the interference patterns around resonance for qubits tuned to
4.8 GHz become increasingly more intricate (Fig. 4.13, 4.14).

The transmittance and reflectance at resonance can also be plotted
as a function of the number of qubits. The results are shown in Figs. 4.15
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Figure 4.10: As in Fig. 4.9, but with a drive power of -140 dBm.
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Figure 4.11: As in Fig. 4.9, but the qubits are tuned to be around resonance
at 6.4 GHz, and the drive power is -134 dBm.
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Figure 4.12: As in Fig. 4.11, but applying a drive power of -145 dBm.

and 4.16 for qubits in resonance at 4.8 and 6.4 GHz, respectively. The drive
power in these simulations was kept low to keep the interference effects more
visible — these effects are most apparent at 4.8 GHz, where the reflectance
is very low at higher drive powers. In Fig. 4.15, we observe that whereas
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Figure 4.13: Five qubits moving in and out of resonance at 4.8 GHz at a
drive power of -129 dBm.
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Figure 4.14: Eleven qubits moving in and out of resonance around 4.8 GHz
at a drive power of -140 dBm. As the number of qubits is
increased, the interference pattern becomes increasingly intri-
cate.

the transmittance mainly shows a slow broadening in its dip with the num-
ber of qubits, the reflectance spectrum shows more and more side peaks
in elastically scattered radiation. The maximum amplitude of the center
reflectance peak, however, does not change with the number of qubits, in-
dicating that for multiple qubits the maximum reflectance is still set by
nI'1 /2T, as for a single qubit. For qubits tuned to 6.4 GHz (Fig. 4.16), the
main point of interest is the width of the qubit spectrum, which seems to
go up linearly with the number of qubits (this was not quantified explicitly,
as the width of a peak is ill-defined for strange peak shapes as in 4.16),
unlike the situation at 4.8 GHz where the width of the spectra increases
much more slowly.
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Figure 4.15: The reflectance (a) and transmittance (b) for multiple qubits in
resonance at 4.8 GHz. Here, the parameters were chosen to be
similar to experiment and to other simulations in this chapter,
but at a lower drive power. The drive power is -150 dBm at the
qubits, and the pure dephasing rate is set to v, /2w = 1.5 MHz.

4.2.4 Simulations for unequal powers at the qubits

Whereas the transfer matrix method is useful in that it is computationally
efficient, easily extendible to arbitrary numbers of qubits and replicates the
experimentally observed effects to a good degree, it does not capture all
the physics involved correctly. Most notably, the drive power used to com-
pute the reflection and transmission coefficients of the qubits is assumed to
be the same as the input power. In reality, due to the nonzero reflection
coefficient of qubit A, qubit B will see less power than the input power.
Besides, due to multiple reflection events between qubits A and B, the field
at qubit A is generally not of the same magnitude as input field. Moreover,
the difference in field magnitude at both qubits depends strongly on the
detuning between drive tone and qubit transition frequency. For a drive
tone slightly detuned from qubit A, the transmittance of qubit A will be
much higher, and therefore the field magnitude at qubit B will be higher
than for a resonant drive tone.

These effects can be calculated numerically. To do so, we define a quantity
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Figure 4.16: The reflectance (a) and transmittance (b) for multiple qubits
in resonance at 6.4 GHz. Here, the parameters were chosen
to be similar to experiments, but at a lower drive power. The
drive power is -150 dBm, and the pure dephasing rate is set to
Yp/2m = 0.5 MHz.

of time d§t which is equal to the time needed by radiation to travel from
qubit A to qubit B: §t = d/c, with d the physical distance between the
qubits and ¢ the speed of light in the transmission line between them. We
switch on the microwave drive such that at ¢ = d0t, the drive arrives from the
left at qubit (which we call qubit A), but not yet at qubit B (see Fig. 4.17).
To calculate the build-up of the field between the qubits, we make the un-
physical assumption that the qubit dynamics are instantaneous. At time
t = 26t, the transmitted part of the input light arrives from the left at
qubit B, while the reflected part of the radiation is absorbed by a detector.
At each time step, power is applied from the left to qubit A, as we are
investigating the steady state properties of the two-qubit system under a
continuous drive from the left. As time progresses, the field builds up be-
tween the two qubits. In the schematic example in Fig. 4.17, the total field
at qubit A builds up over time, changing the transmission and reflection
coefficients of qubit A, which again change the local fields, etc. For the
drive powers and qubit parameters as in experiment (Fig. 4.2), the system
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4.2 Multiple qubits in a transmission line: interference effects

qubit ‘

Figure 4.17: The field between the two qubits builds up, altering the reflec-
tion and transmission coefficients of both qubits. The circles
at the left and right sides of the qubit location denote the field
magnitude coming from the left and right sides of the qubits.

reaches a steady state in a few tens of turns, as shown in Fig. 4.18. If the
drive power is decreased, the system needs longer to reach a steady state,
and vice versa. While the schematic in Fig. 4.17 does not show the effect
of phase, the simulations keep track of the phase of the fields as well as
their magnitudes. We can now use this model to simulate the experiment
shown in Fig. 4.2 again. The results are shown in Fig. 4.19. The agreement
with experiment is better than for the transfer matrix model. For qubits
close to resonance at 6.4 GHz, we would like to point out two phenomena
which are better predicted by this model: the first is the difference in the
two-qubit peak height in reflectance compared to single-qubit peaks. The
second is the white triangles in Figs. 4.2a and 4.19b caused by interference
for nearly-resonant qubits — both the experiment and the simulations pre-
sented in this section show sharp white triangles approaching the center
of the figure, whereas in the transfer matrix based simulations (Fig. 4.7a)
these triangles vanish further away from resonance. This model shows a
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Figure 4.18: Two qubits in resonance at 6.4 GHz, at a drive power of
—130 dBm. (a) the reflectance and transmittance change only
slightly as the number of iterations go up. (b) We define nor-
malized field magnitudes as V4 p/Vip for qubits A and B. These
field magnitudes change strongly as a function of the number
of iterations. At a drive power of —136 dBm, the fields have
converged to a steady state value after some 40 iterations. At
4.8 GHz, the fields converge much quicker, and qubit A sees a
larger field than the input field and qubit B (not shown).

high degree of agreement with the experimentally observed elastic scatter-
ing properties of a two-qubit system. As this model was constructed while
finalizing this thesis, and as it is computationally much less efficient than
the transfer matrix model, we have not redone all simulations which were
carried out with the transfer matrix model using the model presented in
this section.

The most important conclusion to be drawn from the agreement between
experiment and both models presented in this section is however of a dif-
ferent nature. As these semi-classical models — in which qubit interactions
are of a purely interferometric nature — agree well with the experimentally
observed behaviour, we are led to conclude that no quantum-mechanical
interactions are necessary to predict the elastically scattered radiation. It
is especially surprising that the interference models correctly predict that a
two-qubit spectrum is twice as broad as a single-qubit spectrum at 6.4 GHz,
while at 4.8 GHz there is no appreciable difference in line width. This ef-
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Figure 4.19: (a) A simulation of two qubits being tuned into and out of res-

onance at 4.8 GHz. Qubit parameters were I'; /27 = 14 MHz,
Yp/2m = 2 MHz, drive power at the qubits was -130.5 dBm,
and n = 0.92. (b) At 6.4 GHz, the parameters were chosen
to be I'1/2r = 26 MHz, v,/2m = 0.5 MHz, drive power at
the qubits was -136 dBm, and n = 1. These parameters are in
accordance with experimental parameters for the experimental
results shown in Fig. 4.2.

fect, as we will see in the next chapter (chapter 5) is also predicted by
a full quantum mechanical model, where we will call it ‘correlated decay’.
That this effect is predicted here already means that it is not quantum

mechanical,

but interferometric in nature. To experimentally observe the

quantum mechanical interaction effects we will need to include inelastically
scattered as well as elastically scattered radiation in the scope of both our
measurements and theory, which is the topic of the next chapter.
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5 Inelastic scattering properties of a
system of distant artificial atoms

In the previous chapter, where we considered elastically scattered radiation
from two qubits, we could make do with a semi-classical model, where the
qubits could be considered as mirrors (albeit mirrors that can be saturated)
and where all interaction effects were caused by interference. In this chapter,
we will however look at inelastically scattered radiation, which by its very
nature is quantum mechanical. To explain what we observe, we therefore
need a quantum-mechanical framework. Such a framework was constructed
(based on earlier work by Lehmberg [Lehmberg70]) by our collaborators,
and published in [Lalumierel3]. The first section of this chapter will consist
of explaining this framework, where we will omit only the most technical
of details. In the second part of this chapter, results will be shown for
resonance fluorescence measurements on a system of two qubits, and they
will be compared to and explained by the aforementioned theory.

5.1 A master equation for two distant artificial atoms

In the following, we will theoretically investigate a system of M N-level
systems (Fig. 5.1) in an open one-dimensional space. An effective master
equation for such a system can be derived, and en route we will find ele-
gant expressions for the interaction effects which manifest between distant
artificial atoms. After obtaining this general master equation, which we
will further on use for numerical calculations on two multilevel transmon
systems, input-output boundary conditions will be used to relate the mea-
surable quantities — the outgoing fields — to the qubit dynamics. Intuitive
insights can be gained by looking at the more simple system of two two-level
systems in a transmission line, which we will do specifically for inter-qubit
distances of d = A, and d = 3\, /4.

This theoretical framework was constructed by Lalumiere and coworkers in
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5 Inelastic scattering properties of a system of distant artificial atoms

N 1111 R 11

Figure 5.1: Schematic of several qubits (not to scale) in an open transmis-
sion line, separated by A, /4.

collaboration with our experimental work. As such, this section will rely
heavily on their publication [Lalumierel3], which follows the approach of
Lehmberg [Lehmberg70] but adapts it for a one-dimensional space. We will
therefore adopt the symbols used in [Lalumiérel3] in most cases. Except for
the published theory, we offer some intuitive explanations about the effects
of non-radiative decay and different qubit lifetimes which were not covered
elsewhere.

It should be noted here that [Lalumiérel3] does not present the only the-
ory for waveguide QED. Most notably, much theoretical work was done by
Zheng, Fang and Baranger, who show how to engineer highly correlated
photon-photon pairs and effective repulsive or attractive photon-photon
interactions [Zhengl0, Zhengl2c|, how to distribute quantum keys for se-
cure quantum communication using waveguide QED [Zhengl2b], how to do
quantum computation in waveguide QED [Zheng12d] and how the Marko-
vian approximation breaks down [Zhengl3] for a system sized beyond a few
wavelengths. One of their latest papers [Fangl3| predicts what the second-
order correlation function looks like for three artificial atoms as a function
of their separation: oscillations between bunching and anti-bunching for
qubits half a wavelength apart, and a strong bunching followed by a long
anti-bunching time for qubits one quarter wavelength apart. With our
setup, we should be able to experimentally verify these predictions.
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5.1 A master equation for two distant artificial atoms

5.1.1 The Hamiltonian for qubits in a transmission line

For a system of multiple qubits in an open transmission line (Fig. 5.1) the
Hamiltonian can be divided into three parts. The first part is the energy
contained in the fields in the transmission line [Shen05b]

Hy = /0 ™ dushw | (wW)ar (W) + af (W)arw)], (5.1)

with d}; /L the creation operator for a right/left moving photon, and a the
corresponding annihilation operator. The creation and annihilation oper-
ators obey the commutator [ag 1, (w), dL/L(w’)] = 0(w — ). The integral
goes from 0 to oo to take into account all modes in the continuum. A second
part of the Hamiltonian comprises the qubits:

—-1M-1

Z Z Epjlmg)(m), (5.2)

=0 m=0

with E,,; the energy of state m of qubit j. The third part of the Hamiltonian
describes the interaction between the propagating fields = and the qubits

. N—-1M-1 .
Hi=3 > hgpv/m+1(2;+2)) 6, (53)
7=0 m=0

where each term in the sum describes the coupling for qubit j in the m™

state. g;j is the dimensionless coupling strength between atom j and the
transmission line, given by

1/4
o e2c EJJ (1/4) (5 4)
9i 2h7rvc§j 8Ec; ’ '

which is similar to the expression for a transmon qubit in a cavity as in
[Koch07], but with a different pre-factor. Similar to there, the transition
dipole moment of a qubit is given by (2e/v/2)|(i|f|i 4+ 1)|, but the pre-
factor describing the voltage in the vacuum coupling to the qubit is now
described as (1/2),/c/ (hm)c ;), while it is SV, in circuit QED, where the

qubit mainly couples to a smgle mode of the electromagnetic field. In this
expression, cy; is the coupling capacitance per unit length between qubit j
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and the line, and c is the capacitance per unit length of the transmission
line. v denotes the speed of light in the transmission line. The field at
position x; of qubit j is proportional to

= = —i/ dw/w [dL(W)e_in/” + &R(w)eiwzj/v] ; (5.5)
0

As seen in (5.3), the field couples to the qubit via 67, the combination of
the lowering and raising operator for a multilevel system

&m =" 46T (5.6)

and
6™ = m;){(m + 1), = (679) (5.7

which lowers the j'" atom from the (m + 1)' to the m' excited state.
Only the transitions between neighbouring excited states are allowed, in
accordance with the properties of a transmon qubit [Koch07]. The total
Hamiltonian is then given by

Hiot = Hp + Ha + Hi. (5.8)

We omit the derivation of this Hamiltonian starting from a lumped-element
model. The interested reader is referred to appendix A of [Lalumierel3] and
[Devoret97].

5.1.2 Deriving the master equation

The method used here for obtaining a master equation follows the work
done for atoms in a three-dimensional free space by [Lehmberg70] more
than 40 years ago. We start by finding an expression for the annihilation
operators. In the Heisenberg picture, we have that

dag(w) i 4

= —[H, ar(w)] = —iwag(w) + Y _ gjv/m + Lywe /v (5.9)
mj

dt h

where the first term is due to ﬁp and the second term due to H, 1. We obtain
an explicit time-dependent form of ag by assuming that a time ¢t = 0 exists
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in the past at which no interactions between the atoms and the field had
yet taken place. We then integrate from this time onwards:

. t ; >
in (w0, ) = ap(w, 0)e ™t + 3 giv/m 1 1\@/ dre =T g (1)
. 0
mj

(5.10)
where t; = x;/v — the time needed for radiation to reach qubit j. This can
be substituted in the expression for = (5.5) to obtain

N N t
Z5(t) = 25(t) — ’LZ Z geVvn + 1/0 drlni(t, 7, 0ty;), (5.11)
nk o==+1

where t;; is the time light needs to travel from qubit £ to qubit j, and
where we have defined

é;n(t) — —Z/ dUJ\/LT} [&L(W,O)e_iw(t+tj) +&R(w7 O)e—iw(t—t‘j):| ) (512)
0

This is a term describing the field at time ¢ due to the input field at time
t = 0 without taking into account contributions to the field due to the
qubits. Those alterations are described by the second term in (5.11), where

Bt 7 try) = /O deowe™(T—t=tk) gk (1) (5.13)

which connects the field dynamics at the position of qubit j to the qubit
dynamics of qubit k. This expression is problematic, as the integration over
&7 (1) implies that we are required to know the entire history of the qubit.
To be able to proceed further, we need a Markov approximation.

The Markov approximation

The trouble with (5.13) is its dependence on 7. The integration over 7 from
a time before interactions to time ¢ requires knowledge of the state of qubit
k during all that time. We can use the evolution operator to write (5.13)
out as

A oo .
Ink(t,T,tkj):/o dwwelw(T*tft’“jM;Lk(T)

_ /oo dwwe—iw(q——t—tkj) {eiﬁT(Tft)/hoA_ﬁk(t)efif{T(‘rft)/h + HC} ,
0

(5.14)
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in which ¢ is the upper integration limit of 7. Contributions to this integral
due to low frequencies can be neglected because the integrand grows with
w. On the other hand, because of the exponential in the first term of
(5.14), high frequency components oscillate quickly and average to zero. An
exception occurs when 7 = ¢ + t;, where the integrand does not oscillate.
In other words, the field at the position of qubit j is mainly affected by the
state of qubit k at a time earlier by #;;, the time needed for information
about the state of qubit k to travel to qubit j. Furthermore, we will neglect
the interaction term Hj in the time evolution operators in (5.14) so that the
state of qubit £ at time 7 = ¢ — #;; can be inferred from the state at time
t, corrected by the Larmor precession over ty;. Neglecting the interaction
Hamiltonian is necessary because otherwise the state of qubit k& at time
T = t — t}; would depend on the state of qubit j at time 7 = ¢ — 2ty
which would again depend on the state of qubit k£ at time 7 =t — 3ty;, ad
infinitum. We omit the calculation showing that the error due to neglecting
Hy is small, and refer the interested reader to [Lalumiérel3]. Combining

these two approximations, we can rewrite 6™ in equation (5.14) as

a_nk(T) ~ &2/€(t)€*iwnk(7*t)’ (5.15)

where w,}, is the Larmor precession frequency of qubit k for level n. In other
words, the only part of the history of qubit k we take into account when
calculating its effect on qubit j is its Larmor precession. This is equiva-
lent to a Markov approximation. The validity of this approximation when
increasing the distance between the qubits was studied in [Zhengl2a], and
was found to break down when the qubits are separated by more than a
few wavelengths — a situation that will not concern us in this work.

Long-time approximation

In order to proceed with evaluating the expression for éj(t) (5.11), we use
that

/OOO dre=*® = 1§ (k) — iP (}1) : (5.16)

with P the Cauchy principal value. To use this identity, we need the time
integral in (5.11) to go to infinity instead of ¢ (hence the name long-time
approximation). However, as soon as w,it > 1, the integration already

96



5.1 A master equation for two distant artificial atoms

takes place over many oscillations, and the error in letting w,xt go to oo
is very small. For a system such as ours, using superconducting qubits, it
means that we need that ¢ > .02 ns. Given the bandwidth of our mea-
surement setup, it would be impossible to look at dynamics this fast even
if we wanted to, and conversely for the dynamics we expect to be able to
observe, this approximation (wy,it > 1) is valid. Physically, this approxima-
tion should be seen as the qubits interacting instantaneously. As the phase
shift acquired by radiation going from one qubit to another is still taken
into account, the effect on qubit 2 by qubit 1 at time ¢ is still caused by
light emitted at time ¢ —#;;. However, there is a problem during transients:
when a drive is switched on and reaches qubit 1 at time ¢, the effects of this
drive will be felt by qubit 2 at time ¢ as well, rather than at time ¢ +;;. As
such, the calculations using this approximation are only valid when looking
at times longer than t;; after switching on the drive. Applying the Markov
and long-time approximation to (5.12), we have

=it =20 — — Y [onfent + (2 +ip/2) 6], (5a7)
with the definitions

t
= 9g,g;Vn + 1 P/ weos Why) (5.18)

w =t wni

and

Vij = 4T grgiwnkVn + 1 cos (wnktij) - (5.19)

With the goal of obtaining a master equation, we define a hypothetical
operator Q that acts only on the qubits. Going back to the definition of =
(5.5) which contains no atomic operators, we see that [Q(t),Z(t)] = 0. We
then have for Q

d

O

t %(mA’QH[ﬁI»QH[ﬁF,Q]), (5.20)

U
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where the last term must be zero as the operator acts only on the qubits.
Substituting (5.3) and (5.17) into (5.20) we get

@>

3 fp et s

S Vim (@ + (4 +infy/2) 67 + Hee.) 67, Q] ,

mj nk

(5.21)

which after writing out and reshuffling the order of the various operators
can be rewritten as

dQ _i
it~ h

HA+hZ\/79J(‘“+Hc) ’Q]

+> ﬁl—mgj (677 Q6% — Qapiott — He.)

mj nk

We want to obtain a reduced density matrix of the atoms only. However, the
above expression still contains parts that are photonic rather than atomic
in nature, such as the term containing é;n We will need to evaluate these
terms in more detail.

5.1.3 The drive term

Here we try to find an expression for an effective drive term that does not
include the annihilation and creation operators. To that end, we define a
drive superoperator D that, when applied on the density matrix p, results
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in the drive term of (5.21):

1oy [GD)5 }_Zzgjﬁm [Tep ([0, Q] & — Hec.) pr]

_ <z > gVm 1 ([omi, @ 2 - Hc)> : (5.23)

with Trp(a) the partial trace over the photonic (atomic) part of the system.
Since all operators here are evaluated at time ¢, causahty dictates there
can be no correlations between the input field operators = ;' and the atomic
operators. Hence,

T [QPU] =3 g /m FT(([527.Q)) (55) - He)
:iZg]\/ 1 x Tra [[((E) +ec) 679,Q] ] - (5:24)
mj
We now define an expression for the drive strength d,,;(t) as

dmi(t) = giv/m+ 1 () + (Eh1) ) . (5.25)

Driving from both sides with a coherent state |{a}) [Loudon00] described
by

in i@ 0){a)) = [T i — wola), (.20

with Ppg) and 0p,r) the power and phase of the drive to the left (right).
The expectation values of the input fields can be calculated to be

(2n(t)) = ({a}Er{ad)

- 4 |:6—iwd(t+tj+9L) /27TPL/FL+ e—iwd(t—tj-i-@R) /QTFPR/h] 7

(5.27)
such that the drive strength can be written as
TYmgj,mj PL .
dmj(t) = =24/ ]2 J < /hwmj sin [wq(t + t; + 61,)]
P
o) sin wa(t — t; + eR)]) . (5.28)
I
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We can now rewrite the second term of (5.22) in a much simpler form,
which no longer contains any operators acting on the field.

5.1.4 The ) coefficients

The other terms in need of attention are the various {2 coefficients. From
the way they enter equation (5.29), these terms seem to represent other
mechanisms for changing the qubit population than the drive, such as decay.
For the reader seeking the shortest path to the effective master equation for
the qubits, we can reveal already that some of these terms will be absorbed
into the qubit Hamiltonian while most terms will be omitted later either
because they are small or because of the rotating wave approximation. For
thoise who wish to see this proven, we start by recalling the expression for
o

t
OpF = 2gugyvi T TP [ Ly, (5.30)

w £ wpk

In order to solve this integral, we first perform a variable transformation:
r = (w £ wpk)/wnk and y =  F 1. We then have

o0
szi =2grgjwneyVn + 1 < /0 dy cos (wnitk;y)

~p % 108 (Wnkth; (2 F 1)))
+1 x '

(5.31)

In the first term, the integration limit at infinity presents a problem. How-
ever, as we will be concerned with real transmon qubits rather than ideal
point-like atoms, we have reasons not to concern ourselves with infinitely
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5.1 A master equation for two distant artificial atoms

high frequencies. The most important of these reasons is that when fre-
quencies are very high, the corresponding wavelengths of modes at these
frequencies will be smaller than the system size of the qubit. When wave-
lengths get shorter than the qubit, the average voltage on the capacitor
plate of the qubit will go to zero, and therefore the qubit will not couple
to modes at these frequencies. Moreover, the qubit being a real physical
system, there will be limits to its dynamics. Frequencies faster than the
limiting timescales of the qubit dynamics will not affect the qubit, and can
therefore be ignored. We can mathematically impose a frequency limit by
adding a factor that makes the expression converge at high frequencies

oo
| / o8 b W — lim ——  —. 5.32
771%1 0 dy 0] (wnk k]y)e 7710+ ( ) ktkj)Q _|_n2 ( )

For the second term in (5.31), on the other hand, we have

> 408 (Waktkj(z F 1))
+1 x

oo
=cos (wnitr;) P / dx
+1

P

cos (Wnitk;x)
x
sin (wpt; ) (5.33)

o
=+ sin (wypteq P/ dz
( nk k]) . x

= — cos (wnktkj) Ci (’wnktkj‘)

W <i7rsign (wWnkti;) — 251 (Wnitks )>’

where Ci(z) and Si (x) are the cosine and sine integral functions defined as
Ci(z) = — / dtmi@)7 Si () = / dt“;(t). (5.34)
T 0

Substituting these in equation (5.31) results in

. 411
UE = 2mgrgway/n + 1 {:lzp(wnktkj) + sin (wntrs) ( 5 )} , (5.35)

where p(x) is defined as

sin (|z]) [ — 2Si (|z|)] — 2 cos (z) Ci (|z|)

p(z) o

. (5.36)
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Figure 5.2: The function defined in (5.36) as a function of the distance
between the qubits. We are mainly interested in wpity; = 3/4
and 1.

We plot this function in Fig. 5.2. The value of p(x) goes to infinity when
x — 0, and approaches zero when = — 1. That means it goes to infinity
when the qubit separation approaches 0, which is of no concern as the
qubits have finite size and can therefore not be at zero distance. We will
be concerned with distances of the order of a wavelength. For qubits one
wavelength apart, p = 0.007, and for qubits 3/4 wavelength apart p = 0.012.
We see that the other factor in QZ; = 0, so that p(z) determines the
magnitude of the n+ terms. To interpret the meaning of these terms,
we first collect the diagonal elements of the 2-coefficient matrix and see
how they enter equation (5.29) which governs the dynamics of an arbitrary
qubit-only operator. We get the expression

Lnj = — (Vm+ 10+ — m 7). (5.37)

From equations (5.35) and (5.36) we see that these terms present a problem,
as (5.36) goes to oo when wy,ty; goes to zero, which is the case for diagonal
elements as they refer to the effect of a qubit on itself. This would mean
the qubit causes an infinite shift of its own frequency by emitting and
then reabsorbing photons at all frequencies - an infinite Lamb shift. This
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5.1 A master equation for two distant artificial atoms

problem is caused by the fact that so far we have considered the qubits to
be pointlike. The lack of a finite size means the qubit can interact with
arbitrarily high frequencies. In reality, the qubit has a finite spatial extent,
and will not interact with modes of the continuum which correspond to
wavelengths much smaller than the qubit size. As these diagonal ) terms
only present a shift in the qubit energy levels, we will later absorb this shift
into the atomic part of the Hamiltonian.

Now that we found expressions for the drive strength and Qﬁt coefficients
which do not contain photonic operators, we can trace out the modes in
the one-dimensional continuum from equation (5.29) to end up with an
atom-only expression for the time-derivative of the atom-only operator Q
We can then replace Q with p, the atomic part of the density operator
Trp [pr]| obtained by performing a partial trace over the photonic modes
on the complete density matrix pp. This results in an expression for the
dynamics of the reduced density matrix of the atoms:

dp i |, .
L NAA+ RS ds (1679,
dt o

+3 3 Vm+1 [ —iQpf (67 patth - poPigtt — He.)

mj nk
— i (&;ﬂﬂ poF — pamignk _ H.c.)
n

i LSQ (@anﬁ&ﬁk — pomignk 4 Hc)} (5.38)

5.1.5 Rotating wave approximation

The next step towards an effective multi-qubit master equation is to apply
the rotating wave approximation. In (5.38), we have several terms contain-
ing combinations like p6776™*, where 677 = 61" 4 6™/ These terms can
be written out as ﬁ(&fj 6"k 5™ 6™). Under the rotating wave approxi-
mation, only the first of these terms is preserved. Another justification for
skipping the 6_&_ term is that it does not preserve the number of excita-

tions in the system and is therefore not allowed.
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After the rotating wave equation, we have

dp |Ha )
! h+%Lmj!mj><mj\7p]

— i[> dmi ()77 YD Tmjnk6 6™ |

| mj mj nk
amjaank L fankamj
+ZZ Ymjmk | 0" PO —§{U+ o_ ,p}
mj nk
+5)m¢nk(6imﬁﬁﬁk4—6§kﬁ&fj——{6ﬁkﬁiw,ﬁ})]. (5.39)

Several terms were combined to improve readability. The Q1 terms were
combined to:

Qo = —i (Vo + 1T — Vm +1051) | (5.40)

whereas all 2~ terms have been omitted due to the rotating wave approxi-
mation. The magnitude of the remaining {2 terms at distances of the order
of a wavelength is small due to the shape of (5.36), which is small for
wnitr; ~ 1, and we will neglect them. The magnitude of the error intro-
duced by making the rotating-wave approximation and neglecting the {2
coefficients is discussed in appendix C3 of [Lalumieérel3|, and was found to
be small.

The v terms in (5.38) are now split into ¥, nix and Jp,; i terms, which we
define according to

Tmjnk _ *

n;]ﬂ-n = gr9j (m + 1)(n + 1) (kaj + Xnkj) ) (541)
Imjnk _ .Gk9j *

minh = P9 [ D+ 1) (o — Xotg) s (5:42)

where we have defined x,jx = wmjei“’mftkf , a factor related to the strength
of the atom-atom interaction due to the mode resonant to them.
Absorbing the Lamb shift and neglecting the §2 terms, we finally arrive at
an effective master equation for the qubits

dp P . 1 .
L= [H b+ 3 g [ef””ﬁﬁi’“ -5 {62’“6—"”,/3}} . (5.43)
mj,nk
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with the effective Hamiltonian

H=Ho+hY dpnjt)67 + 1Y Jos ™ 67", (5.44)

mj mj,nk

We will now take a closer look at the exchange interaction terms Jp,; . and
the decay terms vy, nk. When j = k, equation (5.41) denotes the single-
qubit relaxation rate. Things become more interesting when j # k. We
will be especially interested in the case where wy,j = wpg, such that (5.41)
is of the form

VYmjnk = 47Tgkgjwmj (m + 1)(n + 1) CcOos (wmjtkj) , (5.45)

which shows an oscillatory dependence on the distance between qubits j and
k. This decay rate, which we will refer to as correlated decay of the qubits,
is maximal whenever the qubits are an integer multiple of half wavelengths
apart. The single-qubit decay rates, given by the diagonal elements 7, n;,
do not depend on distance as t;; = 0.

The exchange interaction (5.42) for qubits in resonance is of the form

ij,nk = 27Tgkgjwmj\/ (m + 1)(n + 1) sin (wmjtkj) . (546)

which has the same periodicity as correlated decay but with a different
phase. The consequences are that whenever correlated decay is maximal,
the exchange interaction is zero, and vice versa.

These equations, most notably (5.43) with (5.44), (5.41) and (5.42) rep-
resent the main theoretical results. In the remainder of this discussion,
we will focus on simplifying these results for a two-qubit system, and look
specifically at what is expected to happen at inter-qubit distances of d = A,
and 3\, /4, in order to later compare the experiments performed for those
distances to theoretical predictions.

5.1.6 Input-output theory

To relate theory to experiment, a connection must be made between the
observed quantities and the qubit dynamics. We use input-output theory
to obtain such a connection. When going from equation (5.9) to (5.10), we
assumed that a time ¢ = 0 exists at which no interactions have taken place
yet, such that we could get the annihilation operator as a function of time
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Figure 5.3: The correlated decay 701 = 700,01 and the exchange interaction
J oscillate as a function of the inter-qubit distance. Here we
plotted both for transitions between the first two levels of two
qubits.

by integrating the dynamics from this ‘time zero’ to the time of interest.
Using the standard input-output theory approach [Gardiner85], we also do
the opposite — we assume there is a final time ¢; at which interactions have
stopped, and integrate backwards from there to get an expression for the
annihilation operator at time ¢:

ar(w,t) = ar(w,ty) Zgj\/i\f/ dre~wt=TH; V) 5mi (7).

(5.47)
Combining this result with the result we got from integrating from g to t
(equation (5.10)), we get

&Eut( ) = am —|— Zgj vm / \F/ dre*%u(t T+xj/’U) m ( )’

(5.48)
where alt(t) and al, (t) are inverse Fourier transforms of their frequency-
domain counterparts:

> dw ;
~R PN —iwt
ai (t) = ar(w,0)e , 5.49
1n( ) A /72 R( ) ( )

dw :
~R A —iwt
Ao lt) = —agr(w,tr)e . 5.50
out( ) /0 /o R( f) ( )

106



5.1 A master equation for two distant artificial atoms

The suffix 'in’ denotes radiation before interaction with the multi-qubit
system, whereas 'out’ denotes radiation that has interacted with the qubits
and is now propagating away from the system. Using the Markov and long-
time approximations as outlined in section (5.1.2), we can get rid of the
T-dependence of the & terms, and using the definition of vy, nk (5.41) we
can rewrite (5.48) to read

g (£) = afa(¢) + Y e ety [ 102l G, (5.51)
mj

and, similarly, for the left-moving field,

g () = 0l (1) + Z ethmits ,/%”;"” g™ (5.52)

When an experiment is carried out, we measure the reflectance and trans-
mittance. These are connected to the input and output fields according

to
Lo\ |2 R\ |2
<<a€;11t>> ’ | 7”|2 _ <<a;’£1t>> ) ( 5. 53)

Furthermore, for power spectral densities we have the following relation
between the measured spectrum and the fields [Clerk10)]

[t]° =

ol = [ dte gl 0 0), (554

where a € {R,L}.

5.1.7 Two two-level systems

We have obtained an effective master equation for a system of N M-level
systems in equation (5.43), which will allow us to numerically calculate how
the qubits will behave even when the transmon cannot be approximated as
a two-level system. However, the general validity of the model does not
help for developing an intuitive understanding. Limiting the system to
two qubits which have only two levels each will allow for analytical results.
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5 Inelastic scattering properties of a system of distant artificial atoms

Taking the master equation (5.43), restricting it to two two-level systems
and moving to a frame rotating at a drive frequency wy results in

% _ _% [H [;} X %m [(y',aaﬁ - % {ﬁa—j,ﬁ}} : (5.55)

The Hamiltonian is now given by

Here, A; is the detuning between qubit j and the drive, J = Jp1 02 is the
exchange interaction between qubit 1 and 2, and ;. = vo;,0% +7%r6jk where
we have introduced the non-radiative decay rate 7., the rate at which
radiation couples into other channels than the transmission line. In chapter
3, we have experimentally confirmed an upper limit to this rate showing
that yu < v, with 4, the rate of decay into the transmission line.

In experiment, the system is driven by a coherent tone from one side, which
is here chosen to be the left side. Moving equation (5.28) to the rotating
frame, applying the rotating wave approximation and using that /P; =
\/Wd@i];l), we get a more simple equation for the drive strength:

705,09 [ AL\ —iwgt
€ = Z‘/72w0j <am>e 7. (5.57)

To get the dressed master equation into the standard Lindblad form, a basis
transformation is performed that diagonalizes the matrix of decay terms ;y.
The details of this this diagonalization are omitted here, but can be found
in appendix G in [Lalumierel3]. In the new basis, the dissipator in (5.55)
has the standard form

> D" (5.58)
nw=B,D

with D[z]p = 2pat — {aﬁ%, f)} /2 the usual dissipation superoperator. The
atomic operators, under this basis transformation, are now defined as
V(T —722)% + a2

o
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5.1 A master equation for two distant artificial atoms

where we have chosen the suffixes p € {B, D} for reasons that will become
clear later. The decay rates I',, are given by

_ 2
Ty = Y11 + Y22 i\/(’Yll 722) + a2, (5.60)

2 2

The interaction effects between two qubits are best summarized by the joint
decay rate (5.45) and the exchange interaction (5.46). For two two-level
systems in resonance (w, = w; = we), these can be simplified to

K
f;i = 2919 wr cos (wytk;) , (5.61)

7r

and 7
o = kgjwr sin (wytr;) - (5.62)

We will now look in detail at the situations which were most thoroughly
investigated in experiment: two qubits are tuned into resonance, and we
will express the inter-qubit distance, as before, in units of this resonant
wavelength \.. Below we will focus on distances of d = A\, and d = 3\, /4
of the wavelength at their transition frequency.

5.1.8 Two qubits one wavelength apart — super- and subradiance

For two two-level systems one wavelength apart (Fig. 5.4A), the mathemat-
ical description of the system can be significantly simplified. Apart from
limiting ourselves to two levels for each qubit, we will also assume that the
non-radiative decay rates for both qubits are identical v} = +2.. The corre-
lated decay rate for this situation is given by the off-diagonal elements of the
decay matrix given by (5.61) while remembering that v;x = Y0506 + V. 0k-
We then get

Y2 = i\/(Vll — Yar) (722 — Yar)- (5.63)

from this in combination with (5.60) we get the decay rates for the eigen-
states |B) and |D)

I'p =9 <IT'B =711+ 72 — Y- (5.64)

The decay rate |D) being equal to the non-radiative decay rate ~,, means
that this state only relaxes into channels other than the transmission line.
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Figure 5.4: Schematic for two qubits at one wavelength distance. The con-
tinuous line shows that both qubits see the same phase of the
field of a resonant drive tone or vacuum fluctuation.

In other words, the state is dark. |B), on the other hand, decays nearly
twice as fast as a single qubit, and we call this state bright. States that
radiate more or less than a single qubit state are also known as super- and
subradiant states, respectively [DeVoe96, Gonzalez-Tudelal3]. To under-
stand this phenomenon, we start by observing that for two resonant qubits
separated by A, the expression for the exchange interaction (5.62) predicts
J to be zero. This implies that the four-level system formed by the two
qubits has two levels exactly in resonance: |ge) and |eg), which are therefore
indistinguishable. The eigenstates in this situation are then the symmetric
and antisymmetric combinations of |ge) and |eg):

B) = (lge) + leg))/V2, D) = (Ige) — leg))/ V2. (5.65)

When driving the system with a coherent tone of the same frequency as
the two-qubit system, the drive has the same phase at the position of both
qubits (Fig. 5.4, continuous line). This can also be seen from equation
(5.57): wq(ty —t;) = 2m. The bright state, which has the same phase
difference between the single-qubit excited states |ge) and |eg), therefore
couples strongly to the drive, but the dark state, having opposite symmetry,
does not. This causes the dark state not to be driven by the drive tone,
while the bright state is strongly driven. Similarly, relaxation of the qubit is
caused by vacuum fluctuations in the mode resonant with the qubits, which
also have the same phase relation between the two qubits as the drive tone,
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5.1 A master equation for two distant artificial atoms

such that the dark state cannot decay into the resonant vacuum mode. This
causes the dark state to be long-lived. A similar phenomenon was observed
in circuit QED [Filippl1] and with directly coupled superconducting flux
qubits [deGroot10].

Another way to see that the dark state can neither be driven nor decay to
first order follows from the dressed Hamiltonian (5.56). When the drive is
resonant to the qubits, A; = 0, and as stated before J is also 0 at this
qubit separation. Furthermore, we can arbitrarily take the phase of the
drive at the first qubit to be 37 /2, such that the drive at qubit j simplifies

to €5 = 1/705,05/2 <€Lil;l>, and the Hamiltonian simplifies to

Hsi’mp/h = 616913 + 626326. (5.66)
Calculating the transition matrix elements |(gg|H|D)| between the dark
state and the ground state (or doubly excited state) then gives 0 when
700,00 = Yo1,01- When the decay rates are not the same, this is not the
case. Some of the transition matrix elements as a function of drive asym-
metry are shown in Fig. 5.5b. Unequal qubit decay rates can cause the dark
state to be populated from the ground state |gg) and the doubly excited
state |ee). There are other reasons than decay asymmetry for the state
to not be perfectly dark. Nonzero pure dephasing causes transitions be-
tween |B) and |D). Nonzero non-radiative decay is decay due to resonant
modes outside the transmission line, and therefore does not need to couple
to both qubits with the same phase. Non-radiative decay mechanisms have
been (and still are) under much investigation for superconducting qubits
[Bylander1l, Gustavssonll]. The origin of non-radiative decay is thought
to be microscopic, and this microscopic noise has been observed to be lo-
cal [YoshiharalO] (i.e., the noise causing correlated decay at qubit one is
thought to be uncorrelated to the noise causing non-radiative decay at qubit
two). Therefore, non-radiative decay in our system is expected to contribute
to an asymmetry in the single-qubit decay rates.

We should emphasize at this point that the presented predictions, although
specifically stated for an inter-qubit distance of one wavelength, will be valid
for every distance that is an integer multiple of half a wavelength (N A, /2 for
N € N), but only at integer multiples (N \,) of the wavelength will the sym-
metric state be bright and the antisymmetric dark. At the other distances
that are multiples of half a wavelength ((2N — 1)\,/2), the antisymmetric
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Figure 5.5: (a) When two qubits are exactly in resonance, exchange inter-
action is absent and the two two-level systems form a dark and
a bright state. (b) Transition elements between the doubly ex-
cited state and the bright and dark state become nonzero when
the decay rates of both qubits are not identical. Figure adapted
from [Lalumierel3].

state will be bright and the symmetric state dark.

Elastically scattered radiation

In experiment, we either measure the transmittance or reflectance of elas-
tically scattered radiation, or power spectral densities. We will now focus
on elastically scattered radiation. Assuming that the decay rates for both
qubits are identical v = 9o = 711, we work out (5.51) and (5.52) for two
resonant two-level systems at a distance of d = A, to get:

all = ol i\ 6B, (5.67)

out — %in

where 4; = v — yur as before. The expectation value of 62 can be obtained
by calculating the steady-state solution of the master equation (5.55). The
expectation values of the outgoing fields are then, to first order in the input
fields

N A~ _i(F - nr)/2
<aR >: <a'L> Aﬁirl/g , (5.68)

. A —i(Tp = Yur)/2
(abe) = (ak) (1 - (A:FZ/;/ > . (5.69)
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Figure 5.6: Transmittance and reflectance for two qubits one wavelength
apart for at low drive powers. The width of reflectance and
transmittance peaks are given by I'p ~ 2. Numerical calcula-
tions using the full model are plotted in dots, while continuous
lines are due to analytical results. Here we chose v, = 0.957.
Figure from [Lalumierel3].

These fields are plotted in Fig. 5.6, where the dots represent numerical
calculations using the master equation (5.43) for 2 M-level systems, while
the lines represent analytical results obtained from (5.67) and (5.69). The
agreement between these two models is excellent for low drive powers. The
results resemble those for a single qubit. Under low drive powers (so that
|ee) remains unpopulated) and as long as the non-radiative decay and pure
dephasing rate are low compared to the radiative decay rate (such that | D)
does not get populated), the four-level system can be seen as being reduced
to only consisting of the ground |gg) and bright | B) states, where the bright
state has a decay rate twice that of a single qubit.

Inelastically scattered radiation
In the limit of low drive power, no pure dephasing and no non-radiative

decay, such that the system can be seen as consisting only of the ground
and bright states, the power spectral density for the four-level is of the same
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shape as for a two-level system [Walls08]:

6eff4
SR/ = 0 /82)5 TP (5.70)

where €$! is the effective drive amplitude for the bright state. The power
spectral density under these assumptions is plotted in Fig. 5.7a using both
the full model according to (5.43) and the above formula. The agreement
between numerical and analytic results is again excellent. However, as soon
as any of these approximations is not valid, the analytical results for the
power spectral density cannot be used, and the full numerical calculation
based on (5.43) is the only recourse. In Fig. 5.7b, the same spectrum is
plotted for two nonzero values of the non-radiative decay rate: yu, /7 = 0.1
and 0.01. For the latter condition, a narrow peak emerges out of the wide
peak of the bright state, its narrow shape indicating its long lifetime. This
sharp peak should not be confused with the elastically scattered contri-
bution, which is of vanishing width and which has been removed in these
figures. When the non-radiative decay is increased, the discernibility of
the dark state decreases (note that curves in panels (a) and (b) have been
normalized such that their maxima are 1; the total power observed does
not increase with 7y, /7 as one might otherwise be led to conclude). The
visibility of the dark state is shown to vary with vy, /7; in figure 5.7c. As-
suming that the non-radiative decay is caused by microscopic mechanisms
coupling to the qubits in an uncorrelated way, it causes the two-qubit sys-
tem to decay for example from the dark state (|ge) — |eg))/V/2 to states
like (|ge) — |gg))/v/2. This new state, and other states due to single-qubit
decay into other channels than the transmission line, have nonzero matrix
elements towards the ground state. The effect of non-radiative decay can
then be seen as simultaneously decreasing the lifetime of the dark state
and increasing the lifetime of the bright state, effectively pulling the two-
qubit system from this asymmetric dark-bright state configuration towards
a more symmetric one where the states have equal lifetimes. Only when
non-radiative decay rates are low (7 > ur), such as in a system of trans-
mon qubits in an open transmission line, we have that I'g > I'p.

The visibility of the dark state is also affected by the asymmetry in the qubit
decay rates vj; = 705,05 +4., which were taken to be equal in Fig. 5.7. Tak-
ing vnr/vr = 0.01, which rendered the dark state highly visible in Fig. 5.7b,
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the effect of asymmetry in the qubit decay rates on the dark state is explored
in Fig. 5.8. Using the simplified model from above (5.66) where qubits are
driven with the same phase but a different amplitude (since €¢; depends on
Y04,05, that is implied when decay rates are unequal), it can be immediately
seen that the dark state can be driven: |(D|Hgimplgg)| = |e2 — €1]/v/2, even
in the absence of v, and ~y,. The nonzero transition matrix element also
means that the dark state can now decay, albeit with a rate much lower
than I'p, which widens the peak of the dark state.

5.1.9 Qubits three quarter wavelengths apart — exchange
interaction

The situation is very different for two qubits spaced three quarters of a
wavelength apart (5.9). The qubits are now driven /2 out of phase, which
kills correlated relaxation (712 = 0). On the other hand, the exchange
interaction J is maximal at this distance (and other distances equal to
d= (2N + 1)\ /4, N € N), with |J| = v, /2.

Here too, it is possible to understand intuitively why J is maximal at these
distances, and why it is zero at distances d = NA,. As with any ex-
change interaction, here too J is caused by virtual processes - the qubits
interact with modes not at their resonance frequency. Each mode in the
one-dimensional continuum contributes to the exchange interaction, but
the strength of the contribution depends both on the detuning between the
mode and the two-qubit system, and the different phase which both qubits
experience from this mode as J; = g1g2/A;, with J; the contribution to the
exchange interaction by mode 4, and g1g» the relative coupling of the two-
qubit system to this mode due to the phase difference the mode develops
between the locations of the qubit. This last argument is very similar to
the argument presented when discussing the super- and subradiant state
(see Fig. 5.4). However, where we looked at the coupling of the resonant
mode to the qubits for correlated decay, for exchange interaction we look
at the off-resonant modes.

We first look at the situation where d = A,. In Fig. 5.4, except for the res-
onant mode indicated by the continuous line, two other modes are indicated
which are detuned by é and —9. The fact that both qubits see the same field
magnitude for the positively and negatively detuned modes signifies that
the product g1gs is the same for these modes. However, since the detuning

115



5 Inelastic scattering properties of a system of distant artificial atoms

) T _gf D) =01
0.8 Yr l \ Vr
06 [ 2 =00

T

ST/ L] /ST E0]

Ynr / Vr

-4 3 2 El

0 1 2 3 4

w/ Ve

Figure 5.7: Power spectral density of two qubits one wavelength apart as a
function of frequency in units of 4;, driven by a weak coherent
tone (eg = 7/200). In (a), the pure dephasing rate and non-
radiative decay rates are set to zero. The analytical (continuous
line) and numerical results (dots) agree well in that situation.
Introducing a finite non-radiative decay rate (b) introduces fea-
tures not captured by the analytics — the narrow peak shows the
presence of the dark state. The curves were rescaled to the full
range of the y-axes in panels (a) and (b). In (c¢), the logarithm
of the power spectral density is plotted in color as a function of
the magnitude of non-radiative decay. Pure dephasing was kept
to zero. Figure from [Lalumierel3].

is of opposite sign, the contribution of these modes to the total exchange
interaction is also of opposite sign Js = —J_g, and their contribution to

116



5.1 A master equation for two distant artificial atoms
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Figure 5.8: Logarithm of the power spectral density (color) for two qubits
at a distance of one wavelength driven by a weak coherent tone
(e = 7©/200) as a function of the asymmetry in the qubit
decay rates (711 — v22)/(711 + Y22 Yur/ = 0.01. The line in
the center is the dark state. Increasing the asymmetry between
qubit relaxation rates increases the width of this state. Figure
adapted from [Lalumierel3].

the total exchange interaction J = ), J; cancels out. This reasoning can
be applied for any set of positively and negatively detuned modes, and it is
found that the total exchange interaction is exactly zero for qubits d = A,
apart.

The same reasoning applies to qubits 3),/4 apart. However, as can be
seen in figure 5.9, the qubits now experience equal but opposite fields due
to modes detuned by ¢ and —§, resulting in Js = J_gs. All contributions
to the total exchange interaction now add up, resulting in |J| reaching its
maximum value of 7, /2. The distance-dependence of J thus showcases the
importance of interference in virtual processes.
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Figure 5.9: Schematic of a system of two qubits three quarters of a wave-
length apart. The continuous line shows the resonant mode,
while the dashed lines represent a positively and negatively de-
tuned mode.

Elastically scattered radiation

Rewriting (5.51) (5.52) for two qubits 3\, /4 apart, the output fields are
given by

() = /e 51— isign ()42 (571)
o (1) = g, + \/?eiwm |61 + iSign (/) 62 . (5.72)

which, by solving the master equation of the dressed system (5.55) for a

steady state and writing the terms to first order in <dil;l>, gives

2 _(A_i iy —

(k) = (i) T EGRET, o
N N —|J |

(a6) = (#5) 72— (A‘ —7i7/2)2' (5.74)

The transmittance and reflectance expected from these equations are plot-
ted for two different powers in Fig. 5.10. For low powers (panel a), where
the above expressions are valid, we again find that transmittance goes to
zero and reflectance to one. However, a big difference between the case of
qubits separated by A\, and 3\, /4 is that the latter distance results in a peak
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5.1 A master equation for two distant artificial atoms

width of ~, instead of the 2v observed for the former at low drive powers.
This is because the 2 found for qubits A, apart was due to correlated decay
being maximal, while it is absent at d = 3\, /4. This difference was also pre-
dicted by the semi-classical transfer matrix model 4.2.2, which leads us to
conclude that correlated relaxation is predicted by transfer matrix theory.
The flatness of the peaks in Fig. 5.10a is due to the exchange interaction
— as the maximum exchange interaction is =, /2, it will not result in a level
splitting with two distinguishable peaks, but instead to a single flattened
peak. The analytical results (continuous line in Fig. 5.10a) and numerical
results (dots in the same) once again agree very well for low drive pow-
ers. At higher drive powers, only the numerical calculations can be used,
results of which are shown in Fig. 5.10b for similar parameters as used in
experiments presented earlier (in section 4.1, most notably Fig. 4.2). We
stress again that the splitting seen in reflectance in Fig. 5.10 is not due to
exchange interaction, but due to the two-qubit system being dressed by the
strong drive, resulting in an Autler-Townes splitting. The strong deviation
of [t|? + |r|? from 1 is also an effect of the increased inelastic scattering in
a strongly driven system - inelastic scattering causes the two-qubit system
to redistribute power from the resonant mode to modes at the surrounding
frequencies, decreasing the power in the mode observed when measuring
elastically scattered radiation.

Inelastically scattered radiation

In this section we present numerical calculations of the power spectral den-
sities for a system of 2 qubits 3\, /4 apart, based on equation (5.43). The
power spectral densities are calculated both for the reflected and transmit-
ted field, and are plotted in Fig. 5.11. In panel a, the power spectral density
at low drive power is reflected and transmitted fields, and their sum. For
simplicity, the single qubit decay rates were chosen to be equal, and pure
dephasing and non-radiative decay were set to zero. The power spectral
density shows two peaks, which is a fingerprint of the exchange interaction.
The total spectrum shows a splitting of 2J, but the reflected and transmit-
ted field show a slightly smaller and bigger splitting, respectively. These
numerical results can be replicated by introducing an angle ¢, such that

A(t,¢) = 6B(t) + €62 (1). (5.75)
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Figure 5.10: Elastically scattered light for qubits 3\, /4 apart at different
powers. In (a), the drive power is set to ¢g = 7/200. Con-
tinuous lines represent the analytical results from (5.74) and
(5.73), while the dots result from numerical calculation based
on the full master equation model (5.43). In (b) the drive is
increased to € = 0.35y. Figure from [Lalumierel3].

B/D

where 6°/7 = (6% + 61)/\/2 are the lowering operators obtained when
diagonalizing the dressed Hamiltonian for d = 3\, /4. It should be stressed
here that while we kept the B, D labels, the states are not bright or dark.
These new simplified operators serve as simplified versions of &oRu/tL, where
the angle defines if we are looking at the output field in reflectance, trans-
mittance, or under another angle. Comparison with equations (5.71) and
(5.72) shows that A(t,7/2) is similar to a&, (t) and A(t,37/2) resembles
al .. We now introduce the angle-dependant power spectral density func-

tion according to
Skl =5 [ die (A1, 0)A0,4)), (5.76)

where the contribution due to (@;,) was removed to improve readability.
The transmitted and reflected power spectral densities are then given by
Slw, 7 /2] and S|w, 3w /2], respectively. The spectrum is plotted as a function
of this angle in Fig. 5.11c. In Fig. 5.11b, the spectrum is plotted for two
values of asymmetry between the single qubit relaxation rates (red and
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5.1 A master equation for two distant artificial atoms

green lines), which affect the contrast between the dip at the center and the
peaks at the sides of the spectrum, while non-radiative decay rate decreases
both this contrast and the total power measured.
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Figure 5.11: Power spectral densities for two qubits in resonance at a
(a) The reflected, transmitted and total
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distance of 3\/4.

power spectral density for v, = 0.
power spectral density depends on the asymmetry in the sin-
gle qubit decay rates, as shown in the red and green lines for
(711 —"22) /(711 +722) = (0.9, 1.1) respectively. The yellow line
shows the effect of non-radiative decay ~ynr/7: = 0.1 when the
qubit decay rates are the same. (c¢) The power spectral density
(color) is plotted as a function of detuning and the angle ¢ (see
text). Figure from [Lalumierel3].

(b) The shape of the



5.2 Inelastic scattering properties of a system of two distant qubits

5.2 Inelastic scattering properties of a system of two
distant qubits

A careful analysis of the process of observation in atomic physics has shown
that the subatomic particles have no meaning as isolated entities, but can
only be understood as interconnections between the preparation of an exper-
iment and the subsequent measurement. - Erwin Schrédinger

In this section, we will show the results of resonance fluorescence mea-
surements on a system of two distant qubits in an open transmission line.
Resonance fluorescence measurements, done here according to the method
described in chapter 2, reveal the full spectrum of radiation scattered by
the qubits into the transmission line, including the inelastically scattered
radiation. As such, these measurements give us additional insights into
the properties of the two-qubit system and allow us to see the interaction
phenomena predicted by theory. The main results in this chapter were
published in [vanLool3].

5.2.1 Power spectral density measurements for two qubits at 4.8
and 6.4 GHz

Two single-qubit Mollow triplets were measured at 6.1 GHz to determine
the difference in coupling between these qubits. Fitting the Mollow triplets
at a drive power of -118 dBm with equation (3.28), the Rabi rates were
found to be nearly identical: 65.7 MHz for qubit A, and 66.1 MHz for qubit
B (Fig. 5.12). The qubits therefore couple to the transmission line with
nearly equal strength.

To investigate the two-qubit interactions, the two qubits were first tuned to
4.8 GHz (d = 3\ /4). A strong continuous-wave drive was applied through
the transmission line, and the resonance fluorescence spectrum of the two-
qubit system was recorded (Fig. 5.13) in transmission. At high drive powers,
the resulting spectrum looks similar to that of a single qubit under a strong
drive - a Mollow triplet emerges. When the drive power is reduced, the side
peaks become unresolvable from the center peak (yellow line in Fig. 5.13),
and at even lower powers a two-peak structure appears. This splitting of
the spectrum into two peaks is the fingerprint of the exchange interaction,
which is expected to be maximal at this effective inter-qubit distance. The
observed size of the splitting is 15 MHz. Theory predicts that a splitting

123



5 Inelastic scattering properties of a system of distant artificial atoms

which is observed in transmission will be slightly larger than 2J. A fit with
the full master equation of the system (5.43) (details of the fitting proce-
dure are discussed separately in section 5.2.2) reveals that the strength of
the exchange interaction between the two qubits is 2.J/27 = 13 MHz. The
full splitting 2J is therefore equal in magnitude to the single-qubit relax-
ation time, as predicted in equation (5.62). As far as the author is aware,
this exchange interaction is the first observation of a coherent exchange of
energy between distant quantum systems in an open space.

Due to the small magnitude of J, the exchange splitting was not detected
in elastically scattered radiation. As J < T'j, the peak due to |ge) and
leg) could not be resolved. As we know that the maximum value of J is
I'1 /2 (see equation (5.62)), the exchange splitting should not be observable
in elastically scattered radiation for any system that can be described by
(5.43), it can however result in a broadened peak. In the power spectral
density, the splitting can only be observed for limited values of the ‘obser-
vation angle’ introduced in equation 5.75. As can be seen in fig. 5.11, the
splitting is visible for some angles, but not for all. Another reason that
the splitting can be observed in power spectral density is that the width of
the resonance fluorescence peak is described by equation 5.70, which is a
squared Lorentzian and therefore has half the width of a Lorentzian. The
reduced peak width of the power spectrum of a single qubit is the reason
for the resolvability of the splitting at low drive powers.

The resonance fluorescence spectrum was also recorded for two qubits
tuned into resonance at 6.4 GHz, where A\, = d. The results are shown in
Fig. 5.14. In this case, except for a Mollow triplet observed at high drive
powers, a narrow peak emerges at the frequency both qubits are tuned to.
This peak is due to the dark state, which has a much longer life time and
therefore a much narrower peak. From fitting with (5.43), we find that the
dark state lifetime depends on power, but is always much longer than the
bright state lifetime I'g /T'p > 100.

5.2.2 Details of the fitting procedure for power spectral densities

As all of the power spectral densities were measured at powers such that
) & TI'y, the full master equation (5.43) had to be used in order to cal-
culate the power spectral densities. For the traces in which the two-qubit

124



5.2 Inelastic scattering properties of a system of two distant qubits

04f(a) 04l (b)
T 03f 2 os}
= =
202 Zo2f
o a
[7p] [7p]
& 0.1 & 01

0.0 . . . 0.0 1 . .
595 6.00 6.05 6.10 6.15 620 6.25 595 6.00 6.05 6.10 6.15 620 6.25
Frequency (GHz) Frequency (GHz)

Figure 5.12: Resonance fluorescence spectra for qubit A (a) and B (b) tuned
to 6.1 GHz at a drive power of -118 dBm. The continuous black
line is a fit with (3.28).

system starts to resemble a Mollow triplet, the third level of the transmon
qubit had to be taken into account, while for lower drive powers two levels
sufficed. The various parameters needed to calculate the power spectral
densities were known from single qubit measurements, except for the non-
radiative decay rates for which we only found a weak upper bound. The
coupling of the qubits to the transmission line was assumed to be identical
for both qubits, and has the value of g; = 0.0146 at 4.8 GHz and 0.0180
at 6.4 GHz, using the definition of coupling as given in equation (5.4).
When implementing the fitting routine for resonance fluorescence data, it
was found that the power needed in the theoretical fits was not equal to
the power used in experiment. A reason for that could be the buildup of
the fields between the qubits, which is not taken fully into account due to
neglecting the interaction Hamiltonian when finding the effect of qubit &
acting on qubit j (see section 5.1.2 for details).

Fitting 4.8 GHz resonance fluorescence measurements

At 4.8 GHz, 7, and 7, where determined from a single resonance flu-
orescence trace each. They were found to be v,/2r = 1.8 MHz and
Yor/2m = 1.2 MHz. As the raw data were provided for fitting, the y-axis
was not rescaled to have physical units, and one trace was used to fit a

125



5 Inelastic scattering properties of a system of distant artificial atoms

05} Qr/2m
_ A ® 24 MHz
N 04r 13 MHz
= ® 5MHz
; 03}
Q 02}
4

0.1}

4.75 4.8 4.85
Frequency(GHz)

0.03 } Or/2r
_ B ® 4.9MHz
E ® 35MHz
g 0.02 } ® 25MHz
2 oo1f
o

476  4.78 4.8 482 484

Frequency(GHz)

Figure 5.13: The power spectral density of the two-qubit system is mea-
sured in transmission for d = A, at different drive powers. The
splitting of the peak at low powers (b) is due to exchange in-
teraction. Solid lines are numerical calculations of which the
details are given in section 5.2.2.

global rescaling factor to the fits. Furthermore, as pointed out before, the
input power in theory and experiment differed in such a way that it had
to be fitted according to P, = aP..p, + b. Here, we found that a = 0.68
and b = —13.3 dBm. The reason for the large value of b is still unknown,
but is thought to be due to a mistake in one of the calculations. The fact
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Figure 5.14: The power spectral density for the two-qubit system is mea-
sured in reflection for d = A, at the indicated drive powers.
The narrow peak in the center is due to the dark state. The
peak due to elastically scattered radiation was removed for
clarity. Solid lines are numerical calculations of which the de-
tails are given in section 5.2.2.

that a # 0 could have something to do with the field building up between
the two qubits - the ratio between the fields at the qubits differs drastically
through the range of powers covered in 5.13. We would like to stress that
this explanation is pure speculation. Finally, a free fit parameter is left for
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the small offsets observed in each power spectral density trace, which are
thought to be due to (as yet unknown) details in the experimental setup.

Fitting 6.4 GHz resonance fluorescence measurements

Most of the fitting details for the curves at 6.4 GHz are the same as at
4.8 GHz. An important difference is that ~y,, was found to vary linearly with
power, and therefore needs two traces to be fitted. The power-dependence
of yur can be understood as follows. In the fits, the coupling to the line
and decay rates for both single qubits are assumed to be equal. Hence only
Ynr determines the width of the dark state peak, which is not expected to
depend on power. In practice, there is a finite difference between the single
qubit decay rates and coupling strengths to the transmission line. These
differences open up a drive channel to the dark state as discussed in section
5.1.8. Due to this extra drive channel, the dark state now becomes sensitive
to power broadening. The sharp peak is therefore expected to widen with
drive power, which is what is observed in the fits and data. The fits find
a Ynr/2m which varies from 0.17 MHz at the lowest power to 0.59 MHz at
the highest power. As this increase of width with power is due to unequal
single-qubit decay rates and/or unequal coupling, the lowest value for 7y,
should be considered an upper bound on the actual non-radiative decay
rate.

The life time of the dark state is given by the width of the narrow peak.
As the bright state has a width of 52 MHz, for most drive powers we
have that I'g/T'p > 100. The life time of the dark state at low powers
is T1 ~ 1pus, comparable to lifetimes of qubits in circuit QED, and it is
expected that higher dark state lifetimes are achievable by making sure
the qubits are more similar and are subject to the same electromagnetic
environment by eliminating weak standing modes in the experimental setup.
A single trace was fitted to determine the pure dephasing rate, which was
found to be v,/27r = 0.2 MHz. Pure dephasing is therefore much less
significant than at 4.8 GHz, as expected. The power used in theory was
fitted as Py, = aPegp + b, with a = 1 and b = 1.6 dBm. Offsets on the
power spectral density traces were again left as free fit parameters.
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5.2.3 Two-qubit interactions versus distance

It was found that the dark state could be observed separately when sub-
tracting single-qubit Mollow triplets for each qubit from the two-qubit Mol-
low triplets. In chapter 4 we found that that when driving a two-qubit sys-
tem, the qubits will not both see a drive power equal to the input power.
Similarly, to isolate the dark state, we have to subtract single-qubit Mol-
low triplets measured at different powers from the two-qubit Mollow triplet.
The difference between these drive powers depends on the frequency of both
qubits compared to the distance between them and on the magnitude of the
input power. In Fig. 5.15, we show the result of subtracting two separately
measured spectra from a two-qubit spectrum. By repeating this procedure,
we can observe how the dark state peak behaves as a function of power
(Fig. 5.16).

The dark state peak can also be observed as a function of frequency. The

0.030
0025} e AB
=) @ A+B
s- 0.020 AB-A-B
o 0.015f 1
©
>
= 0.010F 1
o
E 0.005 ]
0.000 Pl “w o
-100 -50 0 50 100

Detuning (MHz)

Figure 5.15: The resonance fluorescence spectrum of both qubits A and
B in resonance, of qubit A and B measured separately and
superimposed afterwards, and of the difference between these.
This plot was done at 6.1 GHz, where the dark state is clearly
visible but not very narrow.

dark state is expected to be 'most dark’, or most protected from relaxation,
when A, = d, and therefore will be narrowest at the corresponding qubit

129



5 Inelastic scattering properties of a system of distant artificial atoms

® 94 MHz
60 MHz
29 MHz
10 MHz
4 MHz

n QR/27T

PSD (yW/Hz)

6.395 6.4 6.405

Frequency (GHz)

Figure 5.16: The dark state peak at the indicated drive powers, which were
chosen to be the same as in 5.14. From comparing the y-axes of
these figures, it can be seen that the dark state peak is much
higher than the bright state Mollow triplet. As the center
of the dark state coincides with the coherently scattered peak,
which was removed by setting it equal to the average of the two
neighbouring points, it is not possible to see the full height of
the dark state peak. The two low-power traces were measured
separately at a slightly different frequency.

frequencies. If we assume the population of the dark state to vary slowly
around this frequency, the total power in the dark state peak will also vary
slowly. The dark state peak will then be highest when its life time is longest.
Therefore, by finding the qubit frequency at which the dark state peak is
highest, we can confirm the value of d. The measurements for this are
shown in 5.17, and we find that d ~ 6.4 GHz.
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Figure 5.17: The dark state peak shape varies as the frequency of the two
resonant qubits is varied across the frequency commensurate
to their distance.
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6 Outlook

The work presented in this thesis is the first step into the world of many-
qubit waveguide QED. A host of experiments is possible, and several very
interesting experiments are well within the reach of current quantum tech-
nology.

Starting with the basics, an experiment which should be carried out is to
measure the reflection of single photons off a qubit in a transmission line.
So far, while a single photon router has been claimed to be implemented
[Hoill], only weak coherent tones were scattered off qubits. But as can be
seen from the derivation of r in section 3.1, the high reflection coefficient is
obtained when solving the optical Bloch equations for a steady state under
a continuous drive. How a single qubit scatters a single photon has not
yet been experimentally investigated, and is of the utmost importance for
using the qubits as single-photon mirrors in a quantum communication or
computing context.

More interestingly, the scaling of the lifetime of the dark state with the
number of qubits in the system should be investigated in the context of
decoherence-free subspaces. Similarly, second order correlation functions
should be measured to investigate the properties of both the dark and the
bright state. A state in an open system which has a lifetime orders of mag-
nitude higher than other states might have applications for both quantum
communication and quantum computing.

Another phenomenon that should be investigated in a waveguide QED sys-
tem is stimulated emission. To measure stimulated emission, the population
of the qubits) must be inverted, after which a resonant photon is sent into
the transmission line. For a single artificial atoms, stimulated emission has
been shown to occur in a proof-of-principle experiment in [Astafiev10b]. It
would be interesting to investigate the properties of the radiation emerg-
ing due to stimulated emission from a multi-qubit system. Depending on
the coherence properties of the emerging radiation, such a system might
prove useful as a multi-photon source, which could again be used to study
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Figure 6.1: Many qubits in a transmission line coupling to a field.

the strong photon-photon correlations produced by scattering a two-photon
state off an artificial atom in one dimension [Zhengl0, Zhengl2c].

There has been a proposal for a quantum memory using waveguide QED
[Leungl2]. This proposal is based on multiple (at least a dozen) distant
qubits in a transmission line, driving a strong pump tone at the transition
of first to second excited state to make the qubits transparent (EIT), and
then switching the transparency off when a photon which we want to store
is located in the qubit grid. The photon can then be released again by
switching the transparency of the qubits back on.

Finally, a proposal was published to use waveguide-QED to implement a
Quantum Computer using photons as flying qubits [Zhengl2d], using four-
level atoms to perform gates on the flying qubits, and three-level systems
as single-photon routers.
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