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Abstract

This thesis presents the main results of my work in the Quantum Device group,
dealing mainly with the generation and manipulation of microwave photons in su-
perconducting circuits and their use for quantum information processing. Photons,
whether confined in a resonant cavity or propagating in an open transmission line,
can be used as mediators of interaction and carriers of quantum information among
spatially separated quantum bits.

The first experimental chapter of this work describes a proof-of-principle experi-
ment in which we used the cyclic evolution of a single discrete mode of a 3d cavity
to realize a two-qubit phase gate. This type of quantum gate can be easily generali-
zed to more than two qubits but in our case was found to be limited by the current
coherence properties of the used samples. Therefore, we did not deem it suitable as a
replacement for other well established implementations of multi-qubit gates.

The subsequent chapters present experiments on the generation of single
microwave photons with a controllable temporal shape and the possibility of their ef-
ficient reabsorption by a quantum system. We demonstrate a photon shaping scheme
which, in contrast with other recently realized protocols that require fast flux cont-
rol of the sample, is fully controlled by microwave signals. We show that the scheme
can be used to generate photons with a time-reversal symmetric shape and in some
instances may be useful as a tool for cooling the system towards its ground state.
Furthermore, we present an experiment performed as an extension of the photon
shaping work, aimed at reabsorption of the shaped photons. Here we establish the
exchange of a single energy quantum with an efficiency of approximately 40% which
is limited mainly by dephasing processes in the used qubits.

Finally, to extend the quantum photonics toolbox at our disposal, we developed a
switching device capable of routing microwave signals on a superconducting chip. The
presented device is essentially free of dissipation, has a sufficiently large bandwidth
and high linearity for most circuit QED applications, and can be toggled on a very
fast time-scale of several nanoseconds.
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Zusammenfassung

Diese Doktorarbeit präsentiert die wichtigsten Ergebnisse meiner Arbeit in der Quan-
tum Device Gruppe, hauptsächlich betreffend die Erzeugung und Manipulation von
Mikrowellenphotonen in supraleitended Schaltkreisen und deren Verwendung für die
Verarbeitung von Quanteninformation. Photonen, ob in einer Resonanzkavität lokali-
siert oder in einer offenen Transmissionsleitung ausbreitend, knnen als Vermittler der
Interaktion zwischen räumlich getrennten Quantenbits und als Träger von Quanten-
information verwendet werden.

Das erste experimentelle Kapitel dieser Arbeit beschreibt ein proof-of-principle
Experiment, in dem wir die zyklische Entwicklung eines einzelnen diskreten Modes
eines 3D-Hohlraums verwenden, um ein 2-Qubit-Phasengatter zu realisieren. Diese
Art von Quantengattern kann einfach auf mehr als zwei Qubits erweitert werden, aber
in unserem Fall wurde es durch die aktuellen Kohärenzeigenschaften der verwendeten
Proben limitiert. Daher betrachten wir es nicht als Ersatz fr andere gut etablierte
Implementierungen von Multi-Qubit-Gattern.

Die nachfolgenden Kapiteln präsentieren Experimente mit der Erzeugung von ein-
zelnen Mikrowellenphotonen mit einer steuerbaren Wellenform und die Möglichkeit fr
deren effiziente Reabsorption durch ein Quantensystem. Wir stellen einen Photonfor-
mungprozess dar, das im Gegensatz zu anderen kürzlich realisierten Protokolle, die
eine schnelle Flusssteuerung der Probe erfordern, vollständig durch Mikrowellensi-
gnalen gesteuert wird. Wir zeigen, dass das Schema zur Erzeugung von Photonen mit
einer Zeit-symmetrischen Form verwendet werden kann, und in einigen Fällen für die
Kühlung des Systems in den Grundzustand nützlich ist. Ferner stellen wir ein Expe-
riment vor als eine Ausdehnung der Photonformung, mit dem Ziel, die Reabsorption
der geformten Photonen zu realisieren. Hier wird der Austausch eines einzigen Ener-
giequants mit einem Wirkungsgrad von etwa 40% demonstriert, der hauptsächlich
durch Dekohärenzprozesse in den verwendeten Qubits limitiert ist.

Schliesslich, um die ”Quanten Photonics Werkzeugkiste”, die uns zur Verfügung
steht, zu erweitern, haben wir ein Schalterelement entwickelt, die Mikrowellensignale
auf einem supraleitenden Chip steuern kann. Das dargestellte Element ist im Wesent-
lichen frei von Energieverlust, hat eine Bandbreite und Linearität hoch genung fr die
meisten circuit-QED Anwendungen, und kann auf einer sehr schnellen Zeitskala von
einigen Nanosekunden umgeschaltet werden.
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Introduction

It is no wonder that light, being such an omnipresent phenomenon and an indispens-
able part of our perception of the world, has been the subject of much attention since
the advent of modern science (Al-Khalili, 2015). To explain its refraction in optically
dense materials, sir Isaac Newton and other proponents of the corpuscular theory
imagined it as a stream of minuscule particles (Newton, 1730). With the observation
of interference effects (Young, 1804), this picture was abandoned in favour of a theory
of light as waves which, when combined, can add up or cancel out depending on their
relative phase, much like ripples on a pool of water. The new theory could explain the
properties of light much better and when James Clerk Maxwell finally anchored it in
mathematical rigour (Maxwell, 1865), killing the two metaphorical birds of optics and
electromagnetism with one stone, it seemed that light was to remain a wave forever.

In a desperate bid to eradicate divergences from his theory of black-body radi-
ation, Max Planck later suggested that despite its wave-like nature, the energy of
electromagnetic radiation can only come in particle-like packets which he dubbed
“quanta” (Planck, 1901). His assumption was soon supported by Albert Einstein’s
observation that exactly the same kind of energy quantization is needed to explain
the photoelectric effect (Einstein, 1905). As if these hints at the inadequacy in our
understanding of light were not enough, nearly two decades later, the now famous
experiment by Arthur Compton (Compton, 1923) left no doubt that X-rays colliding
with electrons scatter as though they were particles rather than well-behaved waves
obeying Maxwell’s equations. The resulting confusion was understandable.

As we now know, the question which of the two pictures of light is correct is
answered by the theory of quantum mechanics in the famously puzzling revelation:
Both of them are. Which of the two aspects we observe in the end is determined by
the way in which the light was generated as well as by the details of the observation
act itself. The particle-like quanta, or “photons”, observed by Compton can be seen
as superpositions of many monochromatic waves with different frequencies which to-
gether form a localized wave-packet. Equivalently, the point-like photons can exist in
a superposition state of different locations, forming a de-localized wave.

Even after being imported into the quantum world, the theory of electromagnetic
field in vacuum remains rather simple. The linearity of the underlying Maxwell’s
equations ensures that free photons do not interact with each other. Put a few of
them in a mirror-lined box and no matter how long you wait, the result will be
disappointingly plain – each of the photons bounces around as if the others were not
there.
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Fortunately for everyone who likes their physics exciting and complicated, there
is always something for the light to interact with. Perhaps somewhat surprisingly,
even in a space devoid of all matter. Quantum electrodynamics (Dyson, 1949), the
poster-child of mid-20th century theoretical physics, added electrons and positrons
into the story and predicted that photons have a small but non-zero chance to give
birth to extremely short-lived pairs of virtual particle-antiparticle pairs. This very
small material content of the electromagnetic field makes it in principle possible even
for photons in free space to interact with each other (Heisenberg & Euler, 1936) – a
tantalizingly interesting phenomenon whose signatures are however so subtle that it
remains unobserved to this day (d’Enterria & da Silveira, 2013). Despite their origins
in an elegant yet fully linear and therefore easily tractable theory, photons turned out
to be far from boring, even when left on their own.

Their coupling to charged matter is what brings the fun into the game. In the rela-
tively young field of cavity quantum electrodynamics (CQED) (Haroche & Kleppner,
1989; Mabuchi & Doherty, 2002), electromagnetic radiation is confined in resonant
cavities whose small mode volume significantly boosts the field amplitude of single
photons, allowing them to interact strongly with atoms located in the cavity. This
strong coupling gives rise to a plethora of intriguing quantum-mechanical effects.

For instance, single photons have been shown to come into and out of existence
periodically in a process known as vacuum Rabi oscillations when an excited atom
swaps its energy with an empty cavity (Brune et al., 1996). They were observed to
form peculiar quantum states called polaritons where, in a true spirit of quantum-
mechanical strangeness, the single quantum of energy is located in the electromagnetic
field and in the atom at the same time (Thompson et al., 1992). Classical light,
a stream of uncorrelated photons traveling independently of each other, was sent
through a CQED system acting as a turnstile, turning it into a non-classical state of
light – an orderly procession of photons arriving one at a time (Birnbaum et al., 2005)
– a phenomenon known as “anti-bunching”. The opposite behaviour, the so-called
“bunching”, can be observed when two photons arrive at a beam-splitter at the same
time and, owing to their bosonic nature, always end up on the same side of it (Hong
et al., 1987).

These are just a few of many fascinating phenomena arising from matter-light
interactions. Their study has helped further our understanding of quantum theory
on a fundamental level but has also led to a progress in the rapidly growing areas
of applied physics which aim to harness the strange laws of quantum mechanics for
technological applications.

In his visionary speech on simulating physics with computers (Feynman, 1982),
Richard Feynman posited that physical systems in which quantum mechanics plays
an important role cannot be efficiently simulated by classical computers. The reason
for this is the exponential scaling of the number of variables needed to describe a
quantum state of a system with its size. Luckily, nature offers us a solution to this
problem: Quantum systems can efficiently simulate other quantum systems. There-
fore, a properly designed “quantum computer”, operating on non-classical data stored
as states of quantum two-level systems – the so-called quantum bits or “qubits”, could
be used to solve problems in computational physics which are impossible to tackle
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with traditional computers. In fact, the types of problems this applies to are not
restricted to simulation of physical systems. As shown by David Deutsch (Deutsch,
1985), solutions to a wide range of computational problems could benefit from “quan-
tum speed-up” even though the exact characterization of this class of problems turns
out to be a non-trivial task (Bernstein & Vazirani, 1997). Since the conception of
the quantum computation paradigm, many concrete examples of quantum algorithms
offering faster solutions to practical computational problems have been devised (Shor,
1994; Harrow et al., 2009).

Apart from its potential to enable novel ways of computation, quantum mechanics
has also been recognized to have interesting applications in the field of cryptography –
the art of secure communication. The impossibility of copying quantum information
(Wootters & Zurek, 1982) and the irreversibility of the measurement process mean
that by encoding the secret message in an appropriate way (Bennett & Brassard,
1984), the adversary can be prevented from eavesdropping on the conversation without
making his or her presence known. Nowadays, even though still far from wide-spread,
the principles of quantum cryptography are already being used in some commercial
communication systems.

Yet another area which is expected to profit from application of quantum-
mechanical systems is the field of metrology. Here, quantum entanglement can be
exploited to perform measurements with unprecedented precision. For example, the
most accurate measurements of the acceleration of gravity to-date were made us-
ing quantum superposition states of laser-cooled atoms (Peters et al., 2001). The
experiment LIGO, which has recently resulted in the ground-breaking observation of
gravitational waves, the last prediction of Einstein’s general relativity to be confirmed,
uses non-classical states of light to improve its detection sensitivity (Andersen, 2013).

These examples illustrate the exciting progress in development of engineered quan-
tum systems over the past few decades. Phenomena which were long accessible only
in Gedankenexperiments, are now slowly popping up as tangible experimental re-
sults. Many of the quantum devices being developed rely on transmission of quantum
information over a distance, be it for purposes of computation, communication or
metrology. Just like in classical communication which has been dominated by elec-
tromagnetic waves since the days of Tesla and Marconi, photons turn out to be very
suitable as quantum information carriers (Kimble, 2008), owing to their relatively
weak interactions1 with the environment through which they propagate. Virtual
(Majer et al., 2007) or real photons (Hagley et al., 1997), confined in a resonant cav-
ity or propagating through space (Ritter et al., 2012), can be used to ferry quantum
states between quantum bits. Certain quantum computation architectures such as
linear optical quantum computing (Knill et al., 2001) dispense with stationary qubits
altogether and use photons for information storage, transfer and processing.

In the Quantum Device lab where the work presented in this thesis was done,
photons are ubiquitous too. We work with superconducting circuits – artificial atoms
whose transition energies lie in the microwave rather than the visible domain of the
electromagnetic spectrum. Instead of lasers, we use microwave generators. Instead of

1Compared with means of transmitting information based on massive particles such as carrier
pigeons.
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optical fibers, coaxial cables, and instead of photon counters, nearly quantum-limited
linear amplifiers. Both optical and microwave photonics present researchers with their
own specific pitfalls and advantages. For example, the lower frequencies of microwave
radiation means that signals at the single-photon level can only be studied at very low
temperatures. On the other hand, the same reason makes fabrication of wavelength-
or sub-wavelength-sized structures significantly easier in microwave systems. In spite
of the differences between the two frequency domains, the types of processes and
phenomena which can be studied with microwave “light” are essentially identical to
those described by quantum optics in the visible spectrum.

Over the course of my PhD studies in the lab, I have worked on several experiments
which, even though not directly related to each other, all have to do with microwave
photons, their manipulation and use to couple quantum bits together. I started with
an experiment following up on the topic of my master’s thesis (Pechal et al., 2012)
– geometric phases of a microwave field confined in a resonator – and generalizing
it to use the quantum-mechanical phase accumulated by the photon field to realize
a two-qubit operation. I have then moved on to study (Zeytinoglu et al., 2015) and
later experimentally test the possibility to generate single microwave photons with a
controllable temporal profile (Pechal et al., 2014). The ultimate goal of this exercise
was to enable efficient reabsorption of the emitted photon by a qubit and thus to
realize a quantum state exchange between two distant qubits. We have prepared
an experimental setup and performed proof-of-principle measurements which show
that a photon can be emitted, transmitted through a few tens of centimetres of a
coaxial cable and then reabsorbed by a qubit. However, the efficiency of this process
still needs to be improved to make it useful for applications such as entanglement
over distance. Potential future experiments with propagating microwave fields will
greatly benefit from the development of devices enabling routing and manipulation of
microwaves on a chip. Some of such devices used in our lab are for example on-chip
microwave beam-splitters or parametric amplifiers. To extend our microwave toolbox,
I have also pursued project to design and test an on-chip switch based on interference
effects.

While the primary aim of a thesis is to present the obtained experimental results,
the process in which these are gained is not at all straightforward, involves a lot of
dead-ends and learning from one’s mistakes. On the way, one collects a set of technical
and theoretical knowledge, insights, tricks and time-saving hacks. In retrospect, I
realize how much effort it would have saved me, had I known these in advance. I will
consider it a great success if this thesis, apart from summarizing my work in the lab,
also happens to save some future struggling PhD students a bit of time and headache
by explaining the dispersive approximation, qubit state tomography or some other
confusing concept. This is why I have decided to present some of the more general
parts and mathematical derivations in more detail than they might seem to merit (as
they have been explained elsewhere – one merely needs to piece together equations
from papers X and Y and fill in the gaps with a sleepless night of algebra).
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Chapter 1

Basics of Circuit Quantum
Electrodynamics with Transmons

The field of circuit quantum electrodynamics (cQED) (Blais et al., 2004) can be
considered a younger sibling of cavity QED (Haroche & Kleppner, 1989). Whereas
the latter studies light-matter interaction with real atoms in resonant optical or mi-
crowave cavities, the former replaces these elements with essentially equivalent elec-
trical circuits. The role of cavities is played by microwave-frequency resonators and
the analogues of atoms are special superconducting circuits which mimic their anhar-
monic structure. These correspondences between the different components of cavity
and circuit QED are illustrated in Fig. 1.1.

One of the main appeals of circuit QED systems is that they can be easily engi-
neered to achieve the desired values of parameters such as the number of qubits and
resonators, their frequencies or the strength and topology of their couplings. They
are also expected to be easily scalable even though the problem of controlling the
considerable number of components in a large-scale quantum circuit remains an un-
solved challenge. On the other hand, they so far lack the excellent reproducibility
and stability of parameters provided naturally by real atoms.

The first experiments reporting successful coherent manipulation of superconduct-
ing qubits emerged at the turn of the millennium (Nakamura et al., 1999; Vion et al.,
2002; Martinis et al., 2002). A few years later, an experiment by Wallraff et al.
(2004) demonstrated that these qubits can be strongly coupled to microwave photons
in a resonator. Since then, circuit QED has proved to be a promising platform for
quantum computing, producing an impressive range of results over its less than two
decades of existence. These range from early demonstrations of two-qubit resonator-
mediated gates (Majer et al., 2007) to sophisticated experiments on quantum telepor-
tation (Steffen et al., 2013) or proof-of-principle error-correcting protocols with up to
9 qubits (Kelly et al., 2015). In addition to these quantum-computing applications,
circuit QED systems have recently been used to implement rudimentary quantum
simulations (Salathé et al., 2015; Barends et al., 2015). They also enable a variety of
more fundamental experiments in quantum optics with microwave photons (Bozyigit
et al., 2011; Lang et al., 2011, 2013; Eichler et al., 2012b). Recent experiments with
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Figure 1.1: (a) Artistic representation of an optical cavity QED system – a Fabry-
Perot cavity containing an atom whose two states |g〉 and |e〉 define a qubit. (b)
Equivalent system in circuit QED – a superconducting qubit (artificial atom) embed-
ded in a coplanar waveguide resonator. The corresponding elements in both architec-
tures are indicated by the dashed connecting lines. The yellow wavy arrows represent
photon losses from the resonator while the orange one shows losses of the atom due
to other dissipation channels than the resonator. The black arrows indicate resonant
energy exchange between the atom and the resonator caused by the Jaynes-Cumming
coupling g.
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qubits in one-dimensional open space (van Loo et al., 2013; Liu & Houck, 2016) have
started harnessing the potential of engineered quantum systems to explore the rich
physics of collective phenomena mediated by a continuum of photon modes.

To observe quantum phenomena in electrical circuits, resistive losses need to be
reduced to a minimum. In circuit QED system, this is achieved by fabricating the
circuits out of a superconducting material such as niobium or aluminium. Super-
conductivity (Tinkham, 1996) is a phenomenon exhibited by certain materials which
completely lose their dc electrical resistance at low temperatures.

This is caused by attractive interactions between free electrons in the material, an
effect understood to be caused by electron-phonon coupling in some materials but still
not well explained in others. The attraction causes electrons to form so-called Cooper
pairs. These bosonic composite particles condense to a common ground state. A finite
energy gap separating the ground state from the rest of the energy spectrum prevents
low energy excitations such as electron scattering, making current conduction in the
material lossless.

Circuit QED systems are typically on-chip structures fabricated from a super-
conducting metal such as niobium or aluminium on a non-conductive substrate, for
example sapphire (crystalline Al2O3) or silicon.

1.1 Coplanar waveguides

In most circuit QED systems, the propagation channel for microwave photons on a
chip is the so-called coplanar waveguide (CPW) – an element functionally equivalent
to single-mode fibres in optical systems or to coaxial cables in radiofrequency de-
vices. The latter analogy is particularly illustrative since a coplanar waveguide can
be imagined as an “unwrapped” coaxial cable as shown in Fig. 1.2

The waveguide is an essentially two-dimensional structure placed on top of a di-
electric substrate. It consists of a ground-plane, divided into two halves by a slit, and
a center conductor – a strip in between the two half-planes. A short finite section of a
CPW without the substrate is shown in Fig. 1.2(b) and its cross-section in Fig. 1.2(d).

The form of the electromagnetic wave propagating along this structure with a
certain frequency ω can be found by solving Maxwell’s equations, as discussed in
more detail in app. F. The shape of the electric and magnetic field lines considered
in typical CPW applications is shown schematically in Fig. 1.2(d). It is usually
assumed that the field is essentially identical to that of the corresponding electro-
or magnetostatic problem. This so-called TEM mode (Pozar, 2011), where both the
electric and the magnetic field are perpendicular to the direction of propagation, is
indeed a good approximation which becomes exact in two situations: (a) when the
dielectric constant is the same in both regions separated by the CPW plane or (b) in
the limit of vanishingly small signal frequency ω → 0.

We should note that the description given above is only valid if it is possible to
neglect the kinetic inductance of the waveguide. This is a component of inductance
which originates from the kinetic energy of the charge carriers instead of the magnetic
field’s energy. A simple calculation reveals that the kinetic inductance Lk of a con-
ductor scales linearly with its length l and inversely with its cross-section area A and
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Figure 1.2: (a) Schematic drawing of a coaxial cable, showing how unwrapping the
grounded outer conductor into two half-planes results in (b) a coplanar waveguide.
(c,d) Shape of the electric (in red) and magnetic (in blue) field lines in the cross
sections of the two guiding structures from (a,b).

density of charge carriers. In a superconductor where the charge carriers are Cooper
pairs, it can be written in the form Lk = µ0λ

2l/A, where µ0 is the permeability
of vacuum and λ the penetration depth in the superconducting material (Tinkham,
1996). As typical values of geometric inductance Lg per unit length of a waveguide
are on the order of µ0, the relative size of the two contributions is approximately
Lk/Lg ∼ λ2/A. In our waveguides, the cross-section of the center conductor is close
to 1.5µm2 while the penetration depth in niobium at the relevant temperatures is
approximately 50 nm (Maxfield & McLean, 1965), making the kinetic inductance in
this case for all practical purposes negligible.

Effectively, the waveguide can be modeled as a generic dispersionless transmission
line – a two-port device where the voltages and currents at the two ends of the line,
defined as shown in Fig. 1.3(a), are related by

V2 = −iZ0I1 sin
ωx

c
+ V1 cos

ωx

c
, (1.1a)

I2 = − i

Z0
V1 sin

ωx

c
+ I1 cos

ωx

c
. (1.1b)

Here c is the propagation speed in the line, x its length, Z0 the characteristic
impedance and ω the frequency of the propagating signal.
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Figure 1.3: (a) Voltages and currents at the two ends of a transmission line section.
(b) Transformation of a load impedance by a transmission line. The circuit consisting
of the line and the load ZL is equivalent to a lumped impedance Z ′L given by eq. (1.2).

When analyzing circuits containing transmission lines, it is sometimes convenient
to view the line as an element which transforms the impedance of a load connected
to one of its ends and presents a different impedance at its other end (Pozar, 2011).
If a load with an impedance ZL is connected to the line as shown in Fig. 1.3(b), this
imposes the boundary condition V2 = ZLI2. Using eq. (1.1), one can then express
Z ′L ≡ V1/I1 which is the effective impedance seen at the other end of the line.

Z ′L = Z0

ZL + iZ0 tan ωx
c

Z0 + iZL tan ωx
c

. (1.2)

1.2 Transmission-line resonators

Coplanar waveguides are used not only for transmission of signals on circuit QED
chips but also as building blocks to construct other useful microwave components.
These range from filters (Reed et al., 2010) and microwave beamsplitters (Bozyigit
et al., 2011) to parametric amplifiers (Castellanos-Beltran & Lehnert, 2007; Gao et al.,
2011; Eichler et al., 2011). But perhaps the simplest and yet most commonly used
element constructed using coplanar waveguides is the transmission line resonator
(Göppl et al., 2008).

A finite section of a transmission line supports a discrete set of resonant modes
because the boundary conditions at its ends constrain the possible values of the wave
number. In this aspect, the transmission line resonator is equivalent to a Fabry-Perot
resonator in optics, as illustrated in Fig. 1.1.

The two most easily realized types of boundary conditions at the end of a trans-
mission line are open and short. As the names suggest, in the first case the line is
simply left open, leading to the boundary condition I = 0, while in the second case it
is connected to the ground plane, resulting in V = 0. By combining the two bound-
ary conditions, one can realize two types of resonators: The first is the so-called λ/2
resonator which has boundary conditions of the same type at both ends and therefore
supports frequencies for which the length of the resonator is an integer multiple of the
half-wavelength λ/2. The second type is the λ/4 resonator with unequal boundary
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conditions at its ends. This type can accommodate modes for which the resonator
length is a half-integer multiple of λ/2.

In real circuit QED settings, the resonators never possess perfectly reflective
boundary conditions but are instead coupled to a dissipative environment. Most
commonly, this environment is a semi-infinite 50 Ω transmission line used to probe
the resonator. The environmental coupling makes the eigenmodes of the resonator
lossy and shifts their frequencies with respect to those obtained for perfect boundary
conditions. An analysis of the relaxation and frequency shift induced by coupling to
an environment in the case of a λ/2 resonator is presented in sec. B.1, with the results
given in eq. (B.2).

A transmission line resonator is usually connected to one or two external lines. In
the first case, it can be probed only in reflection. Assuming that the probe frequency
ωd is close to one of the resonator mode frequencies ωr, we can neglect the off-resonant
modes and treat the single relevant mode separately. The evolution equation of its
field α in a reference frame rotating at the frequency of the drive signal αin is then1

d

dt
α = −iδα− κ

2
α−√κinαin, (1.3)

where δ is the detuning ωr − ωd between the resonator and the drive and κin is the
relaxation rate of the resonator into the coupled line, which can be calculated using
eq. (B.2b). κ is the total relaxation rate given by the sum of κin and the non-radiative
relaxation rate κ′ due to all other dissipation processes.

This equation can be easily solved in the steady state and the reflected signal αout

expressed as αin +
√
κinα. The reflection coefficient of the resonator r ≡ αout/αin is

then

r =
2iδ + κ′ − κin

2iδ + κ′ + κin
. (1.4)

The dependence of this reflection coefficient on the detuning δ is illustrated in
Fig. 1.4(a,b) for several different values of κ′. We can see that if the resonator is
overcoupled, that is, κ′ � κin, the non-radiative losses can be neglected and the res-
onator fully reflects all the incoming power as expected. As κ′ increases, r starts to
exhibit a dip at δ = 0. The minimum of this dip reaches zero for κ′ = κin when the
resonator is said to be critically coupled. Further increase of κ′ reduces the depth of
the dip.

1 This equation can be derived for example as the Heisenberg equation of motion for a driven
damped harmonic oscillator within the input-output formalism (Walls & Milburn, 2008), reduced
to classical (coherent) states. Obviously, as we are dealing with a classical system at this point,
such a quantum-mechanical detour is not strictly necessary. An alternative path to this equation
leads from the circuit model of the system, as shown for example in Fig. B.2(a). One can find the
response functions of the circuit which link the incoming, outgoing and intra-resonator voltages in
frequency space, then expand them around the resonance frequency of the relevant mode and write
the corresponding time-domain equations. Finally, one could also start by writing a generic driven
damped harmonic oscillator equation of motion α̇ = −iδα− κα/2 + cαin and using an Ansatz of the
form αout = αin + kα. For a resonator without non-radiative losses, the coefficients κ, c and k can
then be linked using the law of energy conservation.
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As non-radiative losses in the resonator are usually undesirable, it is most often
designed to be overcoupled. Since in this case the magnitude of the reflection co-
efficient is independent of detuning, the measurement setup needs to be capable of
measuring the phase of the reflected signal in order to observe the resonance as shown
in Fig. 1.4(b).

If the resonator is coupled to two external lines, one of them usually serves as the
input and the other one as the output line. The evolution of the intra-resonator field is
again governed by eq. (1.3) but this time the total relaxation rate is κ = κin+κout+κ′.
The transmitted field can be expressed as αout =

√
κoutα and the resulting steady-

state transmission coefficient t ≡ αout/αin is

t = − 2
√
κinκout

2iδ + κin + κout + κ′
. (1.5)

In contrast to a resonator with a single input/output line, the resonance of a res-
onator probed in transmission can be found by amplitude measurements only. As
we can see in Fig. 1.4(c), the absolute value of the transmission coefficient exhibits
a Lorentzian peak for any value of κ′. However, if the resonator is undercoupled,
that is, κ′ � κin + κout, the transmission on resonance is reduced. Therefore, it is
typically preferable to operate the resonator in the overcoupled regime.

In this case, the resonator shows full transmission on resonance if the couplings
to the input and output line are identical. For other ratios between κin and κout, the
transmission is reduced, as shown in Fig. 1.4(e). The form of eq. (1.5) also implies
that as long as κin +κout remains constant, the ratio between κin and κout only affects
the overall scaling of t while, as illustrated in Fig. 1.4(f), the phase of the transmitted
signal remains unaffected.

At first glance, it may seem that one should design the resonator with symmetric
coupling to both lines in order to maximize the transmission coefficient. However, it
is important to note that in most cases t is not the quantity we wish to maximize.
To illustrate this, imagine that t is reduced by a factor of 10. We can then simply
increase the amplitude of the probe signal by the same factor to keep the amplitude of
the measured signal unchanged. The increased input signal amplitude per se typically
does not have any adverse effect on the system. The intra-resonator field α is, on the
other hand, a quantity whose increase can bring about undesirable non-linear effects.
If we wish to maximize the amplitude of the measured signal for a fixed α, we need
to consider the ratio αout/α =

√
κout rather than αout/αin. If the total radiative

relaxation rate of the resonator κin + κout is given, the output signal amplitude is
maximized for a fixed intra-resonator field simply if κout � κin. Therefore, unless
there is a specific reason to keep not only α but also αin low, a strongly asymmetric
configuration with a weakly coupled input and a strongly coupled output is preferable.

We should note that this rule needs to be applied with caution. The transmission
coefficient decreases with increasing asymmetry between the couplings. If it becomes
too low, other parasitic transmission channels between the input and the output
line, such as through free space around the chip, can become important and start
introducing unwanted interference effects in the measured signal.
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Figure 1.4: (a) Absolute value and (b) phase of the reflection coefficient of a
transmission-line resonator coupled to a single external line as a function of detuning
between the probe signal and the resonance frequency. The spectrum is plotted for
several different values of the non-radiative relaxation rate κ′. The solid black line cor-
responds to the overcoupled resonator where κ′ can be neglected because κ′ � κin.
(c,d) Plots analogous to (a,b) for a resonator connected to two external lines with
equal couplings κin = κout. (e,f) The transmission coefficient spectrum for κ′ = 0 and
different ratios between κin and κout.
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Figure 1.5: (a) Schematic picture of a longitudinal cross-section through a typical S-I-
S Josephson junction used in our devices. (b) False-color scanning electron microscope
image of a Josephson junction (courtesy of Arkady Fedorov). The two superconduct-
ing regions seen from the top are shown in red and blue, the substrate in grey.

1.3 Josephson junction

Even though transmission-line resonators are useful building blocks in circuit QED,
they are not by themselves enough to make circuits interesting as quantum systems.
A circuit consisting of only linear components, driven by classical microwave sources,
will always be described by a coherent state and as such will behave purely classically
under the linear measurement process used in circuit QED experiments.

To undergo non-trivial quantum evolution, the system needs to include non-linear
elements. One such non-linear component which can be realized in superconducting
circuit is the so-called Josephson junction (Josephson, 1974; Tinkham, 1996). This
is a structure in which two superconducting regions are separated by a “weak link” –
for example an insulating barrier thin enough to allow quantum tunneling of Cooper
pairs from one side to another. In our circuit QED devices, this is realized as shown
in Fig. 1.5. Two layers of metal – in our case aluminium – are deposited on the
substrate with a small overlap area. The bottom layer is controllably oxidized after
deposition to form insulating oxide on the surface which then serves as the insulating
barrier between the layers.

Small Josephson junctions can be modeled as lumped elements whose behavior
in a circuit is described by the so-called Josephson relations (Tinkham, 1996). The
charge carriers in the superconductor – the Cooper pairs – form a condensate which
is described by a single position-dependent wavefunction. The current I through the
junction is related to the difference δ between the phases of the wavefunction in the
two superconducting regions:

I = Ic sin δ, (1.6a)

where Ic is the critical current – a constant characterizing the junction. The phase
difference changes in time at a rate proportional to the potential difference V between
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the two superconductors:
d

dt
δ =

2eV

~
, (1.6b)

where e is the electron charge.
If the current flowing through the junction is small in comparison with the critical

current, the first relation can be linearized in δ. Then, in combination with the
second one, it yields dI/dt = 2eIcV/~. Therefore, in the linear regime, the Josephson
junction can be approximated by an inductor with inductance

LJ =
~

2eIc
.

In many experimental settings, it is highly desirable to be able to tune the value
of a junction’s critical current Ic. While this is not directly possible with a single
junction as described so far, one can construct an element which effectively behaves
as a tunable Josephson junction – the so-called superconducting quantum interference
device (commonly known as a SQUID).

It consists of a pair of junctions connected in parallel, as illustrated in Fig. 1.6(b).
External magnetic flux Φ is then applied through the loop formed by the two junctions.
Let us assume that the phase difference between the connection points of the two arms
of the loop is equal to δ. To see how the phase drops δ1 and δ2 across the two junctions
depend on δ and Φ, let us split the loop into four segments, indicated in Fig. 1.6(b)
as C1, C2, C3 and C4. The phase drop across the SQUID loop can then be written as

δ = δ1 +

∫
C1+C3

∇ϕ · dr = δ2 +

∫
C2+C4

∇ϕ · dr.

In a superconductor, the gradient of the wavefunction’s phase can be related to the
current density j and the magnetic vector potential A by the Ginzburg-Landau equa-
tion (Tinkham, 1996) ∇ϕ− 2eA/~ = mj/2~eρ, where e is the elementary charge, m
the mass of a Cooper pair and ρ the density of Cooper pairs in the superconductor.
In most realistic circuit QED scenarios, the typical current densities and the relevant
length scales are so small that the right-hand side of the equation can be safely ap-
proximated by zero. This means that the line integrals of ∇ϕ can be expressed in
terms of line integrals of A.

In choosing the vector potential A corresponding to a given magnetic field B, we
have some amount of freedom, described by the gauge symmetry of electromagnetism.
Line integrals of A then generally depend on the choice of gauge, unless the curve
over which they are performed is closed. We can therefore, without loss of generality,
choose a gauge in which

∫
C1+C3

A ·dr+
∫
C2+C4

A ·dr = ∆ where ∆ is a given constant.
Since the junctions are small, we can neglect the gaps which they create between
C1, C3 and C2, C4. Then the combined curve C1 + C3 − C4 − C2 is closed and the
corresponding loop integral of A is equal to the flux Φ threading the loop. This,
together with the gauge condition we chose, implies that

∫
C1+C3

A · dr = (∆ + Φ)/2

and
∫
C2+C4

A ·dr = (∆−Φ)/2. Hence, we get the following relation between the phase
drops and the magnetic flux:

δ = δ1 +
e

~
(∆+ Φ) = δ2 +

e

~
(∆− Φ).
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Figure 1.6: (a) The commonly used circuit diagram symbol for a Josephson junction.
(b) Diagram of a SQUID loop threaded by a magnetic flux Φ. The loop is decomposed
into four segments C1, C2, C3 and C4. (c) False-color scanning electron microscope
image of a SQUID loop (courtesy of Arkady Fedorov).

According to eq. (1.6a), the total current I flowing through the SQUID is given by
Ic1 sin δ1 + Ic2 sin δ2, where Ic1 and Ic2 are the critical currents of the two junctions.
After expressing δ1 and δ2 in terms of δ, ∆ and Φ, we make use of the gauge degree of
freedom and choose ∆ such that tan e∆/~ = I2+I1

I2−I1 tan eΦ/~. This particular choice
makes I proportional to sin δ, following the form of eq. (1.6a). The pre-factor Ic of
the sin δ term can then be calculated using trigonometric identities:

Ic =

√
(Ic1 + Ic2)2 cos2

πΦ

Φ0
+ (Ic1 − Ic2)2 sin2 πΦ

Φ0
, (1.7)

where Φ0 ≡ π~/e is the magnetic flux quantum.
The SQUID loop is indeed equivalent to a single Josephson junction whose critical

current Ic can be tuned by the applied magnetic flux Φ. If the flux is equal to an integer
multiple of the flux quantum Φ0, the critical current is maximal at Ic = Ic1 + Ic2. For
a half-integer multiple of Φ0, it reaches the minimal value Ic = |Ic1 − Ic2|.

A special case, which reasonably approximates many real devices, is that of a
symmetric SQUID loop with Ic2 = Ic1. Then eq. (1.7) reduces to the simple form

Ic = 2Ic1

∣∣∣∣cos
eΦ

~

∣∣∣∣ . (1.8)

1.4 Transmon qubit

Josephson junctions can be used to build a variety of different non-linear devices.
Many of them, motivated by quantum computing applications, are used as quantum
bits. In this context, the non-linear circuit is operated in such a way that only two
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of its many eigenstates are relevant. These states are typically the two lowest-lying
energy levels and are commonly referred to as computational states. Transitions out
of the two-dimensional computational subspace are to first order neglected.

Superconducting qubits have been commonly classified into three broad families,
as discussed for example by Clarke & Wilhelm (2008): flux qubits, phase qubits and
charge qubits. Roughly speaking, the names refer to the degree of freedom in terms
of which the qubit can be most naturally described. In recent years, other types of
qubits have emerged which are not easily assigned to one of the three categories –
for example the fluxonium qubit (Manucharyan et al., 2009) or the 0-π qubit (Brooks
et al., 2013).

One of the most widely used types of superconducting qubits is currently the
so-called transmon qubit – a member of the charge qubit family, proposed by Koch
et al. (2007) and presently employed by many research groups around the world,
including ours. It offers improved resilience against charge noise in comparison with
typical charge qubits and, thanks to ongoing development in fabrication techniques
(Oh et al., 2006; Quintana et al., 2014) and improving understanding of the various
decoherence mechanisms (O’Connell et al., 2008; Gao et al., 2008a,b), state-of-the-art
devices now often reach long relaxation times on the order of tens of microseconds
(Barends et al., 2013; Chang et al., 2013).

A typical charge qubit, implemented as the so-called Cooper-pair box, was first
shown to exhibit quantum-mechanical behavior by Nakamura et al. (1999). It con-
sists of two superconducting regions connected by a Josephson junction which allows
tunneling of Cooper pairs between the two conducting islands. The equivalent circuit
diagram is shown in Fig. 1.7(a). Classically, the state of the system is fully described
by the number n of excess Cooper pairs on one of the islands and the phase difference
δ between the two superconductors. The energy of the system consists of the electro-
static component Eel = (2en)2/2C, where C is the mutual capacitance between the
two electrodes, and the potential energy associated with the Josephson junction. The
energy of the junction can be calculated as the integral

∫
IV dt which, after substi-

tution for I and V from eq. (1.6), yields Ejct = −EJ cos δ, where EJ = ~Ic/2e is the
Josephson energy of the junction.

The Cooper pair box will typically experience external electric fields which may
be applied intentionally or may be present due to nearby charge inhomogeneities.
The added field contributes a term linear in n to the electrostatic energy, which then
becomes, up to an irrelevant constant shift, Eel = 4EC(n − ng)2. Here EC ≡ e2/2C
is the so-called charging energy of the system and ng is an offset proportional to the
external field.

Before proceeding to quantize the charge qubit, we should point out that its repre-
sentation as the simple circuit shown in Fig. 1.7(a) is somewhat simplified. In real-life
applications, the charge qubit shares the space on the chip with other superconduct-
ing elements which have non-zero mutual capacitances to the qubit islands. A proper
model of a realistic charge qubit may rather look like the circuit shown in Fig. 1.7(b).
It contains a ground plane and a control line, both of which are capacitively coupled to
the qubit. However, despite the presence of the additional elements, the electrostatic
energy of the system remains a quadratic function of n and can still be written in the
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Figure 1.7: (a) Circuit diagram of a simple charge qubit consisting of a capacitance
C and a Josephson junction with a critical current Ic, separating the two islands of
the qubit which are indicated by the dashed boxes. The charge imbalance given by
the number n of excess Cooper pairs and the phase difference δ between the two
islands characterize the state of the charge qubit. (b) More realistic diagram of a
charge qubit, including the ground plane (in green) and a control line (in yellow),
capacitively coupled to the qubit.

form EC(n−ng)2, where the charging energy is now a function of all the capacitances
in the circuit and ng is a linear function of the voltage applied to the control line. A
detailed derivation of this result can be found in sec. A.1.

The Hamiltonian of the system is given by the sum of Eel and Ejct, that is,

H = 4EC(n− ng)2 − EJ cos δ. (1.9)

The two variables n and δ which we chose to parametrize the state of the system
are, up to scaling by a constant factor ~1/2, canonically conjugate variables. This can
be seen from the fact that the Hamilton equations of motion for n and δ take the
canonical form dn/dt = −~−1∂H/∂δ and dδ/dt = ~−1∂H/∂n.

To quantize the system, we therefore simply replace the variables n, δ by operators
n̂, δ̂ and impose the canonical commutation relation

[δ̂, n̂] = i.

The quantum state |ψ〉 of the Cooper-pair box can be described by a wavefunction
in the δ-representation, that is, ψ(δ) ≡ 〈δ|ψ〉, where |δ〉 is an eigenstate of the operator

δ̂, corresponding to the eigenvalue δ. In this representation, the operator n̂ is given
by −i d/dδ and the time-independent Schrödinger equation takes the form(

4EC (d/dδ − ng)2 − EJ cos δ
)
ψ(δ) = Eψ(δ).

The variable δ is cyclic – states with phase drops δ and δ + 2π are identical. The
wavefunction therefore needs to be 2π-periodic. If we introduce substitutions z ≡ δ/2
and y(z) ≡ e−ingδψ(δ), the Schrödinger equation becomes(

d2

dz2
− EJ

EC
cos(2z)− E

EC

)
y(z) = 0. (1.10)
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This is the canonical form of Mathieu’s differential equation (Abramowitz & Stegun,
1972) y′′ + (a − 2q cos 2z)y = 0 with coefficients a = −E/EC and q = EJ/2EC. Its
solutions can be found in terms of the Mathieu functions when a is one of countably
many characteristic values corresponding to given ng and q.

For numerical calculations, it may be more convenient to solve the time-
independent Schrödinger equation in the n-representation. Here the state |ψ〉 is
expressed in the eigenbasis of n̂, consisting of eigenvectors |n〉, corresponding to

the eigenvalues n ∈ Z. The operator δ̂, being canonically conjugate with n̂, is
the generator of translations in n, that is, exp(iδ̂)|n〉 = |n + 1〉. This implies that

cos δ̂|n〉 = (|n + 1〉 + |n − 1〉)/2. Hence, the matrix form of the Hamiltonian in the
eigenbasis of n̂ is

H =

. . . n = −1 n = 0 n = 1 n = 2 . . .



. . .
. . .

. . .
. . .

. . .
. . .

...
. . . 4EC(ng + 1)2 −EJ/2 0 0

. . . n = −1
. . . −EJ/2 4ECn

2
g −EJ/2 0

. . . n = 0
. . . 0 −EJ/2 4EC(ng − 1)2 −EJ/2

. . . n = 1
. . . 0 0 −EJ/2 4EC(ng − 2)2 . . . n = 2
. . .

. . .
. . .

. . .
. . .

. . .
...

.

After imposing a cut-off |n| ≤ nmax and thus reducing the dimensions of the matrix
to (2nmax + 1)× (2nmax + 1), it can be easily diagonalized using one of the common
linear algebra algorithms.

In the Cooper-pair box variant of the charge qubit, the charging energy and the
Josephson energy are comparable and the eigenenergies of the system vary signifi-
cantly with the offset charge ng. This is shown for the special case EJ = EC in
Fig. 1.8(a). The offset charge is adjusted by means of a dc electrode near the qubit to
a half-integer value. Then the lowest two energy eigenstates are given approximately
by the antisymmetric and symmetric equal superposition of two eigenstates of n̂, as
illustrated in Fig. 1.8(c). They are also well separated in energy from the higher states
and can therefore easily serve as the two computational states of a qubit.

The dependence of the eigenenergies on the offset charge, however, makes the
Cooper-pair box susceptible to dephasing due to environmental charge noise. For this
reason, it has been largely replaced by a new type of charge qubit – the transmon
(Koch et al., 2007) which operates in the regime EJ � EC. In this limit, the depen-
dence of the eigenenergies on the offset charge is strongly suppressed, which can be
seen in Fig. 1.8(b).

To quantify this statement, we define the relative dispersion of a transition be-
tween a pair of energy eigenstates as (Emax − Emin)/Emean, where Emax and Emin

are, respectively, the maximum and minimum energy separation between the two
eigenenergies over all values of ng and Emean is their arithmetic mean. The relative
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Figure 1.8: (a) First four eigenenergies of the charge qubit in the Cooper-pair-box
regime at EJ/EC = 1 as a function the offset charge ng. (b) Equivalent plot in the
transmon regime at EJ/EC = 40. Representation of the four eigenstates at selected
values of ng (indicated in (a,b) by the dashed lines) are shown in the eigenbasis of (c,e)

n̂ and (d,f) δ̂. The probability amplitudes 〈n|ψ〉 are purely real. The wavefunctions
ψ(δ) are in general complex and their real and imaginary parts are shown by the solid
and the dashed line, respectively.
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Figure 1.9: (a) Relative charge dispersion of transitions between the lowest five eigen-
states of a charge qubit as a function of EJ/EC. The states are labeled in order of
increasing eigenenergy as |g〉, |e〉, |f〉, |h〉, |j〉, . . .. (b) Relative coupling between the
consecutive states given by the operator n̂, defined as 〈ϕn−1|n̂|ϕn〉/〈ϕ0|n̂|ϕ1〉. The
dashed lines show the asymptotic values

√
2,
√

3 and 2, expected for EJ/EC →∞.

dispersion of the transitions between the five lowest-lying energy eigenstates is plotted
in Fig. 1.9(a) as a function of the ratio EJ/EC. The figure demonstrates the result
derived by Koch et al. (2007): The dispersion decreases exponentially with increasing√
EJ/EC and higher transitions suffer from stronger dispersion than lower ones.
As we can see from a comparison between Fig. 1.8(c,d) and Fig. 1.8(e,f), the

eigenstates of a Cooper-pair box are very localized in n̂ and spread-out in δ̂. On the
other hand, transmon qubit eigenstates have a considerable uncertainty in both n̂ and
δ̂ and a careful reader may notice a similarity between their wavefunctions and those
of a harmonic oscillator.

To understand why this is the case, consider that the Schrödinger equation (1.10)
is equivalent to that of a particle in a one-dimensional cosine potential. The depth of
the potential well scales with EJ/EC and we can therefore expect that as this ratio
increases, the particle will be more and more localized near the potential minimum
at δ = 0. Therefore, in the limit EJ/EC → ∞, we can approximate the potential by
expanding it to second order in δ around the minimum.

This approximation is equivalent to treating the circuit as a harmonic oscillator –
something we are justified to do if the Josephson junction has a large critical current
and can be therefore described as a linear inductor. To find the eigenstates and
eigenenergies of the system, we expand its Hamiltonian given by eq. (1.9) into a

power series in δ̂ and write it as Ĥ = Ĥ0 + V̂ , where

Ĥ0 = 4EC(n̂ − ng)2 +
1

2
EJδ̂

2 − EJ,

V̂ = −EJ

(
1

4!
δ̂4 − 1

6!
δ̂6 +

1

8!
δ̂8 − . . .

)
.
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We will treat V̂ , which contains all higher than quadratic terms in δ̂, as a perturbation
to the quadratic bare Hamiltonian Ĥ0. To diagonalize Ĥ0, we employ the standard
ladder operators ĉ†, ĉ (Sakurai & Napolitano, 2010) which are in this specific case
defined by

n̂ − ng = i

(
EJ

32EC

)1/4

(ĉ† − ĉ), (1.11a)

δ̂ =

(
2EC

EJ

)1/4

(ĉ† + ĉ). (1.11b)

It can then be shown that ĉ and ĉ† satisfy the canonical commutation relation
[ĉ , ĉ†] = 1 and the bare Hamiltonian takes the form Ĥ0 =

√
8EJEC(ĉ†ĉ + 1/2)−EJ.

The transmon qubit is therefore to zeroth order approximated as a harmonic oscillator
with a frequency ωq ≡

√
8EJEC/~ and its eigenstates are the standard Fock states,

created by the ladder operators defined in eq. (1.11).
To evaluate how the transmon deviates from a purely harmonic oscillator, we can

use perturbation theory to express the corrections to the eigenenergies and eigenstates,
order by order in V̂ . For simplicity, here we will restrict ourselves to first order in V̂
and we will only retain the δ̂4 term in the perturbation.

The perturbed eigenstate |ϕn〉, corresponding to the bare Fock state |n〉, and its
eigenenergy En are approximated by (Sakurai & Napolitano, 2010)

|ϕn〉 = |n〉+
∑
m6=n

〈m|V̂ |n〉
~ωq(n−m)

|m〉,

En = ~ωqn+ 〈n|V̂ |n〉.

Note that to keep the expression for En simple, we have dropped the physically
irrelevant overall energy shift ~ωq/2− EJ from Ĥ0.

The perturbed eigenenergies can be evaluated using the easily verified identity
〈n|(ĉ† + ĉ)4|n〉 = 6n2 + 6n+ 3, resulting in

En = ~ωqn−
1

2
EC

(
n+

1

2

)2

.

As expected, the perturbation makes the spectrum of the transmon anharmonic.
This is usually quantified by the anharmonicity parameter α, defined as α ≡ ω1 − ω0,
where ωn ≡ (En+1 − En)/~ are the transition frequencies between subsequent energy
eigenstates. In a perfectly harmonic system, we would have α = 0. As our pertur-
bative calculation shows, the anharmonicity of a transmon can be approximated by
α = −EC/~ and the transition frequencies as

ωn = ω0 + nα, with

ω0 =
(√

8EJEC − EC

)
/~.
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Conventionally, the energy eigenstates of a transmon are labeled in order of in-
creasing energy as

|g〉 ≡ |ϕ0〉,
|e〉 ≡ |ϕ1〉,
|f〉 ≡ |ϕ2〉,
|h〉 ≡ |ϕ3〉,

...

We will occasionally switch between these two notations. The letter-based one will
be used mainly when we refer to specific states, while the indexed labeling |ϕi〉 is
more convenient in expressions involving sums or relations which hold in general for
all states.

The eigenbasis of the perturbed Hamiltonian differs from the bare Fock state basis.
To first order in V̂ , each eigenstate |ϕn〉 is given by the corresponding Fock state |n〉
with a small admixture of the Fock states |n− 4〉, |n− 2〉, |n+ 2〉 and |n+ 4〉. This

means that while the operators n̂ − ng and δ̂ only couple adjacent Fock states, the

matrix elements 〈ϕm|(n̂−ng)|ϕn〉 and 〈ϕm|δ̂|ϕn〉 can in general be non-zero whenever
|m−n| = 1, 3, 5, 9. The matrix elements with |m−n| = 1 are to zeroth order given by
the corresponding matrix elements in the Fock basis. The ones with |m−n| = 3, 5 and
|m−n| = 7, 9 are suppressed by a factor of the order O((EC/EJ)1/2) and O(EC/EJ),
respectively.

If we continued developing the perturbation expansion in V̂ further, we would see
that n̂ − ng couples in principle any pair of eigenstates |ϕm〉, |ϕn〉 for which m − n
is odd, albeit with matrix elements decreasing exponentially with |m − n|. In the
transmon limit EJ/EC � 1, the non-nearest-neighbor couplings approach zero and
can be often neglected.

1.5 Jaynes-Cummings coupling

Many circuit QED experiments rely on coupling between a non-linear quantum system
such as the transmon qubit and a quantized microwave field. In most cases, the field
is confined in a transmission line resonator which increases its interaction with the
qubit.

We will now describe the simplest coupled system of this type – one consisting of
a single transmon and a single resonator mode. For convenience, we introduce the
following short-hand notation for the basis vectors of the combined system:

|mn〉 ≡ |m〉 ⊗ |n〉,

where |m〉 form ∈ {g, e, f, . . .} orm ∈ {ϕ1, ϕ2, . . .} are the eigenstates of the transmon
and |n〉 for n ∈ {0, 1, 2, . . .} are the Fock states of the resonator.

The coupling can be modeled using a circuit of the form shown in Fig. 1.7(b) where
the node indicated by the yellow dashed box is a node of the resonator, capacitively
coupled to the qubit. The electrostatic energy of the circuit is given by eq. (A.1a)
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derived in sec. A.1. Hence, the Hamiltonian term describing the effect of the bias
voltage V̂r imposed by the resonator is

Ĥint = 2eβrV̂rn̂. (1.12)

Here βr is a voltage division factor which depends on the geometry of the circuit. It
is defined as the ratio ∆V/Vr, where ∆V is the potential difference induced between
the two transmon islands when the resonator node is fixed at a potential Vr.

The voltage V̂r at the resonator node can be expressed in terms of the ladder
operators â†, â of the resonator:

V̂r = V0(â† + â),

where V0 is the root-mean-square voltage of the vacuum fluctuations. The resulting
coupling Hamiltonian is therefore

Ĥint =
g

n0
(â† + â)n̂, (1.13)

where n0 ≡ 〈g|n̂|e〉 and g ≡ 2en0βrV0. This form is chosen to preserve the common

convention denoting the matrix element 〈g1|Ĥint|e0〉 as g.
For simplicity, we will assume that the offset charge ng is zero, such that the

diagonal elements of n̂ vanish. This is justified as we have seen that the transmon
qubit is insensitive to variations in ng.

In the eigenbasis of the resonator and the transmon, the full coupling Hamilto-
nian given by eq. (1.13) has a rather complicated structure. This is illustrated in
Fig. 1.10(a). As discussed earlier, the operator n̂ couples all pairs of transmon states
|ϕm〉, |ϕn〉 for which |m−n| is odd. However, the non-nearest neighbor couplings with
|m−n| > 1 are strongly suppressed in the limit EJ/EC � 1, which allows us to ignore
them. Examples of the transitions which we thus neglect are shown in Fig. 1.10(a)
by light-red dashed arrows.

To express this approximation mathematically, we define operators b̂ and b̂† as
the nearest-neighbor components of n̂/n0:

b̂ ≡ 1

n0

∑
n

|ϕn〉〈ϕn+1|〈ϕn|n̂|ϕn+1〉.

Then we approximate n̂ by n0(b̂† + b̂) and replace the coupling Hamiltonian in
eq. (1.13) by

Ĥint = g(â† + â)(b̂† + b̂). (1.14)

The operators b̂ and b̂† play the role of ladder operators for the transmon – they map
each eigenstate of the transmon onto the next lower or higher eigenstate. In the limit
EJ/EC � 1, their matrix elements are identical to the standard ladder operators:

〈ϕn|b̂|ϕn+1〉 =
√
n+ 1. However, for finite EJ/EC, they can substantially deviate

from the
√
n+ 1 value, as shown in Fig. 1.9(b).

The terms âb̂ and â†b̂† in eq. (1.14) couple states with a large energy difference
on the order of ωr + ω0, where ωr is the resonator frequency and ω0 is, as before,
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Figure 1.10: (a) Energy diagram of the bare eigenstates of a transmon-resonator
system. The colored vertical bands indicate states of the transmon while the blue
diagonal bands indicate states of the resonator. Matrix elements of the coupling
Hamiltonian in eq. (1.13) are indicated by arrows. The light-red dashed and light-
blue solid arrows represent examples of non-nearest-neighbor couplings and counter-
rotating terms, respectively, both of which are neglected on the way to the Jaynes-
Cummings Hamiltonian in eq. (1.15). The only coupling terms left are those which
preserve the number of excitations in the system, here indicated by black solid arrows.
(b) Analogous diagram for the Jaynes-Cummings Hamiltonian restricted to two states
of the transmon in the resonant case ω0 = ωr. (c) Eigenstates of the resonant Jaynes-
Cummings Hamiltonian from (b), forming the well-known Jaynes-Cummings ladder
with the

√
n non-linearity.

the transition frequency between the transmon states |g〉 and |e〉. These transitions
are represented in Fig. 1.10(a) by the grey arrows. If the coupling strength g is
significantly smaller than ωr + ω0, which is typically the case in most circuit QED
systems, we can perform the rotating wave approximation (Yamamoto & İmamoğlu,

1999) and neglect âb̂ and â†b̂†. The coupling Hamiltonian from eq. (1.14) then reduces
to the so-called Jaynes-Cummings Hamiltonian (Jaynes & Cummings, 1963; Shore &
Knight, 1993)

Ĥint = g(â†b̂ + âb̂†) (1.15)

whose non-zero matrix elements are shown in Fig. 1.10(a) by the black arrows.

Note that this form of Ĥint commutes with the operator N̂ describing the number
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of excitations in the system, defined as

N̂ ≡ â†â +
∑
n

n|ϕn〉〈ϕn|.

This is equivalent to the statement that Ĥint does not mix different eigenspaces of
N̂. We can therefore diagonalize the system with the coupling Hamiltonian Ĥint in
each of the eigenspaces separately. Since the transmon qubit is a multi-level system,
the dimensions of the individual eigenspaces En grow with the number of excitations
n. For example, the zero-excitation manifold E0 contains only the state |g0〉, the
single-excitation manifold E1 consists of |g1〉 and |e0〉, E2 of |g2〉, |e1〉 and |f0〉, and
so on.

The diagonalization can therefore be performed analytically only up to E3. In
practice, we can expect to get an exact solution in a reasonably tractable form only
in E0 and E1. However, one can often find a very good approximate solution.

One case in which this is possible is when the qubit transition frequency ω0 is
nearly resonant with the resonator frequency ωr and the anharmonicity α of the qubit
is large. More specifically, we require that |α| � |ωr − ω0| and |α| � g. Under these
conditions, we can approximate the transmon as a two-level system and neglect all
its levels higher than |e〉. Consequently, all the excitation manifolds become at most
two-dimensional, with each En for n > 0 containing only states |gn〉 and |e, n− 1〉, as
illustrated in Fig. 1.10(b). The Hamiltonian of the system, restricted to the manifold
En becomes

Ĥ = ~nωr|gn〉〈gn|+ ~(nωr +∆)|e, n− 1〉〈e, n− 1|+ g
√
n(|gn〉〈e, n− 1|+ H.c.),

where ∆ = ω0 − ωr is the detuning between the qubit and the resonator. This
Hamiltonian is easily diagonalized (Blais et al., 2004) as

Ĥ/~ = nωr +∆/2 +
∑
±
±
√
ng2 +

∆2

4
|Φ±n 〉〈Φ±n |, where

|Φ+
n 〉 = sin

Θn
2
|gn〉+ cos

Θn
2
|e, n− 1〉,

|Φ−n 〉 = cos
Θn
2
|gn〉 − sin

Θn
2
|e, n− 1〉 and

Θn ≡ arctan
2g
√
n

∆
.

The arctan function in the last equation is defined to take values between 0 and π.
In the special case when the resonator and the qubit are resonant with each other,

we have ∆ = 0 which implies Θn = π/2 and therefore the eigenstates of the coupled
system |Φ±n 〉 are the symmetric and antisymmetric equal superpositions of |gn〉 and
|e, n− 1〉. The two corresponding eigenenergies are

E±n = ~(nωr ± g
√
n).
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Figure 1.11: (a) Diagram of the three-excitation manifold E3. Indicated are the
bare eigenstates of the transmon-resonator system, the transition frequencies between
them and the matrix elements of the Jaynes-Cummings coupling Hamiltonian from
eq. (1.15). (b) Analogous diagram for the manifold En+m, showing the transition
frequencies and coupling matrix elements between a state |ϕmn〉 and its neighbors.

The resulting energy spectrum is shown in Fig. 1.10(c). It forms a ladder with rungs
arranged in pairs (except for the ground state |g0〉) where the energy splitting of the
pairs increases as

√
n. This splitting and its

√
n non-linearity, observed in early circuit

QED experiments for example by Wallraff et al. (2004) and Fink et al. (2008), are a
signature of the quantized nature of the resonator field.

1.6 Dispersive approximation

Another instance in which a system with a Jaynes-Cummings interaction can be
diagonalized approximately is if the coupling Hamiltonian from eq. (1.15) can be
treated as a perturbation of the uncoupled Hamiltonian.

The form of the coupled Hamiltonian is shown graphically in Fig. 1.11. A specific
example of the three-excitation manifold E3 is illustrated in Fig. 1.11(a). The cou-
pling has a linear structure – the bare eigenstates can be arranged in a sequence of
increasing photon number where each state is coupled only to its nearest neighbors.
The consecutive states differ by a swap of one excitation between the transmon and
the resonator. The corresponding transition frequency is therefore given as the dif-
ference between the resonator frequency ωr and the transmon transition frequency.
The matrix elements coupling the consecutive states are expressed as products of the
coupling strength g, a

√
n factor given by the resonator ladder operator â† and a

matrix element bi ≡ 〈ϕi|b̂|ϕi+1〉 of the transmon ladder operator b̂.
In general, as illustrated in Fig. 1.11(b), a bare state |ϕmn〉 from a manifold

En+m is coupled to its two neighbors, unless m = 0 or n = 0. The coupling matrix

26



elements are gbm−1

√
n+ 1 and gbm

√
n, while the corresponding transition frequencies

are ωr − ωm−1 and ωr − ωm.
If the coupling matrix elements are significantly smaller than the transition fre-

quencies, we can use perturbation theory to approximate the dressed eigenenergy Emn
and eigenstate ||ϕmn〉 corresponding to the bare state |ϕmn〉. Since we are typically
interested in only the few lowest states of the transmon, we will assume that m is on
the order of unity and therefore also bm ∼ 1. The condition for the validity of the
perturbative solution can then be written as

g
√
n� |ωr − ωm|.

This means that the approximate diagonalization described here can be performed
only for states with photon numbers n significantly below a certain critical photon
number

The first non-zero correction to the eigenenergy Emn is of second order in Ĥint

and is given by (Sakurai & Napolitano, 2010)

δEmn =
ng2b2m
ωr − ωm

− (n+ 1)g2b2m−1

ωr − ωm−1
.

In this so-called dispersive approximation, the diagonalized Hamiltonian can be writ-
ten in the form

Ĥdisp =
∑
m,n

(
Ẽm + n~(ω̃r + 2χm)

)
||ϕmn〉〈ϕmn||. (1.16)

Here ω̃r ≡ ωr + g2/(ωr−ω0) and Ẽm ≡ Em−~g2b2m−1/(ωr−ωm−1) are, respectively,
the resonator frequency and the energy of the transmon state |ϕm〉, renormalized by
the coupling to the resonator. The coefficient χm, defined as

χm ≡
g2b2m

2(ωr − ωm)
− g2b2m−1

2(ωr − ωm−1)
− g2

2(ωr − ω0)
, (1.17)

is called the dispersive shift. How can we interpret the diagonalized Hamiltonian?
In the dispersive approximation, the transmon and the resonator can often be

treated as decoupled in the following sense: The dressed eigenstates ||ϕmn〉 differ
from the bare ones |ϕmn〉 only by a small correction and the two subsystems are
therefore nearly separable, that is, ||ϕmn〉 ≈ |ϕm〉⊗ |n〉. Consequently, if for example
the transmon is fixed to one of its eigenstates |ϕm〉, the resonator evolves as if it were
isolated, except for the dispersive shift of its resonance frequency from its bare value
ωr to a dressed frequency ω̃r+2χm which depends on the state of the transmon. This
argument can be of course reversed and if the resonator is kept in one of the Fock
states, the transmon can be treated separately, with its eigenenergies shifted by an
amount which depends on the number of photons in the resonator.

These two interpretations of the dispersive coupling result from the two different
ways in which we can write the dispersive Hamiltonian. We can put it in the form
given in eq. (1.17) but we can also group the term 2n~χm with the transmon energies
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Ẽm instead of with the resonator frequency ω̃r. This form is suggestive of the second
interpretations where the transmon state energies change to Ẽm + 2n~χm, depending
on the number of photons n.

Note that the definition of the dressed resonator frequency ω̃r and the dispersive
shift χm is not unique, as we can arbitrarily shift the two quantities by additive
constants, as long as ω̃r + 2χm is kept unchanged. The particular definition we used
is chosen such that χ0 = 0. In other words, ω̃ is exactly the resonance frequency of
the resonator when the transmon is in its ground state |g〉.

As a specific example, let us consider again the limit EJ/EC → ∞. The matrix
elements bm can then be approximated by

√
m+ 1 and the transition frequencies ωm

by ω0 +mα. The dispersive shifts then become

χm =
mαg2(∆+ (m− 1)α/2)

∆(∆+mα)(∆+ (m− 1)α)
,

where, once again, ∆ ≡ ω0−ωr is the detuning between the lowest transmon transition
and the resonator. Particularly, for m = 1 we get χ1 = αg2/∆(∆ + α). Hence, if
the transmon is excited from its ground state |g〉 to the first excited state |e〉, the
frequency of the resonator shifts by χ1. In many applications, it is desirable for the
dispersive shift to be as large as possible. Since the dispersive approximation requires
that g � |∆| and g � |∆ + α|, we see that for a transmon qubit, the shift χ1 is
limited by |χ1|≪ |α|.

Note that this result is qualitatively different from the case of a genuine two-level
system. In this instance, we can obtain the dispersive shift by taking the limit α→∞,
which yields χ1 = g2/∆. The dispersive approximation requirement g � |∆| then
sets the limit |χ1| � g, which is typically less restrictive than in the transmon case.
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Chapter 2

Measurement setup and techniques

2.1 Cryogenic setup

Most of the experiments done in the Quantum Device lab are performed with a sample
at a temperature of a few tens of millikelvin. This is needed to ensure that the
materials are superconducting and the thermal equilibrium excitation of the various
modes of the system is small.

To reach the necessary low temperatures, the samples are placed into a dilution
cryostat (Pobell, 2006). This is a type of refrigeration system relying on the special
thermodynamic properties of a mixture of two isotopes of helium: 4He and 3He. The
phase diagram in Fig. 2.1(a) shows that below a temperature of approximately 0.87 K,
the mixture separates into two phases with different concentrations of 3He. Since the
enthalpy of 3He in the dilute phase is higher than in the concentrated phase, trans-
ferring 3He from the concentrated to the dilute phase consumes energy in the form
of heat. This results in cooling of the system, similarly to conventional household
fridges where the refrigerant (analogous to 3He here) is transferred from liquid (con-
centrated) to gaseous (dilute) phase while taking away heat from the environment.
In practice, this process is utilized in the dilution cryostat as shown in a simplified
way in Fig. 2.1(b).

The phase separation takes place in the so-called mixing chamber. The dilute phase
is transported into a still where 3He evaporates from it preferentially due to its higher
vapor pressure. The nearly pure 3He is then pumped out by a turbomolecular pump
and returned into the system at high pressure through a flow impedance. Depending
on the construction of a cryostat, the returning gas is precooled either by means of
a cryogen-free pulse tube cooler (Wang et al., 1997) or using a liquid 4He bath and
a 1K pot in which cooling is achieved by pumping on a volume of liquid 4He. The
high pressure 3He then condenses, is further cooled down by thermal contact with the
liquid dilute phase and returns back to the mixing chamber.

Modern cryogen-free (dry) dilution refrigerators typically contain a series of metal
plates thermally connected to different parts of the dilution circuit. The Vericold
DR200 cryostat shown in Fig. 2.1(c), in which I performed a majority of the ex-
periments presented here, contains a 70 K-plate and a 4 K-plate which are thermally
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Figure 2.1: (a) Phase diagram of 4He/3He mixture and (b) diagram of a dilution
refrigerator. Figures adapted from Pobell (2006). (c) Photograph of the inner parts
of a Vericold DR200 cryostat without cryogenic shields microwave cabling. The top-
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anchored to the two stages of the pulse tube cooler, a still plate, a 100 mK plate
and a base plate which is in contact with the mixing chamber and reaches the lowest
temperature. The plates provide space for mounting and thermalization of different
components of the measurement setup (filters, attenuators, amplifiers).

When in operation, the temperature stages of the cryostat are enclosed in a series
of nested thermal shields to prevent excessive heating of the colder stages by thermal
radiation. The whole assembly is placed in an evacuated container to eliminate heat
transport by convection.

2.2 Sample and its control lines

Sample preparation

The typical superconducting circuit samples studied in our lab are fabricated on
500µm thick wafers of C-plane sapphire. The ground planes as well as a majority of
RF lines in the circuit are then made out of niobium which is deposited on the wafers
in a 150 nm layer by sputtering and patterned by optical lithography and reactive ion
etching. After this, the wafer is diced into individual chips with sizes of 2 × 7µm,
4× 7µm or 6× 7µm.

The Josephson junctions and typically also the capacitor pads of the transmon
qubits are fabricated by electron beam lithography followed by shadow evaporation
of aluminium. In this process, the aluminium is deposited in two steps which are
separated by controlled oxidation of the first aluminium surface. The resulting thin
layer of aluminium oxide forms the tunnel barrier of the Josephson junction.

Afterwards, the finished chips are glued and bonded onto a copper printed circuit
board (PCB) which breaks out the individual input and output lines of the chip
to SMP connectors. The PCB with the chip is placed into a copper sampleholder
box designed to shield the sample from stray electromagnetic radiation. The bottom
side of the sampleholder underneath the PCB has cutouts for mounting coils which
are used to apply magnetic flux bias to the sample. The top side contains openings
to connect coaxial cables to the PCB. The whole sampleholder is mounted to the
base plate of the cryostat and protected from stray magnetic field by one or two
CryoPerm R© high permeability shields.

Microwave input lines

The qubits and resonators in most circuit QED experiments are driven by microwave
signals delivered through 50 Ω coaxial cables installed in the cryostat. Stainless steel
cables are used where low thermal conductivity is critical while copper cables offer
lower microwave losses. Superconducting niobium-titanium cables combine the ad-
vantages of both at a higher cost. In most input lines, low microwave loss is not a
priority and therefore stainless steel is used to connect components at different tem-
peratures while copper may be used where both ends of the cable are at the same
nominal temperature.

Signals used to drive circuit QED systems need to be heavily attenuated (as shown
schematically in Fig. 2.2) to reduce the level of thermal noise in the line to sub-kelvin
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levels. For this reason, the attenuators are placed inside the cryostat as attenuat-
ing the signal at room temperature would not reduce the noise temperature. The
distribution of attenuators at the different temperature stages is chosen to achieve a
good compromise between proper thermalization of the microwave field and low heat
dissipation. A common configuration of attenuators is 20 dB at the 4 K plate, 20 dB
at the 100 mK plate and 20 dB at the base plate.

Even though microwave attenuators can thermalize the electromagnetic field prop-
agating along the cable, they can only do so reliably in their specified operating range
of frequencies, typically up to about 20 GHz. This is enough to make sure that the
modes at frequencies of the qubits or the resonators are not exceedingly hot. However,
it has been recognized (Barends et al., 2011) that stray radiation at much higher fre-
quencies can also be detrimental to coherence properties of superconducting circuits.
The proposed explanation of this phenomenon involves radiation in the 100 GHz range
creating quasiparticles in the superconducting material which in turn contribute to
dephasing in the circuit. To mitigate this effect, Córcoles et al. (2011) have success-
fully used shielding of the sampleholder box by a layer of Eccosorb R© – an absorptive
epoxy material. In our experiments, we attempt to block high frequency radiation
propagating in the input lines by means of in-house made coaxial Eccosorb R© filters.

Flux bias lines

Aside from microwave input lines described above, some measurement setups also
contain flux lines (see Fig. 2.2). These are connected to lines on the chip which act
as magnetic flux sources and are used to apply constant flux bias or low frequency
(below 1 GHz) flux pulses to SQUID loops in the circuits. To minimize distortion of
the pulses propagating from room temperature signal sources to the sample, flux lines
are also built out of coaxial 50 Ω cables even though the end of the flux line on the
chip is typically not 50 Ω-matched and therefore some amount of distortion is to be
expected. Flux lines also contain low-pass filters to eliminate high-frequency noise,
usually accompanied by Eccosorb R© filters to suppress radiation above the maximum
operating frequency of the standard filter and potential standing waves above its
cutoff frequency.

Output lines

Like other microwave line in the setup, the output line (see Fig. 2.2) carrying the signal
to be measured also consists of coaxial 50 Ω cables. It contains a low noise cryogenic
amplifier based on high electron mobility transistors (HEMTs) (Pospieszalski et al.,
1988), placed at the 4 K stage of the cryostat, optionally preceded by a near-quantum-
limited Josephson parametric amplifier (Yurke & Buks, 2006; Castellanos-Beltran &
Lehnert, 2007) at the base plate. The attenuation of the section between the sample
and the first amplifier needs to be kept as low as possible to preserve good signal-
to-noise ratio. For this reason, output lines typically do not contain attenuators
and are made of copper or niobium-titanium cables. To prevent signal and noise
from propagating back from the amplifiers towards the sample, the line also contains
cryogenic isolators and band-pass filters.
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Figure 2.2: Schematic diagram of a typical microwave cryogenic setup used in the
Quantum Device lab, shown together with the temperature stages in the cryostat at
which the individual components are thermalized. The setup in this example has
one microwave input line, one flux bias line and its output line is equipped with a
Josephson parametric amplifier (JPA). The JPA requires two additional input line
– one for applying a pump tone and one to suppress the reflected pump tone and
prevent it from saturating the subsequent amplification chain.
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Figure 2.3: Schematic diagram of a typical down-conversion board used in the Quan-
tum Device lab for heterodyne measurement of microwave signals.

2.3 Room-temperature electronics

The room-temperature part of a circuit QED measurement setup consists of several
different types of electronic equipment: Microwave sources are used to generate con-
tinuous tones for probing the qubit and the resonators, precision dc voltage sources
supply current for the flux bias coils and arbitrary waveform generators (AWGs) mod-
ulate analog microwave pulses and output digital pulses to trigger other equipment.
All these devices are controlled by a LabVIEW-based measurement program called
CleanSweep.

Down-conversion boards and FPGA

After leaving the cryostat, the output signal coming from the sample is first pre-
processed by an in-house made down-conversion board and subsequently digitized
and further processed by a field-programmable gate array (FPGA) programmed with
firmware developed in our lab (Bozyigit, 2008; Salathé, 2011; Lang, 2014).

The down-conversion board consists of a pre-amplification chain containing two
RF low-noise amplifiers, a microwave-frequency mixer which converts the signal to an
intermediate frequency (IF) of 25 MHz and an IF amplifier. The gain of the individual
stages needs to be limited with added attenuators to prevent saturating any of the
amplifiers or the mixer. A typical configuration of a down-conversion board (Businger,
2015) is shown in Fig. 2.3.

The most common model of the data-acquisition FPGA currently in use in our
lab is the Virtex-4 from Xilinx. It is equipped with a fast analog-to-digital converter
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(ADC) capable of sampling the incoming signal at a rate of 100 MS/s. The sampled
time series of voltages Vj can be described as

Vj = Aj cos(ωIFtj + φj),

where tj = j∆t with ∆t = 10 ns are the sampling points and Aj and φj are the slowly
varying amplitude and phase of the IF signal at a frequency of ωIF/2π = 25 MHz. To
down-convert the IF signal to dc, the sampled voltages are then digitally multiplied
by the complex 25 MHz wave exp(−iωIFtj). The resulting series is given by

V j =
1

2
Aj(exp(iφj) + exp(−iφj) exp(−2iωIFtj)).

By convolving it with a suitable low-pass finite-impulse-response (FIR) filter with ker-
nel f , the fast-oscillating component proportional to exp(−2iωIFtj) can be eliminated,
leaving

v ≡ V ∗ f =
1

2
(I + iQ) ∗ f,

where Ij and Qj are the two quadratures Aj cosφj and Aj sinφj of the original sig-
nal. The two quadratures encoded thus in the complex time series vj can be further
processed by applying basic arithmetic operations to them (complex conjugation and
multiplication of signals from different input channels of the ADC together). The re-
sults can then be stored in various ways by different FPGA applications. For example,
they can be directly averaged and displayed as a function of time, their single-shot
values can be stored in the form of a histogram or they can be correlated with another
time series and only subsequently averaged.

In this way, for example the averaged voltage quadratures are accessible simply as
〈v〉, the power as 〈v∗v〉 or the power spectral density as the Fourier transform of the
autocorrelation function 〈∑τ vτ+tv

∗
τ/N〉.

Up-conversion boards

Microwave pulses used to manipulate the state of qubits and resonators can be cre-
ated in the simplest case by gating microwave generators. However, this way only
allows generation of pulses with a square envelope. To prepare pulses with arbitrary
envelopes, we use a different method employing microwave mixers.

A mixer is an RF device which can be used to convert signals between different
frequencies. The type used in our setups is a so-called IQ mixer. It has four ports act-
ing as inputs or outputs depending on the application. For the up-conversion process
where a low-frequency (typically around 100 MHz) signal is converted to microwave
frequencies, the I (in-phase), Q (quadrature) and LO (local oscillator) ports of the
mixer act as inputs and the RF (radio-frequency) port as an output. An ideal IQ
mixer performs multiplication of the voltages at the input ports and adds the resulting
signals together in the following way:

VRF = A(VIVLO + VQṼLO),
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where ṼLO is the LO input signal phase-delayed by π/2.
The I and Q input signals are generated by two channels of the AWG and are

given by

VI(t) = V (t) cos(ωIFt+ φ(t))

VQ(t) = V (t) sin(ωIFt+ φ(t)),

where ωIF is the intermediate frequency, usually set to ωIF/2π = 100 MHz, and V (t)
and φ(t) are the slowly varying amplitude and phase of the signal. If the LO signal
is a continuous tone VLO = V0 cos(ωLOt), the RF output of the mixer is

VRF = AV0V (t) cos((ωLO + ωIF)t+ φ(t)).

Hence, the output of the mixer is a signal at a frequency ωLO + ωIF and with an
amplitude and phase envelope inherited from the IF input. By choosing the opposite
phase shift between the I and Q inputs, one can also generate the up-converted signal
at a frequency ωLO − ωIF.

In practice, a real mixer will exhibit certain imperfections. To name the most
important of these: the I and Q inputs of the mixer are not perfectly balanced in am-
plitude and the LO signal is not shifted exactly by π/2 and is not completely isolated
from the RF output. These imperfections lead to the presence of unwanted signals at
frequencies of ωLO (so-called LO leakage) and ωLO − ωIF (so-called sideband leakage)
and one needs to account for them to achieve good up-conversion performance. This
is usually done by introducing free scaling factors, phase shifts and dc offsets to the
I and Q signals output by the AWG and adjusting these parameters to minimize the
leakage signals. A more detailed account of the mixer calibration procedure is given
for example by Abadal (2014) or Berger (2015).

2.4 Characterization measurements

When a new sample is installed in the measurement setup, its basic parameters need
to be characterized and properties of the setup calibrated. This is done using a set
of rather standard measurements (for a detailed overview in the case of a three-qubit
sample, see Baur (2012)). The most basic of these rely on probing of the sample with
continuous microwave tones and observing the response.

Continuous-tone measurements

For a simple circuit QED sample containing a qubit coupled to a resonator, the first
characterization measurement to be done is usually resonator spectroscopy. The res-
onator is probed at its input port and the transmitted or reflected signal is measured.
When measuring in transmission, it is enough to record the output signal amplitude
|I + iQ|. As derived in eq. (1.5), its frequency-dependence is given by the Lorentzian
function

|I + iQ| ∝ 1√
1 +

(
2(f0−f)
δf

)2
,
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Figure 2.4: Examples of continuous-tone measurements for basic characterization of
a sample. (a) Resonator spectroscopy in transmission. (b) Resonator spectrum as
a function of voltage applied to a flux bias coil, showing an avoided crossing with a
qubit. (c) Qubit two-tone spectroscopy. (d) Qubit spectrum as a function of voltage
applied to a flux bias coil. Periodic modulation of qubit frequency is visible.
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where f0 is the resonance frequency of the resonator and δf its full-width-half-
maximum (FWHM) linewidth. These two parameters can be extracted using a least-
square fit. An example of data obtained in such a measurement is shown in Fig. 2.4(a).
In the case of an overcoupled resonator with a single port probed in reflection, one
needs to use a setup capable of recoding also the phase of the output signal. According
to eq. (1.4), the two voltage quadratures are given by the complex Lorentzian

I + iQ ∝ 2i(f0 − f)− δf
2i(f0 − f) + δf

.

The fact that |I + iQ| is frequency-independent shows that measuring only the am-
plitude of the signal is not sufficient to extract the resonator parameters.

After finding the resonator frequency, one usually proceeds to test the magnetic-
field tunability of the sample. In samples with tunable resonators, this means mea-
suring their resonance frequencies as a function of voltages applied to the flux bias
coils. Even if the resonator itself is not tunable, a spectroscopy measurement of the
resonator while simultaneously tuning the qubit flux bias will show avoided crossings
(as seen in an example data set in Fig. 2.4(b)), indicating where the qubit and the
resonator frequencies coincide. This allows one to make a rough estimate of the qubit
frequency as a function of flux bias which is useful for subsequent qubit spectroscopy
measurements.

The qubit transition frequency can be found using a simple two-tone spectroscopy
measurement once the resonator frequency is known. A constant probe tone is ap-
plied to the resonator at its resonance frequency and its transmission or reflection
is measured as a function of frequency of a drive tone applied to the qubit. If the
drive tone frequency matches the qubit transition, the excited state of the qubit gets
populated and the dispersive coupling between the resonator and the qubit induces
a shift of the resonator frequency. This in turn causes a change in the amplitude
or phase of the detected signal. A result of a typical measurement of this type is
shown in Fig. 2.4(c) where the dip in the signal phase reveals the transition frequency
of the qubit. A two-tone spectroscopy measurement can be used to determine not
only the qubit’s frequency but also other properties such as its decoherence rate or
its dispersive coupling to the resonator. The dependence of the measured signal on
the drive signal frequency and the parameters of the system is rather complex and
its calculation in general requires numerical simulations. It can, however, be treated
analytically in certain special cases which are discussed in app. G.

Once the qubit spectroscopy measurement is set up properly, it is then performed
for varying voltages applied to the flux bias coils. The qubit transition frequency
varies periodically with the number of flux quanta threading the SQUID loop which
in turn depends linearly on the coil voltages. A typical result of a spectroscopy
measurement with a single coil voltage sweep is shown in Fig. 2.4(d).

In samples with n > 1 tunable elements, at least n coils are required for indepen-
dent tuning of all their frequencies. As each of the coils generally couples to each of
the tunable elements to some degree, we need to find the n × n matrix of coupling
elements to have full control over the n frequencies. The coupling could of course be
extracted from an n-dimensional sweep of all the coil voltages but this naive approach
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is extremely time-consuming. Instead, the coupling matrix can be determined more
efficiently as follows.

We choose one coil with which we will perform one-dimensional voltage sweeps.
Usually, there is one big coil mounted to the sample-holder which couples relatively
strongly to all tunable devices on the chip and it is advisable to choose this one. We
then pick one of the tunable elements and measure its frequency as a function of the
coil voltage. Typically, the obtained dependence has multiple maxima which occur
when the flux through the SQUID loop is an integer number of flux quanta. As the
flux is a linear function of the coil voltages, this condition can be expressed as

aV + b1v1 + b2v2 + . . .+ c = kΦ0, where k ∈ Z. (2.1)

Here V denotes the swept voltage, v1, v2, . . . the voltages on the other n−1 coils which
are kept constant, a, b1, b2, . . . are the unknown coupling constants, c a flux offset and
Φ0 the flux quantum.

From the difference ∆V between voltages corresponding to consecutive frequency
maxima, we can extract a as a = Φ0/∆V . Furthermore, we can choose any of the
maxima and assume without loss of generality that it corresponds to k = 01. The
voltage V0 at which this maximum occurs allows us to express b1v1 + b2v2 + . . . + c
as −aV0. By repeating the measurement for n different sets of the n − 1 voltages
v1, v2, . . ., we obtain a system of equations

b1v
(j)
1 + b2v

(j)
2 + . . .+ c = −aV (j)

0 ,

which can be solved for b1, b2, . . . , c. For increased accuracy, the measurement may
be performed for more than n sets of voltages, yielding an overdetermined system of
equations from which the coefficients b1, b2, . . . , c can be extracted for example using
the least squares method.

Note that while the choice of V0 among the different frequency maxima is arbitrary
for the first voltage sweep, in the subsequent measurements we are forced to pick the
unique maximum corresponding to the same number of flux quanta. To make this

possible, the sets of voltages v
(j)
1 , v

(j)
2 , . . . should be chosen sufficiently close to each

other such that the positions of the maxima change by significantly less than ∆V .
With the parameters a, b1, b2, . . . , c found, we can write the flux threading the

SQUID loop as
Φ = aV + b1v1 + b2v2 + . . .+ c.

The same procedure then needs to be repeated for all remaining tunable elements,
resulting in a set of n × n coupling coefficients and n offsets. The relations between
the voltages and the fluxes can then be written in the matrix form

Φ = MV + u,

where Φ and V are vectors of SQUID fluxes and coil voltages, respectively, and u is
a vector of flux offsets. M is a matrix containing the coupling elements.

1The integer parameter k can be arbitrarily shifted by adding a multiple of Φ0 to the flux offset c.
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Figure 2.5: (a,b) Resonance frequencies of two qubits as a function of voltage applied
to coil 1 for three different voltages applied to coil 2 (+8 V in dark green/red, 0 V
in medium green/red and −8 V in light green/red). (c) Positions of the frequency
maxima from plots (a,b) as a function of the voltage on coil 2. The lines connect
maxima corresponding to the same numbers of flux quanta. The solid lines indicate
the maxima chosen to correspond to k = 0 in eq. (2.1).

The plots in Fig. 2.5 illustrate the described procedure for a simple case of two
qubit and two coils. The qubit frequencies, extracted from a measurement similar
to that shown in Fig. 2.4(d), are displayed in Fig. 2.5(a,b) as a function of voltage
applied to coil 1 for three discrete values of voltage applied to coil 2. The positions
of the frequency maxima are then found and their spacing is used to determine the
coupling parameter a of coil 1 as described above. The maxima corresponding to
the same number of flux quanta can be easily identified because the additional flux
applied by coil 2 shifts them by much less than ∆V . We can then display the maxima
in the two-dimensional space of coil voltages as shown in Fig. 2.5(c). In this picture,
eq. (2.1) describes a line on which the three points should lie. This condition yields
a (over-determined) set of equations for the remaining unknown parameters b1, c.

As soon as the dependence of Φ on V is established, it is rather straightforward
to determine the dependence of the qubit frequencies ω1, ω2, . . . on the respective
magnetic fluxes Φ1, Φ2, . . . which in the transmon limit EJ � EC can be approximated
as ωj = ωmax

j | cosπΦj/Φ0|1/2.

Pulsed measurements for qubit calibration

Unitary operations on qubits are performed by applying microwave pulses to the sys-
tem. A pulse of sufficiently low amplitude at a frequency close to the energy difference
between two neighbouring states |i〉 and |j〉 of the transmon will only induce transi-
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tions between these two states. In a reference frame rotating at the pulse frequency,
the Hamiltonian restricted to the two relevant states can be approximated as

Ĥ =
1

2
δσ̂z +

1

2
(Ω(t)σ̂− + H.c.) ,

assuming that the drive strength Ω is small in comparison with the transmon’s an-
harmonicity α. In this equation, δ is the detuning of the transition between |i〉 and
|j〉 from the drive frequency, σ̂z and σ̂− are the usual Pauli operators acting on the
two states and Ω(t) is a quantity describing the strength of the drive. This drive
strength parameter is related to the amplitude V (t) and phase φ(t) of the pulse by

Ω(t) = AV (t)eiφ(t),

where A is a proportionality constant depending on the attenuation of the drive line
and the details of its coupling to the transmon.

If we represent the state of the transmon within the two-dimensional subspace by a
vector on a Bloch sphere, the Hamiltonian written above induces rotations around an
axis given by the vector B = (Ω(t) cosφ(t), Ω(t) sinφ(t), δ) at a rate |B|. This allows
in principle to reach any state in the two-dimensional space from any other. In par-
ticular, applying resonant pulses with detuning δ = 0 results in rotations around axes
pointing along the equator of the Bloch sphere. Pulses of this type with

∫
Ω(t) dt = π,

known colloquially as π-pulses, realize rotations by π which map the two poles of the
Bloch sphere onto each other. This is equivalent to swapping the populations of the
states |i〉 and |j〉 and such pulses are therefore most often used to prepare higher
transmon excited states.

Resonant pulses with an amplitude
∫
Ω(t) dt = π/2 (π/2-pulses) realize rotations

which map a pole of the Bloch sphere onto a point on its equator. Starting from the
state |i〉 or |j〉, they can be used to prepare equal superposition states of the form
(|i〉+ eiφ|j〉)/

√
2.

The amplitudes of these pulses need to be calibrated to relate them to the angles
of rotation which they induce on the qubit Bloch sphere. Other parameters of the
pulses are adjusted to suppress leakage to transmon levels other than the two between
which we intend to drive the transition. Moreover, to achieve high fidelity of qubit
operations, the qubit transition frequency usually has to be determined with more
precision than offered by the simple qubit spectroscopy measurement described above
which suffers from systematic errors due to ac Stark shifts.

A typical pulsed qubit measurement consists of a train of pulses designed to per-
form unitary operations on the transmon, followed by a pulse applied to the resonator
to read out the state of the qubit. The transmon drive pulses are generated using
sideband mixing with an IQ mixer and usually have a Gaussian envelope, optionally
modified for leakage suppression (Motzoi et al., 2009). The read-out pulse is rectangu-
lar and as such is generated by simple gating of the microwave generator with a digital
modulation pulse. The response of the resonator to the read-out pulse depends on
the state of the transmon. To extract the maximum amount of information from its
measurement, one can optimize filtering of the signal and use reference measurements

41



of known transmon states to extract the individual populations. This topic is dis-
cussed in more detail in sec. 2.5. For purposes of the characterization measurements
described here, it is very often sufficient to simply take the mean of the response
signal over a suitable time window and use the fact that the result is a linear function
of the transmon state populations which need not be further specified.

To calibrate the amplitude of the pulses, we perform a measurement of Rabi oscil-
lations. Here a single pulse is applied at the qubit transition frequency, its amplitude
is varied and the population of the transmon first excited state |e〉 is read out. A
diagram of this scheme is shown in Fig. 2.6(a). As discussed above, the pulse induces
a rotation around an axis lying in the equatorial plane of the Bloch sphere by an
angle proportional to its amplitude V . The resulting excited state population is then
pe(V ) = sin2(πV/2Vπ), where Vπ is the pulse amplitude corresponding to a rotation
by π. The mean read-out signal voltage is expected to be a linear function of pe(V ).
Its measured complex values fall along a line in the complex plane whose direction
determines the quadrature which contains the maximum amount of information about
the transmon state. We project the measured data onto this quadrature to obtain
the real values plotted in Fig. 2.6(b). To determine the π-pulse amplitude, we simply
fit a function of the form a1 sin2(πV/2Vπ) + a0 to these data.

Once the amplitude of the π-pulse for the transition between |g〉 and |e〉 has
been determined, the transmon can be initialized in the |e〉 state and an analogous
procedure can be used to observe Rabi oscillations between the next pair of states |e〉
and |f〉. A diagram of this measurement is shown in the bottom part of Fig. 2.6(a).

An accurate measurement of the qubit transition frequency can be done by ob-
serving the so-called Ramsey fringes. In this measurement, the drive pulse frequency
ωd is detuned by a small amount ∆ = ωd − ωest (typically a few MHz) from the
transition frequency ωest initially estimated by two-tone spectroscopy. This detuning
needs to be significantly smaller than the Rabi rate Ω. In this limit, the axes of the
rotations induced by the pulses still lie approximately in the equatorial plane. In
the pulse sequence illustrated in Fig. 2.6(c), a π/2-pulse is first applied to prepare
the qubit in an equal superposition state (|g〉 + |e〉)/

√
2, with a Bloch vector lying

in the equatorial plane. Then, as the reference frame rotating at the drive frequency
is detuned from the qubit transition ωq by some amount δ = ωd − ωq (not neces-
sarily equal to ∆, unless the initial estimate of the transition frequency was exactly
correct), the Bloch vector starts to precess around the z-axis. After a waiting time
τ , it has rotated by δτ and decreased in size by a factor exp(−Γφτ) due to dephas-
ing at a rate Γφ. Another π/2-pulse then maps one of the equatorial components
of the Bloch vector onto the z-component or, equivalently, onto the excited state
population. Its dependence on the separation between the two π/2-pulses is then
pe(τ) = (cos(δτ + θ) exp(−Γφτ) + 1)/2. Here the phase shift θ accounts for poten-
tial additional rotations caused by ac Stark shifts and by the Bloch vector precession
starting already during the preparation pulse. The measured resonator response is
again averaged and projected onto a suitably chosen quadrature. The result is plotted
in Fig. 2.6(d) together with a fitted function of the form a1 cos(δτ+θ) exp(−Γφτ)+a0

which is used to extract the parameters |δ| and Γφ.
Note that only the absolute value of the detuning can be determined because

the protocol in this simple form is insensitive to the direction of the Bloch vector
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Figure 2.6: Diagrams of the pulses applied to measure (a) Rabi oscillations between
states |g〉, |e〉 (top) and |e〉, |f〉 (bottom), (c) Ramsey fringes between states |g〉, |e〉
(top) and |e〉, |f〉 (bottom) and (e) relaxation of state |e〉 (top) and |f〉 (bottom).
An example of the measured mean read-out voltage, projected onto the quadrature
containing the maximum amount of information, is shown as a function of the pulse
amplitude (in the case of Rabi oscillations) or pulse separation (in the case of Ramsey
fringes and relaxation) in (b), (d) and (f), respectively.
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precession. However, if the deviation of the estimated transition frequency from the
real one is small compared with ∆, we can assume that ∆ and δ have the same
sign. In this way, δ can be fully recovered. This also shows why it is necessary to
introduce a non-zero ∆ – with ∆ = 0, we could not determine the sign of δ in a
single measurement. Once δ is known, the corrected qubit frequency ωq can then be
expressed as ωq = ωest +∆− δ.

As with the Rabi oscillation measurements, the scheme can be easily generalized
to measure frequencies and dephasing times of higher transmon transitions, such as
|e〉 to |f〉 by prepending an initial π-pulse to prepare the transmon in the |e〉 state
(see Fig. 2.6(c)). In this case, however, relaxation out of the two-level subspace needs
to be taken into account.

To characterize the relaxation rates of the excited transmon states, one simply
needs to prepare the relevant state, wait and probe the system after a variable waiting
time τ , as indicated in Fig. 2.6(d). The measured mean voltage quadrature plotted
in Fig. 2.6(e) is then expected to be a linear function of the excited state population
exp(−Γτ), where Γ is the sought relaxation rate.

At this point we should give a caveat, important when performing measurements
like these with higher excited states. The simple forms of the read-out voltage quadra-
ture are only correct if no more than two states of the transmon are involved. In
general, this will not be the case if the transmon is initialized in the |f〉 state and
beyond or if off-resonant driving of the higher transitions cannot be neglected. For
example, in the measurement of the |f〉 state relaxation rate, the population pf of
this state is given by exp(−Γτ) but the populations pe and pg of |e〉 and |g〉 are
more complicated functions of τ , involving the |e〉 state relaxation rate. The read-out
voltage quadrature v will then be a linear combination of the form

v(τ) = agpg(τ) + aepe(τ) + af exp(−Γτ).

In most instances, this means that v(τ) has a more complicated dependence on τ than
just the linear function of exp(−Γτ) which describes the simple case involving only
two transmon states. Fortunately, there are situations in which the simple form of
v(τ) is recovered. One of them is when relaxation from |e〉 to |g〉 can be neglected on
the relevant time-scale. Then pg ≈ 0, pe ≈ 1− pf and therefore v ≈ ae + (af − ae)pf .
The same argument typically applies in the case of Rabi oscillation measurements
where the pulse sequence is short enough to allow relaxation effects to be neglected.
The other instance in which the dependence of v on pg, pe and pf simplifies is if
ag = ae. Then, since pg + pe = 1− pf , we again get v = ae + (ae − ag)pf .

While the condition ag = ae is usually not satisfied unless the read-out procedure
is specifically tailored to it, we can modify the measurement scheme using a simple
trick to make ag and ae effectively equal. We perform the measurement twice and
in one of the realizations we precede the read-out pulse by a π-pulse on the |g〉 to
|e〉 transition to swap the populations of the two states. This means that the read-
out quadrature is agpg + aepe + afpf in the measurement without the π-pulse and
agpe + aepg + afpf in the one with it. If we average the two results together, we get
agepg + agepe + afpf , where age = (ag + ae)/2. Hence, the averaged measurement
can be described by a linear combination of the populations where the weights of
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Figure 2.7: (a) Diagram of the pulses applied to measure the excited state thermal
population with the method from Geerlings et al. (2013). (b) An example of the
measured mean read-out voltage quadrature as a function of the pulse amplitude
for the sequence with (orange) and without (cyan) the initial π-pulse. In the shown
example, the thermal population was particularly high at approximately 12.6%.

pg and pe are equal, exactly as needed to be able to write the outcome in the form
v = age + (af − age)pf .

This simple averaging process makes the measurement insensitive to any dynamics
within the subspace spanned by |g〉 and |e〉 and thus isolates only the relaxation
process from |f〉 to |e〉, making it significantly easier to analyze and extract the
relaxation rate.

Thermal excitation measurement

Over the course of my work, I contributed to the already quite extensive tool-box of
characterization measurements available in our lab by adapting and testing a simple
scheme developed by Geerlings et al. (2013) for measuring the transmon thermal
excitation.

The thermal population of the first excited state of the transmon is typically rather
small – on the order of a few percent. It can be measured using single-shot projective
measurements of the transmon but if these are not available, it is not particularly
straightforward to extract. The main reason for this difficulty is that in averaged
measurements, the transmon state populations are determined by comparison of the
measured signal with references obtained for the transmon prepared in known states.
Ideally, these reference states should be the pure transmon eigenstates. However,
these cannot be easily prepared as the initial state obtained after waiting and letting
the transmon relax is itself a thermal state.

To circumvent this problem, Geerlings et al. (2013) used a scheme where they
observed Rabi oscillations between states |e〉 and |f〉. Assuming that the initial state
is a mixed state of the transmon eigenstates, the peak-to-peak amplitude ∆v of the
Rabi oscillations is given by the difference between the response for a zero-amplitude
pulse, equal to agpg + aepe + afpf , and the response for a π-pulse, equal to agpg +
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aepf + afpe. As above, the coefficients ag, ae and af here denote the mean read-out
voltage quadratures one would measure if the transmon were prepared in the pure
|g〉, |e〉 and |f〉 state, respectively. The difference between the two responses can be
expressed as (ae − af )(pe − pf ). Assuming that the thermal population pf of the |f〉
state is negligible, the amplitude of the oscillations is directly proportional to the first
excited state population pe. The proportionality constant is in principle unknown but
by repeating the same measurement preceded by a π-pulse on the |g〉 to |e〉 transition,
one measures Rabi oscillations with an amplitude ∆ṽ proportional to pg = 1−pe with
the same factor. Taking the ratio of the amplitudes then yields the equation

∆v

∆ṽ
=

pe
1− pe

.

2.5 Transmon state read-out and tomography

Transmon read-out is most commonly performed by probing the resonator and ob-
serving the change of its response depending on the state of the transmon. This
dependence is caused by the coupling between the transmon and the resonator which
is usually of the dispersive type due to the large detuning between the two systems
compared with their Jaynes-Cummings interaction strength. The dispersive coupling
can be treated as an additional shift of the resonator frequency depending on the state
of the transmon or, alternatively, as a shift of the transmon frequency depending on
the number of photons in the resonator.

The first one of these two equivalent interpretations is more suitable to elucidate
the nature of the dispersive read-out. The resonator is probed in the absence of any
transmon drive and we will also for the moment neglect relaxation of the transmon.
In this case, if the transmon is prepared in one of its energy eigenstates, its state will
remain constant and the resonator will evolve in the same way as an isolated driven
resonator with a frequency which is given by the transmon state.

Neglecting the transient response of the resonator at the onset of the drive pulse,
the dependence of the steady state signal voltage v for a resonator probed in trans-
mission on the drive frequency ωd is given by the complex Lorentzian

v ∝ 1

1 + 2i(ωr − ωd)/κ
,

where ωr is the resonance frequency of the resonator and κ its relaxation rate. Since
ωr is shifted by the dispersive coupling, the center of the Lorentzian peak changes with

the state of the transmon |j〉 (where j = g, e, f, . . .) to ω
(j)
r and probing the resonator

at a fixed frequency ωd leads to a transmon-state-dependent read-out voltage v(j).
This effect is illustrated in Fig. 2.8.

Depending on the signal-to-noise ratio of the measurement setup, the read-out may
be performed in the single-shot regime or as averaged read-out. In the first case, the
signal-to-noise ratio is high enough to allow the transmon state to be determined with
an appreciable fidelity in a single realization of the measurement. This is important
for example in experiments which rely on feedback or post-selection. In the following,
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Figure 2.8: (a) Steady-state normalized read-out voltage amplitude as a function of
drive frequency for a resonator probed in transmission, showing the differently shifted
response curves depending on the state of the transmon. The steady-state response
at a fixed drive frequency is the transmon-state-dependent, as indicated by the blue,
orange and green point. In this particular example, the detunings of the resonator

frequencies ω
(g)
r , ω

(e)
r and ω

(f)
r from the drive frequency ωd are 1.5κ, −0.75κ and

−2.5κ, respectively. (b) Time-dependence of the read-out voltage when the drive
signal is abruptly turned on at time t = 0. The curves show ringing at a frequency
given by the drive-resonator detuning and asymptotically approach the steady-state
values from (a). (c) Trajectories followed by the read-out voltages in the complex
plane.
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we will focus on the second case – averaged read-out which extracts expectation values
such as state populations from a large number of individual measurements.

The dispersive read-out described here is insensitive to coherence between different
transmon eigenstates because the dispersive coupling term is diagonal in the trans-
mon eigenbasis. The averaged steady-state read-out voltage therefore depends only
on the eigenstate populations pg, pe, pf , . . . As the expectation value of any physical
measurement outcome needs to be a linear function of the system’s density matrix,
the average measured voltage can be expressed as a linear combination of the form

v = agpg + aepe + afpf + . . . (2.2)

Provided that no more than three energy levels of the transmon are occupied, mea-
suring the steady-state value v is in principle sufficient to calculate the populations.
The two equations for the real and imaginary part of v together with the constraint
pg + pe + pf = 1 can be uniquely solved for pg, pe and pf after ag, ae and af have
been determined from calibration measurements of three known reference states.

Read-out in the presence of thermal excitations

This is not entirely trivial in practice since these reference states, typically chosen
to be the eigenstates of the transmon, cannot be easily prepared in the presence of
thermal excitations. The state to which the transmon relaxes after a sufficiently long
time is not the pure ground state but a mixed state with small but non-zero unknown
populations of the excited states. To calibrate the qubit readout process properly,
that is, to extract the eigenstate responses ag, ae, af , . . ., the thermal populations
need to be determined. This can be done either using the method developed by
Geerlings et al. (2013), as described in sec. 2.4, or with a procedure which can be
seen as its modification, requiring fewer measurements in total. The exact form of
this measurement scheme depends on the assumptions which one can make about the
thermal populations. We will analyze a simple instance in which we assume that the
populations of transmon states higher than |e〉 are negligible.

In this case, one only needs to extend the minimal set of three reference mea-
surements, which would be needed to determine ag, ae and af in the ideal case of
zero thermal excitations, with a single additional one. The first three measurements
are those which in said ideal case reduce to the standard set of measurements of the
three eigenstates: In the first one, the transmon is simply left to relax to its steady
state prior to the measurement. In the second one, an additional π-pulse is applied
on the |g〉 to |e〉 transition to swap the populations of these two states. In the third
one, the first π-pulse is followed by another one on the |e〉 to |f〉 transition, moving
the population which was initially in the ground state to the |f〉 state. The expected
read-out voltages for these three cases are

v1 = agpg + aepe, (2.3a)

v2 = agpe + aepg, (2.3b)

v3 = agpe + afpg. (2.3c)
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Figure 2.9: (a) Diagram of pulse sequences used in the read-out calibration measure-
ments taking into account a non-zero thermal population of the excited state and (b)
the corresponding populations of the three lowest transmon eigenstates before the
read-out pulse. (c) Graphical complex-plane representation of the ideal eigenstate
responses ag, ae, af (black dots) and the mixed state responses v1, v2, v3, v4 (green
dots) for the four calibration measurements.

We can see that if pe = 0 and pg = 1, we have simply v1 = ag, v2 = ae and v3 = af .
For pe 6= 0, we still have a bit of work to do. In the one additional measurement, we
perform only a π-pulse on the |e〉 to |f〉 transition before probing the resonator. In
the absence of thermal population, this would result in a read-out voltage v4 = ag
just like in the very first measurement. However, for non-zero pe, we get

v4 = agpg + afpe. (2.3d)

The pulse sequences used in the four described measurements are summarized in the
diagram in Fig. 2.9(a) while the resulting eigenstate populations before the start of
the read-out pulse are shown in Fig. 2.9(b).

The relation between the ideal eigenstate responses ag, ae, af and the voltages
v1, v2, v3, v4 obtained in the four calibration measurements are shown graphically in
Fig. 2.9(c). The outcome of the first measurement v1 is a linear combination of ag
and ae and therefore lies on the line connecting these two points. Its distances to ag
and ae are in the ratio of the two thermal populations pe and pg. The voltage v2 is
then the reflection of v1 with respect to the center-point between ag and ae since the
π-pulse swaps the populations of |g〉 and |e〉. Furthermore, v3 is obtained from v2 by
transporting it in the direction given by af − ae to the line connecting ag and af .
This construction ensures that v2 and v3 are linear combinations of ag, ae and ag, af ,
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respectively, with the same weights. The same construction then also transforms v1

into v4.
From this geometric picture we see that knowledge of only the three points v1, v2,

v3 is not enough to reconstruct ag, ae, af . If we in addition also know v4, we can
determine ag as the intersection point between the lines connecting v1, v2 and v3, v4.
We can express this mathematically as

ag = ηv2 + (1− η)v1 = λv3 + (1− λ)v4,

where η and λ are real parameters determining the position of ag on the two lines.
The real and imaginary part of this equation form a system which can be solved for
η and λ, resulting in

η =
Im ((v3 − v4)∗v1 + v∗4v3)

Im (v2 − v1)∗(v3 − v4)
,

λ = − Im ((v2 − v1)∗v4 + v∗1v2)

Im (v2 − v1)∗(v3 − v4)
.

Note that η and λ are not expected to be independent because the positions of the
points v1, v2 and v3, v4 on their respective lines are not arbitrary but are constrained
by the fact that v4 − v1 and v3 − v2 are parallel. Indeed, from the form of v1, v2,
v3, v4 in terms of ag, ae, af , as given by eq. (2.3), one can show that both η and λ
should be equal to pe/(pe−pg). This can serve as a consistency check when processing
experimental data. The calculated η and λ should be very similar. One can then use
the mean of ηv2 +(1−η)v1 and λv3 +(1−λ)v4 to determine ag. Once ag is known, ae
and af can also be calculated using the relations ae = v1+v2−ag and af = v4+v3−ag
which are easily derived from eq. (2.3). Furthermore, the thermal population pe can
be expressed as pe = η/(2η − 1) or pe = λ/(2λ − 1) (or with the mean (η + λ)/2 in
place of either η or λ). With the eigenstate responses ag, ae and af known, we can
in principle analyze the measurement response of any unknown state and extract pg,
pe and pf .

Thus far, we have seen how at most three transmon state populations can be ex-
tracted if the outcome of each measurement is a single complex number – for example
the steady-state response of the resonator. In practice, this is a slightly simplistic
assumption. On the one hand, waiting for the resonator to reach its steady state may
not be desirable because of the limited relaxation times of the transmon. At the same
time, the transient response of the resonator which occurs just after the drive signal is
abruptly turned on also contains information about the transmon state. The voltage
of the signal transmitted through the resonator is proportional to the displacement
α of its coherent state. In a reference frame rotating at the drive frequency ωd, this
displacement is governed by the Heisenberg equation

α̇ = −i(ωr − ωd)α− κ

2
α− iε

2
,

where ε is a complex parameter describing the amplitude and phase of the drive signal.
Starting in the vacuum state α = 0, this equation can be easily solved, showing that
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the read-out voltage has a time dependence of the form

v(t) ∝ 1− e−i(ωr−ωd)t−κt/2

i(ωr − ωd) + κ/2
.

Again, as the resonator frequency is shifted by the dispersive coupling, the read-out
voltage trace depends on the state of the transmon in a not entirely trivial way. An
example of such read-out traces is shown in Fig. 2.9(b,c). It exhibits ringing at the
detuning frequency between the drive and the resonator which decays as the response
settles to the steady state.

This analytical form of the time-dependent resonator response can give us a good
insight into the effect the individual parameters ωd, ωr and κ have on the transients
but it is still only an approximation. In real systems, the transmon may relax on a
time-scale comparable with the resonator relaxation rate κ. In this case, the resonator
response first converges to the steady-state corresponding to the initial state of the
transmon but then, when relaxation occurs, it starts approaching the steady-state
belonging to the next lower transmon state. In addition, the times at which the
transmon relaxes are randomly distributed and one needs to average over them. The
resulting voltage in general needs to be calculated numerically (Bianchetti et al., 2009)
but in the special (and fortunately very prevalent) case when the qubit is not driven
while the resonator probe signal is applied, it can also be derived analytically, as
presented in app. H.

To calculate the populations of n transmon states, the measured voltage trace
somehow needs to be reduced to n real numbers. As the expectation value of the
voltage is a linear combination of the eigenstate responses with coefficients given by
the populations, the mapping we seek should be linear. Apart from this constraint
and the requirement that it reproduces the correct populations when acting on a set of
calibration measurements, we have a considerable freedom in choosing the exact form
of this mapping. In fact, any mapping which satisfies the conditions mentioned above
will give the correct results when acting on ideal, noiseless voltage traces. When noise
enters the game, however, some mappings will become less suitable than others.

Typically, when very good signal-to-noise ratio is not extremely important, the
mapping from voltage traces to populations may be chosen rather crudely. For ex-
ample, by inspection of the eigenstate responses. In this case, one usually identifies
a few time intervals in which the traces differ significantly from each other and inte-
grates over them. The resulting vector of complex numbers is then linearly mapped
onto populations in a way consistent with calibration measurements. If we wish to
minimize noise in the populations obtained from a measurement, we need to choose
the mapping more carefully. This task is discussed in more detail in app. H.

Transmon state tomography

As the dispersive read-out is only sensitive to transmon eigenstate populations, it is
by itself not sufficient to fully reconstruct the density matrix of an unknown state.
To accomplish this, one can use a procedure commonly known as state tomography.
It consists of multiple read-out measurements in which the resonator probe signal is
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preceded by different unitary operations Ûi acting on the transmon. The populations

p
(i)
j (where j ∈ {g, e, f, . . .}) extracted in each of these measurements are given by

p
(i)
j = Tr P̂j Ûi ρ̂Û

†
i ,

where P̂j are projectors onto the transmon eigenstates. We can rewrite this equation
as

p
(i)
j = Tr P̂

(i)
j ρ̂,

where P̂
(i)
j = Û†i P̂j Ûi . The measurements therefore reveal expectations values of the

unitarily rotated projection operators.
The expression Tr Â†B̂ defines a scalar product 〈Â, B̂〉 on the space of operators.

Therefore, after performing the measurements, we know the scalar products 〈P̂ (i)
j , ρ̂〉.

Additionally, the normalization condition Tr ρ̂ = 1 also tells us that 〈1, ρ̂〉 = 1. As-
suming that only up to n energy levels of the transmon are occupied, the density

matrix can be extracted from these scalar products if the operators P̂
(i)
j together

with the identity operator 1 span the whole space of n × n Hermitian matrices. To
allow us find the density matrix with the smallest possible number of measurements,
they should also be linearly independent or, in other words, form a basis. This shows
us that at least n2−1 measurements are needed to fully determine the density matrix.

As an example, if only the two lowest levels of the transmon |g〉 and |e〉 are

involved, a possible set of measurement operators P̂
(i)
j is

P̂e =

(
1 0
0 0

)
,

Û†xP̂eÛx =
1

2

(
1 −i
i 1

)
,

Û†yP̂eÛy =
1

2

(
1 −1
−1 1

)
,

where Ûx = e−iπ(|g〉〈e|+H.c.)/4 and Ûy = eπ(|g〉〈e|−H.c.)/4 are unitary operations corre-
sponding to rotations on the Bloch sphere by π/2 around the x and y axis, respectively.
Note that the three listed operators together with 1 form a basis in the space of Hermi-
tian 2× 2 matrices. This particular set of measurements has an intuitive geometrical
interpretation which gives the tomography technique its name: The corresponding
expectation values can be also written as (1 + 〈σ̂z〉)/2, (1 + 〈σ̂y〉)/2 and (1− 〈σ̂x〉)/2
and can therefore be directly related to the expectation values of the three standard
Pauli matrices. These are in turn equal to the three components of the Bloch vector
representing the unknown state. Thus the Bloch vector is reconstructed from its three
projections, similarly to how 3d scenes are reconstructed by tomographic imaging.

In the more complex case when three transmon levels are occupied (Bianchetti
et al., 2010), at least eight measurements need to be performed. These can be for
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example

P̂e =

 0 0 0
0 1 0
0 0 0

 , P̂f =

 1 0 0
0 0 0
0 0 0

 ,

Û(ge)†
x P̂eÛ

(ge)
x =

1

2

 0 0 0
0 1 −i
0 i 1

 , Û(ge)†
y P̂eÛ

(ge)
y =

1

2

 0 0 0
0 1 −1
0 −1 1

 ,

Û(ef)†
y P̂eÛ

(ef)
y =

1

2

 1 i 0
−i 1 0
0 0 0

 , Û(ef)†
y P̂eÛ

(ef)
y =

1

2

 1 1 0
1 1 0
0 0 0

 ,

Û(gf)†
y P̂f Û

(gf)
y =

1

2

 1 0 −i
0 0 0
i 0 1

 , Û(gf)†
y P̂f Û

(gf)
y =

1

2

 1 0 −1
0 0 0
−1 0 1

 .

Here we have defined, analogously to Ûx and Ûy above, Û
(ij)
x = e−iπ(|i〉〈j|+H.c.)/4 and

Û
(ij)
y = eπ(|i〉〈j|−H.c.)/4.

Even though linear reconstruction of an n-state density matrix is in principle
possible from n2 − 1 measurements and the procedure gives a unique result, the
presence of measurement noise can render the resulting density matrix unphysical.
To circumvent this problem, the density matrix can be estimated using maximum
likelihood techniques (Smolin et al., 2012) or other methods (Christandl & Renner,
2012; Faist & Renner, 2016).

The state tomography technique is not restricted to a single qubit or multi-level
system but can be extended to extract density matrices of multi-qubit states, as
described for example by Filipp et al. (2009).

Process tomography and verification procedures

In experiments where fidelity of the prepared quantum states is critical, as for example
in many quantum information processing applications, one often needs a reliable way
to characterize the performance of the individual unitary operations. This can be
done using a process known as quantum process tomography (Chuang & Nielsen,
1997) which can be seen as an extension of the state tomography technique.

Arbitrary quantum operations can be seen as linear maps acting within the space
of density matrices which additionally have the property of complete positivity. A
map M is called completely positive if any map of the form id ⊗M maps positive
operators onto positive operators. According to Choi’s theorem (Choi, 1975), any
quantum operation M acting on density matrices on a d-dimensional Hilbert space
H can be uniquely mapped onto a positive operator on a d2-dimensional Hilbert
space H ⊗H :

ĈM ≡
∑
i,j

|i〉〈j| ⊗M(|i〉〈j|),
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where {|i〉}di=1 is an orthonormal basis of H . This operator is often called the Choi
matrix associated with M. The action of M can be written in terms of the Choi
matrix as

M(ρ̂) = Tr1 Ĉ(ρ̂T ⊗ 1),

where the transpose T of an operator is defined as ÂT ≡ ∑i,j |i〉〈j|〈j|Â|i〉 and Tr1

denotes the partial trace over the first Hilbert space H in H ⊗H .
The Choi matrix characterizing an unknown operation can be determined with a

technique similar to state tomography: A unitary operation Ûi is applied to an initial
state (typically the steady state of the transmon) to prepare an input state for the

operation. After the operation is performed, another unitary V̂j is applied and then
the populations of the transmon are measured. The outcomes are given by

p
(i,j)
k = Tr P̂kV̂jM(Ûiρ̂Û

†
i )V̂ †j

or, in terms of the Choi matrix:

p
(i,j)
k = Tr P̂

(i,j)
k Ĉ,

where P̂
(i,j)
k = (Ûiρ̂Û

†
i )T⊗ V̂ †j P̂kV̂j . If these measurement operators together with the

identity operator form a basis in the space of Hermitian d2 × d2 matrices, Ĉ can be
uniquely determined from the measured populations.

This process tomography procedure has been used in a wide range of experiments
to estimate fidelities of quantum gates (Bialczak et al., 2010; Childs et al., 2001).
However, for systems with more than a few qubits, it becomes impractical rather
quickly as the required number of measurements scales as 4n with the number of
qubits n.

An estimate of quantum operation fidelities in larger systems can be more easily
obtained using the randomized benchmarking technique introduced by Emerson et al.
(2007) and refined by Knill et al. (2008) and Magesan et al. (2012). In one version
of this process, a sequence is built out of m copies of the quantum operation to be
characterized, interleaved with m randomly chosen Clifford gates2. Then one addi-
tional operation is appended, chosen to make the whole sequence result in the identity
operation under the assumption that all of the constituent operations are ideal. The
generated sequence is then applied to a fixed initial state and the probability that the
system is again found in the same state is measured. The outcome is averaged over
many realizations of the random gate sequence, giving the sequence fidelity F . This
quantity is determined as a function of m and an exponential function A0p

m +B0 is
fitted to F (m). The decay constant p is then related to the error rate of the studied
operation.

The advantage of the randomized benchmarking protocol is that the scaling of
the required number of measurements with the system size is more favorable than
for full process tomography. Moreover, it is independent of state preparation and

2Quantum gates from a Clifford group – a group of unitary operations which map elements of
the Pauli group onto each other.
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measurement errors. On the other hand, it quantifies the error rate of the operation
by a single number and therefore does not offer as much insight into the source of
potential errors.

2.6 Microwave field measurements and state tomography

Just like transmons, microwave resonators are an essential ingredient of circuit QED
systems. Unlike transmons, however, their physical state can be probed in a much
more direct and intuitive way. As we have seen in sec. 2.5, transmon states are read
out indirectly, using a resonator as an auxiliary system. On the other hand, the
microwave field contained in a resonator radiates into transmission lines coupled to it
and can be monitored directly using our measurement electronics. In fact, it may seem
rather counter-intuitive that we can observe inherently quantum microwave signals
with equipment which, perhaps with the exception of its price-tag and the fact that it
is surrounded by somewhat exotic cryogenic paraphernalia, is essentially no different
than what is found in any phone or GPS receiver. The principle of our measurement
setup is as classical as can be – at its core, it is an oscilloscope. With very low noise
and additional data processing features but still a device for recording voltages as a
function of time.

This raises some obvious and yet quite intriguing questions: What does a quantum
state of a microwave field look like on an oscilloscope? And can we fully characterize
the state with this type of measurement? To be able to answer these questions, we
first need to describe the full measurement process in more detail. The following
explanation partially sacrifices rigor for the sake of clarity. An interested reader can
fill in the gaps with the help of da Silva et al. (2010), Eichler et al. (2012a) or one
of the available textbooks such as Walls & Milburn (2008) or Wiseman & Milburn
(2010).

Let us consider a simple case where the measured signal is prepared by emission
from a single-mode resonator which is initially in some state

|ψ〉 = c0|0〉+ c1|1〉+ c2|2〉+ . . . , (2.4)

where |0〉, |1〉, |2〉, . . . are the usual Fock states of the resonator. The first question we
need to answer is: How do we describe the field which the resonator emits, given its
initial state?

Input-output formalism

We will assume that the transmission line into which the field is radiated is semi-
infinite with an open boundary condition. The propagating field can then be quan-
tized using the standard Lagrangian formalism and an approximate treatment of the
interaction between the line and the resonator, as presented for example in Walls &
Milburn (2008), leads to the standard Heisenberg-picture input-output relations:

d

dt
ĉ(t) = i[Ĥ0(t), ĉ(t)]−√κâin(t), (2.5a)

âout(t) = âin(t) +
√
κ ĉ(t). (2.5b)
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Here Ĥ0 is the Hamiltonian of the resonator, ĉ its annihilation operator and κ is a
parameter quantifying the strength of the coupling between the line and the resonator.
The operators âin and âout represent the propagating field which can be interpreted
in the following way:

Consider a dispersionless, semi-infinite transmission line with a propagation speed
c. We can split the field into two components propagating towards and away from
the end. We introduce operators â†τ which create photons localized at a distance c|τ |
from the end of the line and propagating towards it for τ > 0 and away from it for
τ < 0. A photon state â†τ |0〉 created at time t will evolve into â†τ−∆τ |0〉 after a time
interval ∆t. We can visualize the propagation of the field as a “conveyor belt” of
modes shown in Fig. 2.10.

The ladder operators are normalized such that [âτ , â
†
τ ′ ] = δ(τ −τ ′) and are related

to the voltage V̂ (x) measured at a distance x from the end of the line by V̂ (x) ∝
âx/c + â−x/c + H.c.

While the labeling of modes âτ which we have introduced is based on the location
of the mode in the transmission line and its direction of propagation, in some sense
it is even more natural to introduce a different, time-dependent labeling by

âτ (t) ≡ âτ−t.

With this definition, the state of mode âτ (t) = âτ−t at time t will be shifted to mode
âτ−t−∆t = âτ (t + ∆t) at time t + ∆t. Whereas the original modes âτ are modes at
fixed positions τ , the newly defined time-bin modes âτ (t) propagate with the field, as
indicated in Fig. 2.10(b). This re-labeling can be seen equivalently as a transformation
to an interaction picture with respect to free propagation of the field. Under this free
propagation, the content of mode âτ (t) does not change with time t. The subscript
label τ represents the time at which the mode arrives at the end of the transmission
line.

We then define the input field âin(τ) as the limit of âτ (t) for t→ −∞. This means
that âin(τ) describes the distant past state of the time-bin which arrived at the end
of the transmission line at time τ . Similarly, âout(τ) defined as âτ (t) in the limit
t→ +∞ represents the field in the same time-bin in the distant future.

Measurement of the quantum signal

To describe what happens to the output field as it propagates through the amplifica-
tion and detection chain, we first need to specify at which point the quantum signal
gets measured and converted into a c-number. This is not a simple question – the
boundary between quantum and classical could presumably be drawn at the digitiza-
tion step. But one could also argue that the quantum state of the full system including
the measurement computer only collapses when a human looks at the resulting data.
Fortunately, this rather philosophical distinction is of little consequence for the actual
outcome of the measurement if one assumes that the signal was amplified with a large
gain prior to observation. In fact, we may even assume that the signal is measured
before any down-conversion process takes place.
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Figure 2.10: (a) Model of the semi-infinite transmission line as a “conveyor belt” of
modes. The modes âτ and â−τ represent fields propagating towards and away from the
end of the line, respectively, localized at a distance cτ from it. In each infinitesimal
time step dτ , the state of every mode is shifted along the “conveyor belt” to the
next mode in line, as indicated by the arrows. (b) Time-dependent re-labeling of the
modes âτ (t) ≡ âτ−t such that the parameter τ is shifted together with the content
of the mode. In this picture, âτ (t) denotes the mode which arrives at the end of the
transmission line at time τ .

In this simplified picture, the only step which the output field undergoes while it
is still quantum is amplification. In order to describe the amplification process, we
could try to come up with a quantum-mechanical model of the amplifier and study
its effect on the field. However, a detailed model is not really necessary as we can
derive the action of a linear amplifier on a quantum field from simple considerations,
independent of the actual physical implementation. This derivation follows a more
detailed analysis presented for example in Clerk et al. (2010).

Our first naive guess about the amplification process may be that it simply
transforms an input field â into an amplified field âamp =

√
Gâ, where G is the

amplifier’s power gain. However, this process is not allowed by quantum mechan-
ics as the output is not a valid field satisfying the required commutation relations
[âamp(t), â†amp(t′)] = δ(t − t′). The simplest way we could possibly try to fix this

shortcoming is to add another term, that is, âamp =
√
Gâ + x̂ .

What conditions does x̂ need to satisfy? If we assume that it commutes with â,
then the two-time commutator of the left-hand side needs to be δ(t − t′) while for
the right-hand side it is Gδ(t − t′) + [x̂(t), x̂†(t′)]. To make these equal, we have the
condition [x̂(t), x̂†(t′)] = (1 − G)δ(t − t′). Since 1 − G < 0, this can be satisfied

if x̂(t) =
√
G− 1ĥ†(t) and ĥ(t) is some field satisfying the standard commutation

relations. Hence, the amplified output in our detection line can be described by the
operator

âamp(t) =
√
Gâout(t) +

√
G− 1ĥ†(t).

The added field ĥ(t) represents the noise introduced by the amplifier. Its amount

depends on the state of ĥ(t) but it is non-zero even if ĥ(t) is in its vacuum state. This
shows that quantum mechanics requires any amplifier to add a minimal amount of
noise. In the following, we will focus on this quantum-limited case, that is, ĥ(t)|ψ〉 = 0.
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The subsequent processing of the signal can be treated as purely classical. The
steps, consisting of analog and digital down-conversion as described in sec. 2.3, ef-
fectively amount to multiplication of the signal by a homodyne local oscillator signal
exp(iωhomt) and subsequent low-pass filtering to obtain the complex voltage v̂ . In

frequency space, the amplified signal is given by V̂ (ω) ∝ âamp(ω) + â†amp(−ω) which
after the down-conversion step becomes

v̂(ω) ∝ âamp(ω + ωhom)f(ω) + â†amp(−ω − ωhom)f(ω),

where f(ω) is the frequency response of the low-pass filter. If its cut-off frequency ωc
is much lower than ωhom, the second term can be neglected. The reason for this is
that it could only be non-zero if |ω| . ωc which implies −ω − ωhom < 0. But then
â†amp(−ω − ωhom) = 0 because there are no modes with negative energies. Thus, we
can write the down-converted complex voltage in time domain as

v̂(t) ∝ âdc(t) + ĥ†dc(t).

Here we have used the approximation
√
G− 1 ≈

√
G and defined

âdc(t) ≡ (âout(t)e
iωhomt) ∗ f(t), (2.6)

ĥ†dc(t) ≡ (ĥ†(t)eiωhomt) ∗ f(t). (2.7)

A simple calculation reveals that the operators âdc(t) and ĥdc(t) do not satisfy the
standard commutation relations but instead

[âdc(t), â†dc(t′)] = [ĥdc(t), ĥ†dc(t′)] =

∫
f(t− τ)f(t′ − τ) dτ.

If the filter is normalized such that
∫
f(t) dt = 1, then the expression in the second

equation is a function F (t − t′) which is peaked around zero and whose integral is
unity. In this sense, it approximates the Dirac delta function and we will therefore
treat the operators âdc(t) and ĥdc(t) as if they in fact do obey the normal commutation
relations. We will, however, keep in mind that this is only an approximation, valid
on time-scales significantly longer than the filter correlation time.

As we are dealing with quantum measurements, each single realization of the
experiment has a random outcome. What is the probability distribution governing the
measured voltage waveforms v(t)? To characterize it, let us investigate its moments –
expectation values of the form 〈v̂(t1) . . . v̂(tm)v̂ †(τ1) . . . v̂ †(τn)〉. Note that the order
of the operators in this expectation value does not matter since they all commute
with each other. We are therefore free to arrange them arbitrarily – for example in
anti-normal order as shown here. As we have seen v̂(t) = λ(âdc(t) + ĥ†dc(t)), where λ
is a proportionality constant relating the fields to voltages. Therefore the expectation
value written above is equal to

λm+n〈ψ|(âdc(t1) + ĥ†dc(t1)) . . . (â†dc(τ1) + ĥdc(τ1)) . . . |ψ〉.
We factor out the product of operators and obtain a sum of 2m+n terms. Since we
assume that the noise mode ĥdc is in its vacuum state, any term which contains ĥdc

or ĥ†dc results in a vanishing expectation value. We therefore get

〈v̂(t1) . . . v̂ †(τ1) . . .〉 = λm+n〈ψ|âdc(t1) . . . â†dc(τ1) . . . |ψ〉. (2.8)
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Spontaneously emitted non-classical state

We will now return to the simple example of a non-classical resonator state from
eq. (2.4) being spontaneously emitted into a transmission line. The input-output
formalism allows us to calculate the output field âin(t) and eq. (2.6) then yields the
down-converted field âdc(t). The correspondence between the moments of âdc(t) and
the measured down-converted voltage v(t), established in eq. (2.8), then indirectly
characterizes the probability distribution of the measured voltage waveforms.

The resonator is prepared in a state |ψ〉 at time t = 0 and then continues to

evolve freely. This means that Ĥ0(t) = ωr ĉ
†(t)ĉ(t) and the input-output relations in

eq. (2.5) can be solved analytically. The output field can be expressed as:

âout(t) =


√
κĉ(0)e−(iωr+κ

2 )t+ âin(t)− κ
∫ t

0
âin(τ)e−(iωr+κ

2 )(t−τ) dτ if t ≥ 0,

âin(t)− κ
∫ t
−∞ âin(τ)e−(iωr+κ

2 )(t−τ) dτ if t < 0.

The term proportional to ĉ(0) represents the initial state of the resonator being
emitted into the transmission line with an exponential envelope, whereas the terms
involving âin are the input field reflected from the resonator. For simplicity, we will
combine them into a single operator ârefl(t) which satisfies

[ârefl(t), â†refl(t′)] = δ(t− t′)− κΘ(t)Θ(t′)e−iωr(t−t′)−κ2 (t+t′).

Note that these commutation relations ensure that [âout(t), â
†
out(t

′)] = δ(t− t′). The
down-converted field âdc can now be written as

âdc(t) = ĉA(t) + ârefl,dc(t), where

A(t) =
√
κΘ(t)e−κt/2 ∗ f(t) and

ârefl,dc(t) = ârefl(t)eiωrt ∗ f(t).

To simplify our notation, we have omitted the time argument from ĉ(0) and from
now on we will denote this operator only as ĉ .

According to eq. (2.8), the moments of the measured voltage waveform are given
by the anti-normally ordered moments of âdc(t). Now that we know the explicit form
of âdc(t), what does it reveal about the probability distribution of the random variable
v(t)?

The so-called optical equivalence theorem (Cahill & Glauber, 1969) implies that
there exists a quasi-probability distribution on the space of complex-valued functions
αdc(t) such that the moments of αdc(t) under said distribution are identical to the
anti-normally ordered moments of âdc(t).

This distribution is the Husimi Q function which for a given state ρ̂ is expressed
as

Q(α) =
1

π
〈αdc|ρ̂|αdc〉.

Here |αdc〉 is the multi-mode coherent state defined as the eigenstate of the operators
âdc(t) such that âdc(t)|αdc〉 = αdc(t)|αdc〉.
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As shown above, âdc(t) is a sum of ĉA(t) and ârefl,dc(t). We will assume that the
input field incident on the resonator is in the vacuum state, that is, the system is in a
product state of the form ρ̂r⊗|0〉〈0|, where ρ̂r is the state of the resonator. This means
that any moment of ĉ and ârefl,dc(t) factorizes into a product of the moments of the
two operators. The quasi-probability generating the anti-normally ordered moments
is therefore a convolution of the two corresponding Q functions. Consequently, the
measured waveform v(t) is, up to scaling by λ, the sum of two independent random
functions:

1

λ
v(t) = cA(t) + αrefl,dc(t). (2.9)

Here c is a random variable with a probability distribution

Π(c) =
1

π
〈c|ρ̂r|c〉.

The second term αrefl,dc(t) is a random process whose moments are equal to the anti-
normally ordered vacuum moments of ârefl,dc(t). According to Wick’s theorem (Wick,
1950), each of these moments can be written as a sum of terms involving only second-

order expectation values of the form 〈0|ârefl,dc(t)â†refl,dc(t′)|0〉. This property is fully
analogous to that exhibited by Gaussian random variables, as expressed by Isserlis’
theorem (Isserlis, 1918). From here it follows that αrefl,dc(t) is a Gaussian random
process with zero mean, fully characterized by its covariances

〈α∗refl,dc(t)αrefl,dc(t′)〉 = 〈0|ârefl,dc(t)â†refl,dc(t′)|0〉 (2.10)

=

∫
f(t− τ)f(t′ − τ) dτ −A(t)A(t′).

We can illustrate the results derived above with a plot of a randomly generated
trace v(t) for the resonator prepared in the single-photon Fock state |1〉. The expo-
nential envelope

√
κΘ(t)e−κt/2 of the emitted state together with the filtered envelope

A(t) are shown in Fig. 2.11(a). A single realization of the detected waveform v(t), gen-
erated according to eq. (2.9) as a sum of the reflected transmission-line noise αrefl,dc(t)
and the resonator contribution cA(t), is shown by the orange line in Fig. 2.11(b). The
underlying density plot shows the marginal probability densities of one of the quadra-
tures v(t) for each individual t. We see that at times t < 0, before the emission of the
photon, the distribution is stationary and Gaussian. Around time t = 0, the variance
of the signal quadrature suddenly increases and then gradually falls off, approaching
again the original level of the vacuum noise.

This example also illustrates that with the chosen filter, whose kernel is consider-
ably shorter than 1/κ, the signature of the single additional photon is rather subtle in
comparison with the underlying noise. The nature of this problem can be seen from
the form of eq. (2.9). Only the first term cA(t) contains any information about the
state of the resonator field. The second term represents added noise. The relative
size of the two terms is influenced by the choice of the filter f(t). A filter which is
very wide in frequency space will fully transmit the signal but also a large amount of
the white vacuum noise. A narrow-bandwidth filter will be more efficient at blocking
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Figure 2.11: (a) The exponential envelope of the emitted field (dashed black) and
the corresponding filtered envelope (solid red). The used filter is Gaussian with a
kernel f(t) ∝ exp(−(4κt)2). (b) One random realization of the observed waveform
v(t) (in orange) emitted by the resonator, initially prepared in the single-photon Fock
state |1〉. The signal is filtered with the Gaussian filter from (a). Each vertical slice
through the underlying density plot represents the marginal probability density of
v(t) at that particular time t. (c,d) Plots equivalent to (a,b) with the optimal filter
given by f(t) ∝ Θ(−t) exp(κt/2).

the noise but if it is too narrow, it may also block some of the signal. To see how to
find a compromise between the two extremes, we will consider a single point of the
measured waveform, say v(t = 0), and try to optimize its signal-to-noise ratio.

The signal component in eq. (2.9) depends on the filter through the scaling factor
A(0) while the variance of the added noise is given by eq. (2.10) as

∫
f2(τ) dτ−A2(0).

The noise variance relative to the signal is therefore proportional to∫
f2(τ) dτ(∫

f(τ)
√
κΘ(−τ)eκτ/2 dτ

)2 − 1.

If we define a scalar product between two functions f and g as 〈f, g〉 ≡
∫
f(τ)g(τ) dτ ,

the expression above can be written as 〈f, f〉/〈f, g〉2−1, where g(τ) =
√
κΘ(−τ)eκτ/2.

According to the Cauchy-Schwarz inequality, this expression is bounded from below
by 1/〈g, g〉2 − 1 = 0. The minimal value of zero is reached if f ∝ g. The optimal
filter is therefore one whose kernel is the time-inverse of the exponentially decaying
envelope of the emitted field.

Fig. 2.11(c,d) shows an example of a waveform and the corresponding marginal
probability densities resulting from such optimal filtering. The distribution of the
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voltage values at t = 0 clearly deviates from the classical Gaussian case much more
than for the suboptimal filter presented in Fig. 2.11(a,b). This is true despite the
fact that, as evidenced by the fast fluctuations in the trace shown in Fig. 2.11(d), the
reverse exponential filter is not nearly as efficient at removing higher frequency noise
components as the Gaussian filter used in Fig. 2.11(b).

We can also see that the optimal filter is perfectly mode-matched. Indeed, from
eq. (2.10) we conclude that the variance of αrefl,dc(t) vanishes at t = 0 and this filter
therefore completely eliminates all modes but the one into which the resonator field is
emitted. Eq. (2.9) then simplifies to v(0) ∝ c and the measurement of v(0) with the
mode-matched filter directly reveals the Q function of the resonator’s initial state.

Extracting field moments in the presence of noise

In real measurements, various imperfections of the detection process usually prevent
us from reaching the ideal quantum limit. This is most often caused by losses in the
detection chain and excess noise added by the amplifiers. Imperfect mode-matching
also contributes to reduced efficiency of the measurement.

All these effects, even though very distinct from each other in their underlying
mechanisms, can be described with a simple effective model: An imperfect detection
chain is equivalent to a perfect one, followed by addition of noise to the measurement
outcome. We have seen that in the quantum limit, a signal processed by an ideal
mode-matched filter is distributed according to the photon state’s Q function. This
means that v(0), which we will denote simply by v for the sake of brevity, can be

described as an observable v̂ = λ(ĉ + ĥ†) where the noise mode ĥ is in its vacuum
state3. To generalize this result to a noisy detection chain, we simply allow the noise
mode to be in an arbitrary state. The most typical case of excess noise which is
Gaussian-distributed can be described by letting the noise mode be in a thermal
state.

Since v̂ and v̂ † commute with each other, we have once again the freedom of
arranging the terms in the moments 〈(v∗)mvn〉 = 〈(v̂ †)mv̂n〉 as we wish. Placing the
operators v̂ on the right yields an expansion of the moment into a sum of products
involving normally ordered moments of ĉ and anti-normally ordered moments of ĥ:

〈(v∗)mvn〉 = λm+n
∑
i,j

(
m

i

)(
n

j

)
〈(ĉ†)iĉj〉〈ĥm−i(ĥ†)n−j〉. (2.11)

If the moments of v are measured when the resonator is prepared in its vacuum state,
the normally ordered moments of ĉ are all zero and the resulting expectation value
〈(v∗)mvn〉0 simplifies to

〈(v∗)mvn〉0 = λm+n〈ĥm(ĥ†)n〉.

Such a reference measurement in the absence of the signal therefore allows us to
determine the anti-normally ordered moments of the noise operator ĥ. Once these are

3Note that the proportionality constant λ is not the same as the one in eq. (2.8), since in the
current context it also contains the filter coefficient A(0).
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known, eq. (2.11) can be inverted (Menzel et al., 2010; Eichler et al., 2012a; Eichler,
2013) to calculate the moments of ĉ . The scaling coefficient λ is usually determined
from a calibration measurement in which one of the moments, typically 〈ĉ†ĉ〉, is
assumed to be known.

It is important to note that this simple version of the subtraction scheme relies on
ĉ being in the vacuum state during the reference measurement. In some instances,
this assumption may not be completely justified. For example, if thermal excitations
of the system cannot be neglected, it would be more appropriate to describe ĉ as being
in a thermal state. In this case, we need to estimate the mean number of photons
nth in the thermal state and then calculate the noise moments of ĥ from the reference
measurement moments of v by inverting the relations

〈(v∗)mvn〉0 = λm+n
∑
i,j

(
m

i

)(
n

j

)
〈(ĉ†)iĉj〉th〈ĥm−i(ĥ†)n−j〉,

where 〈·〉th are thermal moments corresponding to nth.
In practice, we obtain the moments using our FPGA-based setup by recording

histograms of the single shot voltages and subsequently calculating the moments in
software. In measurements of this type, it is extremely important for the detection
chain to have good noise performance. As discussed in da Silva et al. (2010), the
number of measurements needed to estimate a moment of order m with a given
accuracy scales with the variance σ2 of the added noise as σ2m. For this reason,
Josephson parametric amplifiers (JPA) are commonly used for measurements of higher
order moments. Reducing σ2 from the level of a few tens of noise photons to single
photons by adding a JPA can easily shorten the needed measurement time from over
a day to only a few minutes.

Photon state tomography

The techniques described so far allow us to measure the various moments of the
resonator mode ĉ . To extract the density matrix of the resonator state, we can use
one of several approaches described in more detail by Eichler et al. (2012a). One of
these methods is based on a maximum likelihood estimate. Given a set of measured
moments 〈(ĉ†)mĉn〉, we define a cost function which quantifies how well a given
density matrix ρ̂ reproduces these moments. This cost function is usually defined as

C(ρ̂) ≡ −
∑
m,n

1

σ2
mn

|〈(ĉ†)mĉn〉 − Tr ρ̂(ĉ†)mĉn|2

and can be interpreted as the log-likelihood function. The different moments are
weighted inversely with their variances σ2

mn.
The density matrix is then estimated by maximizing C(ρ̂). To ensure that the

resulting density matrix is physical, that is, positive semi-definite and with a trace
equal to one, we need to enforce these conditions in the optimization algorithm. This
can be done using methods of semi-definite programming (Vandenberghe & Boyd,
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1996) or by parametrizing the density matrix in a way which makes it satisfy the
constraints identically.

One such parametrization is given by the Cholesky decomposition (James et al.,

2001): Any positive semi-definite matrix can be written in the form T̂ †T̂ , where T̂ is
upper-triangular with real non-negative elements on the diagonal (in some orthonor-
mal basis). Therefore any matrix of the form

ρ̂ ≡ T̂ †T̂

Tr T̂ †T̂
, where

T̂ =


t1 t2 + it3 t4 + it5 . . .
0 t2d t2d+1 + it2d+2 . . .
0 0 t4d−3 . . .
...

...
...

. . .

 with tj ∈ R

is a valid density matrix and conversely, any valid density matrix can be parametrized
in this form.
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Chapter 3

Multi-qubit gates induced by
steered resonator field

The first experiment on which I worked as part of my PhD studies was an extension
of my master thesis work (Pechal, 2011). There, we observed the geometric phase
of a harmonic oscillator, using a transmon qubit as an auxiliary system to facilitate
measurements of the phase. The results of this experiment are described in Pechal
et al. (2012). In a follow-up work, we then realized a proof-of-principle measurement
of the geometric phase in a system with a resonator coupled to two qubits. This
experiment was motivated by the potential applications of such protocols for multi-
qubit gates, such as have been demonstrated in systems of trapped ions by Leibfried
et al. (2003).

3.1 Geometric phase

Geometric phase is an intriguing phenomenon arising in quantum mechanics due to
certain non-trivial properties of complex Hilbert spaces. It reveals close and perhaps
rather unexpected relations between quantum mechanics and differential geometry
(Isham, 1999). Within the quantum-mechanical framework, it was first described by
Berry (1984) but it was soon discovered to be intimately linked with other geometric
phenomena in physics, such as the polarization of light (Pancharatnam, 1956). Even
though it was first discussed in the context of adiabatic quantum evolution, it can be
described more generally for any unitary evolution (Aharonov & Anandan, 1987).

Let us consider a quantum system evolving under the influence of a slowly varying
Hamiltonian Ĥ(t). If the system is initially prepared in one of the energy eigenstates,
then according to the adiabatic theorem (Born & Fock, 1928), its state will simply
follow the instantaneous eigenstate of the changing Hamiltonian. The eigenstates of a
Hamiltonian are, however, not uniquely defined – we have the freedom of multiplying
them by arbitrary phase factors. The adiabatic theorem therefore does not fully
describe the evolution of the system.

To illustrate the nature of this ambiguity, we can consider the problem at hand
from a more abstract perspective of differential geometry. The Hilbert space H ,
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ℋ

ℬϕ(t)
ψ(t)

Figure 3.1: Illustration of the fiber bundle formalism. The Hilbert space H is de-
composed into fibers (some of which are represented by the grey arrows) of states
differing only by a complex scaling factor. A single representative vector is chosen
from each fiber to form the base space B. Adiabatic evolution of the Hamiltonian
specifies a trajectory |ϕ(t)〉 (in blue) in the base space. The evolution of the state
vector is described by a path (in orange) in the Hilbert space such that its every point
|ψ(t)〉 belongs to the same fiber as the corresponding |ϕ(t)〉.

consisting of all possible (not necessarily normalized) state vectors, can be naturally
split into fibers – sets of vectors which differ only by multiplication with a complex
coefficient. Vectors residing in the same fiber are physically indistinguishable from
each other and we can therefore arbitrarily choose one vector from each fiber to
represent all physically distinct states. The set of all these representative vectors then
forms a base space B and the full Hilbert space can be seen as a fiber bundle – a
collection of fibers embedded at each point of the base space.

Taking some liberty with regard to mathematical accuracy, we can visualize this
construction with the help of Fig. 3.1. The base space is represented by the surface
of a sphere while the fibers are identified with rays emanating from the center. The
evolution of the Hamiltonian determines a path |ϕ(t)〉 in the base space, shown in
blue. The adiabatic theorem then states that the path taken by the state vector
|ψ(t)〉 in the Hilbert space is such that its projection along the fibers onto the base
space coincides with |ϕ(t)〉. There are infinitely many such paths, each of the form
|ψ(t)〉 = eiθ(t)|ϕ(t)〉, where θ(t) is an arbitrary function of time. One of the possible
paths |ψ(t)〉 is indicated in Fig. 3.1 in orange. How can we find the one path which
the state of the system actually takes in H ?
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To answer this question, we substitute |ψ(t)〉 = eiθ(t)|ϕ(t)〉 into the Schrödinger
equation and multiply the result from the left by 〈ϕ(t)|. This results in

d

dt
θ(t) = −〈ϕ(t)|Ĥ(t)|ϕ(t)〉+ i〈ϕ(t)| d

dt
|ϕ(t)〉. (3.1)

The first term on the right-hand side corresponds to the familiar dynamical phase,
accumulated by a state at a rate given by its energy expectation value. The presence
of a second term in this equation is not entirely surprising – in fact, it is necessary for
the following reason: The phase on the left-hand side is gauge-dependent : it depends
on the particular choice of our base space, that is, of the reference states |ϕ(t)〉 with

respect to which the phase θ is specified. The expectation value 〈ϕ(t)|Ĥ(t)|ϕ(t)〉,
on the other hand, is gauge-independent. We should therefore expect there to be
another gauge-dependent term on the right-hand side, in order to make the equation
valid regardless of the gauge choice.

This could lead us to believe that the presence of the second term is an artifact
of our gauge choice and that we could eliminate it by picking the “right” gauge. As
it turns out, this is in general impossible. To see this, consider a case when the
Hamiltonian evolves cyclically, such that Ĥ(T ) = Ĥ(0). Then the path |ϕ(t)〉 in
the base space is closed and the phase difference ∆θ ≡ θ(T ) − θ(0) becomes gauge-
independent. Thus, also the integral of the second term in eq. (3.1) from t = 0 to
t = T needs to be independent of the gauge.

This component of the phase∆θ accumulated by the state during a cyclic evolution
is the geometric phase

γ ≡
∫ T

0

i〈ϕ(t)| d
dt
|ϕ(t)〉dt.

From the form of the integrand, we can see that γ is invariant under re-parametrization
of the path |ϕ(t)〉. That is, we can choose any parameter λ = f(t) and replace the
derivative d/dt by d/dλ and integrate over λ instead of t. This means that γ is truly
a geometric quantity in the sense that it depends only on the trajectory which |ϕ(t)〉
takes in the base space and not on the exact time evolution. We will emphasize this
by rewriting the equation above in a parameter-less form

γ =

∫
Γ

i〈ϕ|d|ϕ〉. (3.2)

The integration is performed over the trajectory Γ of |ϕ〉 in B.
It is widely believed that the independence of the geometric phase on the speed

of the evolution and on the energy of the system makes it a useful resource for con-
structing quantum gates. Its geometric nature makes it insensitive to certain types of
noise – a feature which has been demonstrated in recent experiments with transmon
qubits by Berger et al. (2013).

3.2 Geometric phase in a harmonic oscillator

The evolution of a coherently driven harmonic oscillator is described by a time-
dependent coherent state |ψ(t)〉 = eiθ(t)|α(t)〉. If its trajectory α(t) in the phase

69



space is known, the phase θ(t) can be calculated as a sum of the dynamical phase

δ = −
∫
〈α(t)|Ĥ(t)|α(t)〉 (3.3)

and the geometric phase γ given by eq. (3.2). Coherent states defined in the standard
way (Walls & Milburn, 2008) satisfy the identity 〈α|d|α〉 = (α∗dα − αdα∗)/2. The
geometric phase therefore takes the particularly simple form

γ = −2AΓ , (3.4)

where AΓ is the area which the curve Γ traced by α(t) encloses in the phase space.
This area is defined to be positive for counter-clockwise curves. If Γ is not closed,
the area is calculated for a region obtained after extending Γ by two linear segments
connecting its two end-points with the origin at α = 0.

The phase θ is not directly observable and in the original single-qubit experiment
(Pechal et al., 2012), we made use of a transmon qubit whose dispersive coupling to
the resonator causes the path Γ to depend on the state of the qubit. As a result, θ is
also qubit-state-dependent. The qubit-resonator system evolves according to

|g〉 ⊗ |0〉 following Γg−−−−−−−−→ eiθg |g〉 ⊗ |0〉,

|e〉 ⊗ |0〉 following Γe−−−−−−−−→ eiθe |e〉 ⊗ |0〉,
...

Here, we assume that the system is driven in such a way that all the individual trajec-
tories Γg, Γe, . . . are closed, starting and ending in the vacuum state |0〉. Thus, even
though the qubit and the resonator are entangled with each other during the evolu-
tion, they return to a product state at the end. Effectively, this process implements
a phase gate acting on the qubit and the induced phase θe − θg can be measured
by applying the gate to a superposition state (|g〉 + |e〉)/

√
2 and performing qubit

tomography (see sec. 2.5) on the resulting state.
The multi-qubit extension of this scheme is straightforward – the resonator mode

is dispersively coupled to multiple qubits and the path Γ taken by the coherent state
is therefore a function of the collective qubit state. In general, the resulting phase
θ cannot be decomposed into a sum of single-qubit components and the phase gate
implemented in this way is therefore a genuine multi-qubit operation.

In the case of two qubits, this statement can be expressed mathematically using
the combination of phases

θ2Q ≡ θgg + θee − θge − θeg, (3.5)

where θgg, θee, . . . are the phases accumulated by the resonator when the qubits are
in the states |gg〉, |ee〉, . . ., respectively. It can be easily shown that any combination
of single-qubit phase gates results in θ2Q = 0. Moreover, any two operations with the
same value of θ2Q can be converted to each other using single-qubit gates.
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(a) (b)

Figure 3.2: (a) Photograph of an open aluminium 3d cavity with a sapphire chip
containing two transmon qubits. One of the qubits is indicated by the red circle.
(b) Close-up photograph of the transmon qubit. The two rectangular pads are the
transmon islands, connected by a Josephson junction whose position is indicated by
the yellow circle. The light marks on the pads are scratches from the probes used in
a room-temperature measurement of the junction resistance.

In the case of the driven harmonic oscillator, the displacement of the coherent state
α(t) scales linearly with the drive amplitude ε. The accumulated phase therefore grows
as ε2 and by choosing a proper scaling of ε, we can in principle realize operations with
arbitrary values of θ2Q. This means that the protocol outlined above, augmented by
single-qubit operations, can be used to implement arbitrary two-qubit controlled phase
gates.

Unlike other types of multi-qubit gates (DiCarlo et al., 2009; Mariantoni et al.,
2011b; Fedorov et al., 2012), this realization does not require frequency tuning of
the qubits. It is therefore very well suited for example for 3d cavity architectures
which often operate with fixed-frequency qubits. It can also be generalized in a
relatively straightforward way to gates operating on more than two qubits. However,
these appealing features come at a cost: The weakness of the dispersive coupling in
comparison with the resonant Jaynes-Cummings coupling means that gates based on
the former are generally slower. The speed of dispersive gates is also restricted by
the limited displacement of the resonator mode, which needs to be sufficiently low to
keep the dispersive approximation valid.

We investigated two specific implementations of the outlined phase gate protocol:
an adiabatic and a non-adiabatic one. Both were realized in systems consisting of a
3d cavity coupled to two transmon qubits. One of these samples is shown in Fig. 3.2.

The basic principle of the adiabatic protocol is very similar to the experiment
described in Pechal et al. (2012). Due to the necessity to vary the Hamiltonian of the
system adiabatically, we were forced to work with drive pulse lengths of 500 ns and
longer – a significant fraction of the qubits’ coherence times which were on the order
of a few microseconds. This severely limited the fidelities of the resulting operations
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Figure 3.3: (a) Voltage response of the resonator in the non-adiabatic protocol, nor-
malized to the on-resonance value, shown for the four two-qubit states. Indicated
are the dispersive shifts 2χ1, 2χ2 and the resonator FWHM linewidth κ. The drive
frequency, shown by the black dashed line, was chosen to lie between the resonance
frequencies of the resonator corresponding to two-qubit states |eg〉 and |gg〉. (b) Tra-
jectories followed by the coherent state of the resonator in phase space for the two
states |eg〉 and |gg〉. The black dots indicate the corresponding displaced ground
states. For the other two states |ge〉 and |ee〉, the drive detuning is large enough that
the resonator may be assumed to remain in the vacuum state.

and the reduced coherence led to significant uncertainties in the estimates of the
accumulated phases. For these reasons, we singled out the non-adiabatic protocol as
a more viable candidate for a potential implementation of a two-qubit gate.

3.3 Non-adiabatic protocol

For the non-adiabatic protocol, we employed a sample in which a mode of the 3d
cavity at a frequency of 9.05 GHz and with a full-width-half-maximum linewidth
of 350 kHz was dispersively coupled to two qubits at fixed frequencies of 8.09 GHz
and 6.55 GHz. The measured anharmonicities of the qubits were −310 MHz and
−380 MHz, respectively. The dispersive shifts of the qubit frequencies per single pho-
ton were 2χ1/2π = −5 MHz and 2χ2/2π = −27 MHz. The relations between the
different frequencies are shown graphically in Fig. 3.3(a).

If we neglect dissipation effects in the resonator, the evolution of the system is
described by the Hamiltonian

Ĥ(t)/~ = δrâ
†â +

1

2
(ε(t)â† + H.c.).

Here δr is the detuning between the drive and the resonator frequency, dependent on
the state of the qubits, and ε(t) is the drive coefficient, related to the amplitude V (t)
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and phase φ(t) of the drive signal by

ε(t) ∝ V (t)eiφ(t).

The proportionality constant in this relation depends on the details of the microwave
line used to drive the resonator. In the scheme described here, the drive pulse has a
square shape with a constant amplitude and phase. In this case, the Hamiltonian is
time-independent and can be written as

Ĥ/~ = δr(â − β)†(â − β)− δr|β|2,

where β = −ε/2δr. A coherent state |α(t)〉 evolves under this Hamiltonian according
to

α(t)− β = (α(0)− β)e−iδrt. (3.6)

This means that the displacement α(t) of the coherent state in phase space rotates
around the ground state β with an angular frequency δr. If the system is initially in
the vacuum state, α(t) can be expressed as α(t) = β(1− e−iδrt). The coherent state
then describes a circle with a radius |β|.

As mentioned above, the phase gate protocol relies on the state of the resonator
returning back to the vacuum state at the end of its evolution, independently of the
qubit state. This means that δrT , where T is the duration of the drive pulse, needs to
be an integer multiple of 2π for all the values of δr corresponding to the four two-qubit
states. In general, this condition cannot be satisfied unless the two dispersive shifts
are such that χ1/χ2 is a rational number. Additionally, for the required pulse time T
to be reasonably short, χ1/χ2 should be equal to a ratio of two small integers.

Since this was not the case for our sample, we made use of the following approx-
imation. We set the drive frequency to the mean of the resonance frequencies corre-
sponding to the qubit states |gg〉 and |eg〉, as illustrated in Fig. 3.3(a). This choice

ensures that δ
(gg)
r = −δ(eg)

r . Moreover, as the dispersive shift of the resonator caused

by qubit 2 is much larger than for qubit 1, we have |δ(
reg)|, |δ(

ree)| � |δ(
rgg)|, |δ(

reg)|.
Therefore, the radius of the circular trajectory described by the coherent state when
the qubit is in one of the states |eg〉, |ee〉 is much smaller than when it is in |gg〉 or
|eg〉. For this reason, we relax the periodicity condition in the cases of |eg〉 and |ee〉
and assume that even if the resonator state does not undergo an integer number of
cycles, its displacement from the vacuum state can be neglected. Since the detunings

δ
(gg)
r and δ

(eg)
r have the same magnitude, we can satisfy the periodicity condition for

the remaining two states by choosing T such that δ
(gg)
r T = 2π. In our case, this

means T = 390 ns.
The resulting trajectories traced by the coherent states in phase space are shown in

Fig. 3.3(b). For qubit states |gg〉 and |eg〉, they have the same radius of |ε|/2|δ(gg)
r | but

opposite orientations. As the resonator is blue-detuned from the drive when the qubits
are in their ground states, the corresponding trajectory for δr > 0 given by eq. (3.6)
has a negative orientation. This implies that the geometric phase calculated from

eq. (3.4) is γgg = −γeg = π|ε|2/2|δ(gg)
r |2. The expectation value of the Hamiltonian

is constant and equal to zero and therefore the dynamical phase expressed by the
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integral in eq. (3.3) vanishes. Hence, the total phase accumulated by the resonator
for the four different two-qubit states is

θgg = −θeg =
π|ε|2

2|δ(gg)
r |2

,

θge = θee = 0.

In the experiment, the phases accumulated by the two-qubit states were deter-
mined from a simple interferometric measurement. First, we prepared the system in
the superposition state (|gg〉 + |eg〉 + |ge〉 + |ee〉)/2 by applying π/2 pulses to both
qubits. After the resonator undergoes its cyclic evolution, the resulting state

1

2

(
eiθgg |gg〉+ eiθeg |eg〉+ eiθge |ge〉+ eiθee |ee〉

)
was characterized using state tomography (see sec. 2.5). The phases are related to
the off-diagonal elements of the reconstructed density matrix ρ̂ by θi−θj = arg〈i|ρ̂|j〉,
where i, j ∈ {gg, eg, ge, ee}. The interaction phase θ2Q defined by eq. (3.5) can there-
fore be expressed as

θ2Q = arg〈ge|ρ̂|gg〉+ arg〈eg|ρ̂|gg〉 − arg〈ee|ρ̂|gg〉. (3.7)

The measured dependence of θ2Q on the amplitude V of the drive pulse is shown
in Fig. 3.4(a). We can see that the data agree very well with a quadratic fit of the
form a2V

2 + a0 represented by the solid black line. However, unlike the theoretical
prediction of

θ2Q =
π|ε|2

|δ(gg)
r |2

∝ V 2,

the fitted quadratic function has a significant constant offset a0 6= 0. In other words,
even for V = 0 when no pulse is applied, the two qubits become entangled. This is
caused by direct σzσz-type coupling between the two qubits which can be described
by a term J σ̂z ⊗ σ̂z added to the Hamiltonian. This term induces frequency shifts
of the four two-qubit states which cannot be decomposed into sums of single-qubit
components. As a result, the states |gg〉, |ee〉 accumulate a phase −JT over a time
period T while the phase accumulated by |ge〉 and |eg〉 is +JT . This leads to an
additional contribution of −4JT to the two-qubit phase θ2Q.

To verify this, we performed a measurement where the qubits were again prepared
in an equal superposition of the four computational states and then their state was
read out after a variable waiting time T by qubit tomography. The resulting two-qubit
phase θ2Q as a function of T is plotted in Fig. 3.4(b). As expected, its dependence
on T is linear, corresponding to J/2π = −77.4 kHz.

The two-qubit phase component induced by the resonator drive pulse reaches a
value of π at a pulse amplitude of approximately 0.31. The resulting state of the two
qubits. We extracted the density matrix of the resulting two-qubit state and plotted
the absolute values of its matrix elements in Fig. 3.4(c). For an ideal equal superpo-
sition state of all four computational states, all 16 of these values should be equal to
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Figure 3.4: (a) Two-qubit phase θ2Q calculated from eq. (3.7) as a function of the
pulse amplitude V in the non-adiabatic protocol. The amplitude is expressed relative
to the full range of the arbitrary waveform generator output, in this case ±400 mV.
The black line represents a quadratic fit of the form a2V

2 + a0. (b) Two-qubit phase
accumulated during free evolution due to σzσz-type coupling between the qubits. The
black line is a linear fit. (c) Absolute values of the density matrix elements of the final
state for a pulse amplitude of 0.31 at which the two-qubit phase induced by the pulse
equals π. The fidelity of this state with respect to an ideal equal superposition state
is 0.81. (d) Absolute values of the density matrix elements at a zero pulse amplitude.
The calculated fidelity is 0.88.
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1/4. Deviation from this ideal case indicate decoherence effects. In particular, reduc-
tion of off-diagonal elements as seen in the figure are caused by dephasing processes.
To quantify these effects, we calculated the fidelity of the extracted density matrix
relative to the ideal superposition state (|gg〉+ eiφ1 |eg〉+ eiφ2 |ge〉+ eiφ3 |ee〉)/2 and
found its maximum with respect to the phases φ1, φ2, φ3, obtaining a value of 0.81.
For comparison, in Fig. 3.4(d) we also show an analogous plot for free evolution of
the qubits at zero pulse amplitude. In this case, the extracted maximum fidelity was
0.88.

From these results, we can conclude that the presence of the resonator drive pulse
leads to dephasing, resulting in a reduction of fidelity by a factor of approximately
0.92. This drive-induced dephasing arises mainly from resonator dissipation where
the microwave field emitted from the resonator carries information about the qubit
state, effectively causing dephasing by measurement. It is also partially caused by the
residual entanglement between the qubit and the resonator at the end of the drive
pulse, due to the fact that the resonator does not remain exactly in the vacuum state
when the qubits are in |eg〉 or |ee〉.

The reduced fidelity of 0.88 in the absence of a drive pulse shows that decoherence
of the qubits significantly degrades the performance of the phase gate and makes it
impractical for quantum information applications at the current stage. It may become
a viable method to generate entanglement in qubits with significantly improved co-
herence times. Additionally, modifications of the drive scheme with a drive amplitude
which is ramped up and down smoothly instead of being turned on and off abruptly
could lead to improved performance by making the process adiabatic for the qubit
states |eg〉 and |ee〉.
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Chapter 4

Generation of shaped microwave
photons and active qubit cooling

Circuit QED system have been successfully used as versatile sources of non-classical
microwave signals. For example, as demonstrated by Hofheinz et al. (2009), by making
use of the resonant Jaynes-Cummings interaction between a qubit and a resonator, one
can in principle prepare the resonator field in arbitrary superpositions of Fock states.
While this protocol shows good control over the photon number degree of freedom,
another important aspect of the field emitted from the resonator – its temporal profile
– has only recently started to draw attention in the circuit QED community.

The temporal shape of a field emitted from a resonator undergoing spontaneous
relaxation is typically exponential, independently of whether the state of the resonator
is classical or non-classical. By driving the system in specific ways during the emission
of the field, one can engineer its waveform – an ability which is useful for quantum
communication protocols. Specifically, if a system can be driven such that the emitted
field is symmetric in time, then by time-reversal symmetry, an identical system may
be in principle used to perfectly absorb the field.

It is chiefly for this reason that protocols for generating single photons with con-
trollable temporal profiles have received considerable attention. They were first de-
veloped in atomic systems (Kuhn et al., 2002; Keller et al., 2004; Nisbet-Jones et al.,
2011) where they were also shown to enable exchange of single photons between two
atoms, albeit with a limited efficiency (Ritter et al., 2012).

In the field of circuit QED, approaches to single photon shaping can be categorized
into two types. In one of them, the single energy quantum is first prepared by means of
a quick qubit excitation followed by a resonant exchange interaction between the qubit
and the resonator, similarly to Hofheinz et al. (2009). A tunable coupler between the
resonator and the output line, such as demonstrated by Yin et al. (2013), can then
be used to control the emission rate of the single photon. In an alternative approach
presented by Srinivasan et al. (2014), the coupling of the resonator to the line is
constant and instead, the coupling between the qubit and the resonator is tunable,
facilitated by a special version of a transmon qubit (Srinivasan et al., 2011).
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Both these implementations of photon shaping rely on flux-tuning of a SQUID loop
to achieve control over the qubit-resonator or resonator-transmission line coupling.
However, because of the varying Josephson inductance of the loop, the frequency
of the resonator changes along with the coupling. Therefore, to control the phase
of the emitted photon as well as its amplitude envelope, the frequency shift needs
to be compensated by an additional tunable parameter, such as the qubit-resonator
detuning (Srinivasan et al., 2014).

We therefore set out to implement another, fully microwave-based approach to
photon shaping which does not rely on fast flux tuning. In our protocol, described in
more detail below and in Pechal et al. (2014), both the amplitude and the phase of the
emitted photon are controlled by a single phase- and amplitude-modulated microwave
signal.

4.1 Photon shaping

The basic principle of most photon shaping schemes is that the photon-generating
system (typically implemented as a coupled atom-resonator system) is prepared in an
initial state belonging to a certain manifold of states M and driven in a way which
does not induce transitions into or out of M. Additionally, a state |ϕe〉 from M
can then relax into a state |G〉 not belonging to M by emitting a single photon at
a rate κ. This ensures that the state is trapped outside of M after emitting exactly
one photon. This scheme is illustrated in Fig. 4.1(a). The theory of photon shaping
processes is discussed in more detail in app. E.

Our particular system consists of a transmon coupled to a resonator via a Jaynes-
Cummings interaction. The energy diagram of this system, truncated to the lowest
three levels of the transmon and the lowest two levels of the resonator, is shown in
Fig. 4.1(b). As we can see, the matrix elements of the Hamiltonian connect the states
|f0〉 and |g1〉 via a second order process which proceeds through the intermediate
states |e0〉 and |e1〉. Therefore, if the frequency of the drive applied to the transmon
matches the energy difference between |f0〉 and |g1〉 and if the drive is sufficiently
weak with respect to the detuning of the intermediate transitions, we can resonantly
drive the system between |f0〉 and |g1〉 without significantly populating either |e0〉 or
|e1〉. Effectively, we can describe this process as a transition with a matrix element g̃
which is given by

g̃ =
gΩα√

2∆(∆+ α)
. (4.1)

The theoretical aspects of this second-order process are discussed in our paper by
Zeytinoglu et al. (2015).

If we neglect any unitary transitions outside of the two-level subspace spanned by
|f0〉 and |g1〉, we can approximate the system by the setting shown in Fig. 4.1(c). This
configuration is clearly of the general type illustrated in Fig. 4.1(a). The manifoldM
is formed by |f0〉 and |g1〉, the emitting state |ϕe〉 is |g1〉 and the ground state |G〉 is
|g0〉. As the transition element g̃ is proportional to the drive parameter Ω, we have
full control over it and can therefore in principle fully control the population of the
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Figure 4.1: (a) Basic principle of the general photon shaping scheme. The system
evolves coherently within a manifold M, one of whose states can relax by photon
emission into a ground state |G〉. (b) Realization of this scheme in an off-resonant
transmon-resonator system. The energy diagram indicates the resonator and qubit
transition frequencies ωr and ωq, as well as the drive frequency ωd applied to induce
transitions between the states |f0〉 and |g1〉. The matrix elements of the transmon
drive are shown by the solid cyan lines while the Jaynes-Cummings matrix elements
are represented by the dashed purple lines. The light-blue arrows indicate the second-
order transitions between |f0〉 and |g1〉 via the intermediate states |e0〉 and |e1〉. (c)
Simplification of the transmon-resonator system where all coherent transitions out of
the two-level subspace spanned by |f0〉 and |g1〉 are neglected. The system is then
equivalent to (a).

state |g1〉 and thus also the photon emission rate. For a more detailed explanation
of how the time dependence of g̃ relates to the resulting photon waveform, I refer the
reader to sec. E.1.

First photon shaping experiments

To test the photon shaping protocol, we prepared a sample containing a single qubit
coupled to a λ/2 resonator whose photograph is shown in Fig. 4.2(a). It was installed
in a measurement setup with the configuration outlined in Fig. 4.3(a), built inside the
Vericold cryostat. The basic parameters of the sample were obtained using standard
characterization measurements as described in sec. 2.4. The transmon was tuned to
a transition frequency of ωq/2π = 8.640 GHz and its measured anharmonicity was
α/2π = −421MHz. The resonator frequency and full-width-half-maximum linewidth
were ωr/2π = 7.224 GHz and κ/2π = 24 MHz while the Jaynes-Cummings coupling
strength between the transmon and the resonator was estimated to be g/2π = 35 MHz.

The relaxation times of the first and second transmon excited state were found to
be T e1 = (2000±200) ns and T f1 = (550±5) ns, respectively. The measured dephasing

times of the various superposition states were T ge2 = (1640±50) ns, T ef2 = (557±8) ns

and T gf2 = (580± 30) ns.
After the basic characterization measurements, we performed two-tone spec-

troscopy with the qubit drive tone frequency varied around the theoretically expected
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Figure 4.2: (a) False-color micrograph of the sample used in the first experiment to
demonstrate the photon shaping protocol. The resonator (R) is indicated in green,
the input and output line (IO) in red, the charge line used to drive the qubit (C )
in yellow and the transmon (Q) in blue. (b) Close-up view of the transmon with
the resonator line at the top, the charge line on the bottom left and the unused flux
line on the bottom right. (c) False-color micrograph of one of the two nominally
identical samples used in the experiments with photon emission and reabsorption.
The individual components of the sample are labeled in the same way as in (a). (d)
Close-up view of the transmon.
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Figure 4.3: (a) Diagram of the setup used for the photon shaping experiment in
the Vericold cryostat. (b) Modified version of the setup for the photon reabsorption
experiment. The output line with the parametric amplifier is the same as in (a).
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frequency of the |f0〉 ↔ |g1〉 transition 2ωq + α − ωr. When the drive frequency
matches the transition, the phase of the reflected resonator probe signal changes, as
shown in Fig. 4.1. In this plot, we can also observe that the transition frequency
shifts with increasing power of the drive signal. This is caused by ac Stark shifts of
the system’s energy levels induced by the strong drive.

In the experiment presented in Pechal et al. (2014), the Stark shift was taken into
account using a heuristic method: We approximated the functional dependence of the
Stark shift ∆ on the drive amplitude Ω by the quadratic function ∆ = c0 + c2|Ω|2
and treated its parameters c0, c2 as free parameters to be adjusted to optimize the
resulting photon waveform.

The temporal mode of the photon state |1〉 is characterized by its wavefunction
ψ(t), given by the relation

|1〉 =

∫
ψ(t)â†out(t)|0〉dt.

To measure ψ(t), we prepared the emitted field in the superposition state
(|0〉+ |1〉)/

√
2. This can be done by initializing the transmon in the state

(|g〉+ |f〉)/
√

2 before inducing the |f0〉 ↔ |g1〉 transition, using a pulse sequence
illustrated in Fig. 4.5(a). It can be easily verified that the expectation value v(t) of
the downconverted measured voltage, which is proportional to 〈âout(t)〉 (see sec. 2.6),
then satisfies v(t) ∝ ψ(t). The proportionality constant between ψ and v is not
important for the calculation of the symmetry parameter s.

To establish that our protocol is suitable for generating symmetric photon pulses,
we defined a figure-of-merit s as the overlap between the photon wavefunction ψ(t)
and its time-inverse:

s ≡ max
t0

|
∫

(ψ(2t0 − t))∗ψ(t) dt|∫
|ψ(t)|2 dt

.

This quantity lies in the interval 0 ≤ s ≤ 1 and is equal to 1 for exactly symmetric
waveforms. It is therefore a suitable measure of the photon’s temporal symmetry.

We chose the shape of the transmon |f0〉 ↔ |g1〉 drive pulse to be given by

Ω(t) = Ω0 sin2(πt/T ) exp(iφ(t)),

where the phase is calculated as the time-integral of the Stark shift ∆ = c0 + c2|Ω|2.
This particular functional dependence of Ω(t) was chosen as a particularly simple con-
tinuous function with only two free parameters describing its envelope and – unlike
other candidates such as a Gaussian function – with no need for an arbitrary cut-
off. We could then observe the effect variation of the four parameters Ω0, T , c0 and
c2 has on the shape of the resulting photon pulses and experimentally optimize the
symmetry parameter s. To this end, we sampled the pulse length T from a range be-
tween 60 ns and 500 ns and the drive amplitude Ω0/2π between 0 MHz and 1000 MHz.
We found values of s close to one for various combinations of these parameters, as
shown in Fig. 4.5(b). For comparison, the dashed lines represent the simulated pho-
ton waveforms obtained by solving the master equation for the full Jaynes-Cummings
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Hamiltonian including three resonator and six transmon levels and evaluating the out-
put field. This model takes into account imperfections of the second-order transition
as well as transmon decoherence. The scaling factor between the measured voltages
and the expectation value of the field 〈âout(t)〉 is treated as a fit parameter here and
so is the relative timing between the measured and the simulated waveforms.

Performing qubit tomography measurements after the photon emission process
shows that for the two longer photon pulses (T = 200 ns, T = 500 ns) the initial |f0〉
state is nearly emptied by the drive pulse, having a residual population on the order of
1− 2%. On comparable time scales the reduction of the population due to relaxation
is negligible. The peak drive strengths for these pulses are Ω0/2π = 700 MHz and
Ω0/2π = 600 MHz, respectively. The corresponding peak amplitudes of the effective
coupling g̃/2π given by eq. (4.1) are 5.2 MHz and 4.4 MHz, consistent with numer-
ical diagonalization of the Hamiltonian which yields values of g̃/2π = 5.5 MHz and
4.6 MHz. The symmetry parameter s reaches a value of 0.98 for both longer pulses.
This high symmetry can only be obtained for pulses much longer than the cavity
rise time 1/κ ≈ 7 ns. For comparison, we show a short pulse with T = 20 ns. This
photon pulse is not long enough for a complete population transfer from |f0〉 to |g1〉
with the drive pulse amplitudes used which leads to a reduced emission efficiency. Its
symmetry parameter s = 0.92 also does not reach the high values obtained for the
longer pulses.

To prepare a symmetric photon state which can be easily reabsorbed by a quantum
node, it is important that not only its amplitude but also its phase is symmetric in
time. By optimizing the Stark shift parameters c0 and c2, we made the phase of the
photon pulse constant in time, as illustrated in the inset of Fig. 4.5(b), noting that
the ratio of the two signal quadratures is in good approximation time-independent
for each of the three pulses.

The observed effect of the drive pulse length on the length of the photon pulse
and the efficiency of its emission, which is reflected in the amplitude of the detected
voltage, is illustrated in Fig. 4.5(c). Shorter drive pulses lead to shorter photon
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Figure 4.5: (a) Amplitude of the drive signal used to initialize the transmon and
transfer the excitation into the resonator to generate a symmetric photon shape. (b)
Normalized voltage amplitude of the shaped photons obtained for drive pulses with
T = 20 ns, Ω0/2π = 680 MHz (blue triangles), T = 200 ns, Ω0/2π = 700 MHz (orange
squares) and T = 500 ns, Ω0/2π = 600 MHz (green circles). The dashed lines show
the simulated photon shapes scaled to normalize their peak values to unity. The
measured traces are fitted to the simulation with only the time-shifts and scaling
factors as fit parameters. The inset shows both voltage quadratures I and Q of the
photon pulses. (c) The measured voltage waveform of the photon superposition state
(|0〉+ |1〉)/

√
2 for the indicated length of the drive pulse T at a fixed pulse amplitude

Ω0/2π = 420 MHz and (b) for the indicated amplitude of the pulse Ω0 at a fixed pulse
length T = 300 ns.
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waveforms (curves at the bottom of the plot) and vice versa. The influence of the
drive pulse amplitude is shown in Fig. 4.5(d). Photon shapes generated with stronger
drive pulses are shorter and display signatures of Rabi oscillations (the smaller side-
peaks in the two curves at the top of the plot). On the other hand, weak pulses result
in an incomplete population transfer and therefore reduced efficiency of the emission
process, as illustrated by the reduced amplitude of the bottom-most waveform.

To demonstrate the single photon nature of the emitted field, we measured its
moments using the propagating field tomography method described in more detail
in Eichler et al. (2012a); Menzel et al. (2010) and in sec. 2.6 of this thesis. We first
determined the mode function ψ(t) of the photon pulse which is proportional to the
observed averaged coherent signal 〈v(t)〉. Then in each realization of the experiment,
the measured single-shot voltage v(t) was processed by a digital Chebyshev filter
with a shape approximately matched to ψ(t) and the result V was recorded in a

2D histogram. The observable V̂ can be described by an operator â + ĥ† where â
is the temporal field mode â =

∫
ψ∗(t)âout(t) dt and ĥ is a noise mode, assumed to

be in a thermal state which is characterized by the effective noise temperature of the
amplification chain. The moments 〈(V ∗)mV n〉 extracted from the recorded histogram

and the noise moments 〈(ĥ†)kĥl〉 determined in an equivalent measurement with only
vacuum at the input of the detection chain were used to calculate the field moments
〈(â†)iâj〉 (Eichler et al., 2012a).

For both the symmetrically shaped photon superposition state (|0〉+ |1〉)/
√

2 and
the single photon Fock state |1〉 described above, we found the normalized fourth order
moments g(2)(0) = 〈â†â†ââ〉/〈â†â〉2 of 0.03± 0.07 and 0.06± 0.02, respectively, which
lie well below the classical limit of g(2)(0) = 1 expected for coherent states, showing
a high degree of antibunching. The density matrices ρ̂ with fidelities F = 86% and
76% to the respective photon states were extracted from the measured moments
(Eichler et al., 2012a) by employing a maximum likelihood algorithm. From the
numerical simulation of the emission process, we found the normalization conditions
〈A†A〉 = 0.39 and 0.79. This is lower than the values of 〈A†A〉 = 1/2 and 1 expected
for the ideal states (|0〉+|1〉)/

√
2 and |1〉 due to the reduced photon emission efficiency

of (79 ± 1)%, limited by the finite lifetime T f1 = (550 ± 5) ns of the |f〉 state. This
accounts for the deviation of the diagonal elements of ρ̂ from the theoretical values
while the off-diagonal elements are reduced due to the loss of coherence between the
qubit states |g〉 and |f〉 on a time scale of T gf2 = (580 ± 30) ns. This estimate of
the emission efficiency assumes perfect initialization of the transmon in the |f〉 state
in order to evaluate the shaping process separately from the preparation procedure.
The total efficiency including a realistic initial state preparation is approximately
76%, that is, about 6% lower. We attribute this to relaxation during the initialization
pulses and thermal population of the excited states, measured to be approximately
13%. This thermal population significantly exceeds the theoretical equilibrium value
0.2% corresponding to the physical base temperature of 50 mK. The source of this
anomalous thermal excitation is likely due to undesired elevated temperatures of the
still and 100 mK stages of the Vericold cryostat.

To demonstrate the rapid amplitude and phase modulation capability of our
all-microwave photon shaping scheme we prepared six-peaked single photon pulses
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similar to the double-peaked pulses demonstrated with optical frequency photons
(Keller et al., 2004). For this purpose the transmon was again prepared in the state
(|g〉+ |f〉)/

√
2. The subsequent photon shaping signal consists of a train of six iden-

tical sin2 pulses of amplitude Ω0/2π ≈ 350 MHz and length T = 60 ns separated by
170 ns, as shown in Fig. 4.7(a). These parameters are adjusted to make the overlap
between the photon peaks small while keeping the overall duration of the pulse train
short to minimize decoherence.

We then verified that the phases of the individual peaks in the photon waveform
can be controlled independently. As an example, we changed the phase of any one of
the subsequent photon peaks by π by adjusting the phase of the corresponding drive
pulses leading to a change of sign in the detected voltage, Fig. 4.7(b). This phase
control can be achieved while keeping the emitted power unchanged, as illustrated in
Fig. 4.7(c). The power was measured as a function of time by squaring and subsequent
averaging of the digitized and filtered voltages. The noise power was then subtracted
in post-processing.

A photon |1〉 with a waveform ψ(t) consisting of multiple peaks can be equiva-
lently interpreted as a superposition state of multiple single-photon states |1j〉, each
described by a single-peaked wavefunction ψj(t). If ψ(t) =

∑
j ψj(t), we can write

|1〉 = c1|11〉+ c2|12〉+ . . . , where

cj |1j〉 =

∫
ψj(t)â

†
out(t)|0〉dt and

|cj |2 =

∫
|ψj(t)|2 dt.

Thus, the photon states shown in Fig. 4.7(b,c) can also be viewed as time-bin
superposition states. This shows that the described photon shaping technique could
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Figure 4.7: (a) Pulse sequence used to generate the multiple-peaked photon states
whose coherent voltage waveforms are shown in (b) and power waveforms in (c). The
bottom-most trace in (b) and (c), shown in black, corresponds to a train of drive
pulses which are all in phase. The colored traces above result from flipping the phase
of each one of the drive pulses by π. (d) Protocol for mapping a qubit state onto a
time-bin superposition state of a single photon. (e) The reverse protocol, mapping
the time-bin superposition back onto the qubit state. Photon loss can be detected in
this scheme if a projective measurement in the transmon eigenbasis, which does not
distinguish between |g〉 and |e〉, observes the transmon in the |f〉 state.
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also be used to realize time-bin encoding of quantum information. Such encoding
can provide a useful alternative to the simple scheme which uses the vacuum state
|0〉 and the single-photon Fock state |1〉 as its computational states. In the presence
of dissipation in the communication channel, the simple protocol is unable to detect
the loss of a photon since the relaxed state |0〉 is identical to one of the encoding
states. On the other hand, mapping the state of a qubit onto a superposition of two
time-bin photon states |11〉 and |12〉 allows the detection of a photon loss event. This
could in turn enable heralded protocols to achieve high transmission efficiency in a
subset of post-selected measurements even for a lossy communication channel where
the average transmission success probability is reduced.

An theoretical example of such a time-bin encoding protocol is illustrated in
Fig. 4.7(d,e). The two lowest states |g〉 and |e〉 of the transmon are mapped onto
the two time-bin photon states by means of the pulse sequence shown in Fig. 4.7(d).
The first three pulses map the excited state |e〉 onto a photon whose emission is in-
duced by the first |f0〉 ↔ |g1〉 drive pulse, shown in yellow. Meanwhile, the ground
state |g〉 is simply transferred into |e〉 which is unaffected by the first drive pulse. It
is then mapped to |f〉 and subsequently to a photon by the second drive pulse.

The transfer of the time-bin photon states back to a transmon state can be done
simply by reversing the pulse scheme, as shown in Fig. 4.7(e). If the photon is absent,
the transmon is not excited by any of the first three pulses and ends up in the state |f〉
at the end of the sequence. The final step of the protocol is a projection measurement
in the transmon eigenbasis which distinguishes |f〉 from |g〉 and |e〉 but not |g〉 and
|e〉 from each other. This allows one to detect the absence of the incoming photon
while simultaneously preserving the coherence of the encoded state if the transfer was
successful.

Second generation of photon shaping experiments

Since the first generation of the photon shaping experiment described above, signif-
icant effort was devoted in our lab to design a sample optimized for quantum net-
working by single-photon exchange. This development was led by a team of doctoral
students Philipp Kurpiers, Theo Walter and Paul Magnard. Together with them, we
set out to replicate the photon shaping experiment with the improved samples, with a
particular focus on developing a more reliable and convenient way of calibrating and
controlling the shaped photon emission.

The new samples were equipped with a Purcell filter (Reed et al., 2010; Sete et al.,
2015), designed to suppress Purcell relaxation of the transmon into the output line of
the resonator. This is a key improvement, since the decay of the transmon’s |f〉 state
is one of the main factors limiting the efficiency of the photon exchange process.

Instead of the heuristic approach described above, where the parameters of the
Stark shift correction had been adjusted to optimize the shape of the emitted photon,
the Stark shift was now measured more rigorously using a pulsed measurement. This
scheme was developed for the photon reabsorption experiment and is described in
ch. 5. In this way, we could calibrate the Stark shift and the effective matrix element
of the |f0〉 ↔ |g1〉 transition as a function of the applied pulse amplitude. By invert-
ing these relations, we then generated pulses for which g̃ has the time-dependence
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described by eq. (E.10). In a simplified model involving only the three states |f0〉,
|g1〉 and |g0〉, this drive pulse shape leads to a photon with a waveform

f(t) =

√
κeff

2 cosh(κefft/2)
.

4.2 Qubit cooling

The exchange of excitation between the transmon and the resonator facilitated by the
|f0〉 ↔ |g1〉 drive can be used for other purposes than just photon shaping. In the
experiment by Gasparinetti et al. (2016), it was utilized to prepare Fock states of the
resonator field and implement an effectively tunable Jaynes-Cummings interaction
between the transmon and the resonator.

In the photon shaping experiment, the elevated thermal population of the trans-
mon excited states, though in principle undesirable, provided us with a fortuitous
opportunity to study an active cooling scheme based on the |f0〉 ↔ |g1〉 transition.

Provided that the effective temperature of the resonator mode is lower and the
relaxation time shorter than those of the transmon, one can drive the transmon closer
to its ground state by a sequence of two steps which can be repeated if needed: In
the first one, a π-pulse is applied to the |e〉 ↔ |f〉 transition to transfer the thermal
population of |e〉 into |f〉. In the second step, the |f0〉 ↔ |g1〉 transition is driven for
a period of time such that the excitation is emitted into the transmission line with
high probability and the system is left in the ground state |g0〉.

To test this process, we implemented a pulse sequence shown in Fig. 4.8(a). A
π-pulse driving the |e〉 ↔ |f〉 transition, followed by a square pulse at the |f0〉 ↔ |g1〉
transition frequency, are repeated N + 1 times. The square pulses have an amplitude
corresponding to an equivalent resonant Rabi rate of approximately Ω/2π = 300 MHz,
as estimated from a comparison of the measurements with a master equation simu-
lation. The first N square pulses have a fixed length Tmax = 400 ns and the last one
has a variable length T .

We measured the populations of the transmon states |e〉 and |f〉 at the end of the
sequence to investigate their dependence on the pulse length T and the number of
repetitions. The results, plotted in Fig. 4.8, show that the initial thermal population
of approximately 11%, transferred into the |f〉 state, decreases with increasing length
of the pulse. At the same time, however, the population of the |e〉 state increases as
the transmon thermalizes due to interactions with its environment.

We can see that the performance of the cooling scheme slightly improves when the
cycle is repeated two or three times but additional repetitions do not lead to any fur-
ther improvement. Moreover, beyond approximately T = 150 ns, the total population
of both states |e〉 and |f〉 no longer decreases with increasing T , as the thermalization
rate exceeds the effective cooling rate. The minimum thermal population reached in
this measurement was 2.8%. This represents a reduction by a factor of 4 with respect
to the steady state value.

Thus, in the particular sample investigated here, the cooling scheme led to a
significant decrease in the effective temperature of the transmon. In future devices,
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Figure 4.8: (a) Pulse scheme used to test the cooling protocol. A π-pulse on the
|e〉 ↔ |f〉 transition and a |f0〉 ↔ |g1〉 square drive pulse are repeated N + 1 times,
where the firstN repetitions of the |f0〉 ↔ |g1〉 pulse have a fixed length Tmax = 400 ns
while the last one has a variable length T . (b) Populations of the |e〉 and the |f〉 state
as a function of the last pulse length T for different numbers of repetitions.

it could be used in combination with a special low Q dump resonator (similar to the
zeroing registers employed by Mariantoni et al. (2011a)) to initialize the transmon in
its ground state on a time-scale much shorter than its spontaneous relaxation time.
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Chapter 5

Reabsorption of single microwave
photons

Following the photon shaping demonstration presented in Pechal et al. (2014), we
extended the experimental setup to include a second identical sample of the type
shown in Fig. 4.2(c). The two samples were connected to each other and to the
input/output line via a circulator, as illustrated in Fig. 5.1. The configuration of
the measurement setup, presented in Fig. 4.3(b), was similar to that of the photon
shaping experiment.

In this setting, the resonators of both samples are probed in reflection. The
reflected signal receives a phase shift upon scattering from each resonator and the
sum of the two phases is then measured. As the circulator allows the signal to pass
only in one direction, the two resonators do not hybridize even though their frequencies
are nearly identical. This allows us to characterize the two samples independently of

aout

bin

bout

ain

Figure 5.1: Simplified diagram of the photon reabsorption setup with two qubit-
resonator systems connected by coaxial cables and a circulator.
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each other using measurement techniques similar to the standard ones described in
sec. 2.4.

In the following, we number the samples and their respective qubits and res-
onators as 1 and 2 according to the order of propagation of the probe signal.
The measured resonance frequencies of the resonators were both approximately
ωr1/2π = ωr2/2π = 7.255 GHz. Their full-width-half-maximum linewidth was mea-
sured to be about κ1/2π = κ2/2π ≈ 4 MHz. This parameter could not be estimated
very accurately due to the frequency-dependent phase shifts in the setup obscuring the
Lorentzian shape of the ideal resonator spectrum. The stated value of 4 MHz is close
to the linewidth of κ/2π = 4.7 MHz determined in an earlier dipstick measurement at
4.2 K. The transition frequencies of qubits 1 and 2 were set to ωq1/2π = 8.575 GHz
and ωq2/2π = 8.450 GHz, respectively. Their maximum frequencies were both ap-
proximately 9 GHz. The measured anharmonicities were α1/2π = −443 MHz and
α2/2π = −445 MHz. The Jaynes-Cummings couplings to the respective resonators,
extracted from vacuum Rabi splitting measurements were g1/2π = g2/2π ≈ 40 MHz.
For reasons similar to the resonator linewidth measurements, this value could not be
determined with very high accuracy.

The relaxation times obtained from measurements were T 1e
1 = (1620± 50) ns,

T 1f
1 = (930± 20) ns for qubit 1 and T 2e

1 = (1960± 80) ns and T 2f
1 = (1630± 80) ns

for qubit 2. The dephasing times of the various superposition states were
T 1ge

2 = (1330± 180) ns, T 1ef
2 = (610± 40) ns, T 1gf

2 = (480± 130) ns for qubit 1 and

T 2ge
2 = (1200± 110) ns, T 2ef

2 = (680± 50) ns, T 2gf
2 = (500± 70) ns for qubit 2.

To characterize the Stark shift as a function of the drive amplitude, we employed
a pulsed calibration measurement. The transmon was initialized in the |f〉 state.
We then applied a square pulse of duration T = 100 ns, amplitude A and detuning
δ from the |f0〉 ↔ |g1〉 transition frequency and measured the final transmon state
populations. The results of this measurement for system 1 are presented in Fig. 5.2(a).

If the drive frequency matches the |f0〉 ↔ |g1〉 transition frequency, the transmon
is driven from |f〉 to |g〉 and we observe depletion of the |f〉 state population. At the
same time, we note that the first excited state |e〉 remains unoccupied which justifies
our treatment of the second-order transition as operating directly between the states
|f0〉 and |g1〉 without populating the intermediate states |e0〉 and |e1〉. Due to the
ac Stark shift, the frequency at which the |f〉 state population drops depends on the
pulse amplitude. This dependence is plotted in Fig. 5.2(b). We can see that while
the Stark shift starts off as quadratic for small pulse amplitudes, it soon becomes
roughly linear. This indicates that the |f0〉 ↔ |g1〉 transition in this regime cannot
be described simply by the lowest-order perturbative expansion.

With the amplitude-dependence of the Stark shift established, we performed a
measurement where the frequency of the square pulse was tied to its amplitude to
keep it resonant with the |f0〉 ↔ |g1〉 transition. We then varied the length and
the amplitude of the pulse and again recorded the resulting transmon populations,
obtaining for system 1 the data presented in Fig. 5.3(a). These results show that with
a sufficiently long pulse, the transmon is driven almost completely into the ground
state. Note that this is not simply the result of spontaneous relaxation, as the bottom-
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Figure 5.2: (a) Transmon state populations as a function of the detuning and am-
plitude of the square pulse applied to induce the |f0〉 ↔ |g1〉 transition. The length
of the pulse is T = 100 ns and its amplitude is expressed relative to the full output
range of the arbitrary waveform generator which in this case was ±600 mV. (b) Stark
shift as a function of the drive amplitude, extracted from the minima of the |f〉 state
population in (a).

most line in the density plots shows that this process, occurring in the absence of the
drive signal, is significantly slower.

For stronger pulses, the population transfer between |f〉 and |g〉 shows signs of
Rabi oscillations, damped mainly by the resonator relaxation process and to a smaller
extent by the transmon relaxation. We modeled the transition in a simplified picture
neglecting all coherent transitions out of the two-level subspace spanned by |f0〉 and
|g1〉. The total population of the subspace is not constant in time but decreases due
to the relaxation of |g1〉 into the ground state |g0〉 at a rate κ and |f0〉 into |e0〉 at a
rate Γ . The evolution equations for the probability amplitudes cf0 and cg1 are

d

dt
cf0 = −ig̃cg1 −

Γ

2
,

d

dt
cg1 = −ig̃cf0 −

κ

2
,
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Figure 5.3: (a) Transmon state populations as a function of the length and amplitude
of the square pulse applied to induce the |f0〉 ↔ |g1〉 transition. The frequency of
the pulse is set to be resonant with the transition, based on the measurement from
Fig. 5.2. (b) Least-squares fit of a dissipative two-level model to the measured |f〉
state populations. (c) The transition rate g̃ extracted from the fit as a function of the
pulse amplitude.

where g̃ is the |f0〉 ↔ |g1〉 transition rate induced by the drive. This system of
differential equations can be solved analytically. We fitted the solution to the mea-
sured |f〉 state population. In this fit, Γ was taken from a previous relaxation time
measurement, κ was a fit parameter common for the whole data set and g̃ was fitted
separately for each line of constant pulse amplitude. The resulting optimal value of
κ was κ/2π = 4.8 MHz. The fit function agrees very well with the measured data, as
shown in Fig. 5.3(b). The fitted values of g̃ are plotted in Fig. 5.3(c) as a function
of the applied pulse amplitude. In the weak drive limit, the transition rate scales
linearly with the amplitude, as suggested by eq. (4.1). The deviation from linearity
again indicates a break-down of the lowest-order perturbative approximation.

To observe single photon exchange between the two systems, we prepared qubit
1 in its |f〉 state while qubit 2 was left in its ground state |g〉. We then applied
drive pulses to both systems at their respective |f0〉 ↔ |g1〉 transition frequencies and
measured the final populations of transmon 2 to investigate how the transfer efficiency
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Figure 5.4: Transmon state populations as a function of the time-scale 1/k and am-
plitude A of the 1/ cosh pulse defined by eq. (5.1), applied to induce the |f0〉 ↔ |g1〉
transition. The frequency of the pulse varies with its instantaneous amplitude to keep
it resonant with the transition. The dashed white line in the right-most plot indicates
points of high transfer efficiency from |f〉 to |g〉.

depends on the parameters of the |f0〉 ↔ |g1〉 drive pulses. Setting these parameters
optimally presents a number of challenges in comparison with the simpler photon
shaping experiment. This is chiefly due to the large parameter space which needs
to be explored. We expected that many of the relevant aspect of the system, such
as the transmittivity of the line connecting the two samples or potential impedance
mismatches could not be controlled well enough to set up the measurement parameters
simply from first principles. We therefore once more decided to adopt a heuristic
approach, similarly to ch. 4.

As derived in sec. E.1, if the transition rate g̃ varies in time as κ/2 cosh(κt/2), the
emitted photon is symmetric with a waveform proportional to 1/ cosh(κt/2). For this
reason, we chose to parametrize the pulses by four numbers A1,2 and k1,2 such that

g̃1,2 =
A1,2

cosh k1,2t
. (5.1)

The dependence of g̃ on the drive amplitude, obtained from the measurement il-
lustrated in Fig. 5.3, was then inverted and used to find the corresponding time-
dependence of the arbitrary waveform generator’s output amplitude. Furthermore,
the Stark shift measurement shown in Fig. 5.2 was used to calculate the time-
dependence of the drive pulse’s phase necessary to compensate the Stark shift.

By separately applying the pulse to each of the systems prepared in the |f0〉 state
and measuring the final state populations, we determined a relation between the pulse
amplitude A and the time-scale 1/k which results in a high-efficiency transfer of the
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excitation into the transmission line. The results of this measurement for system 1
are shown in Fig. 5.4. As A and 1/k are varied, we observe alternating bands of
low and high transfer efficiency, similarly to the case of a square pulse presented in
Fig. 5.3. We extracted the positions of the first minima in the |f〉 state population
and described them by an interpolating function indicated by the white dashed line.
In the subsequent measurements, we always kept the pulse amplitude and time-scale
related to each other by this function.

We then proceeded to set up measurements of the excitation transfer efficiency
between the two systems as a function of the two pulse parameters k1,2 and the detun-
ings δ1,2 added to the pulse frequencies. These corrections were added to counteract
potential deviations of the qubit frequencies from the initially measured values due
to long-term drifts. We fixed the detunings to the values leading to the highest trans-
fer efficiencies – δ1/2π = 0 MHz, δ2/2π = 1 MHz – and repeated the measurement,
this time sweeping k1,2 and the relative delay between the pulses applied to the two
systems.

A selection of the obtained data is presented in Fig. 5.5. As we can see, for large
delays ∆t, the efficiency is optimized when the two pulses have significantly unequal
lengths. Fig. 5.5(b) presents the efficiency values maximized over 1/k1 and 1/k2 as
a function of the delay ∆t. These data suggest that the efficiency is not extremely
sensitive to small variations in relative timing between the pulses. The maximum
efficiency reached in these measurements was approximately 37%.

Efficiency analysis

While the photon exchange efficiency achieved in our measurements is significantly
higher than that demonstrated with optical photons by Ritter et al. (2012), it is
still too low for many quantum communication applications such as generation of
entanglement. To determine how the performance of our protocol could be improved
in future devices, we analyzed the likely factors contributing to the reduced efficiency,
as summarized in Tab. 5.1.

The more straightforward sources of inefficiency to estimate are dissipation and
insertion loss in the elements connecting the two samples. Based on the length of the
coaxial cables and their typical attenuation constant at cryogenic temperatures, we
estimated the power transmission in the cabling to be 0.95. From a 4.2 K dipstick net-
work analyzer measurement of a PCB through with a length equal to the total length
of the input/output traces in the two used samples, we extracted the transmittivity
of the PCB and its SMP connectors as approximately 0.95. The cryogenic circula-
tor used between the two samples is the model CTH1184 from QuinStar (formerly
Pamtech). We did not directly measure its microwave properties at base temperature
as that would require cryogenic calibration standards. The maximum insertion loss
reported by the manufacturer is 0.4 dB, corresponding to a transmittivity of 0.91. The
total efficiency of the connection between the two samples is therefore approximately
0.82. This value excludes potential impedance mismatches at the wire bonds of the
chip for which we do not have a good estimate.

Using a master equation simulation of the cascaded system (as described in more
detail in sec. E.3, we found that Purcell decay of the |f0〉 state reduces the transfer

96



20 40 60 80100
20
40
60
80

100

1/
k 1

[n
s]

Δt = -50 ns

20 40 60 80100

Δt = -25 ns

20 40 60 80100

Δt = 0 ns

20 40 60 80100

Δt = 25 ns

20 40 60 80100

Δt = 50 ns

- 200 - 100 0 100 200
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Delay Δt [ns]

Tr
an

sf
er

ef
fic

ie
nc

y

0

1/k2 [ns]

Transfer 
efficiency(a)

(b)

Figure 5.5: (a) Measured transfer efficiency given by the final |f〉 state population
of transmon 2 as a function of the two pulse time-scales 1/k1 and 1/k2 for several
different delays ∆t between the pulses. (b) The efficiency maximized over 1/k1 and
1/k2 as a function of the delay ∆t.

transmittivity of coaxial cables 0.95
transmittivity of the PCB 0.95
transmittivity of the circulator 0.91
total connection efficiency 0.82

efficiency reduction due to Purcell decay 0.95
efficiency reduction due to qubit dissipation 0.69
efficiency reduction due to qubit dephasing 0.78
total efficiency due to decoherence 0.52

overall estimated efficiency 0.43
measured efficiency 0.37

Table 5.1: Summary of the different estimated loss mechanisms in the photon reab-
sorption experiment.
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efficiency with respect to the ideal case, where the photon emission process is arti-
ficially restricted to link only the states |g1〉 and |g0〉, by a factor of approximately
0.95. Including qubit relaxation in the simulations decreases the efficiency further by
a factor of 0.69 and qubit dephasing by 0.78. All these effects combined then result
in an efficiency of 0.52.

Assuming that we can treat the transmission channel losses and the efficiency
reduction due to decoherence as independent and simply multiply the two factors
together to get the overall efficiency, we arrive at an estimate of 0.43. This number
is reasonably close to the highest measured efficiency of 0.37. This analysis shows
that in order to improve the performance of the photon reabsorption scheme, we
first need to improve the coherence properties of our transmon qubits. In addition,
Purcell decay of the transmon |f〉 state can be significantly suppressed by using a
suitable Purcell filter. The attenuation in the connecting line may be reduced by
using superconducting materials or 3d waveguides instead of coaxial cables, as well
as employing a circulator optimized for low insertion loss. Operation of the scheme
without a circulator is also in principle possible but will most likely involve additional
difficulties due to the presence of discrete modes supported by the line. To suppress
formation of these standing wave modes, the use of a circulator is preferable.

The remaining unexplained efficiency deficit of 0.37/0.43 ≈ 0.86 could be at-
tributed to one of several factors. For example, the fact that the resonators are not
exactly equal in their frequency and linewidth or that the line connecting the two
samples is not perfectly dispersionless.
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Chapter 6

On-chip microwave switch

Many circuit QED experiments and in particular the ones studying propagating quan-
tum fields could benefit from a possibility to route the microwave signals directly at
the base stage of the cryostat. A suitable switching element can have a wide range of
applications, ranging from fairly technical ones (saving resources by sharing a single
output line among several experiments) to ones where it enables otherwise unfeasible
types of experiments and devices (single-photon transistor).

Commercially available, mechanically operated microwave switches have been used
for routing of signals inside a cryostat (Ranzani et al., 2013) but these suffer from
slow switching times and significant heat dissipation which can disturb the operation
of the cryostat. The latter problem can be at least partially mitigated by custom
modifications of the switch, as described in app. K, while the former may be circum-
vented by using a different type of switch, such as a MEMS- or pin-diode-based one.
Nevertheless, neither of these options is particularly well suited for integration with
superconducting circuits on a single chip.

A simple single-pole single-throw (SPST) switch capable of routing a signal to-
wards an output line or reflecting it back to the input can be implemented for example
using a tunable symmetrically coupled resonator, as shown in Fig. 6.1(a,b). Alterna-
tively, other approaches can be used to build a device with a larger bandwidth, as
recently demonstrated by Naaman et al. (2016) or Chapman et al. (2016). A single-
pole double-throw (SPDT) switch which connects a single input to either of two
distinct outputs (or vice versa) as illustrated in Fig. 6.1(c) is a much more versatile
component in many practical applications. It can be realized for example by adding a
circulator to the SPST switch in a configuration shown in Fig. 6.1(d). However, this
particular version of the SPDT switch is non-reciprocal which may be undesirable in
some applications.

One could ask whether a reciprocal SPDT switch can also be realized using some
circuit with a single tunable element. It turns out that the answer is “no”, based on
rather general arguments about the properties of S-parameter matrices. A detailed
proof of this statement is given in app. I. The minimal number of independently
tunable elements required to build a reciprocal SPDT switch is two.
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Figure 6.1: (a) Diagram of a single-pole single-throw (SPST) switch, toggling between
transmission (dashed yellow line) and reflection (solid blue line). (b) Realization of
the SPST switch using a tunable transmission-line resonator. (c) Diagram of a single-
pole double-throw (SPDT) switch and (d) its non-reciprocal implementation using a
tunable resonator and a circulator. (e,f) Implementation of a reciprocal SPDT switch
with two tunable resonators and two π/2 hybrids (labeled here as A and B). (e) and
(f) illustrate its operation in the resonant and off-resonant state, respectively.

An example of a circuit realizing such a switch is shown in Fig. 6.1(e,f). It consists
of two tunable resonators placed between two π/2-hybrids in a Mach-Zehnder config-
uration. A π/2-hybrid is one of several types of RF circuits which act as microwave
analogues of optical beamsplitters. Its S-parameters are given by the matrix

S = − 1√
2


0 0 1 i
0 0 i 1
1 i 0 0
i 1 0 0

 (6.1)

A more detailed analysis of this circuit and its properties is presented in app. J.
The tunable resonators are realized as λ/2 resonators (see sec. 1.2) with an array of
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SQUID loops in its center. As discussed in sec. 1.3, a SQUID loop can be modeled
as an inductor whose inductance depends on the magnetic flux threading the loop.
By tuning the inductance of the array, we can vary the resonance frequency of the
resonator.

As shown in Fig. 6.1(e), signal entering port 1 of hybrid A is split equally into
ports 3 and 4. When the two resonators are both tuned to be resonant with the signal,
they are fully transmittive and the signal arrives at hybrid B where it recombines in
its port 3.

If the resonators are off-resonant with the signal, it gets reflected back into hybrid
A, as illustrated in Fig. 6.1(f). The form of the S-parameters given in eq. (6.1) implies
that the signal in the bottom arm of the device is phase-shifted by π/2 with respect
to the top arm. Assuming that both resonators are tuned to the same frequency,
the phase difference between the two components of the signal does not change upon
reflection from the resonators. The phase relations between the transmission coeffi-
cients of the hybrid then imply that the signal interferes destructively at port 1 and
constructively at port 2. Thus, the hybrid serves to isolate the reflected signal from
the input line.

In this way, by tuning both resonators in or out of resonance with the signal, we
can realize an SPDT switch where the input is port 1 of hybrid A and the outputs
are port 3 of hybrid B and port 2 of hybrid A. Since the device is reciprocal, the role
of the input and outputs can of course be reversed. The symmetry of the device also
implies that when the resonators are resonant with the signal and port 1 of hybrid A
is connected to port 3 of hybrid B, there is simultaneously a connection between port
2 of hybrid A and port 4 of hybrid B. Similarly, in the off-resonant state, the switch
connects together not only ports 1 and 2 of hybrid A but also ports 3 and 4 of hybrid
B.

In fact, the S-parameters of the device with respect to ports 1,2 of hybrid A and
ports 3,4 of hybrid B can be written in general as

S = i


0 r t 0
r 0 0 t
t 0 0 r
0 t r 0

 ,

where r and t are the reflection and transmission coefficient of the two resonators. Here
we again assume that the resonators are tuned to the same frequency and therefore
their S-parameters are identical. This form of the S-parameter matrix is that of
an unbalanced beamsplitter. The switch can therefore be operated not only in the
two discrete states where r and t are either zero or one, but also in an intermediate
regime where the resonators are partially transmittive. In this case, it acts as a
tunable beamsplitter.

6.1 Basic characterization of the switch

We have implemented the circuit outlined above on a 7× 4 mm niobium-on-sapphire
chip, as shown in Fig. 6.2(a). The sample was prepared using the standard fabrication
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Figure 6.2: (a) False-color microscope picture of the on-chip switch sample, with the
π/2 hybrids (H ) in red, the tunable resonators (R) in green and their SQUID arrays
(S ) in cyan. The ports of the device labeled as 1,2,3,4 correspond to ports 1,2 of
hybrid A and ports 3,4 of hybrid B in Fig. 6.1(e,f). (b) Enlarged view of one of the
arrays with five SQUID loops. The loop on the left is the on-chip flux line which can
be used for flux-biasing the array.

process employed in our lab (see sec. 2.2). The resonators and the hybrids were
patterned in niobium using optical lithography and dry etching. The SQUID arrays in
the centers of the resonators, consisting each ofN = 5 SQUID loops, were deposited by
electron beam lithography and evaporation of aluminium. The SQUIDs are designed
to be asymmetric with a ratio of Josephson energies of 2 : 3. This reduces the tuning
range of the resonators to suppress the sensitivity of the resonator frequencies to
external magnetic flux noise.

The sample was then glued and wire-bonded on a copper printed circuit board
which was placed into a copper sample-holder. Two coils, each with a diameter of
4 mm and 3000 windings of superconducting wire were mounted to the sampleholder,
positioned approximately underneath the two SQUID arrays.

The sample-holder was placed at the base temperature stage of the Vericold cryo-
stat and the sample connected to a measurement setup whose cryogenic part is out-
lined schematically in Fig. 6.3(a). For practical reasons, we decided to characterize
the device in a setting which is the reverse of that represented in Fig. 6.1(e,f). That
is, instead of routing a signal from a single input to one of two outputs, we measured
the signal transmission from two inputs to one output.

We numbered the ports of the switch such that port 1 was connected to the output
line and ports 2 and 3 to the input lines. Port 4 was not connected to any microwave
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line but instead was terminated with a cryogenic 50 Ω load. To enable measurements
of reflections from the device, we additionally connected port 1 to another input line
via a circulator.

Calibration of S-parameter measurements

In most circuit QED experiments, the overall scaling of the measured signal is irrele-
vant. For example, to find the resonance frequency of a resonator or a qubit, we are
only interested in the position of the feature of interest in the frequency spectrum and
not in its amplitude. However, to characterize the performance of the switch, we seek
to determine its S-parameters in absolute terms. Therefore, somewhat unusually for
typical circuit QED setups, we need to calibrate the transmission of the input and
output lines. Since these are temperature-dependent, the calibration measurement
needs to be done while the cryostat is cold.

Full calibration of an S-parameter measurement of a multi-port device, for example
using the thru-reflect-line (TRL) technique (Pozar, 2011), requires many individual
measurements in which different standards are connected to the setup. This makes
such a calibration extremely time consuming in a cryogenic setting since the cryostat
needs to be warmed up and opened every time the standard is to be exchanged.
This obstacle could be circumvented using a setup in which the calibration standards
can be exchanged remotely, for example by means of a microwave switch. Such an
approach was demonstrated for example by Ranzani et al. (2013).

Since this was not an option in our measurements setup, we settled for a simpler
calibration scheme which is not completely general but suffices under the assumption
that the input and output lines are well impedance-matched. In this case, the setup
can be fully characterized by the attenuation of the individual lines. For our setup
with only a single output line, it is enough to determine the total attenuation of the
output line in combination with each of the inputs.

To this end, we performed three calibration measurements which are schematically
shown in Fig. 6.3(b,c,d). These were done in three separate cool-downs of the cryostat
but in order to save time, the system was only pre-cooled to approximately 10 K with
the pulse tube cooler and the 3He/4He mixture was not condensed into the dilution
unit. This approach is justified by a separate measurement where the transmissions
through the input and output lines at 10 K and at the base temperature were found to
be nearly identical. The first two calibration measurements illustrated in Fig. 6.3(b,c)
were done with input lines 2 and 3 connected directly to the output line via a short
coaxial cable. They served as a reference for full transmission through the device-
under-test. The third measurement represented in Fig. 6.3(d) was done with the end
of input line 1 / output line left open to give us a normalization for full reflection from
the device under test. By dividing the signal measured with the switch connected to
the setup by these calibration data, we could then obtain the normalized S-parameters
S11, S12 and S13.

To estimate impedance mismatches in the setup, we performed one additional
measurement as shown in Fig. 6.3(e). Here, input line 1 was terminated with a 50 Ω
load. In the ideal case, the signal from input line 1 would be perfectly absorbed by
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Figure 6.3: (a) Diagram of the setup used in characterization measurements of the
on-chip switch in the Vericold cryostat. (b,c,d) Illustration of the calibration mea-
surements used to normalize the S-parameters of the switch: Through measurements
with the output line connected by a short cable directly to (b) input line 2 and (c)
input line 3. (d) Full reflection measurement with the end of input line 1 left open.
(e) Spurious reflection measurement with the end of line 1 terminated with a 50 Ω
load.
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the load. In reality, imperfections in impedance matching in the line between the
bottom-most circulator and the sample lead to spurious reflections into the output
line which in our setup varied between −20 dB and −10 dB in power. While this
level of reflections is significant, it does not seem to be atypical – similar values were
reported in our lab by van Loo (2014).

Tuning of the resonators

To characterize the sample, we started by measuring the transmission coefficient S12

as a function of the signal frequency and the voltage applied to one of the flux bias
coils. If the resonators are off-resonant with the signal, we expect high transmission
between ports 1 and 2. This transmission will decrease if the signal frequency matches
either of the two resonators. We therefore observe the resonators as dips in the S-
parameter S12, as shown in Fig. 6.4(a).

We see that the frequency of one of the resonances is more sensitive to the coil
voltage than the other. This is due to the asymmetric coupling of the two coils to the
SQUID arrays. Each coil couples significantly more to the array which is physically
closer to it.

The dependence of the resonance frequency on the coil voltage is approximately
periodic, as expected due to the periodicity of the SQUID array inductance as a
function of applied magnetic flux. The deviation from an exactly periodic dependence,
which we clearly observe in Fig. 6.4(a), is the effect of non-uniformity of the magnetic
field across the SQUID array. The following model, represented in Fig. 6.4(a) by the
dashed line, matches the measured data very well:

The inductance L of an asymmetric SQUID loop in its linear regime can be tuned
between its minimum and maximum value Lmin and Lmax. Its dependence on the
applied magnetic flux Φ is given by

LS(φ) =
LminLmax√

L2
max cos2 φ

2 + L2
min sin2 φ

2

, (6.2)

where φ = 2πΦ/Φ0 and Φ0 is the magnetic flux quantum. We assume that the
Josephson energies of the junctions comprising the five individual SQUID loops in
the array are identical but we allow for the possibility that the fluxes Φ1, . . . , Φ5

threading the loops are unequal. However, we will constrain them to satisfy Φ1 = Φ5

and Φ2 = Φ4 due to symmetry of the sample. We will further take the fluxes to be
linear functions of the applied coil voltage V of the form Φ1 = Φ5 = Φ0(V − V0)/V1,
Φ2 = Φ4 = Φ0(V − V0)/V2 and Φ3 = Φ0(V − V0)/V3. The total inductance of the
SQUID array is then

L(V ) =2LS(2π(V − V0)/V1) (6.3)

+ 2LS(2π(V − V0)/V2)

+ LS(2π(V − V0)/V3).

To calculate the dependence of the resonator frequency on the SQUID array induc-
tance, we consider the circuit model of the system shown in Fig. 6.5. The symmetry
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Figure 6.4: (a) Measured S-parameter |S12| as a function of the signal frequency and
the voltage applied to one of the flux bias coils. Measured transmittances (b) |S12|2
and (c) |S13|2 as a function of the voltages applied to the two coils. The optimal
operating points of the switch found from these data are indicated by the yellow
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l/2

L/2Cc/2

Z0

Figure 6.5: Schematic diagram of the tunable resonator, with the SQUID array induc-
tance L and the coupling capacitance Cc between the resonator and its environment
modeled as a lumped impedance Z0 = 50 Ω. For calculation of the fundamental mode
frequency, the center point is connected to ground, as indicated in the dashed box.
The dotted box shows the reduced circuit whose resonance frequency is to be found.
The node chosen for the admittance calculation is marked by ×.

of the resonator with respect to its center implies that the fundamental mode has a
voltage node at the center point. Therefore, for the purposes of further circuit anal-
ysis, we can connect this point to ground and analyze only one of the two halves of
the resulting circuit, as illustrated in the figure.

As derived in sec. B.1, the resonance frequency can be determined by expressing
the admittance of the circuit as a function of frequency and finding its zero. The
node at which the admittance is taken can be chosen arbitrarily as long as the mode
of interest has a non-zero voltage amplitude there. Here we choose the node at the
end of the resonator indicated in Fig. 6.5 by ×. The admittance is found to be

Y =
i

Z0

(
xcδ

ixcδ + 1
− 1− xLδ tan δ

xLδ + tan δ

)
,

where δ = ωl/2v is the phase accumulated by the signal upon propagation over a
distance l/2, half the length of the resonator, v is the propagation velocity in the
transmission line and xc = 2vCcZ0/l, xL = vL/Z0l are dimensionless parameters
quantifying the coupling capacitance Cc and the SQUID array inductance L. The
equation Y = 0 takes a particularly simple form (Eichler & Wallraff, 2014) in the
limit Cc → 0:

δ tan δ =
1

xL
.

Taking this limit is justified in our case since the coupling, characterized by the
linewidth of the resonator, is small in comparison with the resonance frequency. If
the inductance L vanishes, we get δ = π/2 and the circuit resonates at the bare
resonator frequency ωr0 = πv/l. We can eliminate the resonator parameters v and
l from the expression for δ by writing it as δ = πω/2ωr0. The relation between the
resonance frequency ωr and the SQUID array inductance L is then

tan
πωr
2ωr0

=
2Z0

ωrL
. (6.4)
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To find the bare resonance frequency ωr0, we measured a sample with an identi-
cal resonator except with the SQUID array replaced by a short niobium wire whose
inductance we neglect. A micrograph of this test sample is presented in Fig. 6.6. Its
resonance frequency and linewidth determined in a dipstick measurement at 4.2 K us-
ing a vector network analyzer (VNA) were ωr0/2π = 8.3 GHz and κ0/2π = 305 MHz.
Eq. (6.2) together with eq. (6.3) and eq. (6.4) then allow us to calculate the reso-
nance frequency as a function of the coil voltage V . The parameters of this models
are the minimum and maximum inductance Lmin and Lmax, the coupling parame-
ters V1, V2, V3 and the voltage offset V0. A fit of the model to the data plotted in
Fig. 6.4(a) provides a very good match, as shown by the dashed line in the plot. The
optimal fit parameters are V0 = 0.984 V, V1 = 3.192 V, V2 = 3.686 V, V3 = 3.686 V,
Lmin = 0.064 nH and Lmax = 0.354 nH. These inductances correspond to Josephson
energies of 2.55 THz and 0.46 THz, respectively.

Another dipstick measurement in liquid helium was used to determine the optimal
operating frequency of the π/2 hybrid. Here, the S-parameters of a sample containing
a single hybrid, shown in Fig. 6.6(c), were measured with a VNA and found to best
match the ideal beamsplitter values at a frequency of approximately 7.2 GHz. This
operating frequency differs by about 3% from the designed value of 7 GHz which may
be due to a mismatch between the assumed and the actual effective dielectric constant
of the transmission lines or due to unaccounted-for boundary effects at the junctions
between the lines.

With the signal frequency fixed to the hybrids’ operation point of 7.2 GHz, we
then measured the S-parameters S12 and S13 as a function of the voltages applied
to the two coils. The corresponding transmittances |S12|2 and |S13|2 are plotted in
Fig. 6.4(b,c). We see that the transmission between ports 1 and 2 approaches unity
and between ports 1 and 3 zero unless either of the two resonators is tuned close to
the signal frequency. The resonance condition occurs at approximately −0.2 V for
the resonator which is strongly coupled to coil 1 and at −0.5 V for the resonator
coupled to coil 2. When both resonators are resonant with the signal, |S12|2 reaches
its minimum while |S13|2 is maximal.

In the ideal case, the switch should reach |S12|2 = 0, |S13|2 = 1 in the resonant
state and |S12|2 = 1, |S13|2 = 0 in the off-resonant state. We defined the ratio
|S12|2/|S13|2 as a figure of merit to quantify how well the real device approximates
these ideal values. We then minimized and maximized this quantity to find the set-
tings for the resonant and off-resonant state of the switch, respectively. The operating
points found in this way are marked in Fig. 6.4(b,c) by the yellow and the blue circle.
In the resonant state, we find |S12|2 = 0.005, |S13|2 = 0.93 and in the off-resonant
state |S12|2 = 1.03, |S13|2 = 0.001. The clearly unphysical value of a transmittance
higher than one can be attributed to imperfect calibration data, for example due to
long-term drifts in the properties of the measurement lines. The ability of the switch
to block the unwanted transmission channel can be characterized by the on/off ra-
tios between the transmittances in the switch states. From the values stated above,
we calculate these to be 23.1 dB between ports 1 and 2 and 29.7 dB between ports
1 and 3.
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Figure 6.6: (a) False-color microscope picture of the test sample without SQUID
arrays used to characterize the bare resonator parameters in a dipstick measurements
at 4.2 K. The chip contains two resonators (R) shown in green. Its input and output
lines are indicated in red. (b) Enlarged view of one of the center areas where the
SQUID array is replaced by a strip of niobium, directly connecting the two halves
of the resonator. (c) False-color microscope picture of the test sample containing
a π/2 hybrid, used to characterize its S-parameters and find its optimal operating
frequency.
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Frequency spectrum

After finding the two operating points of the switch, we characterized its bandwidth
by measuring the transmittances |S12|2 and |S13|2 as a function of frequency. The
obtained data, plotted in Fig. 6.7(a,b), show that in the off-resonant state (blue), the
transmittivities are relatively insensitive to frequency changes. This is to be expected
because the signal is detuned from the resonance frequencies of the two resonators by
more than 1 GHz, that is, by nearly ten times their linewidth. On the other hand,
in the resonant state (yellow), the bandwidth of the device is determined by the
linewidth of the tunable resonators. The data closely match the expected Lorentzian
frequency response given by |S13|2 = 1− |S12|2 = 1/(1 + 4(f − f0)2/∆f2). The least-
squares fit indicated in Fig. 6.7(a,b) by the dashed line, yields the center frequency
f0 = 7.20 GHz and the bandwidth ∆f = κ/2π = 149 MHz.

The values of |S12|2 above unity which can be seen in Fig. 6.7(a) are obviously
unphysical for a passive device such as ours. We attribute these to imperfections of
the calibration procedure. Specifically, we have observed that the total transmittance
of the input and output lines can vary by up to 10% between subsequent cool-downs
of the cryostat. It is therefore reasonable to implicitly assume a relative uncertainty
of this order of magnitude for all stated transmittances and reflectances.

To characterize the impedance-matching of the switch, we measured the signal re-
flected from port 1, obtaining the data plotted in Fig. 6.7(c). Within the bandwidth
of the switch, the reflections are below 10% and they do not exceed 20% over the
measured frequency range. For comparison, the spurious reflections of the measure-
ment setup itself, as characterized by the calibration measurement outlined above,
are shown by the green curve in Fig. 6.7(c). The reflections from the switch seem to
be of the same order of magnitude as those of the setup and they are nearly identical
in both states of the switch. This suggests that they may originate from impedance
mismatches between the PCB connectors and the hybrids on the chip.

It can seem counterintuitive that the reflectivity measured with the device con-
nected is lower than in the calibration measurement. However, we need to keep in
mind that the reflections in the measurement setup may interfere destructively with
those in the sample, leading to total reflections smaller than if the sample is replaced
by a 50 Ω load.

Compression point

As the switch relies on Josephson junctions for its operation, we should expect it to
become non-linear at sufficiently high levels of power. The non-linearity of the device
can be estimated in a simplified model where the resonators are approximated as
Duffing oscillators with the Hamiltonian

Ĥ/~ = ωrâ
†â +

1

2
Kâ†â†ââ, (6.5)

where the Kerr non-linearity K is the lowest-order anharmonic correction to the
resonator energy levels due to the non-linearity of the Josephson junctions.
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Figure 6.7: Frequency dependence of the transmittances (a) |S12|2, (b) |S13|2 and
(c) the reflectance |S11|2 for the resonant (yellow points) and the off-resonant (blue
points) state of the switch. The FWHM bandwidth of the device is indicated by the
gray bar. The dashed lines in (a,b) represent a Lorentzian fit while the green solid
line in (c) is the spurious reflectance of the measurement lines (see Fig. 6.3(e)). (d)
Power dependence of the transmittance |S13|2, showing the onset of non-linearity.
The indicated 1 dBm compression point is found at an input power of −87 dBm.

We will study the case when the resonators are driven resonantly. In a rotating
frame at the signal frequency ωs = ωr, the input-output relations (Walls & Milburn,
2008) for the resonator probed in transmission are

d

dt
â = −iKâ†ââ +

√
κ

2
âin −

κ

2
â,

b̂out =

√
κ

2
â.

In the classical approximation, we replace the operators â, b̂in and b̂out by c-numbers
α and βin and βout and get the steady state equations

α =

√
κ
2αin

iK|α|2 + κ
2

= βout

√
2

κ
.
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Its solution can be found to lowest order in K as

βout

αin
=

1
4iK|αin|2

κ2 + 1
.

Therefore, the power transmission is suppressed by 1 dB, that is, a factor of ε = 101/10

when 16K2|αin|4/κ4 + 1 = ε. The power Pcp = 2~ωr|αin|2 entering the switch at its
1 dB compression point is then given by

Pcp =
~κ2ωr

√
ε− 1

2|K| . (6.6)

To evaluate this quantity, we need to find the Kerr non-linearity K. We first notice
that it is by definition (see eq. (6.5)) equal to d2En/dn

2, where En are the energy

levels of the non-linear oscillator. To zeroth order, the Hamiltonian Ĥ0 of the system
is that of a linear system where the SQUID array was linearized and represented
by its equivalent inductance L. The non-linear correction to the linear system is
comprised of the fourth and higher order terms in the expansion of the array’s energy
−NEJ cos(δ̂/N). Here EJ is the Josephson energy of each individual SQUID loop and

δ̂ is the operator of the phase drop across the array. To lowest order, the correction
V̂ is given by

V̂ = − 1

24N2L

(
Φ0

2π

)2

δ̂4,

where Φ0 is the magnetic flux quantum.
We can express the phase drop δ̂ in terms of the ladder operators â and â† as

δ̂ = δvac(â + â†). The vacuum amplitude of the phase drop δvac can be calculated by
considering the fraction η of the circuit’s energy stored in the SQUID array. On the
one hand, this can be expressed as the ratio of the array’s vacuum energy 〈0|Φ̂2|0〉/2L,

where Φ̂ = Φ0δ̂/2π, and the total vacuum energy of the circuit ~ωr/2. From here, we
can write δvac as 2π

√
~ωrLη/Φ0. On the other hand, a classical circuit analysis of the

system gives

η =
1

1 + (y + 1/y) arctan y
,

where y = 2Z0/ωrL. According to eq. (6.4), we can calculate this parameter as

y = tan(πωr/2ωr0). The Kerr non-linearity, expressed as K = ~−1d2〈n|V̂ |n〉/dn2,
can then be written in the form

K = − δvac4

2~N2L

(
Φ0

2π

)2

= −4e2Z0ωr
~N2

1

y(1 + (y + 1/y) arctan y)2
, (6.7)

which after substitution into eq. (6.6) yields the following expression for the input
power at the 1 dB compression point:

Pcp =
~2κ2N2

√
ε− 1

8Z0e2
y(1 + (y + 1/y) arctan y)2. (6.8)
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This equation shows us how the different parameters of the system influence its
non-linearity. Assuming that the bare resonator frequency ωr0 and the operating
frequency ωr are fixed, the 1 dB compression point scales as Pcp ∝ κ2N2. That is, we
can improve the linearity of the device by increasing its bandwidth κ or the number
of SQUID loops in the array. The upper limit on κ is determined by the tunability of
the resonators since a good on/off ratio can be achieved only if the resonators can be
tuned by significantly more than κ. The number of SQUID loops is ultimately limited
by the used fabrication process and by the homogeneity of the applied magnetic field
which is required over the extent of the array. In the tested sample, we chose N = 5
as a reasonable compromise between these requirements.

For the parameters of our device, which are y = 4.73, κ/2π = 149 MHz and N = 5,
eq. (6.8) gives the value Pcp = 3.42 pW = −84.7 dBm. This power corresponds to a
photon flux of approximately 7× 105 per microsecond.

The measured dependence of the transmittivity |S13|2 on the input power is plotted
in Fig. 6.7(d). As expected, it is constant at low powers but starts to decrease
when the power becomes sufficiently high. The measured power level at which the
transmittivity drops by 1 dB with respect to the low-power limit is −86.9 dBm. This
is close to the theoretically predicted value of −84.7 dBm derived above. We attribute
the difference of approximately 2 dB to the reduced losses in the microwave input line
at low temperatures. The transmittivity of the input line, which is used to relate the
output power of the microwave generator to the power arriving at the sample, was
measured at room temperature. It is reasonable to assume that when the cryostat is
cooled down, this transmittivity increases. This means that the values of power on
the horizontal axis of Fig. 6.7(d) are in fact slightly underestimated.

The fact that the obtained 1 dB compression point is rather high when compared
with typical signal powers in circuit QED experiment means that our switch can be
treated as a linear device in most realistic settings.

Switching speed

After the continuous-tone characterization measurements described above, we inves-
tigated the switching speed of the device. To this end, we connected the measurement
setup to a room-temperature data acquisition system with a higher sampling rate of
1 GS/s. This is based on the Virtex 6 field-programmable gate array (FPGA) and
provides a measurement bandwidth of approximately 500 MHz. Here, the digitized
waveforms were averaged and their mean was recorded without any further processing
by the FPGA. All subsequent data analysis was then done in software. After digital
down-conversion of the signal from its intermediate frequency of 250 MHz to dc, we
convolved it with a filter which has a sinc shape in time domain. This corresponds
to a boxcar function in the frequency domain, centered around zero with a width of
500 MHz. Such a filter therefore removes all frequency components above 250 MHz. In
addition, to remove artifacts of the digital processing attributed to cross-talk of digi-
tal signals in the FPGA, we explicitly set frequency components at 250 and 125 MHz
to zero.

We flux-biased the sample with the dc coils to set the switch to its resonant
state. Using a Tektronix 5014 arbitrary waveform generator (AWG) with an output
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Figure 6.8: Demonstration of the device’s switching speed. Recorded waveforms of
(a) the rising and (b) the falling edge of the signal transmitted from port 2 to port
1 and (c,d) from port 3 to port 1. The colors of the points represent the two switch
states. Solid lines are fits to a tanh step used to estimate the rise/fall times. Dashed
lines represent the 10% and 90% signal level used to extract the indicated switching
times.

bandwidth of 250 MHz, we applied nominally square pulses to the flux lines of the
sample. We then found the combination of amplitudes of these pulses which brought
the switch closest to the ideal off-resonant state. The obtained optimal amplitudes
were approximately −370 mV for both lines at the output of the AWG. Based on
room-temperature measurements of the flux line’s S-parameters, this corresponds to
a current of approximately 5 mA in the on-chip flux line loop.

To observe the switching waveforms, we applied a continuous microwave tone at
7.2 GHz to either of the two input lines 2 and 3 and recorded the output signal while
the state of the switch was being toggled by the flux pulse. The obtained data are
plotted in Fig. 6.8. We fitted a tanh step to the waveform to extract the 10% to
90% rise times of 5.3 ns for transmission from port 2 and 7.8 ns from port 3. The
corresponding fall times are 7.5 ns and 6.1 ns.

The detection chain, the AWG and the coaxial section of the flux line have band-
widths of approximately 500 MHz, 250 MHz and 950 MHz, respectively. We there-
fore expect that the switch resonators’ narrower bandwidth of 150 MHz should be
the main limit on the speed of the switching process. The transmittivity of a con-
tinuously driven resonator with a full-width-half-maximum bandwidth κ/2π whose
frequency suddenly changes from far off-resonant to resonant is expected to be given
by (1−e−κt/2)2. The time-scale on which this function reaches its new steady state is
characterized by a 10% to 90% rise time of approximately 5/κ. When the resonator
is tuned from resonance to a far off-resonant frequency, the transmittivity falls off
as e−κt and the corresponding 90% to 10% fall time is roughly 2/κ. In our case
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where κ/2π = 149 MHz, this simple theory predicts that the switching times should
be approximately 5.5 ns from the off-resonant to the resonant state and 2.3 ns for the
opposite transition. The measured values are 7 − 8 ns and 5 − 6 ns. We attribute
the excess of 2− 3 ns to the bandwidth limit of the flux line, the detection chain and
the AWG. The on-chip section of the fluxline, which could not be characterized sep-
arately from the coaxial cabling, may be a potential source of additional bandwidth
limitations. This could be investigated in future generations of the switch by means
of finite element simulations.

The demonstrated nanosecond switching speed of the device means that it can
become a useful tool for applications where on-chip routing of signals needs to be
controlled by real-time feedback on time-scales significantly shorter than the typical
circuit QED coherence times.

6.2 Single photon source

To demonstrate the operation of the switch in the quantum regime and its integration
with other quantum systems, we prepared a proof-of-principle sample which combines
the switch with a single photon source on one chip. The finished device is presented in
Fig. 6.9. The switch is completely analogous to the first generation device described
above, except for the arrangement of its elements on the chip and the design of the
π/2-hybrid which we made more compact to facilitate easier scaling in future devices.

The single photon source is of the type presented by Peng et al. (2015). It is
based on a transmon qubit, shown in Fig. 6.9(b), directly capacitively coupled to
the input line of the switch. If the operation of the switch is ideal, its input line
presents a 50 Ω load to the qubit. Effectively, it can be regarded as a Markovian
dissipative environment which induces energy relaxation of the qubit, as described by
the standard master equation (Walls & Milburn, 2008). The concept of dissipation in
electrical circuits is analyzed in more detail in app. B and a closer study of the single
photon source circuit is presented in sec. A.3.

After the qubit is prepared in a superposition state α|g〉+ β|e〉 of its ground and
first excited state, it spontaneously relaxes by emitting a photon into the input line of
the switch. The state of the emitted field is given by the superposition α|0〉+β|1〉 of the
vacuum state and the single-photon Fock state. Its temporal mode is described by an
exponential envelope which in the tested device has a time constant of approximately
90 ns.

The qubit is initialized in the superposition state by applying a microwave pulse at
its transition frequency through a drive line which can be seen at the top of Fig. 6.9(b)
in blue. The mutual capacitance of the qubit to the drive line is designed to be smaller
than to the switch input line by approximately a factor of 7. Due to this asymmetry,
the probability of the photon being emitted into the drive line is expected to be only
about 2.3%. This value is derived from the relaxation rates of the qubit into the two
lines, calculated in sec. A.3. As also discussed in sec. A.3, we additionally estimated
the direct coupling between the drive line and the switch input line. This coupling,
if strong enough, can lead to a significant fraction of the qubit initialization pulse
leaking directly into the switch input line, thus compromising the operation of the
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Figure 6.9: (a) False-color microscope picture of the on-chip switch integrated with the
single photon source. The π/2 hybrids (H ) are shown in red, the tunable resonators
(R) in green, their SQUID arrays (S ) in cyan and the single photon source (SPS ) in
blue. (b) Enlarged view of the transmon qubit acting as the single photon source. At
the top in blue is shown the weakly coupled qubit drive line and at the bottom in red
the strongly coupled input line of the switch.

device as a single photon source. For the device tested here, the calculation suggests
that the leakage should be suppressed by more than 70 dBm.

In reality, this level of suppression would be difficult to reach due to other potential
transmission channels between the two lines, such as spurious modes present in the
chip or the sample-holder. We characterized the drive signal leakage experimentally
in a test sample which contains only the single photon source, with its drive line and
output line connected directly to the measurement setup. We applied a continuous
signal to the drive line and recorded the power spectral density of the signal detected
in the output line. As the drive strength is low in comparison with the anharmonicity
of the transmon, it can be treated as a two-level system and the power spectral density
therefore takes the form of the usual Mollow triplets (Walls & Milburn, 2008).

We performed this measurement for different values of the drive power, obtaining
the power spectral densities plotted in Fig. 6.10(a). The standard Mollow triplets
with parameters obtained using a least-squares fit match the observed data very well,
as seen in the figure. We used the fit to scale the measurements from the rather
arbitrary units which depend on the details of the detection chain to units of photons
per microsecond per megahertz at the qubit output line. Moreover, it allowed us to
extract the relation between the microwave generator output power and the Rabi rate
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Figure 6.10: (a) Measured power spectral densities for different drive powers, with
the coherent delta peak at zero frequency omitted. The bottom-most set of data
corresponds to a drive power of approximately −36 dBm at the output of the mi-
crowave generator. The other datasets are obtained for signal amplitudes which are
integer multiples (2×, 3×, . . .) of the amplitude in the first measurement. The black
curves represent a fit of the standard Mollow triplet expression (Walls & Milburn,
2008) to all the displayed datasets simultaneously. (b) The coherent component of
the detected power as a function of the Rabi rate extracted from the Mollow triplet
fit in (a). The yellow line shows the expected theoretical dependence with parame-
ters extracted from the fit in (a), in the absence of any direct coupling from drive to
output. The blue line is a dependence which contains in addition a cross-talk signal
whose amplitude is proportional to the Rabi rate. The proportionality constant is
obtained as a fit parameter.

Ω experienced by the qubit. We could then plot the power of the coherent signal in
the output line as a function of the Rabi rate, as shown in Fig. 6.10(b).

For low drive powers, the measured data closely follow the theoretical dependence
expected for resonance fluorescence, represented by the yellow line. At higher powers,
they start to deviate. As indicated by the good match between the data points and the
blue curve, this deviation can be explained by an additional term in the output signal
with an amplitude proportional to the Rabi rate Ω. The proportionality constant is
obtained by least-squares fitting and is equal to

Pleakage

(Ω/(2π))2
= 3.8 · 10−5 photons · µs−1

MHz2 .

From this value, we can estimate that if we wish to excite the qubit by a Gaussian
pulse with a standard deviation σ, the total number of photons transmitted into the
output line due to the cross-talk is approximately 0.003 ns/σ. For typical pulses with
σ on the order of several nanoseconds, this number is well below 1% and therefore
negligible for most practical purposes.
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6.3 Routing of single photons

In measurements with the sample combining the switch with the single-photon source,
we used the setup outlined in Fig. 6.11, installed in the Triton cryostat. In contrast
with the switch characterization measurements discussed above, here we use two input
lines and two output lines equipped with Josephson parametric amplifiers (JPA).

One of the input lines is used as a qubit drive. Therefore, its signal is not trans-
mitted unless either the qubit is resonant with the signal or if the applied power is
sufficiently high to result in a significant cross-talk. For this reason, the input line
connected to port 4 of the switch is useful in the initial characterization measure-
ments of the resonator frequencies. Using this line, we could observe the resonances
in transmission between ports 4 and 3 in the same way as in Fig. 6.4(a), without
needing to tune the qubit into resonance with the signal. The qubit resonance could
then be found in transmission between ports 1 and 2, provided that at least one of
the resonators is detuned from the qubit. By measuring the resonance frequencies of
the qubit and the two resonators as a function of the voltages applied to the three
flux bias coils, we then obtained the coil matrix of the system (see sec. 2.4) which
allowed us to tune the three elements independently of each other.

To show routing of single photons by the switch, we prepared the single-photon
Fock state |1〉 by initializing the qubit in its excited state |e〉 and waiting until it
relaxes. We then measured the power at the two output ports of the switch in both the
resonant and the off-resonant state. In these measurements, we did not use the (JPA)
in order to keep the measurement bandwidth as wide as possible. After subtracting
the noise background obtained in an analogous measurement with the photon source
off, we got the waveforms of the photon power shown in Fig. 6.12(a,b). The plotted
data clearly show that we can route the photon to either of the two outputs of the
switch while the cross-talk to the other output is strongly suppressed.

As the next step, we verified the non-classical nature of the switched signal by
measuring the moments of the field. In this process, described in more detail in
sec. 2.6, the digitized downconverted signal is first filtered with a kernel chosen to
match the waveform of the photon state. After this mode matching step, the resulting
complex voltage v is recorded in a histogram. When sufficiently many single-shot
measurements have been recorded, the histogram is used to calculate moments of the
voltage such as 〈(v∗)mvn〉. The voltage can be seen as the result of a measurement

of an observable described by an operator proportional to â + ĥ†, where â is the
annihilation operator acting on the photon mode and ĥ† is the creation operator of a
noise mode. By systematic subtraction of the noise terms involving ĥ and ĥ† which
are obtained in measurements with the signal source off, one can extract moments of
the photon mode. For example, the moments 〈â〉 and 〈â†â〉 can be expressed as

λ〈â〉 = 〈v〉 − 〈v〉0,
λ2〈â†â〉 = 〈v∗v〉 − 〈v∗v〉0 − 2Re(〈v〉 − 〈v〉0)〈v∗〉0,
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Figure 6.11: Diagram of the setup used in characterization measurements of the on-
chip switch with the single photon source in the Triton cryostat.
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where λ is the proportionality constant between â + ĥ† and v and the subscript 0
denotes the expectation values obtained from the reference measurements with the
signal off.

To be able to extract the moments of â, one first needs to determine the scaling
factor λ, which is typically done by measuring a reference state for which some of the
moments are assumed to be known. We did this by measuring the moments for a
series of different photon states, prepared by exciting the qubit with pulses of varying
amplitude A. A resonant preparation pulse rotates the Bloch vector describing the
qubit state by an angle θ ∝ A around an axis lying in the equatorial plane of the Bloch
sphere. The prepared qubit state is cos(θ/2)|g〉+eiφ sin(θ/2)|e〉 which, after the qubit
spontaneously relaxes, results in the photon state |ψ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉.
The corresponding expectation values 〈â〉 and 〈â†â〉 are

〈â〉 =
1

2
eiφ sin θ,

〈â†â〉 = sin2 θ

2
.

We further take into account that dephasing of the qubit can lead to a reduction of
the coherent signal 〈â〉 by some factor k < 1. We denote the proportionality factor
between the rotation angle θ and the applied pulse amplitude by c = θ/A. The
expected relation between the moments of v and the pulse amplitude A is therefore

|〈v〉 − 〈v〉0| =
1

2
kλ| sin cA|,

〈v∗v〉 − 〈v∗v〉0 − 2Re (〈v〉 − 〈v〉0)〈v∗〉0 = λ2 sin2 cA

2
.

We fitted these dependences to the measured moments to obtain the unknown pa-
rameters λ, k and c. We then verified our measurement and analysis by plotting the
extracted moments of a as a function of the rotation angle θ and comparing them with
the theory. The plot in Fig. 6.12(c) shows a good match of the extracted moments
with theory, indicating that our single photon source as well as the analysis procedure
work as expected.

Next, we specifically analyzed the Fock state |1〉 and the superposition state
(|0〉+ |1〉)/

√
2 (which we denote for the sake of brevity by |0 + 1〉) whose relevant

moments are shown in Fig. 6.12(d). The first and second order moments agree well
with the predicted values 〈â†â〉 = 1, |〈â〉| = 0 for |1〉 and 〈â†â〉 = 1/2, |〈â〉| = 1/2
for |0 + 1〉. As expected for a single-photon field, in contrast to a coherent or ther-
mal state, the higher order moments such as 〈ââ〉 or 〈â†â†ââ〉 are close to zero. The
non-classical nature of the switched signal is corroborated by the negative values of
the Wigner function shown in Fig. 6.12(e), which is extracted from the measured
moments by means of a maximum likelihood method (Eichler et al., 2012a).

The slightly reduced value of |〈â〉| ≈ 0.46 for |0 + 1〉 can be explained as a result
of dephasing of the photon-source qubit. The qubit’s pure dephasing rate γφ can
be estimated from the decay rate Γ2 of the coherent signal 〈v〉 for the superposition
state |0 + 1〉. In the absence of pure dephasing, this rate is expected to be half of the
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Figure 6.12: The single photon power waveforms measured at the output ports (a) 2
and (b) 3 in the resonant (yellow points) and off-resonant (blue points) state of the
switch. (c) Calibration measurements of the moments |〈a〉|, 〈a†a〉 and 〈a†a†aa〉 as a
function of the rotation angle in the qubit initialization step. (d) Measured moments
of a single photon state |1〉 (red) and a superposition state (|0〉 + |1〉)/

√
2 (blue)

transmitted through the switch. (e) Wigner functions corresponding to the moments
from (d), obtained from them using a maximum likelihood method.
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decay rate Γ1 of the signal power 〈v∗v〉. The excess Γ2 − Γ1/2 then determines the
pure dephasing γφ. Our measurements result in the value γφ = 6.1µs−1. A simple
calculation then shows that the moment |〈â〉| of a field emitted by a qubit prepared
in the equal superposition state |g + e〉 is given by

|〈â〉| = 1

2

√
2γf + Γ

2γf + Γ + γφ
,

where Γ is the relaxation rate of the qubit, γφ is the pure dephasing rate and γf is
the decay constant of the used mode-matched filter. In our case with Γ = 11.5µs−1

and γf = 3.1µs−1, this formula leads to a prediction of |〈â〉| ≈ 0.43.
Of particular interest is the normalized zero-time-delay intensity correlation func-

tion g(2) ≡ 〈â†â†ââ〉/〈â†â〉2. Its value of −0.03± 0.01 for both |1〉 and |0 + 1〉 is very
close to zero, showing nearly ideal anti-bunching of the switched microwave field. The
fact that the value extracted from the experiments is slightly negative is most likely
an artifact of the data analysis procedure which we ascribe to a non-vanishing thermal
field in the off-measurement used as a reference.

The non-classical nature of the switched signal is corroborated by the negative
values of the Wigner function shown in Fig. 6.12(e), which we extracted from the
measured moments by means of a maximum likelihood method (Eichler et al., 2012a).
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Chapter 7

Outlook

Most of the experiments described above offer interesting possibilities of follow-up
work to further expand the toolbox for generating and manipulating non-classical
photonic states. Some of these follow-ups were already described in the sections
dealing with the individual experiments, such as for example the protocol to encode
quantum information into a time-bin superposition of single photons, outlined at the
end of sec. 4.1. A few additional ones are discussed in more detail below.

The photon reabsorption process from sec. 5 provides one method for transferring
the state of an itinerant photon to a stationary qubit. An alternative way can be
realized as described by Reiserer et al. (2013). In this scheme, the qubit-resonator
system is set up such that the interaction between the resonator and the qubit modi-
fies the resonator’s reflection coefficient r depending on the state of the qubit. If the
phase of r differs by π between the two qubit states, this implies that the state of the
system evolves upon reflection of a single photon according to |g〉 ⊗ |1〉 → |g〉 ⊗ |1〉
and |e〉 ⊗ |1〉 → −|e〉 ⊗ |1〉. Consequently, if the qubit is prepared in one of the super-
position states |±〉 ≡ (|g〉 ± |e〉)/

√
2, the system evolves as |+〉 ⊗ |1〉 → |−〉 ⊗ |1〉. In

the absence of a photon, the state of the qubit remains unchanged. Using an appro-
priate projective measurement, the two mutually orthogonal states |+〉 and |−〉 can
be distinguished from each other, determining whether a single photon was reflected
or not.

This non-demolition photon detection scheme, originally demonstrated with op-
tical photons, could be implemented with superconducting circuits in a relatively
straightforward way. A simple analysis shows that for higher Fock states, the de-
scribed protocol performs a measurement of the photon number parity1. In combi-
nation with single-shot qubit read-out and post-selection, such a measurement could
be used to prepare interesting non-classical photon states.

An important distinction to be made between this scheme and the photon re-
absorption described in sec. 5 is that the former does not absorb the photon and

1It is important to note that this is true only if the qubit-dependence of the reflection coefficient
is realized in a way which is independent of the number n of reflected photons, at least approximately
in the low n limit. This is the case for example when the scheme is based on the dispersive shift but
not in the original version by Reiserer et al. (2013) which relies on photon blockade.
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therefore cannot be directly used to transfer the state of a photon to the qubit. In-
deed, if the reflected field is in the superposition state (|0〉+ |1〉)/

√
2, the resulting

state is (|+〉 ⊗ |0〉+ |−〉 ⊗ |1〉)/
√

2 and the photon remains entangled with the qubit.
If this is not desired, the scheme can be extended as shown by (Kalb et al., 2015).
Here, the phase shift of the reflection coefficient is dependent on the polarization of
the light such that the evolution upon reflection is modified to

|+〉 ⊗ |R〉 → |+〉 ⊗ |R〉,
|+〉 ⊗ |L〉 → |−〉 ⊗ |L〉,

where R and L describe the handedness of the photon’s circular polarization. Af-
ter being reflected from the qubit-resonator system, the polarization of the photon
is measured in the linear basis consisting of the states | ↑〉 = (|R〉+ |L〉)/

√
2 and

| ↓〉 = (|R〉 − |L〉)/
√

2 and a NOT operation is applied to the qubit if the state | ↓〉
is measured. It can be easily verified that if the incoming photon was in the state
α|R〉+ β|L〉, the resulting qubit state is α|+〉+ β|−〉.

To adapt this scheme to a superconducting circuit system, we need to find a
replacement for the polarization degree of freedom which does not exist in standard
coplanar waveguides. This can be done if instead of the two circularly polarized
photons |R〉 and |L〉 we use the even and odd Schrödinger cat state |C±〉 ≡ (|α〉 ±
| − α〉)/

√
2 for |α| � 1. In this case, if the reflection coefficient r of the resonator is

again qubit-dependent such that r = 1 for |g〉 and r = −1 for |e〉, we naturally get
the desired evolution

|+〉 ⊗ |C+〉 → |+〉 ⊗ |C+〉,
|+〉 ⊗ |C−〉 → |−〉 ⊗ |C−〉.

The equivalent of the linear polarization basis are then the two coherent state |α〉 and
| − α〉 which can be easily distinguished from each other in the standard heterodyne
measurement scheme. In this way, an itinerant cat-state-encoded qubit α|C+〉+β|C−〉
can be mapped onto the stationary qubit state α|+〉+ β|−〉.

A natural extension of the non-demolition photon detection scheme could be the
construction of a single photon transistor, in which the presence or absence of a single
control photon controls routing of a target state (which may be either a single photon
or a classical coherent field). Such a device could be based on a principle similar to
the one described by (Manzoni et al., 2014). In the first step of its operation, the
presence or absence of the control photon is encoded in the states |+〉 and |−〉 of the
qubit as described above. In the second step, the superposition states are mapped
onto the computational basis states |g〉 and |e〉 by a π/2-pulse. Next, the target field
is reflected from the resonator, receiving a phase shift which depends on the presence
of the control photon. Finally, the target field needs to be routed to one of two output
lines, based on the acquired phase.

This last step can be accomplished by placing the qubit-resonator at the end
of one arm in a Michelson interferometer, which can be implemented using a π/2-
hybrid (see app. J). The hybrid, however, presents a complication since the control
photon needs to be sent to the resonator directly without being split. This problem
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can be resolved for example with one of the following approaches. One can use two
resonators coupled to the qubit, one for the control photon and the other for the target
field. Alternatively, the on-chip switch presented in ch. 6 can be used as a tunable
beamsplitter – set to act as a direct through connection for the control photon and
as a balanced beamsplitter for the target field.

Another possible direction of further development could be devoted to improving
the properties of the on-chip switch. For instance, to increase its bandwidth, which
is currently limited by the linewidth of the used resonators. A system consisting of
multiple resonators could be engineered to have a larger 3 dB bandwidth but it may be
challenging to implement convenient tuning of such a system with a small number of
control lines. Since the switch can be also interpreted as an element which multiplies
the incoming signal by a tunable transmission coefficient, modulation of this device or
some suitable modification thereof with a periodic signal could be used to implement
microwave frequency mixing at the single photon level.
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Appendix A

Designing a qubit

Several crucial parameters of a circuit QED system are determined by the design of
the qubit. The most important ones are the Josephson energy, the charging energy
and the coupling of the qubit to the resonator(s). In addition, the relaxation rates
of the qubit into its control lines (charge line, flux line) are also determined by the
qubit design. The Josephson energy has a special place among these since it depends
almost exclusively on the parameters of the Josephson junction itself and is practically
independent of the qubit capacitor design. Similarly, the design of the junction has
very little effect on the charging energy and the couplings apart from adding a small
parallel capacitance between the two qubit islands.

A.1 Calculating qubit parameters analytically

Given the design of the qubit capacitor, the resonator and the control lines, it is
possible to determine the capacitance matrix of the system using a finite element
solver. In the Qudev lab, the software of choice during my doctoral project was
ANSYS Maxwell. Assuming that the physical size of the qubit is much smaller than
the wavelength at the qubit transition frequency, the qubit as well as the sections
of the resonator and the charge line coupled to it behave as capacitive elements and
their inductance can be neglected. This is why an electrostatic solver such as Maxwell
can be reliably used to model the qubit. For more extended structures, the lumped
element model is not valid anymore and a true RF solver such as Sonnet by AWR
needs to be used.

An example of a qubit design is shown in Fig. A.1(a) and its equivalent circuit
in Fig. A.1(b). The mutual capacitances relevant for the qubit parameters are those
between the two qubit islands (which we will denote by a and b) and the remaining
three nodes representing the resonator, the charge line and the ground plane. Their
values for this particular geometry extracted from the finite element simulation in
Maxwell are given in Tab. A.1.

To calculate the coupling of the qubit to the resonator and the charge line, we
imagine that their potentials are forced to constant values Vr and Vc by external ideal
voltage sources. We now need to determine the energy of the system excluding the
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Figure A.1: (a) Example of a very simple qubit design. The qubit islands a and b are
shown in green and yellow, respectively, the resonator in blue and the charge line in
red. (b) Equivalent circuit of the qubit.

island a island b resonator charge line ground
island a × 31 fF 7.4 fF 0.13 fF 44 fF
island b × × 1.5 fF 0.25 fF 50 fF

Table A.1: Mutual capacitances between the individual parts of the circuit QED
system.

Josephson junction, whose energy will be added later, as a function of the number
of excess Cooper pairs on the qubit islands. Assuming that the charges on islands a
and b are q and −q, respectively, we can calculate the potentials of the two islands by
solving the system of equations

C(Va − Vb) + Car(Va − Vr) + Cac(Va − Vc) + Ca0Va = q,

C(Vb − Va) + Cbr(Vb − Vr) + Cbc(Vb − Vc) + Cb0Vb = −q.

The energy of the system for given charges Q and −Q on the qubit islands can then
be calculated as the integral

E =

∫ Q

0

(Va − Vb) dq,
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leading to the expression

E =
Q2

2CΣ
+ βrVrQ+ βcVcQ, where (A.1a)

CΣ ≡
CaCb
Ca + Cb

+ C, (A.1b)

Ca ≡Car + Cac + Ca0, (A.1c)

Cb ≡Cbr + Cbc + Cb0, (A.1d)

βr ≡
CarCb − CbrCa
(Ca + Cb)CΣ

, (A.1e)

βc ≡
CacCb − CbcCa
(Ca + Cb)CΣ

. (A.1f)

Note that the total capacitance CΣ and the voltage division ratios βr and βc appearing
here are the same parameters used to express the system’s relaxation rates in eq. (B.7).

A.2 Black-box quantization

Circuit QED systems in planar geometries can be in most cases accurately described
by circuit models, allowing their properties to be studied analytically. Other types of
systems, such as those based on the 3d cavity architecture introduced by Paik et al.
(2011), are not amenable to this approach since they cannot be easily mapped to an
equivalent circuit.

In the case of a 3d cavity, one can of course attempt to quantize its normal modes
and then describe their coupling to a qubit placed inside the cavity. However, the
resulting calculation quickly becomes very cumbersome due to the large number of
modes involved.

As a transmon qubit is to a good approximation an anharmonic LC oscillator,
one can approach the quantization of the coupled system using an elegant alternative
method developed by Nigg et al. (2012). Instead of quantizing the transmon and the
cavity separately and only then introducing their mutual coupling, one linearizes the
transmon, finds the normal modes of the coupled transmon-cavity system and only
then adds the non-linearity as a perturbation.

This approach is very general and can be used to treat a significantly wider class
of systems than just transmons coupled to cavities. In fact, within this framework,
one can describe in principle any linear circuit coupled to any number of weakly an-
harmonic oscillators. The technique was dubbed black-box quantization by Nigg et al.
(2012) because the linear part of the circuit is treated as a black box, characterized
by its impedance matrix.

The impedance of the black box can be obtained in a number of ways – for exam-
ple as the result of finite element simulations or from an analytical calculation. To
illustrate the procedure, let us consider the case of a single transmon in a 3d cavity –
the system for which the method was used in Nigg’s original paper. A diagram of this
system is shown in Fig. A.2(a). The qubit consists of two metal capacitor pads which
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Figure A.2: (a) Diagram of a cross-section through a 3d cavity (in white) containing a
transmon qubit. The qubit consists of two capacitor pads (blue rectangles) connected
by a Josephson junction. (b) The same system, now with the Josephson junction
formally split into its linear part (inductor) and a non-linear component (in red)
representing the terms φ4, φ6, . . . from the Junction’s Hamiltonian. The red points
indicate the nodes at which the impedance matrix of the linear part of the system (in
blue) is evaluated (c) A generic setting with the linear part of the system, represented
by the black box, connected to n non-linear components via its 2n external nodes.

are connected together by a Josephson junction, in full analogy with the standard
planar transmon. The potential energy of the junction depends on the phase drop
δ across it as E = −EJ cos δ, where EJ is the Josephson energy of the junction. By
expanding E into a power series in δ around δ = 0, we can formally split the junction
into two fictitious components connected in parallel. One of them is a linear inductor
with inductance LJ ≡ ~2/4e2EJ. Its energy is given by the quadratic term in E. The
other component does not have a real-life counterpart and we define it such that its
energy contains all terms of order 4 and higher from the expansion of E. This split
is illustrated by Fig. A.2(b) where the non-linear component is denoted by a crossed
circle.

The linear part of the circuit, consisting of the cavity, the qubit capacitor pads
and the linearized Josephson junction, is then considered separately. Its impedance is
calculated with respect to the two nodes at which it connects to the non-linear compo-
nent. This can be done for example by analyzing the cavity with the qubit capacitor
pads in a finite element Maxwell equations solver and then combining the resulting
impedance matrix with that of a lumped element inductor. Once the impedance is
known as a function of frequency, the quantized model of the linear system can be
derived from the properties of the impedance poles. A deeper discussion of this step
is presented in app. C.

To see how the non-linearity is incorporated back into the model, let us further
consider a slightly more general setting, of which the cavity-transmon system is a
special case. As shown in Fig. A.2(c), we can have a black box with 2n external
nodes, labeled as 1, 1, 2, 2, . . . , n, n. Each pair j, j is connected to one non-linear
component with a Josephson energy EJj .
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The resonance frequencies of the black box can be found as the poles of its
impedance matrix, as derived in sec. B.1. The individual modes can then be quan-
tized, giving rise to ladder operators â†k, âk. The voltages at the external nodes can
be expressed in the form of eq. (C.1) as

V̂ (j) =
∑
k

V
(j)
k â†k + V

(j)∗
k âk,

where j ∈ {1, 1, . . .} and V
(j)
k are the voltage vacuum fluctuation amplitudes which

are related to the residues of the impedance matrix by eq. (C.3).

The phase drops δ̂j across the non-linear components are related to the voltages by

Φ0δ̂j/2π =
∫
V̂ (j) − V̂ (j) dt, where Φ0 = π~/e is the flux quantum. We can transform

this relation into
δ̂j =

∑
k

δ
(j)
k â†k + δ

(j)∗
k âk,

where the vacuum fluctuation amplitudes δ
(j)
k satisfy the equation

|δ(j)
k |2 =

i(2e)2

~ωk
resωk(Zjj + Zjj − Zjj − Zjj), (A.2)

derived from eq. (C.3). The combination of impedances on the right-hand side rep-
resents the impedance which would be measured between nodes j and j if all other
nodes were left disconnected. We will denote it by Zj .

The Hamiltonian of the non-linear components is given by

Ĥnl = −
∑
j

EJj

(
1

4!
δ̂4
j −

1

6!
δ̂6
j +

1

8!
δ̂8
j − . . .

)
.

We will treat it as a perturbation of the linear system and find the eigenenergies of the
system including the non-linearities to lowest order in perturbation theory (Sakurai

& Napolitano, 2010). To this end, we will retain only the δ4 terms in Ĥnl.
The eigenstates of the linear unperturbed system are the multi-mode Fock states

|n1n2 . . .〉. The corrections of their eigenenergies induced by the perturbation are, to

first order in Ĥnl,

∆En1n2... = − 1

24

∑
j

EJj〈n1n2 . . . |δ̂4
j |n1n2 . . .〉

= − 1

24

∑
j

EJj〈n1n2 . . . |
(∑

k

δ
(j)
k â†k + δ

(j)∗
k âk

)4

|n1n2 . . .〉.

The matrix elements on the right-hand side can be evaluated using Wick’s theorem
(Wick, 1950). The resulting expression can be cast into the form

1

~
∆En1n2... =

∑
k

∆knk +
∑
k

αknk(nk − 1) +
∑
k>l

χklnknl.
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The various factors in this equation have a very natural interpretation: ∆k is the
frequency renormalization of mode k, αk is its anharmonicity and χkl is the cross-
Kerr coupling between modes k and l. They are related to the vacuum amplitudes

δ
(j)
k by

∆k = − 1

2~
∑
j

EJj |δ(j)
k |2

∑
l

|δ(j)
l |2,

αk = − 1

2~
∑
j

EJj |δ(j)
k |4,

χkl = −1

~
∑
j

EJj |δ(j)
k |2|δ

(j)
l |2.

Eq. (A.2) then allows us to express these parameters in terms of impedance residues
and the inductances LJj of the linearized Josephson junctions:

∆k =
2e2

~
∑
j

1

LJj

resωkZj
ωk

∑
l

resωlZj
ωl

, (A.3a)

αk =
2e2

~
∑
j

1

LJj

(
resωkZj
ωk

)2

, (A.3b)

χkl =
4e2

~
∑
j

1

LJj

resωkZj
ωk

resωlZj
ωl

. (A.3c)

Example – transmon qubit

We will illustrate the application of eq. (A.3) with a simple example: a transmon
qubit. In this case, we have only a single Josephson junction and the black box
consists of a single capacitance C in parallel with the linearized junction’s inductance
LJ. The impedance Z1 is then equal to (iωC + 1/(iωLJ))−1 and its residue at the
resonance frequency ω1 = 1/

√
LJC is

resω1
Z1 = − i

2C
.

Using eq. (A.3), we easily obtain

∆ = α = −2e2

~
1

LJ

1

4C2ω2

= − e2

2C~
.

This shows that, in agreement with the result derived in sec. 1.4, both the reso-
nance frequency renormalization and the anharmonicity are equal to −EC/~, where
EC ≡ e2/2C is the charging energy of the transmon.
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Figure A.3: (a) Design of a qubit as a single-photon source. The qubit islands a and
b are shown in green and yellow, respectively, the input line in red and the output
line in blue. (b) Equivalent circuit of the qubit and the lines. (c) Simplified circuit
with one side of the qubit LC circuit grounded.

A.3 Qubit as a single-photon source: Analysis of direct drive
leakage

A transmon qubit coupled to two semi-infinite waveguides can be used as a single-
photon source which has been demonstrated by Peng et al. (2015). One of the two
lines is coupled weakly and serves as a charge line for driving the qubit into its
excited state. Following this, the qubit spontaneously relaxes, emitting a photon
predominantly into the other, strongly coupled line. When designing a system like
this, care must be taken to ensure that the emission probability of the photon back
into the drive line as well as the direct leakage of the coherent drive signal into the
output line are negligible.

This section demonstrates how such a system can be analyzed. We start by noting
that in the weak drive limit, the qubit can be replaced by a linear LC circuit without
altering the response of the system (see sec. B.1). We will then compare the classical
expression for the transmission through the system with an approximately equivalent
input-output quantum model. Finally, we will transform the linear input-output
relations to non-linear ones for a real two-level qubit, based on the requirement of
equivalence in the weak drive limit.

The design considered here is shown in Fig. A.3(a) and its equivalent circuit dia-
gram in Fig. A.3(b). The values of the eight mutual capacitances determined from a
finite element simulation in Maxwell are given in Tab. A.2. Note that the capacitances
between the two lines and ground are not stated as they are taken into account when
the whole semi-infinite line is replaced by an equivalent real impedance Z0.
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island a island b input output ground
island a × 42 fF 1.1 fF 0.17 fF 68 fF
island b × × 0.10 fF 6.9 fF 65 fF
input × × × 0.0052 fF ×
output × × × × ×

Table A.2: Mutual capacitances between the individual parts of the single-photon
source circuit.

The form of the result for the realistic circuit in Fig. A.3(b) is rather complicated
and does not provide good insight into the dependence on the individual capacitances.
We will therefore also study a simplified circuit shown in Fig. A.3(c). In both cases,
we start by considering the 2× 2 impedance matrix Z of the circuit defined between
two of its nodes indicated in Fig. A.3(b,c). The impedance matrix Z̃ of the circuit
excluding the waveguides is related to the S-matrix by S = (Z̃−Z0)/(Z̃+Z0). Using
the relation Z−1 = Z̃−1 + 1/Z0, we can rewrite S as S = 2Z/Z0 − 1. This results in
the simple equation for the transmission coefficient S21

S21 =
2Z21

Z0
.

Let us now assume that the system is driven from the input side by a signal Vin which
has mainly frequency components very close to the qubit resonance frequency ω0. As
discussed in sec. B.1, the resonant frequencies of a circuit’s modes are given by the
poles of its impedance matrix. For ω ≈ ω0, we can therefore approximate Z21 by its
Laurent series truncated at zeroth order in ω − ω0:

Z21(ω) ≈ Z(0)
21 +

resω0
Z21

ω − ω0
.

The transmitted signal Vout can then be written as

Vout =
2Z

(0)
21

Z0
Vin +

2resω0
Z21

(ω − ω0)Z0
Vin. (A.4)

The input-output relations for this system have the form

b̂out = câin +
√
Γoutâ,

−iωâ = −iω0â −
√
Γinâin,

where âin and b̂out are the input and the output field, respectively, and â is the qubit
field. Note that in addition to the field emitted by the qubit, the expression for the
transmitted field contains the term câin which represents the direct coupling between
the input and the output line. Solving these equations for â and b̂out gives us

b̂out = câin +

√
ΓinΓout

i(ω − ω0)
âin.
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Comparison with eq. (A.4) shows that we can identify the first term on its right-hand
side with the directly transmitted signal while the second term is the signal emitted
by the qubit. The transmission coefficient c is then given by

c =
2Z

(0)
21

Z0
. (A.5)

Treating the qubit as a real two-level system instead of a harmonic oscillator, we
need to replace the ladder operators â by the Pauli operator σ̂−. The relation between
b̂out and âin then becomes

b̂out = câin +
√
Γoutσ̂−,

while the Heisenberg equation for σ̂− will be

d

dt
σ̂− = −iω0σ̂− −

√
Γinσ̂z âin.

Assuming that the input field is in a coherent state such that 〈âin〉 = ain, we can
identify the expression

√
Γinain with the Rabi rate Ω. The contribution to the output

field coupled directly from the input line is therefore equal to cΩ/
√
Γin and the total

number of photons nleak in this undesirable coherent signal is

nleak =

∫ |c|2Ω2

Γin
dt.

For simplicity, let us consider a square drive pulse of length T and amplitude Ω = π/T
which drives the qubit from the ground state to the excited state. The number of
leakage photons then becomes

nleak =
|c|2π2

ΓinT
.

Other sources of error in the single-photon generation process are the emission from
the qubit into the output line during the drive pulse and the emission back into the
input line. As the emission rate into the output line is given by Γoutpe, where pe is
the population of the qubit excited state, the mean number of photons emitted during
the drive pulse is approximately ΓoutT/2. The desired single photon will be emitted
back into the input with a probability equal to the branching ratio Γin/(Γin + Γout).

We can define the error E of the single-photon emission process by summing the
numbers of photons coupled directly from the input to the output, emitted during
the drive pulse and emitted into the input line:

E =
|c|2π2

ΓinT
+
ΓoutT

2
+

Γin

Γin + Γout
. (A.6)

From this expression, we see that minimization of the direct input-to-output leak-
age favors longer drive pulses and stronger input couplings (which leads to the required
drive power being lower). On the other hand, if we want to keep the probability to
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emit the single photon into the input line low, we need a weak input coupling and
a strong output coupling. Lastly, to minimize the number of photons emitted while
the qubit is being driven into its excited state, a shorter drive pulse and a weaker
output coupling. Clearly, the three sources of errors individually put very different
constraints on the parameters of the system and we will need to find some kind of a
trade-off between them.

As the drive pulse length T is a free parameter, we can start by minimizing the
error with respect to T . The minimum is achieved when |c|2π2/ΓinT = ΓoutT/2, that
is, T = |c|π

√
2/ΓinΓout. The corresponding value of E is

E = |c|π
√

2Γout

Γin
+

Γin

Γin + Γout
. (A.7)

To evaluate the theoretical performance of the system as a single photon source,
we need to calculate the direct input-to-output transmission coefficient c given by
eq. (A.5) and the relaxation rates Γin,Γout.

We can determine Γin and Γout using a method analogous to that employed in
sec. B.1 to derive eq. (B.7). After expanding the admittance of the circuit from
Fig. A.3(c) to first order in the small parameters xin ≡ ωZ0Cin and xout ≡ ωZ0Cout,
we find the imaginary part of its zero which is equal to Γ/2. We split the resulting
expression into terms proportional to C2

in and C2
out to obtain Γin and Γout. Even

though our circuit differs from that considered in sec. B.1, it turns out that the first-
order expressions for the relaxation rates have the same form as eq. (B.7), that is

Γin = ω2
0CΣZ0β

2
in,

Γout = ω2
0CΣZ0β

2
out, where

CΣ = C + Cin + Cout,

βin = Cin/CΣ ,

βout = Cout/CΣ ,

ω0 = 1/
√
LCΣ .

The residue resω0Z21 can be calculated in a similar fashion. We expand the
impedance to second order in the coupling capacitances and calculate the limit
limω→ω0

(ω − ω0)Z21 which yields

resω0
Z21 =

iZ2
0βinβout

2L
. (A.8)

We can then express the regular part of Z21 and calculate the direct transmission
coefficient c using eq. (A.5):

c = 2iω0Z0(Cin,out + 5βinβoutCΣ/4).

The term proportional to Cin,out represents transmission mediated by the direct ca-
pacitance between the input and output line which can be in principle made arbitrarily
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small by increasing their distance. The second term, on the other hand, quantifies
transmission through the input and output coupling capacitances and is therefore
intrinsically related to Γin and Γout. We can rewrite the absolute value of c as

|c| = 2ω0Z0Cin,out +
5
√
ΓinΓout

2ω0
.

Substituting into eq. (A.6) then gives us the following expression for the error of the
photon emission process:

E = 2πω0Z0Cin,out

√
2Γout

Γin
+

5πΓout

ω0

√
2

+
Γin

Γin + Γout
.

Under the assumption that Γin � Γout, we can approximate the last term on the
right-hand side by Γin/Γout and minimize the resulting expression with respect to
Γin. The minimum is achieved for

Γin

Γout
=
(√

2πCin,outZ0ω0

)2/3

and is equal to

E = 3(
√

2πCin,outZ0ω0)2/3 +
5πΓout

ω0

√
2
. (A.9)

The error is therefore determined by two factors – the direct capacitance Cin,out

between the input and output line and the ratio of the output coupling and the qubit
frequency Γout/ω0. The first can be minimized by choosing a suitable geometry of the
device, the second by making the output coupling weaker and thus the photon pulse
longer. Clearly, the error cannot be reduced to an arbitrarily low level by decreasing
Γout because the emission efficiency will ultimately become limited by the internal
losses Γint in the qubit. Assuming that the error due to the direct capacitance Cin,out

can be made negligible, the remaining error, now including the internal losses, can be
estimated as

E =
5πΓout

ω0

√
2

+
Γint

Γint + Γout
.

In the limit Γint � Γout, we can minimize this expression with respect to Γout by
choosing Γ 2

out = Γintω0

√
2/5π. The resulting minimal error is

E = 2

√
5πΓint

ω0

√
2

= 2

√
5π

Qint

√
2
,

where Qint is the internal quality factor of the qubit. For realistic values of 1/Γint =
5µs and ω0/2π = 7 GHz, we get E ≈ 0.014 for 1/Γout ≈ 36 ns. To keep the error
due to direct capacitance in eq. (A.9) from dominating the total error, Cin,out needs
to be sufficiently small. For the stated numerical value, this means approximately
Cin,out . 0.02 fF.
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For the realistic circuit in Fig. A.3(b), the relaxation rates can be again determined
from eq. (B.7), where the parameters CΣ , βin and βout are defined by eq. (B.4) and
eq. (B.5) and the resonance frequency of the qubit is given by ω0 = 1/

√
LCΣ .

Their numerical values obtained from the capacitances stated in Tab. A.2 are

CΣ = 77 fF,

βin = 0.0066,

βout = −0.043.

For a qubit frequency ω0/2π = 7 GHz we get relaxation rates

Γin = 3.3× 105 s−1,

Γout = 1.4× 107 s−1,

corresponding to time constants Tin ≡ 1/Γin = 3.1µs and Tout ≡ 1/Γout = 74 ns.
The residue resω0

Z21 takes the same form as for the simpler circuit, given by
eq. (A.8). The regular part of Z21 can be expressed as

Z
(0)
21 =iω0Cin,outZ

2
0 +

iω0Z
2
0

4CΣ(Ca0 + Cb0)2
( (A.10)

4C(Ca0 + Cb0)(Ca,in + Cb,in)(Ca,out + Cb,out)+

5(C2
a0Cb,inCb,out + C2

b0Ca,inCa,out)+

5Ca0Cb0(Ca,in − Cb,in)(Ca,out − Cb,out)/2+

3Ca0Cb0(Ca,in + Cb,in)(Ca,out + Cb,out)/2),

The numerical value of the direct transmission coefficient we obtain for our particular
design is

c = 0.00018i.

Using eq. (A.7), we find that the error of the emission process is approximately E ≈
0.029.

To clarify the dependence of the rather complicated expression in eq. (A.10) on
the input and output coupling, we will consider a realistic situation where island a
couples predominantly to the input line and island b to the output line. This means
that the capacitances Ca,out and Cb,in can be neglected. In this case, the resulting
expression for c can be approximated by

c = 2iω0Cin,outZ0 + i
Ca0Cb0 − 4(Ca0 + Cb0)C

2Ca0Cb0

√
ΓinΓout

ω0
.

The direct transmission through the coupling capacitances has a similar form as for the
simpler circuit from Fig. A.3(c), that is, it is proportional to

√
ΓinΓout/ω0. In addition,

however, it contains the dimensionless term (Ca0Cb0−4(Ca0 +Cb0)C)/2Ca0Cb0 which
depends on the capacitances between the qubit islands and ground. As the two
terms in its numerator have opposite signs, it is in principle possible to design these
capacitances to greatly suppress the direct transmission.
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Appendix B

Dissipation in electrical circuits

Dissipation in circuit QED systems is an extremely important phenomenon. It can
be an undesirable obstacle on the way to long-lived quantum coherence but also an
intended feature of the system. For example, a superconducting qubit will, despite our
best efforts, eventually relax to its ground state because of dielectric losses and other
dissipation mechanisms. On the other hand, the energy of a microwave resonator
coupled to a coplanar waveguide is to all appearances lost when we consider the
resonator on its own, yet in fact it was merely radiated into the waveguide. It still
exists as a propagating field, possibly to be reabsorbed by another quantum system.
To understand these effects, we will first look how they can be treated in classical
linear circuit consisting of capacitors, inductors and resistors. The second part of this
appendix will then give an overview of the quantum master equation formalism.

B.1 Classical analysis

It might seem like studying classical circuits will not be of much use for understanding
dissipation in circuit QED systems. However, results derived using high-school physics
are surprisingly applicable. This is especially clear in the case of transmon qubits.
They are essentially LC resonant circuits where the role of the inductor is played by
a Josephson junction, operating in a regime where its behaviour is very nearly linear.
It is then not surprising that circuits with transmons can often be modelled as linear
systems, possibly with the weak non-linearity of the junction added as a perturbation
(Nigg et al., 2012).

But even for strongly anharmonic qubits, we can make the following argument:
Let us assume that we are not adding energy into the system by driving it and
instead let it evolve freely. If, furthermore, the interaction between the qubit(s)
and the linear part of the circuit is of the Jaynes-Cummings type, the number of
energy quanta in the system will not increase. Provided that we have started with
only a single excitation in the system, its state will never get outside the zero- and
one-excitation subspace of the Hilbert space. Therefore, the structure of the higher
excitation subspaces does not have an effect on the dynamics of the system. We can
then replace the anharmonic systems by harmonic oscillators, as long as we keep the
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Figure B.1: (a) Equivalence of an anharmonic and a harmonic system when studying
relaxation of single excitations. (b) A “black box” circuit with impedance Z(ω) and
its voltage response V (ω) to a current excitation I(ω).

energy separation of the two lowest frequency states and their coupling to the rest of
the circuit unchanged. This is a rather useful result worth pointing out once more:
The free dissipation of single excitations can be studied using a linear model where
the non-linear qubits are replaced by equally coupled harmonic oscillators with the
same frequency, as illustrated in Fig. B.1(a).

To analyze the free dynamics of a circuit, we will consider it as a black box with
a single node exposed to the outside, as shown in Fig. B.1(b). If we probe the system
by a short current pulse I(t) = Aδ(t), its voltage response in frequency space will be
given by V (ω) = Z(ω)I(ω) = AZ(ω), where Z(ω) is the impedance of the circuit.
After Fourier-transforming the voltage back into time domain, we get

V (t) =

∫
dω

2π
AZ(ω)eiωt.

We are interested in the voltage at times t > 0. Assuming that the impedance as a
function of a complex variable ω is well-behaved and falls off to zero for |ω| → ∞, we
can close the integration contour in the complex upper half-plane. If, in addition, the
impedance has only simple poles, we can evaluate the contour integral as

V (t) = iA
∑
ω∈P

resωZeiωt, (B.1)

where we sum over the set of poles P . From this expression we see that the evolution of
the voltage response consists of damped oscillations exp(iω0t−Γt/2) with frequencies
ω0 = Reω and decay constants Γ/2 = Imω. Hence, we can obtain the frequencies
and decay constants of the circuit’s resonant modes from the poles of its impedance
considered as a function of a complex frequency ω. We have defined the decay constant
of the voltage oscillations as Γ/2 because the decay rate of the energy stored in the
system, which falls off with the square of the voltage, is typically denoted by Γ .

Transmission-line resonator connected to an environment

We can now use this result to analyze dissipation in a simple λ/2 transmission line
resonator with an open boundary condition at one end and capacitively connected to
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Figure B.2: (a) Circuit diagram of a λ/2 resonator capacitively coupled to its envi-
ronment. (b) Modified version of the circuit where the open-ended transmission line
is replaced by its equivalent lumped-element impedance. The black dot indicates the
node of the circuit whose impedance to ground is evaluated to find the eigenfrequen-
cies of the resonator.

its environment at the other. We will model the environment as a lumped element with
an impedance Zenv(ω), leading to the effective circuit diagram shown in Fig. B.2(a).

Using eq. (1.2) with ZL → ∞, we get the equivalent lumped element impedance
of the open-ended transmission line section

Ztl = −iZ0 cot
ωx

c
.

If we replace the transmission line by this equivalent impedance, we get the simple
circuit shown in Fig. B.2(b). As derived above, the resonance frequencies ωi and
relaxation rates κi of a circuit’s modes can be found as the poles ωi + iκi/2 of its
impedance Z(ω) viewed as a function of a complex variable ω. The exact choice of
the node at which the impedance is evaluated is not important since they all yield the
same set of poles1. We choose the node indicated by the black dot in Fig. B.2(b). Its
impedance to ground is given by Ztl(Zenv +Zc)/(Ztl +Zenv +Zc), where Zc = 1/iωCc.
The condition for a pole of this impedance is therefore

−iZ0 cot
ωx

c
+

1

iωCc
+ Zenv(ω) = 0.

We know that the uncoupled λ/2 resonator has resonance frequencies of the form

ω
(0)
n = nπc/x. If the coupling capacitance Cc is small, we expect the modified reso-

nance frequencies to be close to ω
(0)
n . Let us therefore write the complex frequency

as ω = ω
(0)
n + δωn and expand the left-hand side of the resonance condition to lowest

order in δωn. This gives us

−iZ0
c

xδωn
+

1

iωnCc
+ Zenv(ωn) = 0,

which can be solved for δωn. Furthermore, we expand the result to second order in
Cc which yields

δωn = − 1

π
ω1ωnCcZ0(1− iωnCcZenv(ωn)).

1That is, provided that all modes have a non-zero voltage amplitude at the chosen node.
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The shifted resonance frequency ωn, given by the real part of ω
(0)
n + δω, can therefore

be expressed to first order in Cc as

ωn = ω(0)
n −

1

π
ω1ωnCcZ0, (B.2a)

while the relaxation rate κn, given by 2Im (ω
(0)
n + δω), is

κn =
2

π
ω1ω

2
nC

2
cZ0ReZenv(ωn). (B.2b)

We see that the frequency of a transmission line resonator mode is decreased by
its coupling to the environment. To lowest order, this shift is linear in the coupling
capacitance and independent of the environment impedance.

The relaxation rate introduced by the environmental coupling is to lowest order
quadratic in the coupling capacitance and proportional to the real part of the envi-
ronment impedance at the mode frequency.

LC oscillator connected to an environment

As a second example, we will study a simple parallel LC circuit, representing a lin-
earized qubit, capacitively coupled to a dissipative environment. The circuit diagram
of the system is displayed in Fig. B.3(a), while the more realistic drawing in Fig. B.3(b)
shows an example of a chip design with a qubit and highlights the parts of the chip
corresponding to the main components of the idealized circuit.

The two islands of the qubit, corresponding in the schematic to the nodes marked
by red circles, are capacitively coupled to impedances Z1, Z2, . . . representing the dif-
ferent dissipation channels. In the example in Fig. B.3, Z1 is the dissipative resonator
and Z2 the charge line. However, the following derivation holds for essentially any
linear circuit coupled to the qubit. For instance, capacitive coupling to flux lines or
Purcell-filtered resonators can be analyzed using the same approach.

A straightforward analysis shows that the admittance of the circuit between the
two qubit islands is given by

Y (ω) = iω

(
CaCb

Ca + Cb
+ C

)
+

1

iωL
− ω2K, where

Ca =
∑
i≥0

Cai
1 + iωZenv

i (Cai + Cbi)
,

Cb =
∑
i≥0

Cbi
1 + iωZenv

i (Cai + Cbi)
,

K =
∑
i≥0

CaiCbiZ
env
i

1 + iωZenv
i (Cai + Cbi)

,

where we have defined Zenv
0 ≡ 0 to keep the form of the expression simple. To

simplify it further, we will assume that the coupling to the environment is weak, i.e.
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Figure B.3: (a) Schematic of a circuit with a linearized qubit as an LC circuit capaci-
tively coupled to a number of environments represented by the impedances Z1, Z2, . . .
The total impedance of the circuit is calculated between the two nodes indicated by
red circles. (b) Simplified diagram of a realistic qubit-resonator chip with its different
components corresponding to the identically color-coded parts in (a). In blue the
resonator and its output line, in red the charge line and in green and orange the two
islands of the qubit.

the capacitances Cai, Cbi are small, satisfying xi ≡ ωZi(Cai +Cbi)� 1. We can then
expand the expression for Y (ω) to first order in the small dimensionless parameters
xi and obtain

Y (ω) = iωCΣ +
1

iωL
+ ω2C2

Σ

∑
i>0

β2
i Z

env
i , where (B.3)

CΣ ≡
CaCb
Ca + Cb

+ C, (B.4)

Ca ≡
∑
i≥0

Cai,

Cb ≡
∑
i≥0

Cbi,

βi ≡
CaCbi − CbCai
CΣ(Ca + Cb)

. (B.5)

It is worth pointing out that the quantities CΣ and βi defined here have a very
natural interpretation. If all the environmental impedances Zenv

i are replaced by direct
connections to ground, then the remaining capacitance network composed of C, Cai
and Cbi is equivalent to a total capacitance CΣ between the two qubit islands. In other
words, if all the dissipation channels are considered to be grounded, the resonance
frequency of the circuit will be ω0 = 1/

√
LCΣ . Now consider that we replace one

of the impedances Zenv
i by an ideal source of voltage V , the rest by connections to
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ground and remove the inductor. The voltage between the qubit islands will then be
βiV .

To calculate the qubit resonance frequency ωq and dissipation rate Γ , we need to
find the pole of Z(ω) = 1/Y (ω) by solving the equation Y (ω) = 0. The coupling to
the environment will cause the pole to shift by a small amount ∆ω from its value
ω0 = 1/

√
LCΣ which it takes in the limit Zenv

i → 0. We will expand the first two
terms on the right-hand side of eq. (B.3) to first order in ∆ω, getting the equation

2i∆ωCΣ + ω2C2
Σ

∑
i>0

β2
i Z

env
i (ω) +O((∆ω)2) = 0.

Its inspection shows us that the second term in it has to be of the order O(∆ω).
Therefore, to first order in ∆ω, we can replace ω by ω0. Solving for ∆ω then yields
the result

ωq = Re (ω0 +∆ω) = ω0 −
1

2
ω2

0CΣ
∑
i>0

β2
i ImZenv

i (ω0) (B.6)

Γ = 2Im (ω0 +∆ω) = ω2
0CΣ

∑
i>0

β2
i ReZenv

i (ω0). (B.7)

These expressions allow us to calculate the transition frequency and the dissipa-
tion rate of a qubit weakly capacitively coupled to lossy environments with given
impedances. The degree to which these influence the qubit is given by simple multi-
plicative coupling constants βi. These parameters characterize the network of coupling
capacitances and can be interpreted as ratios between a fictitious voltage presented
by the environment and the resulting voltage across the qubit.

B.2 Quantum description of dissipation

This section gives a brief introduction into open quantum systems, the density ma-
trix formalism and a (hopefully educational) step-by-step derivation of the quantum
master equation, following those of for example Walls & Milburn (2008) or Breuer
(2012). In its second part we will show how this framework can be applied to circuit
QED systems and use it to arrive at some of the previous section’s results from a
different angle.

Schrödinger equation is one of the cornerstones of quantum mechanics and, to
the best our knowledge, can be used to model the dynamics of any closed system.
However, dissipative systems which we would like to describe here, are far from closed.
They lose energy to their environment and even though the combined system including
this environment is closed, its complexity makes it difficult if not impossible to solve
its corresponding Schrödinger equation. To circumvent this problem, it would be
desirable to write an effective equation of motion for the dissipative (open) system
alone. But since dissipative processes are inherently irreversible, the evolution of an
open system has to be governed by an equation of a different kind than the Schrödinger
equation. Moreover, since dissipation is a random process, the state of an open system
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also has to be represented in a different way than that of a closed system undergoing
unitary evolution. For example, a lossy two-level system prepared in its excited state
will lose its energy and relax to the ground state at a random point in time. After
one half-life, it will either still be in the excited state, or it will have already relaxed,
both cases occurring with probability 1/2. Whatever formalism we use to describe
this process, it needs to be able to express statistical mixtures like this – states where
the system is represented by one of multiple state vectors with given probabilities.

Density matrix formalism

Let us consider a pure quantum state described by a state vector |ψ〉. We can equally
well characterize this state by giving the projector |ψ〉〈ψ| onto its state vector instead
of the vector itself. This object is called the density matrix of the state and is
commonly denoted by ρ̂. The expectation value of an observable X̂ in this state can
be expressed as Tr X̂ρ̂.

To describe a mixed state ρ̂ created by preparing pure states ρ̂i with probabilities
pi, we simply take the weighted mean

ρ̂ =
∑
i

piρ̂i.

As expected, the expectation value Tr X̂ρ̂ will then be a weighted mean of the indi-
vidual expectation values in states ρ̂i. This definition of the density matrix implies
that it is necessarily Hermitian, positive semi-definite and its trace is equal to one.
Conversely, any operator with these properties is a density matrix of some mixed state
because it can be diagonalized as

∑
i pi|φi〉〈φi| and its eigenvalues pi are positive and

sum up to one.
Moreover, the density matrix fully characterizes a mixed state. Note that this is

not a trivial statement. Mixed states with a given density matrix can be prepared
as a mixture of pure states in different ways. For example, a mixture of states |0〉
with probability 1/3 and |1〉 with probability 2/3 has the same density matrix as a
mixture of

√
1/3|0〉+

√
2/3|1〉 and

√
1/3|0〉−

√
2/3|1〉, both with probability 1/2. At

first glance, these differently prepared mixtures should be treated as different states,
which the density matrix formalism clearly fails to do. In fact, this is not true. Even
though they were prepared in a different way, the fact that expectation values of all
observables are uniquely determined by the density matrix means that states with the
same density matrix are truly indistinguishable. This justifies our treatment of them
as effectively identical mixed states and the density matrix as their full description.

The evolution of a pure state’s density matrix under the action of a Hamiltonian
Ĥ is given by

dρ̂

dt
=

d

dt
|ψ〉〈ψ| =

(
d

dt
|ψ〉
)
〈ψ|+ |ψ〉

(
d

dt
〈ψ|
)

= − i

~
[Ĥ, ρ̂].
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This von Neumann equation describes unitary dynamics of density matrices not only
for pure states but by extension also for arbitrary mixed states.

Another useful feature of the density matrix formalism is its ability to describe
the state of a single part of a composite system. Consider two subsystems A and
B with Hilbert spaces HA and HB , constituting a larger system whose states form
the Hilbert space HA ⊗HB . If the total system is in an entangled state, there is no
single state vector in HA which could be reasonably said to describe the state of the
subsystem A in isolation from B.

On the other hand, if we have a density matrix ρ̂ of the composite system, there
exists a density matrix ρ̂A on HA which characterizes the state of A alone in the
following sense: An experimentalist who does not have access to subsystem B can
only measure observables of subsystem A, that is, quantities given by operators of the
form X̂⊗1. The result of measuring the expectation value of X̂⊗1 on the composite
system in state ρ̂ will be exactly the same as that of measuring the expectation value
of X̂ on the subsystem A in a state ρ̂A. This property can be written as

Tr (X̂ ⊗ 1)ρ̂ = Tr X̂ρ̂A.

How do we get ρ̂A from ρ̂ then? The density matrix ρ̂ can always be written in the
form

ρ̂ =
∑
i

ρ̂Ai ⊗ ρ̂Bi.

The defining condition of ρ̂A then becomes
∑
i (Tr X̂ρ̂Ai)(Tr ρ̂Bi) = Tr X̂ρ̂A. This

equation is clearly satisfied by ρ̂A =
∑
i ρ̂AiTr ρ̂Bi. The operation leading from ρ̂ to

ρ̂A is called the partial trace where we have traced out or traced over the subsystem
B. In short, this is typically written as ρ̂A = TrB ρ̂ and ρ̂A is called a reduced density
matrix of the subsystem A.

Master equation

To describe the evolution of an open system with a Hilbert space HS coupled to the
an environment HE without tracking the dynamics of the complete system, we need
to derive an equation of motion for the reduced density matrix ρ̂S . We would like
this equation to be local in time, that is, of the form

dρ̂S(t)

dt
= L[ρ̂S(t)],

where L is a superoperator – a linear operation acting on the space of operators in HS

– generating the evolution of the system, often called the Liouville superoperator or in
short Liouvillian. Clearly, with an equation of motion of this form, future evolution of
the system is fully determined by its current state and does not depend on its history.

In general, such an evolution equation may not exist, as the environment can act
as a “memory”, causing the time derivative of ρ̂S(t) at time t depend on ρ̂S(τ) for
τ < t. However, under certain simplifying assumptions applicable to many realistic
environments, the system can be described by a time-local master equation.
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To derive it, we will start by assuming that the coupling between the open system
HS and the environment HE is described by the interaction-picture Hamiltonian
Ĥ(t) = X̂(t)⊗ F̂ (t), where X̂(t) and F̂ (t) are Hermitian operators acting on the open
system and the environment, respectively. The choice of the letters F and X comes
from an interpretation of these as, respectively, a force with which the environment
acts on the open system and a generalized coordinate of the system coupling to this
force. In the context of circuit QED systems, one can imagine F̂ to be for instance the
voltage presented to the qubit by a capacitively coupled transmission line and X̂ the
charge on the qubit electrodes. With this Hamiltonian, the density matrix evolution
of the combined system is described by the von Neumann equation

dρ̂(t)

dt
= − i

~
[X̂(t)⊗ F̂ (t), ρ̂(t)].

Integrating this equation from t0 to t, substituting the resulting expression for ρ̂(t)
back into the right-hand side of the equation and tracing over the environment Hilbert
space yields the following equation for the reduced density matrix of the system

dρ̂S(t)

dt
= − i

~
TrE

[
X̂(t)⊗ F̂ (t), ρ̂(t0)− i

~

∫ t

t0

[X̂(τ)⊗ F̂ (τ), ρ̂(τ)] dτ

]
.

We will now assume that entanglement between the system and the environment can
be neglected and the environment is in a time-independent steady state ρ̂E . This
means that ρ̂(t) can be written as a tensor product ρ̂S(t) ⊗ ρ̂E . Furthermore, we

assume that the expectation value of F̂ (t) in the steady state ρ̂E is zero. Under these
conditions, the term in the previous equation involving ρ̂(t0) vanishes and the rest
becomes

dρ̂S(t)

dt
= − 1

~2

∫ t

t0

dτ TrE

[
X̂(t)⊗ F̂ (t), [X̂(τ)⊗ F̂ (τ), ρ̂S(τ)⊗ ρ̂E ]

]
= − 1

~2

∫ t

t0

dτ [X̂(t), X̂(τ)ρ̂S(τ)]〈F̂ (t)F̂ (τ)〉E

+ [ρ̂S(τ)X̂(τ), X̂(t)]〈F̂ (τ)F̂ (t)〉E ,

where the expectation values of the autocorrelation functions 〈F̂ (t)F̂ (τ)〉E are evalu-
ated in the state ρ̂E .

Next we assume that the coherence time of the environment is much shorter than
the dynamic time-scale of the system. In other words, the autocorrelation function
〈F̂ (t)F̂ (τ)〉E falls off to zero with increasing |t − τ | at a time-scale tE much shorter
than the characteristic time-scale tS at which ρ̂S evolves. This means that we can
approximate the product ρ̂S(τ)〈F̂ (t)F̂ (τ)〉E by ρ̂S(t)〈F̂ (t)F̂ (τ)〉E . At this point, the
right-hand side of our evolution equation no longer depends on ρ̂S at times other than
t, so it is now in the desired time-local form. The subsequent approximations only
serve to cast the master equation into its most familiar, the so-called Lindblad form.

As the open system density matrix evolves on a timescale tS and tS � tE , we will
typically want to use the master equation for t − t0 � tE . In this case, the value of
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the integrand on its right-hand side is negligible for τ < t0 because then t− τ � tE .
We can therefore replace the lower integration bound t0 by −∞ without changing the
value of the integral significantly. This results in

dρ̂S(t)

dt
= − 1

~2

∫ t

−∞
dτ [X̂(t), X̂(τ)ρ̂S(t)]〈F̂ (t)F̂ (τ)〉E

+ [ρ̂S(t)X̂(τ), X̂(t)]〈F̂ (τ)F̂ (t)〉E .

The interaction-picture operator X̂(t) can be written in terms of the Schrödinger-

picture one X̂ as X̂(t) =
∑
i,j exp(i(Ei −Ej)t/~)P̂iX̂P̂j , where P̂i are projectors onto

the eigenspaces of the system’s free Hamiltonian with eigenenergies Ei. We now group
the terms with the same frequency of oscillations (Ei − Ej)/~ together, defining

X̂ω ≡
∑

Ei−Ej=ω
P̂iX̂P̂j , (B.8)

X̂(t) =
∑
ω

X̂ω exp(iωt),

where the sum in the second line is over the set of all different frequencies (Ei−Ej)/~.

Inserting this form of X̂(t) and X̂(τ) into the master equation results in a summation

over two frequencies ω and ω′ of terms involving combinations of X̂ω and X̂ω′ . We
will now perform the rotating wave approximation, that is, we neglect all of those
terms for which ω + ω′ 6= 0.

dρ̂S(t)

dt
= − 1

~2

∑
ω

∫ t

−∞
dτ [X̂ω, X̂−ωρ̂S(t)]eiω(t−τ)〈F̂ (t)F̂ (τ)〉E

+ [ρ̂S(t)X̂−ω, X̂ω]eiω(t−τ)〈F̂ (τ)F̂ (t)〉E .

Expressing the autocorrelation function of F̂ in terms of its corresponding spectral
density SFF (as defined for example in Clerk et al. (2010)) as

〈F̂ (τ)F̂ (t)〉E
〈F̂ (t)F̂ (τ)〉E

}
=

∫
dω′

2π
SFF (ω′)e±iω′(t−τ)

yields an expression where the integration of exp(i(ω ± ω′)(t − τ)) over τ can be
performed analytically, resulting in

dρ̂S(t)

dt
= − 1

~2

∑
ω

∫
dω′

2π
[X̂ω, X̂−ωρ̂S(t)]

SFF (ω′)

−i(ω − ω′) + ε

+ [ρ̂S(t)X̂−ω, X̂ω]
SFF (ω′)

−i(ω + ω′) + ε
.

After making a substitution ω → −ω in the second summand in the integral and
using the identity 1/(∓i(ω − ω′) + ε) = ±iP/(ω − ω′) + πδ(ω − ω′), we separate the
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terms with the delta function from those including the principal value and get

dρ̂S(t)

dt
=− i

~2

∑
ω

∫
dω′

2π
([X̂ω, X̂−ωρ̂S(t)]− [ρ̂S(t)X̂ω, X̂−ω])P SFF (ω′)

ω − ω′

− 1

2~2

∑
ω

([X̂ω, X̂−ωρ̂S(t)] + [ρ̂S(t)X̂ω, X̂−ω])SFF (ω).

It can be easily shown that the combination of commutators in the first line is equal
to [X̂ωX̂−ω, ρ̂S(t)] while those in the second line can be written as −2DX̂−ω [ρ̂S(t)],

where D is a superoperator defined as

DÂB̂ ≡ ÂB̂Â† −
1

2
Â†ÂB̂ − 1

2
B̂Â†Â.

If we further define

∆Ĥ ≡ 1

~
∑
ω

∫
dω′

2π
X̂ωX̂−ωP

SFF (ω′)

ω − ω′ , (B.9)

Ld ≡
1

~2

∑
ω

SFF (−ω)DX̂ω , (B.10)

we can write the master equation in the final form

dρ̂S(t)

dt
= − i

~
[∆Ĥ, ρ̂S(t)] + Ld[ρ̂S(t)]. (B.11)

The first term represents a correction to the unitary evolution of the system – a
renormalization of its Hamiltonian. The second term generates non-unitary evolution.
The quantum noise in the generalized force F̂ whose spectral density is given by SFF
induces transitions in the open system. These can be interpreted as discrete quantum
jumps where the state of the system changes from |ψ〉 to X̂ω|ψ〉 and the probability
of this event per unit time is proportional to the intensity of the noise SFF (−ω) at
the transition frequency.

Quantum dissipation in a qubit coupled to a circuit

Let us apply the derived result to the case of a transmon qubit coupled to a lossy
electrical circuit. We will consider a circuit similar to the one analyzed in sec. B.1
but with only one environmental impedance for simplicity. Its schematic is shown in
Fig. B.4(a). The lossy environment with impedance Zenv is a source of quantum (and,

if its temperature T > 0, also thermal) fluctuations V̂ env. As shown in our previous
discussion of eq. (B.3), we can define a voltage division ratio β given by eq. (B.5) which

relates the voltage V̂ env presented by the environment to an offset in the voltage across
the qubit capacitance. The qubit can be represented by an equivalent circuit displayed
in Fig. B.4(b). Its capacitance CΣ arises as a combination of all the capacitances in

the original network. If the charges on the two qubit electrodes are ±Q̂, the potential
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Figure B.4: (a) Circuit of a qubit capacitively coupled to a dissipative environment
of impedance Zenv. The qubit is equivalent to a simpler circuit (b) where the voltage

V̂ env presented by the environment causes a shift βV̂ env in the voltage across the qubit
capacitor with effective capacitance CΣ .

difference V̂ between them can be expressed as a sum of the usual term Q̂/CΣ and an

additional voltage shift βV̂ env caused by the mutual capacitance between the qubit
and the environment.

It follows that the Hamiltonian describing the interaction of the qubit with the
environment has the form Ĥ = 2en̂ ⊗ βV̂ env, where 2en̂ is the charge Q̂ on the
qubit electrodes expressed in terms of the number of Cooper pairs n̂. Then βV̂ is the
generalized force F̂ and 2en̂ its corresponding coordinate X̂. To express the dissipative
part of the master equation, we need to decompose X̂ into its frequency components
X̂ω defined in eq. (B.8) and calculate the spectral density SFF related to the spectral

density of the environment voltage V̂ env by SFF = β2SV V .
In the transmon limit EJ � EC , the number operator n̂ couples only neighbouring

eigenstates and can be written as n̂ =
∑
i n0

√
i+ 1(|i〉〈i+ 1|+ H.c.), where |0〉, |1〉, . . .

are the eigenstates of the transmon and n0 = (EJ/32EC)1/4 (Koch et al., 2007).
The possible transition frequencies are ±ω1,±ω2, . . ., where ωi = (Ei+1 − Ei)/~ and

the corresponding frequency components of X̂ are X̂ωi = 2en0

√
i+ 1|i + 1〉〈i| and

X̂−ωi = (X̂ωi)
†.

The spectral density SV V of the environment voltage V̂ env can be calculated in
terms of the circuit’s impedance Z, as shown in app. C, eq. (C.4). Just like in sec. B.1,
we assume that the coupling capacitances are small compared with 1/ωZenv. In this
limit, the impedance at the node where the environment connects with the capacitive
network is close to Zenv.

Now we can substitute X̂ωi and SV V into eq. (B.10). Furthermore, we express n0 in
terms of the |0〉 → |1〉 transition frequency ω0 =

√
8EJEC/~ and the charging energy

EC = e2/2CΣ . The resulting expression for the dissipative part of the Liouvillian Ld
is

Ld = ω0CΣβ
2
∑
i

ωi(i+ 1)ReZenv(ωi)
(
NiD|i+1〉〈i| + (Ni + 1)D|i〉〈i+1|

)
, (B.12)

where Ni = 1/(exp(~ωi/kBT ) − 1) is the mean number of photons in a harmonic
mode of frequency ωi.
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To relate this result to the relaxation rates in the system, we can consider a
diagonal density matrix ρ̂ =

∑
i pi|i〉〈i|, that is, a mixture of the transmon eigenstates.

We substitute this form of the density matrix into the evolution equation dρ̂/dt =
Ld[ρ̂] where we have neglected the unitary evolution. By comparing the factors of the
density matrix components |i〉〈i| for each i on both sides of the equation, we get

dpi
dt

= Γ ↑i−1pi−1 + Γ ↓i+1pi+1 − (Γ ↑i + Γ ↓i )pi, where

Γ ↑i ≡ (i+ 1)ω0ωiCΣβ
2NiReZenv(ωi), (B.13)

Γ ↓i+1 ≡ (i+ 1)ω0ωiCΣβ
2(Ni + 1)ReZenv(ωi). (B.14)

(B.15)

This is a rate equation where Γ ↑i and Γ ↓i are the transition rates from state |i〉 to |i+1〉
and |i−1〉, representing excitation and relaxation processes, respectively. Specifically,
at zero temperature when Ni = 0, the relaxation rate from the first excited state |1〉
to the ground state |0〉 is

Γ ↓1 = ω2
0CΣβ

2ReZenv(ω0).

This results is identical to the one shown in eq. (B.7) derived from purely classical
considerations in sec. B.1. Compared with the classical formula, however, eq. (B.12)
provides additional insight. It tells us how the transition rates change for higher
energy levels and how they depend on the temperature of the environment.

B.3 Example - qubit coupled to a transmission line

The simplest possible example of a dissipative environment is a semi-infinite trans-
mission line. Despite being in principle lossless, the fact that energy can propagate
in it without ever returning back means that it can be effectively described as a lossy
element. The center conductor at the end of the line can be capacitively coupled to
the qubit as illustrated in Fig. B.5(a). A 50 Ω chargeline coupled to a superconducting
qubit is a typical example of such a configuration.

The impedance Z0 of a semi-infinite lossless transmission line is frequency-
independent and real, making it equivalent to an ideal resistor. The excitation and
relaxation rates given by eq. (B.13) and eq. (B.14) then simplify to

Γ ↑i ≡ (i+ 1)ω0ωiCΣβ
2NiZ0,

Γ ↓i+1 ≡ (i+ 1)ω0ωiCΣβ
2(Ni + 1)Z0.

B.4 Example - Purcell effect

Another important instance of qubit relaxation induced by the circuit environment
is the so-called Purcell decay. When a qubit is coupled to a resonator which itself
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Figure B.5: (a) Schematic of a qubit capacitively coupled to a transmission line. (b)
Schematic of a qubit capacitively coupled to a transmission line resonator.

couples to an outside environment – for example a transmission line, the qubit can
lose its energy to the line via the resonator. This can happen even if the two are not
resonant with each other and the dependence of the qubit relaxation rate on frequency
will be heavily influenced by the presence of the resonator. Generally speaking, the
relaxation rate decreases with increasing detuning of the qubit from the resonator
modes.

This effect can be interpreted in many different ways. As the qubit and the
environment exchanging virtual photons via the resonator. As the qubit acting like
an antenna, oscillating at its transition frequency and transmitting an off-resonant
signal through the resonator. Or as the vacuum fluctuations of the environment,
filtered by the resonator, inducing relaxation of the qubit. All of these are equally
valid ways of gaining insight into the problem. The second one is perhaps closest to
the way we have derived the relaxation rates in sec. B.1 while the last one is rather
in the spirit of sec. B.2.

The schematic of the circuit in question is shown in Fig. B.5b. The resonator
is a finite section of a transmission line connected at its two ends to semi-infinite
input and output transmission lines via capacitances C1 and C2. An arbitrary point
somewhere along the resonator is capacitively coupled to the qubit. The admittance
of such environment is given by

Y env(ω) = Y0

(
Y1(ω)/Y0 − i tan(ωl1/v)

1− iY1(ω) tan(ωl1/v)/Y0
+

Y2(ω)/Y0 − i tan(ωl2/v)

1− iY2(ω) tan(ωl2/v)/Y0

)
,

where Y1(ω) = 1/(Z0 + 1/iωC1), Y2(ω) = 1/(Z0 + 1/iωC2) are the admittances of the
loads at the ends of the resonator composed of the coupling capacitors and the outside
transmission lines. Furthermore, l1 and l2 are the lengths of the two sections of the
resonator between its ends and the qubit and v is the propagation speed of the field
in the transmission line. With a rather tedious calculation, one can show that in the
limit of weak coupling, that is for C1,2 � 1/ωZ0, the real part of Zenv(ω) = 1/Y env(ω)
becomes

ReZenv(ω) = Z3
0ω

2C
2
1 cos2(ωl2/v) + C2

2 cos2(ωl1/v)

sin2(ωl/v)
.
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After substitution into eq. (B.14), we get an equation which can be used to model

the expected Purcell-limited relaxation rates Γ ↓i as a function of the qubit frequency.
Most of the quantities appearing in this expression, such as the capacitances C1 and
C2, are not directly measurable in an experiment. However, some of them are related
to easily measurable quantities. For example, the voltage division ratio can be ex-
tracted from the resonant Jaynes-Cummings coupling strength g and the capacitances
C1 and C2 from the linewidth κ of the resonator’s fundamental mode and its resonant
insertion loss L0.
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Appendix C

A shortcut to circuit quantization

In general, the way to quantize a linear lossless electrical circuit is rather straight-
forward and well-understood. One starts by writing the Lagrangian describing the
dynamics of the circuit and derives the corresponding Hamiltonian. Thanks to the
linearity of the circuit, this will be a quadratic function of the canonical variables.
Using a suitable canonical transformation, one can diagonalize the Hamiltonian, thus
separating the dynamics of the system into independent harmonic modes. These
are then quantized in the standard way by replacing the dynamical variables with
operators obeying the canonical commutation relations.

Arguably, despite its conceptual simplicity, this process can become rather cum-
bersome for realistic circuits. In this appendix I present a less well known procedure
which will allow us to extract the frequencies and the vacuum voltage amplitudes of
the individual modes from a purely classical quantity – the impedance of the circuit.
The connection between the properties of the quantum model and the impedance is
provided by the correspondence principle which states that the expectation values of
the canonical variables of a linear system obey the classical equations of motion. We
will describe the evolution of the circuit using both the quantum and the classical
model and obtain the main result of this appendix by requiring the two predictions
to be equal.

To probe the system, we connect its node i to an ideal source of current Ie(t) and
measure the voltage response at node j, as shown in Fig. C.1a. We can then obtain
the voltage V (j)(t) at a node j from the impedance matrix Z(ω) of the circuit. In the
frequency domain, we have V (j)(ω) = Zji(ω)Ie(ω). In the following, we will consider
specifically a delta pulse excitation Ie(t) = Aδ(t), or in frequency domain Ie(ω) = A,
for which we get the simple result

V (j)(ω) = AZji(ω).

To calculate the voltage V (j) within the framework of quantum mechanics, we
first need to determine the Hamiltonian describing the interaction of the circuit with
the current source. The dynamics of a network of nodes connected by capacitors and
inductors can be expressed in terms of flux variables Φ(k)(t) =

∫
V (k)(t) dt and a
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Figure C.1: (a) Diagram of the multi-port circuit characterized by the impedance
matrix Z. A current source drives node i of the circuit and its voltage response is
monitored at node j. (b) LC oscillator as an example of a simple single-mode circuit.
(c) A system of two coupled LC oscillators as an example of a circuit with multiple
modes. The impedance matrix is evaluated at the two indicated nodes.

Lagrangian

L0 =
1

2
Φ̇ ·C · Φ̇− 1

2
Φ · L−1 ·Φ,

where C and L are the capacitance and inductance matrices of the circuit. It is not
difficult to show that the left-hand side of the Euler-Lagrange equation

d

dt

∂L0

∂Φ̇(i)
− ∂L0

∂Φ(i)
= 0

then represents the net current flowing out of node i. After connecting the current
source, this is no longer equal to zero but is instead given by Ie. This modification is
equivalent to the addition of a term

δL = Φ(i)Ie

to the Lagrangian. The variables Π(k) conjugate to the fluxes Φ(k) are then Π = C ·Φ̇
and the Hamiltonian

H = Π · Φ̇− L0 − δL

=
1

2
Π ·C ·Π +

1

2
Φ · L−1 ·Φ− Φ(i)Ie.

We can see that the coupling term has the form Hc = −Φ(i)Ie.
The linear circuit can be modelled as a collection of N harmonic modes with

annihilation (creation) operators âk (â†k), where k = 1, 2, . . . , N . To describe the
system fully, we need to specify the eigenfrequencies ωk of all the modes and their

vacuum flux amplitudes Φ
(i)
k which define the fluxes Φ̂(j) at each node j of the circuit

as
Φ̂(j) =

∑
k

Φ
(j)
k â†k + Φ

(j)∗
k âk.
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Similarly, we can also expand the voltages at each node as

V̂ (j) =
∑
k

V
(j)
k â†k + V

(j)∗
k âk, (C.1)

where the vacuum amplitudes V
(j)
k are related to Φ

(j)
k by V

(j)
k = iωkΦ

(j)
k in order to

satisfy the identity dΦ̂(j)/dt = V̂ (j).

The current delta pulse is represented by the Hamiltonian Ĥc = −Φ̂(i)Aδ(t) which

results in a unitary operation U = exp(iAΦ̂(i)/~) acting at t = 0. Starting with the
circuit in the vacuum state, this displacement operator drives the system into the

coherent state |α1α2 . . .〉 where αk = iAΦ
(i)
k . After that, the state evolves freely and

at time t > 0 is

|ψ(t)〉 = |α1(t)α2(t) . . .〉, where

αk(t) =
iAΦ

(i)
k

~
e−iωkt.

If we measure the voltage at a node j, we obtain the expectation value

〈V̂ (j)(t)〉 =
∑
k

V
(j)
k 〈âk〉∗ + V

(j)∗
k 〈âk〉

= − iA

~
∑
k

V
(j)
k Φ

(i)∗
k eiωkt − V (j)∗

k Φ
(i)
k e−iωkt.

Its Fourier transform (in the electrical engineering notation) is then

〈V̂ (j)(ω)〉 =

∫
〈V̂ (j)(t)〉e−iωt dt

= − iA

~

∫ ∞
0

dt
∑
k

V
(j)
k Φ

(i)∗
k ei(ωk−ω)t − V (j)∗

k Φ
(i)
k e−i(ωk+ω)t

=
A

~
∑
k

V
(j)
k Φ

(i)∗
k

1

ωk − ω + iε
+ V

(j)∗
k Φ

(i)
k

1

ωk + ω − iε
.

From the correspondence principle, comparison of the classical and the quantum
mechanical expression gives us∑

k

V
(j)
k Φ

(i)∗
k

(
πδ(ωk − ω) + P i

ωk − ω

)
− V (j)∗

k Φ
(i)
k

(
πδ(ωk + ω)− P i

ωk + ω

)
= i~Zji(ω),

which finally leads to the central result of this appendix, namely that∑
k

V
(j)
k V

(i)∗
k δ(ωk − ω)− V (j)∗

k V
(i)
k δ(ωk + ω) =

~ω
2π

(Zji(ω) + Z∗ij(ω)). (C.2)
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This identity links a classical quantity – the impedance matrix Z – to the vacuum

voltage amplitudes V
(j)
k of the modes and their frequencies ωk. To understand how

these quantities can be extracted from the impedance matrix, let us consider a finite
lossless circuit whose impedance Z(ω) is symmetric and purely imaginary for ω ∈ R,
has simple poles at frequencies ±ω1,±ω2, . . . ,±ωN ∈ R and can be expanded in the
form

Z(ω) =
∑
k

resωkZ

ω − ωk
+

res−ωkZ

ω + ωk
.

Causality dictates that the poles of any response function, of which impedance is one
example, all lie in the upper1 half of the complex plane. We will therefore shift all the
poles ±ωk by an infinitesimal amount iε. The right-hand side of eq. (C.2) is then zero
everywhere except at the poles where the terms 1/(ω∓ωk∓ iε)−1/(ω∓ωk± iε) yield
a delta function ±2πiδ(ω − ωk). A simple comparison of the terms on both sides of
eq. (C.2) then tells us that the poles ωk are exactly the eigenfrequencies of the modes
and the products of the vacuum voltage amplitudes on the left-hand side are related
to the residues of Z(ω) by

V
(j)
k V

(i)∗
k = i~ωkresωkZji. (C.3)

According to this equation, we can determine the absolute values of the vacuum

amplitudes |V (j)
k | from the residues of the diagonal impedance matrix elements Zjj .

The off-diagonal elements allow us to find the relative phases between each pair of

amplitudes V
(i)
k and V

(j)
k belonging to the same mode k. This determines all the

amplitudes up to a phase shift which may be different for each mode. These phase
shifts can be chosen arbitrarily which corresponds to choosing the phases of the ladder
operators â and â†. Eq. (C.3) therefore fully specifies the coefficients in the expansion

of the voltage operators V̂ (j) in terms of the ladder operators, as given by eq. (C.1).

C.1 Example – LC oscillator

To illustrate the use of eq. (C.3), we will start with a very simple example – a parallel
LC circuit as shown in Fig. C.1(b). This circuit has a single ungrounded node i = 1
and the corresponding impedance Z11 can be readily calculated as

Z11(ω) =
1

iωC + 1
iωL

= −
iω
C

ω2 − 1
LC

.

This function has two poles at ω = ±ω1, where ω1 = 1/
√
LC. The circuit therefore

has a single resonant mode with frequency ω1. The residue of the impedance at this

1Or lower, depending on the definition of the Fourier transform.
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frequency is given by

resω1
Z11 ≡ lim

ω→ω1

(ω − ω1)Z11(ω) = lim
ω→ω1

− iω
C

ω + 1√
LC

= − i

2C
.

Application of eq. (C.3) then gives us

|V (1)
1 |2 = i~ω1resω1

Z11 =
~ω1

2C
.

This vacuum fluctuation amplitude can be also derived in the more usual way by
considering that half of the vacuum energy ~ω1/2 is stored as the electrostatic energy

of the capacitor, i.e. C|V (1)
1 |2/2 = ~ω1/4.

C.2 Example – two coupled LC oscillators

Let us now consider a more interesting example – a system of two LC oscillator as
discussed above, coupled together via a capacitance Cc (see Fig. C.1(c)). The 2 × 2
admittance matrix Y corresponding to the two ungrounded nodes can be written
as a sum of the admittance matrices of the individual LC circuits and the coupling
capacitor

Y(ω) =

(
iωC + 1/iωL 0

0 0

)
+

(
0 0
0 iωC + 1/iωL

)
+

(
iωCc −iωCc
−iωCc iωCc

)
.

The impedance matrix is its inverse

Z(ω) = − ω2

(ω2C − 1/L)(ω2(C + 2Cc)− 1/L)

(
iωCtot + 1/iωL iωCc

iωCc iωCtot + 1/iωL

)
,

where Ctot = C + Cc. It has four poles ±ω1,2, where ω1 = 1/
√
LC and ω2 =

1/
√
L(C + 2Cc) are the frequencies of the two resonant modes. The residues of the

impedance matrix at the two poles are straightforward, even if slightly tedious, to
calculate:

resω1
Z = − i

4C

(
1 1
1 1

)
resω2Z = − i

4(C + 2Cc)

(
1 −1
−1 1

)
Using eq. (C.3), we then get |V (1)

1 |2 = |V (2)
1 |2 = V

(1)
1 V

(2)∗
1 = V

(2)
1 V

(1)∗
1 = ~ω1/4C

and |V (1)
2 |2 = |V (2)

2 |2 = −V (1)
2 V

(2)∗
2 = −V (2)

2 V
(1)∗
2 = ~ω1/4(C + 2Cc). As discussed

above, this determines the voltage amplitudes up to a phase which can be chosen

arbitrarily and separately for each mode. We will choose V
(1)
1 and V

(1)
2 to be positive
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real which gives us

V
(1)
1 =

√
~ω1

4C
,

V
(2)
1 =

√
~ω1

4C
,

V
(1)
2 =

√
~ω2

4(C + 2Cc)
,

V
(2)
2 = −

√
~ω2

4(C + 2Cc)
.

From the symmetry of the circuit, we would expect that its modes are either symmet-
ric or antisymmetric under exchange of the two LC oscillators. We can see that the
results of our calculation agree with this. In mode 1, the voltages at the two nodes
oscillate with the same amplitude and phase, while in mode 2 they have the same
amplitude but are out of phase by π.

Using these symmetry arguments, it would have again been possible to calculate
the vacuum amplitudes rather easily even without eq. (C.3). In the symmetric mode,
the voltage drop across the coupling capacitor is zero and therefore the two LC circuits
oscillate independently with their uncoupled frequencies 1/

√
LC. The vacuum energy

is distributed among them, hence the voltage amplitude is lower than for a single LC
oscillator by a factor of

√
2. In the antisymmetric mode, the single coupling capacitor

can be replaced by two connected in series, each with capacitance 2Cc. The node
between them is then at zero potential and can be connected to ground without
changing the behaviour of the circuit. The system is therefore equivalent to two
uncoupled LC circuits with capacitance C + 2Cc oscillating out of phase by π.

C.3 Derived quantities

Eq. (C.2) allows us to evaluate some useful quantities such as the correlation function

〈V̂ (i)(t)V̂ (j)(0)〉 or propagators of the voltages in the circuit. Using eq. (C.1), we can
express the correlation function in the Heisenberg picture as

〈V̂ (i)(t)V̂ (j)(0)〉 =
∑
k,l

〈(V (i)∗
k e−iωktâk + V

(i)
k eiωktâ†k)(V

(j)∗
l âl + V

(j)
l â†l )〉

=
∑
k,l

〈V (i)∗
k V

(j)
l e−iωktâkâ

†
l + V

(i)
k V

(j)∗
l eiωktâ†kâl〉

=
∑
k

V
(i)∗
k V

(j)
k e−iωkt(nk + 1) + V

(i)
k V

(j)∗
k eiωktnk,

where nk = 〈â†kâk〉 is the expected number of photons in mode k. We will assume that
the system is in a thermal state at a temperature T , i.e. nk = 1/(exp(~ωk/kBT )−1).
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The correlation function can then be written with the help of eq. (C.2) as

〈V̂ (i)(t)V̂ (j)(0)〉 =

∫
~ω
2π

Zji(ω) + Z∗ij(ω)

1− e−~ω/kBT
e−iωt dω.

The voltage spectral density, which is defined as (Clerk et al., 2010) S
(i)
V V (ω) =∫

〈V̂ (i)(t)V̂ (i)(0)〉eiωt dt, can therefore be written as

S
(i)
V V (ω) =

2~ωReZii(ω)

1− e−~ω/kBT
. (C.4)

Other useful quantities are the advanced and retarded propagators G
(ij)
adv(t),

G
(ij)
ret (t) and the Feynman propagator G

(ij)
F (t), defined as

G
(ij)
adv(t) =

∫
dω

2π
G

(ij)
adv(ω)e−iωt = −i〈0|[V̂ (i)(t)V̂ (j)(0)]|0〉Θ(−t)

G
(ij)
ret (t) =

∫
dω

2π
G

(ij)
ret (ω)e−iωt = i〈0|[V̂ (i)(t)V̂ (j)(0)]|0〉Θ(t)

G
(ij)
F (t) =

∫
dω

2π
G

(ij)
F (ω)e−iωt = i〈0|T V̂ (i)(t)V̂ (j)(0)|0〉,

where T denotes time-ordering. In a similar manner as for the correlation function, we
can calculate the expectation values in the definitions of these propagators in terms
of the vacuum voltage amplitudes and then express them using eq. (C.2). Fourier
transforming the result then yields these expressions for the propagators in frequency
space:

G
(ij)
adv(ω)

G
(ij)
ret (ω)

 =

∫
dω′

2π

~ω′(Zji(ω′) + Z∗ij(ω
′))

ω′ − ω ± iε
,

G
(ij)
F (ω) =

∫
dω′

2π

~ω′(Zji(ω′) + Z∗ij(ω
′))

ω′ − ω(1 + iε)
.
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Appendix D

Optimizing a second order
transition

In this appendix, I present two methods for optimizing a pulse driving a higher order
transition between two specific states in a quantum system. The first technique, which
we have previously used to study the |f0〉 → |g1〉 transition in a transmon-resonator
system (Zeytinoglu et al., 2015), aims to achieve a good fidelity of the final state. The
derivation given here closely follows the appendix of the paper, except in a slightly
more general context. The second technique may be more useful in situations where
not only the initial and final state matter but the fidelity of the intermediate state is
also of importance. This is the case for example in photon shaping processes.

D.1 Method 1: Optimizing final state fidelity

Let us consider a quantum system with a Hamiltonian Ĥ0. We wish to drive a
transition between its two eigenstates |Φ1〉 and |Φ2〉. To do this, we apply a drive
signal at a frequency close to the energy difference between the two states. We
can tune the drive amplitude, its frequency and potentially also other parameters
of the system. How do we need to vary these quantities to achieve for instance a
swap operation between |Φ1〉 and |Φ2〉? While the answer to this question is trivial
in the simple case of a two-level system, the presence of a coupling to other states
complicates the situation. Driving of these off-resonant transitions induces Stark
shifts of the energy levels which need to be compensated for.

We will denote the Hamiltonian of the driven system in a reference frame rotating
at the drive frequency by Ĥ(λ), where λ stands for the variation in the parameters

of the system. For λ = 0, the Hamiltonian reduces to Ĥ0 up to the rotating frame
transformation. In the rotating frame, the states |Φ1〉 and |Φ2〉 are nearly degenerate
with an energy separation ∆ε. We will further assume that other eigenstates are
separated from them by an energy gap ∆E much larger than ∆ε. In addition, we
consider that the Hamiltonian varies slowly compared with ∆E, that is, the process is
adiabatic with respect to all transitions out of the subspace spanned by |Φ1〉 and |Φ2〉.
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Figure D.1: (a) Energy level diagram illustrating the separation of the subspace S
spanned by the eigenstates |Φ1〉 and |Φ2〉 from other eigenstates. (b) Parallel transport
connecting the subspaces S(λ) for different λ. The transported vector |ψ〉 (orange)
is being repeatedly projected onto the successive subspaces. This results in a linear
mapping M̂(λ) from S(0) to S(λ).

Finally, we also require that the separation of the energy scales and the adiabaticity
condition are preserved as the system parameters are tuned around.

According to the adiabatic theorem (Born & Fock, 1928), if the system was initially
prepared in a superposition of |Φ1〉 and |Φ2〉, it will at all times remain in the subspace

S(λ) spanned by the eigenstates |Φ1(λ)〉 and |Φ2(λ)〉 of Ĥ(λ) corresponding to |Φ1〉
and |Φ2〉. To find out how the state of the system |Ψ(t)〉 evolves in the changing
subspace S(λ), we will first parametrize it by a state |ψ(t)〉 in the initial subspace

S(0) as |Ψ(t)〉 = M̂(λ(t))|ψ(t)〉, where M̂(λ) is some linear mapping from S(0) to
S(λ). This reduces the problem of finding the evolution of |Ψ(t)〉 in the full Hilbert
space to that of finding the evolution of |ψ(t)〉 in a fixed two-dimensional subspace.

How do we choose the map M̂(λ)? A natural candidate for a process mapping between
subspaces continuously evolving along a curve S(λ) is a parallel transport defined in
the following way:

M̂(λ) = lim
∆λ→0

P̂ (λ)P̂ (λ−∆λ) . . . P̂ (2∆λ)P̂ (∆λ)P̂ (0), (D.1)

where P̂ (λ) =
∑
i=1,2 |Φi(λ)〉〈Φi(λ)| is a projector onto S(λ). This map represents a

continuous series of projections onto the subspaces S(x) for x varying from 0 to λ.
Since |Ψ(t+ dt)〉 lies in S(λ(t+ dt)), it can be expressed as

|Ψ(t+ dt)〉 =P̂ (λ(t+ dt))|Ψ(t+ dt)〉
=P̂ (λ(t+ dt)) exp(−iĤ(λ(t))dt)|Ψ(t)〉,
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resulting in the following evolution equation for |ψ(t)〉:

M̂(λ(t+ dt))|ψ(t+ dt)〉 = (D.2)

P̂ (λ(t+ dt)) exp(−iĤ(λ(t))dt)M̂(λ(t))|ψ(t)〉

Under the reasonable assumption that the subspace S(λ) changes smoothly with λ, it

can be shown that M̂(λ) preserves vector norms in S(λ). It follows that M(λ)†, which
is an infinite product of projectors analogous to M(λ) but in the reverse order, is the

inverse of M(λ). Hence, after dropping the projector P̂ (λ(t+dt)) from the right-hand

side of eq. (D.2) as well as from the product form of M̂(λ(t + dt)) (cf. eq. (D.1)) on

its left-hand side, we multiply the equation by M̂(λ(t))† to obtain

|ψ(t+ dt)〉 = M̂(λ(t))† exp(−iĤ(λ(t))dt)M̂(λ(t))|ψ(t)〉

which we transform into the differential form

d

dt
|ψ(t)〉 = −iM̂(λ(t))†Ĥ(λ(t))M̂(λ(t))|ψ(t)〉.

The evolution of the vector |ψ(t)〉 is therefore governed by an effective Hamiltonian

Ĥeff(λ) = M̂(λ)†Ĥ(λ)M̂(λ) (D.3)

acting on S(0), resulting in the effective evolution operator Ûeff(tf , ti) =

T exp
∫ tf
ti

(−iĤeff(λ(t))) dt. If we assume that λ(ti) = λ(tf) = 0, we have |ψ(ti)〉 =

|Ψ(ti)〉 and |ψ(tf)〉 = |Ψ(tf)〉. Then we can directly write down the evolution from
|Ψ(ti)〉 to |Ψ(tf)〉:

|Ψ(tf)〉 = Ûeff(tf , ti)|Ψ(ti)〉.
This result allows us to determine the variation of λ with time necessary to realize

a perfect swap operation between |Φ1〉 and |Φ2〉. For this, the effective Hamiltonian
has to have the form

Ĥeff(t) = Eoffset(t)1+ g(t)(|Φ1〉〈Φ2|+ H.c.), (D.4)

where the overall energy shift Eoffset(t) leading only to an overall phase shift is omitted
since it is physically irrelevant. This equation is equivalent to the requirement that
the equal superposition states |Φ±〉 = (|Φ1〉 ± |Φ2〉)/

√
2 are eigenstates of Ĥeff(t) and

therefore, by virtue of eq. (D.3), that M̂λ(t)|Φ±〉 are eigenstates of Ĥ(t) which we have
previously denoted by |Φ1,2(λ(t))〉. In other words,

{|Φ1(λ)〉, |Φ2(λ)〉} = {M̂λ|Φ+〉, M̂λ|Φ−〉}. (D.5)

This equation can be solved for M̂λ. However, since our goal is to obtain a condi-
tion for λ, we need an equation for the Hamiltonian instead. To get it, we transform
eq. (D.5) into a differential form. By substituting λ→ λ+ dλ, we find the following
relation between |Φi(λ+ dλ)〉 and |Φi(λ)〉:

|Φi(λ+ dλ)〉 = P̂ (λ+ dλ)|Φi(λ)〉,
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which, after multiplication by 〈Φj(λ+ dλ)|, we write in the form

〈Φi(λ)| d

dλ
|Φj(λ)〉 = 0.

The associated initial condition follows from taking the limit λ→ 0 in eq. (D.5), giving
{limλ→0 |Φ1(λ)〉, | limλ→0 Φ2(λ)〉} = {|Φ+〉, |Φ−〉}. Since the vectors on the left-hand
side are eigenstates of the non-driven Hamiltonian, so have to be |Φ+〉 and |Φ−〉. This
is by definition also true for |Φ1〉 and |Φ2〉. The only way the two distinct pairs of
vectors can be eigenstates at the same time is if the subspace they are spanning is
degenerate. This can be achieved by choosing the correct frequency of the rotating
frame, giving us a condition for the drive frequency at λ = 0.

For i = j, the differential equation above can be satisfied simply by choosing
the correct phase of the eigenstates |Φ1,2(λ)〉. After expressing the derivative of the
eigenstate in terms of the derivative of the Hamiltonian, the remaining equations for
i 6= j are equivalent to

〈Φ1(λ)|dĤ(λ)

dλ
|Φ2(λ)〉 = 0. (D.6)

This equation expresses a condition for the curve parametrized by λ that the Hamil-
tonian has to take in the parameter space. If it holds, the resulting operation in the
subspace S(0) will have the desired form exp(−iθ(|Φ1〉〈Φ2|+ H.c.)/2) and can realize
a perfect swap between |Φ1〉 and |Φ2〉. In general, if we have at our disposal at least
one tunable parameter of the Hamiltonian in addition to the drive amplitude Ω, we
can satisfy eq. (D.6) in the following way.

Let us consider for example that the additional parameter we can control is the
drive frequency ωd and let us fix the parametrization of Ω as Ω = λ. ωd is then an
unknown function of Ω which we wish to choose such that eq. (D.6) is satisfied. We

will expand the derivative dĤ(λ)/dλ using chain rule and get

〈Φ1(Ω,ωd)|
∂Ĥ(Ω,ωd)

∂Ω
|Φ2(Ω,ωd)〉+

dωd(Ω)

dΩ
〈Φ1(Ω,ωd)|

∂Ĥ(Ω,ωd)

∂ωd
|Φ2(Ω,ωd)〉 = 0. (D.7)

We can solve this differential equation for ωd(Ω) numerically to find the desired
amplitude dependence of the drive frequency. A simple procedure for finding the
solution is summarized here:

1. Start with Ω = 0. Find ωd by requiring |Φ1〉 and |Φ2〉 to be degenerate in the
rotating frame.

2. Find the eigenstates |Φ1,2(Ω,ωd)〉 of the Hamiltonian Ĥ(Ω,ωd). For the first
step when Ω = 0 and the eigenstates are degenerate, choose |Φ1,2(Ω,ωd)〉 =
(|Φ1〉 ± |Φ2〉)/

√
2.

3. Use eq. (D.7) to calculate dωd(Ω)/dΩ
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4. Set ωd → ωd + dωd(Ω)
dΩ ∆Ω and Ω → Ω +∆Ω.

5. Go to step 2.

Once the solution is known, the effective coupling g(Ω) between |Φ1〉 and |Φ2〉 can
be calculated from the eigenenergies E1,2(Ω,ωd) of the two eigenstates |Φ1,2(Ω,ωd)〉.
Inspection of eq. (D.4) shows that these eigenenergies are equal to Eoffset ± g and
therefore

g(Ω) =
E1(Ω,ωd)− E2(Ω,ωd)

2
.

D.2 Method 2: Optimizing time-averaged fidelity

Let us now consider a scenario where we have a pair of states |ψ1〉, |ψ2〉 and would

ideally like to drive Rabi oscillations between them, given by the unitary Ûideal(t):

Ûideal(t)|ψ1〉 =e−iωt cos
Ωt

2
|ψ1〉+ e−i(ωt−φ) sin

Ωt

2
|ψ2〉,

Ûideal(t)|ψ2〉 =− e−i(ωt+φ) sin
Ωt

2
|ψ1〉+ e−iωt cos

Ωt

2
|ψ2〉.

The Hamiltonian Ĥ at our disposal is time-independent, allows some degree of tuning
but not such that we can implement the unitary operation above perfectly. How do we
choose our Hamiltonian to get as close as possible to the given evolution? To answer
this question, we first need to define a figure of merit which we aim to optimize. For
us, this will be the time- and state-averaged distance

∆ ≡
∑
j=1,2

lim
T→∞

1

2T

∫ T

0

||Û(t)|ψj〉 − Ûideal(t)|ψj〉||2 dt.

We can rewrite the right-hand side expression to

∆ = 2− lim
T→∞

1

T

∫ T

0

Re Tr Û†ideal(t)Û(t)P̂ dt,

where P̂ is a projector onto the subspace spanned by |ψ1〉 and |ψ2〉.
We can easily verify that the states

|ψ±〉 ≡ |ψ1〉 ± ieiφ|ψ2〉

are eigenstates of Ûideal(t) with eigenvalues e−i(ω±Ω/2)t. If we furthermore denote the

eigenstates of Ĥ as |ϕj〉 and their respective eigenvalues as ~ωj , we can rewrite the
trace in the expression for ∆ as∑

j

e−i(ωj−ω−Ω/2)t〈ψ+|ϕj〉〈ϕj |ψ+〉+ e−i(ωj−ω+Ω/2)t〈ψ−|ϕj〉〈ϕj |ψ−〉,
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finally leading to

∆ = 2−
∑
j

δωj−ω−Ω/2|〈ϕj |ψ+〉|2 + δωj−ω+Ω/2|〈ϕj |ψ−〉|2,

where δ is the Kronecker delta symbol. If we consider ω and Ω to be free parameters,
the minimal value of ∆ is achieved by picking two eigenstates |ϕa〉 and |ϕb〉 which
maximize |〈ϕa|ψ+〉|2 + |〈ϕb|ψ−〉|2 and then requiring ωa = ω+Ω/2 and ωb = ω−Ω/2.
In other words, the minimal value of ∆ is given by

∆ = min
a6=b

(
2− |〈ϕa|ψ+〉|2 − |〈ϕb|ψ−〉|2

)
. (D.8)

The error parameter ∆ given by this equation quantifies how well a given Hamil-
tonian reproduces the desired Rabi oscillations (the lower the value of ∆, the better).
It provides us with another operational definition of the ac Stark shift - as a shift of
the drive frequency which minimizes ∆.

As an example, we will consider driving of the |f0〉 ↔ |g1〉 transition in a
transmon-resonator system. In this case, we have a rotating-frame Hamiltonian of
the form

Ĥ = Ĥ0 +
1

2
ε(b̂†eiθ + b̂e−iθ)− δdN̂,

where Ĥ0 is the non-driven Jaynes-Cummings Hamiltonian, ε(b̂†eiθ + b̂e−iθ)/2 is the

drive term, N̂ is the excitation number operator and δd is a detuning of the drive
signal from a fixed reference frequency. We will choose this reference such that for
δd = 0 and ε = 0, the dressed states |f0〉 and |g1〉 are degenerate.

Then, for a given drive strength ε, we find the values of θ and δd for which the
error ∆ given by eq. (D.8) is minimal. The transition rate Ω is then given by the
difference ωa − ωb of the eigenvalues corresponding to the eigenvectors |ϕa〉 and |ϕb〉
which optimize ∆.
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Appendix E

Photon shaping and reabsorption
theory

E.1 Photon shaping

A diagram of a generic system which may be used to emit single shaped photons is
shown in Fig. 4.1. The unitary evolution happens within the subspace M while the
photon emission process from the state |ϕe〉 traps the system in the ground state |G〉.

The evolution of such a system can be conveniently described within the framework
of quantum trajectories. The state vector evolves according to the non-unitary Schrö-
dinger equation

d

dt
|ψ(t)〉 = −i

(
Ĥ(t)− iκ

2
|ϕe〉〈ϕe|

)
|ψ(t)〉. (E.1)

The square of the norm of this vector represents the probability that the system has
not emitted a photon before time t. Its time derivative is given by

d

dt
〈ψ(t)|ψ(t)〉 − κ|〈ϕe|ψ(t)〉|2. (E.2)

This implies that the normalized state vector |ψ(τ)〉 = |ψ(τ)〉/
√
〈ψ(τ)|ψ(τ)〉 evolves

according to

d

dt
|ψ(t)〉 = −i

(
Ĥ(t)− iκ

2
|ϕe〉〈ϕe|+

iκ

2
〈ψ(t)|ϕe〉〈ϕe|ψ(t)〉

)
|ψ(t)〉. (E.3)

Consistently with eq. (E.2), the probability amplitude for emitting a photon in
the time interval (t, t+dt) is 〈ϕe|ψ(t)〉

√
κdt. The state |Ψ(t)〉 of the combined system

including the propagating field therefore is

|Ψ(t)〉 = |ψ(t)〉 ⊗ |0〉+ |G〉 ⊗
∫ t

ti

√
κ〈ϕe|ψ(τ)〉a†out(τ)|0〉dτ, (E.4)

where â†out(τ) is the creation operator for a propagating photon emitted in the time

interval (τ, τ + dτ). It is normalized such that [âout(τ
′), â†out(τ)] = δ(τ ′ − τ). Note
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that this means a properly normalized state with a single photon localized at time τ is
actually

√
dτ â†out(τ)|0〉, which together with the emission probability amplitude also

proportional to
√

dτ gives the correct infinitesimal quantity dτ in the last integral.
The goal of photon shaping is to design the Hamiltonian Ĥ(t) to achieve a desired

final state |Ψf 〉 at t = tf . We can write it in the general form

|Ψf 〉 = |ψf 〉 ⊗ |0〉+ |G〉 ⊗
∫ tf

ti

f(τ)â†out(τ)|0〉dτ. (E.5)

Here the function f(τ) represents the wavefunction of the photon. If we observe
the output of the system with a photodetector, |f(τ)|2 dτ gives the probability of
observing the photon being emitted in a time interval (τ, τ + dτ).

For simplicity, we will consider the state of the system at time tf → ∞ and
assume that the photon was emitted with unit probability. In other words, |ψf 〉 = 0
and

∫∞
ti
|f(τ)|dτ = 1. Comparison with eq. (E.4) then gives us an expression for the

photon wavefunction f(τ) in terms of the probability amplitude 〈ϕe|ψ(τ)〉:
√
κ〈ϕe|ψ(τ)〉 = f(τ). (E.6)

This can be equivalently expressed in terms of the normalized state vector. Using
eq. (E.2), we get d〈ψ(t)|ψ(t)〉/dτ = −|f(τ)|2 and therefore

√
κ〈ϕe|ψ(τ)〉 =

f(τ)√
1−

∫ τ
ti
|f(t)|2 dt

. (E.7)

In principle, this equation allows us to determine how the state |ψ(τ)〉 needs to vary
with time to achieve a given photon wavefunction f(τ). Note, however, that the
solution is physical only if f(τ) satisfies

|f(τ)|2/κ ≤ 1−
∫ τ

ti

|f(t)|2 dt.

This expresses the condition that the photon emission rate given by |f(τ)|2 cannot be
higher than κ times the probability that the photon has not been emitted before time
τ . It also means that the photon wavefunction cannot fall off faster than exp(−κτ/2).
If we are looking for a photon pulse which is symmetric in time and falls off as sharply
as possible but no faster than exp(−κτ/2), a natural candidate may be a function
proportional to 1/ cosh(κτ/2). We will set the initial time ti to −∞ and normalize

the photon wavefunction to satisfy
∫ +∞
−∞ |f(τ)|2 dτ = 1. The resulting expression for

f(τ) is

f(τ) =

√
κ

2 cosh(κτ/2)
.

Using eq. (E.7), we then get

〈ϕe|ψ(τ)〉 =
1√

1 + exp(−κτ)
. (E.8)
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Figure E.1: Photon shaping scheme with a two-level system.

In general, finding a Hamiltonian resulting in a given evolution of the probability
amplitude 〈ϕe|ψ(τ)〉 is a very difficult task. However, it becomes more tractable in
certain special cases – for example when the subspaceM is only two-dimensional, as
illustrated in Fig. E.1. The emitting state |ϕe〉 in this particular example is |1〉.

We will assume that the two states |0〉 and |1〉 are resonant with each other. The

non-Hermitian Hamiltonian describing this system is Ĥ(t)− iκ|1〉〈1|/2, where

Ĥ(t) = ig̃(t)(|0〉〈1| − |1〉〈0|).

If we parametrize the normalized state vector |ψ(t)〉 as

|ψ(t)〉 = cos
θ(t)

2
|0〉+ sin

θ(t)

2
|1〉

and substitute this form into the evolution equation eq. (E.3), we arrive at the fol-
lowing equation for θ(t):

θ̇(t) = 2g̃(t)− 1

2
κ sin θ(t). (E.9)

Using eq. (E.7), we can express sin(θ(t)/2) = 〈1|ψ(t)〉 in terms of the desired photon
wavefunction f(t). This then allows us to solve eq. (E.9) for g̃(t). Note that since
we have fixed the phase of the drive signal, the probability amplitude 〈1|ψ(t)〉 and
therefore also f(t) are restricted to be purely real. To obtain f(t) whose phase is not
constant in time, we would need to vary the phase of the drive signal.

For the particular form of 〈1|ψ(t)〉 given by eq. (E.8) which results in the 1/ cosh
photon wavefunction, we have

θ(t) = 2 arcsin

(
1√

1 + exp(−κt)

)
.

Substituting this into eq. (E.9) yields a simple expression for g̃(t):

g̃(t) =
κ

2 cosh κt
2

.

This result can be generalized for photon shapes of the form

f(t) =

√
κeff

2 cosh(κefft/2)
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Figure E.2: Simplified diagram of the photon emission/reabsorption setup including
losses in the connecting line, represented using a fictitious beamsplitter.

with κeff ≤ κ. A derivation analogous to the one given above yields the form of the
drive pulse

g̃(t) =
κeff

4 cosh κeff t
2

1− eκeff t + (1 + eκeff t)κ/κeff√
(1 + eκeff t)κ/κeff − eκeff t

. (E.10)

E.2 Photon reabsorption

Here we consider a simple setup with two distant qubits as described in ch. 5 and
illustrated in Fig. 5.1. We extend the diagram to explicitly model losses in the line
connecting the two samples. This is done by including an beamsplitter which routes
a small fraction 1− λ2 of the signal power towards an imaginary port. The resulting
diagram is shown in Fig. E.2. Based on this configuration, we will use input-output
theory to eliminate the field propagating between the samples and derive an effective
master equation of the cascaded system. A proposal to use a system of this type for
quantum information transfer was presented in Cirac et al. (1997).

If we denote the fields incident on and reflected from the two subsystems as âin,
b̂in, âout and b̂out and the resonator fields by â and b̂, the input-output relations
become

âout = âin +
√
κaâ,

b̂out = b̂in +
√
κbb̂,

while the Heisenberg equations for â and b̂ are

d

dt
â = i[Ĥa, â]−

κa
2
â −√κaâin,

d

dt
b̂ = i[Ĥb, b̂]− κb

2
b̂ −√κbb̂in.

In the cascaded system, the input of the second subsystem is directly given by the
output of the first one. We only need to take into account the propagation delay ∆t
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and the losses represented by the transmission coefficient of the beamsplitter λ. The
relation between b̂in and âout is then

b̂in(t) = λâout(t−∆t).
Since the two subsystems are connected only by the propagating field, we can simply
shift the time scale for the second system by ∆t and effectively eliminate the propa-
gation delay. In other words, we can effectively treat the system as if there were no
propagation delay but in reality delay any drive pulses on the second system by ∆t.
With this convention and assuming the input at the first system is in the vacuum
state, the Heisenberg equations become

d

dt
â = i[Ĥa, â]−

κa
2
â,

d

dt
b̂ = i[Ĥb, b̂]− κb

2
b̂ − λ√κaκbâ.

The real output of the cascaded system at the third port of the circulator is given by

b̂out = λ(
√
κaâ + âin) +

√
1− λ2ĥ +

√
κbb̂,

where ĥ is the vacuum port of the beamsplitter. The fictitious output representing
the loss in the line is

ĉout =
√

1− λ2(
√
κaâ + âin)− λĥ.

We will now look for a master equation of the cascaded system in the form

d

dt
ρ̂ = −i[Ĥa + Ĥb + Ĥc, ρ̂] +Db̂out [ρ̂] +Dĉout [ρ̂], (E.11)

where Ĥc is an effective interaction term which we need to determine. This master
equation results in the following evolution equations for the expectation values of â
and b̂:

d

dt
〈â〉 = 〈i[Ĥa, â] + i[Ĥc, â]− [â, b̂†out]b̂out/2− [â, ĉ†out]ĉout/2〉

= 〈i[Ĥa, â] + i[Ĥc, â]− λ2κaâ/2− λ
√
κaκbb̂/2− (1− λ2)κaâ/2〉,

d

dt
〈b̂〉 = 〈i[Ĥb, b̂] + i[Ĥc, b̂]− [b̂, b̂†out]b̂out/2− [b̂, ĉ†out]ĉout/2〉

= 〈i[Ĥb, b̂] + i[Ĥc, b̂]− λ√κaκbâ/2− κbb̂/2〉.
Here we have again used the assumptions that the incoming field âin as well as the
fourth port of the beamsplitter ĥ are in the vacuum state. If we require these equa-
tions to be equivalent to the Heisenberg equations derived above, the interaction
Hamiltonian needs to satisfy

i[Ĥc, â]−
1

2
λ
√
κaκbb̂ = 0,

i[Ĥc, b̂] +
1

2
λ
√
κaκbâ = 0.
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These equations are solved by the exchange interaction term

Ĥc =
i

2
λ
√
κaκb(â

†b̂ − b̂†â).

Using this term in eq. (E.11) gives us the master equation describing the cascaded
system. From its form, we can immediately see that if the photon exchange process
is to be ideal, the system needs to stay in a pure state at all times and this state |Ψ〉
needs to satisfy b̂out|Ψ〉 = 0 and ĉout|Ψ〉 = 0. The second condition can be satisfied if
either λ = 1 or â|Ψ〉 = 0. The latter case, however, corresponds to a situation where
the resonator of the first system is never excited and therefore no photon exchange
can take place. The line between the samples therefore needs to be lossless, that is,
λ = 1.

E.3 Photon reabsorption simulations

For my simulation, I take the following parameters as given: transmon transition
frequency ωq between the ground and first excited state, transmon anharmonicity α,
resonator frequency ωr, the Jaynes-Cummings coupling strength g between |e0〉 and
|g1〉, the resonator relaxation rate κ.

The simulation proceeds as follows:

1. Calculate EJ and EC of the transmon from the given transition frequency ωq and
anharmonicity α. Write the transmon Hamiltonian in a truncated charge basis
{|n〉}|n|≤N where N is sufficiently large (in my simulationsN = 20). Diagonalize
to get the eigenenergies ωj of the transmon computational states and truncate
the computational basis to the lowest dq states. Express the charge operator n̂
in the computational basis, then rescale it by the matrix element neg ≡ 〈e|n̂|g〉
and neglect non-nearest-neighbor couplings, keeping only the matrix elements of
the form |k〉〈k+1|. The result b̂ ≡∑k |k〉〈k + 1|〈k|n̂|k + 1〉/neg is the transmon

analogue of a ladder operator. Then g̃(b̂ + b̂†)/2 is the drive term and g̃ the
angular frequency of resonantly driven Rabi oscillations between |g〉 and |e〉.

2. Form the Jaynes-Cummings Hamiltonian Ĥ0 of the composite transmon-
resonator system, given as a combination of the bare energy terms

∑
j ωj |j〉〈j|⊗

1, ωr1⊗ â†â and the coupling term g(b̂⊗ â†+ b̂†⊗ â). Here â is the annihilation
operator of the resonator. Diagonalize it and identify dressed eigenstates |ij〉
corresponding to the bare eigenstates |i〉 ⊗ |j〉 of the uncoupled Hamiltonian.
This is done simply by finding the dressed eigenstate with the maximum overlap
with a given bare eigenstate.

3. Find the eigenenergy difference between |f0〉 and |g1〉. This is the drive fre-
quency ωd for the second-order |f0〉 ↔ |g1〉 transition in the weak drive limit.

Form the excitation number operator N̂ ≡∑j j|j〉〈j|⊗1+1⊗ â†â and subtract

the term ωdN̂ from the Hamiltonian to transform it into the rotating frame.
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4. Define a driven Hamiltonian Ĥ ≡ Ĥ0 − δdN̂ + g̃(b̂ + b̂†) ⊗ 1/2, where δd is the
detuning of the drive signal from the low-power transition frequency. Sample g̃
in an interval (0, g̃max) in small steps ∆g̃ and for each value find the detuning
δd(g̃) which yields the optimal time-averaged fidelity of Rabi oscillations between
|f0〉 and |g1〉. As described in sec. D.2, this is done by evaluating

argmax
δd

max
|ϕi,j〉∈S

(|〈ϕi|ψ+〉|2 + |〈ϕj |ψ−〉|2),

where |ψ±〉 = (|f0〉±|g1〉)/
√

2 and S is the set of eigenvectors of Ĥ. In each step
also calculate the difference between the eigenenergies of the two eigenvectors
which maximize |〈ϕi|ψ+〉|2 + |〈ϕj |ψ−〉|2. This yields the transition rate g̃(g̃)
between |f0〉 and |g1〉. Fit appropriate polynomials to the obtained discrete
data points to get an analytical approximation of the functions δd(g̃), g̃(g̃) and
their inverse functions.

5. Define the resonator relaxation operator ĉ by selecting those matrix elements
of â in the dressed basis which do not change the dressed qubit state, that is,

ĉ ≡
∑
i,j

|ij〉〈i, j + 1| 〈ij|â|i, j + 1〉
〈g0|â|g1〉 .

In this step, we assume that the system is connected to the environment (the
transmission line) by a suitable Purcell filter which suppresses relaxation at all
frequencies except very close to the resonator. This is why matrix elements
such as |e0〉〈f0| are not present even though 〈e0|â|f0〉 6= 0. The suppression of
these relaxation channels is important to achieve high fidelities of the photon
emission/reabsorption process.

6. Construct the Liouvillian of the cascaded system. Its Hamiltonian part is given
by

Ĥ1 ⊗ 1+ 1⊗ Ĥ2 − iκ(ĉ ⊗ ĉ† − ĉ† ⊗ ĉ),

where Ĥ1,2 are the transmon-resonator Hamiltonians of the individual systems.
The dissipator is DĈ , where

Ĉ ≡ √κ(1⊗ ĉ + ĉ ⊗ 1).

7. Choose a finite time range (0, tmax) and a drive pulse identical for both systems
with an amplitude

g̃(t) =
κ

cosh(κ(t− t0)/2)
,

where the center of the pulse t0 is set to the center of the interval, i.e. t0 =
tmax/2. Calculate the corresponding drive amplitude g̃(g̃(t)) and Stark shift
δd(g̃(t)) using the results obtained above. Solve the master equation of the
composite system with the initial state |f0g0〉. Evaluate the population of
the desired target state |g0f0〉 at t = tmax to estimate the efficiency of the
emission/reabsorption process.
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Appendix F

Derivation of CPW properties

F.1 Propagating modes

As mentioned in sec. 1.1, a coplanar waveguide supports a propagating TEM mode if
the medium on both sides of the CPW plane has the same dielectric constant. If the
dielectrics in the two regions are different, the TEM mode is only an approximation
of the actual fields which becomes exact in the limit of zero frequency.

To see why this is the case and how the generic situation with two different di-
electrics and non-zero frequency deviates from the TEM mode, we will find an approx-
imate solution of Maxwell’s equations for the fields E and B oscillating at a frequency
ω. There are no free charges except at the interface between the two regions, hence
both E and B are divergence-less in the interior of each region and can therefore be
written as curls of certain vector potentials F and A. To simplify the form of the
resulting wave equations, we use a trick (Harrington, 2001) where instead of simply
defining E = ∇×F and B = ∇×A, we mix the two vector potentials in the following
way:

E = ∇×
(

F +
ic2

ω
∇×A

)
, (F.1)

B = ∇×
(

A− i

ω
∇× F

)
. (F.2)

The Maxwell’s equations ∇ · E = 0 and ∇ · B = 0 are now satisfied identically.
After substituting into the remaining two Maxwell’s equations ∇ × E = iωB and
∇ × B = −iωE/c2 and simplifying the expressions with the help of the identity
∇× (∇×X) = ∇(∇ ·X)−∇2X, we find that E and B defined above in terms of F
and A satisfy all four Maxwell’s equations if(

∇2 +
ω2

c2

)
F = 0,(

∇2 +
ω2

c2

)
A = 0.
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Therefore, both vector potentials are solutions of the Helmholtz equation. Note that
the double curl terms in eq. (F.1) and eq. (F.2) serve to eliminate the terms ∇(∇·F)
and ∇(∇ ·A) from the Helmholtz equations where they would otherwise be present
with the simple parametrization E = ∇× F and B = ∇×A.

It can be shown (Harrington, 2001) that the solution to this problem can be
written as a linear combination of a TE mode with an electric field perpendicular to
the direction of propagation and a TM mode with a perpendicular magnetic field.
These two modes result from choosing specific forms for F and A, namely F = Ψez,
A = 0 for the TE mode and F = 0, A = Φez/c for the TM mode. Here ez is a unit
vector along the z axis which we set to point in the direction of the CPW.

Thanks to the invariance of the problem under translations along z, we can write
the potentials in the form Ψ exp(ikz) and Φ exp(ikz), where we now take Ψ and Φ to
be functions of only x and y. The resulting two-dimensional Helmholtz equations are(

∇2 +
ω2

c2
− k2

)
Ψ = 0,(

∇2 +
ω2

c2
− k2

)
Φ = 0.

Furthermore, the expressions for E and B (again, omitting the trivial dependence on
z) now become

E = (∇× ez)Ψ −
kc

ω
∇Φ+

ic

ω

(
ω2

c2
− k2

)
Φez, (F.3)

cB = (∇× ez)Φ+
kc

ω
∇Ψ − ic

ω

(
ω2

c2
− k2

)
Ψez. (F.4)

So far, we have not made any approximations and these equations therefore describe
the problem exactly. Let us now look at the special case mentioned above before
proceeding with the general case.

CPW in a homogeneous dielectric

If the dielectric permittivity ε is the same in both regions then the propagation speed
c = 1/

√
εµ is constant in the whole space and the solution can be found in a greatly

simplified form when ω2/c2 − k2 = 0 and Ψ = 0. In this case, the non-zero potential
Φ has to satisfy the Laplace equation ∇2Φ = 0 and for k > 0 the fields are given by
E = −∇Φ and cB = ez ×E.

The fields are both perpendicular to the direction of propagation and to each other
and they satisfy planar electro- and magnetostatic Maxwell’s equations. A coplanar
waveguide in a homogeneous dielectric therefore supports a propagating TEM mode
with a linear dispersion relation k = ±ω/c.

CPW between two different dielectrics – static limit

If the dielectric constants on the two sides of the CPW plane are different then the
wave number k, which needs to be the same in both regions, can no longer be chosen
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to satisfy ω2/c2 − k2 everywhere. Consequently, the CPW does not support a TEM
mode anymore and the problem becomes significantly more complicated. We will start
our analysis of this more general situation by considering the static limit ω, k → 0.
In this case, the Helmholtz equation again reduces to the Laplace equation.

In principle, we need to solve it in both regions separately and then impose bound-
ary conditions at the interface. These require both components of B, the in-plane
component of E and the normal component of D = εE to be continuous across the
interface of the dielectrics. At the surface of the conductors, the in-plane component
of E and the normal component of B have to vanish. However, thanks to the sym-
metry of the geometry we are dealing with, the solution we got for the full space in
the case of identical dielectric constants satisfies these boundary conditions automat-
ically. Indeed, the mirror symmetry with respect to the plane z = 0 ensures that the
normal component of E vanishes at the interface. This takes care of the condition for
D. The other conditions are also satisfied because the fields E and B are continuous
in the dielectric and fulfil the appropriate boundary conditions at the surface of the
conductor.

Thus we see that even in the case of different dielectric constants in both regions,
the fields in the zero frequency limit are the same as for the TEM propagating mode in
a CPW with equal dielectric constants – they are given by E = −∇Φ and cB = ez×E.
The last equation should make a cautious reader wary. What does c mean here?
There are two different values of the propagation speed in the two dielectrics, c1 and
c2. Which one belongs in the expression for B?

To answer this question, let us denote the unknown proportionality constant be-
tween B and ez×E by ceff . We will first determine how the potentials Ψ1,2 and Φ1,2 in
the two regions need to be chosen to get the fields E = −∇Φ and ceffB = ez×E. Even
though it may seem tempting to choose them to be Φ1 = Φ2 = Φ and Ψ1 = Ψ2 = 0, a
single look at eq. (F.3) and eq. (F.4) shows us that this would result in discontinuous
E and B. In fact, the correct way is to set Φ1 = Φ2 = 0 and leave Ψ1,2 non-zero
because then the expressions for the fields resulting from eq. (F.3) and eq. (F.4) in
the limit ω, k → 0 do not include the propagation speeds c1,2.

The fields in the two regions are then given by

E1,2 = (∇× ez)Ψ1,2, (F.5)

ceffB1,2 = ∇Ψ1,2, (F.6)

where ceff is the limit of ω/k for ω → 0. To determine Ψ1,2, we express the magnetic
field in one of the regions as B1 = −ez × ∇Φ/ceff and calculate Ψ1 by integrating
eq. (F.5):

Ψ1(x, y) =

∫
C(x,y)

(ez ×∇Φ) · dr, (F.7)

where C(x, y) is a curve from infinity to the point (x, y). The choice of Ψ2 is then
determined by the symmetry of the fields under rotation by π around the origin,
namely B2(x, y) = −B1(−x,−y). This is satisfied if we define

Ψ2(x, y) = Ψ1(−x,−y). (F.8)
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Note that Ψ cannot be defined globally because unlike each of the two half-planes,
the full space is not simply-connected and therefore the integral of eq. (F.5) will in
general depend on the chosen integration path.

As seen from eq. (F.5) and eq. (F.6), the fields are related by ceffB = ez×E. While
in the case of the propagating TEM mode, the proportionality constant relating B
to E was simply the propagation speed c, the constant ceff in our current solution
seems to be arbitrary. This is a direct consequence of the limit ω → 0. In the static
case, the electric and the magnetic field are independent of each other. We can have
a purely electrostatic field without any currents to induce a magnetic field and vice
versa. In our derivation, this is reflected by the fact that we satisfied the condition
ω2/c2 − k2 = 0 by taking the limit ω, k → 0 rather than by imposing a relation
between ω and k and therefore the limit ceff = limω→0 ω/k can be chosen arbitrarily.

CPW between two different dielectrics – non-zero frequency

The electric and the magnetic field are truly independent only if the frequency is
exactly zero. For any non-zero frequency, the fields will propagate along the waveguide
with a well-defined phase velocity ω/k = ceff , which we will now calculate in the limit
of low frequency.

Let us start by clarifying what exactly we mean by saying that the frequency is
low. If we choose a length-scale a which characterizes the transverse dimensions of
the CPW (imagine a to be for example the width of the center conductor), we can
express the frequency, the wave number and the nabla operator in terms of their
dimensionless counterparts ω and ∇ defined as ω = ωceff/a, k = ω/a and ∇ = ∇/a.
The Helmholtz equations then become

∇2
Ψ + ω2

(
c2eff

c2
− 1

)
Ψ = 0,

∇2
Φ+ ω2

(
c2eff

c2
− 1

)
Φ = 0

and the fields can be expressed as

aE = (∇× ez)Ψ −
c

ceff
∇Φ+ iω

c

ceff

(
c2eff

c2
− 1

)
Φez, (F.9)

acB = (∇× ez)Φ+
c

ceff
∇Ψ − iω

c

ceff

(
c2eff

c2
− 1

)
Ψez. (F.10)

This form of the equations lends itself to an expansion of the fields as a Taylor
series in a small parameter ω. This expansion will be a good approximation of the
full solution if ω � 1. Looking back at the definition of ω, this is equivalent to
a� ceff/ω, that is, the wavelength of the propagating wave needs to be much larger
than the transverse dimensions of the CPW. This condition is satisfied in our systems
because the wavelength at the used microwave frequencies is of the order of 10 mm
while the width of the waveguides is only 20µm.
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To get the static limit, we truncated the Taylor series at zeroth order. Now we
need to go one order further. The ω2 term in the Helmholtz equations tells us that
corrections to the Laplace equation solutions for the potentials which we got in the
static case will be of second order in ω. Therefore, to get a first-order expansion of the
fields, we can substitute the static potentials Ψ and Φ into eq. (F.9) and eq. (F.10).

As we have already established, the resulting x- and y-components of E and B
satisfy the boundary conditions. We only need to make sure that the z-components
do as well. Since Φ = 0, the electric field boundary condition is fulfilled identically.
The one remaining condition is for the z-component of the B field to be continuous
across the boundary, that is,

−iω
1

aceff

(
c2eff

c21
− 1

)
Ψ1 = −iω

1

aceff

(
c2eff

c22
− 1

)
Ψ2.

Thanks to the mirror symmetry with respect to the plane x = 0, the potential Φ for
the homogeneous dielectric case satisfies Φ(x, y) = Φ(−x, y) and therefore, according
to the definition of Ψ1 in eq. (F.7), Ψ1(x, y) = −Ψ1(−x, y). Since Ψ1 and Ψ2 are related
by eq. (F.8), we get

Ψ1(x, y) = −Ψ2(x,−y).

Hence, at the interface y = 0 the potentials Ψ1 and Ψ2 satisfy Ψ1 = −Ψ2. Using this
relation, the boundary condition then gives us an equation relating the propagation
speed c1,2 in the two dielectrics to the propagation speed ceff of a wave traveling along
the waveguide:

1

c2eff

=
1

2

(
1

c21
+

1

c22

)
.

If we define an effective permittivity εeff for the space around the CPW using the
standard expression for propagation speed of electromagnetic waves ceff = 1/

√
εeffµ,

it will be related to the permittivities ε1,2 of the two dielectric media by

εeff =
ε1 + ε2

2
. (F.11)

The small z-component of the B field is

Bz1,2 = ± iω

2

c21 − c22
c21c

2
2

Ψ1,2.

F.2 Capacitance, inductance, impedance

We will now proceed to calculate the field distribution and several quantities char-
acterizing the waveguide – its capacitance and inductance per unit length and its
characteristic impedance. To do this, we first need to get the potential Φ for the
case of the homogeneous dielectric by solving the two-dimensional Laplace equation
∇2Φ = 0. The potential of the ground plane and the center conductor will be fixed to
zero and Φ0, respectively. The solution domain Ω as well as the boundary conditions
and the dimensions of the waveguide are illustrated in Fig. F.1(a).
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Figure F.1: (a) Solution domain Ω for the Laplace equation around a coplanar waveg-
uide together with the boundary conditions: fixed potential Φ = 0 on the ground plane
marked in yellow and Φ = Φ0 on the center conductor marked in red. The half-width
of the center conductor is a and the distance between its center and the edge of the
ground plane is b. (b) Boundary conditions for the electric field and its corresponding
analytical function g : C→ C in one quadrant of the full solution domain. (c) Bound-
ary conditions for the function G(u) defined as g(z) =

√
G(u), where u = z2. The

positive imaginary axis in the z-plane, marked by the dashed line in (b), becomes the
negative real axis in the u-plane, as indicated by the dashed line in (c). The original
quadrant Re z > 0, Im z > 0 is mapped onto the half-plane Imu > 0. (d) Resulting
potential Φ normalized to the center conductor potential Φ0 for the specific choice of
b = 2a and (c) the corresponding electrostatic energy density U ∝ E2

x+E2
y normalized

to the value U0 near the mid-point of the center conductor.
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To find functions satisfying the Laplace equation in a two-dimensional space, one
can use a very handy correspondence between them and analytical functions of a
complex variable. Suppose we are given a function f : C→ C which is analytical on
a certain set Ω ⊆ C. Then its real part defines a scalar function Φ : R2 → R as

Φ(x, y) = Re f(x+ iy).

Simple use of the chain rules then shows that the derivatives of Φ satisfy ∂Φ/∂x =
Re f ′ and ∂Φ/∂y = −Im f ′. The second derivatives are ∂2Φ/∂x2 = Re f ′′ and
∂2Φ/∂y2 = −Re f ′′, hence the function Φ defined above automatically satisfies the
Laplace equation.

If Φ is an electrostatic potential, the components of the corresponding electric field
E = −∇Φ are given in terms of the (likewise analytical) function g(z) = f ′(z).

Ex(x, y) = −Re g(x+ iy), (F.12)

Ey(x, y) = Im g(x+ iy). (F.13)

(F.14)

We will make an educated guess about the form of the function g based on the
boundary conditions and asymptotic behaviour of the electric field. To simplify the
problem, we make use of the reflection symmetries with respect to the x- and y-axis
and search for a solution only in a single quadrant of the full space Ω. The same
symmetries also dictate that Ex = 0 on the y-axis and Ey = 0 on the section of the
x-axis between the conductors. In addition, Ex also needs to vanish at the surface of
the conductors. These boundary conditions and the corresponding conditions for the
function g are shown in Fig. F.1(b).

A function satisfying these requirements could be found in the form g =
√
G if the

function G is analytical and real on the boundary of the quadrant. The conditions
Re g = 0 and Im g = 0 on the sets marked in Fig. F.1(b) in red and blue will be
fulfilled if G is negative or positive, respectively. Moreover, as the square root is not
a holonomic function but has a cut (which we will define to be along the negative real
axis), G should not take negative real values inside the quadrant.

The problem can be further simplified if we map the quadrant onto the upper
complex half-plane by making a substitution u = z2 and considering G as a function
of u. The positive real and the positive imaginary axis in the z-plane become the
positive real and the negative real axis, respectively, in the u-plane. The boundary
conditions which need to be satisfied by G(u) are shown in Fig. F.1(c). The function
has to be real on the real axis. Specifically, it needs to be negative everywhere except
in the interval [a2, b2].

A very simple example of such a function would be for instance the polynomial
G(u) = (u− a2)(b2 − u). We can be slightly more general and take any odd power of
this polynomial, that is, G(u) = (u− a2)k(b2 − u)k. All of these functions satisfy the
boundary conditions. However, we also need to impose the condition that G is not
negative real in the interior of the half-plane. Let us consider the behaviour of G in the
vicinity of the point a2. We can parametrize u as u = a2 + ε exp(iφ) where ε is small
and φ takes values from 0 to π. We then approximate G(u) ≈ (b2 − a2)kεk exp(iφk).
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From here it immediately follows that if |k| > 1, we can always choose φ to make
G(u) negative real. The only exponents k for which g =

√
G might not have a cut

are k = ±1.
Since the electric field has to vanish far from the transmission line, we also need

to exclude the option k = 1 which results in |g| growing with increasing |z|. The
remaining value of k = −1 yields a function G(u) which correctly vanishes in the
limit |u| → ∞. Moreover, G(u) can then be written as (w2 − (u − v)2)−1, where
v = (a2 + b2)/2 and w = (b2−a2)/2. This means that G(u) is real only if u−v is real
or purely imaginary. The first case is not possible for u in the upper half-plane and the
second case gives G(u) > 0. This shows that the function G(u) = 1/(u− a2)(b2 − u)
satisfies all the required boundary conditions and its square root is an analytical
function for Imu > 0. Going back to the original function g of z and taking into
account that we can rescale the solution by an arbitrary constant A, we get

g(z) =
A√

(z2 − a2)(b2 − z2)
. (F.15)

This solution already allows us to calculate the electric field up to a scaling factor.
If we want to proceed further and determine the potential or the capacitance of the
CPW, we need to integrate g(z) and obtain its primitive function g(z) whose real part
is the potential Φ. The integral can be expressed in terms of the incomplete elliptic
integral of the first kind – a special function defined as the analytical continuation of
(Abramowitz & Stegun, 1972)

F (ϕ|m) ≡
∫ sinϕ

0

dt√
(1− t2)(1−mt2)

.

The potential Φ is given by

Φ(x, y) =
A

b
ImF

(
arcsin

x+ iy

a

∣∣∣∣a2

b2

)
+B. (F.16)

The integration constant B and the scaling factor A can be determined from the
conditions that Φ = 0 at infinity and Φ = Φ0 on the center conductor. Substituting
x = y = 0 into eq. (F.16) gives Φ(0, 0) = B and therefore B = Φ0. The condition
limy→∞ Φ(0, y) = 0 then results in the equation A limt→∞ ImF (it|a2/b2) = −Φ0b.
Using the identity F (iϕ|m) = iF (arctan sinhϕ|1 −m), we can express A in terms of
the complete elliptic integral of the first kind

K(m) ≡ F (π/2|m)

as A = −Φ0b/K(1− a2/b2). The resulting form of eq. (F.16) is then

Φ(x, y)

Φ0
= 1− 1

K(1− a2/b2)
ImF

(
arcsin

x+ iy

a

∣∣∣∣a2

b2

)
. (F.17)

The shape of this potential is illustrated in Fig. F.1(d) for the specific case b = 2a.
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Now that we have determined how the scaling factor A in eq. (F.15) depends on
the potential of the center conductor Φ0, we can use eq. (F.12) and eq. (F.13) to
evaluate other quantities of interest. For instance, the energy density of the electric
field U = ε|E|2/2 can be readily expressed as U(x, y) = ε|g(x+ iy)|2/2, that is,

U(x, y) =
εΦ2

0b
2

2K2(1− a2/b2)

1

|(x+ iy)2 − a2||(x+ iy)2 − b2| .

The shape of this energy distribution, again evaluated for the special case b = 2a, is
displayed in Fig. F.1(e). It is interesting to note that this expression clearly diverges
at the edges of the center conductor and the ground plane, for y = 0 and x = ±a,±b.
This indicates that the charges tend to accumulate at the edge, giving rise to a singular
behaviour of the charge distribution.

We can easily calculate the surface charge density σ on the planar conductors
using Gauss’s law which relates it to the discontinuity in the normal component of
the electrical displacement field D:

σ(x) = lim
y→0+

Dy(x, y)− lim
y→0−

Dy(x, y).

Note that this expression involves D instead of E because we wish to calculate the
density of the free charges residing on the conductors. If we replace D in the previous
formula by E, we get the total charge density, including the polarization charges
induced on the interface between the conductor and the dielectric. The displacement
field can be expressed as D = εE. Moreover, thanks to the symmetry of the problem,
we have Ey(x,−y) = −Ey(x, y). Therefore σ(x) = (ε1 + ε2) limy→0+Ey(x, y), where
ε1 and ε2 are the dielectric constants in the regions y > 0 and y < 0, respectively.
Using eq. (F.13) and eq. (F.15), we get

σ(x) = − (ε1 + ε2)Φ0b

K(1− a2/b2)
Im lim

y→0+

1√
((x+ iy)2 − a2)(b2 − (x+ iy)2)

.

For points between the center conductor and the ground plane, the limit is real and
the charge density zero as expected. We will therefore further consider only the case
of negative (x2−a2)(b2−x2), corresponding to points lying at the conducting surface.
To evaluate the limit, we expand the expression under the square root to first order
in y which transforms it into the form −α + iyβ. Here α = (a2 − x2)(b2 − x2) is
positive and since we are working in the quadrant x, y > 0, β = 2x(a2 + b2 − 2x2)
is positive for x < a and negative for x > b. The limit is therefore given by ∓1/

√
α

with a negative sign for points at the center conductor (x < a) and a positive sign for
points at the ground plane (x > b). The resulting form of σ(x) is

σ(x) =
(ε1 + ε2)Φ0b

K(1− a2/b2)

sgn(a+ b− 2x)√
(a2 − x2)(b2 − x2)

.

We will now calculate the charge per unit length dQ/dl on the center conductor by
integrating the charge density. The result can be written in terms of the complete
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elliptic integral of the first kind:

dQ

dl
= 2

∫ a

0

σ(x) dx = 4εeffΦ0
K(a2/b2)

K(1− a2/b2)
.

Here we have used eq. (F.11) to replace the sum ε1+ε2 by twice the effective dielectric
constant εeff .

We can now write an expression for the capacitance of the CPW1. It is defined
as C ≡ Q/V , where V is the voltage between the center conductor and the ground
plane – in this case equal to Φ0. The capacitance per unit length is then given by

dC

dl
= 4εeff

K(a2/b2)

K(1− a2/b2)
. (F.18)

The solution we have obtained here also allows us to find the transverse compo-
nents of the magnetic field using the relation ceffB = ez × E. It implies that the
magnetic flux per unit length dφ/dl circulating around the center conductor is given
by

dφ

dl
=

∫ b

a

By(x, 0) dx =
1

ceff

∫ b

a

Ex(x, 0) dx =
1

ceff
Φ0.

Similarly, the current flowing in the center conductor is given by a curve integral of B
along a curve which encircles it. We can choose this curve to run at an infinitesimal
distance ε along the surface of the center conductor, in which case the integral takes
the form

∫ a
−aBx(x,−ε) dx+

∫ −a
a

Bx(x,+ε) dx.

Thanks to symmetry, we can write this as −4
∫ a

0
Bx(x,+ε) dx. Then, using the

relations Bx = −Ey/ceff and Ey(x,+ε) = σ(x)/(ε1 + ε2), we find that the calculation
of the current leads to the same type of integral as dQ/dl, yielding the final result

I =
1

µ

∮
B · dr = ceff

dQ

dl
.

The inductance of the CPW is defined as L ≡ φ/I and its value per unit length is
therefore

dL

dl
=

1

c2eff

(
dC

dl

)−1

. (F.19)

1It is worth pointing out that a completely analogous procedure can be carried out to find the
field around an interdigital capacitor in the limit of infinite finger length and infinite number of
fingers. The function g(z) which provides this solution is A/

√
cos(2πz/D)− cos(πd/D), where d is

the width of the interdigital gap and D the distance between the centers of neighbouring fingers.
It can be easily verified that this function satisfies the appropriate boundary conditions in each of
the regions Bk ≡ {z ∈ C|0 ≤ Re z − 2πk < 2π ∧ Im z ≥ 0} if the square root is defined to have a
cut along the positive real axis. Flipping the sign of g(z) in all odd-numbered Bk then provides the
correct stitching across the region boundaries. Integration of the electric field components yields the
potential difference and the charge, resulting in the expression for capacitance per finger per length
C/lN = εeffK(cos2(πd/2D))/K(sin2(πd/2D)), equivalent to the expression given in Bahl (2003).

188



We can now also easily calculate the characteristic impedance of the CPW defined
as Z0 ≡ V/I. Substituting the relation I = ceffdQ/dl into this definition results in
the equation

Z0 =
1

ceff

(
dC

dl

)−1

. (F.20)

These relations for the parameters of the CPW as well as for other waveguide
geometries such as striplines can be found in a number of microwave engineering
publications, for instance (Simons, 2001).

Anisotropic dielectric

The results derived in the previous section describe a waveguide between two isotropic
dielectrics. However, the substrate commonly used to fabricate samples in the Qudev
lab is sapphire – a crystalline form of aluminium oxide whose dielectric constant
is anisotropic. The used sapphire wafers are cut perpendicularly to the principal
axis which in our coordinate system is the y-axis. The corresponding component
of the relative permittivity tensor is εry = 11.1 while the in-plane components are
εrx = εrz = 8.9.

The anisotropic Maxwell’s equations are significantly more complicated but can
still be solved in the zero frequency limit. The two-dimensional Laplace equation
∇2Φ = 0 originating from Gauss’s law ∇ · εE under the assumption of scalar ε now
becomes

εx
∂2Φ

∂x2
+ εy

∂2Φ

∂y2
= 0.

We can find its solution using simple coordinate transformation. We will keep the
dimensions in the x directions unchanged to preserve the boundary conditions but
rescale the y-coordinate by a factor of

√
εx/εy, defining

Φ̃(x, y) = Φ(x, y
√
εx/εy),

where Φ is the solution of the isotropic Laplace equation we found earlier. It is rather
easy to show that the potential Φ̃ defined in this way satisfies the anisotropic equation.
The y-component of the electric field is rescaled as Ẽy = Ey

√
εx/εy while the x-

component remains unchanged. The boundary conditions at the dielectric interface
and at the surface of the conductor are therefore still satisfied.

The normal component of the displacement field D̃ is given by Dy =
√
εxεyEy.

Hence, the surface charge density at the conductor is the same as if the dielectric
were homogeneous with a dielectric constant

√
εxεy (equal to approximately 9.94ε0

for sapphire). Consequently, eq. (F.18) for the capacitance of the CPW remains valid
if we modify eq. (F.11) defining the effective dielectric constant to

εeff =

√
ε1xε1y +

√
ε2xε2y

2
.
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(a) (b)

Figure F.2: (a) Dependence of the CPW parameters on the ratio of the dimensions
a/b. The y-axis on the left shows the dimensionless quantity (dC/dl)−1εeff which
is independent of the used dielectrics. The axes on the right show the characteristic
impedance, the inductance and the capacitance per unit length specifically for a CPW
on sapphire (εr,eff ≈ 5.47). The points corresponding to the 50 Ω and the 25

√
2 Ω

waveguide used in our samples are indicated in red and blue, respectively. (b) ...

Practical considerations

For our standard samples where the two media surrounding the waveguide are sap-
phire and vacuum, the effective dielectric constant is given by εr,eff = εeff/ε0 ≈ 5.47.

The characteristic impedance of the waveguides is chosen to be Z0 = 50 Ω for com-
patibility with commercially available RF cables and components. The dependence
of Z0 on the ratio a/b is plotted in Fig. F.2(a). The impedance of 50 Ω is obtained for
a/b ≈ 0.526. In the actual chip designs, the two dimensions are chosen as a = 5.0µm
and b = 9.5µm, giving the correct ratio to three decimal places. To construct on-chip
π/2-hybrid couplers, we also use CPWs with a nominal characteristic impedance of
Z0 = 25

√
2 Ω ≈ 35.4 Ω as the design of the coupler requires two types of waveguides

whose characteristic impedances are in a ratio
√

2 : 1. The corresponding ratio of
the waveguide dimensions is then a/b ≈ 0.800. Specifically, in our designs we use
a = 12.0µm and b = 15.0µm, again resulting in the correct value to three decimal
places. To avoid confusion, we will further refer to the stated dimensions of the 50 Ω
and the 25

√
2 Ω waveguide as a1, b1 and a2, b2, respectively.

Finally, let us point out that the choice of a1 = 5.0µm, b1 = 9.5µm, a2 = 12.0µm
and b2 = 15.0µm is not entirely arbitrary. Obviously, the ratios a1/b1 and a2/b2 are
fixed by the given characteristic impedances of 50 Ω and 50/

√
2 Ω. Apart from this,

however, the dimensions a1, b1 could be in principle chosen independently from a2,
b2.
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In practice, when fabricating the waveguides by photolithography, imperfections
in the exposure or etching process can lead to the amount of removed metal being
slightly more or less than desired. This means that the width of the gap between
the center conductor and the ground plane can differ by a small amount dw from the
designed value. Assuming that this over- or underetching is symmetric, the dimensions
b and a of the waveguide will change by +dw/2 and −dw/2, respectively. A simple
calculation then tells us that the parameter a2/b2 which appears in eq. (F.18) changes
by −(a/b+ 1)(a/b)dw/b.

Using eq. (F.20), we can then express the relative change in the characteristic
impedance d logZ0 as

d logZ0

dw/b
=
a

b

(a
b

+ 1
)(K ′(1− a2/b2)

K(1− a2/b2)
+
K ′(a2/b2)

K(a2/b2)

)
.

The expression on the right-hand side is plotted in Fig. F.2(b) as a function of the
characteristic impedance Z0 (again assuming the effective dielectric constant for a
sapphire substrate εr,eff = 5.47). What does it tell us? For the two characteristic
impedances of interest – 50 Ω and 25

√
2 Ω – the plotted value is 0.876 and 1.395, re-

spectively. Therefore, if the gap between the center conductor and the ground plane
is symmetrically overetched by an amount dw, the relative change of the character-
istic impedance dZ0/Z0 will be 0.876 × dw/b1 for the 50 Ω line and 1.395 × dw/b2
for the 25

√
2 Ω line. Therefore, if the dimensions b1 and b2 are chosen in a ratio

0.876 : 1.395 ≈ 0.628, the relative changes of the two characteristic impedances will
be identical to first order in dw, making the ratio

√
2 : 1 between them significantly

less sensitive to small imperfections in the etching process. The ratio between the cho-
sen dimensions b1 = 9.5µm and b1 = 15.0µm is approximately 0.633 – rather close
to the value of 0.628 which offers improved resilience against over- or underetching.

191





Appendix G

Qubit spectroscopy with a weak
probe

In this appendix, I will show how to derive an analytical form for the measured
signal in the continuous qubit spectroscopy measurement in two important limits –
weak resonator drive and weak qubit drive. The measurement results can obviously
be obtained numerically by solving for the steady state of the corresponding master
equation. However, a suitable approximation of the measured spectrum by an ana-
lytical expression is useful for fitting the parameters of the system and gives a better
insight into the influence of the different parameters on the measurement.

Let us start by considering a system governed by the master equation

d

dt
ρ̂(t) = L[ρ̂(t)],

where the Liouvillian superoperator L generates the time evolution of the density
matrix ρ̂(t). Suppose that L can be split into a “free” part L0 and a small perturbation
δL. In our case, this perturbation will be the Hamiltonian term describing the weak
drive of the resonator or the qubit. We will write the steady-state density matrix ρ̂
of the system as a series of the form

ρ̂ = ρ̂0 + ρ̂1 + ρ̂2 + . . . ,

where the terms on the right-hand side are of increasingly higher orders in the per-
turbation δL. If ρ̂ is to be constant in time, it has to satisfy the equation L[ρ̂] = 0.
By expressing L as L0 + δL and requiring this equation to hold order-by-order, we
obtain the recurrence relations

L0ρ̂i+1 + δLρ̂i = 0, (G.1)

L0ρ̂0 = 0. (G.2)

In other words, the zeroth order approximation ρ̂0 to the density matrix is simply
the density matrix of the unperturbed system and the successive higher orders can be
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formally expressed as ρ̂i+1 = −L−1
0 δL[ρ̂i]. A more rigorous treatment of perturbation

theory for open systems is given for example in Li et al. (2014). Of course, the most
difficult step in a calculation of the perturbation series is finding the inverse L−1

0 of
the superoperator L0.

The Liouvillian of a qubit coupled to a resonator in the dispersive limit, as dis-
cussed in sec. 1.6, is of the form

L = Lr ⊗ Id + Id⊗ Lq + Lint, where

Lr[ρ̂] = −i[δrâ
†â + ε(â† + â)/2, ρ̂] + κDâ[ρ̂],

Lq[ρ̂] = −i[δqσ̂ee +Ωσ̂x/2, ρ̂] + ΓDσ̂− [ρ̂] +
γ

2
Dσ̂z [ρ̂],

Lint[ρ̂] = −i[2χâ†â ⊗ σ̂ee, ρ̂].

Here the superoperators Lr and Lq describe the independent evolution of the resonator
and the qubit, respectively, while Lint represents their coupling. Since we are working
in a reference frame rotating at the drive frequency, the coefficients of the free terms
in the Hamiltonians are the detunings δr and δq of the resonator and the qubit from
their respective drives. The drive strengths are given by the parameters ε and Ω.
We assume that the coupling between the qubit and the resonator is dispersive where
each additional photon in the resonator shifts the qubit transition frequency by an
amount 2χ. The non-unitary terms generate energy relaxation in the resonator with
a rate κ and in the qubit with a rate Γ . The qubit can in addition be subject to pure
dephasing with a rate γ.

G.1 Weak resonator drive

In the limit of weak resonator drive, we can choose the drive term in Lr proportional
to ε to be δL and the rest of the Liouvillian to be L0.

Since the resonator drive is absent from L0, its corresponding steady-state density
matrix will be of the form

ρ̂0 = |0〉〈0| ⊗ ρ̂q, (G.3)

where, since the resonator is in its ground state, the qubit steady state is simply given
by

Lq[ρ̂q] = 0. (G.4)

To calculate the first order correction, we need to solve eq. (G.1). The second sum-
mand on its left-hand side is

δL[ρ̂0] = −iε[(â + â†)⊗ 1, |0〉〈0| ⊗ ρ̂q]/2 = −iε(|1〉〈0| − |0〉〈1|)⊗ ρ̂q/2

It can be shown that the result of the free Liouvillian L0 acting on an operator of
the form |1〉〈0| ⊗ . . . is again an operator of the same form. The same of course holds
for operators |0〉〈1| ⊗ . . .. We can therefore expect the solution ρ̂1 to eq. (G.1) in the
form

ρ̂1 = |1〉〈0| ⊗ δρ̂q + |0〉〈1| ⊗ δρ̂†q (G.5)
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for some yet to be determined operator δρ̂q. Substituting this Ansatz into eq. (G.1)
then yields the following condition for δρ̂q:

Lq[δρ̂q]−
(

iδr +
κ

2

)
δρ̂q − 2iχσ̂eeδρ̂q − iερ̂q/2 = 0. (G.6)

The operators δρ̂q and ρ̂q are elements of a 4-dimensional linear space whose basis
can be chosen for example as {1, σ̂x, σ̂y, σ̂z}. In this basis, we can represent δρ̂q and
ρ̂q in terms of R4 vectors δv and v as

δρ̂q = δv11+ δv2σ̂x + δv3σ̂y + δv4σ̂z,

ρ̂q = v11+ v2σ̂x + v3σ̂y + v4σ̂z.

In this representation, the action of the superoperator Lq is described by the
matrix

L ≡


0 0 0 0
0 −Γ/2− γ −δq 0
0 δq −Γ/2− γ −Ω
−Γ 0 Ω −Γ

 .

Similarly, the left multiplication by 2σ̂ee which also appears in eq. (G.6) corresponds
to the matrix

M ≡


1 0 0 1
0 1 −i 0
0 i 1 0
1 0 0 1

 .

We can therefore write eq. (G.6) in the matrix form as

δv =
iε

2

(
L− iχM− iδr −

κ

2

)−1

· v. (G.7)

The vector v representing ρ̂q is given by the matrix form of eq. (G.4), which is simply

M · v = 0. (G.8)

The solution to this homogeneous equation is determined uniquely by the additional
normalization condition Tr ρ̂q = 1, that is, v1 = 1/2.

Now we have found the first-order correction to the steady-state density matrix
which is given by the vector δv. But how does it relate to the quantity that we
actually want to calculate – the signal transmitted through the resonator? In the
linear detection scheme used in most microwave setups including those in our lab,
the measured voltage is proportional to the expectation value of the output field
operator âout and therefore also to 〈â〉. From eq. (G.5) we see that to first order, this
expectation value is simply given by Tr δρ̂q. In the vector representation, this trace
is equal to 2δv1.

The exact expression for 〈a〉 is rather complicated and since it can be derived from
eq. (G.8) and eq. (G.7) in a straightforward way, we will not show it explicitly. The
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asymptotic forms it takes when some of the system’s parameters are very large or
very small become more tractable

In the absence of the dispersive shift, that is for χ = 0, the qubit and the resonator
are decoupled and the expectation value 〈a〉 reduces to

〈a〉 = − ε

2δr − iκ
.

However, this case is not very interesting because the presence of the qubit has no
effect on the response of the resonator which behaves as a purely linear system.

Another instance in which 〈a〉 takes a particularly simple form is if the qubit is
driven very strongly such that the drive amplitude Ω is much larger than all other
energy scales such as Γ , κ, χ and so on. In this limit Ω →∞ we obtain

〈a〉 = − ε

2(δr + χ)− iκ
.

We see that the response function of the resonator has again a Lorentzian shape but
its center is shifted by χ. This behavior can be understood as a result of averaging
between the two states of the qubit. When the qubit is in the ground state, the
resonance frequency of the resonator is ωr whereas for the qubit in the excited state,
it gets shifted to ωr + 2χ. If the qubit drive is very strong, we can imagine the qubit
quickly alternating between the ground and the excited state. Since the speed of this
flipping is much higher than the response time of the resonator, it behaves effectively
as a system with the mean resonance frequency ωr + χ.

In the opposite limit of weak qubit drive and under the simplifying assumption
that the pure dephasing rate of the qubit γ is zero, we get the following expression
for 〈a〉:

〈a〉 = − ε

2δr − iκ

(
1− 4(Γ + κ+ i(δq + δr))χΩ

2

(2δr − iκ)(Γ 2 + 4δ2
q)(Γ + κ+ 2i(δq + δr + 2χ))

)
Again, for χ = 0 or Ω = 0, we recover the simple Lorentzian response of the decou-

pled resonator. The same is true for large qubit-drive detunings δq. In a typical qubit
spectroscopy measurement, we sweep the qubit-drive frequency ωqd, or equivalently
the detuning δq = ωq − ωqd, while keeping all other parameters of the system fixed.
In particular, the resonator is most often driven resonantly, that is, with δr = 0. In
this case, the measured signal relative to its asymptotic value 〈a〉∞ for δq → ∞ is
given by

〈a〉
〈a〉∞

= 1− 2χΩ2

κ

Γ + κ+ iδq
(4δ2

q + Γ 2)(δq + 2χ− i(Γ + κ)/2)
. (G.9)

We can see that if χ is large compared with κ and Γ , the amplitude of the signal as
a function of δq will have two dips. One at δq = 0 with a width of approximately
Γ , the other at δq = −2χ with a width of the order Γ + κ. For smaller values of
χ, the two dips merge into one. These different regimes are illustrated in Fig. G.1.
This figure also shows that eq. (G.9) is no longer valid when the drive strength Ω is
comparable with one of the other rates in the system, here specifically with Γ . In this
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Figure G.1: Comparison of the results obtained using eq. (G.9) (blue lines) with
numerical simulations (orange points) of the master equation including five Fock states
of the resonator. The vertical lines indicate the positions of the zero-photon qubit
resonance at δq = 0 and the one-photon resonance at δq = −2χ. (a) Example of
relatively high dissipation rates κ/|χ| = Γ/|χ| = 1, (b) lower resonator relaxation rate
κ/|χ| = 0.5, (c) lower qubit decay rate Γ/|χ| = 0.5 and (d) κ/|χ| = Γ/|χ| = 0.1. (e)
Breakdown of the low Ω approximation used to derive eq. (G.9). Eq. (G.7) (orange
line) still matches the simulated resonator response but it fails (f) when the mean
number of photons is increased, violating the low ε approximation.

case, we need to use the full result obtained directly from eq. (G.7). However, when
the resonator drive strength ε is increased and the mean number of photons n rises,
this approximation also fails.

G.2 Weak qubit drive

Let us now consider the limit of weak qubit drive. This case turns out to be slightly
more complicated than the approximation of small ε analyzed above. As we have seen
in eq. (G.9), the lowest-order correction in Ω is quadratic. This suggests that we will
need to evaluate the perturbative series given by eq. (G.1) to second order. We will
also see that inverting the free Liouvillian L0 is not as straightforward as in the small
ε expansion because the Hilbert space of the resonator is infinite-dimensional.
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We will choose as the perturbation δL the drive term in Lr proportional to Ω.
Again, the rest of the Liouvillian will be L0. This superoperator acts on the qubit in
a rather simple way. If we separate it into

L0 = L̃0 + Id⊗ D̃σ̂− , where

D̃σ̂− [X̂] = Γ σ̂−X̂σ̂+,

then the operator L̃0[ρ̂] is diagonal in the qubit basis {|g〉, |e〉}. That is, it acts as

L̃0[X̂ ⊗ |i〉〈j|] = Lij [X̂]⊗ |i〉〈j|, where i, j ∈ {g, e} and

Lgg[X̂] = Lr[X̂],

Lee[X̂] = Lr[X̂]− 2iχ[â†â, X̂]− Γ X̂,
Leg[X̂] = Lr[X̂]− (iδq + Γ/2 + γ)X̂ − 2iχâ†âX̂,

Lge[X̂] = Lr[X̂] + (iδq − Γ/2− γ)X̂ + 2iχX̂â†â.

Moreover, note that L̃0 commutes with Id ⊗ D̃σ̂− and D̃2
σ̂−

= 0. Therefore, if we
expand the inverse of L0 into a series

L−1
0 = L̃−1

0 − L̃−1
0 (Id⊗ D̃σ̂−)L̃−1

0 + L̃−1
0 (Id⊗ D̃σ̂−)L̃−1

0 (Id⊗ D̃σ̂−)L̃−1
0 + . . . ,

then only the first two terms are non-zero. In addition, D̃σ̂− only gives a non-zero
result when acting on |e〉〈e|. Hence, the inverse of L0 acts as

L−1
0 [X̂ ⊗ |i〉〈j|] = L−1

ij [X̂]⊗ |i〉〈j| for |i〉〈j| 6= |e〉〈e| and

L−1
0 [X̂ ⊗ |e〉〈e|] = L−1

ee [X̂]⊗ |e〉〈e| − ΓL−1
gg L−1

ee [X̂]⊗ |g〉〈g|.

With these identities, we are now ready to start evaluating the perturbative series
for the steady state ρ̂. We are again using eq. (G.1) where ρ̂0 is the steady state of
the system with Ω = 0, which is a solution to L0[ρ̂0] = 0. When the qubit is not
driven, the steady state is simply

ρ̂0 = |α0〉〈α0| ⊗ |g〉〈g|,

where |α0〉 is a coherent state with a displacement α0 = −ε/(2δr − iκ) that can
be found by solving the equation Lr[|α0〉〈α0|] = 0. Acting with the perturbation
superoperator δL gives us δL[ρ̂0] = −iΩ|α0〉〈α0| ⊗ (|e〉〈g| − |g〉〈e|)/2 and therefore

ρ̂1 = −L−1
0 δL[ρ̂0] =

iΩ

2
(L−1

eg [|α0〉〈α0|]⊗ |e〉〈g| − L−1
ge [|α0〉〈α0|]⊗ |g〉〈e|).

Now we can see why it is necessary to go to second order in Ω. The first order
correction to the measured signal Tr âρ̂1 is zero because ρ̂1 only contains off-diagonal
elements in the qubit Hilbert space.

Applying δL again yields

δL[ρ̂1] =
Ω2

4
(L−1

eg + L−1
ge )[|α0〉〈α0|]⊗ (|g〉〈g| − |e〉〈e|)
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and the second order correction is

ρ̂2 = −L−1
0 δL[ρ̂1] =− Ω2

4
L−1
gg (Id + ΓL−1

ee )(L−1
eg + L−1

ge )[|α0〉〈α0|]⊗ |g〉〈g|

+
Ω2

4
L−1
ee (L−1

eg + L−1
ge )[|α0〉〈α0|]⊗ |e〉〈e|.

The corresponding correction to the expectation value of â is therefore

Tr âρ̂2 =
Ω2

4
Tr â(L−1

ee − L−1
gg (Id + ΓL−1

ee ))(L−1
eg + L−1

ge )[|α0〉〈α0|]. (G.10)

To simplify this expression further, we use a convenient property of the superoperators
Lgg and Lee, namely that Tr âLii[X̂] can be expressed as a function of Tr âX̂ and Tr X̂.
A simple calculation shows that indeed,

Tr âLgg[X̂] = −(iδr + κ/2)Tr âX̂ − iεTr X̂/2,

Tr âLee[X̂] = −(i(δr + 2χ) + κ/2 + Γ )Tr âX̂ − iεTr X̂/2.

For clarity, we will now denote the expression (L−1
eg + L−1

ge )[|α0〉〈α0|] by Ŷ and (Id +

ΓL−1
ee )[Ŷ ] by Ẑ. Substituting X̂ = L−1

gg [Ẑ] into the expression for Tr âLgg[X̂] and

X̂ = L−1
ee [Ŷ ] into the expression for Tr âLee[X̂] gives

Tr âẐ = −(iδr + κ/2)Tr âL−1
gg [Ẑ]− iεTrL−1

gg [Ẑ]/2, (G.11)

Tr âŶ = −(i(δr + 2χ) + κ/2 + Γ )Tr âL−1
ee [Ŷ ]− iεTrL−1

ee [Ŷ ]/2. (G.12)

We need to note at this point that since Lgg[|α0〉〈α0|] = 0, the superoperator Lgg is

singular and the value of TrL−1
gg [Ẑ] in eq. (G.11) is therefore not uniquely defined.

However, the normalization condition Tr ρ̂ = 0 implies that all the corrections ρ̂i for
i > 0 need to be traceless which for ρ̂2 means

Tr (L−1
gg [Ẑ]− L−1

ee [Ŷ ]) = 0.

Moreover, it follows directly from the definition of Lee that TrLee[X̂] = −ΓTr X̂,

hence TrL−1
ee [Ŷ ] = −Tr Ŷ /Γ . Eq. (G.11) and eq. (G.12) can then be written as

Tr âL−1
gg [Ẑ] = −Tr âẐ − iεTr Ŷ /2Γ

iδr + κ/2
, (G.13)

Tr âL−1
ee [Ŷ ] = − Tr âŶ − iεTr Ŷ /2Γ

i(δr + 2χ) + κ/2 + Γ
. (G.14)

To express the right-hand side of eq. (G.13) in terms of Ŷ , we substitute Ŷ +ΓL−1
ee [Ŷ ]

for Ẑ and use eq. (G.14) to evaluate the resulting term Tr âL−1
ee [Ŷ ]. Then we
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can calculate the trace on the right-hand side of eq. (G.10), which is equal to

Tr â(L−1
ee [Ŷ ]− L−1

gg [Ẑ]), and obtain

Tr âρ̂2 = −Ω
2

4

2iχ

(δr − iκ/2)(δr + 2χ− iκ/2− iΓ )

(
Tr âŶ − iε

2Γ
Tr Ŷ

)
. (G.15)

Compared with eq. (G.10), this expression for the second-order correction contains

only first powers of the inverse operators L−1
ge and L−1

eg . The traces Tr âŶ and Tr Ŷ
cannot be calculated using a trick of the type we used to derive eq. (G.13) and

eq. (G.14). The reason are the terms â†âX̂ and X̂â†â in Leg[X̂] and Lge[X̂]. Because

of them, the traces Tr âLge[X̂] and Tr âLeg[X̂] cannot be expressed solely in terms of

Tr âX̂ and Tr X̂.
Now we need to calculate Ŷ = (L−1

ge + L−1
eg )[|α0〉〈α0|]. How do we invert Lge

and Leg? Suppose we have a superoperator S and an operator Â which satisfy

limt→∞ exp(tS)[Â] = 0. If the integral −
∫∞

0
exp(tS)[Â] dt exists and its value is

B̂ then S[B̂] = Â. This identity can be very simply proven by applying S to the

integral and noting that S exp(tS)[Â] = d exp(tS)[Â]/dt. If the assumptions about

the asymptotic behaviour of exp(tS)[Â] and its integrability hold, we have

S−1[Â] = −
∫ ∞

0

exp(tS)[Â] dt. (G.16)

The first step towards using this identity for calculating L−1
ge [|α0〉〈α0|] and

L−1
eg [|α0〉〈α0|] is to calculate their exponentials acting on |α0〉〈α0|. Let us de-

fine ρ̂ij(t) ≡ exp(tLij)[|α0〉〈α0|]. The superoperators Lij have the property that

(Lij [X̂])† = Lji[X̂†] which implies that ρ̂ij(t) = (ρ̂ji(t))
† and therefore we only need

to calculate one of the operators ρ̂ge, ρ̂eg. It can be found by solving the differential
equation

d

dt
ρ̂eg(t) = Leg[ρ̂eg(t)] with (G.17)

ρ̂eg(0) = |α0〉〈α0|. (G.18)

Thanks to the special form of the superoperator Leg, the solution can be found using
the Ansatz

ρ̂eg(t) = N(t)||αL(t)〉〈αR(t)||,
where N(t), αL,R(t) are functions to be found and ||α〉 is a rescaled coherent state

defined as ||α〉 = exp(|α|2/2)|α〉 =
∑
k α

k|k〉/
√
k!. Using this form rather than the

normalized coherent state |α〉 makes the expression for the time derivative of ρ̂eg(t)
particularly simple. It is easy to show that d||α〉 = â†||α〉dα and therefore

d

dt
ρ̂eg(t) =

1

N(t)

dN(t)

dt
ρ̂eg(t) +

dαL(t)

dt
â†ρ̂eg(t) +

(
dαR(t)

dt

)∗
ρ̂eg(t)â.
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Applying Leg to ρ̂eg yields

Leg[ρ̂eg] =(−iε(αL − α∗R)/2− iδq − Γ/2− γ + καLα
∗
R)ρ̂eg

+ (−(i(δr + 2χ) + κ/2)αL − iε/2)â†ρ̂eg

+ ((iδr − κ/2)α∗R + iε/2)ρ̂eg â.

Equating the terms ρ̂eg, â
†ρ̂eg and ρ̂eg â on both sides of eq. (G.17) separately then

gives the following differential equations for αL,R:

dαL

dt
= −(i(δr + 2χ) + κ/2)αL − iε/2,

dαR

dt
= −(iδr + κ/2)αR − iε/2

and for N :

1

N(t)

dN(t)

dt
= −iε(αL − α∗R)/2− iδq − Γ/2− γ + καLα

∗
R.

We can see that the displacement αR satisfies the equation of motion of a decoupled
resonator whose steady state is α0. Since it is equal to α0 at t = 0, it does not vary
with time. The equation for the remaining displacement αL has the solution

αL = ∆0 exp(−ηt) + β0, where (G.19)

β0 = − ε

2(δr + 2χ)− iκ
,

∆0 = α0 − β0 and

η = i(δr + 2χ) + κ/2.

Solving for N and simplifying the resulting expression then gives us

N(t) = exp
(
2iχα∗0β0(1− exp(−ηt))/η − (iδq + Γ/2 + γ + 2iχα∗0β0)t− |α0|2

)
.

(G.20)
It is easy to verify that Re 2iχβ0α

∗
0 ≥ 0, hence N(t) exponentially decays to zero for

large t. In other words, we have verified that exp(tLeg)[|α0〉〈α0|] vanishes in the limit
of t→∞ and is integrable. We can therefore use eq. (G.16) to calculate L−1

eg [|α0〉〈α0|]
and L−1

ge [|α0〉〈α0|], getting

L−1
eg [|α0〉〈α0|] = −

∫ ∞
0

N(t)||αL(t)〉〈α0||dt,

L−1
ge [|α0〉〈α0|] = −

∫ ∞
0

N∗(t)||α0〉〈αL(t)||dt.

However, we will not evaluate these operators explicitly because we only need to get
the traces Tr âŶ and Tr Ŷ , not Ŷ itself. This will considerably simplify the calculation.
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As a trace of the type Tr ||x〉〈y|| is equal to exp(xy∗) and Tr â||x〉〈y|| to x exp(xy∗),

we can express Tr âŶ and Tr Ŷ as

Tr âŶ = −(β0F (0) + α0F
∗(0) +∆0F (η)),

Tr Ŷ = −2ReF (0), where

F (u) ≡
∫ ∞

0

N(t) exp(α∗0αL(t)− ut) dt.

After substituting the explicit form of αL(t) and N(t) from eq. (G.19) and eq. (G.20),
we write the integral F (u) as

F (u) = eA
∫ ∞

0

exp(−A exp(−ηt)− (B + u)t) dt, where

A = 4χ2|α0|2/η2,

B = iδq + Γ/2 + γ + 2iχα∗0β0.

Using a substitution v = A exp(−ηt), this integral can be expressed in terms of the
lower incomplete Gamma function G defined as

G(s, x) ≡
∫ x

0

ts−1e−t dt.

The result is

F (u) =
eA

ηA(B+u)/η
G((B + u)/η,A).

The Gamma function satisfies the recurrence relation G(s+ 1, x) = sG(s, x)− xse−x
which allows us to express F (η) in terms of F (0). Furthermore, the Gamma function
can be expressed as a series

G(s, x) =
∞∑
k=0

(−1)k

k!

xs+k

s+ k
.

This allows us to write the final form of the second-order correction to Tr âρ̂ from
eq. (G.15) as

Tr âρ̂2 =
Ω2

4

1

(δr − iκ/2)(δr + 2χ− iκ/2− iΓ )
(G.21)

×
[(
− iδq + Γ/2 + γ

α∗0
+
χε

Γ

)
F (0) +

(
2iχα0 +

χε

Γ

)
F ∗(0) +

1

α∗0

]
, where

F (0) =eA
∞∑
k=0

(−1)k

k!

Ak

B + kη
.

This rather complicated expression in principle allows us to calculate the signal to
second order in Ω. However, it does not provide a lot of insight into the shape of the
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resulting spectrum. We will further analyze its asymptotic form in the limit Γ, γ → 0
and for the resonator drive frequency matching the resonance with the qubit in the
ground state, that is, δr = 0. In the limit of Γ → 0, the only non-negligible terms in
the previous expression will be those proportional to χε/Γ .

Tr âρ̂2

α0
= −Ω

2χ

Γ

1

2χ− iκ/2

∞∑
k=0

1

k!
Re

eA(−A)k

i(δq + 2kχ+ 2χ|β0|2) + 8χ2|β0|2/κ+ kκ/2
.

In typical qubit spectroscopy measurements, we analyze the amplitude of the signal
which is proportional to |Tr âρ̂| as a function of the qubit detuning δd. This can be
approximated as

|Tr âρ̂|
|α0|

= 1− 8Ω2χ2

Γ (16χ2 + κ2)

∞∑
k=0

1

k!
Re

eA(−A)k

i(δq + 2kχ+ 2χ|β0|2) + 8χ2|β0|2/κ+ kκ/2
.

(G.22)
We will first note that in the limit χ � κ when the imaginary part of A can be

neglected and we can approximate A ≈ −|α0|2, this further reduces to the simpler
form

|Tr âρ̂|
|α0|

= 1− 16Ω2

2Γ

∞∑
k=0

e−nn2k

k!

(k + n)κ

4(δq + 2kχ+ κ2n/8χ)2 + (k + n)2κ2
, (G.23)

where n = |α0|2 is the mean number of photons in the steady state if the qubit is
in the ground state. Considered as a function of the qubit detuning δq, the signal
approaches the steady state value α0 for large δq. Its amplitude drops when δq is
close to one of the frequencies −2kχ− κ2n/8χ.

These dips in the signal amplitude have a Lorentzian shape with widths (FWHM)
of (k + n)κ and amplitudes proportional to pk/(k + n), where pk = exp(−n)nk/k!
is the probability of finding k photons in the coherent state |α0〉. This phenomenon
where the measured spectroscopy signal consists of multiple peaks is known as “num-
ber splitting”. It arises from the dispersive shift of the qubit frequency which is
proportional to the number of photons and takes values which are integer multiples
of 2χ.

This kind of measurement is often used to calibrate the magnitude of the drive
strength ε since the observed shape of the spectrum provides information about the
photon number distribution and therefore, in turn, about α0 and ε. For this, a sum
of Lorentzian functions is fitted to the measured signal.

Note that, contrary to what one might naively expect, the amplitudes of the signal
dips are not proportional directly to the photon number probabilities pk but to the
expressions pk/(k+n). To extract the photon number distribution, we should rather
use the integrated areas of the fitted Lorentzian functions which are proportional
to pk. When using this approach, we need to beware – the simple correspondence
between pk and the dip areas is only valid in this special limit we have analyzed here.
It is correct only when the qubit drive strength Ω is weak, qubit decoherence rates can
be neglected and the dispersive shift χ is much larger than the resonator linewidth κ.
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Figure G.2: Qubit spectroscopy curves obtained by numerical calculation of the steady
state of the Liouvillian (green dots) compared with the various approximations derived
in sec. G.2 – the low κ/χ approximation given by eq. (G.23) (blue line), the low Γ
limit in eq. (G.22) (orange line) and the full second-order perturbative expansion in
Ω given by eq. (G.21) (green line). Subplot (a) shows a regime in which even the
crudest of the three approximations matches the numerical simulation. (b), (c) and
(d) show regimes in which these approximations successively fail.
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Appendix H

Theoretical considerations on
dispersive read-out

H.1 Extraction of state populations from time traces

The following section presents an analysis of the procedure to obtain transmon state
populations from averaged voltage traces measured in a pulsed dispersive read-out. It
also shows how noise performance of the population estimation depends on filtering
of the measured voltage traces.

The dependence of the averaged time trace on the state populations is given by

v(t) = ag(t)pg + ae(t)pe + . . . (H.1)

This equation is analogous to eq. (2.2) except v and ag, ae, af , . . . are now functions
of time. We can also look at these functions as infinite-dimensional vectors. But
even though the vector space Ω of all possible time traces is infinite-dimensional, if
we assume that only a finite number n of transmon energy levels are occupied, the
measured voltages v(t) cannot be just any vectors. They are restricted to an (n− 1)-
dimensional plane P spanned by the eigenstate responses ag(t), ae(t), . . . belonging
to the occupied states. For example, if the only occupied states are |g〉, |e〉 and |f〉,
all possible measurement outcomes v(t) lie in the two-dimensional plane containing
ag(t), ae(t) and af (t). Provided that the eigenstate responses ag, ae, . . . are known,
finding the populations pg, pe, . . . is equivalent to a simple decomposition of a given
vector v into a linear combination of n other vectors.

In practice, implementation of this seemingly simple prescription has its caveats.
If the observed voltage trace v(t) lies exactly in the plane, everything is simple. But
in real life, measured voltage traces contain noise and v(t) therefore does not have to
lie exactly in P .

The decomposition of v into a linear combination of ag, ae, . . . is guaranteed to
exist by definition for ideal measurement outcomes but we need to define a procedure
to estimate the populations even for noisy voltage traces. For this, we need to map
the whole space Ω onto P where the decomposition exists. We will look for a linear
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Figure H.1: (a) Simple illustration of the mapping from the space of voltage traces Ω
to the (n−1)-dimensional plane P (shown in green; n = 2 in this particular example)
spanned by the eigenstate traces ag, ae. The voltage trace, seen as a vector v ∈ Ω,
is displaced by a vector from the null space Q (in blue) chosen to bring it to P .
(b) Mapping of a noisy signal v = v0 + η where v0 is an ideal voltage trace from
P and η is a Gaussian random vector. The probability density of v is indicated by
the density plot in red. The purple lines represent the infinitesimal slices Sw of Ω
obtained by shifting P by a vector w from the null space Q. The dashed red line
indicates positions of the means of the probability distributions of v conditioned on
v ∈ Sw. For one particular slice Sw, shown by the dark purple line, the resulting
probability distribution of the projection fv ∈ P is indicated by the varying thickness
of the green line representing P . The mean of this distribution is given by v0 − dw
where dw depends on w, resulting in an increased variance of the overall distribution
of fv unless the red dashed locus of the conditional means is parallel to the null space
Q, in which case dw = 0 for all w.

map f from Ω to P which leaves P itself invariant. Note that any vector v can be
decomposed into a sum of fv and v− fv where the vector fv lies in P and v− fv lies
in the null space Q of f since fv − ffv = 0. Therefore, the direct sum P ⊕Q covers
the whole space Ω and the action of f on Ω is uniquely determined by specifying the
null space. Indeed, for any vector v ∈ Ω, we can find a unique decomposition into
v = u + w where u ∈ P and w ∈ Q. Then fv = fu + fw = u. This means that we
can view the action of f on Ω as an operation where a vector v from Ω is translated
by some vector from the null space Q which brings it to P . This process is illustrated
in Fig. H.1(a).

To see how the choice of the null space Q affects the noise properties of the
estimated populations, let us start by assuming that the measured voltage trace v
can be written as a sum v0 +η where v0 is an ideal trace lying in P and η is the added
noise which is a random vector in Ω. We will consider this noise to be Gaussian-
distributed with a zero expectation value. The probability density Π of the random
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variable v = v0 + η is then given by

Π(v) ∝ exp (−A(v − v0, v − v0)) ,

where A is a quadratic form characterizing the Gaussian distribution. An example of
such a distribution is shown in Fig. H.1(b). To find the probability density for the
projected vector fv, consider a decomposition of the full space Ω into infinitesimal
slices parallel to the plane P , indicated in Fig. H.1(b) by the purple lines. One of
these slices – let us call it S0 – will contain the plane P itself and each other slice can
be described as its image under translation by some vector w from the null space Q.
We will call this shifted slice Sw. If the random vector v happens to lie in Sw, we
have v = fv + w. The probability density of fv is therefore

Π(fv = v′)|v∈Sw ∝ exp (−A(v′ + w − v0, v
′ + w − v0)) .

This is again a Gaussian distribution. As the exponent has the same quadratic term
−A(v′, v′) for any w, this distribution has the same shape for all the slices but its
center may be shifted depending on w, as illustrated graphically in Fig. H.1(b). Up
to an additive constant, we can rewrite the term A(v′ + w − v0, v

′ + w − v0) in the
exponential as A(v′ + dw − v0, v

′ + dw − v0), where dw is a vector tangential to P
chosen such that A(x − y, dw − w) = 0 for any x, y ∈ P . The rewritten conditional
probability density

Π(fv = v′)|v∈Sw ∝ exp (−A(v′ + dw − v0, v
′ + dw − v0)) .

can be interpreted as follows: If the random vector v lies in the slice Sw then it will
be projected onto v′ = fv which is Gaussian-distributed with a mean v0 − dw. To
get the final probability density of fv, we would need to integrate this conditional
distribution over all the slices Sw. We will not carry out this calculation as the actual
result is not of much interest to us. We would rather like to find the conditions under
which the noise in the resulting fv is minimized. Since the probability distribution
of fv is given by a weighted sum of Gaussian distributions with identical covariance
matrices, it will always have variances at least as large as each of the constituent
distributions. In fact, the optimal case is realized when the individual conditional
probability distributions Π(fv = v′)|v∈Sw all have the same mean. In the context
of Fig. H.1(b), this would happen if the red dashed line, formed by the means of
the conditional distributions, were parallel to the null space Q. This is satisfied if
and only if dw = 0 for every w ∈ Q. From the definition of dw we see that this is
equivalent to the requirement that A(x − y, w) = 0 for every w ∈ Q and x, y ∈ P .
In other words, if we define a scalar product as x · y = A(x, y), the optimal noise
performance is achieved when the null space Q is perpendicular to P with respect to
this scalar product. The projection operation T then becomes simply the orthogonal
projection onto P .

To put this abstract result into perspective, let us investigate an example: Consider
a stationary noise with a power spectral density S(ω). This means that its Fourier
transform

h(ω) =
1√
2π

∫
eiωtη(t) dt

207



satisfies 〈h(ω)h∗(ω′)〉 = δ(ω − ω′)S(ω). The corresponding probability density is
therefore

Π(h) ∝ exp

(
−
∫ |h(ω)|2

S(ω)
dω

)
and the associated scalar product is defined as x · y ≡

∫
x̃∗(ω)ỹ(ω)/S(ω) dω, where

x̃, ỹ are Fourier transforms of x, y. To project a voltage trace v onto P , one starts with
a basis of the tangent space of P , for example ae−ag, af −ag, . . ., and orthogonalizes
it to find an orthonormal basis b1, b2, . . . Then the projection fv is given by

fv = ag +
∑
j

bj(bj · (v − ag)).

In particular, if the plane P is only one-dimensional, as it is in the case when only
two states of the transmon are populated, the sum contains only a single term and
the equation becomes

fv = ag +
(ae − ag)((ae − ag) · (v − ag))

(ae − ag) · (ae − ag)
.

The populations are easily extracted in this case by comparison with the relation
v = pgag + peae:

pe =
(ae − ag) · (v − ag)
(ae − ag) · (ae − ag)

.

H.2 Resonator response in dispersive readout

In this section we show how an analytical expression can be derived for the time-
dependent coherent response of a resonator during a pulsed dispersive readout.

In general, there is no simple analytical solution of the dynamics of a dispersively
coupled system if both the qubit and the resonator are driven at the same time.
Approximate solutions can be found in the steady state to lowest order in the qubit
or resonator drive strengths, as we have seen in app. G. The dynamics can be also
solved approximately using the so-called optical Bloch equations derived by Bianchetti
et al. (2009).

As we will show in the following, if the qubit is not driven, the evolution of the
system can be solved exactly. The dispersive coupling between the resonator and the
transmon is described by eq. (1.17) and the Hamiltonian in question is given by

Ĥ =
∑
i

δiP̂iâ
†â +

1

2
ε(â + â†),

where P̂i are projectors onto the qubit computational states and δi the corresponding
detunings of the resonator frequency from its drive. Note that we have eliminated the
qubit energy term by going into the interaction picture with respect to it. If the qubit
is in one of the computational states, the evolution described by this Hamiltonian can
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be found very easily. The qubit stays in the same state and the resonator evolves as
if it were decoupled and driven with a detuning δi.

After adding resonator dissipation into the picture by including the Liouvillian
term κâρ̂â† − κ{â†â, ρ̂}, we can still treat the resonator effectively as a decoupled
dissipative linear oscillator with a qubit-state-dependent detuning.

To account for qubit relaxation, we will add a term LJ to the Liouvillian which
describes random jumps between the computational states. Its form is

LJ [ρ̂] =
∑
i,j

Γij

(
Ĵij ρ̂Ĵ

†
ij −

1

2
{Ĵ†ij Ĵij , ρ̂}

)
,

where Ĵij = |i〉〈j| describes a jump from the qubit computational state |j〉 to |i〉 and
Γij its corresponding transition rate. With the qubit transitioning between different
computational states at random times and thus effectively changing the resonator
detuning, solving the resonator state evolution becomes more complicated.

To find the solution, one can use for example the quantum trajectory approach
(Gardiner & Zoller, 1991). Each of the individual realizations of the qubit’s stochastic
evolution gives a resonator detuning which is piecewise constant in time and therefore
permits an analytical solution for the resonator state. One then needs to average over
the different qubit state trajectories to obtain the expectation value of the resonator
response. However, this method, when implemented in the naive way outlined here,
turns out to be relatively cumbersome.

We will use a slightly different but ultimately equivalent approach. Let us con-
sider the evolution equations for the expectation values 〈P̂iâ〉 and 〈P̂i〉. The latter is
particularly easy to derive from the master equation and takes the form a classical
rate equation described by the rates Γij :

d

dt
〈P̂i〉 =

∑
j

Γij〈P̂j〉 − Γji〈P̂i〉.

This result is not entirely unexpected since the relaxation of the qubit is not affected
by its dispersive coupling to the resonator.

The derivation of d〈P̂iâ〉/dt is only marginally more complicated. As the projectors

P̂i commute with â, we will get rate equation terms analogous to those above but in
addition, the Hamiltonian and the resonator dissipator from the master equation will
result in terms corresponding to the evolution of 〈â〉 for the particular computational
qubit state |i〉:

d

dt
〈P̂iâ〉 = −

(
iδi +

κ

2

)
〈P̂iâ〉 −

iε

2
〈P̂i〉+

∑
j

Γij〈P̂j â〉 − Γji〈P̂iâ〉.

We now see that the differential equations for 〈P̂iâ〉 and 〈P̂i〉 form a closed system.
This would not be the case in the presence of qubit drive and it is exactly this property
which will allow us to write the solution in a simple closed form.
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We will express all the relevant expectation values in the form of a single vector

v =



〈P̂1â〉
〈P̂2â〉
...

〈P̂1〉
〈P̂2〉
...


.

The matrix M relating dv/dt to v then has a block form

M =

(
D + T − iε

2 1

0 T

)
, where

D = diag(−(iδ1 + κ/2),−(iδ2 + κ/2), . . .),

Tij = Γij − δij
∑
k

Γki.

To solve the equation dv/dt = M ·v, we need to find the exponential of tM. We first
notice that the powers of M can be written as

Mn =

(
(D + T)n − iε

2

∑n−1
j=0 (D + T)jTn−1−j

0 Tn

)
.

This identity can be simply proven by induction. The expression for the right upper
block can be evaluated by diagonalizing the matrices T and D + T as

T =
∑
i

τiUPiU
−1,

D + T =
∑
i

τ̃iŨPiŨ
−1,

where τi and τ̃i are the eigenvalues of T and D+T, respectively, and Pi are diagonal
matrices with zeros everywhere except for a one in the i-th diagonal element. The
term (D + T)jTn−1−j can now be written as

∑
k,l τ

n−1−j
k τ̃ jl ŨPlŨ

−1UPkU
−1. The

summation over j in the expression for Mn can then be performed analytically to
obtain

n−1∑
j=0

τn−1−j
k τ̃ jl =

τ̃nl − τnk
τ̃l − τk

.

The exponential exp tM then takes the form

exp tM =

(
exp t(D + T) − iε

2

∑
k,l

etτ̃l−etτk
τ̃l−τk ŨPlŨ

−1UPkU
−1

0 exp tT

)
.

We will now assume that the resonator was in its vacuum state at time t = 0 and the
qubit in state |j〉, or in other words that 〈âP̂k〉 = 0 and 〈P̂k〉 = δjk. Furthermore, to
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emphasize the dependence on the initial qubit state j, we will denote the expectation
value of â by 〈â〉j . Its time-dependence is then given by

〈â〉j =
∑
i

〈âP̂i〉 = − iε

2

∑
i,l,k

etτ̃l − etτk

τ̃l − τk
Clk,j , where (H.2)

Clk,j ≡ (ŨPlŨ
−1UPkU

−1)ij . (H.3)

Single qubit case

To apply this formula, we will have a look at the simple case of a single two-level
system. The relaxation of this qubit is governed by the rate equations d〈P̂g〉/dt =

Γ 〈P̂e〉 and d〈P̂e〉/dt = −Γ 〈P̂e〉. The matrix T therefore has the form

T =

(
0 Γ
0 −Γ

)
.

If we denote the resonator frequencies corresponding to the two qubit states by δg
and δe, the matrix D will be given by

D =

(
−iδg − κ/2 0

0 −iδe − κ/2

)
.

By diagonalizing T and D + T, we find the eigenvalues

τ1 = −Γ,
τ2 = 0,

τ̃1 = −iδe − κ/2− Γ,
τ̃2 = −iδg − κ/2

and the transformation matrices

U =

(
−1 1
1 0

)
,

Ũ =

( − Γ
Γ+i(δe−δg) 1

1 0

)
.

The terms Clk,j ≡ (ŨPlŨ
−1UPkU

−1)ij can then be easily calculated as

C11,g = C12,g = C21,g = C12,e = 0,

C22,g = C22,e = 1,

C11,e = −C21,e =
2iχ

Γ + 2iχ
,
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where χ is the resonator dispersive shift, defined as 2χ ≡ δe − δg. This leads to the
following expressions for 〈â〉g, 〈â〉e:

〈â〉g =
iε

2

e−(iδg+κ/2)t − 1

iδg + κ/2
,

〈â〉e =
iε

2

(
e−(iδg+κ/2)t − 1

iδg + κ/2
+

+
2iχ

Γ + 2iχ

(
e−(Γ+iδe+κ/2)t − e−Γt

iδe + κ/2
− e−(iδg+κ/2)t − e−Γt

iδg + κ/2− Γ

))
.

Two qubit case

The same procedure can be used to determine the resonator response for a system of
multiple dispersively coupled qubits. Without showing the intermediate steps which
are analogous to the previous case, we will show the result for the two qubit case.
Here the eigenvalues are

τ1 = 0,

τ2 = −Γ1,

τ3 = −Γ2,

τ4 = −Γ1 − Γ2,

τ̃1 = −iδgg − κ/2,
τ̃2 = −iδeg − κ/2− Γ1,

τ̃3 = −iδge − κ/2− Γ2,

τ̃4 = −iδee − κ/2− Γ1 − Γ2

and the transformation matrices

U =


1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

 ,

Ũ =


1 − Γ1

Γ1+2iχ1
− Γ2

Γ2+2iχ2

Γ1Γ2

(Γ1+2iχ1)(Γ2+2iχ2)

0 1 0 − Γ2

Γ2+2iχ2

0 0 1 − Γ1

Γ1+2iχ1

0 0 0 1

 .

The dispersive shifts χ1,2 are defined as 2χ1 = δeg − δgg and 2χ2 = δge − δgg. Note
that we assume δee = δgg + 2χ1 + 2χ2 and do not allow δee to be independent of δgg,
δeg and δge.

The response of the resonator for qubit states |gg〉, |eg〉 and |ge〉 can be obtained
from the single qubit calculation since the unexcited qubit can be considered simply
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Figure H.2: Examples of the resonator response 〈â〉 for the two-qubit states |gg〉
(blue), |eg〉 (yellow), |ge〉 (green) and |ee〉 (red). The parameters chosen here are
δgg/κ = 4, 2χ1/κ = −3, 2χ2/κ = −1, Γ1/κ = 1/2, Γ2/κ = 1/8. The real and the
imaginary part of 〈â〉 are plotted as a function of time in (a) and (b), respectively,
while the path traced by 〈â〉 in the complex plane is shown in (c). The solid lines rep-
resent results of the expression derived here while the points show results of quantum
trajectory simulations with 1000 individual realizations.

as a spectator with no influence on the dynamics of the other qubit and the resonator.
The case which is new in the system with two qubits is the |ee〉 state. We will therefore
be interested only in the expectation value 〈â〉ee. To calculate it, we need to evaluate
Clk,ee ≡

∑
i (ŨPlŨ

−1UPkU
−1)i,ee. These coefficients are given by

C11,ee = 1,

C21,ee = C31,ee = C41,ee =

= C32,ee = C42,ee = C23,ee = C43,ee = 0,

C22,ee = −C12,ee =
2iχ1

Γ1 + 2iχ1
,

C33,ee = −C13,ee =
2iχ2

Γ2 + 2iχ2
,

C24,ee = C34,ee = −C14,ee = −C44,ee =
4χ1χ2

(Γ1 + 2iχ1)(Γ2 + 2iχ2)
.

Using eq. (H.2) then yields the final expression.
An example of resonator response curves calculated using the formulas derived in

this appendix is shown in Fig. H.2. As also illustrated in the figure, these results
match those obtained using quantum trajectory simulations.
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Appendix I

Switch controlled by a single
impedance: a no-go statement

In this appendix we consider a general RF network which contains one or more lumped
element components acting as controls. The S-matrix of the network can be tuned by
changing the impedances Zc1, Zc2, . . . of the control elements and it is our objective
here to determine how S depends on Zc1, Zc2, . . . and what types of tuning can be
achieved in this scenario.

In particular, we will show that a non-reflective microwave switch cannot be im-
plemented with a single control element and therefore using at least two tunable
inductors as in our on-chip-switch device cannot be avoided. Similarly, we will see
that a bi-directional tunable phase shifter also requires at least two control elements.

I.1 Dependence of S-matrix on lumped control impedances

The system in question is an arbitrary network with N + 2k external nodes, as
shown in Fig. I.1. Out of these, N are connected to external ports with charac-
teristic impedances Z0 while the remaining 2k are pairwise connected by the con-
trol elements with impedances Zc1, Zc2, . . . , Zck. In the following, we will for clar-
ity denote the indices of these nodes by a1, a2, . . . , ak and b1, b2, . . . , bk instead of
N + 1, N + 2, . . . , N + 2k.

If the admittance matrix of the network excluding the control elements is Yn,
then the admittance matrix of the system including the controls is

Y = (Yn + Yc1 + . . .+ Yck)−1,

where Ycj are the admittance matrices of the control elements. They each have only
four non-zero elements: (Ycj)ajaj = (Ycj)bjbj = Ycj and (Ycj)ajbj = (Ycj)bjaj =
−Ycj , where Ycj = 1/Zcj . To emphasize this special matrix structure, we will write
them as Ycj = Ycjvjv

ᵀ
j . Here vj are vectors with the only non-zero elements being

(vj)aj = 1 and (vj)bj = −1.
The corresponding impedance matrix is Z = Y−1. If we treat the nodes a1, . . . , ak

and b1, . . . , bk as internal, the impedance matrix Z̃ with respect to the remaining N
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Figure I.1: Structure of the generic network with N external ports and k control
impedances considered in this appendix. The schematic on the left represents the
admittance matrix Yn of the network without the control elements as shown by the
blue outline. The middle figure shows the (N + 2k) × (N + 2k) impedance matrix
Z = Y−1 including the controls where their nodes are still considered as external.
The figure on the right then represents the restricted impedance matrix Z̃ = [Z],
where only the N nodes connected to the ports are considered as external.

external nodes is obtained from Z simply by dropping the last 2k rows and columns
corresponding to a1, . . . , ak and b1, . . . , bk. We will denote this restriction operation
by [·], that is, Z̃ = [Z]. The S-matrix is related to Z̃ by the usual relation

S = (Z̃− Z0)(Z̃ + Z0)−1 = 1− 2Z0(Z̃ + Z0)−1.

We will further rewrite this expression using the following identity holding for any
matrix M (for which the inverses exist):

[M]−1 = [(PM + P)−1],

where P is a diagonal matrix with the only non-zero elements being ones in positions
1, 2, . . . , N and P = 1 − P. This identity says that taking the inverse of the upper
left N × N block of M is equivalent to replacing the last 2k rows of M by zeros
everywhere except for 2k ones on the diagonal, calculating the inverse and then taking
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the upper N ×N block of the result. This statement is easily proven by noting that
the determinants of [M] and PM + P are equal and so are their (i, j) minors for all
i, j ≤ N . Applying the identity to M = Z/Z0+1 results in (Z̃+Z0)−1 = [(PZ+Z0)−1]
which then leads to

S = [1− 2Z0(PZ + Z0)−1] = [(PZ− Z0)(PZ + Z0)−1]

= [(Y0P−Y)(Y0P + Y)−1]

= −1 + 2Y0[(Y + Y0P)−1], (I.1)

where Y0 = 1/Z0.
Let us now assume that the S-matrix is equal to S(1) for a certain combination of

control admittances Y
(1)
c1 , . . . , Y

(1)
ck and can be tuned to S(2) by changing the admit-

tances to Y
(2)
c1 , . . . , Y

(2)
ck . Then it follows from eq. (I.1) that

S(1) − S(2) = 2Y0[(Y(1) + Y0P)−1 − (Y(2) + Y0P)−1], where

Y(m) = Yn +
k∑
j=1

Y
(k)
cj vjv

ᵀ
j .

Using the matrix identity A−1−B−1 = A−1(B−A)B−1, we can rewrite this relation
as

S(1) − S(2) = 2Y0

k∑
j=1

∆Ycj [(Y
(1) + Y0P)−1vjv

ᵀ
j (Y(2) + Y0P)−1],

where ∆Ycj ≡ Y (2)
cj −Y

(1)
cj are the control admittance changes. We will further denote

the vectors [(Y(1) + Y0P)−1vj ] and [vᵀ
j (Y(2) + Y0P)−1] by uj and wᵀ

j which allows

us to write the expression for S(1) − S(2) in the compact form

S(1) − S(2) = 2Y0

k∑
j=1

∆Ycjujw
ᵀ
j .

Since the rank of any matrix of the form uwᵀ is one and rank is a subadditive
property1, we get the following inequality for the rank of S(1) − S(2):

rank (S(1) − S(2)) ≤ k. (I.2)

In other words, the rank of S(1) − S(2) provides a lower bound for the number of
lumped element controls necessary to achieve tuning of the S-matrix between S(1)

and S(2).
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Figure I.2: (a) Schematic diagram of the switch discussed in this appendix. The
two colors represent the two states of the switch. (b) A representation of an ideal
bi-directional phase-shifter. (c,d) The non-reciprocal realizations of the two devices
from (a,b) using circulators and a single control element.

I.2 Impossibility of switching with a single control element

The S-matrix of an ideal bi-directional switch as illustrated in Fig. I.2(a) has the form

S(1) =

 0 t1 0
t1 0 0
0 0 r1

 in one state of the switch and

S(2) =

 0 0 t2
0 r2 0
t2 0 0

 in the other.

Here t1 and t2 are the transmission coefficients between ports 1,2 and 1,3 in the two
states of the switch. For a lossless switch, we would require |t1| = |t2| = 1. We will
not place any restrictions on the reflection coefficients r1 and r2 of the port which is
disconnected from port 1.

The rank of a matrix is equal to the size of its largest submatrix with non-zero
determinant. Since the matrix S(1) − S(2) is non-zero, its rank is at least one. The
determinants of its size-2 submatrices are −t21, −t22, t1t2, −r1r2, r1t1, −r2t2. At least

1That is, rank (A + B) ≤ rankA + rankB.
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the first three of these are non-zero, therefore the rank is larger of equal to 2. The
determinant of S(1) − S(2) itself is equal to r2t

2
2 − r1t

2
1. Hence, the rank is

rank (S(1) − S(2)) = 2 if r2t
2
2 − r1t

2
1 = 0,

rank (S(1) − S(2)) = 3 if r2t
2
2 − r1t

2
1 6= 0.

It now follows from eq. (I.2) that to realize such a switch, we need at least two lumped
control elements. In addition, to be able to do this, the transmission and reflection
coefficients need to satisfy r2t

2
2 − r1t

2
1 = 0.

Another interesting implication of eq. (I.2) is that a reciprocal tunable phase
shifter as shown in Fig. I.2(b) also cannot be realized with a single control element.
Its S-matrix is

S(1) =

(
0 eiϕ1

eiϕ1 0

)
in one state of the phase-shifter and

S(2) =

(
0 eiϕ2

eiϕ2 0

)
in the other.

The matrix S(1)−S(2) is clearly regular, or in other words has rank 2, unless ϕ1 = ϕ2

in which case the phase is not really tunable. Therefore, at least two control elements
are needed to build such a device.

We should emphasize that these statements only hold for a reciprocal switch and
a reciprocal phase shifter. If we allow the device to work only in one direction, we can
implement it using a single control element. An example of a non-reciprocal switch
based on a transmission line resonator tuned by a SQUID loop (the control element)
and a circulator is shown in Fig. I.2(c). A similar device acting as a uni-directional
tunable phase shifter is illustrated in Fig. I.2(d). To see that the existence of these
devices does not contradict eq. (I.2), let us have a look at their S-matrices. For the
non-reciprocal switch, we have

S(1) =

 0 0 1
−1 0 0
0 −1 0

 in one state of the switch and

S(2) =

 0 0 1
0 1 0
1 0 0

 in the other.

Since the first two columns of S(1) − S(2) are identical and the third one is zero, its
rank is 1 and eq. (I.2) does not exclude that such a device could be realized with one
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control element. Similarly for the phase shifter we have

S(1) =

(
0 1

eiϕ1 0

)
in one state of the phase-shifter and

S(2) =

(
0 1

eiϕ2 0

)
in the other.

Again, one of the columns of S(1) − S(2) is zero and its rank is therefore 1.
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Appendix J

Microwave π/2 hybrid

The S-parameter matrix of the on-chip π/2-hybrid shown schematically in Fig. J.1(a)
can be expressed in terms of its admittance matrix Y as S = (1−Z0Y)(1 +Z0Y)−1,
where Z0 = 50Ω is the characteristic impedance of the input/output lines. The
admittance matrix is given by the sum of the four constituent transmission line seg-
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Figure J.1: (a) Circuit diagram of the on-chip π/2-hybrid with the input/output ports
numbered. (b) The fidelity of the hybrid S-parameter matrix as a function of signal
frequency ω (blue solid line) and the Lorentzian approximation given by eq. (J.1)
(yellow dashed line).
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ments:

Z0Y =


α β 0 0
β α 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 α β
0 0 β α

+

√
2


α 0 0 β
0 0 0 0
0 0 0 0
β 0 0 α

+
√

2


0 0 0 0
0 α β 0
0 β α 0
0 0 0 0

 ,

where α = −i cot(πω/2ω0) and β = i csc(πω/2ω0). Here ω0 is the operating frequency
for which the hybrid is designed. For ω = ω0 the S-parameter matrix becomes

Sbs = − 1√
2


0 0 1 i
0 0 i 1
1 i 0 0
i 1 0 0

 .

To quantify how S deviates from this ideal value when the frequency differs from ω0,
we can define the fidelity Fbs = |Tr S†bsS/4|2. It is given by a rather complicated
function of frequency which can be approximated in the vicinity of the operating
frequency ω0 as

Fbs =

(
1− (3 + 2

√
2)π2

8

(
ω − ω0

ω0

)2
)−1

+O
((

ω − ω0

ω0

)4
)
. (J.1)

The exact dependence of the fidelity on frequency as well as the Lorentzian approxi-
mation above are shown in Fig. J.1(b). The detunings from the operating frequency
corresponding to a few selected values of F are given in the following table:

|ω − ω0|/ω0 Fbs

0.0373 0.99
0.0840 0.95
0.1754 0.8
0.3431 0.5

If we define the bandwidth of the hybrid δbs as the width of the frequency range in
which Fbs > 1/2, we get δbs ≈ 2ω0/3.
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Appendix K

Modification of a RADIALL switch
for cryogenic operation

To make future experiments with multi-port devices more flexible, it would be ben-
eficial to install a microwave switch inside the cryostat. Other experimental groups
have successfully used the R573423600 switch from RADIALL at cryogenic temper-
atures. The heat dissipated in the solenoids of a mechanical switch such as this one
contributes significantly to the total heat-load in a typical dilution fridge setup. As
reported by Ranzani et al. (2013), it can take up to 15 minutes for the base tem-
perature of the cryostat to stabilize after the switch is pulsed. It is therefore clearly
desirable to reduce this power dissipation as much as possible.

A modification of the RADIALL switch leading to a reduction of the power re-
quired for switching by a factor of 2 has been proposed and tested by the group
of John Martinis at UCSB. I have followed the steps outlined on the group’s freely
accessible website1 to modify one of our switches.

The switch is a single pole, six throw. That is, it allows to connect one input
to one of six different outputs. The connections are made mechanically using six
solenoids. Each of these solenoids has two windings with opposite orientations which
are used for turning the given switch channel on and off. The windings are connected
to the control pins of the switch via two stacked PCBs whose pictures are shown in
Fig. K.1(a). The diagram of this circuit is displayed in Fig. K.1(b).

As we can see in the diagram, the channels are turned on by passing current from
individual set inputs S1, S2,. . . , S6 to the common ground C. On the other hand,
switching the channels off is done with all solenoids simultaneously, by passing current
from the reset input R to the common ground. This method is presumably employed to
keep the number of control inputs low but it increases the current needed for switching
the channels off sixfold. To deal with this problem, the circuit can be modified by
cutting certain PCB connections as illustrated by the photos in Fig. K.1(c,d) and
by the diagram in Fig. K.1(e). The structure of the modified circuit is shown in
Fig. K.1(f).

1http://web.physics.ucsb.edu/~martinisgroup/electronics.shtml
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Figure K.1: (a) Top and bottom views of the two PCBs connecting the solenoids of the
switch with the control pins. The different set, reset and ground traces are highlighted
in color. (b) Schematic diagram of the switch. (c) Overview of the modifications made
to the switch – cuts and added wire connections. (d) The PCBs of the switch after
the modifications. (e,f) Schematic representations of (c,d).
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The common ground is no longer used in the modified switch. Instead, the set and
reset winding of each channel are connected in series, reducing the current required
for switching by a factor of 2. Each two neighbouring solenoids n and n+ 1 now have
a common set input Sn. To turn channel n of the switch on, current must be passed
from pin n to n−1 (where pin 0 is the original reset pin). To turn it off, the direction
of the current has to be reversed.

During disassembly of the switch, despite trying to exercise caution, I broke one
of the pins connecting the solenoids to the bottom PCB. These pins are not fixed to
the body of the switch very rigidly and the fine wire of the solenoids breaks rather
easily. To prevent this happening again, I reinforced them later with a bit of Stycast
1266 epoxy. In the future, this should perhaps be done before removing the PCBs.
The winding of solenoid 6 originally connected to the broken pin cannot be used
anymore. I shorted it to preserve some functionality of the solenoid. This way, it can
still be used but requires twice as much current for switching on and off compared
with solenoids 1-5.

Since the modified switch requires a bi-directional current source, I have designed
and made a new constant current source, partially inspired by the original design in
Bianchetti (2010). The source is controlled via a USB/UART bridge which, when
connected to the USB port of a PC, appears as a virtual serial port.

The schematic diagram of the source is shown in Fig. K.2. To keep the switch
galvanically isolated from the digital control electronics, the circuit consists of two
parts separated by optoisolators OK1-OK4. The analog part of the circuit shown in
the upper half of the schematic operates at ground GND2 which is disconnected from
the digital ground GND used by the digital part in the lower half of the diagram.

Power is provided to the analog part from a 30 V voltage source. The power
transistor T15 acts as a simple constant current source whose output current is set by
the Zener diode D15 and the resistor R10. The parameters of these components are
chosen to result in an output current of approximately 75 mA.

Each of the seven outputs of the device is connected to the current source and
to ground by two PNP transistors. If the base of the upper transistor is pulled to
ground, the corresponding output will be connected to the collector of T15 and will
therefore act as a current source. Pulling the base of the lower transistor to ground
makes the output a current sink. The diodes D1-14 connected in parallel with the
transistors act to protect these from switching transients.

Each of the transistor bases is connected to an optoisolator which will pull it to
ground if current is passed through the diode at the galvanically isolated input side.
These diodes are controlled by the outputs of two 1-of-8 demultiplexers. Depending on
the state of the three digital inputs, one of the outputs Y0,. . . ,Y7 of the demultiplexer
will be low while the rest is high. If output Y0 is selected, all diodes are reverse-biased
and none of the optoisolators will be activated. Each of the other outputs Y1,. . . ,Y7
switches one of the optoisolators.

The output of the device to be used as the current source is therefore determined
by the 3-bit combination of the demultiplexer inputs VCCI0, VCCI1 and VCCI2. The
current sink output is similarly determined by GNDI0, GNDI1 and GNDI2. The outputs
of the demultiplexers are enabled only if their inputs G2A are pulled low. Therefore,
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after selecting the current source and sink, the current needs to be switched on by
pulsing the line ~EN.

The seven control lines VCCI0-2,GNDI0-2 and ~EN are controlled by an Atmel AT-
TINY84 microcontroller. Note that the lines GNDI0, GNDI1 and VCCI2 double as SPI
serial interface lines MISO, MOSI and SCK used for programming the microcontroller.

Communication with the PC is handled on the microcontroller side by a software-
emulated serial port connected to a PC via a USB/UART bridge at 1200 baud. The
bridge appears to the PC as a virtual COM port. After sending the 4-byte command
PUL[B] (bytes 0x50, 0x55, 0x4C and an additional arbitrary byte B containing the
parameter of the command) to the source, it generates a current pulse whose length in
milliseconds is approximately given by 7.5 times the value of B. The command SET[B]

(bytes 0x53, 0x45, 0x54 and a parameter byte B) sets outputs (numbered 1, . . . , 7) of
the device as current sources and sinks. The output whose number is given by the
three least significant bits [b2][b1][b0] of [B] will be the source and the output with
the number given by the next three bits [b5][b4][b3] will be the sink. The controller
responds to a successfully received command by sending an acknowledgement 3-byte
message ACK (bytes 0x41, 0x43 and 0x4B).
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This is achieved by the following simple code run by the microcontroller which
monitors the serial port input and if it receives one of the commands SET or PUL, it
sets the levels at the multiplexer data inputs or pulses the multiplexer enable input
according to the parameter byte sent along with the command. The code was written
and uploaded using the popular Arduino IDE.

#include <SoftwareSerial.h>

SoftwareSerial mySerial(0,1); // initialize port (TxD = pin 0, RxD = pin 1)

byte b1 = 0; byte b2 = 0; byte b3 = 0; byte b4 = 0; // make buffer for data in

void setup()

{

// set the data rate for the SoftwareSerial port

// * note that the SoftwareSerial library was written for the ATMEGA family of

// * microcontrollers; due to the different clock used by the ATTINY, initializing

// * the port with 9600 baud actually results in a speed of 1200 baud.

mySerial.begin(9600);

// initialize pin modes and levels

pinMode(2,OUTPUT); pinMode(3,OUTPUT); pinMode(4,OUTPUT);

pinMode(5,OUTPUT); pinMode(6,OUTPUT);

pinMode(7,OUTPUT); pinMode(8,OUTPUT);

digitalWrite(2,LOW); digitalWrite(3,LOW); digitalWrite(4,LOW);

digitalWrite(5,LOW); digitalWrite(6,LOW);

digitalWrite(7,LOW); digitalWrite(8,HIGH);

}

void loop()

{

if (mySerial.available()) { // if byte received, shift into the 4-byte buffer

b4 = b3; b3 = b2; b2 = b1; // (b1 is the newest byte in the buffer)

b1 = mySerial.read();

}

// SET command:

// if buffer starts with "SET"

if ((b2 == 84) && (b3 == 69) && (b4 == 83)) { // (ASCII 83,69,84)

mySerial.write("ACK"); // write "ACK" message

digitalWrite(2, b1 % 2); b1 = b1 >> 1; // set outputs 2-7 to values

digitalWrite(3, b1 % 2); b1 = b1 >> 1; // given by bits of the

digitalWrite(4, b1 % 2); b1 = b1 >> 1; // parameter byte b1

digitalWrite(5, b1 % 2); b1 = b1 >> 1;

digitalWrite(6, b1 % 2); b1 = b1 >> 1;

digitalWrite(7, b1 % 2);

b1 = 0; b2 = 0; b3 = 0; b4 = 0; // empty buffer

}

// PUL command:

// if buffer starts with "PUL"

if ((b2 == 76) && (b3 == 85) && (b4 == 80)) { // (ASCII 80,85,76)

mySerial.write("ACK"); // write "ACK" message

digitalWrite(8, LOW); // set output 8 LOW

delay(b1); // wait

digitalWrite(8, HIGH); // set output 8 HIGH

b1 = 0; b2 = 0; b3 = 0; b4 = 0; // empty buffer

}

}
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As an example, assuming that the reset pin of the switch is connected to output
1 of the source, pin 1 to output 2, and so on, the following Python code describes the
procedure to set a switch channel on and off:

import serial

import time

ser = serial.Serial(’COM4’,1200,timeout=2) # open serial port

ser.flush()

time.sleep(1) # wait for port to be ready

def set_source_and_sink(source,sink):

ser.write("SET"+chr(8*sink+source)) # write command SET + parameter

resp = ser.read(3) # read ACK message

return (resp == "ACK") # return success flag

def make_pulse(t):

send("PUL"+chr(t)) # write command PUL + parameter

resp = ser.read(3) # read ACK message

return (resp == "ACK") # return success flag

def set_switch_channel(ch,state,t):

if state:

succ1 = set_source_and_sink(ch+1,ch) # on: source=ch+1, sink=ch

else:

succ1 = set_source_and_sink(ch,ch+1) # off: source=ch, sink=ch+1

time.sleep(0.1)

succ2 = make_pulse(t) # make switching pulse

time.sleep(0.1)

succ3 = set_source_and_sink(0,0) # disconnect source and sink

return (succ1 and succ2 and succ3) # return success flag

set_switch_channel(4,True,1) # set switch channel 4 on (7.5ms pulse)

... # do whatever you want

set_switch_channel(4,False,1) # set switch channel 4 off
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Part Component type Value
C1 capacitor 1m
C2-C4 capacitor 100n
D1-D14 diode 1N4005
D15 Zener diode 1N4728
IC1-IC2 1-of-8 demux 74AC138N
JP1 2x3 pin header
OK1-OK4 optoisolator ILQ30
R1-R7 resistor 4k7
R8-R9 resistor 1k
R10 resistor 22R
R11 resistor 2k2
R12-R18 resistor 47R
T1-T14 transistor 2N5401
T15 transistor BD900A
U1 microcontroller ATTINY84

Other parts
CP2101- or FTDI232-based USB to UART converter
project enclosure
9-pin D-SUB female connector
2-pin LEMO female connector

Table K.1: List of components for the RADIALL switch current source

The current source easily fits onto a 100×160 mm2 PCB. A mask for its fabrication
is presented in Fig. K.3(a). A photo of the assembled first version of the source is
shown in Fig. K.3(b). The PCB used here was slightly different as the microcontroller
was kept on a board separate from the rest of the circuit for easier testing. A list of
used components is given in Tab. K.1.
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Figure K.2: Schematic diagram of the constant current source for the modified Radiall
switch.
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(a)

(b)

Figure K.3: (a) PCB mask for the switch current source and (b) photo of the com-
pleted device. In this prototype version, the controller was placed on a separate board
from the rest of the circuit. The USB-to-serial converter is visible as the small red
board on the right. 231
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