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Abstract: Superconducting circuits provide an attractive architec-
ture for quantum optics experiments in solid state systems. Microwave
radiation interacts strongly with individual (macroscopic) quantum
systems, and enables to realize emitters of single photons. The sta-
tistical property of emitting exactly a single photon as information
carrier makes these emitters relevant for quantum communication and
information processing protocols. To display statistical properties of a
radiation source, their correlation functions are usually measured. In
the optical frequency domain this is realized using photo detectors. At
microwave frequencies linear amplifiers effectively measure the ampli-
tude of propagating electromagnetic fields. However, noise necessarily
added to the microwave signal in the process of amplification and
inefficiencies of correlation function measurements prevented studies
of the statistics of microwave-frequency quantum fields and their
interference effects up to now. In this thesis I discuss the statistical
characterization of continuous and pulsed single-photon sources, and
investigate two-photon interference at an on-chip beam splitter.
I demonstrate that even in the presence of a high noise level char-

acteristic for conventional microwave amplifiers, the photon statistics
of quantum radiation sources can be acquired. Correlation functions
are extracted by recording the linearly amplified electromagnetic
field and analyzing it using efficient digital signal processing. Field
programmable gate array (FPGA) based electronics is developed
to process and average these data continuously and in real-time.
Through first-order correlations I investigate resonance fluorescence
and Rayleigh scattering in Mollow-triplet-like spectra. Single-photon
antibunching is clearly observed in second-order correlation function
measurements. We fully characterize the coalescence of indistinguish-
able single photons at an on-chip beam splitter into a pair of photons,
generating non-local entanglement in the beam splitter output modes.
The measurement device developed within this thesis project has

widely broadened microwave frequency signal analysis, and enables
real-time feed-back in future experiments due to customizable signal
processing. The presented experiments constitute a first step towards
using single-photon sources and two-photon interference at microwave
frequencies for quantum communication and information processing.
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Zusammenfassung: Supraleitende Schaltkreise bieten eine attrak-
tive Plattform für quantenoptische Experimente im Festkörper. Mi-
krowellenstrahlung koppelt an einzelne (makroskopische) Quanten-
systeme und erlaubt es dadurch Emitter von Einzelphotonen zu
realisieren. Die statistische Eigenschaft genau ein einzelnes Photon
als Informationsträger zu emittieren macht diese Einzelphotonenquel-
len relevant für die Quanten-Kommunikation und Informationsver-
arbeitung. Um statistische Eigenschaften von Strahlungsquellen zu
bestimmen, werden typischerweise ihre Korrelationsfunktionen ge-
messen. Bei optischen Frequenzen wird dies mittels Photodetektoren
realisiert. Im Mikrowellenbereich wird mit linearen Verstärkern die
propagierende elektromagnetische Feldamplitude gemessen. Jedoch
haben das Rauschen, das beim Verstärken notwendigerweise über das
Mikrowellensignal gelegt wird, und ineffiziente Messmethoden von
Korrelationsfunktionen bislang Studien der statistischen Eigenschaf-
ten von Quantenfeldern im Mikrowellenbereich und Interferenzeffek-
ten erschwert. In dieser Abhandlung diskutiere ich die statistische
Charakterisierung von kontinuierlicher und gepulster Einzelphotonen-
strahlung und analysiere Zweiphotoneninterferenz am Strahlteiler auf
einem Mikrochip.

Ich zeige, dass trotz eines hohen Rauschlevels die Photonenstatistik
von Quantenstrahlungsquellen aufgenommen werden kann. Die Kor-
relationsfunktionen werden über das Auslesen des linear verstärkten
elektromagnetischen Feldes und dessen Analyse mit effizienter digi-
taler Signalverarbeitung extrahiert. Die digitale Signalverarbeitung
und stetiges Mitteln ist dabei in Echtzeit auf FPGA-basierter Elek-
tronik realisiert. In Mollow-Triplett ähnlichen Spektren untersuche
ich Resonanzfluoreszenz und Rayleigh-Streuung mittels Korrelationen
erster Ordnung. Antibunching von Einzelphotonen wird in Messun-
gen von Korrelationsfunktionen zweiter Ordnung deutlich sichtbar
gemacht. Des Weiteren charakterisieren wir vollständig die Koales-
zenz zweier ununterscheidbarer Einzelphotonen am Strahlteiler in ein
einziges Photonenpaar, die einen räumlich verschränkten Zustand in
den beiden Ausgangsmoden des Strahlteilers generiert.

Das Messinstrument, welches im Rahmen dieser Arbeit entwickelt
wurde, hat die Analysemöglichkeiten von Mikrowellenstrahlung um ein
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Zusammenfassung

Vielfaches erweitert. Weiter erlaubt es in Zukunft, dank anpassbarer
Signalverarbeitung, Experimente mit Rückkopplungsmöglichkeiten in
Echtzeit durchzuführen. Die hier vorgestellten Experimente bilden ers-
te Schritte hin zu Quanten-Kommunikation und Informationsverarbei-
tung auf der Basis von Einzelphotonen und Zweiphotoneninterferenz
bei Mikrowellenfrequenzen.
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1
Introduction

Quantum optics is a research field of physics in which quantum-
mechanical phenomena of electromagnetic radiation and its interac-
tion with matter are studied (Walls and Milburn, 2008). This field
of research has its foundation over one hundred years ago, when
Planck (1900, 1901) and Einstein (1905) proposed that the energy of
electromagnetic radiation is distributed in discrete packets, namely
quanta of light. These specific quanta were shortly after referred to
as photons. This renewal in thinking was in contrast to the common
classical theory of electrodynamics based on Maxwell’s equations,
which states that electromagnetic radiation is described by waves.
Today, it is commonly accepted that electromagnetic radiation shows
both, wave and particle character (Walls and Milburn, 2008).

Experimental advances in the last decades allow physicists to control
the state of individual quantum systems, not only of photons but also
other quantized states, such as the spin or the energy of an electron
bound to the nucleus of an individual atom. “For ground-breaking
experimental methods that enable measuring and manipulation of
individual quantum systems” Haroche (2013) and Wineland (2013)
were honored by the ‘Nobel Prize in Physics 2012’. Although their
experimental systems are very different, they share fundamental con-
ceptual aspects: Both systems involve a quantized harmonic oscillator
and a few atoms that provide an anharmonic energy level structure.
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1 Introduction

Due to the high level of control over individual quantum states, which
has been demonstrated in these experiments, it was soon realized
that these and similar systems may find application in the realization
of a quantum computer. These days quantum computation is an
extremely active field of research worldwide, and many experiments
use approaches from quantum optics.

The field of research addressed in the present thesis is cavity quan-
tum electrodynamics (QED), a subfield of quantum optics, see, for
example, Haroche and Raimond (2006) and Walls and Milburn (2008).
A generic cavity QED system consists of a harmonic oscillator de-
scribing a single mode of the electromagnetic field and one two-level
system. Illustratively spoken, radiation is trapped between two highly
reflective mirrors and bounces back and forth between the two mir-
rors. The two-level system is located inside of the cavity, and has two
discrete energy levels. The two-level system can be in any quantum
superposition of its two energy eigen-states, the ground state |g〉 and
the excited state |e〉. By the exchange of energy the electromagnetic
radiation in the cavity interacts with the two-level system. The in-
teraction strength is typically weak in free space, but the interaction
time is massively prolonged due to the large number of round-trips of
the radiation in the cavity. This prolongation allows us to investigate
the interaction between single quanta and is, hence, one reason for the
frequent use of cavities around atoms. In physical implementations,
the two-level system is often considered to be a single particle, such
as an atom, with an anharmonic energy level spectrum. Two of its
discrete energy levels are then effectively used as the two-level system.
Due to the anharmonicity, transitions to the other levels happen at
sufficiently small rates. Thus, these levels can be neglected in many
cases.

Cavity QED systems cannot only be implemented by highly excited
Rydberg atoms in a microwave cavity (Haroche, 2013) or groundstate
atoms in an optical cavity (Thompson, Rempe, and Kimble, 1992), but
also with solid state artificial atoms such as semiconductor quantum
dots (Yoshie et al., 2004) or with superconducting qubits (Wallraff
et al., 2004). Advantages of solid state systems are amongst others
the possibility to customize designs and the prospect of easy scal-
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ability to more degrees of freedom. In the present thesis, we use
the framework of circuit QED (Wallraff et al., 2004; Blais et al.,
2004; Schoelkopf and Girvin, 2008), which allows us to implement
cavity QED experiments on a superconducting chip. A typical chip
consists of superconducting coplanar waveguides, which are used to
confine a mode of the electromagnetic field in the microwave frequency
range. Further, macroscopic superconducting circuits realize artificial
atoms, for which various designs are used. All designs include a
superconducting quantum interference device (SQUID), due to which
the circuits have anharmonic energy level structures as required for
artificial atoms. The energy difference between two of these energy
levels corresponds to frequencies in the microwave domain.
We use such superconducting circuits to generate microwave fre-

quency photons traveling freely along a coaxial transmission line. In
quantum-mechanics, radiation is frequently described in the Fock ba-
sis, where an n-photon Fock state refers to radiation that consists of
exactly n photons. A continuous electromagnetic wave, say coherent
radiation emitted from a laser, is thus described as a superposition
of infinitely many Fock states which are Poissonian distributed with
mean photon number |α|2. Coherent radiation can also be described
by Maxwell’s equations ignoring field quantization, so that it is re-
ferred, together with thermal radiation, as classical radiation. From
a quantum-mechanical point of view, pure Fock states and especially
the single-photon Fock state are of particular interest. For exam-
ple efficient single-photon sources have technological relevance for
quantum key distribution (Bennett and Brassard, 1984) and linear
optics quantum computation (Knill, Laflamme, and Milburn, 2001).
The realization and characterization of both continuous and pulsed
single-photon sources is one focus of the present thesis.
Equally relevant as generating single-photon Fock states is the

unambiguous demonstration of successful single-photon generation.
Hanbury Brown and Twiss (HBT) developed a new type of interfer-
ometer to measure correlations in the intensity fluctuations of two
signals (Hanbury Brown and Twiss, 1956). Using a beam splitter and
two photo detectors their method can be used to demonstrate the
single-photon character of a radiation source. A beam splitter is an
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1 Introduction

ideally lossless device with two inputs and two outputs. The input
radiation leaves the beam splitter at either one of its two outputs with
equal probability. An example of such a device for optical radiation
is a half silvered mirror. To split a single radiation beam into the
two outputs, the second beam splitter input is left the vacuum state.
At both beam splitter outputs a photo detector is placed to produce
a signal, referred to as a click, whenever a photon is detected. For
a single-photon at the beam splitter input either one of the photo
detectors clicks, but never do both. However, for more than one
photon at the beam splitter input, there is a non-zero probability
that both photo detectors click simultaneously. Thus, the absence of
simultaneous clicks demonstrates the single-photon character of the
radiation at the beam splitter input. Denoting by τ the time difference
between clicks of the two detectors and introducing τ into the statis-
tics, we are able to measure the so-called second-order correlation
function G(2)(τ), from which the photon number distribution can be
inferred. This makes the measurement of correlation functions cru-
cial to explore quantum-mechanical characteristics of electromagnetic
radiation (Carmichael, 2002). In the optical frequency domain, where
efficient photon detectors are available, the HBT-setup introduced
above is nowadays the standard approach to measure second-order
correlation functions of radiation.
Since microwave photons carry five orders of magnitudes less en-

ergy than optical photons it is considerably more challenging to build
efficient photon counters for the microwave frequency domain. When
I started this thesis project there were no microwave photon counters
available and today they are still under development (Chen et al.,
2011; Romero, García-Ripoll, and Solano, 2009). In contrast to optical
setups not the photon flux but the field amplitudes of the radiation
are the typical measurement observable in the microwave frequency
domain. Therefore, we could not measure second-order correlation
functions of microwave radiation analogous as done in optics. In this
thesis, we realize a measurement scheme to evaluate second-order
correlation functions based on the measured field amplitudes (da Silva
et al., 2010). Hereby, the nonlinearity of photon flux detection is
mimicked mathematically, for which digital signal processing, exten-
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sive calculations and statistics are necessary before the measurement
data can be averaged. To cope with these in real-time, we developed
and programmed a field programmable gate array (FPGA) based
measurement device which allows highly parallelized digital data
analysis (Lang et al., 2013a).
The main focus of this thesis is the realization and demonstra-

tion of this new approach for correlation function measurements at
microwave frequencies. As interesting sources of radiation, we imple-
ment both a continuous (Lang et al., 2011) and a pulsed (Bozyigit
et al., 2011a) single-photon source and measure their second-order
correlation function using an HBT-like setup employing an on-chip
microwave beam splitter.
To demonstrate the quality and flexibility of our single-photon

sources, we implement two individual sources to generate indistin-
guishable single-photons. In contrast to leaving the second beam
splitter input empty, one source each is placed at both beam splitter
inputs. Whenever two indistinguishable single-photons impinge at
the two inputs, they leave the beam splitter as a pair in either one
of the two outputs but never as single-photons in each of the two
outputs. This experiment was pioneered by Hong, Ou, and Mandel
(HOM) with optical photons (Hong, Ou, and Mandel, 1987) and has
become a tool to benchmark the indistinguishability of single-photon
sources. It is also a key element in linear optics quantum computation
schemes (Knill, Laflamme, and Milburn, 2001). Here, we demonstrate
for the first time HOM interference with independently generated
photons in the microwave frequency domain. Their interference at
an on-chip beam splitter is investigated by a complete characteriza-
tion of the radiation fields at the beam splitter outputs and their
correlations (Lang et al., 2013b).
To sum up, this thesis has developed microwave frequency single-

photon sources, to study the statistical properties of the emitted field
in correlation function measurements, and to investigate two-photon
interference effects that display unique quantum characteristics. The
investigations enable further steps towards quantum information pro-
cessing based on microwave photons on a chip and the developed mea-
surement scheme allows to characterize future sources of microwave
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radiation. Throughout this thesis I worked on four papers. The
content of these papers is integrated within this thesis and presented
in a unified notation.
The thesis is structured as follows:

In Chapter 1 an introduction providing background information and
setting the context of this thesis work is presented.

Chapter 2 introduces the circuit QED setting which is used for the
experiments presented in this thesis. A theoretical description
of a generic cavity QED system and an introduction to circuit
QED is given. The theoretical model underlying these systems
is illustrated and confirmed by an experimentally probed energy
level diagram which is useful to explain all relevant circuit QED
phenomena discussed in this thesis. Furthermore, I introduce
the experimental methods and setup.

Chapter 3 describes linear microwave detection and the FPGA based
electronics I developed to perform all real-time data analyses
presented. It is based on:
C. Lang, D. Bozyigit, Y. Salathe, C. Eichler, and A. Wallraff. Quan-
tum Signal Analyzer for Itinerant Microwave Radiation. Technical
Report, ETH Zurich, Switzerland (2013a).

Chapter 4 discusses a continuously pumped single-photon source.
Coherent radiation is converted into a train of single photons,
created by coherently driving a two-level system (Carmichael,
2002; Walls and Milburn, 2008). Hereby effective photon-photon
interactions are realized, an effect that enables future experimen-
tal work on coupled cavity arrays. Additionally, measurements
of second-order correlation functions of coherent and thermal
radiation are shown. This chapter is based on:
C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A.
Abdumalikov Jr., M. Baur, S. Filipp, M. P. da Silva, A. Blais, and
A. Wallraff. Observation of Resonant Photon Blockade at Microwave
Frequencies Using Correlation Function Measurements. Phys. Rev.
Lett. 106, 243601 (2011).
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In Chapter 5 the generation and characterization of a pulsed single-
photon source is presented. We clearly observe single-photon
coherence in first-order and photon antibunching in second-
order correlation function measurements of the propagating
fields. This chapter is based on:
D. Bozyigit, C. Lang, L. Steffen, J. M. Fink, C. Eichler, M. Baur,
R. Bianchetti, P. J. Leek, S. Filipp, M. P. da Silva, A. Blais, and
A. Wallraff. Antibunching of microwave-frequency photons observed
in correlation measurements using linear detectors. Nat. Phys. 7,
154 (2011a).

In Chapter 6 I describe HOM experiments, where we demonstrate
the indistinguishability of photons from independent triggered
single-photon sources. We investigate the non-local entangle-
ment in the beam splitter output modes, which is likely to be
of importance for quantum communication and information
processing based on microwave frequency photons. This chapter
is based on:
C. Lang, C. Eichler, L. Steffen, J. M. Fink, M. J. Woolley, A. Blais,
and A. Wallraff. Correlations, indistinguishability and entanglement
in Hong-Ou-Mandel experiments at microwave frequencies. Nat.
Phys. 9, 345 (2013b).

In Chapter 7 my thesis is summarized and its importance for future
research is outlined.

7





2
Cavity QED with Superconducting

Circuits

2.1 Cavity QED
In this section, I give a short introduction into a generic cavity
quantum electrodynamics (QED) system, where a harmonic system is
coupled to a single two-level system. This includes also an introduction
to the Jaynes-Cummings Hamiltonian, which is a theoretical model
for the aforementioned generic cavity QED system. To incorporate
both the coupling to the measurement system, and residual coupling
to the environment, we discuss the finite lifetimes of cavity field and
two-level system excitations.

In the field of cavity QED the interaction between electromagnetic
radiation confined in a cavity and atoms is investigated (Haroche
and Raimond, 2006). The cavity consists of two highly reflecting
mirrors; compare green mirrors in Figure 2.1. Illustratively, photons
can bounce back and forth multiple times between the mirrors before
leaving the cavity. This process forms a stationary electromagnetic
field satisfying the boundary condition, that the field of the stationary
wave has an anti-node at the location of each mirror. Consequently,
only fields with specific frequencies are allowed, namely the cavity
modes, while fields with other frequencies are suppressed. We consider

9



2 Cavity QED with Superconducting Circuits

Figure 2.1: Cavity QED system. A single two-level atom (blue),
located preferably at a field anti-node, couples with rate g to the
radiation (red) confined between two mirrors (green). The atom
radiatively decays with rate γ into modes other than the cavity mode.
A mirror with finite transmittance (light green) on the right ensures
directed decay of cavity excitations with rate κ.

in the following only a single cavity mode with the resonance frequency
νr = ωr/2π and assume all other modes are not excited and belong to
the residual environment. We consider the right (light green) mirror in
Figure 2.1 has finite transmittance such that radiation is emitted with
rate κ through that mirror, as otherwise the cavity would be perfectly
isolated from the outside world. The energy stored in the cavity
decays to 1/e of its initial value within the characteristic time 1/κ
enabling the observation of the decayed radiation. Alternatively, the
photon loss rate κ can be translated into the dimensionless quality
factor Q of the cavity defined by Q = ωr/κ = νr/2δνr. Due to the
finite cavity decay, the magnitude of the radiation suppression with
frequencies other than the resonance frequency νr follows a Lorentzian
line shape, and δνr is the half width at half maximum (HWHM) of
that Lorentzian.
Inside of the cavity a two-level atom is located, whose excited

state |e〉 is coupled to the ground state |g〉 by an electric dipole transi-
tion at frequency νa = ωa/2π. In analogy to a classical bit, that is in
either one out of two possible states, the two-level atom is also referred
to as a qubit, since the atom can be in any quantum superposition
cg |g〉 + ce |e〉 where cg, ce ∈ C and |cg|2 + |ce|2 = 1; compare blue
schematic in Figure 2.1. Compared to the continuum of modes in
free space the cavity modifies the density of modes available for the

10



2.1 Cavity QED

qubit to spontaneously decay from the excited state |e〉 to the ground
state |g〉 by emitting a photon of frequency νa. Thus, the cavity pro-
tects the qubit from decay when the qubit transition is detuned from
the cavity where the density of modes allowed by the cavity becomes
very small. This effect is named after Purcell (1946), who considered
a two-level system coupled to external circuitry (Houck et al., 2008).
Additionally due to imperfections in experimental setups, it is pos-
sible that the qubit decays spontaneously from state |e〉 to |g〉 with
a residual characteristic rate of γ through spurious electromagnetic
modes other than the cavity mode or by other energy absorption
processes (Blais et al., 2004).
The atom couples to the electromagnetic field in the cavity by an

electric dipole interaction since the electromagnetic mode induces an
electric dipole moment in the atom. When cavity and qubit are on
resonance (νr = νa), single radiation quanta are exchanged between
the qubit and the cavity field at the coupling rate g. In the strong
coupling limit with g � κ and g � γ, in which the coupling strength
dominates over cavity and qubit decay rates, this energy exchange
can result in multiple coherent oscillations referred to as vacuum Rabi
oscillations (Blais et al., 2004).
The system described above is well described by the Jaynes-Cum-

mings Hamiltonian

ĤJC = ~ωr

(
Â†Â+ 1

2

)
+ 1

2~ωaσ̂z + ~g
(
σ̂−Â

† + σ̂+Â
)

+ Ĥκ + Ĥγ ,

(2.1)
where a single electromagnetic field mode is coupled to a single two-
level atom (Blais et al., 2004). The first term in Equation (2.1)
describes the energy stored as photons in the cavity and is formally
equivalent to a quantum harmonic oscillator. Here, Â† denotes the
creation operator of a photon in the cavity, which is defined as
Â† |n〉 =

√
n+ 1 |n+ 1〉 such that a photon is created in addition to

the n existing photons. Similarly the photon annihilation operator Â
is defined as Â |n〉 =

√
n |n− 1〉. Their product Â†Â is interpreted

as the photon number operator due to the action Â†Â |n〉 = n |n〉.
Note that Â is the operator for the field in the resonator, while I have
reserved â′ for fields emitted from the cavity and â for fields traveling
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2 Cavity QED with Superconducting Circuits

towards the detection setup.
The second term in the Jaynes-Cummings Hamiltonian (2.1) de-

scribes the energy stored in the qubit. The Pauli z-operator σ̂z =
|g〉〈g| − |e〉〈e| refers to the ground state |g〉 and the excited state |e〉
of the qubit. Together with the factor 1

2 this term shows that the
energy difference between the two qubit states is ~ωa.

The interaction between the field and the qubit is described by the
third term in Equation (2.1). Single energy quanta are exchanged
with rate g. A transition σ̂− = |g〉〈e| from state |e〉 into state |g〉 of
the qubit creates a photon Â† in the cavity mode. In the case the
photon is absorbed (σ̂+ = |e〉〈g|) by the qubit a photon in the cavity
is annihilated (Â).
The coupling of the cavity to the continuum and the coupling of

the atom to other modes than the single cavity mode is described
by the fourth and fifth terms, Ĥκ and Ĥγ , of the Jaynes-Cummings
Hamiltonian (2.1), respectively (Blais et al., 2004). These two terms
are operations that include the environment. To avoid including the
environment into the model, typically the dynamics of the system
is investigated using the master equation for the Jaynes-Cummings
model of Equation (2.1) where the environment is incorporated as a
reservoir; see e.g. Carmichael (2008).

2.2 Circuit QED
The framework of circuit QED allows to implement a cavity QED
system similar to the generic model introduced in Section 2.1. The
circuit QED architecture is proposed, e.g., in Blais et al. (2004) and
an experimental realization is described in Wallraff et al. (2004). Fig-
ure 2.2(a) shows schematically such a circuit QED system, which has
been used for the experiments presented in this thesis. Macroscopic
superconducting electronic circuits are used to realize anharmonic sys-
tems, thus being artificial atoms (blue). Further, the artificial atom is
coupled capacitively to the electric field (red) of the superconducting
coplanar waveguide resonator (green). The afore mentioned building
blocks are introduced in Sections 2.2.1 to 2.2.3. The presented theory
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2.2 Circuit QED

(a)

(b)

Figure 2.2: (a) Circuit QED scheme with coplanar waveguide res-
onator (green) and embedded transmon qubit (blue) at a resonator
field anti-node. (b) Lumped element model of the waveguide resonator
capacitively coupled to a SQUID-loop with parallel capacitance. Domi-
nant field decay at the output is ensured by a larger ratio Cout/Cin � 1
between input and output capacitance. Dashed lines indicate the
continuation of the infinitesimally small serial inductor and parallel
capacitor to represent inductance L0 and capacitance C0 per unit
length of the waveguide. See Glossary on page 139 for a description
of the symbols.�

follows mainly proposals of Blais et al. (2004, 2007) with extensions
due to modifications of the artificial atom proposed by Koch et al.
(2007).

2.2.1 Coplanar Waveguide - Resonator
In contrast to the illustrations of cavity QED in Section 2.1, where
the radiation is confined in a three-dimensional cavity, the electro-
magnetic radiation is here confined within a waveguide. Here, we use
superconducting coplanar waveguides defined by thin film patterns
on a chip. A coplanar waveguide consists of a center conductor and
two lateral ground planes, colored green in Figure 2.2(a). Since in
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2 Cavity QED with Superconducting Circuits

the transverse direction the physical dimensions are typically much
smaller than the electrical wavelength, we can draw an equivalent
lumped-element circuit model for such a waveguide as shown in Fig-
ure 2.2(b) by the array of inductors and capacitors that indicate an
inductance L0 per unit length and a capacitance C0 per unit length
of the coplanar waveguide (Pozar, 2011). The width of the center
conductor, the gap from the center conductor to the ground planes
[compare Figure 2.2(a)] and the effective dielectric constant of the
used materials define the impedance Z0 =

√
L0/C0 of the waveg-

uide (Göppl et al., 2008). Typically, impedances of Z0 = 50 W are
chosen (Pozar, 2011).
We define a resonator in the coplanar waveguide by leaving a gap

in the center conductor at the input and output. This introduces an
input Cin and an output Cout capacitance into the waveguide, which
play the role of the mirrors in the cavity QED model of Section 2.1.
Similarly as for the three-dimensional cavity the standing waves in
the coplanar waveguide resonator must satisfy boundary conditions.
Here, the electric field must have an anti-node at each end of the
coplanar waveguide resonator, as shown for the fundamental mode
in Figure 2.2(a). Thus, the resonator carries the fundamental mode
(standing wave with single field node) and the harmonics thereof
(standing waves with two or more field nodes) out of the continuum
of possible modes supported by the waveguide. The length of the
resonator together with the effective dielectric constant sets the reso-
nance frequency νr, which we define throughout this thesis being the
fundamental mode and has frequencies around 7GHz. The ground
planes confine the resonator mode laterally to a small mode volume
leading to a very high electromagnetic field strength in the resonator
plane, i.e. a quasi one-dimensional transmission line (Wallraff, 2008;
Blais et al., 2004). Due to the use of superconducting material resis-
tive losses in the resonator are negligible at temperatures well below
the critical temperature of the superconductor and at frequencies
well below the superconducting gap. Intrinsic photon losses such
as photon loss in the dielectric or through spurious electromagnetic
modes on the chip limit the internal quality factor of the resonator to
typically several hundred thousands (Göppl, 2009). However, since
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2.2 Circuit QED

the resonators used in this thesis have quality factors Q < 2000 in
the overcoupled regime photon loss through the resonator output
dominates over internal photon loss.

Note that alternatives for implementing microwave resonators exist.
Examples are lumped element LC-oscillators [see for example Cicak
et al. (2009)], which do not support higher harmonics, and three-
dimensional microwave cavities [see for example Paik et al. (2011)].

2.2.2 Artificial Atom - Transmon Qubit
In circuit QED, superconducting electric circuits are placed into the
resonator that act as artificial atoms with quantized and anharmonic
energy levels. Being a solid state circuitry the artificial atoms are
at fixed position. Unlike real atoms, the circuits can be designed
and adapted so that experimental requirements, such as transition
frequencies, are met. Additionally, most current designs of super-
conducting artificial atoms allow to control transition frequencies by
external control parameters in experiments, e.g. to bring the tran-
sition frequency of the circuit into and out of resonance with the
resonator (Clarke and Wilhelm, 2008).
All types of superconducting artificial atoms incorporate at least

one Josephson tunnel junction as a nonlinear circuit element (Clarke
and Wilhelm, 2008). As described by Bardeen, Cooper, and Schrieffer
(1957) in their theory of superconductivity, bosonic quasi-particles
(Cooper pairs of electrons) condense into a single macroscopic state
described by an effective single-particle wavefunction. This macro-
scopic wavefunction is the basis for the observation of atomic-scale
phenomena such as the anharmonic energy level quantization in a
macroscopic system (Clarke and Wilhelm, 2008). A Josephson tun-
nel junction consists of two superconducting leads separated by an
insulating barrier of appropriate thickness (few nm). The thickness
and geometry of this barrier are related to the critical current Ic up
to which Cooper pairs are able to tunnel without dissipation through
the barrier (Clarke and Wilhelm, 2008). The Josephson junction can
be interpreted as a nonlinear inductor shunted by its intrinsic capac-
itance. It thus behaves like an anharmonic oscillator, which is the

15



2 Cavity QED with Superconducting Circuits

key property and building block for superconducting artificial atoms.
The combination of Josephson inductance and intrinsic capacitance is
represented as � in circuit diagrams; compare Figure 2.2(b). We refer
to Clarke and Wilhelm (2008) for an overview of superconducting
artificial atoms and their microscopic descriptions. In the remainder
of this section, I describe in more detail the transmon type super-
conducting artificial atom, which has been used within the scope of
this thesis. In the rest of this thesis, I refer to this specific type of
artificial atom simply as a transmon.
The transmon is a Cooper pair box in parallel with a capaci-

tor (Koch et al., 2007). Here, we discuss the split Cooper pair box,
which adds the ability to change the transition frequencies of the arti-
ficial atom by externally applying magnetic fields. The split Cooper
pair box consists of a superconducting island and a superconducting
reservoir that are connected by two Josephson tunnel junctions, in-
stead of a single junction. In addition to the two intrinsic junction
capacitances, there is a capacitance between island and reservoir. For
the transmon regime of the split Cooper pair box this capacitance is
desired to be large, as explained later in this section, and is controlled
by the geometry of the characteristic finger capacitor; compare blue
circuit in Figure 2.2(a) or—for a more detailed view—the false-color
micrograph in Figure 2.3. The charging energy of a single electron
charge e on the island is given by Ec = e2/2CΣ, where CΣ is the
sum of the three capacitances above and the effective capacitance Cg
to the resonator (which includes capacitance to ground); compare
Figure 2.2(b). Island, reservoir, and the two Josephson junctions form
a SQUID-loop, a ring through which a circulating super-current may
flow. By externally applying magnetic flux Φ through the loop, we
can tune the critical current Ic(Φ) of the SQUID. The critical current
Ic(Φ) is periodic in the applied flux Φ with period of the flux quan-
tum Φ0 = h/2e and directly influences the Josephson energy defined
as EJ = EJ(Φ) = Ic(Φ) Φ0/2π, which describes the energy stored in
the Josephson junctions due the coupling of the two superconductors.
Hence, the Josephson energy varies as EJ(Φ) = EJΣ |cos(πΦ/Φ0)|,
where EJΣ is the maximal Josephson energy and represents a design
parameter (Makhlin, Schön, and Shnirman, 2001).
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Â

â′

b̂′

âb̂

Z0

Z0

Z0

Z1 Z1

Figure 2.3: False-color micrograph of a circuit QED sample with
beam splitter. Superconducting coplanar waveguide resonator (green)
realizing resonant mode Â interacting with integrated transmon (blue,
left insets), which can be biased with a large bandwidth flux gate line
(purple, shorted to ground) and manipulated with a charge gate line
(orange). Output mode â′ is coupled into the beam splitter (red) with
mode b̂′ in the vacuum state and output modes â and b̂. Four λ/4
sections of waveguide with impedances Z0 = 50 W and Z1 = Z0/

√
2

realize the beam splitter. All superconducting ground planes (light
blue) are connected via few aluminum wire bonds (not shown) over
both insulating stripes (black) of the waveguides. See Section 2.2.4
for used materials and fabrication of this sample.

17



2 Cavity QED with Superconducting Circuits

The Hamiltonian ĤCPB which describes the Cooper pair box on
the basis of the excess1 number of Cooper pairs m that are on the
island is given by

ĤCPB = 4Ec
∑
m

(
m−mg

)2 |m〉〈m| − 1
2EJ

∑
m

(
|m+ 1〉〈m|+ h.c.

)
,

where mg = CgVg/2e is the gate charge in units of number of electron
pairs due to the voltage Vg at the island (Blais et al., 2004). In the
regime Ec � EJ the Cooper pair box is referred to as a charge qubit,
because the Hamiltonian is predominantly defined by the charge,
i.e. the number of Cooper pairs m, on the island (Blais et al., 2004).
The energy levels Ei (i = g, e, f, h, . . .) of the Cooper pair box for the
ground state |g〉, excited state |e〉, second-excited state |f〉, . . . are
the eigen-values Ei of the Hamiltonian ĤCPB as

ĤCPB |i〉 = Ei |i〉 .

The transition frequency νa = (Ee − Eg)/h strongly depends on the
gate charge mg and is thus susceptible to variations of that parameter.
Therefore, the gate charge mg is typically controlled in experiments
and adjusted to the charge degeneracy point mg = 1/2, where νa only
depends to second-order on mg as exploited by Vion et al. (2002).
In contrast, in the transmon regime of the Cooper pair box, Ec

is reduced significantly2 to Ec � EJ, so that the dependence of
transition frequency νa on the gate charge mg decreases exponen-
tially with

√
EJ/Ec, which makes the energy levels Ei insensitive

to gate charge fluctuations in mg (Koch et al., 2007; Schreier et al.,
2008). This insensitivity comes at the cost of reduced anharmonic-
ity α ≡ Eef − Ege of the transition energies Eij . The subsets of Eij
and νij with i, j = g, e, f, h, . . . denote a transition from state |i〉 to |j〉.
The anharmonicity α relates to the operation time, i.e. the maximal
drive rate at which transitions between the lowest two states |g〉

1The number of additional Cooper pairs on the island compared to the neutral
state.

2Note that the class of phase qubits have even higher EJ ∼ 104 · Ec and are
usually arranged in a different way (Makhlin, Schön, and Shnirman, 2001).
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2.2 Circuit QED

and |e〉 can be driven selectively, and thus at which the artificial atom
still can be considered as a qubit. Since the relative anharmonic-
ity α/Ege decreases only with a weak power law in

√
Ec/EJ resulting

in α ' −Ec, the anharmonicity can be made sufficiently large for fast
operation times while the transmon is still insensitive to gate charge
fluctuations (Koch et al., 2007; Schreier et al., 2008). Calculating the
energy levels of the transmon we find a transition energy from the
ground to the excited state which can be approximated by

hνge ≈
√

8EcEJΣ|cos(π Φ
Φ0

)| − Ec

in dependence of the flux Φ applied through the SQUID-loop, for
all Φ so that Ec � EJ(Φ) is still fulfilled. The Hamiltonian for the
transmon in its eigen-basis with multiple energy levels is

Ĥtransmon =
∑
i

~ωi |i〉〈i| ,

where the energy levels Ei are expressed in terms of the angular
transition frequencies ωi between ground state |g〉 and state |i〉. The
dependence of the energy levels Ei on the applied flux Φ is illustrated
in Section 2.3.

2.2.3 Coupling of Resonator and Transmon
To complete the discussion of the circuit QED system, we describe
the coupling of the transmon to the electric field of the resonator
mode. For this purpose, the transmon is fabricated into the gap
between center conductor and ground plane; compare Figures 2.2
and 2.3. This gap is in the small mode volume the resonator field
is concentrated in (see Section 2.2.1), which results in a strong field
strength at the location of the transmon. The coupling is maximal
when the transmon is positioned at an anti-node of the standing wave
in the resonator. Thus, transmon and electromagnetic field of the
resonator interact capacitively which can be interpreted as an electric
dipole coupling. The dipole coupling is described in the uncoupled
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2 Cavity QED with Superconducting Circuits

transmon state basis |i〉 by the coupling Hamiltonian

Ĥc =
∑
i,j

~gi,j |i〉〈j| (Â† + Â) ,

where indices i and j enumerate the states of the transmon i, j =
g, e, f, h, . . . and ~gi,j are the coupling energies associated with the
transmon transitions together with the emission/absorption of an
excitation in the resonator mode, where gi,j are determined by the root
mean square voltage of the resonator field and the ratios EJ/Ec and
Cg/CΣ (Koch et al., 2007). In the transmon regime of large EJ/Ec the
only relevant couplings are found to be between neighboring states
of the transmon, i.e. gi,i±1 (Koch et al., 2007). After applying a
rotating wave approximation the effective coupling Hamiltonian of
the transmon is

Ĥc =
∑
i

~
(
giσ̂iÂ

† + g∗i σ̂
†
i Â
)
,

where σ̂i = |i〉〈i+ 1| and σ̂†i = |i+ 1〉〈i| denote the atom lowering and
raising operators, and gi = gi,i+1 (Koch et al., 2007).

Combining resonator, transmon artificial atom, their electric dipole
interaction (compare Sections 2.2.1 to 2.2.3) and dissipation of res-
onator and atom excitations, we describe the complete system by the
effective generalized Jaynes-Cummings Hamiltonian

ĤgJC = ~ωr

(
Â†Â+ 1

2

)
+
∑
i

~ωi |i〉〈i|+
∑
i

~
(
giσ̂iÂ

† + g∗i σ̂
†
i Â
)
.

(2.2)

This Hamiltonian with appropriate flux-dependent treatment of tran-
sition frequencies ωi and coupling strengths gi is numerically diagonal-
ized in Section 2.3 and compared to spectroscopic measurement data.
For a large enough anharmonicity of the transmon we can restrict
Equation (2.2) to the lowest two atomic states, i = g, e. In that case
we refer to the transmon as the qubit and the effective Hamiltonian
above reduces to the Jaynes-Cummings Hamiltonian Equation (2.1).
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2.2.4 Fabrication of Circuit QED Devices
Figure 2.3 shows a false-color micrograph of the circuit QED device
used for the experiments of Chapters 4 and 5. The network of coplanar
waveguides and the resonator is patterned in optical lithography
with approximately 200 nm thick niobium (ground plane and center
conductors) on a mono-crystalline sapphire substrate. The input and
output capacitances of the resonator are chosen by adjusting the gap
size in the center conductor, or for larger capacitances by introducing
a finger capacitor as shown in the right inset of Figure 2.3 (Göppl
et al., 2008).
The artificial atoms used for this thesis were patterned using elec-

tron beam lithography, with which we reach a feature size of ∼ 20 nm
compared to ∼ 1 µm for optical lithography. To reach the required few
nm thickness of the insulating barrier of the Josephson junctions, the
barrier is made by aluminum oxide, and exploits shadow evaporation
and an oxidation break in between the consecutive evaporation of two
aluminum films which form island and reservoir (Göppl, 2009).

2.3 Energy Level Diagram
In this section we use the effective generalized Jaynes-Cummings
Hamiltonian ĤgJC (2.2) to analyze the quantum-mechanics of the
circuit QED system. We spectroscopically probe the lowest lying
transitions and map them to a corresponding energy level diagram.
Since this diagram is the solution of the Hamiltonian of the experi-
mental system, we do not need to consider the microscopics of the
Josephson junction to explain most quantum physical phenomena
discussed in this thesis. We find almost perfect agreement between
experimentally found energy levels and the numerical diagonalized
Hamiltonian, which confirms the validity of the generalized Jaynes-
Cummings Hamiltonian.
Here we discuss with the numerical diagonalization of the gen-

eralized Jaynes-Cummings Hamiltonian. To include the tunable
parameter magnetic flux Φ, we rewrite ĤgJC [Equation (2.2)] incor-
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2 Cavity QED with Superconducting Circuits

porating the four parameters νr, EJΣ, Ec, g = gg,e fixed at fabrica-
tion. To numerically find the energy eigen-states and eigen-values
for all −Φ0/2 < Φ ≤ Φ0/2, we restrict ourselves to five transmon
levels i = g, e, f, h, k and maximally nine photonic excitations n of
the resonator for the basis denoted by |i, n〉. We have chosen more
photonic excitations than transmon levels since in typical experiments
the resonator is easily populated with multiple photons using a single
drive frequency. Further, we exclude the dissipation terms in the
diagonalization since they only influence the width but not the eigen-
value itself. The obtained eigen-values of the Hamiltonian correspond
to the energy levels of the complete circuit QED system. The lowest
lying eigen-values are shown in Figure 2.4 for the parameters of the
device shown in Figure 2.3 and used for the experiments discussed
in Chapters 4 and 5. The obtained energy levels are sorted from low
(purple) to high (red) energies.

If two states have the same energy and the two states are coupled
by a non-zero coupling strength, the system hybridizes into a new
pair of energy eigen-states, namely the symmetric and anti-symmetric
superposition of the original states of the uncoupled system. This is
illustrated in Figure 2.4, for example with the states |g1〉 and |e0〉 in
the uncoupled basis. When the two uncoupled states have the same
energy, the coupled system hybridizes into a doublet3, and the new
energy eigen-basis is an equal superposition of the uncoupled eigen-
states |1±〉 = (|g1〉± |e0〉)/

√
2. Away from the so-called anti-crossing

the superposition eigen-states are dominated by either one of the
uncoupled eigen-states |g1〉 and |e0〉 and the energy levels are close to
the uncoupled eigen-states. In between it is an unequal superposition
of the two states where the weighting increases with the uncoupled
energy difference, and thus with flux Φ; compare the anti-crossing
at |1±〉 in Figure 2.4. The energy splitting at an anti-crossing is
a measure of the coupling energy between the crossing levels. The
anti-crossings with small separation are due to residual coupling of
second-order or less and can typically be neglected.
The same arguments as for |1±〉 hold for the two-excitation man-

3with different energies
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Figure 2.4: Energy level diagram of the coupled resonator transmon
system. Each energy level is renamed at the anti-crossings (red dots)
as shown for the states |e0〉 and |e1〉. The shaded area (also symmet-
rically around Φ = 0) marks the Jaynes-Cummings ladder. Sample
parameters for the calculation: νr = 6.77GHz, g/2π = 72.9MHz,
EJΣ/h = 15.12GHz, Ec/h = 461.8MHz.
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ifold |2±〉 = (|g2〉 ± |e1〉)/
√

2, the three-excitation manifold |3±〉 =
(|g3〉± |e2〉)/

√
2, and so on which are called together with the ground

state |g0〉 the Jaynes-Cummings ladder, indicated by the red shaded
area in Figure 2.4. The energy difference between the states |n+〉
and |n−〉, n = 1, 2, . . ., is

√
n 2~g and due to its proportionality

to
√
n called the

√
n-nonlinearity (Carmichael, 2008; Fink et al.,

2008). It results from the coupling term of the Jaynes-Cummings
Hamiltonian ĤJC [third term in Equation (2.1)] and with σ̂+Â |gn〉 =√
n |e, n− 1〉. The experiments presented in Chapter 4 are realized

at the anti-crossing |1±〉.
Experimentally, we measure the energy difference between two

levels, by probing transitions between them. Typically, we start
by driving oscillations between the ground state |g0〉 and a second
state, thus populating the respective second state, by irradiating
microwaves resonant to the corresponding transition frequency. We
find the transition frequencies for |g0〉 ↔ |g1〉, |g0〉 ↔ |e0〉, and
the two-photon transition |g0〉 ↔ |f0〉; compare the density plots
in Figure 2.5. The measurements are performed by spectroscopy,
where we sweep the frequency νspec of the microwave source while
monitoring the population of the ground state |g0〉. Hereby, we probe
the transmission of a very small microwave tone, which is resonant
to the transition |g0〉 ↔ |g1〉, through the resonator. A change (dark
green areas) of the average transmission amplitude and/or phase
directly relates to the average population of the transmon level |g〉
probed by the measurement (Nakamura, Chen, and Tsai, 1997; Blais
et al., 2004; Wallraff et al., 2004; Schuster et al., 2005). When we
apply a microwave drive resonant with |g0〉 ↔ |g1〉 additionally to the
spectroscopy microwave νspec, we populate both4 |g0〉 and |g1〉, and
thus are able to detect also the transition frequencies for |g1〉 ↔ |e1〉,
|g1〉 ↔ |f0〉, and |g1〉 ↔ |g2〉; compare Figure 2.5. It should be
pointed out here that the latter level |g2〉 is populated together with
|g1〉 for all Φ where the transition frequency of |g0〉 ↔ |g1〉 is resonant
to |g1〉 ↔ |g2〉. Resonant means here equal transition frequency within

4If not desired, the population of |g1〉 can be avoided by implementing pulsed
spectroscopy where the microwave tone for the transmission measurement is
only turned on directly after the spectroscopy microwave drive.
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Figure 2.5: Transitions of transmon resonator system. The measure-
ments in the background probe transitions between two energy levels.
Dark green areas show that the system is affected by a microwave
drive with frequency νspec. The measurements show the dependence
of the transition frequencies to the applied flux bias voltage to a small
coil that results in the magnetic flux Φ through the SQUID-loop of
the transmon. The lines show the difference between two energy levels
for the same sample parameters as in Figure 2.4.

the transitions line width, which is the case for the resonator away
from the anti-crossings |n±〉 where resonator and artificial atom have
very different frequencies and, hence, are predominantly uncoupled.

All probed transition frequencies agree very well with the numeri-
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cally diagonalized Hamiltonian, lines in Figure 2.5. This demonstrates
that the model introduced in Section 2.2 fits well with the experimen-
tal data. Therefore, we have gained some reasonable understanding
of the system including the coupling between the resonator and the
transmon artificial atom.

2.4 Dispersive Regime
So far we have shown that the coupling between resonator and trans-
mon leads to a non-trivial energy level structure. However, in many
cases it is desirable to manipulate the state of either the artificial
atom or the resonator alone but not the coupled system of both at
a time. In quantum information, for example, the state of the artifi-
cial atom is the computational basis, and the resonator is amongst
others used to read out that state. Similarly, we need to excite the
atom alone to generate pulsed single-photons in Chapters 5 and 6.
Even though the artificial atom and resonator are never truly fully
decoupled, a sufficient decoupling is typically easily achieved for a
large range of the tunable flux Φ. It is the dispersive regime, in
which the coupling g is small compared to the detuning ∆ = ωa − ωr,
i.e. g � |∆| and g � |∆e| where ∆i = ωi,i+1 − ωr (Koch et al.,
2007). In this section, the transmon is used as a qubit with the two
states |g〉 and |e〉, hence ωa = ωge. Consequences for the dispersive
regime that arise from this usage are discussed in the following. A
detailed description of the dispersive regime for the transmon qubit
is presented in Koch et al. (2007).

Due to the reduced anharmonicity of the transmon, in comparison
to the Cooper pair box, higher excited states need to be taken into
account. Virtual transitions through these higher excited states lead
to the effective dispersive Hamiltonian

ĤD = ( 1
2~ω̃a) σ̂z + (~ω̃r + ~χ σ̂z) Â†Â (2.3)

= ( 1
2~ω̃a + ~χ Â†Â) σ̂z + (~ω̃r) Â†Â , (2.4)

for the restricted two-dimensional Hilbert space of the qubit (Koch
et al., 2007). Here, the qubit transition frequency ω̃a = ωa + χge
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2.4 Dispersive Regime

and the cavity resonance frequency ω̃r = ωr − χef/2 are renormalized
as consequence of the presence of the higher excited states of the
transmon. The effective dispersive shift χ is given by χ = χge−χef/2
with χij = g2

ij/(ωij − ωr) leading to

χ = −g2 Ec/~
∆(∆− Ec/~) . (2.5)

Note that the dispersive limit breaks down at the poles of this equa-
tion (Koch et al., 2007).

The form of the effective dispersive Hamiltonian (2.4) illustrates the
AC-Stark shift of the transmon transition frequency. The presence of
each photon Â†Â in the cavity shifts the transmon transition frequency
by χ, which is observed in Figure 2.5 as the transitions |g0〉 ↔ |e0〉,
|g1〉 ↔ |e1〉, and |g2〉 ↔ |e2〉 are split into three degenerate transition
frequencies around Φ ≈ −0.15 Φ0. The splitting by χ increases
the closer the qubit is operated to the vacuum Rabi mode splitting
where the detuning ∆ in the nominator of Equation (2.5) becomes
small. In Figure 2.5 we can additionally see where the dispersive
Hamiltonian ĤD is valid, namely for all Φ where the resonator has an
harmonic spectrum with equal transition frequency ω̃r for |g0〉 ↔ |g1〉
and |g1〉 ↔ |g2〉; compare second term of Equation (2.4). Note that
Figure 2.5 is obtained from a device which displays no dispersive
regime around Φ ≈ 0 Φ0 since the maximal qubit frequency ω̃a is
not much larger than the resonator frequency ω̃r. However, many
circuit QED experiments use devices with ω̃a � ω̃r at the flux sweet
spot Φ ≈ 0 Φ0, especially in experiments that strongly rely on the
dispersive Hamiltonian.

2.4.1 Qubit Read-Out

The second term of the effective dispersive Hamiltonian ĤD (2.3)
shows that there is a shift of the harmonic resonance frequency of ±χ
depending on the qubit state |g〉 or |e〉 as σ̂z |g〉 = |g〉 and σ̂z |e〉 = − |e〉.
This is illustrated in Figure 2.6(a,b) by the stationary resonator
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Figure 2.6: Stationary qubit state dependent resonator shift for
the (a) in-phase I and (b) quadrature Q component of microwave
transmission amplitude. (c,d) Time-dependent ensemble average of a
pulsed qubit state read-out signal (dots) for finite qubit lifetime with
fit to cavity Bloch equations (lines) and for a hypothetical infinite
qubit lifetime (dashed line).

shift. Here, the in-phase (I) and quadrature (Q) component5 of the
resonance frequencies in dependence of a measurement frequency νm
are shown. We refer to S = I + iQ as the complex amplitude and
to I and Q as quadratures. Due to coupling of the resonator to
the environment (which is dominated by its input and output lines)
with strength κ, the resonance frequencies have a full width at half
maximum (FWHM) of κ/2π in the quantity |I|2 + |Q|2; compare
Section 2.1. The resonance frequency when the qubit is in state |e〉 is
off-set by 2χ compared to the resonance frequency when the qubit
in state |g〉. Depending on the qubit state |g〉 (blue) or |e〉 (red) a

5A microwave signal is described by a complex amplitude S with amplitude
and phase in polar coordinates, or equivalently, with in-phase I = <(S) and
quadrature Q = =(S) component; compare also Section 3.1.
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2.4 Dispersive Regime

transmission measurement yields a different stationary amplitude of I
and Q at νm as indicated by the green arrow. A measurement of
the transmission is a quantum non-demolition (QND) measurement
of the qubit state because the operator σ̂z is probed by measuring
the resonance frequency, and σ̂z commutes with ĤD, [σ̂z, ĤD] = 0,
which is therefore a constant of motion (Blais et al., 2004). A complex
superposition |ψ〉 = cg |g〉+ce |e〉, where cg, ce ∈ C and |cg|2+|ce|2 = 1,
will be with probability |cg|2 or |ce|2 in the state |g〉 or |e〉 respectively,
as soon as the state of the resonator field is determined. For a
stationary qubit state, i.e. no qubit transition has happened in the
meantime, further consecutive measurements of the cavity resonance
frequency give the same results. A continuous measurement of the
cavity transmission could be integrated long enough to overcome noise
in the measurement signal. However, the spontaneous qubit decay
rate γ causes qubit transitions, which prevents us to reach arbitrary
large measurement accuracy (Blais et al., 2004).
To measure the qubit state a coherent microwave drive with fre-

quency νm is applied to the input of the resonator, and the complex
amplitude of the signal transmitted through the resonator is detected.
The measurement frequency νm is chosen to maximize the contrast in
either one of the quadratures or both, such as the contrast marked with
the green arrows in Figure 2.6(a,b). Typically, we perform a pulsed
qubit state read-out for which the microwave drive is switched on
at t = 0 like a step function. The step function has a bandwidth that is
much larger than κ/2π of the resonator, the rate (here ≈ 4.8MHz) at
which the resonator is populated from the pulsed drive. Input-output
theory provides the exact rise time and ringing of the resonator field
due to the limited bandwidth of the resonator. Furthermore it states
that the output field of the resonator in mode â′(t) =

√
κ Â(t)− â′in(t)

is a linear combination of the resonator field Â and â′in (Gardiner
and Collett, 1985; Walls and Milburn, 2008; Bianchetti et al., 2009;
da Silva et al., 2010), where â′in is incident onto the output of the
resonator and ideally in the vacuum state. The quadratures, which
are directly proportional to real and imaginary part of the itinerant
microwave field â′(t), are measured using a linear detection chain,
which is discussed thoroughly in Chapter 3. During linear amplifi-
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cation within the detection chain vacuum and thermal fluctuations
are necessarily added to the measurement signal. To cancel that
noise, which is often much larger than the itinerant microwave field,
typically the ensemble average of repeated experiments are analyzed.
A measurement example of a pulsed ensemble averaged qubit state
read-out is shown in Figure 2.6(c,d). For the blue trace we prepared
the qubit in the ground state |g〉, and for the red trace we prepared
the qubit in the excited state |e〉 immediately before applying the
read-out pulse. The first rise of the trace marks the point in time,
where we have switched on the measurement drive. The traces of the
ground state |g〉 quickly approach the steady-state amplitude of the
two quadratures. The trace for |e〉 is different, since the qubit sponta-
neously decays from the excited state |e〉 into the ground state |g〉 by
the emission of a photon, a process commonly known as spontaneous
emission. For a single read-out the transmission first approaches the
steady-state amplitude of the two quadratures corresponding to |e〉
(dashed line), then the qubit decays and the transmission approaches
the amplitude of the two quadratures corresponding to |g〉. Thus, the
red trace is the average of such traces where the decay time of the
qubit is exponentially distributed with rate γ (Siddiqi et al., 2006).
The expected form of the ensemble averaged read-out signals (lines)
are the solution of the cavity Bloch equations (Bianchetti et al., 2009).
When an arbitrary superposition state |ψ〉 is prepared and then

measured, the area between this ensemble average and the ground
state trace is a measure for the expected value 〈σ̂z〉 = 〈ψ| σ̂z |ψ〉, and
consequently the excited state population |ce|2. Section 2.4.2 describes
how the measurement scheme above can be used to measure the
expectation values 〈σ̂x〉 and 〈σ̂y〉. Note that using similar techniques
the |f〉 state population of the transmon can be measured (Bianchetti
et al., 2010), as well as the states of several qubits in a single resonator
by a joint read-out (Filipp et al., 2009).

Of note, recent developments in circuit QED made also single-shot
read-out (Siddiqi et al., 2004; Astafiev et al., 2004; McDermott et al.,
2005; Steffen et al., 2006; Gambetta et al., 2007; Mallet et al., 2009;
Lang, 2009; Vijay, Slichter, and Siddiqi, 2011) of qubit states possi-
ble. Hereby, different approaches are used such as using bifurcation
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amplification (Mallet et al., 2009; Vijay, Devoret, and Siddiqi, 2009),
using qubit induced Jaynes-Cummings nonlinearities (Boissonneault,
Gambetta, and Blais, 2010; Reed et al., 2010), or implementing quan-
tum limited linear amplifiers [see Eichler and Wallraff (2014) and
references therein].

2.4.2 Qubit Control
Not only the read-out but also the control of the qubit state is very
important, e.g. to actively run a quantum information protocol. Here,
we describe how microwave irradiation close to the qubit frequency ω̃a
is used to coherently control the state |ψ〉 of a qubit (Blais et al.,
2004). The microwave irradiation is either applied via the resonator
or the charge gate line, a coplanar waveguide that selectively couples
capacitively to the transmon; compare Figure 2.3. In the dispersive
regime, a drive tone close to the qubit frequency rotates the qubit
state effectively by

Ĥd = 1
2~∆d σ̂z + 1

2~ΩR σ̂xy , (2.6)

here described in the frame rotating at the carrier frequency ωc of
the drive (Blais et al., 2007). Here, ∆d = ω̃a − ωc is the detuning of
the drive from the qubit frequency and ΩR is the Rabi frequency and
proportional to the microwave drive amplitude ε. The operator σ̂xy =
σ̂x cosφ+ σ̂y sinφ depends on the phase φ of the drive, and can be
chosen to either be the Pauli x-operator σ̂x = |g〉〈e|+ |e〉〈g|, the Pauli
y-operator σ̂y = i(|e〉〈g| − |g〉〈e|) or any rotation operator between
the two.

The coherent control of the qubit state is illustrated on the Bloch
sphere in Figure 2.7(a). An arbitrary qubit state can be written
as |ψ〉 = cg |g〉 + ce |e〉, where cg, ce ∈ C and |cg|2 + |ce|2 = 1. The
two coefficients can be represented as a vector pointing onto the
unit sphere6, and the qubit state is conveniently rewritten as |ψ〉 =
cos(θ/2) |g〉+ eiφ sin(θ/2) |e〉, where θ, φ ∈ R. If the detuning ∆d in

6Since typically only relative phases between several qubits but not the global
phase factor can be detected, the global phase is typically dropped and chosen
such that cg ∈ R.
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(a) (b)

Figure 2.7: Bloch sphere and qubit control. (a) Bloch sphere rep-
resentation of a qubit state |ψ〉 = cos(θ/2) |g〉+ sin(θ/2)eiφ |e〉. The
basis states |±〉 = (|g〉 ± |e〉)/

√
2 of the σ̂x operator are the intersec-

tion points of the Bloch sphere with the x-axis, while the basis states
of the σ̂y operator |±i〉 = (|g〉 ± i |e〉)/

√
2 are those with the y-axis.

(b) Gaussian shaped resonant qubit pulse with controlled phase φ.

the first term of Equation (2.6) is non-zero, the qubit state precesses
with rate ∆d around the z-axis described by the angle φ; compare
solid red circle in Figure 2.7(a). The second term rotates the qubit
state around a φ-dependent axis in the xy-plane which increases the
Rabi angle θ at rate ΩR.

Specific single-qubit operations which are used later in the text are:
(i) the σxy-gate that performs a θ = π rotation about a given axis in
the xy-plane. It is referred to as a π-pulse on the qubit, and prepares
a qubit starting from the ground state |g〉 into the excited state |e〉.
(ii) the π

2 -pulse about an axis in the xy-plane with θ = π/2 that
prepares a superposition state |ψ〉 = (|g〉+eiφ |e〉)/

√
2 when the qubit

is initially in the ground state |g〉. To perform such rotations, we apply
a short microwave pulse to the qubit as sketched in Figure 2.7(b).
The carrier frequency of the pulse is ωc and its phase φ defines the
rotation axis in the xy-plane. The integral over the time-dependent
Rabi rate ΩR(t) over the whole pulse duration (red shaded area)

32



2.5 On-Chip Beam Splitter

determines the Rabi angle θ =
∫
ΩR(t) dt. Notably, any desired

single-qubit gate can be implemented with the control of φ, θ, and ∆d.
In Figure 2.7(b), the Rabi pulse ΩR(t) has a Gaussian envelope

with standard deviation σ and thus is also a Gaussian centered
around ωc in its spectral representation. The pulse has a finite
bandwidth ∼ 1/σ and its spectral content decreases monotonically
away from ωc which is in contrast to, for example, a square pulse. This
has to be taken into account when performing gates on qubits to avoid
driving the resonator or transitions to higher transmon levels that
are within the bandwidth of the qubit pulse. Typically, the Gaussian
pulses used in this thesis’ experiments have standard deviations of
a few ns. To further improve pulse fidelities for very short pulses,
we use a modified Gaussian pulse, a so-called derivative removal by
adiabatic gate (DRAG). Hereby, the |f〉 state of the transmon is
only temporarily populated during the pulse (Motzoi et al., 2009;
Gambetta et al., 2011; Chow et al., 2010; Lucero et al., 2010); see
Baur (2012) for a detailed description and calibration of this gate.
In Section 2.4.1 it was described that the measurement of the

resonator in the dispersive regime projects the qubit into |g〉 or |e〉 and
the ensemble average returns the expectation value 〈σ̂z〉 = 〈ψ| σ̂z |ψ〉.
With the single-qubit gates at hand, we are able to measure in any
basis. To measure in the σ̂x(σ̂y) basis, we apply a π

2 -pulse about
the y-(x-)axis just before the start of the measurement. Thus, the
former x-axis is now the z-axis and the ensemble average returns 〈σ̂x〉.
Similarly, any axis can be chosen as measurement basis. This allows
us to tomographically reconstruct the density matrix %, for which
minimally the three expectation values 〈σ̂z〉 , 〈σ̂x〉 , 〈σ̂y〉 are measured
to extract the coordinates of density matrix % in the Bloch sphere as
demonstrated for the first time in superconducting circuits by Steffen
et al. (2006).

2.5 On-Chip Beam Splitter
Consider the chip presented by Figure 2.3, of which all elements have
been discussed except the on-chip beam splitter shown in red. In
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Figure 2.8: Balanced beam splitter (BS) with two inputs modes â′
and b̂′, and two output modes â and b̂.

this section, I derive the quantum-mechanical beam splitter operation
and explain the working principle of the 90°-hybrid beam splitter
shown on the sample (Pozar, 2011). The beam splitter is used in this
thesis for both Hanbury Brown and Twiss (HBT)-like detection and
Hong, Ou, and Mandel (HOM) interference, as outlined in Chapter 1.
Therefore, I further describe mathematically the use of the beam
splitter operation in the HBT setup and the entanglement generation
in HOM two-photon interference.

In the optical frequency domain a beam splitter can be implemented
by a half-silvered mirror as shown in Figure 2.8. A beam splitter is
a four port device with two input modes â′ and b̂′, and two output
modes â and b̂. In the case that there is incoming radiation only
through mode â′ for a balanced (50/50) beam splitter half of the
radiation power is reflected into output mode â and the other half is
transmitted into mode b̂. Similarly, any radiation in the second input
mode b̂′ is fifty-fifty transmitted and reflected. While the former
fulfills energy conservation in the ideally lossless device, unitarity
of the beam splitter transformation is ensured by phase changes
occurring at reflection and transmission, which depend on the specific
implementation of the beam splitter. For simplicity, we assume that
there is a phase shift of π upon reflection from mode b̂′ into b̂, and
that there is no phase shift for the other three possible paths7. With

7Here, a phase shift of π upon reflection at a optically higher dense medium and
no phase shifts upon reflection at the optically less dense medium or upon
transmission as deduced by the Fresnel equations.

34



2.5 On-Chip Beam Splitter

the phase factor eiπ = −1, the complete beam splitter transformation
reads (

â

b̂

)
= 1√

2

(
1 1
1 −1

)(
â′

b̂′

)
. (2.7)

With this choice of phases the transformation matrix is real valued.
A beam splitter operation in the microwave frequency range is

implemented by the network of waveguides shown in red in Fig-
ure 2.3. Such a network is referred to as a quadrature hybrid or
90°-hybrid (Pozar, 2011; Frey, 2008). Four λ/4 sections of waveguide
with impedances Z0 = 50 W and Z1 = Z0/

√
2 realize the beam splitter.

The different impedances at the T-junctions (compare right inset of
Figure 2.3) scatter the correct amount of the field amplitude into
each waveguide section, such that there is from each of the input
ports destructive interference at the respective other input port and
50% constructive interference at the two output ports, as discussed
below. An incident wave at â′ picks a phase 1

2π on the direct path
to b̂′ and 3

2π on the clockwise path. Due to the phase difference of π,
the two waves of equal amplitudes at port b̂′ interfere destructively,
so no radiation from â′ exits the beam splitter on port b̂′. Similarly,
the incident wave picks a phase 1

2π on the direct path to â and 3
2π on

the counterclockwise path. In contrast to the destructive interference
case, however, the amplitude on the direct path is larger than on
the counterclockwise path, such that the interference results in an
amplitude of 1/

√
2 and the phase factor eiπ/2 = i of the direct path

with larger amplitude. For the output b̂ both paths pick a phase π
and thus interfere constructively to an amplitude of 1/

√
2 and a phase

factor of eiπ = −1. Since the waveguide network is symmetric, the
same arguments as above hold for an incident wave at the second
input b̂′. In summary, we get the unitary beam splitter transformation

â = 1√
2 ( i â′− b̂′) â† = 1√

2 (−i â′†− b̂′†)

b̂ = 1√
2 (−â′+ i b̂′) b̂† = 1√

2 ( −â′†− i b̂′†) ,
(2.8)

which is equivalent to the beam splitter model in Equation (2.7) up
to constant phase shifts at the four ports (Pozar, 2011). Note that
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different beam splitter architectures exist, such as the 180°-hybrid or
the Lange coupler (Pozar, 2011).
In the present thesis, the beam splitter is used for two purposes:

(i) to experimentally demonstrate the single-photon character of a
radiation source in an HBT-like setup and (ii) to demonstrate HOM
two-photon interference at the beam splitter. The latter is discussed
in the paragraph that follows the next one.

Hanbury Brown and Twiss (1956) developed an apparatus to mea-
sure photon correlations in two beams of light originally used in
astronomy. In quantum optics such intensity interferometers are heav-
ily used to demonstrate by means of a beam splitter that a radiation
source emits single-photons. For this, the source under test shall
radiate into the first beam splitter input â′ while the second input b̂′
is left in the vacuum state. I denote the input state by |n′am′b〉 where n
and m are the number of photons in mode â′ and b̂′ respectively, and
the state |namb〉 for the number of photons n and m in the output
modes â and b̂. Suppose now, there is a single-photon in the beam
splitter input. Thus, we get the following state at the beam splitter
outputs:

|1′a0′b〉 = â′† |00〉 = 1√
2 (i â† − b̂†) |00〉 ' 1√

2 (|1a0b〉+ i |0a1b〉) ,

where we have used Equation (2.8) and dropped the global phase
factor i in the last step. This corresponds to a quantum superposition
of a single-photon in either one of the beam splitter outputs â and b̂,
whereby the respective other output is in the vacuum state. This is
different when there are two photons in the beam splitter input:

|2′a0′b〉 = 1√
2 â
′†â′† |00〉 ' 1

2 (|2a0b〉 − |0a2b〉+ i
√

2 |1a1b〉) ,

which gives us a 50% probability to detect one photon in each of the
beam splitter outputs8. Thus, if one demonstrates the absence of
photons simultaneously in both outputs, then there are never multiple
photons at the beam splitter input. Chapter 3 describes how we
rule out the |1a1b〉 state using linear detection. For the experiments

8A global phase factor (i)2 = −1 is dropped.

36



2.5 On-Chip Beam Splitter

discussed in Chapters 4 and 5 the beam splitter is used in the above
discussed HBT-like setup where the second beam splitter input port
is left in the vacuum state.

The beam splitter can also be used to create spatial entanglement of
a two-photon state. To do so, single-photons are sent into both input
ports of the beam splitter. If the two photons are indistinguishable,
i.e. have the same carrier frequency, arrive at the same time, and
their wave packet has the same shape (temporal mode), the state at
the beam splitter output is:

|1′a1′b〉 = â′†b̂′† |00〉 ' 1√
2 (|2a0b〉+ |0a2b〉) ,

which means that the two photons coalesce into a photon pair in
either one of the beam splitter outputs9. This is known as the HOM
effect (Hong, Ou, and Mandel, 1987). There is no state |1a1b〉 with
one photon in each output.

This is in contrast to distinguishable photons. For example, two pho-
tons are distinguishable, if the two photons impinge at very different
times (arrival time difference much larger than the wave packed dura-
tion) at the beam splitter, or the two photons have different frequen-
cies. In such a case we can describe the input state by |n′an′a,m′bm′b〉
with the four photon numbers n, n, m and m in the modes â′ and b̂′,
where the two colors shall denote the distinguishable property here ex-
emplary blue and red photons. The output state is described equally.
Suppose now two distinguishable photons at the two beam splitter
inputs, e.g. in mode â′ a blue and in b̂′ a red photon10:

|1′a0′a, 0′b1′b〉 = â′†b̂′† |00, 00〉 = 1
2 (i â† − b̂†)(−â† + i b̂†) |00, 00〉

' 1
2 (|1a1a, 0b0b〉 − i |1a0a, 0b1b〉+ i |0a1a, 1b0b〉+ |0a0a, 1b1b〉) .

Thus, there is a 50% chance to find one photon in both beam splitter
outputs. The first observation of the above discussed HOM two
photon interference in the microwave frequency domain is presented
in Chapter 6.

9A global phase factor −i is dropped.
10A global phase factor −i is dropped.
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2.6 Experimental Setup
In this section I discuss the fundamental concepts of the experimental
setup used for all presented measurements. Typically, circuit QED
devices to date are cooled down to milli Kelvin temperatures in
dilution refrigerators to avoid thermal excitations of the system. I will
discuss how the circuit QED device is mounted, and then continue
to discuss various types of control lines and connections to room
temperature electronics.

2.6.1 Thermal Radiation and Dilution Refrigerator
Cryogenic temperatures are needed to bring the superconductors on
the circuit QED device below their critical temperature (Tc ≈ 1.2K
for aluminum; Tc ≈ 9.2K for niobium) so that they are lossless,
and to ensure that Cooper pairs of electrons form a macroscopic
wave function. Even lower temperatures are required due to thermal
(Johnson-Nyquist) noise. The thermal population of an electromag-
netic mode at frequency ν and temperature T is

〈n〉 = 1
ehν/kBT − 1 (2.9)

given by Bose-Einstein statistics, where kB is the Boltzmann con-
stant (Pozar, 2011). For optical frequencies this quantity is close to
zero at room temperature. However, for relevant transition and reso-
nance frequencies in the microwave frequency domain, e.g. ν ∼ 7GHz
(typical resonator frequency), and T = 95mK (typical effective tem-
perature) it is already as large as 〈n〉 ∼ 3% thermal excitation. Thus,
circuit QED devices are mounted in dilution refrigerators with typical
temperatures of 10 to 40mK. Note that the base temperature is a
lower bound, since we need connections to room temperature and
other control and detection lines, which may cause additional heat
load. Though we make an effort to isolate the sample from thermal
radiation in these connections (see later in this section) the isolation
cannot be made perfect, and so there are thermal populations of some
percents. The corresponding effective temperature is thus typically
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tens of mK higher than the base temperature due to residual elec-
tromagnetic noise in the connections (Fink et al., 2010). Up to now
most protocols in pulsed experiments use the quantum-mechanical
ground state |g〉 as initial state. Therefore, it is important that the
thermal population of the circuit QED device is as low as possible.
In Figure 2.9(a) the dilution refrigerator11 (cryostat) is shown, in

which the experiments of the present thesis were performed. Here,
all shields are unmounted to show the inner parts of the cryostat.
The cryostat has six temperature stages which are gradually cooled
from room temperature (top) down to the base temperature of 20mK
(base plate). There are four cylindrical shields that protect the inside
of the cryostat from thermal radiation present in free space at room
temperature. Each shield is thermalized at one of the temperature
stages of the cryostat and the shields are arranged in an onion-like
structure, except that the layers do not touch each other. Hereby, the
base temperature stage is the heart of the onion, and the shields from
low to high temperatures are the inner and outer layers of the onion,
as indicated in Figure 2.9(a). Thus, each shield encloses any colder
part of the cryostat and effectively absorbs or reflects all radiation
from the higher temperature stage. Therefore, all components within
the cryostat are usually mounted just below the plate to which they
thermalize. Components are thermalized to the connected plate via
copper connections. Everything within the outermost shield, the
enclosure of the cryostat, is evacuated since residual gas creates
thermal leaks between the various temperature stages and, thus,
increases the heat load onto the low temperature plates.

This cryostat relies on two different refrigeration techniques: a pulse
tube refrigerator for the 50K and 4K plates, and the dilution refriger-
ator for the lower temperature stages. The pulse tube cooler is based
on a closed-loop refrigerant expansion cycle, where the refrigerant
gas is pure helium gas (VeriCold, 2008). The expansion cycles take
place in two cold heads mounted in the inner of the cryostat, where
the compressed refrigerant is periodically expanded adiabatically to
remove the heat from the system. With that the attached plates are

11VeriCold Technologies Cryofree™ DR200-10 (VeriCold, 2008).
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(a) (b)

(c)

(d)

300K

50K

4K

800mK

100mK

20mK

Figure 2.9: Experimental setup in the cryostat (a), dashed lines
indicate the positions of thermal shields. (b) Sample bonded to PCB.
(c) PCB with SMP connectors for in- and output. (d) Sample box on
sample holder, magnetic shields from (a) are unmounted.
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cooled to cryogenic temperatures of about 50K and 4K; compare
Figure 2.9(a). The dilution refrigerator is an independent closed-loop
system containing a mixture of 3He/4He. The base temperature of
the cryostat is achieved in the mixing chamber, where a 3He-rich
liquid helium phase (concentrated phase) floats on top of a 3He-poor
liquid helium phase (dilute phase). Here, heat is extracted from the
system by the 3He evaporation from the concentrated phase through
the phase boundary into the dilute phase. The 3He-poor liquid helium
phase passes through a connection into a second chamber called still
at the 800mK plate. In this chamber 3He is evaporated into the
gas phase by pumping with an external turbo-molecular pump. The
cycle is closed by compressing the gas back into the dilution unit,
where it is pre-cooled and liquefied in the 800mK and 100mK stage,
before it is fed into the mixing chamber to the concentrated phase
again (VeriCold, 2008).

2.6.2 Sample Mount and Magnetic Shielding
The circuit QED chip, such as the one shown in Figure 2.3, is glued
into a printed circuit board (PCB) as shown in Figure 2.9(b). The
PCB acts as an interface between the coplanar waveguides on the
chip and the conventional coaxial cables in the cryostat. Similar to
the waveguides on the chip the PCB has coplanar waveguides on
a larger scale. Respective center conductors and ground planes on
chip and PCB are connected via aluminum wire bonds; compare
silver lines in Figure 2.9(b). SMP plugs are soldered onto the PCB
to connect the PCB waveguides to the coaxial ones of the cryostat;
compare Figure 2.9(c). To avoid reflections of microwave radiation or
unwanted resonances due to impedance mismatches, both coplanar
waveguides and SMP plugs as well as the connected coaxial cables
are designed to have impedance close to Z0 = 50 W.
The completed PCB is connected via the SMP plugs to coaxial

cables and tightly enclosed by the sample box made from oxygen-
free copper; see Figure 2.9(d). A vertical spacer avoids unwanted
resonances that are not perpendicular with the chip (Marx, 2009).
Additionally, the sample box provides a good thermal contact for
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effective cooling. Experiments of Córcoles et al. (2011) experienced a
reduced qubit decay rate through shielding the sample from external
radiation by covering the sample holder with an absorptive medium.
However, similar experiments suggest that our sample holder without
absorptive medium already effectively shields residual external radia-
tion enough and the qubit decay rate is dominated by other decay
processes (Peterer, 2012). Below the sample box we mount up to four
superconducting miniature coils, with which static magnetic fields
are applied to generate magnetic flux through the SQUID-loop of
the transmon qubits; compare Section 2.2.2. The sample box itself is
then mounted with a good thermal contact below the base plate of
the cryostat, as shown in Figure 2.9(d).

Because of the sensitivity of the transmon to varying magnetic flux
through the SQUID-loop the complete sample holder is enclosed from
below by two cylindrical magnetic shields; compare Figure 2.9(a).
These are made from a low-temperature optimized µ-metal, and
effectively shield uncontrolled external magnetic fields at the sample
box.

2.6.3 Cabling and Control Signal Generation
To control the circuit QED device using room-temperature electron-
ics, we install coaxial microwave cables [compare the silver lines in
Figure 2.9(a)] and superconducting twisted pair cables from the cor-
responding instruments down to the base plate of the cryostat. The
cables are installed in such a way that heat load to the sample is
minimized. Furthermore, the device should not be irradiated through
the coaxial cables with thermal noise generated at room tempera-
ture or at the other temperature stages of the cryostat. Hence, it
is necessary to take into account the finite cooling power at each
temperature stage. In addition, cables may have specific purposes,
and so different strategies are pursued for the connections through
the cryostat, shown in Figure 2.10 and explained in the following.
Superconducting miniature coils underneath the sample box are

used to generate magnetic flux through the SQUID-loop of the trans-
mon for tuning its transition frequency νa at slow timescales. Using
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Figure 2.10: Schematic of experimental setup with associated tem-
perature stages. The different line types illustrate: (a) d.c. magnetic
flux bias; (b) ns-timescale magnetic flux pulses; (c) resonator and
read-out microwave drive; (d) arbitrarily shaped microwave qubit
control pulses; (e) linear amplification of measurement microwaves.
See Glossary on page 139 for a description of the symbols.
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2 Cavity QED with Superconducting Circuits

multiple coils we are able to individually control the magnetic flux
through different SQUID-loops on the chip. Each coil is connected
to room temperature through a twisted pair cable made from super-
conducting wires; compare Figure 2.10(a). Outside the cryostat, a
self-made resistive low-pass filter with cut-off frequencies in the order
of 1Hz converts a battery based voltage source into a d.c. current
source. Additionally, the coil itself filters out fast oscillating currents.
Of note, the d.c. current does not deposit heat in the cryostat below
the 4K stage, because wires of coil and twisted pair are superconduct-
ing. Hereby, it is important to make good superconducting contacts
when soldering the superconducting wires, i.e. we do not use plugs
here. Further, a superconductor is a good thermal isolator, so that
the heat load between temperature stages comes from the material in
which the superconductor is embedded.

For microwave frequencies on the order of a few GHz we use coaxial
cables which are connected predominantly using SMA connectors.
Both the cables and the SMA connectors have an impedance of
Z0 = 50 W. The microwave pulses and signals sent through the
input cables Figure 2.10(b-d) are generated by microwave signal
generators12 at room temperature. These signals inevitably include
Johnson-Nyquist noise generated by a resistor with two terminals
which transfers the power spectral density hν 〈n〉 given by Equa-
tion (2.9) in an impedance matched network (Pozar, 2011). However,
the used microwave instruments are able to generate orders of mag-
nitude larger signals, such that the signal to noise ratio can easily
be made sufficiently large (typically > 148 dBc/Hz broadband noise
for the here used continues microwave generation). Each −20 dB
attenuator in an input line [compare Figure 2.10(b-d)] transmits
only 1% of the incoming radiation and adds 99% of thermal noise
hν/(ehν/kBT − 1) [compare Equation (2.9)], where T is the physical
temperature of the attenuator (Pozar, 2011). Using a chain of attenu-
ators thermalized at the various temperature stages of the cryostat,
one can effectively achieve noise levels close to the vacuum level.

12Agilent Technologies PSG E8257D Analog Signal Generator and Tektronix
AWG5014 Arbitrary Waveform Generator
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The attenuators also thermalize the center conductor of the coax-
ial cables by the resistive link between outer and center conductor.
Being an insulator the dielectric in coaxial cables is typically a bad
thermal conductor, and thus would thermalize ineffectively without
the attenuators. The coaxial cables connecting two stages are made
from stainless steel to keep the heat load between two temperature
stages small. These have a lower thermal conductivity than copper
cables. However, since copper has a better conductance, we use
these for the connections to the chip within base temperature and at
room temperature, where the connections do not involve temperature
gradients.

In addition to static flux control of SQUIDs we apply ns-timescale
magnetic flux pulses generated by current pulses through the flux
gate line; compare left inset of Figure 2.3 and Figure 2.10(b). To
apply magnetic flux through the SQUID-loop in the order of a flux
quantum Φ0, we send mA currents through the flux gate lines. Since
the power dissipated in resistive attenuators would exceed the cooling
power of the 100mK stage and base stage, we use low-pass filters.
These reflect effectively room temperature noise with frequencies
larger than ∼ 1.6GHz (< −40 dB) and allow signals with frequencies
up to ∼ 0.78GHz (−1 dB) to pass; compare Figure 2.10(b). The short
pulses are generated with an arbitrary waveform generator (AWG)
that uses a bandwidth of 500MHz. However, problems can arise from
the filtering, because the generated pulses become distorted. We
account for that during the pulse generation as accurate as we know
the transfer function of the flux lines, which we calibrate at room
temperature but slightly deviates from that after being cooled down.

For the resonator input line and charge gate line we generate typical
input signals in the microwave frequency range. For resonator input
lines [Figure 2.10(c)] a continuous coherent microwave drive is used,
which is digitally modulated13 if needed, e.g. for qubit state read-out
as discussed in Section 2.4.1. Hence, we connect a microwave source
directly to the line. The output of the microwave source is modulated
by a programmable trigger of the AWG. To manipulate the state of

13The drive is switched between the states on and off within ns-timescales.
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the qubit (see Section 2.4.2) we apply microwave pulses, such as in
Figure 2.7(b), to the input of the charge gate line; compare Figures 2.3
and 2.10(d). Signals (I,Q) of an analog output pair generated by
an AWG, a microwave source, and an IQ-mixer are used to generate
a shaped pulse at a microwave carrier frequency, such as shown in
Figure 2.7(b). The signal I(t) + iQ(t) generated by the AWG is
up-converted to a microwave carrier frequency using the IQ-mixer
that multiplies the quadratures with the local oscillator (LO) field
of the microwave source. I have developed an automated calibration
routine to deal with imperfections of AWG and the IQ-mixer typi-
cally occurring in the up-conversion process. The routine calibrates
the finite d.c.-offset of each quadrature, the amplitude imbalance
between the quadratures, and their imperfect phase difference which
is not exactly π/2 (phase imbalance); see Baur (2012) for a detailed
description.

Microwave detection lines [Figure 2.10(e)] are connected to the two
beam splitter outputs. Here, I only describe the parts relevant to
cryogenic stages and refer to Chapter 3 where the detection principle is
discussed in detail. To avoid that noise propagates from the amplifier
at the 4K stage to the sample we use circulators to absorb microwave
radiation in the downward direction but pass the measurement signal
in the upward direction. A circulator ideally is an impedance-matched,
lossless, and nonreciprocal three-port device that directs radiation as
indicated by the arrows in the symbol; compare Figure 2.10 (Pozar,
2011). By terminating the third port with a thermally anchored
impedance-matched Z0 = 50 W resistor, we typically achieve isolations
of ∼ 16 dB and an insertion loss of ∼ 0.5 dB. NbTi superconducting
coaxial cables are used instead of stainless steel cables between the
two circulators and to the cold amplifier to keep the transmission high
while minimizing heat load from the respective higher temperature
stage.

2.6.4 Synchronization
All instrumentation in the experimental setup, including microwave
sources, AWGs, triggers, and also digital detection electronics, share
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one common time-base to remain synchronized while performing
a measurement which might last several hours. Thus, a certain
frequency in that time-base is required to be constant for every in-
strument, as otherwise, a phase difference would slowly drift which
will adversely affect any measurement. In this setup we use a Rubid-
ium atomic clock, which provides multiple 10MHz reference outputs.
We connect all microwave instrumentation, which are consequently
phase-locked to this reference clock.

To synchronize pulses and measurements in experimental protocols,
we use the programmable binary outputs of the AWG to trigger
for example the measurement start or the binary modulation of a
microwave source output state.
To summarize this chapter, I have introduced the fundamental

concepts of circuit QED and the experimental system that was used for
the experiments presented in this thesis. I have theoretically described
the system, discussed its energy level structure and the dispersive
regime where qubit and resonator are decoupled. Further, I have
introduced the beam splitter and its use for intensity interferometry
and entanglement generation. In the description of the experimental
setup, I have skipped the linear detection of the microwave radiation
and measurement data analysis methods, which follows in the next
self consistent chapter.
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In this chapter the detection and the analysis of microwave signals,
measured using linear detection, is discussed. We consider a detection
process in which the electric field (voltage) of the microwave radiation
is phase-coherently amplified and then acquired by analog-to-digital
conversion. In circuit QED experiments, acquisition of the measure-
ment signals is commonly performed by commercial digitizer boards.
Typically, they are used to compute ensemble averages of the digitized
field, which are then saved on a computer. Further analysis of the
ensemble averages are performed later with computer software. How-
ever, to measure incoherent microwave radiation (Houck et al., 2007;
Astafiev et al., 2010; Hoffman et al., 2011; Mlynek et al., 2012) and to
display unique quantum-mechanical properties in higher order correla-
tions (Bozyigit et al., 2011a; Eichler et al., 2011b,a; Lang et al., 2011;
Eichler et al., 2012; Hoi et al., 2012; Menzel et al., 2012; Lang et al.,
2013b), either a nonlinear detection or a nonlinear analysis of linearly
detected microwave fields is needed. For this purpose, we implemented
a novel data analysis approach based on field programmable gate
array (FPGA) electronics, which allows a highly parallel and hence
fast and efficient signal processing. In this way, signal processing and
analysis is performed by the FPGA in real-time before the analyzed
data is saved on a computer. Furthermore, real-time signal analysis
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enables fast feedback (Sayrin et al., 2011; Ristè et al., 2012; Steffen
et al., 2013; Ristè et al., 2013), required, e.g., for quantum error
correction in the field of quantum information processing. The signal
processing and a description of potential data analyses are the topic
of this chapter.

In Section 3.1 the detection electronics used to linearly detect the
microwave field of interest from the detection chain input to the
extraction of its complex amplitude is described. I mathematically
describe the detection process in Section 3.2, and illustrate it in
the frequency domain in Section 3.3. Further, I present a quantum-
mechanical formulation of the linear detection in Section 3.4. In
Section 3.5 the detection of averaged power based on the linearly
detected fields is addressed. Specific FPGA based analysis applications
are described in Sections 3.6 to 3.10. See Appendix A for details
about FPGA based data processing, hardware present on the used
FPGA board, and a technical overview of the FPGA firmware.

3.1 Heterodyne Detection Chain
Itinerant microwave radiation S(t) eiωdt is described by the time-
dependent complex amplitude S(t) = I(t)+iQ(t) defining the envelope
of a wave packet with carrier frequency ωd/2π. Here, I(t) ∈ R denotes
the in-phase and Q(t) ∈ R the quadrature component of S(t), which
are frequently called quadratures. A detection chain is used to measure
the complex amplitude S[t] at discretized times t by demodulating
the microwave from ωd/2π to 0Hz (d.c.). In homodyne detection the
microwave is demodulated to d.c. before directly recording S[t]. In our
implementation of heterodyne detection a two-step demodulation of
the microwave radiation is performed, first to a non-zero intermediate
frequency ωif/2π which is recorded using an analog-to-digital converter
(ADC), and then digitally to d.c.

In the context of this thesis, the microwave radiation field of interest
is generated at cryogenic temperatures. The detection chain consists
of several analog microwave components and various digital signal
processing stages. Figure 3.1 shows all effective stages. The signal
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(a) (b) (c)

(d) (e)

(f)

Figure 3.1: Typical simplified representation of a heterodyne de-
tection chain for the acquisition of the complex amplitude S[t] =
I[t] + iQ[t] of itinerant microwave radiation created at cryogenic
temperatures. The detection process consists of the following effec-
tive stages: (a) terminated circulator, (b) linear amplification of the
electric field, (c) frequency down conversion to νif by a microwave
mixer, (d) anti-aliasing low-pass filter, (e) analog-to-digital conversion,
and (f) digital down conversion to d.c. and filtering in FPGA based
electronics. See Glossary on page 139 for a description of the symbols.

propagates along a transmission line or coaxial cable with a typical
impedance Z0 = 50 W through the detection chain from the source to
the ADC.

In the first stage of the signal flow, the itinerant microwave radiation,
emitted from a source, passes a set of impedance-matched and termi-
nated (Pozar, 2011) circulators or isolators; compare Figure 3.1(a).
Thus, the source is isolated from parasitic radiation traveling in
backward direction through the detection chain towards the source.
Then the microwave radiation is linearly amplified [Figure 3.1(b)]
with amplifiers operated both at cryogenic and room temperature.
In this process the complex amplitude is scaled by the factor √g,
where g is the power gain of the amplifier, and thermal noise is added
to the signal (Pozar, 2011; da Silva et al., 2010). The amount of
noise added in the band of amplification is frequently characterized
by the noise temperature Tn (Pozar, 2011), which is typically a few
Kelvin for commercially available cryogenic high electron mobility
transistor (HEMT) based amplifiers. Any loss, that occurs between
the source and the first stage of amplification, reduces the total gain
of the chain while the added noise remains constant. This results
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in an increased system noise temperature Tn (Pozar, 2011). Note
that much progress has recently been made in realizing and operating
quantum limited linear amplifiers; see Eichler and Wallraff (2014) and
references therein. With these amplifiers the quantum limit of added
noise, set by amplification of (unavoidable) vacuum fluctuations, is
achievable (Caves, 1982). Providing also linear amplification these
amplifiers can be used similarly, with the advantage of significantly
improved signal to noise ratio.

In order to obtain measurable field amplitudes a radiation power on
the order of ∼ 0 dBm is necessary. Since the power of quantum signals
at microwave frequencies is on the order of ∼ −140 dBm, a large
gain g is required which is typically reached by linearly amplifying
the field in multiple stages. However, typical microwave components,
in particular amplifiers, perform linearly only below certain input
powers, the compression point (Pozar, 2011). To avoid driving any
microwave component into compression, we limit the total power
(typically mostly defined by the noise) in the detection chain using
filtering.
After linear amplification the signal is down converted to an in-

termediate frequency νif = ωif/2π (heterodyne detection) by mixing,
i.e. multiplying the amplified signal with a local oscillator of angular
frequency ωLO = ωd ∓ ωif; see Figure 3.1(c). For convenience only
negative detunings are discussed here. Heterodyne detection has
technical advantages compared to homodyne detection (ωLO = ωd)
where an IQ-mixer is used to record both quadratures I and Q. Per-
forming homodyne detection it is necessary to calibrate sources of
imperfections, which typically occur in IQ-mixing. These are the
finite d.c.-offset of each quadrature, the amplitude imbalance between
the quadratures, and their imperfect phase difference which is not
exactly π/2 (phase imbalance). Using heterodyne detection we do
not suffer from these imbalances as we only use a single quadrature.
Additionally, less hardware resources are required. However, a signifi-
cant drawback is a signal to noise ratio reduced by 50%, as discussed
in Section 3.2.
The down converted signal is then digitized by an ADC, which

records the voltage V [t]; see Figure 3.1(e). The ADC samples the
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input voltage at a sampling frequency fs phase-locked to all microwave
equipment in the experimental setup. The output is a waveform of
digitized voltages V [t] at the discrete points in time t = nts +t0, where
ts = 1/fs is the sampling period, t0 the start time, and n ∈ Z. The
maximal detection bandwidth is limited to fs/2, since only frequencies
smaller than the Nyquist frequency fs/2 are correctly identified (Lyons,
2004). Spectral components at frequencies ν larger/smaller than
±fs/2 have an alias frequency ν′ with −fs/2 ≤ ν′ < fs/2 that is
equivalent with ν under the modulo fs operation (ν′ ≡ ν mod fs).
Therefore, fs/2 is also referred to as the folding frequency (Lyons,
2004). For this reason the intermediate frequency νif in the down
conversion described above is chosen to νif < fs/2. Analog low-pass
filters at the input [see Figure 3.1(d)] suppress spectral components of
the signal higher than the Nyquist frequency to avoid aliasing (Lyons,
2004). ADCs, typically used in circuit QED, sample with tens of MHz
up to GHz frequencies fs. The vertical resolution usually ranges from 8
to 16 bits. These digital bits encode the voltage at the input of the
ADC in a full scale, i.e. the maximally available peak-to-peak voltage,
which is typically of the order of one volt. The total amplification
chain discussed above is tailored so that the signal including the
noise V [t] is smaller than the full scale of the ADC to prevent clipping
and compression. However, the standard deviation of V [t] should
be larger than the ADC resolution to avoid discretization errors in
averaged quantities. This is usually guaranteed by the presence of
the amplifier noise. The effective resolution of averaged quantities is
therefore for the applications discussed here not limited by the ADC
resolution but the number of averages.

We use FPGA based electronics to process the waveform of sampled
voltages V [t]. On the FPGA digital signal processing and analysis are
(massively) parallelized, and hence we are able to continuously process
every sampled voltage V [t] in real-time, as explained in Appendix A.1.
In this way, we digitally complete the heterodyne detection perform-
ing a digital down conversion (DDC) to d.c. and digital filtering, as
depicted in Figure 3.1(f). These two digital steps, described mathe-
matically in the following Section 3.2, allow us to extract the complex
amplitude S[t] with a bandwidth of fs/2.
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3.2 Linear Signal Processing
In this section, we mathematically describe the linear signal processing
steps outlined as hardware stages in the previous Section 3.1.
Linear amplification increases the magnitude of S(t) by a factor

of √g and adds noise to the microwave radiation (da Silva et al., 2010).
In the analog down conversion the microwave radiation is effectively
multiplied by the complex sinusoid e−i(ωd−ωif)t which results in a
frequency-shift of the complex amplitude to νif = ωif/2π. Thus we
get √gS(t) eiωift.

Next, we digitize a single quadrature of this signal. Thus, we gain
access to only real valued voltages of the form

V [t] = <
(√
gS(t) eiωift

)
=
√
g

2
(
S(t) eiωift + S∗(t) e−iωift

)
.

This expression illustrates that, at positive frequencies from 0 to fs/2
in V [t], the spectral content in S(t) from −νif to +fs/2 − νif (first
term) is superimposed with its image, the complex conjugate spectral
content, from −νif to −fs/2 − νif (second term), and vice versa for
negative frequencies. Thus, to properly detect S(t), we have to
make sure that the spectral content in S(t) is limited to the range
between −νif and +fs/2− νif, with a safety margin at the boundaries
of the frequency range to prevent that aliasing or analog filter effects
distort the signal of interest. Additionally, the superposition with the
image implies that we are not able to distinguish noise from positive
and negative frequency bands. Hence, in the case of broadband noise
that is added by broadband amplification, the signal to noise ratio
is effectively reduced by 50% at this point. This could be avoided
by the rejection of the undesired image, for example by using an
analog image reject mixer (Okean and Kelly, 1977) or by filtering and
digitizing both quadratures of the signal.

The digital down conversion frequency-shifts S(t) to d.c. by multi-
plying V [t] with a digital local oscillator of frequency −νif = −ωif/2π:

S̄[t] = V [t] e−iωift =
√
g

2 S(t) +
√
g

2 S
∗(t) e−i2ωift .

Finally, a finite impulse response (FIR) filter (Lyons, 2004) is
applied to S̄[t] for three purposes: (i) to remove the part of S∗(t)

54



3.3 Linear Detection in the Frequency Domain

centered around the image carrier frequency −2νif; (ii) to remove the
quadrature d.c.-offset at −νif that result from both imperfect analog
down conversion (the d.c.-offset of a quadrature in IQ-mixing) and
imperfect analog-to-digital conversion where the reference voltage
is not exactly zero volt; (iii) to filter out noise beyond the desired
detection band. Mathematically, an FIR filter is realized by the
convolution, denoted by ∗, of a signal S̄[t] with a kernel k[t′] that
represents the filter:

S[t] = (S̄ ∗ k)[t] ≡
T−ts∑
t′=0

S̄[t− t′] k[t′] , (3.1)

where k[t′] has N coefficients at t′ = 0, ts, 2ts, . . . , T − ts resulting in
a total integration time T = Nts. For the Dirac delta kernel, with
the first coefficient equal to 1 and all others equal to 0, S[t] is equal
to the unfiltered complex amplitude S̄[t].
The digitally applied FIR filter defines the detection bandwidth,

with which we have determined the complex amplitude S[t] demod-
ulated from the microwave radiation S(t) eiωdt at the input of the
detection chain. All steps described so far are linear operations.
Hence, the order of operations can be interchanged also with following
linear operations such as e.g. time-dependent averaging. Thus it
is possible to first average the digitized voltages V [t] and perform
the digital down conversion and FIR filtering afterwards, to get the
ensemble average of S[t].

3.3 Linear Detection in the Frequency
Domain

We schematically illustrate all stages of the heterodyne detection as
presented in Sections 3.1 and 3.2 by an exemplary complex amplitude
signal S(t) which decays exponentially, as depicted at the input of
Figure 3.1. The exponential is a usual characteristic for any spon-
taneous process, e.g. a single-photon field that exponentially decays
out of a cavity (Bozyigit et al., 2011a; Eichler et al., 2011b). The
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complex amplitude of an exponential decay has a Lorentzian power
spectral density (PSD) centered around the demodulation frequency
chosen as ωd/2π = 6GHz with a FWHM κ/2π = 4MHz, as shown in
Figure 3.2(a). The bandwidth of the signal is smaller than fs/2 and is
digitized by a single ADC with a sampling frequency fs = 100MHz.
The shaded area in Figure 3.2(b) represents the noise, which is

added to the microwave signal of interest during linear amplification,
above (green) and below (orange) the lower bound of the detection
bandwidth. For HEMT based amplification, the noise is approximately
white, i.e. frequency independent over the relevant frequency range.
Note that typically the noise level is an order of magnitude higher
than schematically depicted here, if we consider signals on the order
of one photon per 1/κ.

In the down conversion process the spectral content of the signal is
shifted from ωd/2π to νif; compare Figure 3.2(c). We usually choose
νif = fs/4 which symmetrically distributes the accessible bandwidth
of the ADC from d.c. to fs/2. With that, the green shaded area is now
positive and the orange negative frequency noise. Noise at frequencies
larger than fs/2 is suppressed by the analog anti-aliasing low-pass
filter. Note that practical filters do not have a completely flat transfer
function with infinitely steep edges. Imperfect down conversion (and
also digitizing) results in a quadrature d.c.-offset depicted by the red
peak at 0Hz created during analog mixing and digitizing.

A single quadrature of the down converted signal is digitized by the
ADC, V [t], the PSD of which is shown in Figure 3.2(d). Due to alias-
ing, described in Section 3.1, spectral content larger than the Nyquist
frequency fs/2 is folded into the allowed frequency band (Lyons, 2004)
between −fs/2 to fs/2, shown by the increased noise level at ±fs/2 in
Figure 3.2(c,d). At this point, we cannot distinguish between signals
at positive and negative frequencies; compare Section 3.2. Conse-
quently, one half of the power at negative frequencies appears at the
corresponding positive frequencies, and vice versa, which is illustrated
pictorially in Figure 3.2(d). The negative frequency noise degrades the
signal to noise ratio at νif by 50% as positive and negative frequency
noise have typically equal power.
The digital down conversion shifts the spectral content by −νif,
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Figure 3.2: Power spectral density (PSD) of signal (purple), noise
(green and orange according to their frequency origin), and d.c.-offset
(red) after various states of the signal processing: (a) signal of interest,
(b) added noise during amplification, (c) analog down conversion to
intermediate frequency and analog low-pass filter, (d) digitizing single
down converted quadrature, (e) digital down conversion, (f) 25MHz
Chebyshev FIR filter.
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compared to the PSD of S̄[t] in Figure 3.2(e), here from 25 to 0MHz.
As a consequence of aliasing, the spectral content is cyclically wrapped
around (Lyons, 2004) at ±fs/2. Figure 3.2(e) shows the PSD of the
demodulated complex amplitude, centered at d.c. Spectral content at
frequencies ν < −νif and ν > νif is filtered out to faithfully extract
the complex amplitude. Also the peak at −νif in the PSD due to
the d.c.-offset (red peak) is suppressed using a filter. Otherwise,
the extracted complex amplitude would include a strong coherent
oscillation with frequency −νif, and the image of the signal of interest
modulated with frequency −2νif.

We choose to apply two types of FIR filters to the signal; compare
Section 3.2: a N -point square window filter to completely suppress
the spectral components at integer multiples of ±fs/N , and an FIR
filter with N arbitrary coefficients to adjust the detection bandwidth.
The square window filter, for which the N filter coefficients are all
equal to 1/N , is a simple FIR filter, also known as a moving average
filter (Lyons, 2004). This filter has three main advantages: (i) it
requires little resources on the FPGA; (ii) it executes within ns-
time scales on the FPGA, and therefore almost only introduces the
unavoidable group delay; (iii) it perfectly rejects spectral components
originating from the quadrature d.c.-offset and the image carrier
frequency −2νif in the case of νif = fs/N . The transfer function
of the square window filter has a predetermined shape with a fixed
bandwidth, as shown for N = 4 in Figure 3.3(a). To implement any
other desired transfer functions, we apply an arbitrary FIR filter. The
Chebyshev window design method (Lyons, 2004) is used to ensure
maximal steepness and good stop band suppression, e.g. < −40 dB
and a desired 25MHz bandwidth (gray) for a limited number of
filter coefficients, here 29. Its transfer function (black) is shown in
Figure 3.3(b) and, on a linear scale, the PSD of S[t] of the filtered
exemplary signal is shown in Figure 3.2(f). Depending on the available
resources on the FPGA we implement filters with up to 40 coefficients,
which we restrict to symmetric filter coefficients for very limited
resources. When perfect rejection of certain spectral components
such as −νif, and a customized detection bandwidth is needed, a
combination of two filter types can be chosen, as exemplary shown

58



3.4 Operator Formulation of Linear Detection

(a) (b)

Figure 3.3: Frequency dependent filter gain g of (a) 4-point square
window FIR filter, and (b) 29-point Chebyshev FIR filter (black line)
and the ideal transfer function for 25MHz detection bandwidth (gray
line). The combination of both filters is shown by the dashed line.

by the dashed line in Figure 3.3(b).

3.4 Operator Formulation of Linear
Detection

Next, we formulate the linear detection as presented in Sections 3.1
and 3.2 in terms of quantum-mechanical operators. This formulation
keeps the quantum-mechanical characteristics, and thus allows us to
assess our measurements based on quantum-mechanical calculations.
Further, noise and signal are easy to discriminate in this formulation.

The electric field of interest at the detection frequency ωd is propor-
tional to Îa cos(ωdt)+Q̂a sin(ωdt) = <((Îa+i Q̂a)eiωdt) (Caves, 1982).
Hereby, the in-phase Îa and quadrature Q̂a component operators are
commonly defined as:

Îa = 1
2 (â+ â†) Q̂a = −i

2 (â− â†)

using the photon annihilation and creation operators â and â†. More
convenient than to treat each quadrature separately and to simplify
following calculations, we define the quantum complex amplitude Ŝa
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as
Ŝa ≡ Îa + i Q̂a = â

that reduces to the photon annihilation operator â. Being not hermi-
tian Ŝa = â is not an observable and its eigen-values are complex, also
explained by the commutation relation

[
â, â†

]
= 1 for the bosonic

field mode. Thus, due to the Heisenberg uncertainty principle, the
exact and simultaneous measurement of both quadratures Îa and Q̂a
is impossible without introducing at least the Heisenberg uncertainty
related to the non-zero commutator

[
Îa, Q̂a

]
= i/2.

Prior to mixing to detect the two quadratures, it is crucial that
the quantum complex amplitude Ŝa = â is amplified by a phase-
insensitive linear amplifier, treating both quadratures the same. The
equal amplification of both quadratures necessarily adds amplified
vacuum fluctuations that ensure the minimally possible Heisenberg
uncertainty, however, additionally thermal noise is added. Thus, the
linearly amplified field âg results in a linear combination of signal and
noise:

âg = √g â+
√
g − 1 ĥ†g ,

where ĥ†g describes the vacuum fluctuations and the thermal noise
added during amplification (Caves, 1982; da Silva et al., 2010); com-
pare Section 3.1.
The detection of both quadratures is performed by mixing. This

process is described by, first, beam splitting, and then detecting the
in-phase component in one output and the quadrature component in
the other output of the beam splitter. Here, we consider the beam
splitter operation (2.7) where â′ = âg is the input field of the mixer,
b̂′ = ĥm is in the vacuum or a weak thermal state, and âm and b̂m
are the two outputs of the beam splitter:

âm = 1√
2 (â′ + ĥm) b̂m = 1√

2 (â′ − ĥm) .

In each of the two beam splitter outputs one of the two quadratures

Î = 1
2 (âm + â†m) Q̂ = −i

2 (b̂m − b̂†m)
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is measured (da Silva et al., 2010). Since the two quadratures between
the two beam splitter outputs commute,

[
Î , Q̂

]
= 0, due to the

added noise mode ĥm, both quadratures Î and Q̂ can be measured
simultaneously and the complex amplitude can be defined as

Ŝ ≡ Î + i Q̂ = 1√
2 (â′ + ĥ†m) .

Thus, a beam splitter can be used to transform a quantum signal â′
into a classical signal where both quadratures are simultaneously
measurable and the necessary measurement uncertainty is given by
the fluctuations added through the second beam splitter input b̂′ = ĥm.
Note that the principle of detecting both quadratures is the same
for the two-step detection in heterodyne detection schemes, however,
with increased noise fluctuations due to the superposition of the signal
with noise at its image as discussed in Sections 3.2 and 3.3.

Putting amplification and mixing together the complex amplitude
is written as

Ŝ = √g (â+ ĥ†) , (3.2)

where ĥ† composed of ĥ†g and ĥ†m is the total effective noise added by
the linear detection chain1. Since the commutator

[
Ŝ, Ŝ†

]
= 0, both

quadratures of Ŝ can be measured simultaneously. The vanishing
commutator shows also that the order of Ŝ and Ŝ† can be commuted
as long as no other operators with non-vanishing commutators are
involved. Thus, standard mathematical quantities of these operators
can be computed as if they are complex numbers S and S∗, which
is the reason to omit a hat on S. Note that due to Heisenberg’s
uncertainty principle the exact and simultaneous measurement of both
quadratures of â is not possible. However, S provides a measurement
of both quadratures, where uncertainty is given by the noise ĥ†.
Equation (3.2) allows to calculate quantum-mechanically the ex-

pected measurement outcomes. For example, the expectation value
of the complex amplitude

〈Ŝ〉 ∝ 〈â+ ĥ†〉 = 〈â〉+ 〈ĥ†〉 = 〈â〉
1For simplicity the missing factor 1/2 is absorbed in the gain factor g.
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is proportional to the field â of interest. Note that the noise is
assumed to be uncorrelated and symmetrically distributed around
zero, therefore its expectation value is equal to zero (Agarwal and
Chaturvedi, 1994; da Silva et al., 2010).

Similar expressions can be evaluated for correlations of the complex
amplitude, for example

〈Ŝ†Ŝ〉 ∝ 〈(â† + ĥ)(â+ ĥ†)〉 = 〈â†â〉+ 〈ĥĥ†〉

that contains the expectation value of the photon number operator â†â
and the noise power 〈ĥĥ†〉 added by the linear detection chain. Further
correlators and correlation functions are evaluated in Appendix B.

3.5 Measurement of Power
So far, we have described the measurement of the complex ampli-
tude S[t] of itinerant microwave radiation at cryogenic tempera-
tures using a heterodyne detection chain. Frequently an average
of S[t] = M [t] eiϕ[t] is measured to evaluate the expectation value of
magnitude M [t] and phase ϕ[t] of the complex amplitude. A further
common quantity of interest is the power M2[t] that is, on average,
carried in the microwave signal, as measured integrated over time by
Houck et al. (2007) using a diode as power-law detector.

We distinguish two special cases, coherent and incoherent radiation.
For coherent radiation, the microwave has a well defined phase for
all times. Hence, the radiation can be repeatedly prepared and then
measured to extract the expectation value of S[t], where the noise
is canceled. Thus, M [t] is uniquely determined by the expectation
value, so that the power M2[t] follows from a nonlinear operation,
however, based an expectation value. This is in contrast to usual
incoherent radiation, where the microwave has random phases ϕ[t] and
consequently the expectation value of S[t] calculated from repeated
preparations is equal to zero. It is therefore not possible to determine
the power based on the average of S[t]. Instead, we calculate the power
of S[t], i.e. the square of the absolute |S[t]|2 = S∗[t]S[t] = M2[t] ∈
R, before averaging. The random phase factor is dropped in this
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operation, so that the average of the obtained power is proportional
to the power of the itinerant microwave radiation superimposed with
the power of the noise added during linear detection.
The measurement of two complex amplitudes Sa[t] and Sb[t] that

are at every instance in time extracted in two separate detection
chains allows us to calculate the so called cross-power S∗a[t]Sb[t].
When a microwave field is measured by two detection chains, for
example using a microwave beam splitter, the average of the cross-
power is proportional to the microwave field power (da Silva et al.,
2010; Bozyigit et al., 2011a; Menzel et al., 2010). In contrast to
the power calculation where the noise power was still included, here
the noise in Sa[t] and Sb[t] have uncorrelated random phases and
amplitudes, and hence average out to zero.

Here, we emphasize that in addition to power many other quantities
may be calculated within this approach. Let w[t] : C2 → C denote a
waveform which is continuously calculated for each point in time t
based on up to two measured complex amplitudes Sa[t] and Sb[t]. A
waveform can represent any of the two complex amplitudes, single
quadratures thereof, or powers calculated as discussed above. Note
that other mathematical operations are feasible and, with that, the
measurement of other physical quantities than discussed here.

3.6 Data Reduction
Typically we filter the measured complex amplitudes such that their
bandwidth is not much larger than the bandwidth of the physical
signal. However, generally the bandwidth of a resulting waveform
is not equal to the ADC sampling rate fs. Hence, the waveform
contains redundant sample points that can be removed without loss
of information. Thus, for example, disk space on the host computer
is reduced, data can be transfered faster, and it is possible to adapt
to speed limitations and hardware resources on the FPGA board if
required.
If the spectral density of a waveform w[t] is bandwidth limited

within ±fs/d with integer decimation factor d ≥ 2, a time resolution
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faster than d/fs = d ts will not increase information contained in the
signal. For example, the power spectral density in Figure 3.2(e) is
essentially zero outside the limited bandwidth for d = 3 indicated by
the dashed lines and thus it is sufficient to restrict the signal to that
bandwidth. This is realized by keeping only one out of d sample points
for further analysis, which reduces the total maximum bandwidth
to fs/d. Remaining frequency components outside of the introduced
folding frequency ±(fs/2)/d are shifted to their alias frequencies
within the reduced bandwidth, as discussed in Section 3.1 but using
the introduced folding frequency. Thus, the decimation of Figure 3.2(e)
results in a superposition of the three regions separated by the dashed
lines. After this decimation operation, sampling frequency and period
go to fs → fs/d and ts → d ts respectively.

3.7 Scattering Parameter Measurement
In Sections 3.1 to 3.6, we have discussed signal processing that is
performed continuously and on every sample point of the discrete-time
signal. To access characteristic quantities of the microwave radiation,
such as phase, power, or correlations, where the experimental noise
in S[t] is averaged out or subtractable, further signal analysis is
necessary. We therefore have implemented a variety of measurement
applications that perform the desired analysis. Unlike the continuous
signal processing discussed until now whereas each sample point is
processed by the same set of operations, a measurement application
analyzes finite intervals of the waveforms w[t] whereas the processing
may differ between samples within the interval.
Consider the measurement of scattering parameters, which allows

one to investigate the steady state microwave properties of a device
under test. A scattering parameter gives information about the mag-
nitude and phase change of a continuous wave, that is elastically
scattered by that device in forward or backward direction (Pozar,
2011). Scattering parameters are typically measured with a commer-
cial vector network analyzer in dependence on the frequency of the
continuous wave to perform spectroscopy. For measuring a scattering
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parameter 〈S〉T , the complex amplitude S[t] of a continuous wave is
detected within a very narrow bandwidth. This guarantees to average
out the noise in S[t]. Here, narrow bandwidth detection is achieved
by averaging a waveform

〈w〉T ≡
1
N

T−ts∑
t=0

w[t]

over N ∈ N samples in w[t] for a total time T = Nts. The integration
time T sets the detection bandwidth to fs/N , as discussed for the
square window FIR filter in Section 3.3. No part of the signal is
filtered out for any chosen T , since the signal is a continuous wave,
i.e. a Dirac delta function in the frequency domain. However, typical
noise is not a delta function at d.c. but distributed in frequency (such
as the white noise that is added to the signal during amplification)
and hence effectively filtered out for small detection bandwidths,
i.e. large T .

3.8 Time-Dependent Ensemble Average
A single realization of a pulsed experiment, referred to as a shot, is
often repeated several times. A prominent application in circuit QED
is the ensemble average of the resonator transmission that depends
on the qubit state used as dispersive qubit state read-out; compare
Section 2.4.1. The measurement traces in Figure 2.6(c,d) show a
measured time-dependent ensemble average of repeated read-out
pulses (Wallraff et al., 2005; Bianchetti et al., 2009).

To average a time-dependent quantity over R repetitions, we evalu-
ate the ensemble average

〈w〉[t] ≡ 〈w〉R[t] ≡ 1
R

R−1∑
r=0

w[t+ r Tp] ,

where Tp is the repetition period and 〈w〉[t] consists of l sample points
at times t = t0, . . . , tl−1.
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(a) (b)

Figure 3.4: Time-dependent ensemble averaging. (a) Repeated mea-
surement sequence (seq.) consisting of L settings ‘s. 1’ to ‘s.L’ executed
from top to bottom. (b) Time-dependent averaging into L segments
each corresponding to one setting.

Consider an experimental situation, where the ensemble average
is investigated dependent on L ∈ N different settings ‘s. 1’ to ‘s.L’,
in which, e.g., an experimental parameter is swept. Performing the
ensemble average separately for each of the L settings, long term
drifts such as amplifier gain may have different influence on the
L measurements. To diminish this heterogeneous impact, we set-
up a sequence that switches from ‘s. 1’ to ‘s.L’ shot by shot and
average that sequence for the desired R repetitions, as sketched in
Figure 3.4(a). Each measured shot is in this way averaged into one
of L segments that correspond to the settings ‘s. 1’ to ‘s.L’; compare
Figure 3.4(b). Comparable averaging functionalities are also available
in commercial digitizer boards, but extended here: in contrast to
averaging the bare digitized signal 〈V 〉[t], we directly average the
complex amplitude 〈S〉[t] such that no post signal processing and
decimation has to be performed on the host computer. Similarly
(compare Section 3.5) the ensemble average of the time-dependent
power 〈|S|2〉[t] and cross-power 〈S∗aSb〉[t] can be measured.
Recall that 〈|S|2〉[t] measures the power of the microwave sig-
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nal superimposed with the mean of the noise power contained in
w[t] = |S[t]|2. The noise power can be subtracted from the ensemble
average 〈|S|2〉[t], when an additional setting ‘s. off ’ is included into the
measurement sequence, in which the detection chain input is left idle.
For ‘s. off ’, the ensemble average serves as a reference measurement
for the noise power. Similarly, residual correlated noise power can
be subtracted from the ensemble average of the cross-power 〈S∗aSb〉[t]
using a reference measurement.

3.9 Two-Time Correlations
The characterization of electromagnetic radiation using correlation
function measurements is one of the most important tools in the
field of quantum optics. The power spectral density, for example,
is the Fourier transform of the first-order correlation function, and
measures the frequency-dependent power density in an electromag-
netic field. However, sources of radiation differ not only by their
frequency but also by the statistical properties of the emitted pho-
tons (Walls and Milburn, 2008; Lang et al., 2011). Antibunching
and sub-Poissonian photon number distribution can be demonstrated
by measureing second-order correlation functions (Zou and Mandel,
1990). The measurement of these correlation properties allows one
to distinguish quantum from classical radiation, such as coherent
or thermal fields, which can be described by Maxwell’s equations
ignoring field quantization.

The correlation function of two waveforms w1[t] and w2[t] is defined
as

(w1 ? w2)[τ ] ≡
T−ts∑
t=0

w∗1 [t]w2[t+ τ mod T ] , (3.3)

where ? denotes correlation and T is the total integration time. The
time delay τ takes the values τ = −T2 , . . . ,−ts, 0, ts, . . . ,

T
2 − ts. The

time index is cyclically wrapped around the finite interval of the
waveform w2[t] by the modulo operation and hence ensures that the
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Figure 3.5: Illustration of a continuous-time circular correlation func-
tion (w1 ?w2)(τ). Here, w2(t) (gray waveform) is shifted by τ (orange
waveform) and multiplied (×) with w∗1(t) (green). Then, the result
thereof (purple) is integrated. The first pulse in w2(t) around τ
illustrates the circular wrapping of the time by t + τ mod T . The
gray line displays the situation for τ = 0, where no pulse is present in
both waveforms. Hence (w1 ? w2)(τ) is approximately equal to 0.

time index is within 0 and T − ts. In Figure 3.5 correlations for
continuous time are illustrated. As the integral increases for pulses
present in both waveforms, the correlation function is a measure for
the similarity of the two waveforms w1[t] and w2[t+ τ ] in dependence
of the time delay τ .
Equation (3.3) can be written as

(w1 ? w2)[τ ] = F -1(F∗(w1) · F(w2))[τ ] (3.4)

where the discrete-time Fourier transform is

F(w)[ν] =
T−ts∑
t=0

w[t] e−i2πtν/N ,

with N = T/fs, and its inverse: F -1(w)[τ ] = 1
N

∑fs−∆ν
ν=0 w[ν] ei2πτν/N .

Here, the discrete frequencies ν take the values ν = − fs
2 , . . . ,−∆ν,

0, ∆ν, . . ., fs
2 −∆ν with the frequency bin width ∆ν = 1/T . The cor-

relation function measurement is usually averaged over R repetitions,
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which we denote as Γ [τ ] = 〈w1 ? w2〉[τ ]. If w1[t] = w2[t] = w[t] we
use the term auto-correlation, while if w1[t] 6= w2[t] we denote it as
cross-correlation. When each waveform is a complex amplitude it is
called a first-order correlation Γ (1)[τ ], and second-order correlation
Γ (2)[τ ] when two powers (each power is the product of two complex
amplitudes) are correlated; compare Section 3.5. Notably, also other
correlations are feasible, such as the correlation of a power with a
complex amplitude.
Technically, the direct computation of (w1 ? w2)[τ ] as in Equa-

tion (3.3) is highly demanding in terms of arithmetic operations,
more precisely O(N2) operations. Computational efficiency improves
significantly using Equation (3.4) by taking advantage of fast Fourier
transform algorithms and setting N to a power of 2, which reduces
the correlation to O(N logN) complexity. Since the inverse Fourier
transform and ensemble average are both linear operations, their order
of operation can be interchanged. This simplifies the measurement of
Γ [τ ] to

Γ [τ ] = F -1(〈F∗(w1) · F(w2)〉)[τ ] , (3.5)

where F -1 is performed only once on the ensemble average. In our
case, the two Fourier transforms F , the complex multiplication, and
the ensemble average are performed on the FPGA. The inverse Fourier
transform can be done afterwards by software on the host computer.

A prominent application of correlation function measurements is the
determination of the power spectral density PSD [ν] = 〈|F(S)|2〉[ν]
of the complex amplitude S[t]. Here, the PSD is evaluated using the
ensemble average in Equation (3.5) for a first-order auto-correlation
function measurement with w1[t] = w2[t] = S[t]. The measure-
ment PSD [ν] returns the total radiation power for each frequency
bin ν of width2 ∆ν. Notably, the power spectral density of the itin-
erant microwave signal without noise [Figure 3.2(a)] is restored by
the subtraction of a reference PSD measurement, where the detection

2 Leakage present in discrete-time Fourier transforms is not taken into account
here. The phenomenon of leakage describes the fact that radiation power
at frequencies not exactly equal to the frequency bin center ν is partially
displayed in the nearby bins (Lyons, 2004).
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chain input is left idle, shown by Figure 3.2(d-f) without the purple
signal. Idle means that the microwave source of interest is switched
off, and therefore corresponds to the input of the detection chain being
in the vacuum state. We use the suffixes off and on to distinguish be-
tween two types of measurements. The suffix off denotes the reference
measurement of noise, and the suffix on denotes measurements with
the microwave signal of interest. Higher-order correlations require a
series of measurements to measure several correlation terms. For each
term a measurement in on and off mode is needed to realize noise
subtraction. We refer to Appendix B and da Silva et al. (2010) for a
detailed description and derivation of these terms. In Appendix B we
use the operator formulation of the complex amplitude, introduced
in Section 3.4, to link the measured correlation functions Γ [τ ] with
the quantum-mechanical definition of the correlation function G[τ ].
As for the time-dependent ensemble averages, discussed in Sec-

tion 3.8, we suppress the influence of long term drifts by setting up
a differential sequence with two experimental settings: ‘s. on’ that
generates the radiation field of interest and ‘s. off ’ which leaves the
detection chain input idle. Additionally, for noise subtraction in
second-order correlation function measurements, we need to evaluate
both second- and first-order correlation terms. We therefore alternate
not only between ‘s. on’ and ‘s. off ’ but also between the evaluation
of all necessary second- and first-order correlation terms3. In that
manner we get one averaged measurement record for each of the
different correlation terms both for on and off measurements. As
shown in Appendix B the noise subtraction can then be performed
using these averaged measurement records.

3.10 Measurements of Moments
A further powerful application of our signal analyzer for microwave
field correlation analysis is the measurement of complex amplitude
moments. For one and two microwave field modes these moments are

3In principle all necessary correlation terms could be evaluated in parallel,
however, to save resources on the FPGA we alternate between them.
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expectation values of the form

〈(S∗)n(S)m〉 and 〈(S∗a)n(Sa)m(S∗b )k(Sb)l〉 , (3.6)

respectively, for all n,m, k, l ∈ N0. Instead of the time-resolution in
correlation function measurements, discussed in Section 3.9, arbitrary-
order correlations can be investigated. We typically transform S(t)
into S by temporal mode matching for the complex amplitude of
interest using an appropriate FIR filter, which optimizes the detection
efficiency (Eichler, Bozyigit, and Wallraff, 2012). The measured set of
all moments gives the full state tomography of itinerant microwaves,
which includes joint tomography of field modes separated in space or
time.

For the purpose of calculating the moments over R ∈ N repetitions,
we populate 2D-, 3D- or 4D-histograms with R tuples of the form
{<(Sa),=(Sa),<(Sb), . . .}[t1 +r Tp] of the measured quadratures eval-
uated at fixed times t1 + r Tp, where r is the shot number and Tp the
repetition period. For field modes separated in time the quadratures in
the tuple can be evaluated at different times; see Eichler et al. (2012).
From the populated histograms all moments with n,m, k, l ∈ N0 can
be extracted. The noise added during detection, that is included
in the measured moments, can be canceled when an additional off -
histogram serving as noise reference is taken into account. Similarly
as in Section 3.9, we populate off - and on-histograms by setting up a
differential sequence, where the first setting ‘s. off ’ leaves the detection
chain input idle and the second setting ‘s. on’ prepares the radiation
field of interest. We refer to Eichler, Bozyigit, and Wallraff (2012) for
a detailed description of the method to extract the moments from the
histograms.

From a technical point of view, we set-up an array of memory cells
and initialize all to zero. Each cell is assigned to hold the number of
counts in its corresponding histogram bin. A small 2D-example is
shown in Figure 3.6. Here the red framed bin holds the counts with
<(S) ∈

[
0, 1

4
)
∨ =(S) ∈

[
− 3

4 ,−
2
4
)
. For each shot we get one tuple,

and consequently the count of the corresponding histogram bin is
increased by 1.
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Figure 3.6: Sketch of histogram bins displaying the counts of an off -
and on-histogram. Each measured tuple {<(S),=(S)} falls into the
range of a histogram bin (e.g. the bin framed red), whose count is
consequently increased by 1.

We run the measurement of the histograms multiple times and
extract the moments for each run. Statistical analysis gives the av-
eraged moments and their standard deviations as statistical error
estimates (Eichler, Bozyigit, and Wallraff, 2012). Measurements using
the histogram method demonstrated anti-bunching and squeezing in
quantum microwave radiation (Eichler et al., 2011b,a), entanglement
of an itinerant microwave field with a qubit read-out field quadra-
ture (Eichler et al., 2012), and the entanglement of two itinerant
microwave fields (Lang et al., 2013b), presented in Section 6.3. Sim-
ilar analyses measuring the moments of microwave radiation are
performed in Menzel et al. (2012). There the moments are not evalu-
ated through histograms but are calculated directly as formulated in
Equation (3.6).
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Creating a train of single photons, and monitoring the propagation of
photons and in particular their interaction with other photons or mat-
ter is challenging in most physical systems, because photons generally
interact very weakly. For microwave frequency photons confined in a
transmission line resonator, qubits embedded in the resonator can be
used to mediate effective photon-photon interactions. In this chapter,
we discuss the observation of the phenomenon of photon blockade,
where radiation with a power corresponding to more than one pho-
ton per characteristic time interval is blocked due to strong effective
photon-photon repulsion. In particular, resonance fluorescence and
Rayleigh scattering in Mollow-triplet-like spectra are investigated
(Section 4.2) to confirm the realization of a driven effective two-level
system (Mollow, 1969). Also second-order correlation functions are
measured (Section 4.3), which clearly demonstrate antibunching in a
continuously pumped source of single microwave photons. Antibunch-
ing refers to the tendency of photons being preferentially distributed
separated in time rather than at random or in bunches (Zou and
Mandel, 1990). To show photon statistics other than antibunching,
second-order correlation functions are demonstrated for continuous
sources of coherent and thermal microwave radiation, which display a
random and a bunched photon distribution, respectively (Lang et al.,
2011).
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4.1 Effective Photon-Photon Interactions
Sources of radiation differ not only by their frequency but also by the
statistical properties of the emitted photons (Walls and Milburn, 2008).
Thermal sources emit radiation that is characterized by an enhanced
probability of emitting photons in bunches. Coherent sources, such
as a laser, emit radiation with a Poisson-distributed photon number.
The photon-counting statistics of these two sources can be explained
classically. In contrast, individual atoms emit photons one by one
well separated in time from each other, a phenomenon for which
antibunching—a unique quantum characteristic of the field—can be
observed.
In strongly nonlinear systems, a phenomenon known as photon

blockade (Tian and Carmichael, 1992; İmamoğlu et al., 1997) can be
used to generate a train of single photons that displays antibunching.
Photon blockade is typically realized in cavity QED setups. Here,
coherent radiation at the input of a cavity coupled to an anharmonic
system, such as a single atom, is converted into a train of single
photons in the transmitted light. The transmitted radiation has
two important characteristics: sub-Poissonian photon statistics and
photon antibunching. Sub-Poissonian statistics are experimentally
demonstrated by showing that the second-order correlation function
fulfills the inequality g(2)(τ) ≤ 1 for all times τ . Photon antibunching
is demonstrated by a rise of g(2)(τ) with τ increasing from 0 to larger
values while g(2)(0) < g(2)(τ), as discussed in detail by Zou and
Mandel (1990).

So far photon blockade has been realized in different setups, however,
all suffer from different drawbacks. At optical frequencies, resonant
photon blockade—the cavity and atom share the same resonance
frequency—was demonstrated with a single trapped atom in an optical
cavity (Birnbaum et al., 2005). These measurements suffer from
adverse effects of trapping laser beams, micro motion of the atom
in its trap, and the necessity of post selecting data for instances
of single-atom measurements. In the solid state, resonant photon
blockade was demonstrated with a quantum dot in a photonic crystal
cavity (Faraon et al., 2008). Those experiments suffer from quantum
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dot blinking and limited detector time resolution.
Our experiments are realized in the microwave regime with a single

superconducting artificial atom resonantly coupled to a transmission
line resonator, representing a cavity QED setup (Haroche, 1992) in
a circuit reaching the strong coupling limit (Wallraff et al., 2004;
Schoelkopf and Girvin, 2008). The artificial atom at rest, which is
here well approximated by a two-level system, has a strong, fixed
coupling to the resonator. In addition, our setup benefits from high-
efficiency emission of photons in the forward direction by employing
an asymmetric quasi-one-dimensional resonator dominated by a single
mode resonant with the artificial atom. This is in contrast to the
atomic case for which the multi-mode structure of the cavity is
important (Birnbaum et al., 2005). Also, the effective polarization
of the radiation is fixed by the boundary conditions enforced by the
superconducting metal forming the resonator and thus does not play a
role in our experiments. Photon blockade in superconducting circuits
has been independently studied in the dispersive regime by Hoffman
et al. (2011).
Our experimental setup is composed of a photon source and a

complex amplitude detection system from which we extract the pho-
ton statistics introduced in Chapter 3. The sample used for the
experiments presented here is shown in Figure 2.3. The continu-
ous single-photon source consists of a single transmon with tran-
sition frequency νa resonantly coupled to a resonator with reso-
nance frequency νr = νa = 6.769GHz. Thus, transmon and res-
onator energy levels are hybridized into the Jaynes-Cummings ladder
marked by the red shade in Figure 2.4 and schematically shown
in Figure 4.1; compare Section 2.3. The coherent dipole coupling
strength g/2π = 73MHz dominates over the dissipation due to photon
loss from the cavity at rate κ/2π ≈ 4MHz and the qubit decay at
rate γ/2π ≈ 0.4MHz. When radiation impinges on the resonator
input at frequency ωd/2π = (ωr − g)/2π, which is the transition fre-
quency from the ground state |g0〉 to the lower state |1−〉 of the first
Jaynes-Cummings doublet |1±〉, only a single photon can enter at a
time; see Figure 4.1. Additional photons are prevented from entering
the resonator, as transitions into higher excited states are blocked due
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Figure 4.1: Energy level diagram of a resonantly coupled cav-
ity QED system driven with amplitude ΩR on the lower Jaynes-
Cummings doublet. The Mollow-type transitions arising from the
dressing of the |g0〉 and |1−〉 states by the drive are also indicated
on the right hand side.

to the strong nonlinearity of the resonantly coupled qubit-resonator
system (Schuster et al., 2008; Hofheinz et al., 2008; Fink et al., 2008).
In analogy with measurements in mesoscopic systems, where electron
transport is blocked by the strong Coulomb interaction in a confined
structure, this process is called photon blockade (İmamoğlu et al.,
1997). Only once the photon has left the cavity can the next photon
enter into the resonator, realizing a single photon turnstile device.

To investigate the statistical properties of our microwave frequency
radiation source, we use the scheme for measuring correlation functions
presented in Section 3.9. Here, the radiation of the source is passed
through the on-chip 50/50 beam splitter; see micrograph of the sample
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4.2 Observation of Mollow Triplets

in Figure 2.3. Then the complex amplitude at each output of the
beam splitter is extracted using independent heterodyne detection
chains, as discussed in Sections 3.1 to 3.4. Expectation values of field
amplitude, power, and first- and second-order correlation functions
are extracted from the instantaneous values of the measured complex
amplitudes; compare Sections 3.5, 3.8 and 3.9.

4.2 Observation of Mollow Triplets
We set-up our continuous single-photon source by tuning the trans-
mon qubit transition frequency ωa into resonance with the resonator
using d.c. magnetic flux; compare Sections 2.2.2, 2.3 and 2.6. When
probing the resonator transmission (Figure 2.5 at Φ ≈ −0.11 Φ0)
with a weak coherent tone resulting in an average resonator photon
number 〈n〉 � 1, we observe the characteristic vacuum Rabi mode
splitting (Wallraff et al., 2004; Fink et al., 2008) resulting from the
anharmonic level structure shown in Figure 4.1. In many experiments
of this type, only the Rayleigh-scattered (elastic and coherent) part of
the transmitted amplitude is detected in a heterodyne measurement
with a small effective bandwidth of ∼ 50 kHz; compare Section 3.7.
Here, however, we have digitally recorded the resulting fields vs. time
in both arms of the beam splitter with a bandwidth of ∼ 50MHz.
Instantaneous power spectra of the source are then calculated as the
product of the Fourier transform of the time-dependent signals in each
arm, which are subsequently averaged; compare Section 3.9. Thus,
we observe not only the Rayleigh-scattered radiation [narrow high-
amplitude peak in Figure 4.2(a)] but also the incoherently scattered
resonance fluorescence part of the spectrum [broad low-amplitude
triplet in Figure 4.2(a)]. The resonance fluorescence spectrum is char-
acterized by three spectral lines [four transitions (Figure 4.1), two of
which are degenerate] forming a Mollow triplet of a resonantly driven
effective two-level system (Mollow, 1969); compare Appendix C.1.
The two levels are realized by the joint ground state |g0〉 and the
lower energy state of the first doublet |1−〉 = (|g1〉 − |e0〉)/

√
2 of

the Jaynes-Cummings ladder. The dressing of the |g0〉 and |1−〉

77



4 Photon Blockade

-10 -5 0 5 10
0

2

4

6

8

10

12

HΩ-Ωd L�2Π @MHzDp
o
w

e
r

sp
e
c
tr

a
l

d
e
n
si

ty
@aW

�M
H

zD

Wsp �2ΠWR �2Π =

2.5 MHz

3.1

3.9

5.0

6.2

7.9

-10 -5 0 5 10

0.1

1

10

HΩ-Ωd L�2Π @MHzDP
S
D

@aW
�M

H
zD

0 2 4 6 8

-5

0

5

WR �2Π @MHzD

W
s
p

�2Π
@MH

zD
(a) (b)

(c)

Figure 4.2: Rayleigh-scattering and resonance fluorescence of lower
Jaynes-Cummings doublet. (a) Measured resonance fluorescence
spectrum including Rayleigh-scattering peak (dots) at fixed drive
amplitude of ΩR/2π = 7.9MHz and the simulated spectrum (solid
line). (b) Measured resonance fluorescence spectrum (dots) vs. drive
amplitude ΩR/2π (indicated) and analytical spectrum (solid lines).
The Rayleigh peak has been omitted in these plots. (c) Measured
Mollow side peak frequencies Ωsp vs. drive amplitude ΩR (dots),
linear dependence Ωsp = ΩR (dashed black lines) and calculated
frequencies Ωsp (solid red lines) are shown.

states by the drive field has been discussed theoretically in Tian and
Carmichael (1992) and was experimentally investigated with super-
conducting circuits considering only the Rayleigh-scattered part of
the radiation (Bishop et al., 2009).
All measured spectra are in excellent agreement with the numeri-

cally calculated steady-state solution of the master equation taking
into account two qubit levels and five resonator levels [solid line in
Figure 4.2(a)]. For this calculation, introduced in Appendix C.1.2,
we use the device parameters quoted in Section 4.1. The solid lines in
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4.3 Measurement of Photon Statistics

Figure 4.2(b) show the analytically calculated fluorescence spectrum
of the coherently driven effective two-level system which is virtually
indistinguishable from the master equation calculation and the data.
In this calculation, sketched in Appendix C.1.1, we only include four
parameters (the decay rate γ̃ and dephasing rate γ̃ϕ of the effective
two-level system, the drive strength, and the gain factor of the het-
erodyne detection) and do not make approximations for the strength
of the drive as done for the typically quoted result (Carmichael, 2002;
Mollow, 1969). To correctly capture the amplitude of the coherently
scattered radiation, the state |2−〉 is included in the calculation.

We observe that the frequency Ωsp by which the Mollow side peaks
are offset from the central peak depends on the drive amplitude ΩR
[Figure 4.2(b)]. For large ΩR, Ωsp scales linearly with ΩR, i.e. Ωsp ≈
ΩR. For drive amplitudes approaching the characteristic rate of
dissipation the deviation ofΩsp fromΩR becomes larger [Figure 4.2(c)].
In addition, the height of the side peaks decreases compared to the
central Lorentzian peak such that for small drive amplitudes the
side peaks vanish. All these effects are accurately explained by the
analytical two-level model [see red solid lines in Figure 4.2(c) and
Appendix C.1.1] (Carmichael, 2002). Similar Mollow triplet-like
structures were also observed in strongly driven superconducting flux
and charge qubits using various detection techniques (Baur et al.,
2009; Sillanpää et al., 2009; Astafiev et al., 2010).

We note that, for the measurements of power spectra, the un-
correlated noise added by the two independent detection chains is
efficiently averaged out (Agarwal and Chaturvedi, 1994), and the
residual noise offset, which is a factor of 103 smaller than the noise
introduced by a single amplifier and is determined by performing a
reference measurement where the system is left in the ground state, is
subtracted from the data (da Silva et al., 2010); compare Section 3.9.

4.3 Measurement of Photon Statistics
The experiments discussed above demonstrate the resonance fluores-
cence emitted from the cavity when it is weakly driven on the lower
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Rabi resonance (ωr − g). In this limit, photon blockade is expected
to be observable in measurements of the normalized second-order
correlation function g(2)[τ ]. We extract g(2)[τ ] from a measurement of
the cross-correlation of the power detected between the two outputs
of the 50/50 beam splitter (da Silva et al., 2010); compare Section 3.9
and Appendix B.4. The constant offset caused by the noise added by
the amplifiers is subtracted and the correlation function is normalized
to unity for times τ → ∞. For all drive amplitudes, photon anti-
bunching is observed since g(2)[0] is at a minimum and g(2)[τ ] rises for
increasing τ [Figure 4.3(a)]. For τ →∞ we note that g(2) approaches
a constant value, as expected. At the two largest drive amplitudes, we
find characteristic oscillations in the measured g(2)[τ ] exactly at the fre-
quency ΩR and a clear overshoot of g(2)[τ ] at around τ = π/ΩR. This
indicates a correlation between a photon emitted at time t and a second
photon emitted with high probability at the later time (t+τ)/ΩR = π
at which the drive has coherently re-excited the coupled system. At
low drive amplitudes (ΩR/2π = 2.5MHz), we observe the transition
towards sub-Poissonian photon statistics characterized by g(2)[τ ] ≤ 1
for all τ as the overshoot approximately vanishes.

We quantitatively compare the measured data to numerical calcu-
lations of g(2)[τ ] [see black lines in Figure 4.3(a)] based on a master
equation calculation using the known system parameters. Consider-
ing the finite bandwidth ∼ 20MHz of the digital filter used in the
acquisition of the complex amplitude, we find excellent agreement
between the measured data and the calculations; see gray lines in
Figure 4.3(a) calculated as sketched in Appendix C.1.2. The small
residual deviations of the measured g(2)[τ ] from the simulations are
due to the noise added by the amplifiers. Note that each data trace
was collected over 17 h corresponding to approximately 5.5 × 1010

measured photons and 15.75Tbyte of analyzed complex amplitude
data using the FPGA based electronics introduced in Chapter 3. The
presented data clearly demonstrate the phenomenon of photon block-
ade in the microwave domain detected using second-order correlation
function measurements.
For reference we have also measured g(2)[τ ] when populating the

resonator with a mean thermal photon number 〈nth〉 ≈ 1.4 [Fig-
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Figure 4.3: Correlation function measurements. (a) Second-order
correlation function measurements g(2)[τ ] (dots) for indicated drive
amplitudes ΩR and master equation calculation with and without
accounting for finite measurement bandwidth (gray and black lines,
respectively), discussed in Appendix C.1.2. (b) g(2)[τ ] for a thermal
field with mean photon number 〈nth〉 ∼ 1.4 in the resonator. (c) g(2)[τ ]
for a coherent drive with 〈nc〉 ∼ 1.
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ure 4.3(b)]. The quasi-thermal field distribution was realized by mix-
ing a fixed frequency microwave tone with a large bandwidth white
noise source (Fink et al., 2010). We clearly observe bunching g(2)[0] =
2 of the thermal radiation emitted from the resonator. g(2)[τ ] ap-
proaches unity on the time scale of the cavity decay rate κ/2π also
considering the finite detection bandwidth; compare Appendix C.1.2.
Performing a similar experiment with a coherent source derived from
a strongly attenuated commercial microwave generator populating
the resonator with 〈nc〉 ≈ 1.0, we find g(2)[τ ] = 1 everywhere [Fig-
ure 4.3(c)], which is in good agreement with the temporal statistics
of a coherent source.

In summary, we have performed correlation function measurements
with linear quadrature amplitude detectors in the microwave frequency
domain demonstrating photon blockade in a circuit QED system.
The system effectively behaves as a single two-level atom in free
space but Rayleigh scattering and resonance fluorescence is emitted
predominantly into a single mode. We have also shown bunching of
thermal photons and probed the second-order correlation function of
coherent radiation. For the following chapter, we have implemented a
triggered single-photon source, which emits not a continuous stream
of single-photons as here but pulses each containing a single photon.
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In Chapter 4 we discussed the generation and characterization of a
continuous stream of single photons. Here, we implement a triggered
single-photon source that emits a radiation pulse on demand contain-
ing a single photon. The single photon source is integrated with a
50/50 beam splitter on the same chip. Both outputs of the beam
splitter are followed by a independent heterodyne detection chain, as
discussed in Sections 3.1 to 3.4. We demonstrate various possibilities
of analysis for the field by measuring and efficiently processing the
complex amplitude; compare Sections 3.5, 3.8 and 3.9. We investigate
the temporal profile of field and power of the triggered single-photons.
Further, we clearly observe single-photon coherence in first-order and
photon antibunching in second-order correlation function measure-
ments of the propagating fields (Bozyigit et al., 2011a).

5.1 Triggered Single-Photon Source
For our experiments, presented here and in Chapter 6, we integrate
microwave frequency single-photon sources, similar to the one pre-
sented in (Houck et al., 2007), with a 50/50 beam splitter (Gabelli
et al., 2004; Mariantoni et al., 2010) on a chip (Pozar, 2011; Frey,
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(a) (b) (c)
νr 6.763GHz 7.2506GHz 7.2506GHz
κ/2π 4.0MHz 4.1MHz 4.6MHz
g/2π 73MHz 169MHz 177MHz
νa 8.052GHz 8.575GHz 8.970GHz
EJΣ 20.7GHz 27.3GHz 26.5GHz
Ec 462MHz 416MHz 419MHz
σ 3 ns 5 ns 5 ns
1/γ 1.0 µs 0.9 µs 1.0 µs
1/γ∗2 0.4 µs 0.4 µs 0.6 µs

Table 5.1: Experimental parameters of triggered single-photon
sources. Parameters in column (a) are used in Sections 5.2 and 5.3
and columns (b) and (c) are used in Chapter 6.

2008) into a single superconducting electronic circuit (Bozyigit et al.,
2011a; Lang et al., 2013b). We coherently and controllably couple a
single transmon qubit to an asymmetric high quality resonator to emit
an individual photon on demand into a single output mode â′, for
which we use the sample shown in Figure 2.3. At the same time, this
mode is one of the two input modes of the microwave frequency beam
splitter with the other mode b̂′ prepared approximately in the vacuum
state using an attenuator thermalized at 20mK. The microwave beam
splitter creates two equal amplitude output modes â and b̂ and obeys
the usual quantum optics input-output relations; compare Section 2.5.
The transition frequency of the qubit is flux tunable using both a
quasi-static magnetic field generated with a miniature coil and an
on-chip flux bias line (purple) to generate nanosecond time scale flux
pulses; see left inset in Figure 2.3.

We implement the single-photon source using the following scheme
with the corresponding experimental parameters listed in Table 5.1.
Applying a phase controlled truncated Gaussian microwave pulse
of variable pulse amplitude ΩR, standard deviation σ, and total
duration of 4σ resonant to the qubit biased at transition frequency νa,
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Figure 5.1: (a) Qubit state preparation by applying a resonant
microwave pulse with varied pulse amplitude to the charge gate line
to prepare any desired Rabi angle θ. The red dots mark the pulse
amplitudes for (i) the superposition state |+〉 = (|g〉+ |e〉)/

√
2 and

(ii) the state |e〉. (b) Vacuum Rabi oscillation when applying a flux
pulse with varied length through the flux gate line. The red dot marks
the π/2-vacuum Rabi pulse.

we prepare the qubit in an arbitrary superposition state |ψa〉 =
cos(θ/2) |g〉+ sin(θ/2)eiφ |e〉; compare Figure 2.7 and Section 2.4.2.
We characterize the qubit state using a pulsed dispersive measurement
of the resonator transmission (Section 2.4.1) and clearly observe Rabi
oscillations in the qubit population Pe vs. the amplitude ΩR and
thus the Rabi angle θ, shown in Figure 5.1(a). After the qubit state
preparation, we apply a current pulse of controlled amplitude and
duration to the flux bias line to tune the qubit transition frequency
into resonance with the resonator frequency νr. We time-resolve the
resonant vacuum Rabi oscillations of the coupled system at a frequency
of 2g/2π by dispersively measuring the qubit state after it has been
tuned back to the frequency νa strongly detuned from the resonator;
see Figure 5.1(b). Adjusting the effective qubit-resonator interaction
time tvr = π/(2g) to half a vacuum Rabi period, we coherently
map the qubit state |ψa〉 to an equivalent superposition state |ψr〉 =
cos(θ/2) |0〉 + sin(θ/2)eiφ |1〉 of the |0〉 and |1〉 photon Fock states
stored in the resonator mode Â. Similar techniques have been used to
prepare and measure a wide range of intra-cavity photon superposition
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states in experiments both with superconducting circuits (Hofheinz
et al., 2009) and with Rydberg atoms (Deleglise et al., 2008). The
resonator excitation |ψr〉 in mode Â is then emitted with rate κ into
mode â′ to the beam splitter input. The radiation at the output
modes â and b̂ of the beam splitter is measured simultaneously by two
independent heterodyne detection chains as pioneered by Gabelli et al.
(2004). Although the heterodyne detection necessarily adds noise
to the signal, we are able to use the two complex amplitudes Sa[t]
and Sb[t] to acquire valuable information about the properties of the
quantum radiation sources as demonstrated in the following.

5.2 Time Dependence of Field and Power
Measurements

As a first example, we present a measurement of the time dependence
of the complex amplitude of the electric field in one output mode â
of the beam splitter. Ensemble averaging over 107 realizations gives
us access to the expectation value of the annihilation operator of the
cavity field 〈Sa〉[t] ∝ 〈Â〉[t] (da Silva et al., 2010). Similar measure-
ments performed directly at the output of the cavity without a beam
splitter were presented in Houck et al. (2007), where the cavity photon
was created by Purcell limited spontaneous emission. Figure 5.2(a)
shows the real part of 〈Sa〉[t] vs. time t after the preparation of the
photon superposition state |ψc〉 characterized by the Rabi angle θ
used for its preparation. We find excellent agreement with the ex-
pected ensemble average of the field 〈â〉 ∝ sin(θ)/2 [Figure 5.2(c)].
In particular, we observe the largest signals for the superposition
states |±〉 = (|0〉 ± |1〉)/

√
2 prepared using θ = π/2 and 3π/2, respec-

tively. As expected from the uncertainty principle, the Fock states |0〉
and |1〉 prepared with θ = 0 and π, respectively, do not show any
signal in the average complex amplitude [Figure 5.2(a)] since the
phase of these number states is completely uncertain. For all of the
above measurements, the overall global phase of the signals is adjusted
such that the imaginary part of Sa(t) is equal to zero which therefore
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Figure 5.2: Complex amplitude and cross-power measurements.
(a) Real part of 〈Sa〉[t] for zero and one photon superposition states
characterized by the Rabi angle θ (left axis) or equivalently the
generated state (right axis). (b) Trace at θ = π/2 corresponding
to |+〉 [horizontal arrows in (a)]. (c) Dependence on θ at time t
indicated by vertical arrows in (a). (d) Cross-power 〈S∗aSb〉[t] for the
same preparation as in (a). (e) Trace at θ = π corresponding to |1〉
[horizontal arrows in (d)]. (f) Dependence on θ at time t indicated
by vertical arrows in (d). Blue dots are data, red lines are models
explained in the text.
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is not displayed. We also note that the amplifier noise averages to
zero in the complex amplitude measurement.
Moreover, the time dependence of all measurement traces is well

understood; see for example the state |+〉 in Figure 5.2(b). A model,
introduced in Appendix C.2.1, accounting for an exponential decay
with time constant 2Tκ = 2/κ = 80ns and the limited detection
bandwidth of 15MHz explains the temporal shape of the data ac-
curately (red line). Note that the rise time is not limited by the
state-preparation time tvr = 3.4 ns but by the detection bandwidth.
In our measurement scheme, we simultaneously record the time

dependent complex amplitudes Sa[t] and Sb[t] detected at both out-
put ports of the beam splitter continuously for each single pho-
ton generated. Using input-output theory (Gardiner and Collett,
1985), one can show that the full information about the intra-cavity
mode Â is contained in the moments and cross-correlations of Sa[t]
and Sb[t] (da Silva et al., 2010). Conventionally, the statistical mo-
ments of this kind of complex amplitude data are associated with the
statistical moments of antinormally ordered field operators (Walls
and Milburn, 2008). In many cases, however, one is used to work with
normally ordered expectation values such as photon number, first-
and second-order correlation functions. We demonstrate that these
moments can be obtained efficiently by applying the correct algebraic
transformations on the full measurement record Sa[t] and Sb[t] of the
two detection chains before performing ensemble averaging (da Silva
et al., 2010; Grosse et al., 2007), which we realize as presented in
Chapter 3.

Taking advantage of this versatile scheme, we digitally calculate—
instead of using a diode as a power meter in which the detection and
the averaging is realized within the detector (Houck et al., 2007)—the
expectation value of the instantaneous power 〈S∗aSa〉[t] transmitted
into one output mode â of the beam splitter with the cavity mode Â
prepared in the Fock state |1〉 (not shown). In the direct power
measurement, the detected noise power of the amplifier dominates
by a factor of about 700 over the single photon power which is still
observable using sufficient averaging. From this measured background
noise we determine the system noise temperature Tn ≈ 11K of our
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detection chain with respect to the output of the resonator. Tn is
substantially higher than the noise temperature of the amplifiers
because of absorption in the cables and insertion loss of components
in the detection chain.

Calculating the cross-power 〈S∗aSb〉[t] between the two output modes
of the beam splitter instead of the direct power detected in just a
single mode, we can effectively reject the noise added by the amplifiers
in our measurement scheme. The detected cross-power is related to
the average photon number in the cavity as

〈S∗aSb〉[t] ∝ 〈Â†Â〉[t] + P (Nab)

(da Silva et al., 2010), where P (Nab) is the power of correlated noise
between channels â and b̂. In these measurements, the detected noise
cross-power has a characteristic noise temperature of only 80mK,
much smaller than the characteristic noise temperature of the direct
noise power of each amplifier, indicating that the two detection chains
add predominantly uncorrelated noise. The residual correlations result
from weak thermal radiation at the vacuum port b̂′ and technical
origins, such as insufficient isolation of the two detection chains.
We have characterized the measured cross-power of our single

photon source for the same set of cavity superposition states as used
for the complex amplitude measurements averaging over 6.7× 108

photon state preparations [Figure 5.2(d)]. We find excellent agreement
of the temporal evolution of the cavity photon number [Figure 5.2(e);
compare Appendix C.2.1 for the expected power] in dependence on the
preparation angle of the photon state 〈â†â〉 ∝ sin2 (θ/2) [Figure 5.2(f)].
The maximum cross-power is measured for the Fock state |1〉 (θ = π)
and the minimum power for the |0〉 state (θ = 0 or 2π) [Figure 5.2(d)].

5.3 Measurement of Correlation Functions
We have characterized our single photon source using measurements
of the time-dependent first-order cross-correlation

Γ
(1)
ab [τ ] = 〈Sa ? Sb〉[τ ]
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of the signals Sa and Sb in the two output modes and the auto-
correlation of the cross-power

Γ
(2Y )
ab [τ ] = 〈(S∗aSb) ? (SaS∗b )〉[τ ] ;

compare Section 3.9. Here, Γ (1)
ab is a direct measure of the first-order

correlation function G(1) while Γ (2Y )
ab is a direct measure of the second-

order correlation function G(2) of the resonator field as derived in
Appendices B.2 and B.5.

For the measurement, we generate a 20.48 µs long train of 40 single
photon pulses each generated using the procedure described above
and with a photon repetition period tr = 512 ns which is much greater
than the cavity decay time. To remove a small correlated noise
background, we subtract the measured correlation function H(1)

ab [τ ]
in the resonator steady-state from the signal Γ (1)

ab [τ ] acquired when
performing the photon state preparation sequence. From the recorded
quadrature amplitude data, we calculate

Γ
(1)
ab [τ ]−H(1)

ab [τ ] ∝ G(1)[τ ] ,

which gives us access to the first-order correlation function G(1)[τ ] of
the resonator field Â (da Silva et al., 2010). To measure each trace
in Figure 5.3(a), 64× 106 trains of 40 photons were prepared in a
specific state and G(1)[τ ] was calculated in real-time using our FPGA
based electronics, corresponding to approximately 0.5Tbyte of data
that have been evaluated in about 30min.
The G(1)[τ ] data [Figure 5.3(a)] is characterized by a set of peaks

that are separated by the repetition time tr of the single-photon
generation. The amplitude of G(1)[ntr] at integer non-zero multiples
of tr, representing the correlation between a pulse i and i+n, depends
in a characteristic fashion on θ. For the Fock state |1〉 (at θ = π) the
correlation function G(1)[0] is at a maximum and vanishes at G(1)[ntr]
as there is no coherence between photons emitted from the source
at different times. In fact, G(1)[0] ∝ 〈Â†Â〉 = sin2(θ/2) oscillates
sinusoidally with the preparation angle, as it essentially measures the
average photon number of the generated field [Figure 5.3(b)]. However,
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Figure 5.3: (a) Time dependence of first-order correlation function
G(1)[τ ] of the cavity field for indicated states. (b)G(1)(0) andG(1)(ntr)
vs. θ. In all panels dots are data and lines are theoretical predictions
(da Silva et al., 2010).

for photon superposition states, the expectation values of 〈Â†〉 and 〈Â〉
of subsequently generated photon states have non-vanishing values,
as discussed in Section 5.2. Since photons from different repetitions
of the experiments are uncorrelated, G(1)[ntr] ∝ 〈Â†〉〈Â〉 has a finite
value and oscillates at half the period. Thus, G(1)[ntr] ∝ sin2(θ)/4 is
maximized for the states |±〉 [Figure 5.3(b)].
The observed features of the first-order correlation function to-

gether with the results in Figure 5.2 confirm that the procedure im-
plemented for generating single-photon pulses performs as expected.
Measurements of the second-order correlation function G(2)[τ ] then
do provide unambiguous proof of the quantum character of the gen-
erated propagating field, independent of any prior knowledge about
its source (Walls and Milburn, 2008). Based on the results presented

91



5 Pulsed Single Photons
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Figure 5.4: (a) Measured second-order correlation function G(2)[τ ]
of the states |0〉 (top trace), |1〉 (middle trace) and a coherent state
|α ≈ 1〉 (bottom trace). Note that the noise in these measurements is
symmetric around τ = 0. (b) G(2)(0) and G(2)(ntr) vs. qubit prepa-
ration angle θ. Blue error bars are the inferred standard deviation of
the mean G(2)(ntr). Red error bars are the estimated standard devia-
tion of G(2)(0). In all panels dots are data and lines are theoretical
predictions, discussed in Appendix C.2.2 (da Silva et al., 2010).

in da Silva et al. (2010) we obtain the second-order correlation func-
tion G(2)[τ ] by measuring

Γ
(2Y )
ab [τ ]−H(2Y )

ab [τ ] ∝ G(2)[τ ] ,

where H(2Y )
ab [τ ] is the steady-state measurement, as shown in Ap-

pendix B.5. Measurements of G(2)[τ ] averaged over 5× 109 to 9× 109

trains of 40 photon state preparations are shown in the three pan-
els of Figure 5.4(a). For the vacuum state |0〉 we find G(2)[τ ] = 0
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everywhere, as expected. For the Fock state |1〉 we observe a char-
acteristic set of peaks in G(2)[τ ] spaced by the repetition time tr of
the source with a strongly suppressed peak G(2)[0] ≈ 0.1 � 1 at
zero delay time τ , as expected from theoretical predictions (red line)
calculated in Appendix C.2.2 (da Silva et al., 2010). This measure-
ment clearly demonstrates antibunching of the radiation emitted by
our single-photon source as G(2)[0] � G(2)[ntr]. At the same time
these measurements demonstrate that the non-classical properties of
the radiation are fully retained in the detection process in form of
statistical correlations between the single-shot complex amplitudes
detected behind the beam splitter.

To further compare our results with the theoretical predictions, we
have performed the same G(2)[τ ] measurement for three additional
photon superposition states as parameterized by the Rabi angle θ.
Here we note that G(2)[τ ] is normalized such that the average peak
height for the prepared state |1〉 is equal to unity. For all prepared
states we observe the expected scaling of G(2)[ntr] ∝ sin4 (θ/2) and
G(2)[0] ≈ 0 [see Figure 5.4(b)] confirming the measurement of anti-
bunching.

Finally, we have applied short coherent pulses at νr to the resonator
input to realize a coherent source with approximately the same average
intensity as the single photon source. In a measurement of G(2)[τ ] we
find the expected periodic pattern with a peak of amplitude ≈ 0.9
present also at τ = 0 [Figure 5.4(a) bottom trace] which is in stark
contrast to the |1〉 photon Fock state.
In summary, the experiments presented in this chapter clearly

demonstrate that correlation function measurements based on quadra-
ture amplitude detection are a powerful tool to characterize quantum
properties of propagating microwave frequency radiation fields. Even
in the presence of noise added by the amplifier, two-channel detection
and efficient data processing techniques allow for the measurements
of higher statistical moments of the fields. Two of such triggered
single-photon sources that were investigated here are used in the next
chapter to explore the interference of two independently generated
single microwave photons at a beam splitter.
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6
Hong-Ou-Mandel Experiments

The Hong, Ou, and Mandel (HOM) effect describes a two-photon
interference effect observable in quantum optics. The effect was
first experimentally observed by Hong, Ou, and Mandel (1987) and
occurs, when two indistinguishable single photons impinge at the
two inputs of a balanced beam splitter. Due to the bosonic nature
of photons, they coalesce into a pair of photons appearing in either
one of the two outputs of the beam splitter. Here, we describe the
observation of the HOM effect with two independent, triggered single-
photon sources in the microwave frequency domain. We probe the
indistinguishability of single photons, created with a controllable delay,
in time-resolved second-order cross- and auto-correlation function
measurements. Using independent heterodyne detection chains at the
outputs of the beam splitter we are able to resolve different photon
numbers and detect coherence in and between the output arms. This
measurement scheme allows us to observe the HOM effect and, in
addition, to fully characterize the two-mode entanglement of the
spatially separated beam splitter output modes (Lang et al., 2013b).
Our experiments constitute a first step towards using two-photon
interference at microwave frequencies for quantum communication and
information processing, e.g. for distributing entanglement between
nodes of a quantum network (Kimble, 2008; Duan and Monroe, 2010)
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and for linear optics quantum computation (Knill, Laflamme, and
Milburn, 2001; O’Brien, Furusawa, and Vučković, 2009).

6.1 Two-Photon Interference
Up until the experiments presented in this thesis, HOM two-photon
interference has been demonstrated exclusively using photons at op-
tical or telecom wavelengths. Experiments were performed with
photons emitted from a single source using parametric down conver-
sion (Hong, Ou, and Mandel, 1987), trapped ions (Duan and Monroe,
2010), atoms (Legero et al., 2004), quantum dots (Santori et al.,
2002) and single molecules (Kiraz et al., 2005). The HOM effect
has also been observed with two independent sources (Riedmatten
et al., 2003; Kaltenbaek et al., 2006; Beugnon et al., 2006; Maunz
et al., 2007; Flagg et al., 2010; Patel et al., 2010; Lettow et al., 2010)
realizing indistinguishable single-photon states which are required
as a resource in quantum networks or linear optics quantum com-
putation. Such experiments have also been performed using donor
impurities as sources (Sanaka et al., 2009) including NV-centers in
diamond (Sipahigil et al., 2012; Bernien et al., 2012). Furthermore,
the HOM effect has been employed to create entanglement between
ions (Moehring et al., 2007) and atoms (Hofmann et al., 2012) in
spatially separated traps, between separated NV-centers (Bernien
et al., 2013), and to realize a controlled-NOT gate in a small-scale
photonic network (Shadbolt et al., 2012). Similar physics is also
actively explored with ballistic electrons in solids; see Bocquillon et al.
(2013) and references therein.

We demonstrate the HOM interference of two indistinguishable
microwave photons emitted from independent triggered sources real-
ized in superconducting circuits, as presented in Section 5.1 having
experimental parameters listed in Table 5.1 columns (b) and (c). The
photons are prepared in two separate microwave resonators A (B)
using transmon-type qubits and decay exponentially at rate κ/2π =
4.1 (4.6)MHz through their strongly coupled output ports into the in-
put modes â′ and b̂′ of the beam splitter; see Figures 6.1 and 6.2. The
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6.1 Two-Photon Interference

Â

â′
â

B̂

b̂′ b̂

Figure 6.1: False color micrograph of the HOM device. A transmon
qubit (blue, left inset) controlled by a flux (purple) and charge gate
line (orange) through which current or microwave pulses are applied,
respectively, is coupled to each coplanar waveguide resonator (green)
with fundamental mode Â (B̂). The coupling rate of the input port
of the asymmetric resonator is by a factor of 103 smaller than at
the output port. Each resonator output is coupled to the input
mode â′ (b̂′) (right inset) of a microwave beam splitter (dark red) with
two output modes â (b̂).
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6 Hong-Ou-Mandel Experiments

Figure 6.2: Schematic of the HOM experiment with two individual
cavity QED systems for photon generation, a beam splitter (BS), and
linear amplification and heterodyne detection.

two photons then interfere at the beam splitter and are emitted into
the output modes â and b̂; see Figure 6.1. Using the dispersive inter-
action between qubit and resonator, we tune the emission frequencies
of the two sources to an identical value of νr = 7.2506GHz. Thus, the
measured power spectral densities PSD[ν] of the generated photons
from the two sources match well, as shown in Figure 6.3. A small
discrepancy is explained due to different photon emission rates κ and
generation efficiency. For our experiments, we sequentially create 20
single photons in each source at a rate 1/tr = 1/512 ns ∼ 1.95MHz
in a sequence repeated every Tp = 12.5 µs.

To probe the photon statistics in the beam splitter output modes â
and b̂ we use two spatially separated heterodyne detection chains;
see dashed box in Figure 6.2. Each chain extracts the two quadra-
tures Ia/b[t] and Qa/b[t] corresponding to the time-dependent complex
amplitude Sa/b[t] = Ia/b[t] + iQa/b[t]; compare Sections 3.1 to 3.4. In
contrast to many other HOM experiments in which photons in the
beam splitter outputs are detected by single-photon counters, our
measurement of the complex amplitude is intrinsically photon-number
resolving for averaged measurements and allows us to measure coher-
ences of the electromagnetic field. The complex amplitudes Sa/b[t] are
used to compute the statistics required to extract all relevant quantum
correlations measured here; see Sections 3.5, 3.9 and 3.10. The noise
added by the detection chain is fully characterized by measuring its
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Figure 6.3: Power spectral density (PSD) of triggered single-photon
sources for each source individually and both sources simultaneously.
Dots are data and the lines are fits to a Lorentzian with amplitude,
center frequency, and κ/2π as free parameters.

statistical properties when the output modes â and b̂ of the beam
splitter are left in the vacuum state with both sources idle (da Silva
et al., 2010; Eichler, Bozyigit, and Wallraff, 2012). To verify the
single-photon character of each source individually, we have measured
their second-order cross-correlation functions G(2)

ab [τ ], which display
clear antibunching [Figure 6.4(a,b)] as expected from Section 5.3.

6.2 Measurement of Photon Statistics
To investigate two-photon quantum interference, we simultaneously
generate two indistinguishable photons ideally realizing a two-mode
entangled state (|20〉+ |02〉)/

√
2 at the beam splitter outputs. The

measured cross-correlation of the beam splitter output powers is
observed to vanish G(2)

ab [τ ] ≈ 0 for all τ between −tr/2 and tr/2; see
colored region in Figure 6.4(c). This means that both microwave
frequency photons coalesce at the beam splitter, which is the HOM
effect with microwave photons. In our experiments the temporal
coherence of the single-photon states is governed by resonator decay
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.4: Cross-correlation G
(2)
ab [τ ] of individual single photon

sources displaying single photon antibunching, source A in panel (a)
and B in panel (b). (c-f) G(2)

ab [τ ] when operating both sources simulta-
neously with delay times δτ = 0, 50, 100, 150 ns displaying the HOM
effect and its dependence on the temporal photon overlap at the beam
splitter. Blue dots are data and red lines are theory. Residual offsets
with their confidence intervals subtracted from the data are indicated
in the upper right corner of each panel.
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alone, and shows no significant additional dephasing. This is in stark
contrast to many other experiments in which decoherence resulting
in random frequency differences between interfering photons causes
finite correlations at τ ∼ 0 (Legero et al., 2004; Beugnon et al., 2006;
Flagg et al., 2010). At τ = n tr (n = ±1,±2, . . . ,±10), the peak at
integer non-zero multiples of the photon generation period reflects
the product of the power in each output 〈â†â〉〈b̂†b̂〉 which we have
normalized to one.
All measured second-order correlation functions in Figures 6.4

and 6.5 are reconstructed as shown in Appendices B.3 and B.4, and
are normalized by a common scaling factor and a relative gain between
the two amplification channels. A remaining small offset subtracted
from the reconstructed correlation functions is indicated together
with its standard deviation (extracted from multiple measurements)
in the upper right corner of each panel. This offset results from
the finite statistical uncertainty of measured first-order correlation
terms (da Silva et al., 2010) and is expected to vanish in the limit of
infinite averaging. The measured second-order correlation functions
are in good agreement with analytical calculations (solid lines), see
Appendix C.2.2 and Woolley et al. (2013), taking into account the
cavity decay rates κ extracted from independent measurements and a
fixed detection bandwidth of 20MHz chosen to reject experimental
noise outside the desired band.
To explore the level of indistinguishability between the two in-

terfering photons we introduce a time delay δτ on the order of the
photon decay time 1/κ ∼ 37 ns. For δτ = 50ns [Figure 6.4(d)] the
second-order cross-correlation function remains close to zero at τ = 0,
indicating the coalescence of those photons detected with vanishingly
small time difference (Woolley et al., 2013; Legero et al., 2003, 2004).
Typically this effect is difficult to observe with detectors of insufficient
bandwidth or sources with significant dephasing rates (Flagg et al.,
2010). The small positive correlations observed at τ ∼ δτ are due to
the decreased temporal overlap of the single-photon temporal mode
functions at the beam splitter, i.e. the increased distinguishability of
the two photons. At τ ∼ n tr we observe broadened, lower amplitude
correlations. All features are in agreement with theoretical predictions

101



6 Hong-Ou-Mandel Experiments

(Appendix C.2.2); compare solid lines in Figure 6.4(d).
For δτ = 100 ns and δτ = 150 ns the envelopes of the two single-

photon mode functions barely overlap at the beam splitter, resulting in
fully distinguishable single photons. At τ = ±δτ and τ = n tr±δτ [see
Figure 6.4(f)] we observe positive correlations with an amplitude 1/4,
which originate from single photons impinging on the beam splitter
at different times and at different input arms described by lines two
and three in Equation (C.3); compare Figure 6.4(a,b). At τ = n tr
the correlations between photons in the same beam splitter input arm
sum up to 1/2, as expected from the first two terms in Equation (C.3).
To clearly distinguish between single-photon antibunching and

two-photon coalescence in time-resolved correlation function mea-
surements, we also measured the second-order auto-correlation func-
tion G

(2)
aa [τ ] of mode â. When operating only one single-photon

source G(2)
aa [0] is expected to vanish. However, in the HOM configu-

ration with δτ = 0 we find G(2)
aa [0] = G

(2)
aa [n tr] = G

(2)
ab [n tr] = 1 [see

Figure 6.5(a)] as there is a 50% probability of detecting two photons
in mode â. All measurements of G(2)

aa [τ ] are in good agreement with
calculations (Appendix C.2.2), both for δτ = 0 and for δτ = 100 ns
(solid lines in Figure 6.5). Here, it is interesting to note that a second-
order auto-correlation function is rarely directly measured, because
of the the lack of sufficiently fast single-photon detectors (Steudle
et al., 2012). In contrast, using our detection scheme, presented
in Chapter 3, we are capable of measuring G(2)

aa [τ ] for multi-photon
states.

6.3 Observation of Spatial Entanglement
To distinguish between an equal mixture of the states |20〉 and |02〉,
compatible with the observed correlations, and their coherent super-
position (|20〉+ |02〉)/

√
2, we fully characterize the two-photon states

created in our HOM experiment by quantum state tomography. This
allows us to probe the entanglement generated between the coalescing
two-photon states in the two output ports of the beam splitter. The
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(a)

(b)

Figure 6.5: Second-order auto-correlation G
(2)
aa [τ ] of mode â for

δτ = 0 in panel (a) displaying two-photon coalescence and δτ = 100 ns
in panel (b). Blue dots are data and red lines are theory. Residual
offsets with their confidence intervals subtracted from the data are
indicated in the upper right corner of each panel.

created states are also referred to as NOON states. In contrast to the
NOON states of propagating photons investigated here, NOON states
have also been investigated in superconducting circuits with photons
localized in resonators (Wang et al., 2011; Nguyen et al., 2012).

To perform full quantum state tomography on propagating photons
in the two spatially separated modes, we record four-dimensional his-
tograms of the measured quadratures Ia, Qa, Ib, and Qb, as discussed
in Section 3.10. From these measurements we extract all moments of
the two-mode field, i.e. expectation values of the form 〈(â†)nâm(b̂†)k b̂l〉
with n,m, k, l ∈ {0, 1, 2}. The total gain of the detection chain is
calibrated by preparing an equal superposition state (|0〉+ |1〉)/

√
2

in only one mode (b̂′), for which we expect half a photon in mode b̂′.
In the analysis we take a residual thermal steady-state population
of 0.03 in modes â and b̂ into account.
We observe that the first-order moments and all other odd-order

moments are zero since all single-photon Fock states are characterized
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by a fixed photon number and consequently a fully random phase;
see Figure 6.6(a). Since each mode carries exactly one photon on
average, 〈â†â〉 and 〈b̂†b̂〉 are close to unity, while all other second-
order moments vanish. The fourth-order moment 〈â†â b̂†b̂〉 is observed
to be zero, while 〈â†â† ââ〉 and 〈b̂†b̂† b̂b̂〉 are unity, consistent with
the coalescence of the two photons into either output. The above
observations are consistent with the ones based on the correlation
function measurements in Figures 6.4 and 6.5. Most importantly, the
two-mode entanglement is indicated by the moment 〈ââb̂†b̂†〉 which
is close to 1, as expected. All measured moments of the two-mode
entangled state created in our HOM experiment are in good agreement
with the predicted ones; see wire frames in Figure 6.6(a). Note that
moments of order five and higher are all close to zero within their
statistical errors.
In addition, we have determined the most likely density matrix %

characterizing the created two-mode entangled propagating photon
state from the measured moments and their respective standard
deviation following Eichler, Bozyigit, and Wallraff (2012). We have
restricted the evaluation of moments to less than three photons per
output mode, since we create no more than two single photons with
our sources. Note that a related analysis has recently been performed
by Israel et al. (2012). The real part of % is shown in Figure 6.6(b), all
elements of the imaginary part of % are smaller than 0.02 (not shown).
We extract a fidelity of the NOON type state of F = 〈ψ|%|ψ〉 = 84%
and a negativity N (%) = 0.39 (Vidal and Werner, 2002). Inefficiencies
arise predominantly from residual thermal populations of qubits
and resonators which we estimate to be approximately 3%, from
finite qubit coherence times and the associated imperfect cavity state
preparations, as well as slight differences in the linewidth of the two
resonators.

6.4 Superposition State Interference
Finally, to explore the interplay between single- and two-photon inter-
ference, we have performed experiments with modes Â and B̂ prepared
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Figure 6.6: Full quantum state tomography. (a) Measured mo-
ments 〈(â†)nâm(b̂†)k b̂l〉 with n,m, k, l ∈ {0, 1, 2} up to fourth order,
and (b) density matrix (real part) for (|20〉+ |02〉)/

√
2. Colored bars

are extracted from data, error bars indicate the standard deviation and
wire frames represent ideal state. (c) Power detected in the two output
modes (〈â†â〉, blue) and (〈b̂†b̂〉, red) for operating only source B (line)
or both sources (dots) creating superposition states with relative phase
angle φ. (d) Measured moments for (

√
2 |00〉+2 |01〉+ |20〉+ |02〉)/

√
8.
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in superpositions of |0〉 and |1〉 photon Fock states, i.e. (|0〉−i |1〉)/
√

2
and (|0〉 + eiφ |1〉)/

√
2 with variable phase φ, ideally creating the

state (
√

2 |00〉 − i(1− eiφ) |10〉+ (1 + eiφ) |01〉+ eiφ(|20〉+ |02〉))/
√

8
at the beam splitter output. With these input states, we have first
measured the power in the beam splitter output modes â (blue line)
and b̂ (red line) when only operating source B and keeping source A
idle; see Figure 6.6(c). In this case, we observe a power level corre-
sponding to 1/4 of a single photon independent of the phase angle φ,
as expected for an equal superposition of |0〉 and |1〉 impinging on a
balanced beam splitter. Operating both sources A and B, we observe
a sinusoidal interference with phase φ of the two superposition states
in the beam splitter output power of mode â (blue dots) and b̂ (red
dots), respectively. The sinusoidal oscillation is a result of the inter-
ference between one photon in either output port while the offset in
power of 1/4 is the result of two-photon coalescence.
For the phase angle φ ≈ 0 we have also performed full quantum

state tomography; see Figure 6.6(d). As for the two-photon NOON
state we observe antibunching, coalescence, and entanglement in the
moments 〈â†â b̂†b̂〉, 〈â†â†ââ〉 and 〈b̂†b̂†b̂b̂〉, and 〈ââb̂†b̂†〉, respectively
with close to expected amplitudes (wire frames). The interference
of the superposition states is revealed not only in the power 〈â†â〉
and 〈b̂†b̂〉 but also in the coherences with an unbalanced number of
creation and annihilation operators. The corresponding state has a
fidelity of 84% with respect to the ideal one.
In summary, the flexibility of circuit design and the high level of

control achievable in circuit QED enables us to implement indepen-
dent sources that emit indistinguishable single photons at microwave
frequencies. Making use of an integrated beam splitter we observed
the HOM effect and demonstrated the hereby generated entanglement
of spatially separated propagating microwave radiation. Our results
suggest that multiple on-demand single-photon sources emitting in-
distinguishable single photons could be used for creating non-local
entanglement in quantum repeater or quantum communication appli-
cations based on microwave photons.
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7
Summary and Outlook

This thesis presents and describes the development of a real-time
microwave frequency signal analyzer based on linear detection of
complex amplitudes. Compared to commercially available digitizer
boards with averaging capabilities, our framework provides customiz-
able signal analysis, and extends the measurement possibilities to
computationally intensive nonlinear signal analyses. Correlation anal-
yses allow to investigate radiation properties unique to quantum fields
including non-local correlations. At optical frequencies second-order
correlation function measurements are very important for charac-
terizing many sources of light in particular single-photon emitters.
We have developed two types of microwave frequency single-photon
emitters, a triggered single-photon source and a continuous source
of single-photons based on photon blockade, and used our signal
analyzer to display the quantum nature of the emitted radiation. The
experiments performed throughout this thesis work clearly demon-
strate that the linear detection of complex amplitudes combined with
effective digital signal processing is a very versatile and powerful
tool to characterize quantum properties of propagating microwave
frequency radiation fields, even in the presence of noise added by
linear amplifiers. The flexible and efficient signal processing of our
signal analyzer has made it possible, to set-up a single detection
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framework, with which we have measured the temporal profile of
field and power, and first- and second-order correlation functions of
the triggered single-photon source. Furthermore, we demonstrated
photon blockade by measuring power spectral densities and second-
order correlation functions of the continuous single-photon source.
We have also shown bunching of thermal photons and probed the
second-order correlation function of coherent radiation. The devel-
oped single-photon emitters have the potential to inspire new work
controlling the flow of photons, generating and detecting individual
photons and investigating single-photon effects in superconducting
circuits. In particular, the observation of photon blockade will enable
future experimental work on photon interactions in cavity arrays that
are actively theoretically investigated (Schmidt et al., 2010; Hart-
mann, Brandao, and Plenio, 2008; Koch and Le Hur, 2009; Angelakis,
Santos, and Bose, 2007; Greentree et al., 2006). In these proposals,
the array elements are typically nonlinear cavities, such as the ones
realized in photon blockade systems. Performing a cross-correlation
analysis, as presented here, of the radiation emitted from the two
ends of the cavity array with the appropriate drives, may lead, for
example, to the observation of Majorana-like modes of radiation in
the array (Bardyn and İmamoğlu, 2012).
Finally, we demonstrated the quality and flexibility of our trig-

gered single-photon source by implementing two independent sources
emitting indistinguishable single photons integrated on a single chip
with linear optics elements, such as a beam splitter. The Hong, Ou,
and Mandel (HOM) single-photon interference at the beam splitter
was fully characterized and the created non-local entanglement was
investigated. Our results suggest that multiple of such single-photon
sources together with exploiting HOM interference could be used as
the key element for quantum computation protocols based on mi-
crowave photons (Knill, Laflamme, and Milburn, 2001; Kimble, 2008;
O’Brien, Furusawa, and Vučković, 2009; Duan and Monroe, 2010),
when effective single-photon detectors at microwave frequencies be-
come available or with the development of new protocols exploiting
other nonlinear effects in superconducting circuits.

The microwave frequency signal analyzer developed in this thesis is

108



a useful measurement device not only within the circuit QED commu-
nity but also for any system in science where a source of microwave
radiation is investigated (Frey et al., 2011; Puebla-Hellmann and
Wallraff, 2012). The real-time processing core of our signal analyzer is
a field programmable gate array (FPGA) with custom-made firmware.
Thus, the signal analyzer was successfully used for real-time feed-
back (Steffen et al., 2013) and is suitable to address future challenges,
such as calibration routines, feedback loops (Ristè et al., 2012), and
the complete control of quantum algorithms. For characterizing prop-
agating microwave radiation, correlations and entanglement thereof,
our signal analyzer is able to use the measurement time with close
to unit efficiency. I am convinced that ongoing experiments will take
advantage of the versatile and flexible analysis possibilities helping to
uncover unexplored phenomena of quantum microwave radiation.
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A
FPGA

In most circuit QED experiments the electric field of a linearly ampli-
fied and down converted microwave signal is measured by commercially
available digitizer boards with averaging capabilities. After averaging
multiple realizations of an experiment, the data are transferred to a
computer which analyzes the averaged signal in software. With our
FPGA based electronics, we interchange the order of signal process-
ing/analysis and averaging; see Chapter 3. After being processed by
a specific analysis application which also runs on the FPGA, each
single shot is analyzed individually and eventually averaged. Thus,
we are able to digitally perform nonlinear operations that do not
commute with the averaging process. Additionally, customized signal
processing and data analysis is performed in real-time on the FPGA,
which reduces data transfer and data processing time on the host
computer, enabling fast real-time feedback.

In Appendix A.1, FPGA based data processing is described. Hard-
ware details of the FPGA board programmed and used for the ex-
periments of this thesis are given in Appendix A.2. A technical
design overview of the firmware, that executes on the FPGA is pre-
sented in Appendix A.3. This firmware controls all hardware on the
FPGA board and allows for in-firmware PCI communications for
measurement customizations and data transfer.
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A.1 Principles of FPGA Data Processing
An FPGA allows highly parallel processing and is thus perfectly suited
for fast and real-time digital signal analysis. The FPGA itself is a
re-configurable piece of electronic hardware, that mainly consists of
programmable interconnect matrices, lookup tables, and, in our case,
memory cells and dedicated multipliers. For a detailed description of
these components I refer to Yalamanchili (2001). One can configure
an FPGA such that it implements a pre-designed digital circuit to
perform the desired signal processing and data analysis task. The
digital circuit is designed using the basic logic gates (AND, OR,
NOT, . . . ), packages of these (counters, comparators, multiplexers,
adders, multipliers, accumulators, . . . ), and memory cells of the
FPGA. Once the digital circuit is designed it must be synthesized
and stored in a file. By copying the file to the FPGA all needed
components and their interconnections are configured accordingly to
this firmware-file, and the designed signal processing and analysis
continuously runs on the FPGA.

Most parts of our firmware implement a synchronous digital circuit,
i.e. the circuit is divided into sub-circuits where in- and outputs
are updated synchronously to a clock with period ts = 10ns. The
operation performed by each sub-circuit completes within one clock
period and repeats indefinitely for new inputs in each clock cycle.
Thus, we can implement a arithmetic pipeline with signal processing
and analysis operations. The arithmetic pipeline is divided into
multiple (k) stages that complete within a clock period, as sketched
in Figure A.1. Each digitized voltage V [t] from the ADC, termed
sample point, passes consecutively all stages of the pipeline. An ADC
sampling point influences the output of the arithmetic pipeline after a
short and fixed time k × ts, enabling real-time reactions based on the
analysis. As each ADC sampling point passes through every stage,
the outcome of the pipeline is based on the full time record of the
ADCs, which is in contrast to many other circuit QED experiments
where only averages over multiple realizations of an experiment are
analyzed. The analysis of the full time record extends the analysis
possibilities enormously, e.g. to measurements of power or correlation
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Figure A.1: Arithmetic pipeline: digital signal processing is divided
into k stages that complete within a single clock cycle ts = 10ns of
the FPGA. Each digitized voltage V [t] from the ADCs is processed
by the identical set of operational stages. The analysis of the single
shot is finished at a fixed time delay, namely k × ts, after the last
ADC sample point has entered the FPGA.

functions. Note that the transfer of the full time record to the host
computer not including the analysis itself is already very time costly
and the data transfer and analysis would cause varying time delays,
i.e. the analysis would not be real-time any more. In contrast, using
the FPGA we are able to sample and analyze in real-time a TB of
digitized voltages per hour into files of some hundred KB.

A.2 FPGA Board Hardware
Figure A.2 shows a photograph of the FPGA board used for the
experiments of this thesis. The FPGA board consists of three FPGAs
(user FPGA, clock FPGA, PCI FPGA), an analog interface (two
ADCs, two DACs, reference clock input), a memory component, and
a triggering/synchronization module.

User FPGA: The user FPGA, a XC4VSX35 (Xilinx, 2010), is the
core of our quantum signal analyzer where all digital signal processing
and analysis takes place. The user FPGA comprises amongst others
3840 configurable logic blocks as the main resource for implementing
sequential and combinatorial logic, 192 XtremeDSP slices each with
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Figure A.2: Photograph of the FPGA board used in this thesis with
main hardware elements labeled: user FPGA with attached fan, two
ADCs, two DACs, external reference clock input (ext. ref. clock),
trigger in/out, clock FPGA (located at the backside of the module),
2× 2MiB RAM, PCI FPGA, PCI connection.

a dedicated 18× 18 bit multiplier, and 192 dual-port 18Kibit1 RAM
blocks.

Clock FPGA: Most parts on the user FPGA and nearly all other
components used on the board are synchronized to a fs = 100MHz
clock. As ADCs, DACs and triggers need to be phase-locked to the
microwave equipment of the experiment, we derive a clock from an
external frequency standard, compare Section 2.6.4. The clock FPGA
receives a sinusoidal 10MHz or 50MHz signal through the external
reference clock input. Subsequently, the clock FPGA converts the
reference into a 100MHz sampling clock, which is distributed to the
ADCs and DACs and to the user FPGA having a clock period of
ts = 10ns. The clock is distributed to the external RAM so that the
whole board with the exception of the PCI communication runs phase-

1Binary prefix kibi: 1Kibit = 210 bit = 1024 bit
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locked to the frequency standard. A finite crosstalk of the reference
clock (and its possible higher harmonics) to the ADC line is present in
the used system due to the small distance of the reference clock input
to the ADC input. To minimize the crosstalk amplitude we attenuate
the reference clock as much as possible. The advantage of the 50MHz
compared to the 10MHz reference clock is that all frequency compo-
nents are at the edges of the detection band 0–50MHz. To prevent
damage of the user FPGA due to overheating, the 100MHz clock is
switched off once a maximally allowed temperature is exceeded.

Analog interface: The analog interface consists of two ADC
and two DAC channels. Each ADC digitizes the input voltage with
nominal resolution of 14 bit within a full scale (FS) between −1.1V
and 1.1V at its single-ended 50 W impedance input. While the max-
imum rate is 105MHz we use 100MHz as a convenient frequency.
Mostly due to crosstalk of the reference clock signal, the effective
number of bits (ENOB) of the ADC is reduced to around 10. As our
measurements are dominated by other noise sources our resolution
obtained after filtering and averaging is much better than the ENOB.
Each DAC channel converts 14 bit numbers into analog voltages with
FS = ±1V at its single-ended 50 W impedance output.

Triggering/synchronization module: For triggering and syn-
chronization we connected BNC plugs to four pins of the header
(trigger in/out) in Figure A.2. Each of these pins can be configured
as a digital one-bit input or output within the FPGA firmware during
runtime, and serve as trigger in- and outputs. For example, the detec-
tion of a raising edge at a specific trigger input marks the start point
of an experimental shot while the raising edge on a second trigger
input marks the first pattern in a sequence, compare Section 3.8. A
trigger configured as output, for example, can trigger another part of
the experiment based on a specific measurement result for real-time
feedback (Steffen et al., 2013).

External memory: A zero-bus-turnaround static random-access
memory (ZBT SRAM) extends the limited FPGA internal RAM.
The latter is a true dual-port RAM that allows two parallel memory
accesses in a single clock cycle, e.g. for averaging into the RAM with
a net rate of one point per clock period. The ZBT SRAM allows only
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a single memory access per clock cycle, but has no overhead time
when switching between a read and a write access. This is a technical
advantage compared to current computer DDR SDRAM that needs
multiple clock cycles to switch from reading mode to writing mode and
vice versa. The present two banks of ZBT SRAM can be addressed
individually and in parallel. They consist of 219 memory cells each
with a depth of 32 bit which are also clocked by the phase-locked
100MHz clock. Using the ZBT SRAM we get in each bank a net
averaging rate of one 32 bit word per two clock cycles. We use the
ZBT SRAM not only for averaging but also to store the measurement
results before the data are transfered to the host computer.

PCI FPGA: The hardware responsible for PCI communication
is the only part on the FPGA board that runs at a clock rate of
40MHz different from all other clock rates. The interface between
user FPGA and PCI port of the host computer is established by a
PCI FPGA. This FPGA has a fixed firmware loaded during power-on.
It allows to load firmwares onto the user FPGA and the clock FPGA
and is able to read (write) words of 32 bit from (to) the user FPGA,
as schematically shown in Figure A.3. The transition between the
40MHz (purple) and 100MHz (green) clock is realized on the user
FPGA with first-in first-out (FIFO) buffers and logic.

A.3 FPGA Communications
One critical component for the successful use of the FPGA board as a
standard measurement device is a working communication channel, to
read out the external ZBT SRAM, for example. Hence, each FPGA
measurement firmware requires logic to set-up communication over
PCI with the host computer, so that measurements can be controlled
and measurement data can be transferred, see Figure A.3.

For this purpose several registers located on the user FPGA (each
32 bit wide) have been implemented which can be read and set by
both the host computer over the PCI bus and the user FPGA. These
registers allow to parameterize the digital signal processing, parame-
terize the measurement applications, start and stop the measurements,
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Figure A.3: Schematic FPGA firmware for communication and hard-
ware connections to the main components of the FPGA board, com-
pare Figure A.2. Digital signal processing and analysis, as discussed
in Chapter 3, is performed within the DSP component.

and retrieve status information of running applications.
The external RAM is used to transfer the measurement data from

the FPGA to the host computer. Here, it is important that both user
FPGA and host computer have access to the external RAM. Two
bits of one of the registers above are used to switch the RAM control
between the DSP component and the PCI communication interface,
as shown in Figure A.3. Parallel to the start of a measurement we
connect the RAM to the DSP component. All applications write
their status (running/finished) into a status register that we monitor
within the measurement software. When the measurement is finished
we switch the RAM back to the PCI communication interface and
use dedicated register to transfer the desired content of the RAM
over the PCI bus to the host computer. A next measurement can
immediately be started afterwards.
To control the FPGA from our measurement software, I imple-

mented a C-library that sets up the communication to the FPGA
board from the host computer. Most programming or scripting lan-
guages support library function calls, such as LabVIEW or Python.
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Thus, from within our measurement software we are able to program
the user and clock FPGA, to read and write all registers, and to read
and write the ZBT SRAM on the FPGA board. Additionally, we are
able to read the critical user FPGA temperature and set its maximally
allowed temperature. When this temperature is exceeded, the user
FPGA is automatically stopped to prevent permanent damage of the
device.
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B
Reconstruction of Two-Time Correlations

In the measurements presented in this thesis, we are interested in
the quantum-mechanical properties of electromagnetic microwave
radiation, in particular their correlation functions. Even though
we compute the correlation functions based solely on calculations
involving complex numbers, as shown in Section 3.9, we are able to
extract quantum-mechanical correlations. Depending on the type of
correlation function, we are considering we use different strategies
to measure them. In this appendix, I present an overview of these
strategies and discuss their advantages and disadvantages.

During linear detection, noise is added to the microwave radiation
of interest due to amplifying vacuum and thermal fluctuations in the
amplification process; compare Sections 3.1 to 3.4. The measurement
of correlation functions includes that noise. To reconstruct the corre-
lation function G[τ ] of the microwave radiation of interest, reference
measurements have to be taken into account; compare Section 3.9.
Here, I derive the correlation terms that need to be measured to
correct for the noise in different order correlation functions. I use
the operator formulation for the measured complex amplitude S, as
introduced in Section 3.4.
In the following, I distinguish between the measured correlation

function Γ [τ ] and the noise reference correlation function H[τ ] that
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is measured when the detection chain input is left idle, ideally in the
vacuum state. The quantum-mechanical definitions of the first- and
second-order auto-correlation are

G(1)[τ ] = 〈â ? â〉[τ ]
G(2)[τ ] = 〈: â†â ? â†â :〉[τ ] ,

respectively. Correlation (?) of operators is equally defined as in Equa-
tion (3.3), however, we replace complex conjugation (∗) by Hermitian
conjugation (†), and order normally (〈: :〉). Note that this definition,
analogous to the mathematical correlation given in Equation (3.3),
implies the Hermitian conjugation of the first correlation argument,
which is thus hidden in the ?-operator. For all correlation functions,
and especially for cross-correlations, subscripts indicate the quantities
that are correlated. For example,

G
(2)
ab [τ ] = 〈â†â ? b̂†b̂〉[τ ]

is the second-order cross-correlation of radiation mode â with b̂.

B.1 Power Spectral Density
The measurement of the power spectral density was already discussed
in Section 3.9. The reconstruction approach of correlation functions
G[τ ] is illustrated by the following measurement of the first-order
auto-correlation function, which is the power spectral density in the
time domain. The evaluation of Γ (1) = 〈S ? S〉 shows that

Γ (1) = 〈S ? S〉 = g 〈(â+ ĥ†) ? (â+ ĥ†)〉
= g 〈â ? â+ ĥ† ? ĥ† + â ? ĥ† + ĥ† ? â〉

= g
(
〈â ? â〉+ 〈ĥ† ? ĥ†〉

)
, (B.1)

where g is the gain factor of the linear detection chain. Note that
we use here and also in the following, that all terms with an odd
number of noise operators can be removed as the noise is assumed to be
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symmetrically distributed around zero (Agarwal and Chaturvedi, 1994;
da Silva et al., 2010). Subtracting the noise reference measurement
H(1) = g 〈ĥ† ? ĥ†〉 from Equation (B.1) results in the first-order auto-
correlation function

gG(1)[τ ] = Γ (1)[τ ]−H(1)[τ ]

of â. For τ = 0, G(1)[0] provides the integrated intensity 〈â†â〉 whereas
H(1)[0] the integrated intensity of the noise fluctuations g 〈ĥĥ†〉.

B.2 Cross-Power Spectral Density
The cross-power spectral density is obtained by measuring the first-
order cross-correlation function. This measurement has the advantage
that uncorrelated noise averages to zero. When measuring a single
field â′ using two separate and independent detection chains, we obtain
the first-order auto-correlation G

(1)
a′a′ [τ ] of that field â′. Consider,

for example, an HBT-like setup with a beam splitter (Section 2.5,
Figure 2.8), where the second beam splitter input b̂′ is in the vacuum
state. The two detection chains add uncorrelated noise ĥ†a and ĥ†b
to the complex amplitudes Sa and Sb. Thus, the correlation of the
measured classical complex amplitudes Sa and Sb yields:

Γ
(1)
ab = 〈Sa ? Sb〉

= √gagb eiϕ 〈â ? b̂+ ĥ†a ? ĥ
†
b + â ? ĥ†b + ĥ†a ? b̂〉

= √gagb eiϕ
(
〈â ? b̂〉+ 〈ĥ†a ? ĥ

†
b〉
)
,

where ϕ denotes a possible path length difference of the two detec-
tion chains. The correlations of mode â′ are included in 〈â ? b̂〉 =
i
2 〈â

′ ? â′ + iâ′ ? b̂′ + b̂′ ? iâ′ − b̂′ ? b̂′〉 = i
2 〈â

′ ? â′〉 for mode b̂′ ide-
ally in the vacuum state. Parasitic noise correlations H(1)

ab [τ ] =
√
gagb e

iϕ 〈ĥ†a ? ĥ
†
b〉[τ ] are usually small compared to the correlations

of â′. We get √
gagb

2 G
(1)
a′a′ [τ ] = −ie−iϕ Γ (1)

ab [τ ] .
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Small parasitic noise correlations H(1)
ab [τ ] can be subtracted as dis-

cussed in Appendix B.1. In contrast to the auto-correlation, a path
length difference of the two detection chains rotates the correlation
function G(1)

a′a′ [τ ] by the phase factor eiϕ. Since the phase ϕ is mea-
sured easily, this rotation is usually no drawback. The power spectral
density is the Fourier transform of G(1)

a′a′ [τ ] and is demonstrated in Sec-
tion 4.2 for characterization of a continuous single-photon source (Lang
et al., 2011).

B.3 Second-Order Auto-Correlation
The second-order correlation function using only a single detection
chain (Steudle et al., 2012) is measured by the auto-correlation
of the intensities Γ (2) = 〈|S|2 ? |S|2〉 and is demonstrated in Sec-
tion 6.2 (Lang et al., 2013b). As in Appendix B.1, we evaluate Γ (2)[τ ]
and remove all terms with an odd number of noise operators as their
expectation values are zero (Agarwal and Chaturvedi, 1994; da Silva
et al., 2010; Menzel et al., 2010):

Γ (2) = 〈|S|2 ? |S|2〉
= g2(〈: â†â ? â†â :〉+ 〈“ ĥĥ† ? ĥĥ† ”〉+ 2 〈â†â〉 〈ĥĥ†〉

+ 〈: â† ? â† :〉 〈ĥ† ? ĥ†〉+ 〈â ? â〉 〈“ ĥ ? ĥ ”〉
+ 〈â† ? â〉 〈ĥ† ? ĥ〉+ 〈â ? â†〉 〈ĥ ? ĥ†〉

)
,

where the correlations of field and noise are separated, and the noise
operators are ordered anti-normally (〈“ ”〉)1. Additionally, we remove
the last two terms as the expectation values 〈ĥ† ? ĥ〉 and 〈ĥ ? ĥ†〉 are
zero for all τ . Thus, the second-order auto-correlation of â is obtained
as

g2G(2)[τ ] = Γ (2)[τ ]−H(2)[τ ]− 2gG(1)[0]H(1)[0]
− gG(1)[−τ ]H(1)[τ ]− gG(1)[τ ]H(1)[−τ ] .

1Definition from Mandel and Wolf (1995).
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To evaluate this expression, we measure the four correlation func-
tions Γ (2)[τ ], H(2)[τ ], Γ (1)[τ ] and H(1)[τ ]. To diminish heterogeneous
impact due to long term drifts, all four correlation functions are mea-
sured and averaged successively in rotation as explained in Sections 3.8
and 3.9.
Note that the single-shot second-order correlation functions have

a signal to noise ratio (snr) squared compared to the signal to noise
ratio (snr) of the first-order correlation functions (da Silva et al.,
2010). Since the standard deviation of the noise in the measurement
diminishes only by 1/

√
R with the number of repetitions R, Γ (2)[τ ]

and H(2)[τ ] have to be averaged exponentially longer than any first-
order correlation function to obtain equivalent accuracy. Even though
the first-order terms appear as products its uncertainty scales only
linearly with the uncertainty of the two factors, as shown with error
propagation.

B.4 Second-Order Cross-Correlation
Evaluating the expression Γ (2)

ab = 〈|Sa|2 ? |Sb|2〉 allows us to investi-
gate second-order cross-correlations between â and b̂. A well-known
example is HOM two-photon coalescence (Hong, Ou, and Mandel,
1987), which we have demonstrated in Section 6.2 (Lang et al., 2013b).
The evaluation of Γ (2)

ab

Γ
(2)
ab = 〈|Sa|2 ? |Sb|2〉

= gagb
(
〈â†â ? b̂†b̂〉+ 〈ĥaĥ†a ? ĥbĥ

†
b〉+ 〈â†â〉 〈ĥbĥ†b〉+ 〈b̂†b̂〉 〈ĥaĥ†a〉

+ 〈â† ? b̂†〉 〈ĥ†a ? ĥ
†
b〉+ 〈â ? b̂〉 〈ĥa ? ĥb〉

+ 〈â† ? b̂〉 〈ĥ†a ? ĥb〉+ 〈â ? b̂†〉 〈ĥa ? ĥ†b〉
)

(B.2)

shows that G(2)
ab is obtained by

gagbG
(2)
ab [τ ] = Γ

(2)
ab [τ ]−H(2)

ab [τ ]

− gaG(1)
aa [0]H(1)

bb [0]− gbG(1)
bb [0]H(1)

aa [0] .
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In contrast to second-order auto-correlation function measurements
(Appendix B.3), we only have to subtract a constant offset (sec-
ond line) composed of first-order correlations. This is because the
cross-correlations H(1)

ab [τ ] of the noise [in terms five and six of Equa-
tion (B.2)] in the two detection chains are in our setup negligible as
expected. If needed H

(1)
ab [τ ] could also be measured and corrected

for. Similarly in term seven and eight of Equation (B.2), the noise
is assumed to be symmetrically distributed around zero, with the
consequence that these two terms are equal to zero.
The same advantage can be exploited when a single field â′ is

measured by two separate detection chains in an HBT-like setup, as
discussed in Appendix B.2. As no correlated radiation enters through
the second beam splitter input b̂′, which is in the vacuum state, the
second-order correlation function of â′ is

G
(2)
a′a′ [τ ] = 4G(2)

ab [τ ] .
We have demonstrated such measurements in circuit QED for a
pulsed (Bozyigit et al., 2011b) and a continuous single-photon source
discussed in Section 4.3 (Lang et al., 2011).

B.5 Cross-Power Auto-Correlation
The detection of the two complex amplitudes Sa[t] and Sb[t] allow
also to measure the second-order cross-power (quasi-)auto-correlation
function G

(2Y )
ab [τ ] = 〈(S∗aSb) ? (SaS∗b )〉[τ ]. This is not a real auto-

correlation since the second argument is not equal but the complex
conjugate of the first argument. In the case of HBT-like setups, such
a setting serves as a measurement of the second-order correlation
function G(2)

a′a′ [τ ] that is not offset due to the noise power, which is in
contrast to the Γ (2)

ab [τ ] case (da Silva et al., 2010). The evaluation

Γ
(2Y )
ab =

(
〈â†b̂ ? âb̂†〉+ 〈ĥaĥ†b ? ĥ

†
aĥb〉+ 〈â†b̂〉 〈ĥ†aĥb〉+ 〈âb̂†〉 〈ĥaĥ†b〉

+ 〈â† ? â〉 〈ĥ†b ? ĥb〉+ 〈b̂ ? b̂†〉 〈ĥa ? ĥ†a〉
+ 〈â† ? b̂†〉 〈ĥ†b ? ĥ

†
a〉+ 〈b̂ ? â〉 〈ĥa ? ĥb〉

)
gagbe

−2iϕ (B.3)
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shows, assuming that terms three to eight are zero as discussed in
Appendix B.4, that

gagb

4 G
(2)
a′a′ [τ ] = e2iϕ(Γ (2Y )

ab [τ ]−H(2Y )
ab [τ ]

)
,

where the second-order correlations of the noise fluctuations H(2Y )
ab [τ ]

are expected to be small for all τ . Similar to the cross-power spec-
tral density (Appendix B.2), G(2)

a′a′ is rotated by a phase 2ϕ. Again,
small finite cross-correlations of the noise, which usually are neg-
ligible in our setup, can be measured and be corrected for. This
was done for the second-order correlation function measurements in
Section 5.3 (Bozyigit et al., 2011a).
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C
Theoretical Expressions

To validate the experimental measurements presented in this thesis,
we compared them with the theoretically expected values, plotted
as a line underneath the measurement data. The theory is based on
analytical calculations and also master equation simulations. This
appendix shows the equations used in the main graphics, such as
Figures 4.2, 4.3, 5.4, 6.4 and 6.5, to illustrate first- and second-
order correlations. Derivations of these equations are sketched giving
appropriate references for further reading.

C.1 Photon Blockade
C.1.1 Resonance Fluorescence Spectrum
To cover the physics of the photon blockade system, it is the most
simple, but also sufficient, to consider a single driven two-level system.
This approximation to the two lowest energy levels of the anharmonic
Jaynes-Cummings ladder of resonantly coupled qubit and resonator
can be done because the drive is slow enough so that the system is
not excited significantly into other levels; compare Section 2.3. The
physics of resonance fluorescence from a driven two-level system is
well understood and often discussed in quantum optics lectures as
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well as books (Mollow, 1969; Carmichael and Walls, 1976; Carmichael,
2002; Scully and Zubairy, 1997). To calculate the expression of the
resonance fluorescence spectrum in Figure 4.2(b), I followed the steps
presented in Chapter 2 of Carmichael (2002), including dephasing
and without approximating the strength of the drive that is typically
considered to be strong or weak compared to the relaxation rate of
the two-level system. The steps are compatible to those discussed by
Woolley et al. (2013) as well, where more detailed explanations can
be found in a more compact manner than in Carmichael (2002).
The Hamiltonian of the driven two-level system shall be

Ĥd
TLS = 1

2 ω̃aσ̂z −ΩR(σ̂+ + σ̂−) ,

where the transition frequency ω̃a = ωd is equal to the drive frequency,
and the drive strength ΩR is chosen to be real valued, without loss of
generality. The first term represents the two-level system Hamiltonian,
and the second term the Hamiltonian for the drive.

The coupling to the environment is described by two parameters for
the decay rate γ̃ and the dephasing rate γ̃ϕ of the two-level system.
Hereby, we expect that γ̃ is dominated by photon decay through
the output of the cavity. The time evolution of the two-level system
density operator % is then given by the master equation in Lindblad
form

d
dt% = −i

[
Ĥd

TLS, %
]
+ 1

2 γ̃(2σ̂−%σ̂+ + σ̂+σ̂−%−%σ̂+σ̂−)+ 1
2 γ̃ϕ(σ̂z%σ̂z−%) .

Using the master equation we can write down the so-called optical
Bloch-equations through the expectation value of the time evolution

d
dt 〈σ̂−〉 = − γ̃2 〈σ̂−〉 − 1

2 iΩR 〈σ̂z〉
d
dt 〈σ̂+〉 = − γ̃2 〈σ̂+〉+ 1

2 iΩR 〈σ̂z〉
d
dt 〈σ̂z〉 =− iΩR 〈σ̂−〉+ iΩR 〈σ̂+〉 − γ̃ 〈σ̂z〉− γ̃ ,

where we have introduced the total dephasing rate γ̃2 ≡ 1
2 (γ̃ + 2γ̃ϕ).

To solve the set of differential equations, the optical Bloch-equations
are typically written in matrix form and subsequently diagonalized.
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This allows one to find the steady state solutions

〈σ̂∓〉ss = ± iΩRγ̃

2(Ω2
R + γ̃γ̃2) and 〈σ̂z〉ss = − γ̃γ̃2

Ω2
R + γ̃γ̃2

,

for which d
dt 〈σ̂j〉 = 0 for all j ∈ {−,+, z}. Based on the steady

state solutions an initial condition is found to solve the optical Bloch-
equations. The form of the solution allows us to apply the quantum
regression formula, with which two-time correlation functions can be
evaluated such as the first-order correlation function

G(1)(τ) = lim
t→∞

〈σ̂+(t) σ̂−(t+ τ)〉

between the two-level system raising (σ̂+) and lowering (σ̂−) operator,
which expresses the correlations that are discussed throughout Sec-
tion 4.2 in the frequency domain. Evaluating the expression forG(1)(τ)
it follows

G(1)(τ) = Ω2
R

4(γ̃γ̃2 +Ω2
R)

(
γ̃2

(γ̃γ̃2 +Ω2
R) + e−τγ̃2+

+e−τ(γ̃+γ̃2)/2
(
λ+e

iΩ̃τ + λ−e
−iΩ̃τ

))
, (C.1)

where we have introduced the notation

iΩ̃ ≡
√
−Ω2

R + 1
4 (γ̃ − γ̃2)2

λ± ≡
(2Ω2

R ∓ 2iΩ̃γ̃ − γ̃2 + γ̃γ̃2)(2Ω̃ ∓ i(γ̃ − γ̃2))
8Ω̃(γ̃γ̃2 +Ω2

R)
.

The power spectral density of the field emitted from the two-level
system is the Fourier transform of G(1)(τ):

PSD(ω) =
∫ ∞

0
G(1)(τ) ei(ω−ωd)τ dτ .

Expanding Equation (C.1), the first summand results in a δ-function
for the Rayleigh-scattering peak in PSD(ω), and the second summand
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in the central Lorentzian peak of the Mollow triplet with characteristic
width γ̃2. Summand three and four represent left and right side peak
in the Mollow triplet structure, and are only Lorentzian peaks for
strong driving. The solid lines in Figure 4.2(b) show the resonance
fluorescence spectrum PSD(ω) omitting the Rayleigh-scattering peak
for a set of drive amplitudes ΩR.

C.1.2 Master Equation Simulation
The simple model of a driven two-level system deviates from the
measured data in the predicted strength of the coherently scattered
radiation. This is mostly due to the presence of the |2−〉 state in
the Jaynes-Cummings ladder. To correctly capture the amplitude of
the Rayleigh-scattered peak, we compare the measured spectrum in
Figure 4.2(a) with a master equation simulation, which is subsequently
also used in Figure 4.3(a) to validate the measured second-order
correlation functions.
For the master equation simulation, the Hamiltonian is extended

compared to the one in Appendix C.1.1 to get the Jaynes-Cummings
ladder energy level structure. Therefore, we use the Jaynes-Cummings
Hamiltonian ĤJC (2.1) and add a coherent drive to the resonator

Ĥd
JC = ĤJC −ΩR(Â† + Â) ,

where we set in the known system parameters. As in Appendix C.1.1
we set up the master equation in Lindblad form using Ĥd

JC and the
coupling to the environment using the decay rate γ and dephasing
rate γϕ of the qubit, and the decay rate κ of resonator excitations.
Subsequently, the master equation is numerically solved, where we
restrict the density matrix % from 0 to 4 photons. The solution for %
is then used to extract the theoretically expected PSD(ω) shown
in Figure 4.2(a), and the unfiltered second-order correlation functions
shown in Figure 4.3(a) by the black line.

The gray lines in Figure 4.3(a) take into account limited detection
bandwidth, i.e. filtering of the measurement signal, for the expected
second-order correlation functions. A strictly correct way of including
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filtering, would be to calculate the expected unfiltered 4-time-point
second-order correlation function, apply the global 4-time-point filter
function, and integrate out all times but the time delay τ (da Silva
et al., 2010). In this case, we would need too much computing power
since two more dimensions would be introduced into the numerical
calculations. Instead, we approximate the effect of filtering for the
case in which the measured signal is strongly dominated by white noise
added in the detection chain. For white noise h[t] with constant power
spectral density |H̄|2, the effective bandwidth of a filtered second-order
correlation function is calculated straight forwardly. To do so, we
calculate the correlation functions in the frequency domain [compare
Equation (3.4)] and filter by convolution [compare Equation (3.1)]
as we do it in our quantum signal analyzer; compare Section 3.9.
Using the convolution theorem F(w ? k)[ν] = F(w)[ν] F(k)[ν] we
can rewrite each of the inner Fourier transforms in Equation (3.4)
exemplary for the waveform calculating the power w[t] = S[t]S∗[t] of
the filtered white noise St = (h ? k)[t]:

F(w) = F(S S∗) = F(F -1(K F(h)) · F -1∗(K F(h))) , (C.2)

where the filter kernel k[t′] is padded with zeros to the same length
as S[t] and K[ν] = F(k)[ν]. For white noise, each frequency bin
of F(h)[ν] is on average |H̄| and has a random phase that is common
in both factors of Equation (C.2). Therefore, we factor out the
constant H̄ and approximate F(w)[ν] as

F(w) ≈ F(H̄ H̄∗ F -1(K) F -1∗(K)) = |H̄|2 F(|k|2) .

Comparing this with the convolution theorem, we see that the cal-
culated power of white noise is effectively filtered by a kernel |k[t′]|2.
Also a numerical simulation of noise with the filter that was used in the
experiments showed similar results. In Figure 4.3(a), we convoluted
the unfiltered second-order correlation functions (black lines) with
the squared filter kernel |k[t′]|2 twice, once for each Fourier transform
in Equation (3.4), to approximate the limited detection bandwidth
(gray lines). Please keep in mind that this filtering of the second-order
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correlation function is only an approximation in the limit of very
small signal to noise ratio.

C.2 Pulsed Photons and their Interference
In Chapters 5 and 6 we presented the generation and interference of
triggered single-photons. We measured their temporal profiles, and
first- and second-order correlation functions. The theoretical basis for
these measurements using linear detection is published by da Silva
et al. (2010) and Woolley et al. (2013), and sketched here. Since all
following calculations are included in the second-order correlation
function for the two-photon HOM interference, the equations include
indices A and B, naming the two source resonators, and the photon
generation delay time δτ . For a single source only, as in Chapter 5,
please consider only source A and δτ = 0. The calculations are
presented using all parameters necessary for Figures 6.4 and 6.5, and
as they are developed by Woolley et al. (2013), where more profound
details can be found.

C.2.1 Temporal Mode Function
In order to trigger the emission of a single-photon, a qubit is used
to bring the resonator into its first excited state, as described in
Section 5.1. The time needed to excite the resonator is here considered
to be instantaneous, since the excitation process cannot be resolved
due to the limited detection bandwidth. The excitation then decays
exponentially out of the resonator at rate κA/B . For the temporal mode
function, proportional to the field amplitude, we get an exponential
decay at rate κ/2

ξA/B,n(t) =
{√

κA/B e
−(t−n tr±δτ/2)κA/B/2 if n tr ∓ δτ/2 ≤ t ,

0 else,

in the rotating frame of the photon frequency ωr = ωd after the photon
release time n tr ∓ δτ/2. Here, n is the pulse number in the single-
photon pulse train generated with a repetition period of tr. We refer
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to Woolley et al. (2013) for the case of photons with frequencies ωr
other than the detection frequency ωd.
To incorporate the limited detection bandwidth of the linear de-

tection chain, we apply an FIR filter to ξA/B,n(t). We use a simple
square window FIR filter, since this continuous-time filter provides
comparable properties as the discrete-time one used in the experi-
ment. Additionally, all further calculations can be solved analytically.
Similarly as the discrete-time FIR filter kernel in Equation (3.1), the
kernel is here

k(t′) =
{

1/T if 0 ≤ t′ < T ,

0 else,

with the window length T . The continuous-time convolution of the
temporal mode function ξA/B,n(t) with the kernel k(t′) results in the
filtered temporal mode function

ζA/B,n(t) =
∫ ∞
−∞

ξA/B,n(t− t′) k(t′) dt′ .

The solid line in Figure 5.2(b) shows a filtered single-photon pulse ζ(t)
with the decay rate of κ/2, whereas the rise time of the pulse is limited
by the FIR filter.
Having the filtered mode function, we can easily calculate the

temporal profile of a power measurement

UA/B,n(t) = ζ∗A/B,n(t) ζA/B,n(t)

resulting in the expected decay rate κ of the cavity photon number,
for which an example is shown in Figure 5.2(e). We also introduce
the product of mode functions

VA/B(t, τ) = ζ∗A/B,0(t) ζA/B,0(t+ τ)

evaluated at different times in order to write compact expressions
for the expected second-order correlation function measurements,
presented in the next section.
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C.2.2 Second-Order Correlations and Interference
For the calculation of second-order correlation functions, we need to
evaluate a sum, where each summand is the product of four temporal
mode functions, two at time t and two at t+ τ . As shown below, the
detection time t is subsequently integrated out and summed over the
whole pulse train of N photons to get the expected G(2)(τ) (Woolley
et al., 2013).
Assuming essentially no overlap of the temporal mode function

between two subsequent photons of a source (tr � 1/κ) and evaluating
the expected single-photon input states, we can exploit symmetries
and further simplify the complete expression given in Equation (27)
of Woolley et al. (2013). When operating only a single single-photon
source as in Figures 5.4 and 6.4(a,b), the second-order correlation
function G(2)

A/B(τ) of source A and B respectively is expected to be

G
(2)
A/B(τ) = 1

4

N/2∑
n=−N/2

(
1− δ(n)

)( ∫
VA/B(t, τ)V ∗A/B(t, τ) dt

+
∫
UA/B,0(t)UA/B,n(t+ τ) dt

)
,

where δ(n) is the Kronecker delta being 0 for n = 0 and 1 otherwise.
Note that the only experimental parameter is the photon decay
rate κ, measured in independent experiments, and all others are
design parameters.
In the expression for the second-order cross- and auto-correlation

function including two-photon interference, more terms are added:

G
(2)
ab/aa(τ) = G

(2)
A (τ) +G

(2)
B (τ) + 1

4

N/2∑
n=−N/2

(
∫
UA,0(t)UB,n(t+ τ) dt+

∫
UB,0(t)UA,n(t+ τ) dt

±
∫
VA(t, τ)V ∗B (t, τ) dt±

∫
V ∗A (t, τ)VB(t, τ) dt

)
.

(C.3)

134



C.2 Pulsed Photons and their Interference

The cross-correlation function G(2)
ab (τ) of the beam splitter outputs is

shown in Figure 6.4(c-f) for different delay times δτ as tuning param-
eter for photon distinguishability. The second-order auto-correlation
function G

(2)
aa (τ) in a single beam splitter output is presented in

Figure 6.5.
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Glossary

microwave source.

arbitrary waveform channel for voltage pulse.

arbitrary waveform channel for current pulse.

battery, d.c. voltage source.

analog-to-digital converter.

digital-to-analog converter.

ground.

inductor.

capacitance.

� Josephson junction, combination of Josephson inductance and
intrinsic capacitance.

floating ground.
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Glossary

IQ-mixer.

attenuator.

circulator with one impedance matched load.

low-pass filter.

band-pass filter.

d.c.-block.

linear amplifier.

Â annihilation operator of a cavity mode excitation.

â annihilation operator of beam splitter output mode excitation.

â′ annihilation operator of a cavity output mode excitation.

â′† creation operator of a cavity mode excitation.

Â† creation operator of a cavity mode excitation.

â† creation operator of beam splitter output mode excitation.

∆ detuning of artificial atom angular transition frequency ωa from
the resonator angular frequency ωr.

∆ν frequency bin width of discrete spectrum.

δτ delay time between single-photon generation.

Ec charging energy of the transmon.

EJ Josephson energy of the transmon.

EJΣ maximum Josephson energy at zero flux through SQUID-loop.

F fast (discrete) Fourier transform.

F -1 inverse of the fast (discrete) Fourier transform.
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Glossary

fs sampling frequency.

G quantum-mechanical correlation function.

g coupling rate between atom and cavity field.

G(1) quantum-mechanical first-order correlation function.

G(2) quantum-mechanical second-order correlation function.

g(2) normalized second-order correlation function.

Γ measured ensemble average of correlation function.

γ decay rate of atom.

Γ (1) measured first-order correlation function.

Γ (2) measured second-order correlation function.

H expected correlation function of noise.

h Planck constant.

H(1) expected first-order correlation function of noise.

H(2) expected second-order correlation function of noise.

~ reduced Planck constant h/2π.

ĤJC Jaynes-Cummings Hamiltonian.

I in-phase component of a complex amplitude.

κ cavity decay rate.

νa two-level atom transition frequency.

νif intermediate frequency.

νm carrier frequency of coherent measurement signal.

νr resonator frequency.
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Glossary

ωa two-level atom angular transition frequency.

ωc carrier angular frequency of microwave drive tone.

ωd demodulation angular frequency.

ωi artificial atom angular transition frequency between states |g〉 and
|i〉.

ωif intermediate angular frequency.

ωLO local oscillator angular frequency.

ΩR Rabi rate.

ωr resonator angular frequency.

Ωsp Mollow triplet side peak angular frequency.

Φ magnetic flux through SQUID-loop.

φ phase of a Rabi rotation.

Φ0 superconducting flux quantum Φ0 = h/2e.

PSD power spectral density.

Q quadrature component of a complex amplitude.

S complex amplitude I + iQ of a microwave signal.

σ̂i atom lowering operator |i〉〈i+ 1|.

σ̂†i atom raising operator |i+ 1〉〈i|.

σ̂− qubit lowering operator |g〉〈e|.

σ̂+ qubit raising operator |e〉〈g|.

σ̂x Pauli x-operator, σ̂x = |g〉〈e|+ |e〉〈g|.

σ̂y Pauli y-operator, σ̂y = i(|e〉〈g| − |g〉〈e|).
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Glossary

σ̂z Pauli z-operator, σ̂z = |g〉〈g| − |e〉〈e|.

θ Rabi angle.

Tp repetition period.

tr repetition period of photon pulse generation.

ts sampling period.

Z0 waveguide impedance.
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Acronyms

ADC analog-to-digital converter.

AWG arbitrary waveform generator.

BS beam splitter.

d.c. direct current, 0Hz.

DAC digital-to-analog converter.

DDC digital down conversion.

ENOB effective number of bits.

FIR finite impulse response.

FPGA field programmable gate array.

FWHM full width at half maximum.

HBT Hanbury Brown and Twiss (1956).
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Acronyms

HEMT high electron mobility transistor.

HOM Hong, Ou, and Mandel (1987).

HWHM half width at half maximum.

IQ-mixer passive four-port microwave component that mixes the two
quadrature in/outputs I and Q or the radio frequency (RF)
out/input with an local oscillator (LO).

LO local oscillator.

PCB printed circuit board.

QED quantum electrodynamics.

QND quantum non-demolition.

snr signal to noise ratio.

SQUID superconducting quantum interference device.
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