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Abstract

Recently, dipole coupling of a microwave resonator to a double quantum dot charge qubit
was realized with coupling strengths on the order of 50 MHz [1]. In this experiment, high
decoherence of the qubit is one of the main obstacles on the way to reach strong coupling.
The quantum dots were operated in the many electron regime, which is suspected to be a
source of decoherence. For this thesis, double quantum dot designs for operation in the few
electron regime were introduced with the goal to improve decoherence. The lateral quantum
dots were realized in a GaAs/AlGaAs heterostructure.

The tasks performed for this thesis were twofold. First, new sample wafers were charac-
terized in terms of charge carrier density and mobility by van der Pauw measurements. In
addition, the influence of a parallel conducting layer in the wafer structure was determined.

Second, new designs of few electron double quantum dots were characterized in transport
measurements and optimized according to the results. The plunger gate shape and size were
the most crucial design parameters to be adjusted and their influence on the sample properties
was investigated in detail. The samples had to be optimized in terms of two main competing
requirements: a high lever arm of the plunger gates and sufficient inter-dot tunneling coupling.
It was found that while the lever arm of the plunger gates could easily be increased with the
plunger gate area, this simultaneously reduced inter-dot tunneling coupling. This problem
could be resolved by suitably adjusting the sample geometry, so that the improved designs
provide both high plunger gate lever arms and sufficient tunneling coupling between the dots.
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1 CIRCUIT QED WITH QUANTUM DOTS

1 Circuit QED with Quantum Dots

Within the last decade, circuit quantum electrodynamics (QED) has emerged as a new re-
search field [2]. Like the field of atomic cavity QED that has long been studied in atomic
physics and quantum optics, it treats the interaction of light and matter [3]. In atomic cavity
quantum electrodynamics a single atom is coupled to a single photon via an optical cavity
[4]. In ciruit QED an artificial system such as a superconducting qubit serves as the atom,
while the cavity is formed by a coplanar waveguide resonator. The interaction between the
superconducting qubit and the microwave photon can be exploited for quantum information
processing applications [5]. Significant accomplishments were realized with this system, e.g.
strong coupling between qubit and resonator [6] or the implementation of different logical
gates and protocols for quantum information processing [7, 8].

Recently, hybrid systems for quantum information processing have gained more and more
attention because they might present a way to combine the advantages of different systems.
Such an approach is the objective of this project: a semiconductor double quantum dot is
coupled to a microwave resonator. In this circuit QED system, a quantum dot operated as a
charge qubit functions as the artificial atom and resonator dot coupling is mediated by electric
dipole interaction [9]. As a recent result of this project, dipole coupling of the quantum dot
charge qubit to a microwave resonator has successfully been demonstrated experimentally by
Frey et al. [10, 1]. They reported on a coupling strength of g/2π ≈ 50 MHz.

While this result was very encouraging, the ultimate goal of the project is to reach strong
coupling between qubit and resonator. This is fulfilled if the coupling strength is much
larger than the decoherence and decay rates of both the qubit (γ) and the resonator (κ):
g � γ, κ. The theory of coupling a resonator and charge qubit was derived in detail in by
Childress et al. for quantum dots [9] and by Blais et al. for superconducting qubits [11]. The
description for superconducting qubits is analogous to our system: the cooper pair box of
the superconducting circuit is in our case replaced by the quantum dot charge qubit but the
interaction Hamiltonian is of the same form. The conditions for strong coupling have not
been fulfilled in the quantum dot-resonator system. In particular the high decoherence rate
γ2 of the qubit poses a major challenge [1].

This section gives an introductory overview of the employed system. First, the general
architecture is introduced before each of the two coupled systems is described in more detail.
The resonator is characterized in section 1.2 and suitable quantum dot designs for the charge
qubit are discussed in section 1.3. In the work leading up to this thesis, we tried to work
towards the strong coupling goal by introducing new quantum dot designs, which are hoped
to improve decoherence as explained at the end of the section.

1.1 Implementation of the Circuit QED architecture

Quantum dots (QDs) are solid state structures in which charge carriers are confined in all
three dimensions to a small region in space so that their energy levels are quantized and
well separated [12]. Due to this quantization of energy, the dot exhibits various atomic
properties and the double dot system can be compared to a di-atomic molecule. It is therefore
a suitable system to function as the artificial atom in our circuit QED architecture. Many
different types of quantum dots have been realized [12]. In this thesis, lateral quantum dots
are discussed, which are formed in a two-dimensional electron gas (2DEG) embedded in a
semiconductor heterostructure. The dots are defined within the 2DEG by negatively biased
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1 CIRCUIT QED WITH QUANTUM DOTS
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Figure 1: Optical microscope image of the on-chip resonator (R) with integrated quantum dot. The
white area represents the aluminum ground plane (GND) of the resonator, its finger capacitors are
located in the green boxes and the blue inset shows an inductor (I) as explained in the text. The
inset framed in red shows the resonator gate (RG) extending to the quantum dot structure, which is
positioned within the red circle. The contacts leading to the top gates are marked C and the ohmic
contacts to the 2DEG are marked M.

top gate electrodes which the create electrostatic confinement and tunnel barriers of variable
transmission.

The on chip resonator used in our experiment is a superconducting coplanar waveguide
(CPW) resonator, in which a microwave field is confined between a center conductor and
two ground planes [13]. To realize the circuit QED architecture, the double quantum dot
structure and the coplanar waveguide resonator are integrated on one chip and coupled via a
gate extending from the resonator to one of the dots.

The device geometry is shown in Fig. 1. The resonator (R) is coupled to input and output
transmission lines via finger capacitors, which are indicated by the green rectangles in the
figure. The resonator consists of a center conductor between two ground planes (GND), which
cover most of the chip area. An inductor, which is magnified in the blue inset, connects the
center conductor of the resonator to a voltage source. This ensures that the center conductor
is not floating and enables biasing of the resonator. The quantum dot is positioned at an
antinode of the electric field of the fundamental resonator mode as indicated by the red box
in Fig. 1. The magnification shows the resonator gate (RG) that capacitively couples the
CPW resonator to the double quantum dot sitting within the red circle. The top gates of
the quantum dot structure are biased via the contacts labeled C and two ohmic contacts
which are connected to the 2DEG are indicated by M. The employed double quantum dot
structure is introduced at the end of the section. Details about the resonator design and its
characteristic parameters are given in the following.

1.2 Resonator characterization

The ground plane and center conductor of the resonator are defined in a photo lithography
process in which 3 nm Ti and 200 nm Al are deposited on the substrate. A schematic cross
section of the resonator is shown in Fig. 2. In our samples, the gap (g) between the ground
planes and the center conductor is designed to be 7.1 µm, the width (w) of the center conductor
is 10 µm and the resonator length is 8205 µm excluding the finger capacitors. The substrate is
formed by the GaAs/AlGaAs heterostructure, which holds the 2DEG for the lateral quantum
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Figure 3: Transmission spectrum of the microwave resonator plotted vs. frequency. For the green
curve, the measured transmission (S21) was fitted using a Lorentzian fitting function.

dots. The 2DEG was, however, etched away for most of the chip area. The layer sequence of
the substrate wafer is explained in detail in section 2.

A typical transmission spectrum of a microwave

200 nm
g

w

GaAs

Al

Figure 2: Cross section of the resonator
structure with a center conductor of width
w = 10 µm and a gap g =7.1 µm to the
ground plane.

resonator is shown in Fig. 3, where the transmission
S21 is plotted against the microwave frequency. The
transmission exhibits a peak centered around a res-
onance frequency f0. The fundamental resonance
frequency is determined by the resonator length l
and is given by [13]

f0 =
c
√
εeff

1
2l
. (1.1)

The wavelength of the fundamental mode is λ0 = 2l,
c denotes the vacuum speed of light and εeff is the effective permittivity of the transmission
line.

The transmission spectrum has a Lorentzian line shape, which can be described by [13]

FLorentz(f) = A0
δf

(f − f0)2 + δf2/4
. (1.2)

Here δf refers to the full width half maximum (FWHM) of the resonance and A0 is a constant
prefactor, which has to be determined by fits to measured data. The loaded quality factor of
the resonator can also be extracted from the transmission spectrum as it is given by the ratio
between f0 and the FWHM [13]: QL = f0/δf .

The transmission spectrum of the resonator was obtained by measuring the S-parameter
S21 = V +

2 /V −
1 as a function of microwave frequency using a vector network analyzer (VNA),

where V +
2 represents the voltage signal leaving the resonator at port 2 and V −

1 is the incoming
signal at port 1. The S-parameter S21 is defined for the case in which no incoming signal is
applied to port 2, so that it corresponds to the transmission of the system [14].

The coaxial cables of the VNA were only calibrated up to the instrument rack, not up to
the cryostat. A power of -10 dBm was applied to port 1. The intermediate frequency (IF)
bandwidth was set to 1 kHz. The total attenuation in our setup is approximately -90 dB. An
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1 CIRCUIT QED WITH QUANTUM DOTS
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Figure 4: Two different double quantum dot designs for the operation as charge qubit. (a) Design
used in previous experiments with top gates and a mesa edge to form the dots, a resonator gate and
two additional plunger gates. (b) New few electron dot design, in which the dot is formed exclusively
by top gates. The resonator gate functions as one of the plunger gates. A QPC is introduced as a
charge detector.

amplifier at the 4.2 K temperature stage leads to an output signal gain of roughly 33 dB at a
frequency of 7 GHz. Combined this yields an overall attenuation of -57 dB.

The measured transmission curve displayed in Fig. 3 exhibits the expected Lorentzian line
shape centered around the resonance frequency f0 = 6.7555 GHz. The data was fitted using
Eq. (1.2), where data points down to -10 dB from the maximum were taken into account. The
loaded quality factor resulting from the fit is QL = 2654.6± 5.7.

Only the fundamental resonance mode could be resolved. Resonances of the first (f1) and
second (f2) mode are expected around 13.51 GHz and 20.26 GHz, respectively, but cannot
be observed due to the setup bandwidth. The measurement was repeated for six different
resonator gate voltages between 0 and -250 mV. However, no influence of the resonator bias
on the transmission spectrum was observed. The resonance frequency did not shift and the
FWHM remained unaffected.

1.3 Quantum dots as charge qubits

Fig. 4 shows two suitable double quantum dot designs for the circuit QED architecture. The
design shown in Fig. 4(a) was used in the previous experiments [10, 1, 15], while design (b) was
newly introduced for the experiments presented in this thesis. In the following, the principle of
operating the double dots as charge qubits is explained. Furthermore, the differences between
designs (a) and (b) and the considerations that lead to the introduction of a novel dot design
are presented.

In both designs two dots are defined by top gates. In design (a) the electrons are in
addition confined by a mesa edge represented by the white dashed line, above which the
wafer structure is etched deep enough, that no 2DEG remains to hold the dot electrons. The
regions connected to the ohmic contacts of source (S) and drain (D) are indicated in both
figures as well as the resonator gates. The RG only overlaps with one of the two dots, which
is necessary to enable dipole coupling to the resonator [9]. The different components of the
QD structure are presented in detail in section 4.1.
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Figure 5: (a) Stability diagram of a double quantum dot. The areas within each hexagon correspond
to the denoted charge configurations of the double dot system. The color scale denotes the transcon-
ductance measured with the right charge detector. (b) Energies of bonding (EB) and antibonding
(EA) state of the two-level system formed by the double dot charge states. At zero detuning δ they
have an energy difference of 2t, where t describes the tunneling coupling of the two dots.

The charge state of the double dot system can be controlled by the left and right plunger
gates, which are indicated by LPG ans RPG in the two figures. This principle is illustrated by
the measurement of a so-called stability diagram presented in Fig. 5(a). The transconductance
of the charge detector is shown in a 2D plot as a function of left and right plunger gate voltages.
This kind of double dot measurements is discussed in detail in sections 3 and 4. Peaks in the
transconductance form hexagons, where the points in the lower right and upper left corner of
the hexagons are hardly separated in this measurement. By appropriately biasing the plunger
gates, each dot can be charged or emptied, so that the area within each hexagon corresponds
to a certain charge configuration of the two dots indicated in parentheses.

In a simplified model, the electron states in the double quantum dot can be described
as a two-level system as it was for example derived in a review by van der Wiel et al. [16].
Only the energetically highest occupied levels of each dot are taken into account and the
electrons are assumed not to interact with lower lying states. Furthermore, the influence of
excited states in the two dots is neglected. We can therefore describe the separated dots by
two eigenstates of energies E1 and E2. Tunneling coupling between the two dots leads to a
delocalization of the two considered eigenstates of the individual dots so that a bonding and
an antibonding state with energies EA and EB form [16]. These energies are plotted against
the energy detuning δ = E1 − E2 of the individual dots in Fig. 5(b). For zero detuning, the
energy difference between the bonding and antibonding states is given by 2t, where t is the
tunneling coupling between the dots. For t = 0 we recover the energies of the unperturbed
system E1 and E2, which are shown by the dashed lines.

The two-level system formed by the double quantum dot can therefore be considered in
analogy to the two-level system formed by a superconducting cooper pair box. The theory
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1 CIRCUIT QED WITH QUANTUM DOTS

of a cooper pair box charge qubit coupled to a microwave resonator was e.g. described by
Blais et al. [11] and can directly be transferred to the case of a quantum dot charge qubit.
The energetic detuning δ of the two quantum dots is equivalent to the gate charge ng in the
cooper pair description. The tunneling coupling t between the dots has the function of the
Josephson energy EJ in the cooper pair circuit QED model.

Using the particular dot design presented in Fig. 4(a) the quantum dot could only be
operated as a charge qubit in the many electron regime with the number of electrons on each
dot on the order of 100. As mentioned above, one of the main obstacles to reach strong
coupling with the described architecture is high decoherence γ2. One suspected reason for the
low decoherence times are excited states in the many electron regime. While excited states
are also present in quantum dots holding few electrons, they are much farther separated
in energy in this case and therefore less likely to be populated, as derived in section 3. It
is possible that closely spaced excited states in many electron quantum dots significantly
diminish decoherence times.

For the work presented in this thesis, the dot designs were adapted to enable the operation
of the QDs in the few electron regime with the goal of improving decoherence. The main differ-
ence between the few electron dot design shown in Fig. 4(b) and design (a) is that the dots can
be formed using only top gates and no mesa edge. [This was desirable because it is suspected
that the mesa edge makes it more difficult to empty the dots.] A second difference is the
quantum point contact (QPC) that was placed next to the right dot. The QPC is employed
as a charge detector in few electron transport measurements, which is explained in section 3.3.

The work on this thesis consisted of two main tasks. Different sample wafers were char-
acterized using van der Pauw measurements and the new quantum dot designs were char-
acterized in direct current (DC) transport measurements. Section 2 deals with the sample
wafers, describing the theory behind the 2DEG and magnetotransport properties. The wafer
structure and magnetotransport measurements are presented and the characteristic wafer
properties are extracted. The next section provides an overview of the theory of transport
measurements of single and double quantum dots. In section 4, the quantum dot measure-
ments are presented. The first part deals with the employed samples describing the sample
fabrication and the different characterized designs. Second, the results of the transport mea-
surements are presented together with the extracted sample parameters for three different
samples. Several problems that were encountered during these measurements are also dis-
cussed. Possible improvements were tested and are evaluated at the end of the section. The
conclusions that could be drawn from these measurements are presented in the last section.

11



2 WAFER CHARACTERIZATION

2 Wafer Characterization

Our samples were realized on semiconductor heterostructure wafers, which were grown by
molecular beam epitaxy (MBE) [17, 18]. The performed transport experiments require a
high mobility and sufficient carrier density [19]. The MBE growth of the semiconductor
structures depends on many parameters, such as good vacuum and clean materials sources.
The complexity of the process makes it difficult to predict the resulting wafer properties,
which is why each wafer has to be characterized carefully.

In this section, the heterostructures are described in detail, starting with the formation
of a 2DEG and magnetotransport in two dimensional systems. The results of van der Pauw
measurements are presented, which were employed to extract interface charge densities and
mobilities of the characterized wafer samples. Additionally, the dependence of the observed
magnetotransport features on temperature and on top gate voltages are discussed.

2.1 Two-dimensional electron gas

The two-dimensional electron gas builds the ba-

2DEG

AlGaAs

GaAs

z

x

y

Figure 6: Schematic AlGaAs/GaAS het-
erostructure with a 2DEG at the interface.

sis for the lateral quantum dot designs that were
used in our experiments. In this section, the
theoretical background of the 2DEG formation
is explained following Nazarov and Blanter [20].
Typically, 2DEGs form at interfaces in selectively
doped semiconductor heterostructures. An ex-
ample of a suitable structure is a GaAs crystal
covered by a layer of n-doped AlGaAs as depicted
in Fig. 6.

The intuitive explanation for the formation of
a 2DEG at the interface between the two layers is that the electrons originating from the n-
doping in AlGaAs travel to the weakly hole-doped GaAs side but remain close to the surface.
The reason for this behavior lies in the band structure of GaAs and AlGaAs. The Fermi
energies of the two materials have to align at the interface, which is made possible by band
bending as shown in Fig. 7. The band gap of AlGaAs is larger than that of GaAs, so that
a step in the conduction band edge occurs at the interface. The electrons from the AlGaAs
side are trapped in the thus created triangular potential well. Due to this confinement in the
z-direction they form a 2DEG in the x,y-plane.

In order to understand the conditions for the formation of a 2DEG in more detail, one
needs to consider the electrostatic potential acting on the electrons. Because the structure
is translationally invariant in x and y-direction the potential only depends on z. It can be
calculated from the dopant densities in both materials and the resulting potential energy of
the electrons in the conduction and valence band is shown in Fig. 7. For a sufficiently low
dopant density in the AlGaAs, the potential in z-direction is parabolic on the AlGaAs side
of the interface. The electrostatic potential jumps at the AlGaAs/GaAs interface due to the
finite surface charge density of the 2DEG. On the GaAs side, band bending occurs within
a depletion layer, which is free from holes, and the potential is constant in the rest of the
crystal.

With the volume density of the dopants in AlGaAs given by n1 and that of the dopants
in GaAs by n2, Nazarov and Blanter [20] calculate the sheet density of the electrons in the

12
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Figure 7: Conduction and valence band edges in a heterostructure of n-doped AlGaAs and p-doped
GaAs depending on the z-position. A 2DEG forms in the triangular potential well bordering the
interface.

2DEG to be

ns = n1a−
√

∆sn2εε0
2πe2

. (2.1)

Here, ∆s is the energy gap of GaAs and a the thickness of the AlGaAs layer, as indicated in
Fig. 7, while ε0 = 8.854×10−12 F/m denotes the vacuum permittivity, which is multiplied by
the relative permitivity of GaAs, ε = 12.9 ± 0.2. This equation essentially expresses charge
conservation as the dopant concentrations on both sides determine the sheet density of the
charges at the interface. Because the electrostatic potential acting on the electrons only
depends on the z-direction, the electron motion in the x, y-plane is free. We can therefore
describe the system as a two dimensional gas of free electrons.

The main difference between our wafer and the simple structure presented in Fig. 6
concerns the n-doped layer. The layer sequence of our wafer is depicted in Fig. 8. The
AlxGa1−xAs layer is not volume doped, but encloses a δ-donor layer, which is separated from
the interface with the GaAs side by a 40 nm spacer layer of undoped AlxGa1−xAs. This spacer
layer is advantageous as it reduces electron-dopant scattering [19] and leads to a higher mobil-
ity of the charge carriers in the 2DEG. The resulting band structure is very similar, however,
so that a 2DEG develops at the AlxGa1−xAs/GaAs interface, in analogy to Fig. 7. The spacer
layer is bordered by a Si δ-doped layer and another 45 nm of AlxGa1−xAs. The structure is
topped by a cap layer of 5 nm GaAs. Together, this yields a depth of the 2DEG of 90 nm.

2.2 Magnetotransport properties

Within the theory of diffusive classical transport, conductance properties of two-dimensional
electron systems are well described by the Drude model [19]. For transport in an external
magnetic field B applied perpendicular to the 2DEG, the Drude model predicts the longitu-
dinal component of the resistivity tensor to be ρxx = 1/ns|e|µ. Therefore, ρxx is inversely
proportional to both the electron density ns and the mobility µ, but independent of magnetic
field. The transverse or Hall resistivity is given by ρxy = B/|e|ns, which is linear in magnetic
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2DEG

AlxGa1-xAs

GaAs

GaAs   5 nm

45 nm

40 nm

500 nm

Si δ-donor
layer

90 nm

Figure 8: Layer sequence of our δ-doped heterostructure with a 2DEG 90 nm below the surface.

field. The Drude model proves accurate only for small fields, because it neglects the quan-
tization of electron states in external magnetic fields [19]. Due to the quantization, first the
longitudinal and for higher fields both resistivities oscillate around the classically predicted
values. In this section, a derivation of these effects is outlined following Ihn [19].

The motion of electrons confined to the x, y-plane in an external magnetic field B=(0,0,B)
in z-direction can be described by cyclotron orbits with quantized radii around a center
coordinate y0 = ~kx/eB, where kx is the wavevector in x-direction of the sample. This can
be derived by solving the Schrödinger equation of an electron in a potential V (z) in growth
direction of the wafer. The equation has the form of a quantum mechanical harmonic oscillator
and yields the energy eigenvalues

En = ~ωc(n+ 1/2) (2.2)

for integer numbers n, where ωc = |e|B/m∗ is the cyclotron frequency. These eigenstates are
degenerate in the quantum number kx and form the so-called Landau levels. The degeneracy
of each level n is limited by the sample dimensions, as the center coordinate needs to lie
within the sample. With this condition, the number of occupied Landau levels is found to
be ν = hns/|e|B, which is called the filling factor. When the Zeeman splitting is negligible
compared to ~ωc, each Landau level can host two electrons per allowed kx value.

Due to the discrete Landau levels, both the Fermi energy of the 2DEG and its scattering
broadened density of states (DOS) oscillate periodically in 1/B for fixed electron densities.
This oscillation of the DOS induces a modulation of the longitudinal resistivity ρxx around
the classical value, which are known as Shubnikov-de Haas (SdH) oscillations. Therefore,
the Shubnikov-de Haas oscillations are also periodic in 1/B and minima occur at even filling
factors due to the spin degeneracy.

At higher magnetic fields ρxx vanishes at the minima and the Hall resistivity ρxy develops
pronounced plateaus centered at even filling factors. This is attributed to the quantum Hall
effect [21]. Therefore, ρplateau

xx = 0, while the plateaus are found at fractions of the resistance
quantum h/e2 ≈ 25.813 kΩ:

ρplateau
xy =

h

ie2
, (2.3)

where i is an integer. Again, the plateaus, respectively minima, are centered around magnetic
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Figure 9: Measured longitudinal (in blue) and Hall resistance (in red) depending on the magnetic
field showing Shubnikov-de Haas oscillations for B < 1 T and plateaus from the quantum Hall effect
for higher fields. The filling factors are indicated (data from wafer ES 2062 measured at 4.2 K).

field values corresponding to even integer filling factors ν = i:

Bi =
nsh

i|e|
. (2.4)

Oscillations of Rxx and Rxy in both the Shubnikov-de Haas (B < 1 T) and the quantum
Hall regime (B > 1 T) are shown in Fig. 9 with the filling factors indicated. The minima
of Rxx do not vanish in the quantum Hall regime above 1 T. Reasons for this behavior are
discussed in the following sections. The 0 T value of Rxx and slope of Rxy correspond to the
classically predicted values around which they oscillate in a 1/B periodic fashion.

2.3 Van der Pauw measurements

Measurements of the longitudinal and transverse resistivity
D

B

C

A

Figure 10: Sample geometry
with ohmic contacts A, B, C, D
for the four-point measurement.

with the so-called van der Pauw method permit to exper-
imentally determine the density and mobility of the charge
carriers in the 2DEG. The method is based on four-point mea-
surements and has the advantage that it can be employed for
arbitrary sample geometries [19]. In our case, the wafer ge-
ometry was roughly a square with four Ohmic contacts placed
close to the sample edges in the corners. It is schematically
shown in Fig. 10.

To determine the Hall resistivity, a current is injected
at one contact and extracted from the one lying diagonally
across from it, e.g. A and C, while the voltage drop is measured between the remaining two
contacts, e.g. B and D. We find the Hall resistivity by averaging over the resistance values
obtained for the two different combinations [19]:

ρxy(B) =
1
2

[RAC,BD(B)−RAC,BD(0) +RBD,AC(B)−RBD,AC(0)]. (2.5)
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Table 1: Charge densities and mobilities extracted from van der Pauw measurements. Two types of
wafers with a different depth d of the 2DEG and a different doping method were characterized.

Wafer d [nm] Si δ-doping [cm−2] ns [1011 cm−2] µ [ cm2

Vs ]

EV 1681 90 5 ×1012 0.52 3.78×104

EV 1720 100 vol. doped 0.75 5.70×104

EV 1723 90 1 ×1013 0.59 4.48×104

EV 1728 90 2 ×1013 1.04 6.60×104

EV 1732 100 vol. doped 0.52 4.50×104

EV 1734 100 vol. doped 0.25 0.42×104

EV 1738 100 vol. doped 0.63 4.42×104

ES 2062 90 5 ×1012 3.47 4.89×105

ES 2074 90 5 ×1012 3.47 5.42×105

The longitudinal component of the resistivity tensor, ρxx, can be measured using a current
between two contacts on one edge of the sample and measuring the voltage drop at the
opposite edge. The obtained resistances, RAB,CD and RAD,BC then yield [19]

ρxx =
π

ln 2
RAB,CD +RAD,BC

2
f

(
RAB,CD

RAD,BC

)
. (2.6)

In this expression the sample geometry is taken into account through a geometry factor f ,
which should be unity for square samples and is reduced for rectangles. Using the expressions
predicted for the resistivities by the Drude model as discussed in the previous section, the
charge density and mobility can be extracted as

ns =
1
|e|

(
dρxx

dB

∣∣∣∣
B=0

)−1

and µ =
1

ns|e|ρxx(B = 0)
. (2.7)

We employed the van der Pauw method to characterize new wafers. We first tested a
series of wafers from a defective MBE machine, which are named EV in the following. The
ES wafers originated from a different, functioning MBE machine. The measurements were
performed at 4.2 K with magnetic fields up to 5 T.

The mobilities and carrier densities that were extracted from the measurements are sum-
marized in table 1. Only the samples EV 1681, EV 1723 and EV 1728 and both ES samples
were grown according to the usual growth protocol of the δ-doped heterostructure shown in
Fig. 8. The other samples were volume doped but can be used for comparison as we would
expect similar results for density and mobility. All EV samples exhibit densities and mobili-
ties clearly below what is expected from the intended doping and what is minimally required
for our purposes, which is roughly ns ≈ 3× 1011 cm−2 and µ ≈ 5× 105 cm2/Vs.

Wafer EV 1681 was grown according to the original protocol and the Si dopant concen-
tration was twice increased by a factor of 2 for wafers EV 1723 and EV 1728. While a slight
improvement in both density and mobility was observed, it was not sufficient. The volume
doped test wafers did also not yield more positive results.

The ES wafers were again grown according to the original growth protocol. However, for
these samples density and mobility are both increased by roughly a factor of ten with respect
to wafer EV1681. This difference in wafer quality is also displayed in the measurements of
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Figure 11: Plots of Rxx (bottom) and Rxy (top) versus magnetic field at 4.2 K for two wafers. The
filling factors are denoted.

Rxx and Rxy in dependence of B, which are shown in Fig. 11 for the best EV and ES wafers.
For the ES wafer, oscillations in Rxx are much more pronounced and visible up to high filling
factors or down to small magnetic fields, respectively. For the EV wafer only oscillations up
to a filling factor of 6 are discernible. Correspondingly, more plateaus are discernible in Rxy.

Most wafers were measured at 4.2 K. To demonstrate the influence of temperature, wafer
EV 1738 was additionally measured at 1.2 K. The recorded Hall voltage and ρxx for magnetic
fields between -5 and 5 T are shown in Fig. 12. The extracted conduction properties are
independent of temperature, but all features are much more pronounced for the low tempera-
ture measurement. The 1.2 K curve exhibits quantum Hall plateaus starting below 1 T, while
hardly any plateaus can be observed in the 4.2 K curve. The oscillations in Rxx are much
stronger so that one minimum vanishes, which is a signature of the quantum Hall effect that
could not be observed at 4.2 K.

2.4 Gate voltage dependence of conduction properties

The ES wafers had good densities and mobilities but the measurements of Rxx show a rising
background in addition to the oscillations (see Fig. 11(b)). The minima of the oscillations
are expected to reach zero in the regime of the quantum Hall effect, which is not given here.
This can partially be attributed to the relatively high measurement temperature of 4.2 K.
Another origin of the rising background could be a parallel conducting layer, which can occur
in heterostructures in addition to the 2DEG. Typically, a second occupied subband develops
in the AlxGa1−xAs layer due to high dopant concentrations.

It is found that the second subband gives rise to an addtional term in the classically
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Figure 12: Measured longitudinal (bottom) and Hall resistance (top) depending on the magnetic
field at 4.2 K (dark blue) and 1.2 K (cyan). (data from wafer EV 1738).
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Figure 13: Plots of Rxx for positive and negative gate voltages (data from wafer ES 2074).

expected longitudinal resistivity [22, 23]:

ρclassical
xx (B) = ρxx(0){1 +

µnsµpnp(µ− µp)2B2

(µns + µpnp)2 + [µ1µp(ns − np)B]2
}, (2.8)

where µp and np are the mobility and sheet density of the electrons in the parallel conducting
layer. Because the densities and mobilities are fixed parameters of our system, the additional
background is proportional to B2 for small magnetic fields and approaches a constant value
for large B. The value of ρxx(0) is expected to equal the classical Drude result 1/nseµ. The
SdH and quantum Hall oscillations, which have quantum mechanical origin, are added to this
classical background.

Using a biased top gate the second subband can be depleted earlier than the 2DEG, which
lies lower in the wafer. Measurements of the magnetoresistance for different top gate voltages
are therefore a suitable method to test for a parallel conducting layer. To investigate the
influence of top gate voltages on the wafer properties, we performed van der Pauw measure-
ments for several positive and negative gate voltages. Some of the resulting curves for ρxy are
shown in Fig. 13. The position of the minima corresponding to a fixed filling factor shifts to
the left as more negative gate voltages are applied, which can be observed in both plots. This
indicates a decrease of the electron density with more negative gate voltages as it is expected.

Gate voltage dependent measurements of the Hall resistance were also performed and used
to extract the carrier density. The resulting densities ns and mobilities µ are plotted versus
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Figure 14: Plots of (a) the charge carrier density ns of the 2DEG, (b) the mobility µ and (c) the
leakage current between top gate and 2DEG as a function of top gate voltage.

top gate voltage in Fig. 14(a) and (b). Both density and mobility rise with increasing gate
voltage in a roughly linear fashion but level off for positive gate voltages. At Vtop gate = 0 the
density measured for this sample with top gate was ns = 3.47×1011 cm−2, while the mobility
was µ = 5.42× 105 cm2/Vs.

In a simplified picture, the increase of density with more positive bias can be explained
by a capacitor model in which the 2DEG and the gate are regarded as the two plates of a
parallel plate capacitor. The capacitance can be expressed in terms of the surface density of
the electrons:

C =
Q

V
=
ncap

s |e|A
V

=
εε0A

d
, (2.9)

where A is the area covered by the top gate and d is the depth of the 2DEG.
Equation (2.9) can be rewritten as

ncap
s =

εε0
d|e|

V. (2.10)

Inserting d=90 nm and ε=12.9 for GaAs, one finds a linear dependence of the density on
the bias. Choosing the measured electron density at zero gate voltage as a reference value
yields ns(V ) = ncap

s (V ) + nmeas
s (0).

This curve is plotted in red in Fig. 14(a) along with a linear fit to the measured density
values, which is shown in blue. The last three data points corresponding to voltages above
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150 mV were excluded from the fitted data. The deviation of these points from the linear fit
is due to a leakage current from the gate to the 2DEG, which sets in above +150 mV. This
was concluded from a measurement of the leakage current, which presented in Fig. 14(c).

The relative deviation of the slopes of the fit and the capacitor model, which can be used
as a measure for the occupancy of the second subband, is 26% for the presented data. This
deviation is in part expected because Eq. (2.9) represents a simplified model. In reality, the
effective separation between 2DEG and top gate is larger than the physical distance. The
center of mass of the wave function of the 2DEG electrons does not sit at the interface but
is shifted to the GaAs side by roughly 7 nm in our system. This is derived in Ref. [19].
A contribution of the so-called quantum capacitance adds another 2.5 nm to the effective
separation [19]. Considering that the physical distance in our system is 90 nm, the additional
9.5 nm account for roughly 10% of the deviation. The comparison with the capacitor model,
therefore, yields a reasonably good result and the parallel conducting channel cannot be
identified as a serious problem in this wafer.

If the second subband was the main reason for the rising background, one would expect the
background to vanish for more negative voltages as the parallel conducting layer is depleted.
This is not observed in Fig. 13, which agrees with above conclusion. Instead, the background
probably has to be attributed to the contribution of ρxy to the measured resistivity, which
arises due to the fact that we do not have a perfect Hall bar geometry [19]. This explains why
the slope of the background increases with more negative bias as the slope of ρxy increases
with decreasing electron density.
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Figure 15: Illustration of a model of a single quantum dot, which is separated from source and drain
by tunable tunnel barriers and capacitively coupled to a plunger gate.

3 Transport through Quantum Dots

For this thesis, different designs of single and double quantum dots were characterized in
transport measurements. The theory necessary to understand the measurements is presented
here. First, the relevant energy scales in a single dot structure are explained and the Coulomb
blockade effect is introduced. Second, double quantum dot measurements of stability diagrams
are discussed and the characteristic electrostatic parameters in a double dot system are derived
from a capacitor model. The last section deals with quantum point contacts employed as
charge detectors.

3.1 Single quantum dots

A schematic illustration of a single quantum dot is shown in Fig. 15. Adjustable tunnel
barriers define the QD by confining electrons to a small two-dimensional region. The tunnel
barriers couple the dot capacitively and resistively to source and drain with CL, RL and CR,
RR, respectively (see Fig. 15). A bias applied between source and drain can induce transport
through the dot. A plunger gate (PG) that is capacitively coupled to the dot by CPG is used
to tune the energy of the electrons in the dot. For a constant bias, electron transport can be
controlled by the tunnel barriers and the plunger gate voltage.

In this section, the relevant energy scales arising in the quantum dot are discussed. In
addition, the Coulomb blockaded transport regime is explained. The discussion in this section
largely follows Ihn [19] and Kouwenhoven et al. [12].

3.1.1 Relevant energy scales

Mainly four different energy scales are relevant in quantum dot systems, which are related
to the Coulomb energy, the coupling of the dot to the leads, the confinement energy and
temperature. Because energy considerations are necessary to understand the characteristics
of QD transport, this part provides an overview of the origin and order of magnitude of these
energies as presented in Ref. [19].

Let us first motivate the origin of the so-called charging energy. The addition of an electron
to the quantum dot requires sufficient energy to overcome the Coulomb repulsion due to the
presence of the other electrons in the dot. The electrostatic energy arising from the Coulomb
repulsion between N electrons in a 2DEG quantum dot system can be estimated as

Eelstat(N) =
e2N2

2C
∝ N2

r
. (3.1)
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The self-capacitance C of the quantum dot, which is approximated as a metallic disc, is given
by C = 8εε0r, where r is the dot radius and ε is the relative dielectric constant of the material
that holds the dot. The energy needed to add an (N+1)th electron to a dot with N electrons
is, therefore, given by

∆Eelstat(N + 1) = Eelstat(N + 1)− Eelstat(N) ≈ e2N

C
∝ N

r
, (3.2)

where the approximation holds for large electron numbers N . The charging energy is
defined as the difference

EC = ∆Eelstat(N + 1)−∆Eelstat(N) =
e2

C
. (3.3)

It is independent of the number of electrons on the dot as long as the condition of large N is
fulfilled, i.e. in the many electron regime.

The charging energy in our system can be estimated by approximating the self-capacitance
of the dot. Considering the dimensions of the top gates defining our lateral quantum dot pre-
sented in Fig. 4(b), it seems reasonable to approximate the dot radius as 100 nm. Furthermore,
the relative dielectric constant of GaAs is roughly ε = 13, which together yields a charging
energy of 1.7 meV.

The charging energy given in Eq. (3.3) can only be measured if the number of charges
on the dot is quantized. The condition for this is that the dot is only weakly tunnel coupled
to the leads, i.e. that the tunneling resistances RL and RR are considerably higher than the
resistance quantum: RL/R > h/e2. Thus, QD transport experiments require low tunneling
coupling to source and drain.

Another relevant energy scale is defined by the quantization of the electron energies due
to their spacial confinement in the dot. With m∗ the effective mass of the electrons in the
dot, the confinement or quantization energy can be estimated as

Econf(N) =
~2

2m∗
N2

r2
. (3.4)

This expression only holds for systems with parabolic dispersion relation, which is fulfilled for
our two-dimensional electron gas. The confinement energy gives rise to discrete energy levels
of the dot electrons. The spacing between successive single-particle levels is

∆ =
~2

m∗
1
r2
. (3.5)

Again using r=100 nm provides an estimate of the single-particle level spacing in GaAs dots:
∆ ≈ 110 µeV. This is about an order of magnitude smaller than the charging energy found
above.

The quantized energy levels of each electron appear as excited states in our QD systems.
As the level spacing inversely depends on r2, small QDs exhibit a higher single-particle level
spacing than large dots. Few electron dots are usually confined to a smaller region than dots
operated in the many electron regime. For this reason, the energy levels of the excited states
are much farther separated in few electron QDs as shown in section 4.2.

Generally, the so-called addition energy that separates the electron levels in a QD is given
by the sum of charging energy and single-particle level spacing:

Eadd = EC + ∆ ≈ e2

C
. (3.6)
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Figure 17: Energy level configurations corresponding to different transport regimes in a single dot.

In our system EC clearly exceeds ∆, which can therefore be neglected for the ground state.
The last energy scale to be considered is given by temperature as kBT and is roughly 10 µeV in
our measurements. The relation between the different energies is essential for the observation
of the Coulomb blockaded effect, which is introduced in the following.

3.1.2 Coulomb blockade transport regime

Electron transport through quantum dots is limited by an effect known as the Coulomb
blockade [12]. A measurement of the current ISD through a quantum dot for a source-drain
bias of 50 µV as a function of PG voltage is presented in Fig. 16. It shows characteristic
Coulomb peaks at certain plunger gate voltages VPG and conduction is blocked for all other
applied voltages. This phenomenon was named Coulomb blockade because it is rooted in the
Coulomb repulsion between electrons in the dot. Coulomb blockade is the dominant effect
if the Coulomb energy is the dominating energy scale. In particular, it must clearly exceed
single-particle excitations. Additionally, the temperature needs to be sufficiently small and
the tunneling coupling to the leads must be low as discussed in the previous section.

The energy configuration of the Coulomb
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Figure 16: Measured Coulomb peaks in source-
drain current against PG voltage. The peak
shape is related to measurement resolution.

blockade transport regime is illustrated in Fig.
17(a). The energy levels in the dot are filled up
to electron N−1 and no further electron can be
added to the dot, so that transport is blocked
for zero source-drain bias. Transport can only
occur if the chemical potentials µS and µD of
source and drain, respectively, are aligned with
a dot state. This is indicated by the arrows in
Fig. 17(b). The dot levels are shifted by the
the plunger gate, so that Coulomb peaks occur
every time a dot level is aligned with µS and µD

[19]. In the third configuration shown in Fig.
17(c) a source-drain bias VSD is applied. A so-
called transport window opens as the voltage
induces a difference between the chemical potentials of the leads. In this situation, current
can flow for all plunger gate voltages for which an electron energy level is within the transport
window and transport is blocked for all other VPG.
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Figure 18: Coulomb blockade diamonds of conductance through a single dot. The situations marked
(a), (b) and (c) correspond to the energy level configurations presented in Fig. 17. Conductance occurs
in the gray areas while transport is blocked in the white areas.

If the conductance is measured as a function of VPG and VSD, so called Coulomb diamonds
are observed, as depicted in Fig. 18. Current flow is blocked in the white diamond shaped
areas corresponding to transport situation (a) of Fig. 17. The conductance resonances along
the line VSD = 0 correspond to the Coulomb peaks originating from situation (b). The gray
areas are associated with situation (c) where a dot state lies within the transport window,
so that non-zero conductance is observed. Along each of the lines bordering the diamonds a
dot state is aligned with either µS or µD, i.e. with the top or bottom of the bias window, as
indicated in Fig. 18.

Two relevant parameters can be extracted from this diagram: the addition energy and the
lever arm of the PG. The applied bias VSD converts directly to the induced energy difference
between the chemical potentials of source and drain (see Fig. 17(c)). For this reason, Eadd

(see Eq. (3.6)), which can here be approximated as the charging energy e2/C, can directly be
read from the diagram as indicated in blue. To convert the applied PG voltage to the energy
shift of the dot levels a proportionality factor, the so-called lever arm, has to be introduced.
It relates ∆VPG (indicated in red in Fig. 18) and the addition energy as follows:

Eadd = −|e|αPG∆VPG ≈
e2

C
. (3.7)

The lever arm can therefore be extracted from the diagram as αPG = |VSD|/|∆VPG|. In
a capacitance model, the lever arm is given by αPG = CPG/C, where C is the total self
capacitance of the dot [19]. A high lever arm is thus equivalent to a high capacitance of the
PG.

3.2 Double quantum dots

Two quantum dots that are capacitively and tunneling coupled to each other via a tunneling
barrier form a double quantum dot as depicted in Fig. 19. The relevant energy scales remain
the same as in a single dot. However, in a double dot, additional quantities have to be taken
into account, e.g. the capacitive and tunneling coupling between the two dots, which are given
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Figure 19: Schematic illustration of a double QD model. Each dot is capacitively coupled to a
plunger gate and the two dots are tunneling coupled and capacitively coupled.

by Cm and Rm. In an accurate description, a finite cross coupling between the left plunger
gate and right dot and vice versa have to be included, but they are neglected in the model
that is illustrated in Fig. 19 and employed in the following. We only consider the capacitance
between the left plunger gate (LPG) and dot 1 and between the right plunger gate (RPG)
and dot 2.

In the following, linear and non-linear transport through double QDs are discussed. Sta-
bility diagrams are explained together with the relevant transport situations. In addition, the
energies and capacitances characterizing the double dot system are presented as derived from
a capacitor model. The section follows a review by van der Wiel et al. [16].

3.2.1 Stability diagram

The measurement of the conductance through a double dot as a function of both plunger
gate voltages yields a so called stability diagram, which is schematically shown in Fig. 20.
Conductance resonances form the hexagon pattern of the diagram. The region within each
honeycomb cell corresponds to a certain fixed charge configuration of the double dot. The
number of electrons in each dot is denoted by (N1,N2).

The depicted diagram holds for the linear conductance regime, in which a negligable bias
voltage is applied between source and drain, VSD ≈ 0. In this configuration, conductance
peaks only occur when an electron level in both dots is aligned with the chemical potential
of the leads as depicted in inset (a) of the figure. This condition is met at the triple points in
the stability diagram ( s, c). The edges of the honeycomb cells originate from a co-tunneling
process which is depicted in insets (b) and (c). Details about the co-tunneling regime can be
found in [24, 25].

The voltage dimensions ∆VLPG and ∆VRPG marked in blue in the diagram are related
to the charging energy of each of the two dots. If the inter-dot tunneling coupling is small,
the separation of the triple points depends on strength of the capacitive inter-dot coupling.
The dimensions ∆V id

LPG and ∆V id
RPG yield the so-called inter-dot coupling energy. These

quantities are explained and derived on the basis of a capacitor model in section 3.2.2. A
possible slanting of the honeycomb cells is due to capacitive cross coupling of the LPG and
the right dot and vice versa.

A large tunneling coupling between the dots has the effect of a rounding of the hexagon
outline near the triple points of the stability diagram as depicted in Fig. 21(a). The change
in separation of the triple points quantifies the inter-dot tunneling coupling t, which is shown
in red. However, the rounding can only be observed if t is sufficiently large compared to the
other energy scales, especially temperature.
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Figure 20: Schematic stability diagram in the linear transport regime. The charge configuration
in each honeycomb cell is indicated in brackets. The transport situations corresponding to the triple
points (a) and the lines marked (b) and (c) are illustrated on the right.

In the non-linear transport regime, i.e. when a finite source-drain bias is applied, the triple
points expand into triangles. This is illustrated in an enlarged view of the triple points in Fig.
31. Again, the transport situations that apply at the corners of the triangles are displayed in
the figure. The triangles expand with increasing bias and thus provide a means to extract the
lever arms of the two PGs in the double dot configuration. The lever arms can be extracted
with the help of the triangle dimensions δVL/RPG. For a more thorough discussion of finite
bias transport in double dots, the reader is referred to Refs. [16, 19].

3.2.2 Capacitor model

Like the single dot, the double dot system can be described by a capacitor model. With the
help of this model, the characteristic electrostatic energies and capacitances of the system
can be calculated from the voltage dimensions found in the transport measurements. The
required formulas are presented in this section following Ref. [16].

The total capacitance C1/2 of each dot in the double dot configuration can be found by
considering all capacitances attached to it as connected in parallel, so that

C1/2 = CL/R + CL/RPG + Cm. (3.8)

With this, the charging energies of the dots in the double dot configuration can be expressed
as

EC1 =
e2

C1

(
1

1− C2
m

C1C2

)
, EC2 =

e2

C2

(
1

1− C2
m

C1C2

)
. (3.9)

This corresponds to the single dot expression for the charging energy (3.3) corrected by a factor
which accounts for the inter-dot coupling. This factor is usually small because Cm � C1/2.
In the coupled system, the energy of dot 1/2 does not only depend on N1/2, but also on the
number of charges on the other dot. The change in energy of one dot when an electron is
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Figure 21: (a) Effect of inter-dot tunneling coupling on the stability diagram near the triple points.
(b) Finite bias triangles evolving at the triple points in the non-linear transport regime. The depicted
energy configurations occur at the corners of the triangle.

added to the other dot is called inter-dot charging energy or coupling energy and it is
given by

ECm =
e2

Cm

(
1

C1C2
C2

m
− 1

)
(3.10)

These energies and all capacitances of the system can be calculated using the information
obtained from measured stability diagrams. The dimensions ∆VL/RPG and ∆V id

L/RPG indicated
in Fig. 20 are related to the capacitaces of system through the following equations:

∆VL/RPG =
|e|

CL/RPG
, (3.11)

∆V id
L/RPG =

|e|Cm

CL/RPGC1/2
. (3.12)

The lever arms of the plunger gates in the double dot configuration differ from those in each
individual dot and can only be obtained from finite bias triangles. They are given by

αL/RPG =
CL/RPG

C1
=
|VSD|

δVL/RPG
(3.13)

Combining equations (3.11), (3.12) and (3.13), we can find the values of the capacitances
C1, C2 and Cm. This is sufficient to calculate the charging energies and the coupling en-
ergy. These quantities together with the inter-dot tunneling coupling characterize the double
quantum dot system.
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Figure 22: Stability diagram measured with a direct current signal. For negative PG voltages the
signal is lost.

3.3 Quantum point contacts as charge detectors

Stability diagrams can be recorded by measuring the direct current through the double quan-
tum dot. An example measurement using this signal is presented in Fig. 22, where the
source-drain current is plotted on a logarithmic scale. For negative PG voltages the dots are
successively emptied of electrons. It can be observed that in this region the current signal
is lost. A solution that enables few electron measurements is presented by a quantum point
contact (QPC) charge detector. Field et al. [26] first implemented a QPC to measure the
occupation sequence of a quantum dot.

The QPC in our system is a narrow constriction in the
SG

QPC

Figure 23: QPC top gate
structure. Ohmic contacts to
the 2DEG are shown in blue.

two-dimensional electron gas in the vicinity of the quantum
dot, which is realized by top gates as shown in Fig. 23. The
constriction is formed by a side gate (SG) and a QPC gate
and its width can be controlled by the applied gate voltages.
The QPC is separated from the dot structure, so that it is
not tunnel coupled to the dot. A charge detector bias VCD

is applied via Ohmic contacts to the 2DEG (shown in blue).
The conductance through the QPC is quantized, which can be
exploited to achieve a high sensitivity of the QPC conductance
to potential changes in the quantum dot [19]. Each change in
charge configuration of the double dot means a potential change and can be observed in the
conductance through the QPC. The occupation of the QD can thus be measured with a QPC
charge detector (CD).

In the first two plots of Fig. 24 the measurement signal of the current through a single dot
and the charge detector current are plotted against VRPG. For more negative RPG voltages
the right dot is emptied. Each tunneling process of an electron is seen as a resonance in ISD.
Each step in the CD current signal also corresponds to a quantized change of charge on the
quantum dot. For negative PG voltages the dot current is not measurable anymore. The CD,
on the contrary, is sensitive down to single electrons as long as the background is suitably
configured.
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Figure 24: Comparison of different measurement signals. At the top, the direct source-drain current
through the dot is plotted against PG voltage. The middle plot shows the current through the CD
and the bottom plot the transconductance of the CD against VRPG.

The CD signal can be enhanced by considering the differential conductance dIQPC/dVPG.
Because the numerical derivative introduces additional noise it is preferable to measure the
transconductance of the QPC instead. A constant amplitude AC modulation dVPG is added
to VPG and the resulting modulation of the charge detector current dICD is measured with a
lock-in technique. The transconductance is given by

dICD

dVPG
. (3.14)

This signal is shown in purple in Fig. 24. Each peak corresponds to a change in dot occupation
and occurs at exactly the same PG voltages as the steps in the current signal.
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4 Quantum Dot Measurements

The main work performed for this thesis was the characterization of new quantum dot de-
signs for measurements in the few electron regime. This section first treats the QD samples.
Sample fabrication and the different tested designs are discussed together with the relevant
design considerations. The characterization of three tested samples in the few electron regime
is presented next. A particular problem that became apparent in the characterization mea-
surements was related to the inter-dot tunneling coupling. Measurements investigating this
problem are presented in the last part of the section.

4.1 Sample design

The chip setup of the microwave samples, which are used for the qubit-resonator coupling
experiments were presented in section 1. In the course of this thesis new quantum dot sample
designs were developed and characterized by DC transport measurements. For these measure-
ments, the QD samples were not integrated in a resonator chip and had a slightly different
geometry than the QD designs for RF measurements that were introduced in Fig. 4.

In the DC samples, ten top gates were used to control the double quantum dot and two
quantum point contacts. A scanning electron microscope (SEM) image of one of the tested
sample geometries is shown in Fig. 25. The abbreviated names of the top gates are indicated
in red. The double dot is formed between the left and right side gate (LSG and RSG), where
the center gate (CG) and the source drain barrier (SDB) form the central tunneling barrier
between the two dots. Two plunger gates (LPG and RPG) extend over the left and right
dot. In the microwave samples, the resonator gate simultaneously functions as one of these
PGs. Next to the SDB the left and right drain barrier (LDB and RDB) are used to open
or close the gap to the side gates in a controlled fashion. The ohmic contacts to the 2DEG
are indicated by the colored squares. Transport through the double dot can be induced by
applying a bias between the source (S) and drain (D) contacts shown in orange.

To the left and right of the double dot structure, two quantum point contacts are posi-
tioned to be operated as charge detectors. The blue ohmic contacts can be biased to generate
a QPC current. The QPC structures are well separated from the double QD, so that electrons
cannot tunnel between the systems. Each of the QPCs can be operated as charge detector
for both quantum dots.

In this section, the sample fabrication is briefly summarized first. Various different sample
designs had to be characterized in the course of finding the most suitable geometry for our
application. These samples are presented in the second part together with the considerations
leading to the particular designs.

4.1.1 Fabrication

Our laterally defined quantum dot was realized on a GaAs/AlxGa1−xAs wafer with a 2DEG
at the interface of the heterostructure about 90 nm below the surface. This type of wafer was
thoroughly characterized in section 2. The samples were fabricated in three photo lithography
and one electron beam (e-beam) lithography step. First, the mesa structure holding the 2DEG
was etched. Second, the ohmic contacts, formed by a Ge, Au, Ge, Au, Ni, Au metal sequence,
were defined by photo lithography, vapor deposited on the wafer and annealed to contact the
2DEG. The Ti/Au leads to the top gates were also fabricated by photo lithography, while
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Figure 25: SEM image of an exemplary sample. From top to bottom the center gate (CG), left and
right plunger gate (LPG/RPG), left and right side gate (LSG/RSG), left and right quantum point
contact (LQPC/RQPC), left and right drain barrier (LDB/RDB) and source drain barrier (SDB) are
indicated. The functions of the various top gates are explained in the text. The squares represent the
ohmic contacts to the 2DEG. The double dot is connected to a source (S) and drain (D) contact (shown
in orange) and transport through each of the QPCs can be induced with the blue ohmic contacts.

their fine structure was defined by e-beam lithography. For the top gate fine structure a
bilayer of 3 nm Ti and 25 nm Au was deposited.

4.1.2 Design considerations and different geometries

With the quantum dots characterized in this thesis, several improvements were intended
with respect to previous designs. In this section, the different requirements that the new
samples need to fulfill are explained chronologically following the evolution of our sample
designs. All sample geometries that were realized are introduced and the improvements
between each sample generation are highlighted. Here and in the following, they are numbered
chronologically for distinction starting with sample 05.

As discussed in section 1.3, the new designs were planned for operation with only few
electrons per dot. This eliminates any problems related to excited states in many electron
dots, which are closely spaced in energy. One conclusion regarding the dot design is that
the electrons should not be confined to the dot by a mesa edge as this might complicate
the process of emptying the dots. Therefore, in the new designs, the dots are formed using
only top gates. This consideration was realized in sample design 05, which is shown in Fig.
26: no mesa edge is needed to form the dots. Additionally, two QPC charge detectors are
included, which are used for few electron transport measurements as explained in section 3.3.
The plunger gates of this sample do not extend over the dot area and therefore have a low
capacitance.

The size and shape of the plunger gates play a particularly important role for our QD
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designs. The over-all goal of the project is to reach strong coupling, which can only be
achieved if the decoherence and decay rates of qubit and resonator are small compared to the
coupling strength g. It is therefore the objective to maximize the coupling strength g. The
resonator-dot coupling strongly depends on the capacitance CRG between the resonator gate
and the quantum dot to which it extends [9]:

g ∝ CRG

CRG + Cg
. (4.1)

In this equation, Cg is the capacitance of the whole quantum dot system to ground. The cross
coupling of the RG respectively PG to the second dot as well as the capacitance Cg, which
also depends on CRG, cannot be easily determined in our system. Therefore, the relation (4.1)
only provides us with an upper bound for the increase of the coupling strength with CRG: if
CRG is increased by a factor x, g cannot be increased by more than a factor x.

The obvious way to increase the capacitance of the resonator gate is to enlarge its area,
which was implemented in designs 06s and 06a (see Fig. 26). In the symmetric sample 06s,
the two plunger gates cover most of the dot area, from which a large plunger gate capacitance
is expected. The second design 06a is asymmetric in the two dots, with only one extended
plunger gate, which is planned as the resonator gate. Extended plunger gates have the
additional advantage that they make it easier to empty the dots as negative voltages can be
applied directly above the dot area.

Another aspect that needs to be kept in mind is that the microwave experiments with the
resonator require tunneling coupling of the two dots. This becomes apparent in the Jaynes-
Cummings interaction of the double dot and the resonator, which depends on the tunneling
coupling t between the dots [9, 1]. In our measurements of sample 06s, it was found that a high
tunneling coupling between the dots and large plunger gate capacitances can be competing
goals in few electron measurements. The plunger gates can strongly influence the tunneling
barrier between the dots and can thereby diminish the tunneling coupling. This is discussed
in detail in section 4.3.

This result was taken into account for the design of the symmetric and asymmetric samples
07s and 07a, respectively (see Fig 26(d) and (e)). They have smaller plunger gates than the
samples 06, which do not come as close to the central barrier between the two dots. This is
expected to improve the tunneling coupling.

After the characterization of the samples 07, the design was further improved. The designs
09 shown in Fig. 26(f) and (g) are currently thought to be most promising. The plunger gates
are removed even further from the central barrier. Additionally, the designed distance between
the CG and the SDB was increased from 165 nm in designs 05 through 07 to roughly 200 nm
in the designs 09. The SDB was also slightly moved upward with the result that the QPCs
connecting the dot to source and drain and the central QPC are more similar in width. These
changes are hoped to facilitate a symmetric tuning of the barriers and increase the tunneling
coupling between the dots.

Many different aspects need to be taken into account for a sample design that fulfills
the different, partly competing requirements of the intended microwave measurements. The
characterization measurements performed for this thesis had the goal to develop an optimized
sample design that unites all of the discussed considerations. Due to problems with the
sample lifetime only the symmetric samples 05, 06s and 07s could be characterized at very
low temperature. The samples were very easily damaged by electrostatic discharge. The
obtained measurement results are presented and discussed in the following section.
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(a) Design 05
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(f) Design 09s

200 nm

(g) Design 09a

Figure 26: SEM images of the realized sample geometries. The differences are discussed in the text.
Only samples 05, 06s and 07s were characterized at low temperature.
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4.2 Transport measurements in the few electron regime

In order to fully characterize the tested samples, it was the goal to extract all relevant sample
properties such as charging energies and lever arms from transport measurements. Because
the samples were designed for operation in the few electron regime, measurements in this
regime are most interesting for the sample characterization. For this reason, mainly data
that was acquired in measurements in the few electron regime is presented and discussed in
the following.

The many electron sample design that was presented in Fig. 4(a) serves as a reference to
which any extracted sample properties have to be compared. This sample was employed in
the previously published experiments [1, 15]. For convenience it will be referred to as sample
00 in the following. For this sample, the resonator gate had a lever arm of αRG = 0.6. It must
be taken into account, however, that a different wafer structure with a 35 nm deep 2DEG was
used for sample 00. In our samples the 2DEG was 90 nm deep, so that the capacitance and
therefore also the lever arm of the gates is expected to be roughly a factor of 3 lower for the
same sample geometry. The 90 nm wafer was chosen because it is difficult to fabricate few
electron QDs on shallow 2DEG wafers due to limitations in the lithographic resolution. The
inter-dot coupling energy was EC,m ≈ 0.2 meV and the inter-dot capacitance was Cm ≈ 4 aF.

The transport experiments were performed in a dilution refrigerator with a base tempera-
ture of approximately 20 mK. The source drain bias as well as the bias of the charge detectors
were applied symmetrically. For this purpose and for measuring the dot and QPC currents,
symmetrical double I-V converters were used.

4.2.1 Design 05

The first sample to be measured had the design 05 (see Fig. 26(a)). During cool-down, a
pre-bias of +0.3 V was applied to all gates. This results in a decreased density of ionized
donors below the gated areas when the pre-bias is turned off at low temperature and creates
an effective negative potential [27]. Consequently, less negative bias needs to be applied in
order to deplete below the top gates. Fig. 27 shows Coulomb diamond measurements of the
left and right single quantum dot. The source drain bias VSD was swept for a wide range of left
and right plunger gate voltages. The numerical derivative of the direct current through the
quantum dot with respect to the source drain bias, dISD/dVSD is plotted on the logarithmic
scale. The measurements were performed in a voltage regime with many electrons in the dot.

From this data, the lever arms of the two plunger gates were extracted to be αLPG ≈ 0.022
and αRPG ≈ 0.020. The charging energies of the left and right dot could also be determined
from the marked diamonds as EC,L ≈ 2.35 meV (568 GHz) and EC,R ≈ 2.33 meV (563 GHz).
The well pronounced lines outside the diamonds in both measurements shown in Fig. 27
originate from excited states. The energy spacing between the observed excited states can be
extracted as roughly 0.4 meV or smaller in both dots.

The design was next tested as a double quantum dot. The double dot was successfully
operated in the few electron regime as demonstrated by the stability diagram shown in Fig.
28. The plot shows the transconductance of the left charge detector, where VRPG was modu-
lated, in a 2D map of left vs. right PG voltage. The charge configurations corresponding to
the honeycomb cells of the stability diagram are indicated in parentheses by the number of
electrons in each dot: (N1, N2). From the fact that no more lines, respectively transconduc-
tance peaks, appear for more negative gate voltages, it can be concluded that both dots are
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(b) Right QD

Figure 27: Coulomb diamond measurements of the left and right single dots of sample 05 in the
many electron regime. Excited states are clearly visible.

emptied in the area marked by (0, 0) in the plot.
This measurement allows the extraction of the voltage differences ∆VRPG ≈ 181 mV and

∆VLPG ≈ 165 mV, which are proportional to the charging energies of the two dots. A zoom
around the triple points connecting the (0,0) and (1,1) honeycomb cells as shown in Fig.
28(b) yields information about the capacitive inter-dot coupling. From the voltage differences
∆V id

LPG ≈ 10.5 mV and ∆V id
RPG ≈ 11.3 mV, the inter-dot charging energy can be calculated

using the lever arms of the plunger gates.
The exact lever arms of the two plunger gates in the double dot configuration can only

be extracted from finite bias triangles. In the attempt of finite bias triangle measurements,
we increased VSD from 100 to 400 µV. The single dot lever arms found above can be used to
find an estimate of the expected dimensions of the triangles at the applied bias according to
Eq. (3.13). This estimation yields voltage dimension of the triangles of roughly 20 mV, which
would easily be observable on the scale of the measurement in Fig. 28(b). Nevertheless, we
could not observe triangles for any of the tried bias settings.

This behavior was unexpected and could have various reasons, some of which are discussed
in section 4.3. It is possible that a careful fine tuning of the central tunneling barrier between
the two dots or other gates might have helped to resolve finite bias triangles. The reason
for this is that finite bias triangles only develop if there is transport through the double dot,
which requires a finite tunneling coupling between the dots. Unfortunately, this sample broke
in a second cool-down before these options could be explored.

The relevant sample parameters could only be estimated using the plunger gate lever
arms of the single dot configuration because the finite bias triangle measurements were not
successful. These calculations yield the charging energies EC,L ≈ 4.0 meV (967 GHz) and
EC,R ≈ 3.3 meV (801 GHz) for the left and right dot in the double dot configuration. The
fact that these energies are higher than in the single dot configuration can largely be attributed
to the fact that they were extracted from measurements in the few electron regime, which
generally yield higher charging energies. Of course, these energies cannot be directly compared
as they are expected to differ from the single to the double dot configuration. Again, using the
approximate lever arms, the inter-dot coupling energy is calculated to be EC,m ≈ 0.23 meV
(56 GHz). The capacitance between the two dots additionally quantifies the capacitive inter-
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Figure 28: Double QD stability diagrams of sample 05 in the few electron regime. The extracted
voltage dimensions are indicated.

37



4 QUANTUM DOT MEASUREMENTS

-1.5 -1 -0.5 0 0.5 1 1.5
 

 

VSD [mV]

-4

-2

0

2

4

6

8

V
R

P
G

 [m
V

]

-11

-10

-9

-8

-7

-6

-5

lo
g(

|d
I S

D
/d

V
S

D
|) 

[Ω
-1
]

Figure 29: Coulomb diamond measurement of the right dot of sample 06s in the many electron
regime.

dot coupling: Cm ≈ 2.8 aF.
Keeping in mind the ultimate application of the QD samples in the resonator setup, the

lever arm of the resonator gate is the most important sample parameter. With values around
0.02, the plunger gate lever arms are very low for this sample design compared to αRG ≈ 0.6
for sample 00. The capacitive inter-dot coupling can be quantified as intermediate as it is
comparable to that in sample 00. From the comparison of the lever arms of samples 05 and
00, an upper limit for the resonator-dot coupling strength in sample 05 can be estimated
using to Eq. (4.1): g/2π ≤ 2 MHz.

4.2.2 Design 06

In order to achieve a higher lever arm, the samples 06 were designed to have extended plunger
gates. The symmetric design 06s, which was shown in Fig. 26(b), was tested at low temper-
ature. A pre-bias of +0.3 V was applied to all top gates excluding the plunger gates for
the cool-down. In this design, the PGs cover the dot area in which a pre-bias would be
disadvantageous for the transport measurements as it would create a depleting potential.

For this sample, only the right dot was measured as a single dot. The resulting Coulomb
diamond measurement is presented in Fig. 29. Again, the numerical derivative of the current
through the dot is plotted on a logarithmic scale. The gate voltage was stepped between
roughly +9 mV and -5 mV. In this voltage regime a very large number of electrons is expected
in the quantum dot. The data also shows many charge rearrangements especially for positive
gate voltages. This agrees with the experience from previous experiments that the samples
are less stable for positive applied gate voltages. From the diamond framed in black, the lever
arm of the RPG and the charging energy of the right dot were extracted to be αRPG ≈ 0.24
and EC,R ≈ 0.71 meV.

Like for design 05, both dots could be emptied without complications. A few electron
measurement of the double dot is presented in Fig. 30(a). The transconductance of the
right charge detector was measured for a modulated voltage of the left plunger gate. Careful
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Figure 30: Double QD stability diagrams of sample 06s in the few electron regime. The extracted
voltage dimensions are indicated.

additional measurements confirmed the double dot charge configurations that are assigned to
the cells in the figure. A zoom-in around two of the triple points is shown in Fig. 30(b). The
relevant voltage dimensions in these plots are given by ∆VLPG ≈ 12 mV, ∆VRPG ≈ 13 mV,
∆V id

LPG ≈ 0.37 mV and ∆V id
RPG ≈ 0.32 mV.

For this sample it was again impossible to resolve finite bias triangles. We applied a
maximal source drain bias of 200 µV, from which we would expect triangle dimensions of
1 mV inserting the single dot lever arm. For this sample, we tried to open the central barrier
by carefully increasing the center gate voltage VCG from -980 mV to -290 mV. The hope was
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Figure 31: Zoom-ins around triple points of a stability diagram of sample 06s for VCG = −400 mV.

that this would lead to the appearance of finite bias triangles by increasing the inter-dot
tunneling coupling. They could not be observed for any of the settings, however. This result
is further discussed in section 4.3.

A measurement with the setting VCG = −400 mV is shown in Fig. 31. Opening the central
barrier is expected to increase the tunneling coupling between the dots, which would result
in a rounding of the triple point corners as described in section 3. This would increase the
distance between the triple points in the presented measurements. This effect cannot be
observed, however, as the distance between the triple points is roughly the same as in Fig.
30(b) when projected on the LPG and RPG voltage axes. From this we can conclude that
the slight rounding that is visible in the data is not due to tunneling coupling but rather
due to temperature broadening, which is not unexpected. The electronic temperature of our
samples is roughly Te ≈ 130 mK, which yields an energy of kBTe ≈ 11 µeV (3 GHz). Even
for the setting VCG = −400 mV, the tunneling coupling between the dots is therefore below
11 µeV.

Because finite bias double dot measurements did not yield results, the properties of sample
design 06s had to be extracted inserting the single dot lever arm of the RPG instead of both
double dot lever arms. The resulting charging energies are EC,L ≈ 2.9 meV (697 GHz) and
EC,R ≈ 3.1 meV (755 GHz). The inter-dot charging energy is EC,m ≈ 0.1 meV (21 GHz),
which is about half as big as what was observed for sample 05. Reason for the decreased
charging energies is the increased PG capacitance in sample 06s, which contributes to higher
total capacitances C1/2. The reason for this is the increased Correspondingly, the inter-dot
capacitance is also reduced: Cm ≈ 1.6 aF.

In summary, the lever arm of this sample, αRPG ≈ 0.24, was more than a factor 10 higher
than that of the design without extended plunger gates. This positive result is expected from
the sample geometry that would suggest a much higher PG capacitance. The lever arm of
sample 06s is approximately a factor of 3 lower than that of sample 00, which accounts for
the lower depth of the 2DEG in sample 00. As an upper bound for the resonator-dot coupling
strength, we find g/2π ≤ 20 MHz. The capacitive inter-dot coupling was reduced by roughly
a factor of two, however. The presented data does not allow a definite conclusion about
the tunneling coupling as the relevant quantity for our purposes. Nevertheless, the problems
to observe finite bias triangles lead to the question whether the two dots were sufficiently
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Figure 32: Coulomb diamond measurement of the left dot of sample 07s in the few electron regime.
The electron numbers corresponding to each diamond are indicated.

strongly coupled to each other.

4.2.3 Design 07

For the tested sample with design 07s only the left QD could be operated, unfortunately,
because the right side gate was defective. Again, a pre-bias of +0.3 V was applied to all top
gates except the PGs. An SEM image of the sample is shown in Fig. 26(d).

The left dot, which could be formed with the remaining gates, was studied thoroughly
to extract as much information about the sample as possible with single dot measurements.
Coulomb diamond measurements were therefore not only performed in the many electron
regime, but also in the few electron regime. One of these measurements is presented in Fig.
32, in which the transconductance of the left charge detector is plotted. From the marked
diamond a lever arm αLPG ≈ 0.17 and a charging energy EC,L ≈ 2.3 mV can be extracted.
This lever arm yields g/2π ≤ 15 MHz as upper bound of the coupling strength. The number
of electrons in the dot for the different PG voltage settings is indicated in the plot. Only for
the diamond corresponding to two electrons in the dot all bordering lines are clearly visible.
The reason for this is discussed in section 4.3.

In the presented data, lines originating from excited dot states are very pronounced. The
energy spacing between the ground state with one electron in the dot (µ(0)

1 ) and the first
excited state (µ(1)

1 ) can be extracted to be µ(1)
1 - µ(0)

1 ≈ 2.3 meV (556 GHz). For comparison,
the energy difference between the one and two electron ground states is µ(0)

2 - µ(0)
1 ≈ 3.2 meV

(774 GHz). The excited states corresponding to two electrons in the dot yield µ
(1)
2 - µ(0)

2 ≈
0.9 meV (217 GHz) and µ

(2)
2 - µ(0)

2 ≈ 1.9 meV (459 GHz). These excited states can be identi-
fied as singlet (µ(1)

2 ) and triplet (µ(2)
2 ) states [19]. The extracted spacings between the ground

and excited states are on the order of magnitude of the charging energy of the dot and are
therefore much higher than kBT or the resonance frequency of the resonator f0 ≈ 6.8 GHz,
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which is desired for microwave experiments. Compared to the excited states observed in the
many electron Coulomb diamond measurements of sample 05 (see Fig. 27) the spacing is
significantly increased. This shows that the single-particle level spacing is indeed much larger
in dots in the few electron configuration than in many electron dots.

The observed properties of all samples corresponded well to what was expected from
sample geometry. The extracted lever arm of the left plunger gate is 0.17, which is about
30% lower than that of sample 06s. This is in agreement with the reduced area of the PGs.
It is still by a factor of 8 higher than the lever arms of the short PGs of sample 05, however.
The capacitive inter-dot coupling can only be compared for samples 05 and 06s. Both, the
inter-dot coupling energy EC,m and capacitance Cm were reduced by about half for sample
06s.

The relevant quantity for our experiments is the tunneling coupling, however. This cannot
be directly deduced from the presented measurement data. It is the aim of the following
section to motivate conclusions about this quantity. All other relevant capacitances of the
characterized double dot systems were also calculated and are summarized in appendix A,
where all sample properties are listed in a table for convenient comparison.

4.3 Investigation of inter-dot tunneling coupling

All tested dot designs could successfully be emptied and measured in the few electron regime.
In this respect, the new sample designs represent a significant improvement with respect to
the previous designs. The samples must, however, also fulfill the other requirements of the
resonator experiments for which they are intended, one of which is tunneling coupling between
the dots in the GHz range.

The tunneling coupling cannot be directly quantified based on our data because it is
energetically smaller than temperature broadening as illustrated in section 4.2.2. However,
the fact that it was impossible to resolve finite bias triangles for both samples 05 and 06s
raises the question whether the dots were sufficiently tunneling coupled.

The signal recorded in our measurements is the transconductance of a charge detector,
which measures the change in occupation. Finite bias triangles can be resolved with this
signal under two conditions: the barriers to the leads as well as the central barrier must allow
tunneling and all barriers need to be configured in a way that transported electrons remain in
the dots long enough to be registered by the detector. Finite bias triangles were for example
resolved in the QPC conductance signal by Küng [28].

From the measurements of the stability diagrams, we can conclude that our double dots
were sufficiently coupled to the leads. It is therefore likely that the reason why we could
not observe finite bias triangles was that the tunneling coupling between the dots was too
low. In this section, the inter-dot tunneling coupling is investigated in detail on the basis of
measurements of samples 07a and 07s.

4.3.1 Plunger gate influence on the tunneling barriers

Generally, the transmission of the tunneling barriers confining the dots is not only influenced
by voltages applied to the top gates forming the barriers, but also by other potential changes.
In particular, the voltage applied to the plunger gates can have a strong influence on the tun-
neling barriers. It is, for example, possible that the applied PG voltages in the measurements
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Table 2: Settings and current pinch-off voltages obtained in 4.2 K measurements of samples 07s and
07a. Additionally, typical settings of the few electron measurements of sample 06s are provided for
comparison.

Sample T VSDB [V] VCG [V] VPG [V]

07s 4.2 K -0.75 p.o.: -1.80 p.o.: -1.40
07a 4.2 K -0.75 p.o.: -0.80 p.o.: -0.66
06s 20 mK -0.77 -0.70 -0.25 to -0.30

+0.3 V pre-bias ≈ −1 ≈ −1

of samples 05 and 06s pinched off the central barrier and prevented inter-dot tunneling. The
PG influence on the barriers was investigated in measurements of the samples 07a and 07s at
4.2 K without applied pre-bias.

The center gate and the source drain barrier form a QPC. Current pinch-off curves of this
central QPC were measured for different voltages applied to the PGs in order to determine
their influence. One data set of sample 07s at 4.2 K is shown in Fig. 33. In the measurements,
VSDB was kept at a fixed value of -0.75 V and VCG was swept. This was repeated for different
PG voltages between 0 and -2 V. For VPG = 0, the current was pinched off at VCG ≤ −1.8 V
and for VPG ≤ −1.4 V there was no current flow, even for an open CG. This is the value at
which the current flow is pinched off between the LPG and the fixed SDB.

The same measurements were repeated
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Figure 33: Current pinch-off curves of the cen-
tral QPC of sample 07s for VSDB = −0.75 V and
different VLPG measured at 4.2 K.

for sample 07a. For this sample, the cen-
tral QPC was closed for VCG ≤ −0.80 V
if no PG voltage was applied and the PG
pinched off with SDB for VPG ≤ −0.66 V.
All pinch-off voltages are summarized in ta-
ble 2. The lower pinch-off voltages for sam-
ple 07a can be explained from the different
geometry, which is again shown for compar-
ison in Fig. 34. For the asymmetric sample
07a the PG extends farther to the central
QPC and comes closer to the SDB.

The analysis of the data collected in these
measurements leads to the conclusion that
the PG has a stronger influence for the asym-
metric sample design due to its larger PG
area. In addition, the PG influence on the
barriers connecting the dots to the leads was investigated. It is much weaker than the influence
on the central barrier, which is again due to the plunger gate shape and position.

A comparison of the sample geometries in Fig. 34 suggests that the PG influence on the
central barrier was considerably higher for sample 06s than for both samples 07. The PG
influence could not be directly tested for this sample because it was damaged by electrostatic
discharge between two cool-downs. However, from the data collected for the samples 07, some
conclusions can be drawn about the tunneling coupling in the double dot measurements with
sample 06s.
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200 nm

(a) Design 07s

200 nm

(b) Design 07a

200 nm

(c) Design 06

Figure 34: Three of the tested designs. The PGs have the smallest area for design 07s and the largest
for design 06.

The settings that were used to record the stability diagrams presented in Fig. 30 are given
in table 2. For several reasons, these settings cannot be directly compared to those of samples
07s and 07a. First, a pre-bias of +0.3 V was applied to all gates of sample 06s except the PGs.
Taking this into account yields voltage settings of SDB and CG, which are roughly equivalent
to 1 V without pre-bias. Further, the double dots were measured at 20 mK and with a charge
detector, which means that the sensitivity to current was much higher than in the 4.2 K
measurements. At 4.2 K not even Coulomb peaks can be resolved because kBT = 0.4 meV
(97 GHz) is on the same order of magnitude as the expected charging energy in the samples,
therefore the condition for Coulomb blockade is not fulfilled as explained in section 3.

In spite of the difficulties in comparing the data of the different samples, the settings ap-
plied in the measurements of sample 06s suggest that the central barrier was closed. This was
further enhanced by the fact that two PGs were in operation in the double dot measurements,
while it was only one for the 4.2 K measurements. The strong influence of the PG geometry on
the central barrier that was demonstrated in this section provides strong evidence for a closed
central barrier of sample 06s. In conclusion, the presented data supports the speculation that
the dots were not sufficiently tunneling coupled in the measurements presented in section 4.2.

The tunneling properties of a single dot were investigated in more detail for the symmetric
design 07s at 20 mK. The left dot was coupled to the source by the QPC formed by the SDB
and LSG, the source barrier (SB), and to the drain by the central barrier (CB). The tunneling
barriers of the left dot (SB and CB) were tuned to be roughly symmetric, when no voltage was
applied to the plunger gate. The dot barriers were tuned in the same way for the previously
presented double dot measurements. The procedure that was used for tuning the gates for
the double dot measurements of samples 05 and 06s is described at length in appendix B.

Coulomb diamonds were recorded with the transconductance signal of the left charge de-
tector. The measured diamonds, which are shown in Fig. 35(a), clearly exhibit an asymmetry.
One of the diagonal lines bordering the Coulomb diamonds is much more pronounced than
the other. As explained in section 3, each of these lines corresponds to a certain energy level
configuration of the quantum dot and the leads. For the case of the strongly pronounced line
in Fig. 35(a) a dot level is aligned with the chemical potential of the drain. The reason for
the asymmetry in the Coulomb diamonds is an asymmetry in the transmission of the source
barrier and central barrier that couple the dot to the leads. In this measurement, the central
barrier was much thicker. The corresponding transport situation is schematically shown in
Fig. 35(a). Even though the barriers were initially configured roughly symmetrically, the
application of negative PG voltages introduced a barrier asymmetry.
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Figure 35: Coulomb diamond measurements of sample 07s in the many electron regime. A clear
asymmetry in the visibility of the diagonal lines bordering the diamonds can be observed in (a).
For (b) the visibility is much more symmetric. The energy level and barrier configurations of each
measurement are depicted on the top.

In order to achieve more symmetric barriers, the measurement was repeated for a less
negative CG voltage. The data together with the corresponding transport situation is shown
in Fig. 35(b). The visibility of the two lines bordering the diamond is clearly more symmetric
than in the first data.

This measurement confirms the conclusion that the plunger gate strongly influences the
barrier thickness and has a stronger influence on the central barrier than on the source bar-
rier. Furthermore, the PG voltages applied in these measurements are less negative than
those applied in the double dot measurement of sample 06s by roughly 200 mV, for example.
From this and the sample geometry, we expect that the central barrier was much thicker than
the barriers to the leads in the few electron measurements of sample 06s.

4.3.2 Inter-dot tunneling in few electron measurements

In order to observe finite bias triangles, sufficient inter-dot tunneling coupling is required.
Similarly, the observation of Coulomb diamonds requires tunneling coupling to both leads.
We could exploit this fact to investigate tunneling through the central barrier with the sample
07s tuned to a single dot configuration. The central barrier of the double dot structure forms
the barrier to one of the leads in the single dot. All earlier samples were damaged before the
inter-dot tunneling could be studied thoroughly, which is why we had to resort to sample 07s.

The interesting regime for our measurements is the few electron regime. Fig. 36 again
shows the few electron Coulomb diamonds that were measured for sample 07s. Careful fine
tuning was necessary to achieve these measurements. The CG had to be carefully opened as

45



4 QUANTUM DOT MEASUREMENTS

-4 -2 0 2 4

-440

-420

-400

-380

-360

 

 

-150

-100

-50

0

50

100

VSD [mV]

V
LP

G
 [m

V
]

dI
C

D
/d

V
LP

G
 [n

S
]

3

2

0

1

D

S

SB CB

D

S

SB CB

N

N

Figure 36: Coulomb diamond measurement of sample 07 in the few electron regime. The transport
situations corresponding to the visible lines bordering the diamonds are shown on the left.

more negative PG voltages were applied to empty the dots. As explained in the previous sec-
tion, this was necessary to keep the thickness of the tunneling barriers symmetric. When VCG

was adjusted for more negative LPG voltages, an additional problem became apparent, how-
ever: in the presented data the barriers are only opened symmetrically around the diamond
corresponding to two electrons in the dot. The last visible line at the bottom corresponds to
the transport situation shown at the bottom of Fig. 36. As before, the central barrier has
a much higher transmission than the source barrier. Only when a dot state is aligned with
the source, electrons can tunnel back and forth through the source barrier and a change in
occupation is registered by the detector. The tunneling rate of electrons through the central
barrier is too low for the detector to measure a change in occupation.

For VLPG ≥ −360 mV the reversed situation is observed. Again, only one of the lines is
visible but it is oriented in the other direction. The corresponding energy level scheme is
shown at the top in the figure. Now the tunneling rate through the central barrier is too low
with respect to that through the source barrier, because the source barrier is less strongly
influenced by the PG. In this situation, electrons must be able to tunnel through both barriers
but the change in occupation can only be registered for electrons tunneling back and forth
through the central barrier that has the higher transmission. Electrons in a dot level aligned
with the source leave the dot too quickly through the central barrier to be detected.

In the few electron regime, there is only a narrow range of PG voltages (≈ 30 mV) in which
the dot symmetrically couples to both leads. This region of symmetric tunneling barriers can
be shifted up and down in PG voltages by opening VC. It was, for example, also possible to
recover both lines at the border between the 0 and 1 electron diamonds. This data is presented
in Fig. 38(a) in appendix C. An option to increase this range is to compensate more negative
PG voltages with more positive CG voltage in order to keep the central barrier constant. This
was attempted, but unfortunately the resulting data did not show any improvements. The
compensation measurement is also included in appendix C.

From these measurements we can conclude that a very accurate tuning of the different
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barriers is necessary for measurements in the few electron regime. Measurements of complete
finite bias triangles require roughly symmetric tunneling barriers between the dots and to
both leads. This configuration is difficult to achieve with the samples with extended PGs,
especially over a wide range of PG voltages. This is most likely the reason why no finite bias
triangles could be observed in the presented double dot measurements.
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5 Conclusion

The wafer characterization that was presented in part of this thesis yielded useful results
that allowed to find new suitable wafers for our quantum dot samples. First wafers from a
defective MBE machine were found to have insufficient charge carrier densities and mobili-
ties. After switching supplier, the wafers were suitable in terms of density and mobility. At
the same time, a parallel conducting layer was identified in the samples. The influence of
the parallel conducting channel was subsequently investigated. The results suggest that the
parallel channel should not cause a problem in our measurements, first, because its influence
is weak and second because it is further reduced at the low measurement temperatures of our
experiments.

In the second and main part of the thesis, new QD sample designs were characterized in
few electron measurements. Three of the new designs were tested at low temperature and the
characteristic quantities of the double dot system could be extracted. The main difference
between the three tested designs was the size and position of the PGs, one of which is intended
as the resonator gate in the microwave samples. It was found that the PG design has a very
strong influence on the sample properties.

The most relevant sample characteristics are the lever arms of the PGs and the capacitive
and tunneling coupling between the dots. The results obtained for the new designs were
compared to sample 00 as a reference. This sample had a large lever arm αPG = 0.6, which
was in part due to the shallow 2DEG of 35 nm depth instead of 90 nm in the new samples. Its
capacitive inter-dot coupling can be quantified by EC,m = 0.2 meV and Cm = 4 aF. Design 05
with the smallest PGs had very low lever arms αPG ≈ 0.02. Its capacitive inter-dot coupling
was similar to what was found for sample 00. No conclusion can be drawn about the tunneling
coupling in this sample because it was damaged before it could be fully tested. Design 06s
had extended plunger gates and correspondingly a strongly increased lever arm of αPG ≈ 0.2.
The capacitive coupling between the dots was reduced by a factor of two with respect to
sample 05. From the fact that it was impossible to resolve finite bias triangles, among other
indications, it can be suspected that the inter-dot tunneling coupling too low for our purposes.
The plunger gates of design 07s had an intermediate extension. Consequently, the lever arm
of 0.17 was also reduced with respect to sample 06s, but still on the same order of magnitude.
For comparison, all the quantities resulting from the sample characterization are listed again
in a table in appendix A.

The influence of the PGs on the inter-dot tunneling coupling was investigated using sample
07s. From the analysis of these results, it can be concluded that extended plunger gates have
strong advantages but also disadvantages for forming few electron double dots. On the one
hand, a large area of the plunger gates directly entails a large lever arm. This is ultimately
desirable to achieve a high coupling strength between the resonator and the QD. In addition,
large PGs are convenient for emptying the dots. On the other hand, the plunger gates strongly
influence the QPCs coupling the two dots to each and to the leads. In our geometries, the
central QPC between the dots was most strongly influenced. Negatively biasing the plunger
gates, therefore, significantly reduced inter-dot tunneling coupling. The extended plunger
gates proved very useful but need to be designed and operated with caution. Both the high
coupling strength g and a sufficient inter-dot tunneling coupling are crucial quantities for our
microwave measurements but they are competing goals with respect to the PG geometry. A
compromise that makes both possible must be found.

The data presented in this thesis give interesting insights about how such an optimized
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200 nm

(a) Design 09s

200 nm

(b) Design 09a

Figure 37: Optimized sample geometries of the symmetric and asymmetric designs.

sample should be designed. The drawn conclusions were incorporated in the sample designs
09s and 09a, which are again presented in Fig. 37. The most significant changes with respect
to the previous designs are first, that the PGs are smaller and positioned farther away from
the central barrier. Second, the designed width of central barrier gap is increased by 35 nm.
This design was chosen for the next generation of resonator chips as it is hoped to be suitable
for resonator-qubit coupling with few electron quantum dots.

In summary, the double dot designs presented in this thesis could easily be operated in
the few electron regime. Additionally, high lever arms were realized by increasing the PG
area. It is expected that the final improvements of the sample design that were included in
design 09 together with a careful tuning of the tunneling barriers also resolve the encountered
problems regarding inter-dot tunneling coupling. Therefore, the goal of this thesis to develop
an optimized double quantum dot design for the few electron regime was reached.
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A Sample properties

Table 3: Summary of all sample properties that were extracted from the data presented in section
4.2. The values found for samples 05 and 06s were approximated using the single dot lever arms. The
listed charging energies cannot be directly compared as they were obtained from measurements with
very different numbers of electrons on the dots.

Sample 00 05 06s 07s

αLPG (SQD) 0.022 0.24 0.17
αRPG (SQD) 0.020
αRG (DQD) 0.6
EC,L (SQD) 2.35 meV 0.7 meV 2.3 meV
EC,R (SQD) 2.33 meV
EC,L (DQD) 1.0 meV 4.0 meV 2.9 meV
EC,R (DQD) 0.7 meV 3.3 meV 3.1 meV

EC,m 0.2 meV 0.23 meV 0.1 meV
g/2π 50 MHz ≤ 2 MHz ≤ 20 MHz ≤ 15 MHz
Cm 4 aF 2.8 aF 1.6 aF
CLPG 10 aF 0.9 aF 13.3 aF
CRPG 10 aF 1.0 aF 12.3 aF
CRG 60 aF
C1 34 aF 40 aF 55.6 aF
C2 94 aF 44 aF 51.3 aF

B Formation of double quantum dots

This appendix describes the particular way in which the gates were tuned to form the double
quantum dots with samples 05 and 06s. The gate configuration reached in the described way
was the basis of all measurements presented in section 4.2.

Determination of critical gate parameters

1. Check of the functionality of all gates.

2. Isolation of the dot from the detector

To close the gap between the side gates and the drain barriers, the left and right drain
barriers (LDB/RDB) are set to strongly negative values (≈ −2 V), then the side gates
are swept from 0 V to negative voltages to find current pinch-off values. This pro-
vides the voltages VLSG/RSG which have to be applied to the side gates in subsequent
measurements to ensure that no current can flow between the dot and the QPC.

3. Extraction of VLQPC/RQPC from charge detector pinch-off curve

Using the optimal VLSG/RSG found before, a pinch-off curve between the QPC gate
and the side gate is recorded. The QPC gate voltage is then chosen in a way that
the derivative of the current through the QPC with respect to the QPC top gate,
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dICD/dVQPC, is high to provide good sensitivity. Note that at equivalent slope, the
smaller current range will be chosen to limit detector back-action on the dot.

The above derived voltages for LDB/RDB, LSG/RSG and LQPC/RQPC are used as
default values in the following steps.

Single dot formation

4. Symmetrical pinch-off of both leads

The goal is to achieve a symmetric pinch-off of both leads that separate the single dot
from source and drain. In our case these barriers are formed between SDB and the cen-
ter gate (central barrier) and between SDB and one of the side gates (source or drain
barrier). Because the side gate voltages are already optimized, the corresponding center
gate voltage can be identified from the appropriate pinch-off curves. If the voltages VCG

and VLSG/RSG are applied, SDB symmetrically closes both leads, to a good approxima-
tion. We can thus form a single dot separated from the leads by roughly symmetric
tunnel barriers.

5. 2D map of the Coulomb peaks depending on the PG and SDB voltage

One now investigates the SDB/PG dependence of the current through the single dot.
Ideally, Coulomb peaks emerge as a function of the PG voltage for certain values of SDB.
A single quantum dot is then formed at a suitable SDB voltage and can be characterized
in Coulomb diamond measurements.

6. Coulomb diamonds

At the working point found in step 5, a 2D map of the derivative of the current through
the dot with respect to the applied bias, dISD/dVSD can be recorded while sweeping
VSD and stepping the plunger gate voltage.

Double dot formation

7. Current measurement with the charge detector

As in the case of the single dot (see 4.), one would like to couple symmetrically to
both leads. For the double dot the relevant barriers are formed between SDB and LSG,
respectively RSG. The voltages that have to be applied to LSG and RSG to achieve the
symmetric pinch-off usually differ slightly. These settings are used together with the
voltage parameters determined earlier. In this configuration, the side gates, CG and
SDB form a double dot, which can be characterized using either the left or right QPC
as charge detector. The charge detector current ICD is recorded while sweeping VLPG

for different VRPG values or vice-versa, which yields a 2D current stability diagram.

8. Stability diagrams from transconductance measurements

In regions of the current stability diagram in which the detector current is too small to
resolve the honeycomb pattern, a transconductance measurement of the double dot can
be used for higher sensitivity. An AC modulation is applied to one of the plunger gates
and dICD/dVPG is plotted in a 2D map while both plunger gates are swept. We chose to
modulate the LPG while measuring with the right charge detector or vice versa but other
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configurations are also possible. For our samples, only transconductance measurements
allow to resolve the few electron regime in the stability diagram.

C Compensation

In few electron Coulomb diamond measurements of sample 07s, a problem became apparent.
The tunneling barriers to the two leads of the single dot only had a symmetric thickness
for a small range of PG voltages. The reasons for this behavior were explained in section
4.3.2. In order to increase the PG range of symmetric coupling to the leads, compensation
measurements were tried in which the CG was opened at the same rate at which the influence
of LPG closed the central barrier. From current pinch-off curves, the rate at which the CG
needs to be opened was determined as: VCG = −0.55VLPG − 0.60 V.

In Fig. 38(a) a measurement without compensation for a fixed VCG = −365 mV is shown.
For this setting, the lines in both directions corresponding to symmetric coupling to the leads
were only visible between the 0 and 1 electron diamonds. The measurement was repeated with
the same settings but with the compensation formula applied for VCG. It can be seen that
the compensation did not notably increase the PG voltage range for which the barriers are
symmetric. The only effect was that the diamonds were slightly stretched in VLPG-direction.
This is illustrated by the voltage dimensions indicated in the figures.
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Figure 38: Coulomb diamond measurements of sample 07s in the few electron regime. Measurement
(a) was recorded for a fixed CG voltage, while the CG voltage was varied with VLPG in measurement
(b) according to VCG = −0.55VLPG − 0.60 V.
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