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Abstract

Superconducting quantum processors are used extensively for state-of-the-art
research in quantum computing due to their good coherence properties, the high-
fidelity readout schemes, and the flexibility in scaling up to larger architectures.
However, in order to implement quantum error correction algorithms, the multi-
qubit crosstalk and correlated errors must be understood and reduced. In this thesis
I present and implement a novel extension of a previously-introduced characteriza-
tion technique for multi-qubit algorithms called simultaneous randomized bench-
marking (SRB). We apply random elements from the single qubit Clifford group
simultaneously on up to n = 4 qubits, and we use single-shot, multiplexed readout
to measure all the n single qubit observables σ̂z, and the σ̂⊗sz correlators between
all subsets of s ≤ n qubits. From the measurements of single qubit observables
from each SRB experiment, we quantify the crosstalk as a 2.5-fold increase in the
average single qubit infidelity per applied Clifford gate when we operate all four
qubits compared to when we only operate one qubit at a time. From the correla-
tor measurements, we calculate the total infidelity of the multi-qubit error channel
associated with each n-qubit SRB experiment, which I refer to as the multi-qubit
error. By comparing this quantity to the completely uncorrelated multi-qubit error,
we estimate the amount of correlated errors in our algorithm. For the 4-qubit exper-
iment, we find a total multi-qubit error of approximately 9.3 ± 0.5%, with around
2.5 ± 0.7% correlated errors. We also calculate lower bounds on the multi-qubit
error with only up to 2-qubit correlations, and then up to 3-qubit correlations, and
we find that we may have both 2- and 3-qubit correlated errors, but we likely do not
have 4-qubit correlated errors in our algorithm. From independent measurements
of the AC-Stark shift between pairs of qubits we find that the crosstalk obtained
from SRB might consist mostly of coherent errors such as over- or under-rotations
of the qubits. On the other hand, we find large always-on σzσz interactions between
pairs of qubits, which are not captured by the SRB measurements.
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1 Introduction and motivation

Recent work on superconducting multi-qubit quantum processors has shown that super-
conducting qubits can reach good coherence times higher than 100 µs [1], single- and
two-qubit average gate errors as low as 0.1% [2, 3] and 1% [3, 4], respectively, and fast,
high-fidelity multiplexed readout of up to five qubits with errors below 2% [5]. Due to
these good properties, quantum processors based on superconducting qubits are prime
candidates for implementing the next steps in multi-qubit quantum computing research.
Some examples include applications of the near future with noisy intermediate-scale quan-
tum (NISQ) computers of up to 100 qubits [6], and more long term goals of achieving fully
fault-tolerant quantum error correction (QEC) schemes, which can require thousands of
physical qubits and gate errors smaller than 0.1% [7].

In order to implement fault-tolerant codes, the typical gate errors must remain below
a certain error-threshold in order for the logical error rates between successive cycles of
the QEC code to decrease with increasing code size [7, 8]. This property of QEC codes
is usually derived under the assumption that the multi-qubit errors in the algorithm are
completely uncorrelated, and that they remain independent of the number of qubits in
the code [7]. Hence, the type of errors that occur in multi-qubit algorithms must be
identified, and their scaling with the number of qubits operated simultaneously must be
investigated before implementing codes based on the fault-tolerant threshold criterion
mentioned above. In this thesis we characterize these metrics using a technique based on
simultaneous randomized benchmarking introduced by Gambetta et al. [9].

Several schemes have been implemented and used extensively to characterize the per-
formance of multi-qubit algorithms. For example, quantum state tomography has been
used to reconstruct multi-qubit density matrices [8, 10, 11, 12], and process and gate set
tomographies [13, 14, 15] have been used to obtain process matrices that characterize
gate performance in multi-qubit algorithms. However, these schemes fail to isolate the
quantities of interest, the multi-qubit gate errors, from errors due to state preparation and
measurement (SPAM), or they scale unfavorably with the number of qubits (for instance
in gate set tomography). The randomized benchmarking technique is advantageous as it
has better scaling with the number of qubits, and it captures the exponential decay of
the multi-qubit state due to gate errors, which is characterized by a decay strength that
is independent of SPAM.

Standard randomized benchmarking (RB) and interleaved RB have been used ex-
tensively to quantify the performance of single- and two-qubit gates [2, 16, 17, 18, 19,
20]. More recently [3], standard RB on three qubits has been used for the first time to
measure average 3-qubit gate errors of around 10%. More interestingly, the authors have
shown that they were not always able to calculate this error from 1- and 2-qubit gate
errors obtained from single and two-qubit RB measurements performed simultaneously.
In particular, the calculation could reproduce the 3-qubit result only when the σzσz inter-
actions between the qubits (an important source of correlated errors) were calibrated out
before the RB measurements. Thus, the authors show that multi-qubit characterization
algorithms capture effects from multi-qubit errors that are not necessarily reproduced in
measurements on subsets of qubits.

Performing single qubit RB on multiple qubits at the same time implements a tech-
nique called simultaneous randomized benchmarking (SRB) [9]. This measurement allows
to quantify both the scaling of the total multi-qubit error with the number of qubits in
the algorithm (crosstalk), and what amount of this total error is correlated between mul-

1



tiple qubits (the amount of correlated errors). The authors in Ref [9] have measured both
these metrics in a two-qubit SRB experiment, while the authors in Ref [21] have per-
formed SRB on up to four qubits, but have only analyzed the scaling of crosstalk with
the number of qubits.

During this project we have generalized the theory in Ref. [9] to n-qubit SRB exper-
iments, and we have performed these measurements on all combinations of up to four
qubits. The novelty of this project is that we measure all possible subsets of σ̂⊗sz cor-
relators on s ≤ n qubits in each n-qubit SRB experiment. Measuring these correlators
allows us to calculate the total infidelity of the multi-qubit error channel implemented by
each algorithm. By making various assumptions about the degree of the correlated errors
in our data, we then calculate the amount of correlated errors present in each n-qubit
algorithm, and we investigate what are the relative contributions of the s-qubit correla-
tions for s ≤ n to the total amount of correlated errors we observe. Finally, we perform
measurements of the AC-Stark shift and the σzσz-coupling between pairs of qubits in
order to investigate whether we can reproduce the multi-qubit SRB results from more
basic measurements on subsets of qubits.

In the theory section of this thesis, Sec. 2, I will begin with a brief theoretical intro-
duction to the field of superconducting circuit quantum electrodynamics, where I will also
describe the 8-qubit processor on which we performed all the experiments presented in
this work. In Sec. 2.2 I will then briefly discuss the main sources of correlated and uncor-
related errors in multi-qubit algorithms that will be relevant in understanding the results
from SRB. The main part of the theory section will describe the formalism behind the
standard RB (Sec. 2.3.2), interleaved RB (Sec. 2.3.2), and multi-qubit SRB (Sec. 2.3.3)
protocols. I will discuss the quantum error channels implemented by each experiment,
and how to calculate the infidelities of these channels. I will then use the latter to ex-
plain in Sec. 2.3.5 how the SRB measurement can be used to quantify the amounts of
crosstalk and correlated errors in an n-qubit algorithm, and to investigate the relative
contributions of various degrees of correlated errors to the total n-qubit error.

In Sec. 3, I will discuss how the (S)RB experiments were implemented in the lab. In
Sec. 3.1, I will present our experimental setup, and in particular the thresholding and cor-
relator features of our detection instrument, the Zurich Instruments Ultra High Frequency
Lock-In Quantum Controller (UHFLI-QC), that were used for the (S)RB experiments dis-
cussed in this work. Then, in Sec. 3.2 I will describe the HV Z decomposition based on
so-called virtual Z gates introduced by McKay et al. [2], which was used to generate the
gates applied to the qubits in the (S)RB experiments.

Lastly, in Sec. 4 I show and discuss in detail the results from (S)RB measurements
on all combinations of 1, 2, 3, and 4 qubits using qubits 3, 4, 5, and 7. The effect of
simultaneous control on the single qubit errors is discussed in Sec. 4.1, and the amount
and degree of correlated errors is discussed in Sec. 4.2.
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2 Theoretical Description

In this section I will describe the theoretical background to the multi-qubit character-
ization measurements performed in this work. I will start with a short description of
the basic superconducting circuit quantum electrodynamics (QED) architecture and its
generalization to multi-qubit processors. Then I will discuss several different types of
crosstalk that can occur between different qubits on the same processor, and the kinds
of errors that these crosstalk mechanisms produce. Finally, I will conclude this section
with a discussion about the theoretical framework of a new protocol developed during
this thesis, that allows to characterize the amount of crosstalk and correlated errors in a
multi-qubit processor. This protocol is based on simultaneous randomized benchmarking
introduced by Gambetta et al. in Ref. [9].

2.1 Superconducting circuit QED

The theory of circuit QED based on superconducting qubits has been described in detail
in many previous works [22, 23, 24]. In this thesis I will focus on the parts of this theory
that are relevant to understanding single- and multi-qubit algorithms with a particular
type of superconducting qubits called transmons.

2.1.1 Single-qubit circuit QED

In superconducting circuit QED, qubits and resonators are constructed from an electronic
circuit with capacitive elements (C) and inductive components (L). A typical linear LC
circuit creates a harmonic oscillator, whose quantized energy levels are equally spaced.
On the other hand, a non-linear inductor such as the Josephson junction [24] placed
in parallel with a capacitor creates an anharmonic oscillator. This system has unequal
separation between the energy levels, which allows us to selectively excite only the desired
energy transitions. We define the qubit as the first two energy levels of this non-linear
system.

Based on Ref. [22], we can describe the transmon qubit as a Cooper pair box (or
charge qubit) with improved coherence due to the insensitivity of the transmon’s energy
levels to charge noise. The Hamiltonian for the transmon qubit can be derived from an
analysis of the electric circuit diagram of the transmon [22]. Here I will only reproduce
the final result:

Ĥtransmon = 4EC(n̂− ng)2 − 2EJ

∣∣∣cos
(πΦ

Φ0

)∣∣∣cosφ̂. (2.1)

This Hamiltonian has a capacitive part given by the first term, where EC is the charging
energy created by the capacitances in the transmon circuit, n̂ is the number operator
corresponding to the number of Cooper pairs in the circuit, and ng is the gate charge
accumulated in the circuit from an external bias voltage. The second term is the induc-
tive contribution from a magnetic-flux-tunable non-linear inductor called a SQUID loop,
which consists of two Josephson junctions in parallel. Thus EJ = ~Ic/2e is the energy of
one Josephson junction, with Ic the critical current of the junction, Φ is the externally
applied magnetic flux, Φ0 = h/2e is the superconducting magnetic flux quantum, and φ̂
is the canonical phase operator of the electrons in the circuit. Insensitivity to electronic
charge fluctuations is achieved by designing systems for which EJ � EC [22]. In practice,
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this regime is reached by placing a capacitive element with large capacitance in parallel
with the SQUID loop, thus lowering EC with respect to EJ [23].

The experiments presented in this thesis were performed on a chip with eight Xmon
qubits designed as shown in Fig. 2.1 (a). The Xmon qubit is a transmon whose capacitor
in parallel with the SQUID loop has an X shape, as seen in Fig. 2.1 (b). This shape
allows to create the fork-shaped capacitive couplings with larger areas, and thus stronger
couplings to the readout (light blue) and qubit-qubit coupling (brown) resonators. The
processor was microfabricated by depositing a 150 nm niobium (Nb) film on a sapphire
substrate. All components on the chip, except for the SQUID loop, are fabricated using
photolithography and dry etching techniques. The Josephson junctions in the SQUID
loop were fabricated using the electron beam deposition technique, and consist of two
layers of aluminum (Al) with a layer of aluminum oxide in between. For more details
about the processor and the fabrication process see Ref. [5].

Since aluminum becomes superconducting at temperatures below 1.2 K, the whole
processor must be cooled down to at least below this temperature in order to exploit the
non-linearity of the Josephson junctions, and hence the useful features of the transmon.
However, typical working temperatures in circuit QED setups are below 100 mK in order
to place the qubit in the ground state by protecting it from thermal excitations.

Figure 2.1: (a) False-colored microscope image of the processor design with eight Xmon
qubits that was used for the experiments presented in this thesis. Each qubit has its
own drive line shown in magenta, and all but Qb1 and Qb8 are tunable via their dark
blue flux lines. The 8 qubits are capacitively coupled pairwise by the brown λ/2 coplanar
waveguide (cpw) coupling resonators. Each Xmon is also capacitively coupled to its λ/4
readout cpw resonator in light blue, which in turn couples to a Purcell filter shown in
green. The yellow directional feedline couples to all Purcell filters via interdigitated finger
capacitors, and thus allows multiplexed readout of all qubits simultaneously. (b) Zoom-in
of one Xmon. The SQUID loop (top) is connected in parallel with the X-shaped capacitor
shown in red. The remaining arms of the capacitor couple to the readout resonator at the
bottom, and to the left and right coupling resonators. The dark blue flux line allows to
apply an external magnetic flux through the SQUID loop, while the magenta drive line
is used to drive the qubit with a coherent microwave tone.

The coherent exchange of interactions between one Xmon and its readout resonator
is described by the Jaynes-Cummings Hamiltonian [22]:

ĤJC =
∑
i

~ωi|i〉〈i|+ ~ωrâ†â+

[∑
i

~gi,i+1|i〉〈i+ 1|â† + h.c.

]
. (2.2)
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The first term in this Hamiltonian describes the energy levels of the transmon given by
~ωi, the second term is the energy of the readout resonator, with â† and â the creation
and annihilation operators, respectively, and the terms in the square brackets represent
the exchange interaction between the transmon and the resonator. This interaction occurs
at the rate gi,i+1/2π between the resonator and the |i+ 1〉 ↔ |i〉 transmon transition.

In all the experimental work presented in this thesis, we have only used the first
transmon transition, from the ground state |0〉 = |g〉 to the excited state |1〉 = |e〉. In
terms of the transmon parameters defined in Eq. (2.1), the energy of this first transition
is approximately given by [22]

E01 =

√
16ECEJ

∣∣∣cos
(
π

Φ

Φ0

)∣∣∣− EC . (2.3)

E01,max = 4
√
ECEJ−EC is the frequency of the transmon at the parking position referred

to as the sweet spot, where the transmon is least sensitive to flux noise. From here on, I
will ignore any explicit description of the higher energy levels of the transmon, but I will
include the effects from the interaction of the qubit computational basis states {|0〉, |1〉}
with the next highest energy state, |2〉 = |f〉.

In order to use this two-level system for quantum computation, it must be designed
such that g01 � κint,Γ; i.e. the strength of the exchange interaction should dominate over
internal losses from the resonator at the rate κint, and over the qubit decoherence rate
Γ [25]. If this condition is met, the system is in the strong coupling regime. In addition,
the system must also be placed in the dispersive regime in order to perform quantum non-
demolition (QND) measurements of the qubit state, where the measurement operator is
diagonal in the qubit basis {|g〉, |e〉} at all times. This regime is achieved by detuning the
qubit from the readout resonator such that ∆ωq,r = |ωq − ωr| � g01/2π, where ωq = ω1

is the frequency of the first energy transition of the transmon. If this condition is true,
then the dispersive Hamiltonian is obtained from the Jaynes-Cummings Hamiltonian by
treating the interaction term as a perturbation to the first two terms [23]. Here I only
give the final result:

Ĥdispersive =
~ω′q
2
σ̂z + (~ω′r + χσ̂z)â

†â, (2.4)

where σ̂z is the Pauli Z operator. The first term describes the qubit with the frequency
ω′q = ωq+χ01 renormalized by the Lamb shift χ01 = g2

01/∆ωq,r, and the second term is the
resonator with renormalized frequency ω′r = ωr − χ12, where the shift χ12 = g2

12/∆ω2,r,
with ∆ω2,r = |ω2 − ωr|, is caused by the resonator interacting with the qubit |f〉 level.
Additionally, the resonator frequency is shifted by the qubit-state-dependent dispersive
shift χσ̂z, with [22]

χ = χ01 − χ12/2 = −g2
01

EC
∆ωq,r(∆ωq,r − EC)

. (2.5)

The dispersive shift is the underlying mechanism behind the non-demolition mea-
surement of the qubit. Since the qubit energy term commutes with the interaction term,
[~ω′qσ̂z/2, χσ̂zâ†â] = 0, σ̂z is a constant of motion in the system dynamics. Hence, in
the dispersive regime, repeatedly probing the qubit state with a weak microwave tone for
a time τm � T1, where T1 is the qubit lifetime, will always give the same information
about the qubit state that was collapsed by the first measurement. This information is
contained in the dispersive shift of the transmission spectrum of the readout tone [26].
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The implementation of this detection scheme using modulated microwave signals and
digital signal processing will be discussed in Sec. 3.1.

Finally, the state of the Xmon is manipulated by applying microwave pulses to its
drive line (magenta structures in Fig. 2.1). We can write the Hamiltonian of the qubit in
a frame rotating at the drive frequency ωd as [27]

Ĥdrive = ~
ωq − ωd

2
σ̂z +

~ΩR(t)

2

(
cos(φ)σ̂x + sin(φ)σ̂y

)
, (2.6)

where ΩR(t) is the Rabi frequency proportional to the pulse amplitude, φ is the phase of
the pulse, and σ̂x, σ̂y are the Pauli X and Y operators. See Appendix A for an explicit
formula for ΩR(t) and a derivation of this Hamiltonian. From Eq. (2.6) we see that we
have full control over the state of the qubit: adjusting the phase of the driving field rotates
the qubit state round the x̂- and ŷ-axes of the Bloch sphere, and driving at a frequency
that is detuned from the qubit frequency leads to a rotation about the ẑ-axis. Driving the
qubit off-resonance will also induce an AC-Stark shift of its energy levels [26, 28]. This
shift will be derived in Appendix A, and its role in characterizing charge line crosstalk
will be discussed in Sec. 2.2.1.

Driving on resonance with the qubit transition frequency will induce so-called Rabi
oscillations of the qubit population between the ground and the excited state at a rate
given by ΩR(t). Throughout this thesis, I will refer to the resonant drive pulses that take
the qubit from |g〉 to |e〉 and from |g〉 to (|g〉 + |e〉)/

√
2 as a π-pulse and a π/2-pulse,

respectively.

2.1.2 Multi-qubit circuit QED

In this section I will again assume we are explicitly only concerned with the first transmon
transition. See Ref. [23] for a more general version of the multi-qubit Hamiltonian that
includes higher transmon levels, and in particular the |f〉 level, which becomes important
in implementing two-qubit controlled-phase gates.

We can write the dispersive Hamiltonian for our system of 8 qubits and their readout
resonators as [23]

Ĥmulti-qubit =
8∑
i=1

[~ω′q,i
2

σ̂z,i + ~(ω′r,i + χiσ̂z,i)â
†
i âi

]
+

7∑
i=1

~Ji,i+1(σ̂−i σ̂
+
i+1 + σ̂+

i σ̂
−
i+1). (2.7)

The first term is just a sum of the single qubit dispersive Hamiltonian in Eq. (2.4) over
the 8 qubits; thus I assumed that each readout resonator i couples most strongly to qubit
i, such that cross-couplings to neighboring qubits i− 1 and i + 1 are negligible. We will
see in the next section why this assumption is warranted. The second term describes
the exchange interaction, or J-coupling, between neighboring qubits on the chip. The
operators σ̂+

i = |1〉〈0|i and σ̂−i = |0〉〈1|i respectively create and annihilate an excitation
in qubit i, and Ji,i+1 is given by [23]

Ji,i+1 =
gc,igc,i+1

2

( 1

∆ωiq,cr
+

1

∆ωi+1
q,cr

)
. (2.8)

Here gc,i and gc,i+1 are the coupling strengths of qubits i and i+1 to their shared coupling

resonator, and ∆ωiq,cr = |ωq,i−ω(i,i+1)
cr | is the detuning of the frequency of qubit i, ωq,i, from

that of the coupling resonator between qubits i and i+1, ω
(i,i+1)
cr . This qubit-qubit coupling
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creates a non-local swap interaction between |01〉 ↔ |10〉 mediated by a virtual photon in
the coupling resonator. The coupling is effectively turned off when Ji,i+1 � |ωq,i−ωq,i+1|,
i.e. when the two coupled qubits are detuned far away from one another. However, as
we will see in the next section, in practice there is always some residual nearest-neighbor
σzσz-coupling that may constitute an important source of correlated errors. Qubits that
are not nearest neighbors can also couple to each other (these coupling terms are ignored
in the Hamiltonian in Eq. (2.7)), yet the σzσz-interaction between neighbors usually
dominates over these second order effects.

The QND detection mechanism is the same in the multi-qubit case as explained in
the previous section for a single transmon coupled to its readout resonator. The main
additional feature that can be achieved with the design in Fig. 2.1 is multiplexed readout.
Instead of probing only one readout resonator by sending a microwave tone resonant
with the frequency of that resonator, we can send a composite pulse through the yellow
feedline in Fig. 2.1 that has frequency components at all or any subset of the frequencies
ωr,i corresponding to the 8 readout resonators on the processor. This technique allows us
to measure multiple qubits at the same time. Using this feature to obtain information
about qubit state correlations was indispensable to measuring the results presented in
this work (see Sec. 2.3.3 and Sec. 4). For a detailed theoretical description of multiplexed
readout in our group, see Ref. [29].

2.2 Crosstalk in multi-qubit algorithms

In the context of quantum information processing, the term ”crosstalk” is generally used
to refer to any multi-qubit error-inducing mechanism. We can make an important dis-
tinction between uncorrelated multi-qubit errors, which act independently in each of the
single qubit subspaces, and correlated errors, which induce correlations between several
or all qubit subspaces. Quantitatively, the total multi-qubit error channel [30] in an n-
qubit algorithm E is uncorrelated if E = E1 ◦ E2 ◦ ... ◦ En, where Ei are the error channels
associated with each single qubit channel.

The characterization and suppression of correlated errors in multi-qubit processors
are particularly important goals that must be achieved in order to implement quantum
error correction and fault-tolerant designs. In particular, the theory that establishes the
threshold theorem for achieving fault-tolerant quantum computation [31] relies on the
assumption that errors are uncorrelated [7]. In this section I will identify and discuss
a few important types of crosstalk that lead to correlated and uncorrelated multi-qubit
errors, and that will be relevant in the remainder of this thesis.

2.2.1 Sources of uncorrelated errors

Charge line crosstalk

We drive individual qubits by applying resonant microwave tones via their charge lines.
However, a drive tone at ωq,i could also couple to qubit j in a non-negligible way. Due to
this cross-driving, or charge line crosstalk, there will be an off-resonant drive tone on qubit
j that will thus induce an AC-Stark shift of the energy levels of qubit j (see Appendix A).
The strength of this crosstalk between two qubits is given by the size of the induced
AC-Stark frequency shift and can be characterized by the following two methods. One
can directly measure the change in frequency of qubit j with a Ramsey measurement
while simultaneously driving qubit i. However, this method will not be able to resolve
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frequency shifts below 1/TRamsey, where TRamsey is the delay between the two π/2-pulses
in the Ramsey measurement (see [32] for details about the Ramsey experiment). An
alternative method is to drive resonant Rabi oscillations on qubit j through the charge
line of qubit i. Then the AC-Stark shift δωq,j|i on qubit j due its coupling to the charge
line of qubit i can be estimated from

δωq,j|i =
Ω2
R

2∆ωj,d
, (2.9)

where ΩR is the Rabi frequency of the induced oscillations of the population of qubit j,
and ∆ωj,d = ωq,j − ωdrive is the frequency detuning between qubit j and the drive tone.
Here I assumed that the qubit is an ideal two-level system (higher energy levels have been
neglected), and that the detuning is large, ∆ωj,d � ΩR. Note that the AC-Stark shift
can be positive or negative depending on the sign of the detuning between the transmon
and the drive, and that it decreases with larger frequency separation between the qubits.
This result is derived in Appendix A.

Flux line crosstalk

The mechanism behind this type of crosstalk is very similar to the one that causes the
charge line crosstalk, except that here there is cross coupling between the flux lines of
different qubits. From Eq. (2.3) we see that applying a flux pulse through the SQUID
loop of qubit i will change its transition frequency, ωq,i = E01,i/~, thus taking it outside
the rotating reference frame defined by this frequency, where the qubit was calibrated
to have zero phase. Therefore, during the excursion outside this reference frame, the
qubit will acquire a dynamic phase given by the duration of the flux pulse, φdyn,i =∫
ωq,i(t)− ω(park)

q,i dt, where ω
(park)
q,i is the starting parking position of the qubit. However,

other qubits will also be detuned during this operation due to flux line crosstalk, such
that they will also acquire their own dynamic phases φdyn,j. The dynamic phase induced
on qubit j due to coupling to the flux line of qubit i can be measured with a cross-Ramsey
phase measurement, where the flux pulse on qubit i is applied between the two π/2-pulses
of a Ramsey experiment on qubit j [33]. These dynamic phases must be corrected in the
implementation of two-qubit controlled-phase gates as described in detail in Refs. [33]
and [34]. As a result of this project, our group is now applying these corrections with the
use of zero-duration, virtual Z (V Z) pulses introduced by McKay et al. in Ref. [2]. These
V Z pulses and their use in dynamic phase compensation will be described in Sec. 3.2.

2.2.2 Sources of correlated errors

σzσz-coupling

As already mentioned in Sec. 2.1.2, the J-interaction between two qubits is turned on
only when the qubits are in resonance with one another, ωq,i = ωq,j. Yet if Ji,j ' |ωq,i −
ωq,j|, with Ji,j defined in Eq. (2.8), then the qubits have some residual σzσz-coupling
proportional to J2

i,i+1/|ωq,i − ωq,i+1|, which is strongest for qubits sharing a coupling
resonator. This residual qubit-qubit interaction is essentially always turned on, and, as
we will see in Sec. 4, it can be a significant source of correlated errors in multi-qubit
algorithms.

One method to estimate the error rate caused by the σzσz-coupling between two
qubits is to measure the frequency shift of one of the qubits caused by the interaction
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with the other. In order to see how we can perform this measurement, we look at the total
Hamiltonian of two qubits interacting via the σzσz-coupling with strength ξ/2π [35]:

Ĥ2qb =
~ωq,i

2
σ̂z,i +

~ωq,j
2

σ̂z,j + ~ξσ̂z,iσ̂z,j, (2.10)

where the first two terms describe the energies of the two qubits, and the last term is the
qubit-qubit interaction term. If we rewrite this Hamiltonian as

Ĥ2qb =
~ωq,i

2
σ̂z,i + ~

(ωq,j
2

+ ξσ̂z,i

)
σ̂z,j, (2.11)

we see that the frequency of qubit j is conditioned on the state of qubit i, with the
proportionality term ξ. Hence, we can use Ramsey measurements to find the frequencies
of qubit j when qubit i is in the ground state and in the excited state, and then calculate
the strength ξ of the σzσz-coupling as the difference between these two frequency values.
Comparing ξ to the gate duration will give an estimate of the error rate per single qubit
gate due to the σzσz-coupling.

Multiplexed readout crosstalk

As explained in Sec. 2.1.2, in order to perform multiplexed readout of multiple qubits
we must generate a waveform with several frequency components corresponding to each
qubit’s readout frequency. The main cause of crosstalk in multiplexed readout is the po-
tentially significant spectral overlap between neighboring readout frequency components.
This crosstalk causes the resonator of qubit i to be additionally populated by spurious
frequency tones originating from neighboring frequency components. Hence, the compo-
nent of the composite readout pulse that was supposed to carry information about only
one qubit will now contain information about other qubits as well. Thus, instead of only
accessing the single-qubit subspace of each qubit, we will also obtain partial informa-
tion about multi-qubit correlations. As we will see in the following section and in Sec. 4,
this effect might distort the results of simultaneous randomized benchmarking and the
conclusions regarding the amount of correlated errors in our algorithms.

Readout crosstalk was assumed to be negligibly small, and was thus not included in the
multi-qubit Hamiltonian in Eq. (2.7). This assumption is warranted by the use of Purcell
filters shown in green in Fig. 2.1. The effect of these filters is to suppress the amplitude of
signals at each readout resonator by a factor proportional to 1/∆2 if these signals are far
enough detuned from the readout resonator frequencies. Typically, this detuning is the
difference between neighboring readout frequency components, ∆ = |ωr,i − ωr,j| . On the
processor used in this thesis, the Purcell filters reduced the multiplexed readout crosstalk
to below 2% [5]. This effect could be further reduced by using Gaussian-shaped readout
pulses, which have a narrower frequency spectrum than the square-shaped readout pulses
used in this work [5].

Finally, the readout crosstalk between two qubits can be characterized with a cross-
Ramsey phase measurement, which allows to estimate the dephasing of qubit j induced
by measuring qubit i. To this end, a readout pulse of varying amplitudes is applied on
qubit i between the two π/2-pulses of a Ramsey measurement on qubit j. For more
details about this measurement, and about characterizing multiplexed readout crosstalk,
see Ref. [29].

In this section I have described different crosstalk mechanisms and the measurements
that can be performed to estimate the amount of crosstalk between pairs of qubits.
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However, it is not completely understood how these types of errors behave in multi-qubit
algorithms, and to what degree can multi-qubit errors be extrapolated from errors on
smaller subsets of qubits. Finding insightful multi-qubit characterization techniques is a
very important next step towards increasing the size of quantum processors and realizing
robust error correction codes. In the next section I will discuss the theory behind one
such multi-qubit error characterization scheme based on randomized benchmarking that
was developed during this project.

2.3 Randomized benchamrking

The randomized benchmarking (RB) measurement is a very common characterization
technique that has been used extensively to measure the average error per applied Clifford
gates in both single- and multi-qubit algorithms [3, 19, 36, 37]. Here we focus on the
simultaneous RB (SRB) technique on two qubits introduced by Gambetta et al. in Ref. [9].
In this project, we have generalized the theory of SRB to n-qubit experiments in order
to quantify the amounts of crosstalk and correlated errors in algorithms on up to four
qubits. In addition, we further extend the SRB formalism to characterize the degree of
the correlated errors, and to potentially identify the s-qubit subspace that contains the
largest amount of correlated errors. Since reaching fault-tolerant thresholds also entails
that the errors do not increase indefinitely with the number of qubits in the algorithm [7],
we also investigate the scaling of the single- and multi-qubit errors with the number of
simultaneously operated qubits.

I will start the discussion of the theory of RB with a brief description of the quan-
tum depolarizing channel, which will be a central concept to understanding RB. Then I
will describe how the single- and multi-qubit RB measurements are implemented exper-
imentally, and I will perform a theoretical analysis of each protocol from which we will
understand what type of error channels they implement, and what are the relevant quan-
tities that characterize these channels. I will discuss how we use the SRB formalism to
quantify multi-qubit crosstalk, and finally, I will focus on the RB measurements on n ≤ 4
qubits that have been experimentally implemented in this thesis, and I will describe how
we can use these results to investigate the amount and the degree of correlated errors in
each n-qubit algorithm.

2.3.1 The quantum depolarizing channel

The n-qubit depolarizing channel Λn describes a quantum noise process where the initial
state described by the density operator ρ̂n is left unperturbed with probability αn, and
is completely depolarized (fully mixed) with probability 1− αn:

ρ̂n
Λn−→ (1− αn)

1

d
+ αnρ̂n, (2.12)

where d = 2n is the dimension of the n-qubit Hilbert space. The survival probability or
the depolarizing parameter αn describes the rate at which ρ̂n is depolarized into a fully
mixed state.

Below I will explicitly write down the effects of the single- and multi-qubit depolarizing
channels on a density matrix expressed in the relevant Pauli basis.
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Single qubit depolarizing channel

The identity matrix together with the three single qubit Pauli matrices {1, σx, σy, σz},
with

1 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.13)

form a basis for the space of 2× 2 Hermitian matrices, and therefore they span the space
of single-qubit observables. Hence we can express any single qubit density matrix ρ1 in
terms of this Pauli basis as

ρ1 =
1

2
+ ρx,1σx + ρy,1σy + ρz,1σz, (2.14)

where ρξ,1 is the coefficient of ρ1 in the single qubit subspace defined by the Pauli matrix
ξ ∈ {σx, σy, σz}. In this representation, the action of the single-qubit depolarizing channel
Λ1 on ρ1 becomes

ρ1
Λ1−→ 1

2
+ α1(ρx,1σx + ρy,1σy + ρz,1σz). (2.15)

Multi-qubit depolarizing channel

Similarly, the n-fold tensor product of the single-qubit Pauli basis {1, σx, σy, σz}⊗n spans
the space of n-qubit observables, and thus we can express the n-qubit density matrix ρn
in terms of this basis as:

ρn =
1

d
+
∑
i≤n

∑
ς=x,y,z

ρς,iσς,i +
∑
i,j≤n
i<j

∑
ς,ς′=x,y,z

ρςς′,ij σς,iσς′,j + ..., (2.16)

where d = 2n. Each ρξ,s is the coefficient of ρn in the subspace defined by the qubits
s ≤ n and spanned by the corresponding Pauli operators ξ ∈ {1, σx, σy, σz}⊗s. Here 1 is
the n-dimensional identity matrix. Then the action of the n-qubit depolarizing channel
Λn on ρn expressed in this basis becomes

ρn
Λn−→ 1

2n
+ αn

(∑
i≤n

∑
ς=x,y,z

ρς,iσς,i +
∑
i,j≤n
i<j

∑
ς,ς′=x,y,z

ρςς′,ij σς,iσς′,j + ...
)
. (2.17)

In the next few sections I will use these definitions for the single and multi-qubit
depolarizing channels to give a theoretical overview of the quantum channels described
by the single- and multi-qubit randomized benchmarking protocols.

2.3.2 Single qubit RB

The single qubit RB experiment is used to characterize the average infidelity of single
qubit gates over the single qubit Clifford group C1. The latter is defined as the normalizer
of the single qubit Pauli group P = {±P,±iP}P∈[1,σx,σy ,σz ] in the unitary group of degree
2, U(2), which describes the set of all 2× 2 unitary matrices. In group theory, this means
that the Clifford group is defined by those elements in the U(2) group whose conjugation
action on the Pauli group returns elements that are still within the Pauli group [38]:

C1 = {U ∈ U(2); Pi, Pj ∈ P , i 6= j : UPiU
† = ±Pj}. (2.18)
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The RB measurement protocol relies on sampling random elements from C1, which is
expressed in a suitable decomposition in terms of single qubit gates. Details about this
decomposition will be given in Sec. 3.2.2. The RB protocol is illustrated in Fig. 2.2 and
contains the following steps:

1. Choose a sequence length m in the interval [0,M ], where M is the longest sequence
used in the experiment.

2. Generate m random Clifford elements {Gi}i∈[1,m] sampled uniformly from C1.

3. Generate the (m + 1)st so-called recovery gate to be the inverse of the previous m
gates Gm+1 = (Gm...G1)†.

4. Prepare the qubit in some initial state, which is typically in an eigenstate of the
single qubit σ̂z operator, apply the sequence Gm+1Gm...G1, and measure the qubit
in the σ̂z basis.

5. Repeat step 4 a large number of times N (typically N > 210) and average all the
N measurement results (shots) to obtain 〈σ̂z〉. A larger value of N improves the
statistical accuracy of the RB results; see Sec. 3.2.2.

6. Repeat steps 2-5 K times in order to sample the Clifford group K times, and average
all the K measured values of 〈σ̂z〉. As I will explain in Sec. 3.2.2, the value for K
depends on the desired accuracy of the RB results related to finite sampling of C1.

7. Repeat steps 2-6 for all sequence lengths m ∈ [0,M ].

Figure 2.2: One Clifford sequence of length m in the single qubit RB protocol. This gate
sequence is applied to the qubit in the ground state, and the σ̂z operator is measured after
the recovery gate, Gm+1 = (Gm...G1)†. Each Clifford gate Gi in the sequence depicted in
light brown is the ideal, unitary implementation of the noisy Clifford gate G̃i that has an
associated average error channel Ē1 shown in red.

In order to understand the quantum channel that is implemented by the RB protocol,
we will consider the error channel Ek, which in the most general form is described as a
completely positive, trace-preserving (CPTP) map, associated with each applied Clifford
gate in the kth repetition of the sequence of length m. It has been shown [16] that for
typical errors, each Clifford gate error Ek is well approximated by the average error channel
over the entire sequence Ē1. Hence, our applied, imperfect Clifford gates can be expressed
as G̃i,k = Ē1 ◦Gi,k for i ∈ [1,m+ 1] and k ∈ [1, K], where Gi,k denotes the ideal, unitary
implementation of the Clifford gate, and ◦ denotes composition of error channels. We
therefore assume that, on average, all the Clifford elements have the same error and that
this error is independent of the Clifford gates. Thus, we can write the sequence of m
Cliffords as

Sm,k = Ē1 ◦Gm+1,k ◦ Ē1 ◦Gm,k ◦ ... ◦ Ē1 ◦G1,k, (2.19)
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or, using that Gm+1,k = (Gm,k...G1,k)
†,

Sm,k = Ē1 ◦
(
©m

i=1 G
†
i,k ◦ Ē1 ◦Gi,k

)
. (2.20)

Then the average over the K different sequences sampled from the group becomes

Sm =
1

K

K∑
k=1

Sm,k. (2.21)

If we assume that we have fully sampled the Clifford group for each m, we can rewrite
this averaging process in terms of the average, or twirl, over the Clifford group C1, which
I denote by TC1(Ē1):

Sm = Ē1 ◦
(
TC1(Ē1)

)◦m
. (2.22)

The twirl of the channel Ē1 over a group of unitary channels, here the Clifford elements,
is given by [9]

TC1(Ē1) =
1

|C1|
∑
G∈C1

G† ◦ Ē1 ◦G. (2.23)

In practice, K would become too large if we wanted to generate all the possible Clifford
sequences of length m; see Sec. 3.2.2. Therefore, the assumption above is generally not
true, and we will use the theory developed by Helsen et al. in [39] to estimate confidence
intervals around the quantities of interest, that capture the errors due to finite sampling
of C1.

I will now use the Liouville superoperator representation of quantum channels in
the normalized Pauli basis P1 = 1√

2
{1, σx, σy, σz}, where each element now has a trace

of 1 [39]. This allows us to write the Pauli transfer matrix of any map Λ as a matrix
Λij = 1

d
Tr[PiΛ(Pj)], with Pi, Pj ∈ P1, and the dimension of the Hilbert space d = 2 for a

single qubit. In this representation, all maps are matrices and thus channel composition
simply becomes matrix-matrix multiplication. Hence, we can rewrite Eq. (2.23) as [9]

TC1(Ē1) =
1

|C1|
∑
G∈C1

G†Ē1G. (2.24)

The twirling process is the key concept in the theory of randomized benchmarking.
The Clifford group is a unitary 2-design [40]. This means that the twirl of any channel Λ
over the Clifford group is the same as twirling over the unitary group U(2) [39], and that
the Liouville (or the Pauli transfer matrix) representation of both the Clifford group and
the unitary group has two independent and irreducible representations in the normalized
Pauli basis. The first, trivial representation s0 is given by the identity 1/

√
2, and the

second s1 is given by everything else in the Pauli group {σx, σy, σz}/
√

2 [9, 39]. The
fact that the two representations of the Clifford group are independent means that the
action of C1 in the first subspace is independent of its action in the second subspace. The
fact that the two representations are irreducible further means that we cannot find any
similarity transformation matrix1 that will reduce the dimension of the subspace of that
representation [41].

1A similarity transformation is the map A → B−1AB, for some group element A, and the similarity
transformation matrix B.
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Given these properties of the Clifford group we can make use of one of the corollaries
to Schur’s Lemma, which says that the group average over the conjugation of a channel
by the elements of the group, i.e. the twirl, is given by [9]

TC1(Ē1) =
∑

ς∈{s0,s1}

Tr(Ē1Pς)

Tr(Pς)
Pς , (2.25)

where Pς are the projectors into the two irreducible representations of the Clifford group.
Since the subspace s1 is irreducible, the action of C1 is the same on all the elements in
this subspace, and we can rewrite the twirl as

Λ1 = TC1(Ē1) = (1− α1)
1

2
+ α1

∑
ς∈s1

Pς , (2.26)

α1 =
∑
ς∈s1

Tr(Ē1Pς)

Tr(Pς)
, (2.27)

It is now apparent that the twirl describes the single qubit depolarizing channel Λ1 with
an associated depolarizing parameter α1. Hence, the twirl over the single qubit Clifford
group with the average error Ē1 is a depolarizing channel. In the context of single qubit
RB, I will denote this depolarizing channel by ΛC1 .

It is then clear that the measured quantities 〈σ̂z〉m as a function of the Clifford se-
quence lengths m will decay exponentially towards a fully mixed state. This decay is
characterized by the decay constant α1, which can be found experimentally from a fit of
the 〈σ̂z〉 data to the equation

〈σ̂z〉m = Aαm1 + B. (2.28)

Here, the constants A and B quantify all the information about SPAM (state preparation
and measurement) errors. The fact that the decay strength specified by α1 is first-order
independent of SPAM errors makes the RB protocol a very powerful tool for characterizing
gate errors and the overall performance of the algorithm. For a theoretical discussion of
second order error effects, see Ref. [16].

Knowing α1, the average fidelity of the channel ΛC1 with respect to the identity channel
1 can be easily calculated as

F̄(ΛC1 , 1) = Tr
(

M̂ΛC1(ρ̂0)
)

= 1− 1− α1

2
, (2.29)

where, for single qubit RB, the initial density operator ρ̂0 = |0〉〈0| represents the ground
state of the qubit, and the measurement operator M̂ = |0〉〈0| is the projector back into the
ground state. The average channel infidelity, or average error per Clifford, immediately
follows:

r1 = r(Λ1) = 1− F̄(ΛC1 , 1) =
1− α1

2
. (2.30)

2.3.2.1 Interleaved single qubit RB

A useful variation of the single qubit RB protocol is interleaved RB (IRB), which allows
to find the average error of a particular gate of interest. In this thesis, I have only imple-
mented IRB on single qubit gates, yet the theory for IRB can also be used to find n-qubit
gate errors; see [37] for a measurement of the average error of a two-qubit gate with IRB.
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The IRB measurement implements the same protocol as described in the previous
section for single qubit RB, but with an addition which can be summarized as follows,
see also Fig. 2.3:

1. Perform standard single qubit RB and find the depolarizing parameter α1 as de-
scribed in the previous section.

2. Perform standard single qubit RB with the gate of interest G interleaved between
each two Clifford elements. The recovery gate Gm+1,k now inverts the new sequence
(Gm,kGGm−1,k...G2,kGG1,k)

† for all repetitions k ∈ [1, K] and all lengths m ∈ [0,M ].
Fit to Eq. (2.28) and extract the depolarizing parameter α′1, which will be explained
below.

3. Calculate the average gate error of G from [17]

rG =
d− 1

d

(
1− α′1

α1

)
, (2.31)

where d = 2 for a single qubit gate.

Figure 2.3: One Clifford sequence of length m in the single qubit IRB protocol. This gate
sequence is applied to the qubit in the ground state, and the σ̂z operator is measured after
the recovery gate, Gm+1 = (GmG...GG1)†. Each Clifford gate Gi in the sequence depicted
in light brown is the ideal, unitary implementation of the noisy Clifford gate G̃i, that has
an associated average error channel Ē1 shown in red. The noisy gate of interest G̃, whose
average error we are interested in finding, is interleaved between every two noisy Clifford
gates G̃i. G̃ is also decomposed into the perfectly unitary gate of interest G shown in
light blue, and its associated error channel E shown in purple.

In order to be able to write the twirl in Eq. (2.24), it is important that the gate of
interest is part of the single qubit Clifford group C1. We again assume that each noisy
Clifford gate has an associated average error channel Ē1 such that G̃i,k = Ē1 ◦Gi,k. Here
we also assume that we can write the noisy gate of interest G̃ = E ◦ G in terms of its
ideal, unitary description, G, and the average error channel associated with it, E . Then
we can write the average sequence superoperator for IRB in a similar way as we did in
Eqs. (2.20) and (2.21) [17]:

Sm =
1

K

K∑
k=1

Ē1 ◦
(
©m

i=1 G
†
i,k ◦G

† ◦ E ◦ Ē1 ◦G ◦Gi,k

)
. (2.32)

One can follow the same derivation steps to obtain this equation as I did in the previous
section. The twirl is now the average of the composed channel E ◦ Ē1, which in Liouville
representation becomes a matrix multiplication:

TC1(EĒ1) =
1

|C1|
∑
G∈C1

G†EĒ1G. (2.33)
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As shown in [17], the zeroth order model of this twirl describes a depolarizing channel,

ΛIRB(ρ1) = ΛI(ρ1) ◦ Λ1(ρ1) = (1− α′1)
1

2
+ α′1ρ1, (2.34)

with a depolarizing parameter α′1. Thus, we can extract α′1 from a fit to Eq. (2.28), and
use it in Eq. (2.31) to find the average gate error associated with G̃.

2.3.3 Multi-qubit simultaneous RB

The n-qubit simultaneous RB (SRB) measurement consists of n simultaneous applica-
tions of the single qubit RB protocol on n qubits. Hence, this technique can be used to
estimate the average error of the n-qubit channel per simultaneous application of n ele-
ments from the single qubit Clifford group, or equivalently per simultaneous application
of one element from the n-fold tensor product of this group, C⊗n1 . Moreover, as will be
explained in this section, this technique also allows to characterize the amount of multi-
qubit crosstalk in the algorithm, as well as the amount and the degree of correlated errors
between the different single qubit subspaces.

The n-qubit SRB experiment as implemented in this thesis is an extension of the
theory and implementation by Gambetta et al. in Ref. [9]. The experimental protocol is
as follows, see also Fig. 2.4:

1. Choose a sequence length m in the interval [0,M ], where M is the longest sequence
used in the experiment.

2. Prepare the n qubits in the +1 eigenspace of a chosen Pauli operator. Here we
choose the σ̂z

⊗n operator and the initial state |0〉⊗n.

3. For each qubit s ≤ n, generate m random Clifford elements {Gi,s}i∈[1,m] sampled
uniformly from the single qubit Clifford group C1.

4. For each qubit s ≤ n, generate the (m+ 1)st recovery gate to be the inverse of the
previous m gates on that qubit, Gm+1,s = (Gm,s...G1,s)

†.

5. Apply the generated sequences Gm+1,sGm,s...G1,s simultaneously to each qubit s,
for all s ≤ n. Measure all the single-qubit operators σ̂z,s as well as all the possible
combinations of multi-qubit operators σ̂z,i ⊗ σ̂z,j ⊗ ...⊗ σ̂z,s, for all s ≤ n. In order
to use Ref. [39] to estimate upper bounds on the confidence intervals around the
data points and the quantities of interest, it is important that all these measure-
ment operators stabilize the initial state in the corresponding s-qubit subspace. See
Ref. [31] for details about the quantum stabilizer formalism.

6. Repeat step 5 a large number of times N (typically N > 210) and average all the
N measurement shots for each qubit to obtain 〈σ̂z,i ⊗ ...⊗ σ̂z,s〉 for all s ∈ [1, n]. A
larger value of N improves the statistical accuracy of the RB results; see Sec. 3.2.2.

7. Repeat steps 2-6 K times in order to sample the n-fold tensor product of the Clifford
group K times, and average all the K measured values of 〈σ̂z,i ⊗ ... ⊗ σ̂z,s〉 for all
s ≤ n. As in the single qubit protocol, the value for K depends on the desired
accuracy of the RB results due to finite sampling of C1 for each qubit.

8. Repeat steps 2-7 for all sequence lengths m ∈ [0,M ].
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Figure 2.4: n single qubit Clifford sequences each of length m applied simultaneously to
all n qubits in the multi-qubit simultaneous RB protocol. The entire n× (m+ 1) multi-
qubit gate sequence is applied to the collective ground state of the n-qubit system |0〉⊗n,
and the operators σ̂⊗sz for all the possible s ≤ n-qubit subspaces are measured after
the n simultaneously applied recovery gates, Gm+1,s = (Gm,s...G1,s)

†, s ∈ [1, n]. Each
simultaneous application of n unitary single qubit Clifford gates Gi,s, i ∈ [1,m+ 1], s ∈
[1, n], shown in light brown can be thought of as a multi-qubit gate, with its associated
average multi-qubit error channel Ē⊗n shown in red.

From here on, I will simply write σz,i...σz,s instead of σ̂z,i ⊗ ...⊗ σ̂z,s.
We denote by Ē⊗n the CPTP multi-qubit error map associated with a single simul-

taneous application of n noisy Clifford elements, G̃i,1G̃i,2...G̃i,n. The protocol described
above twirls the error channel Ē⊗n with the n-fold tensor product of the single qubit Clif-
ford group, C⊗n1 . If we assume that each G̃i,s, s ≤ n, acts independently in its respective
single qubit subspace, then the irreducible representations of this group are given by the
n-fold product (s0 ⊗ s1)n of the two irreducible and independent representations s0 and
s1 of the single qubit Clifford group discussed in the previous section [9]. More explicitly,
an n-qubit SRB experiment has the irreducible representations given by the action of the
group C⊗n1 in each of the following subspaces:

11...1,

σ1...1, σ ∈ {σx, σy, σz}
1σ...1, σ ∈ {σx, σy, σz}
...

σ1σ21...1, σ1, σ2 ∈ {σx, σy, σz}
1σ1σ2...1, σ1, σ2 ∈ {σx, σy, σz}
...

σ1σ2...σs1...1, σ1, σ2, ...σs ∈ {σx, σy, σz}
1σ1σ2...σs1...1, σ1, σ2, ...σs ∈ {σx, σy, σz}
...

σ1σ2σ3...σn, σ1, σ2, ..., σn ∈ {σx, σy, σz}. (2.35)

Thus, again using Schur’s lemma, we can write the twirl over the group C⊗n1 as

TC⊗n
1

(Ē⊗n) =
∑

ς∈{(s0⊗s1)n}

Tr(Ē⊗nPς)

Tr(Pς)
Pς , (2.36)
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where Pς are now the projectors into each of the irreducible subspaces in Eqs. (2.35).
Hence, this twirl implements the depolarizing channel ΛC⊗n1

, which is now a composition

of the depolarizing channels in each of the subspaces in Eqs. (2.35). In other words,
this channel can be expressed a composition of all the depolarizing channels on s ≤ n
qubits [9],

ΛC⊗n1
=
(
©
i≤n

Λ
(n)
i

)
◦
(
©
i,j≤n
i<j

Λ
(n)
ij

)
◦
(
©

i,j,k≤n
i<j<k

Λ
(n)
ijk

)
◦ ... ◦ Λ

(n)
12...n, (2.37)

where we define each Λ
(n)
ij...s to be the depolarizing channel acting only in the s-qubit

subspace in an n-qubit SRB experiment, while leaving the other qubit subspaces unper-
turbed. Therefore, Λ

(n)
ij...s acts only on the coefficients of ρ̂n in Eq. (2.16) that are in the

s-qubit subspace according to the following maps:∑
i≤n

∑
ς=x,y,z

ρς,iσς,i
Λ
(n)
i−−→

∑
i≤n

α
(n)
i

∑
ς=x,y,z

ρς,iσς,i, (2.38)

∑
i,j≤n
i<j

∑
ς,ς′=x,y,z

ρςς′,ij σς,iσς′,j
Λ
(n)
ij−−→

∑
i,j≤n
i<j

α
(n)
ij

∑
ς,ς′=x,y,z

ρςς′,ij σς,iσς′,j (2.39)

...

Here, each α
(n)
ij...s is the depolarizing parameter that describes the depolarizing strength

on the s-qubit subspace while simultaneously twirling the subspace on the remaining
(n− s) qubits. I point out here for clarity that the number or letter in parentheses in the
exponential, (n), will always denote the number of qubits operated on simultaneously,
i.e. an n-qubit SRB experiment. This notation will also indicate that the quantity is an
experimentally measured quantity.

Before we move on, let us explicitly write Eqs. (2.37)-(2.39) for a 2-qubit SRB ex-
periment, which has been implemented in Refs. [9] and [37]. Eq. (2.37) becomes simply

ΛC⊗2
1

= Λ
(2)
1 ◦ Λ

(2)
2 ◦ Λ

(2)
12 , (2.40)

where we have the two single qubit channels Λ
(2)
1 , Λ

(2)
2 , and the two-qubit channel Λ

(2)
12 .

By writing out the expression for ρ2 in the 2-qubit Pauli basis using Eq. (2.16),

ρ2 =
1

4
+ (ρx,1σx,1 + ρy,1σy,1 + ρz,1σz,1) +

(ρx,2σx,2 + ρy,2σy,2 + ρz,2σz,2) +

(ρxx,12σx,1σx,2 + ρxy,12σx,1σy,2 + ρxz,12σx,1σz,1 +

ρyx,12σy,1σx,2 + ρyy,12σy,1σy,2 + ρyz,12σy,1σz,2 +

ρzx,12σz,1σx,2 + ρzy,12σz,1σy,2 + ρzz,12σz,1σz,2), (2.41)

the actions of Λ
(2)
1 ,Λ

(2)
2 , and Λ

(2)
12 on ρ2 can be described by the following maps:

ρx,1, ρy,1, ρz,1
Λ
(2)
1−−→ α

(2)
1 ρx,1, α

(2)
1 ρy,1, α

(2)
1 ρz,1, (2.42)

ρx,2, ρy,2, ρz,2
Λ
(2)
2−−→ α

(2)
2 ρx,2, α

(2)
2 ρy,2, α

(2)
2 ρz,2, (2.43)

ρxx,12, ρxy,12, ..., ρzz,12

Λ
(2)
12−−→ α

(2)
12 ρxx,12, α

(2)
12 ρxy,12, ..., α

(2)
12 ρzz,12. (2.44)
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Hence, we can define the total depolarizing parameter associated with the total 2-qubit
channel ΛC⊗2

1
as the sum of the depolarizing parameters from each subspace, weighted by

the number of terms in that subspace:

ᾱ2 =
1

15

(
3α

(2)
1 + 3α

(2)
2 + 9α

(2)
12

)
, (2.45)

where we normalize by ∑
P∈{{σx,σy ,σz}2}

Tr(P) = 15. (2.46)

Notice that this normalization constant is just the sum of all the terms in Eq. (2.45).
From this analysis for a 2-qubit SRB experiment, it is easy to see that the depolarizing

parameter associated with the full multi-qubit ΛC⊗n1
channel is given by

ᾱn =
1

A

(∑
i≤n

3α
(n)
i +

∑
i,j≤n
i<j

9α
(n)
ij +

∑
i,j,k≤n
i<j<k

27α
(n)
ijk + ...+ 3nα

(n)
12...n

)
, (2.47)

where α
(n)
ij...s are the depolarizing strengths of the subspace specific channels in Eq. (2.37),

and A is a normalization constant equal to

A =
∑

P∈{{σx,σy ,σz}n}

Tr(P). (2.48)

The factors in front of the depolarizing parameters count all the Pauli basis elements
in the respective s-qubit subspace, i.e. all the possible permutations with repetition of
tensor products of s operators from the set of Pauli operators {σx, σy, σz}. Note that all
the Pauli basis elements in a given s-dimensional subspace have the same depolarizing
parameter. This is a consequence of doing a complete twirl over C⊗n1 , which leads on
average to equivalent mixing rates along each basis vector in the s-dimensional Bloch
sphere.

Experimentally, we can obtain each α
(n)
ij...s by measuring the expectation values of the

s-qubit correlators 〈σz,iσz,j...σz,s〉, and fitting to the exponential decay in Eq. (2.28). Once
we calculate ᾱn, we can define the multi-qubit average fidelity of the channel ΛC⊗n1

with

respect to the identity map 1
⊗n as [9]

F̄(ΛC⊗n1
, 1⊗n) = Tr

(
MnΛC⊗n1

(ρ0,n)
)

= 1− (d− 1)(1− ᾱn)

d
, (2.49)

where d = 2n is the dimension of the n-qubit Hilbert space, ρ0,n = (|0〉〈0|)⊗n is the initial

density matrix, and M̂n = (1⊗n + σ̂⊗nz )/d is the measurement operator which projects
into the +1 eigenspace of the stabilizer σ̂⊗nz .

We can also define the average multi-qubit channel infidelity as the overlap between
the n-qubit error channel and the identity map:

r(ΛC⊗n1
) = rn = 1− F̄(ΛC⊗n1

, 1⊗n) =
(2n − 1)(1− ᾱn)

2n
. (2.50)

From here onward, I will refer to this last quantity as the multi-qubit error and I will
always denote it by rn.

In the remainder of this section, I will describe how the SRB formalism can be used to
quantify the amounts of crosstalk and correlated errors in multi-qubit experiments, and
to investigate what degree of correlated errors has the dominant effect in the multi-qubit
system.
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2.3.4 Investigating the amount of crosstalk with multi-qubit SRB

In the context of the SRB formalism, we define multi-qubit crosstalk as the increase in
the infidelity of each single qubit error channel Λ

(n)
i with n, the number of simultaneously

operated qubits.
We calculate the infidelity r

(n)
1,i associated with the error channel acting on the subspace

of qubit i in the n-qubit SRB experiment as

r
(n)
1,i = 1− Tr

(
MiΛC⊗n1

(ρ0,n)
)

=
1− α(n)

i

2
. (2.51)

Here, the measurement operator M̂i = (1 + σ̂z,i)/2 projects the final qubit state into the

+1 eigenspace of the single qubit stabilizer σ̂z,i, and the depolarizing parameter, α
(n)
i , is

obtained from measurements of the single qubit observable σ̂z,i for qubit i.

In Sec. 4, I will show and discuss the amount of crosstalk found by calculating r
(n)
1,i

for each qubit i in all combinations of SRB experiments on up to four qubits that were
performed in this work.

2.3.5 Investigating the degree of correlated errors with multi-qubit SRB

In this section I will focus on n-qubit SRB experiments with n ∈ {1, 2, 3, 4} in order to
describe how the theory in Sec. 2.3.3 can be used to investigate whether the multi-qubit
error channel implemented by the SRB protocol contains any correlations between the
errors acting in the individual qubit subspaces. Formally, an n-qubit error channel En,
with an associated strength ε and n-qubit operator Ô, has the following action on the
n-qubit density matrix ρ̂n:

ρ̂n
En−→ (1− ε)ρ̂n + εÔρ̂nÔ†. (2.52)

En is a correlated error channel if it cannot be written as a composition of n single qubit
error channels, En 6= E1 ◦ E2 ◦ ... ◦ En.

We can further develop the theory in the previous section to characterize the degree
of the correlated errors between different subspaces in the n-qubit algorithm. To this
end, we can calculate lower bounds on the multi-qubit error under the assumption that it
contains correlations of degree only up to s < n, and use these results to investigate what
is the smallest correlated subspace s that will describe the true, experimentally-obtained
multi-qubit error rn that contains all degrees of correlations (Eqs. (2.47) and (2.50)). In
this section I develop the theory for these characterization tools, and in Sec. 4 I will show
and discuss the experimental results.

I will start by writing down the total multi-qubit depolarizing parameter in Eq. (2.47)
for a 4-qubit SRB experiment:

ᾱ4 =
1

255

(
3α

(4)
1 + 3α

(4)
2 + 3α

(4)
3 + 3α

(4)
4 +

9α
(4)
12 + 9α

(4)
13 + 9α

(4)
14 + 9α

(4)
23 + 9α

(4)
24 + 9α

(4)
34 +

27α
(4)
123 + 27α

(4)
124 + 27α

(4)
134 + 27α

(4)
234 + 81α

(4)
1234

)
, (2.53)

where each α
(4)
i are extracted from measuring the expectation values of the single qubit

observables 〈σz,i〉 for all qubits i ≤ 4, α
(4)
ij are extracted from measuring the expectation
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values of the two-qubit correlators 〈σz,iσz,j〉, and so on. Notice that the ability to measure
all combinations of s-qubit correlations for all s ≤ 4 is required in order to measure all
the depolarizing parameters in Eq. (2.53).

Below I will re-express the total error channel ΛC⊗n1
and its associated total depolar-

izing parameter ᾱn under various assumptions about which subspace contains correlated
errors. I will use the notation α̃n,s for the multi-qubit depolarizing parameters, where
s < n denotes the largest subspace where we assume to have correlations. I will then
use Eq. (2.53) as a baseline against which to compare these quantities in order to make
some theoretical predictions about what one would expect to find from calculating these
objects.

2.3.5.1 Completely correlated errors

If we assume that all the errors in the different subspaces are completely correlated, then
the average error channel Ē⊗n implemented by SRB describes the full n-qubit depolarizing
channel, ΛCn , obtained by twirling with the full n-qubit Clifford group, Cn. In this case,

all subspaces will depolarize at the same rate given by the depolarizing parameter α
(n)
ij...s =

α
(n)
12...n, for all s ≤ n.

This case is added here for completion. We did not perform this experiment, since
twirling over the whole n-qubit Clifford group becomes experimentally unfeasible for
n = 4 (the number of elements in the full 2-qubit Clifford group is already 11520; see [37]
for details). We also did not investigate this assumption in our analysis of the SRB results,
since it is unlikely that the error channel ΛC⊗n1

associated with n simultaneously applied
single qubit Clifford elements contains only n-qubit correlations, i.e. that the multi-qubit
error is a perfectly entangling gate.

2.3.5.2 Completely uncorrelated errors

If the errors in all the individual s-qubit subspaces are completely uncorrelated, then
the total error channel can be written as Ē⊗n = Ē1 ◦ Ē2 ◦ ... ◦ Ēn. This implies that each
subspace-specific depolarizing channel in Eq. (2.37) depolarizes each single qubit subspace
independently. Thus, we can write

ΛC⊗n1
= Λ

(n)
1 ◦ Λ

(n)
2 ◦ ... ◦ Λ(n)

n , (2.54)

where Λ
(n)
i denotes the depolarizing channel acting only in the subspace of qubit i in the

n-qubit SRB experiment. As a result, we can also write each α
(n)
12...s = α

(n)
1 α

(n)
2 ...α

(n)
s for

s ≤ n, where α
(n)
i is the measured depolarizing parameter acting only on the subspace of

qubit i in the n-qubit SRB experiment. Eq. (2.47) then becomes

α̃n,1 =
1

A

(∑
i≤n

3α
(n)
i +

∑
i,j≤n
i<j

9α
(n)
i α

(n)
j +

∑
i,j,k≤n
i<j<k

27α
(n)
i α

(n)
j α

(n)
k +...+3nα

(n)
1 α

(n)
2 ...α(n)

n

)
, (2.55)
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and, in particular, for the 4-qubit SRB experiment we have

α̃4,1 =
1

255

(
3α

(4)
1 + 3α

(4)
2 + 3α

(4)
3 + 3α

(4)
4 +

9α
(4)
1 α

(4)
2 + 9α

(4)
1 α

(4)
3 + 9α

(4)
1 α

(4)
4 + 9α

(4)
2 α

(4)
3 + 9α

(4)
2 α

(4)
4 + 9α

(4)
3 α

(4)
4 +

27α
(4)
1 α

(4)
2 α

(4)
3 + 27α

(4)
1 α

(4)
2 α

(4)
4 + 27α

(4)
1 α

(4)
3 α

(4)
4 + 27α

(4)
2 α

(4)
3 α

(4)
4 +

81α
(4)
1 α

(4)
2 α

(4)
3 α

(4)
4

)
. (2.56)

Ideally, we would like to have no correlated errors in our n-qubit algorithm. To inves-
tigate if this is the case, we notice that we would expect to find ᾱn = α̃n,1 if the errors
are completely uncorrelated. Therefore, we calculate the quantity ∆ᾱn = ᾱn − α̃n,1, or
equivalently ∆rn = r̃n,1 − rn, where r̃n,1 is the completely uncorrelated multi-qubit error
given by

r̃n,1 =
(2n − 1)(1− α̃n,1)

2n
. (2.57)

Then the presence of correlated errors will be signaled by checking the following condi-
tions:

∆rn = 0 → no observed correlated errors,

∆rn > 0 → some correlated errors,

∆rn = r̃n,1 − rn. (2.58)

If there are correlated errors, the quantities ∆ᾱn and ∆rn as defined above will always be
positive because it is always true that α12...s ≥ α1α2...αs, for all s ≤ n. I will prove this
statement for an n = 2-qubit SRB experiment in Appendix B, and I will give an intuitive
explanation for this inequality in Sec. 4.2.

Next we will focus on the 4-qubit SRB experiment and consider the case ∆ᾱ4 > 0,
i.e. we cannot interpret our measured α

(4)
ij...s as simply being the uncorrelated product

α
(4)
i α

(4)
j ...α

(4)
s for all s ≤ 4. Consequently, we can investigate whether the quantity ᾱ4

calculated from all correlators can be fully explained by α̃4,2 calculated only from the

depolarizing parameters α
(4)
i and α

(4)
ij , which capture the effects of uncorrelated errors

and 2-qubit correlated errors. If this is also not the case, we can further investigate how
well we can explain ᾱ4 by also including the 3-qubit correlators, i.e. we consider α̃4,3

which is calculated only from the depolarizing parameters α
(4)
i , α

(4)
ij , and α

(4)
ijk describing

1-, 2-, and 3-qubit correlations. To investigate these effects theoretically, we first rewrite
ΛC⊗n1

in a more general framework from which we can derive the 4-qubit errors in the two
cases mentioned above.

2.3.5.3 Subspace specific correlated errors

The most general theoretical model of the n-qubit SRB protocol should describe the
map ΛC⊗n1

as a weighted sum of the completely correlated n-qubit error channel ΛCn , the
completely uncorrelated n-qubit error channel, Λ1 ⊗ Λ2 ⊗ ... ⊗ Λn, and all the n-qubit
error channels where only the s-dimensional subspace is fully correlated, for all s < n.
For example, if we denote ΛCn = Λ12...n, the channels for the 2-, 3-, and 4-qubit SRB
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experiments are written in this new framework as:

ΛC⊗2
1

= a2 Λ12 + b2 (Λ1 ◦ Λ2), (2.59)

ΛC⊗3
1

= a3 Λ123 + b3 (Λ1 ◦ Λ23) + c3 (Λ2 ◦ Λ13) + d3 (Λ3 ◦ Λ12) +

e3 (Λ1 ◦ Λ2 ◦ Λ3), (2.60)

ΛC⊗4
1

= a4 Λ1234 +

b4 (Λ1 ◦ Λ234) + c4 (Λ2 ◦ Λ134) + d4 (Λ3 ◦ Λ124) + e4 (Λ4 ◦ Λ123) +

f4 (Λ12 ◦ Λ34) + g4 (Λ13 ◦ Λ24) + h4 (Λ14 ◦ Λ23) ◦

t4 (Λ1 ◦ Λ2 ◦ Λ34) + u4 (Λ12 ◦ Λ3 ◦ Λ4) + v4 (Λ1 ◦ Λ3 ◦ Λ24) +

w4 (Λ13 ◦ Λ2 ◦ Λ4) + x4 (Λ1 ◦ Λ4 ◦ Λ23) + y4 (Λ14 ◦ Λ2 ◦ Λ3) +

z4 (Λ1 ◦ Λ2 ◦ Λ3 ◦ Λ4). (2.61)

Here, the prefactors indicate the strength of each type of depolarizing effect in the full
ΛC⊗n1

channel, and normalization requires the conditions an + bn + ... = 1 for all n ∈
{2, 3, 4}. Each of the channels Λij...s in Eqs. (2.59), (2.60), (2.61) are theoretical objects
used only in the context of this description in order to indicate the presence of the
different types of error correlations in the total n-qubit channel; they are not measured
quantities. Indeed, our 4-qubit SRB experiment does not grant us access to all these
quantities. In particular, all Λij...s with s > 1 are theoretical quantities that denote the
completely correlated s-qubit channels ΛCs , which are experimentally inaccessible by the
SRB protocol.

We will now focus on the 4-qubit SRB experiment. Each measured depolarizing param-
eter α

(4)
ij...s is still obtained from measuring the s-qubit correlators 〈σz,iσz,j...σz,s〉. Using

Eq. (2.61) we can express each of these measured quantities in terms of some undeter-
mined theoretical depolarizing parameters αij...s corresponding to each of the theoretical

depolarizing channels Λij...s in Eq. (2.61). For example, the measured parameter α
(4)
12 in

the 4-qubit SRB experiment is given by

α
(4)
12 = a4 α1234 +

b4 α1α234 + c4 α2α134 + d4 α124 + e4 α123 +

f4 α12 + g4 α13α24 + h4 α14α23 +

t4 α1α2 + u4 α12 + v4 α1α24 +

w4 α13α2 + x4 α1α23 + y4 α14α2 +

z4 α1α2. (2.62)

Analyzing the 4-qubit experiment in this more general framework allows us to investigate
the multi-qubit depolarizing parameter ᾱ4 from Eq. (2.53) in cases where the errors are
correlated only in certain qubit subspaces but not in others.

Only single qubit errors and 2-qubit correlated errors

If the largest subspace that has correlated errors is the 2-qubit subspace, then a4 = b4 =
c4 = d4 = e4 = 0 in Eqs. (2.61) and (2.62). We obtain the multi-qubit depolarizing
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parameter α̃4,2 for the 4-qubit channel ΛC⊗4
1

containing only up to 2-qubit correlations by

expressing all remaining non-zero terms in Eq. (2.53) in a similar form as in Eq. (2.62).
Collecting like terms, we obtain

α̃4,2 =
1

A

[ ∑
i≤4

xiαi +∑
ij≤4
i<j

(xijαij + x̃ijαiαj) +

∑
ijk≤4
i<j<k

(xijkαiαjk + x̃ijkαiαjαk) +

∑
ijkl≤4
i<j<k<l

(xijklαijαkl + x̃ijklαiαjαkl + x′ijklαiαjαkαl)
]
, (2.63)

where the prefactors xij...s, x̃ij...s, and x′ijkl are unknown constants denoting the weight
of each term in each sum. Determining all these prefactors would give us access to all
the information about how much of each degree of correlated errors occurs in the 4-
qubit experiment. However, this system of equations is overdetermined; we only measure
14 depolarizing parameters α

(4)
ij...s, s ≤ 4, but we have many more unknown prefactors

in Eq. (2.63). However, since we are primarily interested in determining the minimum
type of error correlations (2-qubit, 3-qubit, or 4-qubit) that will completely describe our
measured ᾱ4, we will take the following approach. In order to see if assuming only 2-qubit
correlations is enough to explain the observed ᾱ4 containing all degrees of correlations,
we will express all the measured α

(4)
ijk and α

(4)
1234 in terms of only the measured single

qubit parameters α
(4)
i , and the 2-qubit-correlated parameters α

(4)
ij . Using now only these

measured quantities in Eq. (2.63), the total depolarizing parameter α̃4,2 becomes:

α̃4,2 =
1

A

[ ∑
i≤4

3 α
(4)
i +

∑
ij≤4
i<j

9 α
(4)
ij +

∑
ijk≤4
i<j<k

(
xijkα

(4)
i α

(4)
jk + x̃ijkα

(4)
i α

(4)
j α

(4)
k

)
+

∑
ijkl≤4
i<j<k<l

(
xijklα

(4)
ij α

(4)
kl + x̃ijklα

(4)
i α

(4)
j α

(4)
kl + x′ijklα

(4)
i α

(4)
j α

(4)
k α

(4)
l

)]
. (2.64)

Instead of minimizing this system of equations in order to find the unknown prefactors,
we will estimate an upper bound of α̃4,2 by calculating
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α̃max
4,2 =

1

255

[ ∑
i≤4

3α
(4)
i +

∑
ij≤4
i<j

9α
(4)
ij +

∑
ijk≤4
i<j<k

27 max
(
α

(4)
i α

(4)
jk , α

(4)
i α

(4)
j α

(4)
k

)
+

81 max{α(4)
ij α

(4)
kl , α

(4)
i α

(4)
j α

(4)
kl , α

(4)
i α

(4)
j α

(4)
k α

(4)
l } ijkl≤4

i<j<k<l

]
. (2.65)

If the equation above gives α̃max
4,2 = ᾱ4 within the experimental error bars, then it is an

indication that the effects from correlated errors between more than 2 qubits might have
a negligibly small contribution to our error channel compared to the effects from 2-qubit
correlated errors. Hence, it would suggest that including only 2-qubit correlated errors in
our model for ᾱ4 is a sufficiently good description of the observed multi-qubit error.

If, on the other hand, we calculate Eq. (2.65) and obtain within the error bars that
α̃max

4,2 < ᾱ4 (or equivalently, r̃max
4,2 > r̄4), then we can conclude with certainty that 2-qubit

correlated errors are not the only types of correlations in our system, and thus that it
is also important to consider higher order correlations. Obtaining a model that includes
both 2- and 3-qubit correlated errors is the topic of the next section.

Single qubit errors and both 2- and 3-qubit correlated errors

If the largest subspace that has correlated errors is the 3-qubit subspace, then only a4 = 0
in Eqs. (2.61) and (2.62). Proceeding like we did in the previous section, we can write
the most general form of the total depolarizing parameter that includes 2- and 3-qubit
correlations as

α̃4,3 = α̃4,2 +
1

A

( ∑
ijk≤4
i<j<k

x′ijkαijk +
∑
ijkl≤4
i<j<k<l

x′′ijklαiαjkl

)
, (2.66)

with α̃4,2 from Eq. (2.63), and the unknown prefactors x′ijk and x′′ijkl as explained in the
previous section.

As before, we again only estimate the upper bound of α̃4,3 by calculating α̃max
4,3 from

the measured single qubit depolarizing parameters α
(4)
i , and the ones that describe 2- and

3-qubit correlations, α
(4)
ij and α

(4)
ijk, respectively:

α̃max
4,3 =

1

255

[∑
i≤4

3α
(4)
i +

∑
ij≤4
i<j

9α
(4)
ij +

∑
ijk≤4
i<j<k

27α
(4)
ijk + (2.67)

81 max{α(4)
i α

(4)
jkl, α

(4)
ij α

(4)
kl , α

(4)
i α

(4)
j α

(4)
kl , α

(4)
i α

(4)
j α

(4)
k α

(4)
l } ijkl≤4

i<j<k<l

]
.

If we obtain α̃max
4,3 = ᾱ4 within the error bars, then it is an indication that our system

might contain only 2- and 3-qubit correlated errors, and that the model described by
Eq. (2.67) explains our system well enough that we do not have to also consider effects
from 4-qubit correlated errors.
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If, however, α̃max
4,3 < ᾱ4 (r̃max

4,3 > r̄4), then we can conclude that effects from higher
order correlations are also statistically significant, and we should proceed to include them
in our analysis. However, since the qubits used in our experiments were either pairwise
coupled by a bus resonator or physically uncoupled (see Sec. 2.1.1 and Sec. 3.1), we do
not expect to find strong 3- and 4-qubit correlated errors in our algorithm, and hence we
expect to find that our system contains predominantly 2-qubit correlated errors.
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3 Experimental Implementation

In this section I will describe how the single qubit randomized benchmarking (RB) and
the multi-qubit simultaneous RB (SRB) experiments described in the previous section
were implemented in the lab. I will start with a brief description of our room-temperature
experimental setup, and some of the digital signal processing techniques that were used
to manipulate and read out the qubits. I will emphasize the features of our detection
instrument, the Zurich Instruments (ZI) Ultra High Frequency Lock-In Quantum Con-
troller (UHFLI-QC), that we used to achieve fast multiplexed single-shot readout of the
individual qubits and their correlators for the SRB experiments.

I will then explain the concept and our implementation of virtual Z (V Z) gates,
introduced by McKay et al. [2]. As a small digression from RB, I will emphasize the
usefulness of the V Z gates by describing how they can be used to correct the single
qubit dynamic phases acquired by each qubit during a fluxing operation (see Sec. 2.2.1
for a discussion of flux line crosstalk). Then I will discuss how the V Z gates were used
during this project to decompose the single qubit Clifford group into single qubit primitive
gates using the HV Z decomposition introduced in Ref. [2]. I compare the results from
performing standard RB on qubits 3, 4, 5, and 7, using both the HV Z and the traditional
XYπ

2
[19] decompositions, and then I will show and discuss results from interleaved RB

(IRB) with both V Z and real gates as interleaved gates.

3.1 Description of the multi-qubit setup

In this section I will describe the experimental setup and in particular the features of the
detection instrument that were used to successfully measure SRB on up to four qubits.
The four qubits used in our experiments were qubits 3, 4, 5, and 7, denoted by qb3,
qb4, qb5, and qb7. Their placement on the quantum processor was shown in Fig. 2.1 and
is also illustrated here schematically in Fig. 3.1 (a); see Sec. 2.1.1 for details about the
processor. For all the SRB experiments presented in the last section of this work, these
qubits were parked at their sweet spots given by the approximate frequencies {6.20, 6.27,
6.11, 6.12} GHz for {qb3, qb4, qb5, qb7}, respectively; see the diagram in Fig. 3.1 (b)
showing the important frequency components in the setup. At these parking positions,
the qubits had energy relaxation times, T1, of approximately {4.5, 3.0, 1.1, 3.1} µs and
dephasing times, T2, obtained from Echo measurements of approximately {7.2, 5.7, 2.2,
5.3} µs.

Fig. 3.1 (a) also shows the instruments that were used to operate and read out the
qubits in the (S)RB experiments. The real and imaginary components of the pulse se-
quences used to drive each qubit are generated in software and uploaded onto the corre-
sponding channels of the arbitrary waveform generators (AWGs). In our setup, qubits 4
and 5 use the channel pairs Ch3-Ch4 and Ch1-Ch2 of AWG1, respectively, while qubits 3
and 7 use the channels pairs Ch3-Ch4 and Ch1-Ch2 of AWG2, respectively. These pulses
are generated at relatively low frequencies called the drive intermediate frequencies (IFs).
In order to drive each qubit on resonance, these low IFs must be increased or upconverted
to reach each qubit’s frequency of around 6 GHz. This upconversion process is achieved
with an IQ mixer. The mixer generates a complex-valued pulse-shape by multiplying a
high frequency local oscillator (LO) tone with two signals at the IF frequency: the real, or
in-phase (I) component with zero phase, and the imaginary, or quadrature (Q) component
with a phase of 90◦. In Fig. 3.1 (a) we see that the I and Q pulses are provided by the
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Figure 3.1: (a) The four qubits used in the experiments presented in this work and the
room-temperature control instruments. The qubits are schematically illustrated by the
red circles denoting two-level systems. The gray qubit is qubit 6, which was not used in
our SRB experiments. See Sec. 2.1.1 for details about the processor. The flux lines were
omitted in this illustration since they were not used during the SRB experiments. The
two arbitrary waveform generators (AWGs) are identical Tektronix 5014 instruments, and
all microwave generators are Rohde Schwarz SGS100A instruments. The roles of these
control instruments are described in the main text. (b) Diagram showing the important
frequency components in the experimental setup. The parking positions of the four qubits
used in the SRB experiments are shown in red, and their readout frequencies are shown in
blue. The local oscillator (LO) frequencies used for upconverting each qubit’s drive signal,
and for up- and downconverting the multiplexed readout signal are shown in black and
yellow, respectively.
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AWGs, and the LO signal is provided by a different microwave generator (MWG) for each
qubit. The radio frequency signal at the output of the mixer, referred to as the RF signal,
has the amplitude I(t)cos(2πft) + Q(t)sin(2πft), and the frequency f = fLO + fIF = fqb,
which is tuned to be resonant with the qubit it will be applied to. For more details about
IQ mixers and about how they are used in quantum computing setups, see Refs. [23, 42].

When we tune up the setup, we first park the qubits at the desired frequencies, then
we choose drive IFs for each qubit i, and finally we calculate the LO frequencies as
fLOi = fqbi − fIFi . The reason for using waves at fIF for the I and Q ports instead of DC
voltages, is to detune the LO frequency from the resulting qubit drive pulse, and thus
avoid that the qubit is driven by leakage of the LO signal into the RF port [23]. The IF
frequencies must be chosen within the bandwidth of the AWG of a few hundred MHz;
hence, typical values for this detuning are fIF = ±100 MHz. In multi-qubit experiments, it
is also important to ensure that potential leakage of the various LO signals is not resonant
with any of the qubit frequencies. Hence, the drive LOs used in the SRB experiments are
shown in Fig. 3.1 (b), with drive IFs of -100 MHz for qubits 3 and 4, -200 MHz for qubit
5, and 100 MHz qubit 7.

As shown in Fig. 3.1 (a), all qubits capacitively couple to the same readout feedline
(yellow). As already described in Sec. 2.1.2, this design allows us to dispersively read
out all or any subset of the qubits simultaneously with high fidelity using composite
multiplexed readout pulses. These pulses are compiled in software and uploaded to the
AWG unit inside the Ultra High Frequency Lock-In (UHFLI) instrument running the
Quantum Controller (QC) firmware developed by Zurich Instruments for quantum com-
puting research (see Fig. 3.2). For short, I will refer to this instrument as the ”UHFQC.”
The UHFQC outputs the in-phase and quadrature components of the readout pulse at
a low frequency called the readout IF. These components are then similarly upconverted
to the readout resonator frequencies corresponding to each qubit. The optimal readout
frequency of each qubit that gives the highest signal-to-noise ratio (SNR) is found by
measuring the transmission spectrum of the resonator when the corresponding qubit is
in the excited state and comparing it to the spectrum measured when the qubit is in the
ground state. Then the optimal readout frequency is given by the point on the spectrum
that is most sensitive to the dispersive shift (see Sec. 2.1.1). More details about this mea-
surement can be found in Ref. [29]. Fig. 3.1 (b) shows the optimized readout frequencies
of our four qubits at approximately {6.58, 6.71, 7.20, 6.42} GHz for {qb3, qb4, qb5, qb7},
respectively.

In order to do multiplexed readout, we must choose a single LO frequency to upconvert
different qubit IFs to the respective readout frequencies, since we use only one MWG that
produces the LO signal at a fixed frequency (see Fig. 3.1). In addition, we must choose
an LO such that all the IFs are within the bandwidth of the UHFQC of 1.2 GHz, and
such that the absolute values of the IFs calculated from |fRO,i − fLO| are as spaced out
as possible for each resonator i. The latter condition is required in order to minimize
readout crosstalk due to potential spectral overlap of the different frequency components
in this composite signal, which would be upconverted to a readout pulse with spurious
frequency components (see Sec. 2.2.2). The readout LO used in the SRB experiments was
fLORO

' 6.85 GHz, and is shown in yellow in Fig. 3.1 (b).

The upconverted readout signal is sent through the readout transmission line to probe
the resonator of each qubit. The role of the Purcell filters, see Fig. 3.1 (a), in reducing
readout crosstalk was discussed in Sec. 2.2.2. At the other end of the feedline, the high
frequency signal must be decreased or downconverted back to a few hundred MHz within
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the bandwidth of the UHFQC. Downconversion is also achieved with an IQ mixer, where
now the input signal comes in through the RF port and is downconverted using the LO
signal to two low-frequency I and Q components [42]. Notice in Fig. 3.1 (a) that the
same MWG is used to provide the LO signal for both the up- and downconversion IQ
mixers. This configuration is used to perform homodyne detection [43]. Unlike heterodyne
detection where two different MWGs are used, the homodyne setup avoids any issues
from possible phase miss-matches between the two MWGs.

The I and Q components of the downconverted readout signal are then received and
digitized by the UHFQC. This instrument then proceeds to split up each component
into several different channels, and to perform separate weighted integration of the real
and imaginary parts of each channel, see Fig. 3.2. In this work we used one UHFQC
readout channel per qubit and mode-matched integration weights which are optimized to
achieve the highest SNR from the digitized transmission signal. These weights are specific
to each qubit and are obtained from measuring the averaged timetraces of the readout
resonator response when the qubit is in the ground state and when it is in the excited
state. The mode-matched integration weights are then given by the complex conjugate of
the difference between these traces [29]. The integrated real and imaginary components
are then added together with the weights wRe and wIm respectively, which then gives the
total integrated signal as [29]:

Sint =
∑
k

[
wReRe(wkDk) + wImIm(wkDk)

]
. (3.1)

Here, wk and Dk are the kth samples of the mode-matched weights and the digitized
readout signal, respectively. For all SRB measurements in this work, we used wRe = 1
and wIm = −1. See Ref. [29] for more detailed descriptions of mode-matched integration
and our detection scheme in general.

In order to measure the σ̂⊗sz correlators between all subsets of s ≤ n qubits in an n-
qubit SRB experiment, we must be able to multiply the individual measurement results,
or shots, for each qubit before averaging the shots to obtain the expectation values of
the correlators (see Sec. 2.3.3). In order to implement this procedure, we measured all
SRB experiments using single-shot readout and we used one readout channel per qubit
as explained above. Using two channels per qubit means that the real and imaginary
components of the integrated signal are stored and analyzed in software independently. In
principle, we could have used this technique and then proceeded to combine the integrated
results from the two channels in the data analysis before determining the state of the
qubit in each shot, and before multiplying the shots together to obtain the correlators.
However, as will be described below, we made use of the thresholding and correlator
features of the UHFQC to achieve data reduction, qubit state discrimination, and shot-
by-shot multiplication directly in our detection instrument. Hence, it was necessary to
combine the real and imaginary parts of the signal directly in the UHFQC in order to
use these features.

As mentioned above, it is important to use single-shot readout in order to measure
the s-qubit correlators, σ̂⊗sz . In this type of readout, the state of a qubit is determined
from one single acquisition of the signal from the readout feedline. In order to distinguish
reliably between the ground and excited states of the qubit, it is important to be able to
read out the complex transmission signal coming from the readout feedline with a high
SNR. We fulfilled this requirement by optimizing the readout frequency of each qubit and
by using mode-matched filters for each qubit readout channel as explained above. After
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Figure 3.2: Main processing units in the UHFQC that were relevant for measuring the SRB
experiments. The AWG unit in the bottom right is used to generate the I and Q signals
for the readout upconversion mixer. The four blocks in the bottom left are the weighted
integration units which integrate the real (IN1, blue) and imaginary (IN2, green) parts of
the complex readout signal. The UHFQC can be configured to send the integrated signal
to the PC directly after it is thresholded, or after it goes through both the thresholding
and correlator units. See main text for details about these last two features.

also optimizing the readout power as explained in Ref. [29], we obtained the assignment
fidelities {91.4%, 78.8%, 83.4%, 92.3%} for {qb3, qb4, qb5, qb7}, respectively.

The assignment fidelity Fa is obtained by plotting the histograms of a large number
of shots when the qubit is prepared in the ground and the excited states as a function of
the integrated signal, Sint. Fig. 3.3 shows these histograms for the four qubits used in the
SRB experiments performed in this thesis, where the qubit was prepared in the ground
state for purple and in the excited state for blue, and the dashed blue and purple lines
are fits to double-Gaussians. The assignment fidelity represents the probability to assign
the correct qubit state in each shot and is calculated as [29]

Fa = 1− 1

2

[
P(eassign|gprep)− P(gassign|eprep)

]
, (3.2)

where the last two quantities are the probabilities of incorrect state assignment. In typical
single-shot calibration measurements such as those in Fig. 3.3 (a) and (d), these proba-
bilities can be seen as the smaller Gaussians of each color. For qubits 4 and 5, there is a
relatively high chance for a qubit prepared in the excited state to be assigned to either
the ground or excited states. For qubit 5, this result occurs because the qubit decays to
the ground state and loses coherence during state preparation and measurement due to
its very low coherence times (T1 ' 1 µs, T2 ' 2 µs). For qubit 4, this behavior became
more pronounced with higher readout powers, where its readout resonator is populated
with a larger number of photons, n. As n becomes larger and approaches the critical
photon number ncritical = ∆ω2

q,r/4g
2
01, the dispersive approximation that allows us to per-

form QND measurements starts to break down [26, 29]; see Sec. 2.1.1 for a description of
the notation used for ncritical. Consequently, the qubit state starts to become mixed, or
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hybridized with that of the readout resonator. This behavior causes the qubit to decohere
and to lead to the results in Fig. 3.3 (b). On the other hand, higher readout power leads to
both a higher SNR and a better resolution of the Gaussians corresponding to the ground
and excited states. Hence, for qubit 4 we settled for the compromise shown here, which
gives us the assignment fidelity quoted above.
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Figure 3.3: Histograms of the shots measured when the qubit was prepared in the ground
state (purple) and the excited state (blue) as a function of the integrated readout signal
for qubits (a) 3, (b) 4, (c) 5, and (d) 7. The purple and blue dashed lines are fits to
double-Gaussians. The gray dashed lines represent the assignment voltage threshold that
will be used to discriminate between the qubit in the ground and excited states.

Finally, I will now describe the thresholding and correlator units of the UHFQC, which
have been used for the first time in our lab during this project. The voltage thresholds
above (below) which each qubit is assigned to be in the excited (ground) state are indi-
cated by the gray dashed vertical lines in Fig. 3.3, and are given by the values {-18.6,
-42.7, -50.1, 10.7} V for {qb3, qb4, qb5, qb7}, respectively. These values are obtained by
calculating the cumulative sums of the histograms for the qubit prepared in the ground
and excited states, and taking the voltage value of the integrated signal which gives the
largest difference between these cumulative sums. The thresholding unit of the UHFQC
allows to perform the qubit state assignment for each readout channel directly in the
detection instrument after the signal was digitally integrated (see Fig. 3.2). Based on the
values of the voltage thresholds for each qubit (or each readout channel), the thresholding
unit returns the following results for each shot at the voltage value V i

shot,k in each readout
channel i:
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0 if V i
shot,k ≤ V i

th,

1 if V i
shot,k > V i

th,

where V i
th is the voltage threshold for readout channel i. Notice that this procedure has

the added benefit that it reduces the size of the acquired data from one float (if we use one
readout channel) or two floats (for two readout channels) per qubit, to one bit per digital
data point per qubit. This reduction is important in achieving faster data processing
times inside the UHFQC, as well as in being able to store smaller data sets on the PC
and to run faster analysis routines with this data.

The thresholded results can be directly output to the PC, or they can be further
processed inside the UHFQC using the correlator unit. This unit measures the σ̂zσ̂z
correlations between two qubit states by multiplying the un-thresholded results of any
two readout channels. If the results are first thresholded, then the correlator returns the
exclusive-not-OR (XNOR) of each pair of data points given by the truth table shown in
Table 3.1.

Di
k Dj

k Di
k XNOR Dj

k

0 0 1
0 1 0
1 0 0
1 1 1

Table 3.1: Truth table for the exclusive-not-OR (XNOR) operation between two digital
bits, Di

k, D
j
k.

If we recall that 0 corresponds to the ground state and 1 corresponds to the excited state
of each qubit, then this truth table describes exactly what we would find if we measured
the two-qubit observable

σ̂zσ̂z = |00〉〈00|+ |11〉〈11| −
(
|01〉〈01|+ |10〉〈10|

)
, (3.3)

which gives +1 if both qubits are in the same state, and -1 if they are in different states.
Thus, the correlator unit in the UHFQC calculates the σ̂zσ̂z correlator between two qubits,
with the convention that 0 and 1 represent the results when both qubits are in the same
states and when they are in different states, respectively.

Even though this feature is very convenient to use in the SRB experiments, it is
limited to two qubits; the UHFQC cannot multiply more than two readout channels.
Hence, we used both the thresholding and the correlator features for all 6 two-qubit SRB
experiments (from all combinations of qubits 3, 4, 5, and 7), while for the experiments on
three and four qubits we still used the UHFQC to threshold each shot, but we performed
all the s ≤ n σ̂⊗sz correlators in our analysis routines.

3.2 Single qubit virtual Z (VZ) gates

The single qubit Z gate is an important gate in quantum computing, which has been
used in many applications including spin model simulations [13], dynamical decoupling
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schemes to reduce decoherence [35], and two-qubit gate implementations, such as the
controlled-phase (CZ) gate discussed in Sec. 2.2.1, the cross-resonance (CR) gate [4],
and the iSWAP gate [44]. A Z gate of angle φ can be implemented in several ways. For
example, one can apply a flux pulse of duration ∆t = ∆ωqb/φ to the qubit, or one can
drive the qubit with an off-resonant microwave pulse for a time ∆t = ∆ωqb/φ, where
in both cases ∆ωqb is the detuning of the qubit from its original parking position (see
Sec. 2.2.1 and Sec. 2.1.1). In any implementation, the effect of a Z gate is to produce a
counterclockwise rotation of the initial qubit state |ψ0〉 around the ẑ axis of the Bloch
sphere by an angle φ; see Fig. 3.4 (a). A virtual Z (V Z) gate is an ideal, zero-duration Z
gate that implements the equivalent effect by rotating the x̂− ŷ plane of the Bloch sphere
clockwise around the ẑ axis by the same angle φ; see Fig. 3.4 (b). This gate has zero
duration because it is completely implemented in software and no physical microwave
pulses are sent to the qubit; the V Z gate only changes the reference frame of the qubit
state vector [2].

Figure 3.4: Comparison of the effects on the Bloch sphere of a real Z gate of angle φ
(a) and a virtual Z (V Z) gate of angle φ (b). In both cases, the initial state |ψ0〉 (red)
with xy coordinates (1, 0) is rotated to the final state |ψφ〉 (green) with xy coordinates
(cos(φ), sin(φ)).

In order to understand how the V Z gate is implemented, recall the Hamiltonian for a
driven qubit in Eq. (2.6), Sec. 2.1.1. We saw that we can implement rotations about any
axis in the x̂− ŷ plane by changing the phase of the qubit drive pulse. Thus, the effect of
the V Z gate is achieved by subtracting the angle φ from the phases of all the subsequent
single qubit microwave pulses. This means that all these later pulses will rotate the state
about a set of x̂ − ŷ axes that are rotated clockwise by the angle φ with respect to the
original axes. The coordinates of the final state vector of the qubit |ψφ〉 after a sequence
containing V Z gates in this new reference frame will be the same as the coordinates of
the final state vector after a sequence with real Z gates in the original coordinate system
(see Fig. 3.4).

Support for these virtual pulses has been implemented in our main control software
framework, PycQED, during this project. For detailed descriptions of the PycQED mea-
surement and analysis framework, see Refs. [29, 32, 45]. Fig. 3.5 shows two basic mea-
surements with V Z gates to demonstrate the correct functionality of this new feature. In
Fig. 3.5 (a), we perform four measurements described by the pulse sequences indicated
next to the respective data points. Each of these four measurements was repeated 8 · 210
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Figure 3.5: Basic measurements with V Z gates. (a) Four measurements with the V Z gate
described by the pulse sequences shown next to the data points. The pulse sequences are
applied to the qubit from right to left, and each symbol χθ denotes a counterclockwise
rotation by an angle θ about the χ̂ axis of the Bloch sphere. Each cross marker represents
the average over 8 · 210 shots of the corresponding measurement, and the small circles
around each cross marker are the eight averages over 210 shots. The y-axis shows the
probability for the qubit to be in the excited state after each measurement. The black
points are calibration states [32], representing the ground and excited states of the qubit.
The dashed line at P (|e〉) = 0.5 denotes the state with equal population in the ground
and excited states. (b) A typical Ramsey measurement performed by sweeping the phase
of a V Z gate applied between two π/2-pulses separated by a varying time delay t shown
on the x-axis. The line connecting the data points is a fit to a cosine function with an
exponentially decaying envelope. The y-axis shows the probability for the qubit to be in
the excited state after each measurement, and the black points and dashed lines represent
the same three qubit states as in (a).
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times and the average values of these results are shown as crosses. The eight averages
of the 210 shots are also plotted as smaller circles, yet they are hardly visible since the
standard deviations of the individual results around the mean values are less than 1%.
The one exception is the second measurement (green cross at n = 2), which has a more
visible distribution of points with a standard deviation of ∼1%. Ideally, each of the pulse
sequences indicated in the figure should place the qubit in one of the three qubit states
indicated above the gray dashed lines. This is illustrated in Fig. 3.6, which shows the
effect on the Bloch sphere of each gate in the pulse sequences that contain a V Z gate
(the gates are applied from left to right). The average value of each measurement differs
by less than 1% from the theoretically expected value. These results demonstrate both
the accuracy of our ability to control and read out the qubits, and the reproducibility of
the correct functionality of the V Z gates.

Fig. 3.5 (b) shows a Ramsey measurement with V Z gates on a qubit with transition
frequency fqb ' 5.22 MHz and an averaged dephasing time T ∗2 ' 9.3 µs. In a typical
Ramsey measurement both the time separation between the two π/2-pulses and the phase
φ of the second π/2-pulse are varied. The latter changes according to φ(t) = t · fRamsey,
where fRamsey ' 1 MHz is the frequency of the oscillations in Fig. 3.5 (b). Detailed
descriptions of this experiment and how it is performed in our lab can be found in
Refs. [29] and [32]. In the Bloch sphere picture, the second Ramsey pulse rotates the
qubit state around an axis in the x̂− ŷ plane that is rotated counterclockwise around the
ẑ-axis at each time step. An equivalent effect can be obtained by keeping the phase of the
second π/2-pulse at zero, and varying instead the angle of a V Z pulse inserted between
the two π/2-pulses.

Next I will present two examples where the V Z gates are useful in quantum computing
algorithms. First I will describe how these gates an be used to compensate dynamic phases
in two-qubit controlled-phase gate implementations. Then I will focus on RB and describe
how the V Z gates have been used in this project to decompose Clifford gates into single
qubit primitive gates.

3.2.1 Dynamic phase correction with VZ gates

As we saw in Sec. 2.2, a fluxing operation on qubit i will cause it to acquire a dy-
namic phase φdyn,i, and crosstalk between the flux lines of different qubits will cause
the other qubits to also acquire their own dynamic phases. During the implementation
of a controlled-phase (CZ) gate it is important that these dynamic phases are removed
in order to bring the two qubits into the same reference frame [13, 33, 34]. Tradition-
ally this correction was achieved by designing flux pulse shapes that can be tuned to
exactly compensate the dynamic phases for both qubits (see [13, 33]). However, since
the CZ gate commutes with the single qubit Z gate, we can achieve the same effect by
using V Z pulses to rotate the reference frames of each qubit by their dynamic phases.
Specifically, if qubits i and j have dynamic phases φdyn,i and φdyn,j, then we apply the
gates V Z−φdyn,i and V Z−φdyn,j to each qubit before applying the flux pulse that tunes the
|g〉 ↔ |e〉 transition of one qubit into resonance with the |e〉 ↔ |f〉 transition of the other
qubit.

The pulse sequences for the phase measurement used to measure the dynamic phases
of qubit 3 and 4, and to verify the successful correction of these dynamic phases with
V Z gates are shown in Fig. 3.7. The dynamic phase is the difference between the phases
obtained from cosine fits to the red and blue traces. Thus, we measure φdyn,qb3 ' 103◦ ±
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Figure 3.6: Rotations of the qubit state vector on the Bloch sphere induced by the three
pulse sequences in Fig. 3.5 that contain a V Z gate: (a) X−90V Z−90X90, (b) Y90V Z−90X90,
(c) Y90V Z90X90. Each of these pulse sequences is applied from right to left on the qubit
initially in the ground state shown as the dashed arrows along the −ẑ axes in each
subfigure. The temporal order of the application of each pulse on the Bloch spheres is
from left to right, indicated by the black arrows.
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0.5◦ for qubit 3 and φdyn,qb4 ' −121◦ ± 0.4◦ for qubit 4. After applying the V Z pulses
to correct these phases, we see that the blue and green traces essentially overlap, with
a difference between the phases from the blue and green fits of only ∆φcorrected,qb3 '
1.6◦ ± 0.4◦ and ∆φcorrected,qb4 ' 2.2◦ ± 0.4◦ for qubits 3 and 4, respectively. Since these
values were small enough to allow the implementation of a CZ gate limited by the qubits’
coherence times, we can conclude that the dynamic phase correction with V Z gates was
successful.
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Figure 3.7: Measuring and correcting the dynamic phases acquired by qubits 3 and 4
during a fluxing operation. To measure each qubit’s dynamic phase, the pulse sequences
in (a) and (b) are used without the V Z gates (green circles). These sequences describe a
phase measurement where the flux pulse is always applied on the control qubit (qubit 4)
between two π/2-pulses on the measured qubit, where the phase θ of the second π/2-pulse
is varied. The same pulse sequence is used to measure whether the dynamic phase cor-
rection was successful by applying the V Z gates with angles −φdyn,qb3 and −φdyn,qb4 on
the corresponding qubits. (c) and (d) show the results from such measurements on each
qubit. The blue data points are obtained from measurements without the flux pulse and
no V Z pulses, the red data points are obtained from measurements with the flux pulse
but without the V Z corrections, and the green data points are the results after correcting
the dynamic phases of both qubits. The blue, red, and green solid lines are fits to cosine
functions. The y-axes in (c) and (d) show the approximate probability of the respective
qubit to be in the excited state, since calibration points were not used to measure this
data.
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3.2.2 Single qubit RB with VZ gates

In Sec. 2.3 we saw that the implementation of all the RB measurements described in
this thesis involves sampling random elements from the single qubit Clifford group, C1.
In Sec. 2.1.1, this group was defined to be the normalizer of the single qubit Pauli group,
since elements from the latter remain in the Pauli group under the conjugation action
of C1. However, in order to sample from the Clifford group, we must first generate all
the elements contained in this group, and then express these elements in terms of single
qubit gates that we can implement in the lab. In this section we will first identify the
elements in C1, and then we will compare two possible decompositions of these elements
into primitive single qubit gates.

The single qubit Clifford group has 24 elements that are given by all the possible
combinations of the elements from the following three groups [19]:

The Pauli group P = {I,X,Y,Z}, where X,Y,Z are quantum maps that describe
180◦ rotations about the x̂, ŷ, ẑ axes of the Bloch sphere.

The exchange group S = {I,S,S2}, where S,S2 are quantum maps that describe the

exchange operations (x, y, z)
S−→ (z, x, y)

S2

−→ (y, z, x), where x, y, z are the coordi-
nates of the qubit state vector on the Bloch sphere.

The Hadamard group H = {I,H}, where H is the quantum map describing the action

(x, y, z)
H−→ (z,−y, x) on the coordinates of the quantum state vector.

In all the groups above, I is the identity map. All the 24 elements of the Clifford group are
shown in the first column of Table 3.2. The last two columns show two possible decompo-
sitions of each Clifford element into primitive single qubit gates. The standard implemen-
tation is to use the XYπ

2
decomposition consisting of only the gates Xπ, Yπ, X±π

2
, and

Y±π
2
, i.e. 180◦ and ±90◦ rotations about the x̂ and ŷ axes of the Bloch sphere [19]. The

XYπ
2

decomposition has on average 1.825 primitive physical gates per Clifford element.
The HZ decomposition consists of only the gates Xπ, Zπ, X±π

2
, and Z±π

2
. The set of

pulses for this decomposition shown in the last column in Table 3.2 were obtained from
the corresponding pulses in the XYπ

2
decomposition by using the fact that any element

in the unitary group of degree 2 with determinant 1 (called the special unitary group and
denoted by SU(2)) can be written as [2]

U(θ, φ, λ) =

(
cos(θ/2) −ieiλsin(θ/2)

−ieiφsin(θ/2) ei(λ+φ)cos(θ/2)

)
= Zφ ·Xθ · Zλ. (3.4)

Using this equation we can rewrite all the primitive gates in the XYπ
2

decomposition
in terms of only X and Z gates. If we use V Z gates instead of the real Z gates, then
this decomposition becomes advantageous because it has on average only 1.125 primitive
physical gates per Clifford element. Since the fidelity of our multi-qubit algorithms is often
limited by the qubit lifetimes, a zero-duration gate that produces shorter algorithms is a
very useful tool in quantum computing.

We verify experimentally that we can measure the reduction in the average error per
Clifford as a result of using the HV Z decomposition with fewer average physical gates
per Clifford element. Fig. 3.8 shows the exponential decays of the measured expectation
values 〈σ̂z〉 as a function of the Clifford sequence length m from standard single qubit
RB measurements on qubits 3, 4, 5, and 7. The dark and light colors represent mea-
surements using the HV Z and XYπ

2
decompositions, respectively. Table 3.3 summarizes
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Clifford element XYπ
2

decomposition H(V )Z decomposition

1− 1− 1 1 1

1− 1− S Yπ/2 −Xπ/2 Xπ/2 − V Zπ/2
1− 1− S2 X−π/2 − Y−π/2 V Z−π/2 −X−π/2
X − 1− 1 Xπ Xπ

X − 1− S Y−π/2 −X−π/2 V Z−π/2 −X−π/2 − V Zπ/2 −X−π/2
X − 1− S2 Xπ/2 − Y−π/2 V Z−π/2 −X−π/2 − V Zπ
Y − 1− 1 Yπ V Z−π/2 −Xπ − V Zπ/2
Y − 1− S Y−π/2 −Xπ/2 V Z−π/2 −X−π/2 − V Zπ/2 −Xπ/2

Y − 1− S2 Xπ/2 − Yπ/2 Xπ/2 − V Z−π/2 −Xπ/2 − V Zπ/2
Z − 1− 1 Xπ − Yπ V Zπ
Z − 1− S Yπ/2 −X−π/2 V Zπ −Xπ/2 − V Zπ/2
Z − 1− S2 X−π/2 − Yπ/2 V Zπ/2 −X−π/2

1−H − 1 Yπ/2 −Xπ V Zπ/2 −Xπ/2 − V Zπ/2
1−H − S X−π/2 X−π/2
1−H − S2 Xπ/2 − Y−π/2 −X−π/2 V Zπ/2
X −H − 1 Y−π/2 V Z−π/2 −X−π/2 − V Zπ/2
X −H − S Xπ/2 Xπ/2

X −H − S2 Xπ/2 − Yπ/2 −Xπ/2 Xπ − V Zπ/2
Y −H − 1 Y−π/2 −Xπ V Z−π/2 −X−π/2 − V Zπ/2 −Xπ

Y −H − S Xπ/2 − Yπ Xπ/2 − V Z−π/2 −Xπ − V Zπ/2
Y −H − S2 Xπ/2 − Y−π/2 −Xπ/2 X−π/2 − V Zπ −Xπ/2 − V Zπ/2
Z −H − 1 Yπ/2 V Z−π/2 −Xπ/2 − V Zπ/2
Z −H − S X−π/2 − Yπ X−π/2 − V Z−π/2 −Xπ − V Zπ/2
Z −H − S2 Xπ/2 − Yπ/2 −X−π/2 V Z−π/2

Table 3.2: The 24 elements in the single-qubit Clifford group (first column) and the two
possible decompositions of these elements into primitive single qubit gates. The standard
XYπ

2
decomposition (second column) consists of 180◦ and ±90◦ rotations about the x̂ and

ŷ axes of the Bloch sphere denoted by Xπ, Yπ, X±π
2
, and Y±π

2
. The HV Z decomposition

(last column) contains only the gates Xπ, V Zπ, X±π
2
, and V Z±π

2
.

the average errors per Clifford (EPCs) r1 calculated with Eq. (2.30) for each qubit for
each decomposition. As expected, the EPCs from measurements using the HV Z decom-
position are consistently smaller than the ones from RB with the XYπ

2
decomposition.

However, within the empirical error bars, qubits 4 and 7 might have a larger EPC from
using HV Z than from using XYπ

2
. Notice also that the empirical error bars for qubits 5

and 7 are larger than those for the other two qubits. The error bars for these qubits are
large most likely due to an instability in their frequencies and dephasing times, which we
observed in the Ramsey and Echo calibration measurements [23, 32]. The sweet spot fre-
quencies of the qubits at approximately {6.20, 6.26, 6.10, 6.12} GHz for {qb3, qb4, qb5,
qb7} were very close to each other, and the mixers used for upconverting the qubit drive
signals were not calibrated for these measurements. Hence, mixer imperfections [23, 42]
could have caused the qubits to be driven by spurious frequency components, which may
have lead to the instabilities and the large experimental uncertainties that we observed.
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Figure 3.8: Comparison between using the HV Z decomposition (dark-colored circles) and
the XYπ

2
decomposition (light-colored stars) in single qubit RB experiments on qubits (a)

3, (b) 4, (c) 5, and (d) 7. The traces from the measurements using the XYπ
2

decomposition
decay faster than the ones performed using the HV Z decomposition, indicating a larger
error per Clifford when using XYπ

2
. The lines connecting the data points are fits to

Eq. (2.28), and the error bars represent the 68% confidence intervals calculated from the
empirical standard deviations of the distributions of K = 100 different Clifford sequences
for each sequence length m.
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Qubit r1,HVZ (%) rcoh lim,HVZ (%) r1,XYπ
2

(%) rcoh lim,XYπ
2

(%)

Qb3 0.31 ± 0.2 (0.1) 0.24 0.58 ± 0.3 (0.1) 0.41
Qb4 0.48 ± 0.3 (0.1) 0.33 0.67 ± 0.2 (0.1) 0.55
Qb5 2.13 ± 0.6 (0.3) 0.77 3.83 ± 1.3 (0.6) 1.28
Qb7 1.05 ± 0.8 (0.2) 0.27 1.66 ± 1.0 (0.3) 0.45

Table 3.3: Comparison between the average errors per Clifford (EPCs) from RB with
the HV Z and XYπ

2
decompositions. The EPCs from RB measurements using the HV Z

decomposition are consistently smaller than the ones from measurements using the XYπ
2

decomposition. The coherence limited EPC, rcoh lim, is discussed in the main text. The
larger values for the uncertainties around the main quantities were obtained from the
empirical standard deviations, while the smaller values in parentheses quantify the un-
certainty due to finite sampling of the single qubit Clifford group.

The empirical uncertainty values were obtained by performing a weighted least squares
fit with weights given by the standard deviations of the distributions of K different Clif-
ford sequences for each sequence length m (see Sec. 2.3.2). In each of the RB experiments
shown in Fig. 3.8 we used K = 100 different randomly generated sequences of length m,
for each m ∈ [0, 20, 40, 60, 80, 100, 120]. Therefore, these numbers quantify the uncertainty
due to sampling the Clifford group only K = 100 times, as well as the experimental uncer-
tainty in the expectation values 〈σ̂z〉 due to an insufficient number of averaged repetitions,
N , of each identical sequence, mi for i ≤ K. We used N = 212 for all measurements in
Fig. 3.8.

The additional uncertainty values shown in parentheses next to each EPC in Table 3.3
were obtained by implementing the theory introduced by Helsen et al. in Ref.[39], which
estimates the confidence intervals around the measured quantities due to insufficient
sampling of the single qubit Clifford group C1. The RB theory in Sec. 2.3 was derived
under the assumption that we fully sample the 24-element group C1 for each m. However,
in order to achieve this, we would need a total of K = m24 repetitions for each m, which is
experimentally impossible. Nevertheless, Helsen et al. have shown that the uncertainties
around the quantities of interest have upper bounds that at worst scale only linearly with
m for shorter and intermediate sequence lengths, and that are independent of m for large
sequence lengths. The latter are defined as mr1,0 ' 1, where r1,0 is a previous estimate
of the EPC. Specifically, the variance of the distribution of K averaged single qubit RB
results has the following upper bounds[39]:

V (m) ≤ 13

2
mr2

1,0, mr1,0 < 1

V (m) ≤ 7

2
r1,0, mr1,0 ' 1 and mr1,0 > 1. (3.5)

These bounds give an exponential reduction in the values forK required to obtain rigorous
confidence intervals compared to previous estimates [46]. The uncertainty values shown in
parentheses in Table 3.3 were obtained from a weighted least squares fit with the weights
given by the δ = 68% confidence intervals εm around the values 〈σ̂z〉m obtained from
averaging over all K sequences at each sequence length m. The values for εm are obtained
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from the variance V by solving the following non-linear equation for each m [39]

H(V, εm) =

(
δ

2

) 1
K

, (3.6)

where

H(V, εm) =

(
1

1− εm

) 1−εm
V+1

(
V

V + εm

)V+εm
V+1

, (3.7)

and V = V (m) is given by Eq. (3.5). Notice in Table 3.3 that the uncertainties due to
insufficient sampling of C1 account for around 50% of the values estimated from the empir-
ical standard deviations. These results suggest that our single qubit RB experiments are
limited by both the experimental uncertainty between runs, and by insufficient sampling
of C1.

Finally, the coherence limited infidelity, rcoh lim, is the lowest value of the EPC that
can be achieved with RB given a qubit’s energy relaxation time T1 and its dephasing
time T2. This lower bound depends on the decomposition used in the experiment and is
calculated from [20]:

rcoh lim = 1−
[

1

6

(
3 + 2e

− τp
T2 + e

− τp
T1

)]〈NGPC〉

, (3.8)

where τp is the duration of a single physical gate, and 〈NGPC〉 is the average number of
physical gates per Clifford element given by the decomposition used.

3.2.3 Single qubit IRB with VZ gates

In order to further confirm that our V Z gates work as expected, we performed IRB with
the HV Z decomposition using as interleaved gates the V Z gate of angle 180◦, denoted
by V Z180, X gates of angles 180◦ and 90◦ denoted by X180, and X90, respectively, and an
identity gate denoted by I. The latter is just a spacer pulse of the same duration as the X
gates. The results from standard RB (no interleaved gate) and IRB with V Z180 and X180

on qubits 3, 4, 5, and 7 are shown in Fig. 3.9. The average infidelities r1 calculated using
Eq. (2.30), are shown in Table 3.4, where the corresponding measurements are indicated
by the subscripts in the top row. Table 3.5 shows the gate errors rgate calculated using
Eq. (2.31), for each of the interleaved gates mentioned above.

Qubit r1,noGate (%) r1,Z180 (%) r1,I (%) r1,X90 (%) r1,X180 (%) rcoh lim (%)

Qb3 0.37 ± 0.2 0.29 ± 0.2 0.61 ± 0.1 0.65 ± 0.1 0.73 ± 0.2 0.26
Qb4 0.51 ± 0.2 0.48 ± 0.2 0.81 ± 0.2 0.84 ± 0.2 1.14 ± 0.2 0.36
Qb5 2.10 ± 0.3 1.74 ± 0.3 2.79 ± 0.4 3.16 ± 0.4 3.50 ± 0.4 1.52
Qb7 0.45 ± 0.2 0.42 ± 0.2 0.51 ± 0.1 0.67 ± 0.1 0.68 ± 0.1 0.27

Table 3.4: Average infidelities from the (I)RB measurements indicated by the subscripts
in the top row performed on qubits 3, 4, 5 and 7. The last column shows the coherence
limited errors per Clifford calculated as explained in the previous section. The errors
are estimated from the statistical standard deviations of the distributions of K = 100
different Clifford sequences for each sequence length m.
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Figure 3.9: Expectation value of the observable σ̂z as a function of the Clifford sequence
length, m, from standard RB measurements (indicated in the legend by ’no Gate’), and
IRB measurements using V Z180 and X180 as interleaved gates. All three measurements are
performed on each of the qubits indicated in the top right corner: (a) qubit 3, (b) qubit
4, (c) qubit 5, (d) qubit 7. For each trace in each figure the error bars represent the 68%
confidence intervals obtained from the empirical standard deviations of the distributions
of K = 100 different Clifford sequences for each sequence length m.

Qubit rZ180 (%) rI (%) rX90 (%) rX180 (%)

Qb3 -0.08 ± 0.2 0.24 ± 0.2 0.28 ± 0.2 0.37 ± 0.2
Qb4 -0.03 ± 0.3 0.30 ± 0.3 0.33 ± 0.3 0.63 ± 0.3
Qb5 -0.38 ± 0.4 0.72 ± 0.5 1.10 ± 0.5 1.46 ± 0.5
Qb7 -0.03 ± 0.2 0.07 ± 0.2 0.23 ± 0.2 0.24 ± 0.2

Table 3.5: Average errors for the indicated gates obtained from IRB measurements on
qubits 3, 4, 5 and 7. The errors are estimated from the statistical standard deviations of
the distributions of K = 100 different Clifford sequences for each sequence length m.
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Each data point in Fig. 3.9 was obtained by using K = 100 different randomly sampled
Clifford sequences of length m, and N = 212 repetitions of each sequence mi for i ≤ K.

Since the V Z gate is a zero-duration, ideal gate, we expect its error to be approxi-
mately zero. From the first column in Table 3.5 we see that this is indeed what we measure
for qubits 3, 4, and 7. For qubit 5, we measure a relatively large gate error of around
0.38±0.4%; however, within the error bars, the error for V Z180 for qubit 5 is also approx-
imately zero. The gate errors for V Z180 are negative because the average infidelities from
IRB with these virtual gates were smaller by about 0.1% for qubits 3, 4, 7 and by about
0.3% for qubit 5 than the average infidelities from standard RB (no gate interleaved); see
Table 3.4. This result can also be seen in Fig. 3.9, where the standard RB measurements
(denoted by ’no Gate’ in the legend) always show a slightly stronger exponential decay.
This systematic behavior has not been further investigated in this thesis. One possible
explanation is that interleaving V Z180 gates after each Clifford element corrects some of
the coherent errors that might otherwise occur in a standard RB experiment.

The identity gate I is essentially a waiting time of the same duration as an X gate,
which was 25 ns long for all our measurements. Therefore we expect that rX90 ≈ rI + ε,
where ε indicates that the error of X90 is typically slightly larger due to coherent errors
such as over- or under-rotations of the qubit state vector. We also expect rX180 ≈ rI + 2ε,
since the X180 gate is about twice as likely to be affected by coherent errors. The X180

pulse is also more strongly affected by leakage outside the computational subspace, since
it has around twice the amplitude of the X90 pulse.

Indeed, we see in Table 3.5 that for qubits 3 and 4 the gate errors of the I and X90

gates differ by less then 0.1%, while the errors of X180 are around twice as large. For
qubit 5, the error of X180 is also around twice that of X90, yet the error of the I gate is
around 0.4% smaller than that of the X90 gate. For qubit 7, X180 and X90 have around
the same error, while the error of the I gate is significantly smaller than the error of
X90 by around 0.15%. These results indicate that qubits 5 and 7 were affected by larger
amounts of coherent errors than qubits 3 and 4.
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4 Characterizing the amount of cross-talk and cor-

related errors in multi-qubit algorithms with SRB

In this section I will present and discuss the results from performing single qubit ran-
domized benchmarking (RB) and simultaneous RB (SRB) on all combinations of n ≤ 4
qubits using qubits 3, 4, 5, and 7. Thus we performed 4 standard single qubit RB exper-
iments (n = 1), 6 two-qubit SRB experiments (n = 2), 4 three-qubit SRB experiments
(n = 3), and one four-qubit SRB experiment (n = 4). From measurements of the σ̂z,i
operators for each qubit i in all these (S)RB experiments, we use Eq. (2.51) to calculate

the average single qubit error per Clifford (EPC) r
(n)
1,i as a function of n, the number

of simultaneously operated qubits. We use the increase in r
(n)
1,i with n as a quantitative

measure of the amount of crosstalk in our multi-qubit algorithms.

In addition to measuring all single qubit observables, we also measure all combinations
of σ̂⊗sz correlators on s ∈ [2, n] qubits in each of the 11 SRB experiments. Doing this
allows us to use Eqs. (2.47) and (2.50) to estimate the total depolarizing parameters ᾱn
associated with the depolarizing channels ΛC⊗n1

(Eq. (2.37)) corresponding to the average

multi-qubit error channels Ē⊗n implemented by each n-qubit (S)RB protocol. From ᾱn
we calculate the multi-qubit errors rn associated with each channel Ē⊗n. We then use
the formalism developed in Sec. 2.3.5 to quantify the amount of correlated errors in our
n-qubit algorithms, and to investigate the degree of these correlated errors.

Lastly, I will briefly discuss how crosstalk from multiplexed readout would affect the
SRB results. I will show that this effect was negligibly small in our experiments, and that
it most likely does not contribute to the behaviors we observe.

For all the (S)RB measurements discussed in this section, we generated K = 100
different Clifford sequences for each sequence length m, and we used N = 212 identical
repetitions of each K sequence of length m to obtain the expectation values of the single
qubit observables σ̂z, and of all the correlators σ̂⊗sz , for s ≤ n. See Sec. 2.3 for details
about how the single qubit RB and multi-qubit SRB experiments are implemented in the
lab.

4.1 Crosstalk in multi-qubit algorithms

From SRB experiments on up to four qubits using qubits 3, 4, 5, and 7, we calculate
the increase of the average single qubit EPCs, r

(n)
1,i , with the number of simultaneously

operated qubits n, for each qubit i. This increase is seen qualitatively in Fig. 4.1 by the
faster decay of the expectation value of each single qubit observable σ̂z,i when all four
qubits are operated in the 4-qubit SRB experiment (light colors, n = 4) compared to
when only each qubit is operated alone in standard, single qubit RB (dark colors, n = 1).

Quantitatively, we see in Table 4.1 that the EPCs are about 1% to 2% larger when
n = 4 (second to last column) compared to the values when n = 1 (second column).
The number of qubits operated simultaneously, n, is indicated in the superscripts in the
top row. The last row shows the average of all the EPC values in each column, i.e. the
average single qubit EPC from all four qubits when we simultaneously operate n qubits.
We denote this quantity by r̄

(n)
1 for each n. Due to crosstalk, we obtain an average single

qubit EPC of r̄
(4)
1 ' 2.18±0.2% when we operate all four qubits simultaneously, which is

about 2.5 times larger than the average EPC of approximately r̄
(1)
1 ' 0.86± 0.1% when
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we operate only one qubit at a time:

r̄
(4)
1 ' 2.5r̄

(1)
1 . (4.1)
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Figure 4.1: Crosstalk in multi-qubit SRB experiments. Each figure shows the exponential
decay of the expectation value of the single qubit operator σ̂z as a function of the Clifford
sequence length m for the qubit indicated in the top right corner. The darker traces were
obtained from standard RB (n = 1), where only the respective qubit is operated, while
the lighter traces correspond to 4-qubit SRB measurements (n = 4), where all four qubits
are operated simultaneously. The lines are fits to the exponential decay in Eq. (2.28). The
error bars represent the 68% confidence intervals obtained from the empirical standard
deviations of the distributions of K = 100 different Clifford sequences for each sequence
length m.

This 2.5-fold increase in the average single qubit EPC can also be seen in Fig. 4.2.
This figure shows all the EPCs listed in Table 4.1 for each qubit, with qubits 3, 4,
5, and 7 denoted by the blue circles, the green crosses, the red stars, and the purple
pluses, respectively. Since we performed each n-qubit (S)RB experiment on all possible
combinations of n qubits from the set of qubits {3, 4, 5, 7}, we obtain several EPC values
for one qubit when n = 2 and n = 3. The numbers in bold shown in the third and fourth
columns of Table 4.1 indicate the indices of the qubits in the SRB experiments from
which the corresponding EPC values were obtained for the respective qubit indicated in
the first column. The magenta line in Fig. 4.2 shows the average single qubit EPC, r̄

(n)
1 ,

as a function of the number of qubits operated simultaneously, n. Due to crosstalk, r̄
(n)
1

increases almost linearly with n, with around an 0.5% increase for each added qubit.
We have also investigated whether we find the same amount of crosstalk from AC-

Stark shift measurements on pairs of qubits (see Sec. 2.2.1). We measure an approximate
AC-Stark shift between qubits 3 and 5 of around 40 kHz. Since all four qubits are parked
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r
(1)
1 (%) r

(2)
1 (%) r

(3)
1 (%) r

(4)
1 (%) rcoh lim (%)

Qb3 0.37 ± 0.16 (0.09)
34: 0.89 ± 0.15 (0.10) 345: 1.30 ± 0.16 (0.13)

1.45 ± 0.18 (0.14) 0.2635: 0.71 ± 0.16 (0.09) 347: 1.07 ± 0.16 (0.11)
37: 0.62 ± 0.16 (0.09) 357: 0.84 ± 0.17 (0.10)

Qb4 0.51 ± 0.21 (0.13)
34: 0.89 ± 0.19 (0.14) 345: 1.79 ± 0.32 (0.25)

2.03 ± 0.39 (0.28) 0.3545: 1.10 ± 0.21 (0.17) 347: 1.13 ± 0.20 (0.16)
47: 0.83 ± 0.20 (0.14) 457: 1.48 ± 0.26 (0.21)

Qb5 2.10 ± 0.34 (0.23)
35: 2.28 ± 0.35 (0.26) 345: 3.63 ± 0.50 (0.41)

4.04 ± 0.62 (0.47) 1.3845: 2.39 ± 0.31 (0.23) 357: 3.57 ± 0.60 (0.45)
57: 2.33 ± 0.37 (0.26) 457: 3.44 ± 0.49 (0.37)

Qb7 0.45 ± 0.16 (0.09)
37: 0.79 ± 0.19 (0.09) 347: 1.08 ± 0.20 (0.11)

1.21 ± 0.21 (0.12) 0.2847: 0.83 ± 0.18 (0.10) 357: 1.11 ± 0.20 (0.12)
57: 0.84 ± 0.18 (0.10) 457: 1.09 ± 0.19 (0.11)

r̄1 0.86 ± 0.11 (0.07) 1.21 ± 0.07 (0.05) 1.79 ± 0.09 (0.07) 2.18 ± 0.20 (0.14) 0.57

Table 4.1: Single qubit EPCs from measuring the single qubit observables σ̂z for each
qubit indicated in the first column, in all (S)RB experiments that contain that qubit.
The number of qubits in each experiment, n, is indicated in the superscripts in the top
row. The numbers in bold for n = 2 and n = 3 are the indices of the qubits in the SRB
experiment from which we obtained the corresponding EPC for the qubit indicated in
the first column. The last row shows the average of all the EPCs in the respective column
(magenta points in Fig. 4.2). The last column shows the coherence limited EPCs. Both
sets of error bars represent the 68% confidence intervals; the first set is obtained from the
empirical standard deviations of the distributions of K = 100 different Clifford sequences
for each sequence length m, while the errors in parentheses are upper bounds on the
uncertainty due to finite sampling of the single qubit Clifford group.

at their sweet spots where they are all within around 100 MHz of each other (see Sec. 3.1),
we expect the AC-Stark shift on other pairs of qubits to be around the same value. If
we compare this value to the average Clifford gate time of 28.125 ns, we would expect
this AC-Stark shift to induce an average error per Clifford of around 0.7%. This value is
slightly larger than the increase in the average single qubit EPC with each qubit added in
the algorithm. Hence, we can conclude that a significant part of the crosstalk measured
with SRB may be due to coherent errors such as over- and under-rotations of the qubits.

The same experiments on up to four qubits have been performed by Córcoles et al. in
Ref. [21], where the authors obtain a smaller amount of crosstalk given by r̄

(4)
1 ' 1.4r̄

(1)
1 ,

and an increase of the average single qubit EPC with each added qubit of only about
0.1%. However, the parking frequencies of the qubits in this paper are more spaced out
than ours (see Sec. 3.1), and all qubits have longer energy relaxation and dephasing times
of around 30 µs and 20 µs, respectively. Thus, the EPCs from standard single qubit RB
are all on the order of 0.1% in this reference.

The coherence limited EPC, rcoh lim, for each qubit is shown in the last column of
Table 4.1, with the last row showing the average coherence limited infidelity of all four
qubits (see Sec. 3.2.2 for details about rcoh lim). Since qubit 5 has very low coherence times
below 3 µs (Sec. 3.1), we see that this qubit has a rather large coherence limited infidelity
of approximately 1.38%. The small coherence times of this qubit, as well as the leakage
to the qubit |f〉 level due to a low value of the charging energy Ec defined in Sec. 2.1.1,
are the most likely causes for the significantly higher EPCs of qubit 5 compared to those
of the other three qubits (see Fig. 4.2 and Table 4.1).
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Figure 4.2: Single qubit EPCs for each qubit from all (S)RB experiments containing that
qubit as a function of the number of simultaneously operated qubits n. The magenta
points are the averages over all the EPCs for a given n, and they represent the average
single qubit EPC from all four qubits when n qubits are operated simultaneously. The
error bars represent the 68% confidence intervals obtained from the empirical standard
deviations of the distributions of K = 100 different Clifford sequences for each sequence
length m.

In Sec. 2.3.2 I explained that the constants A and B in the fit to Eq. (2.28),

Aαm1 + B, (4.2)

quantify the amount of SPAM errors in the (S)RB measurements. In particular, A cap-
tures the errors due to improper state preparation and poor readout fidelity, while B
reflects systematic errors in the readout. The values for A and B obtained from the sin-
gle qubit RB measurements for each of the four qubits shown in Fig. 4.1 are given in
Table 4.2. As expected from the single shot readout calibration measurements for qubits
4 and 5 shown in Fig. 3.3, these qubits have higher values for the parameter B than the
remaining two qubits. Notice also that qubit 4 has the lowest value for the parameter A,
which may explain the lower assignment fidelity of qubit 4 (approximately 78%) compared
to that of qubit 5 (about 83%). For all the (S)RB experiments presented in this thesis,
the fit results were rescaled such that B′ = 0 and A′ = A + B. The rescaled parameters
A′ now capture all the SPAM errors, and their values for each qubit are shown in the last
column of Table 4.2.

All the error bars in Fig. 4.1 and the error values in Tables 4.1 and 4.2 that are not
in parentheses are obtained by using as weights for the fits to Eq. (4.2) the empirical
standard deviations of the distributions of K = 100 different Clifford sequences for each
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Qubit A (%) B (%) A′ (%)

Qb3 0.74 ± 0.23 0.16 ± 0.24 0.90 ± 0.33
Qb4 0.56 ± 0.14 0.25 ± 0.15 0.82 ± 0.20
Qb5 0.74 ± 0.03 0.21 ± 0.03 0.95 ± 0.04
Qb7 0.74 ± 0.17 0.18 ± 0.17 0.92 ± 0.24

Table 4.2: A and B coefficients from Eq. (4.2) quantifying the amount of errors due to
improper qubit state preparation and poor readout fidelity, and due to systematic readout
errors, respectively. A′ =A+B is the rescaled A parameter that now quantifies all SPAM
errors.

sequence length m. The error values in parentheses in Table 4.1 were calculated using the
estimation theory in Ref. [39], which quantifies the errors due to insufficient sampling of
the single qubit Clifford group C1 for each qubit. See Sec. 3.2.2 for details about these
two types of error bars. We see in Table 4.1 that in the single qubit experiments, the
error values in parentheses account for around half of the corresponding empirical values,
while in the SRB experiments they account for most of the corresponding empirical values.
Thus, it appears that for the SRB experiments, insufficient sampling of C1 seems to be a
significant limiting factor, while for the single qubit RB measurements we are limited by
both experimental noise, and insufficient sampling of C1.

4.2 Correlated errors in multi-qubit algorithms

The technique of using SRB to quantify the amount of correlated errors in a multi-qubit
algorithm was introduced by Gambetta et al. in Ref. [9], where the authors performed
the experiment on two qubits. Here we quantify the amount of correlated errors in simul-
taneous randomized benchmarking of up to four qubits using the theory in Sec. 2.3.3 and
2.3.5. Correlated errors refer to multi-qubit errors that do not act independently in each
qubit subspace, but instead couple all or any subset of these subspaces. See Sec. 2.3.5 for
a definition of multi-qubit correlated errors.

First, we calculate an ideal, lower bound on the multi-qubit errors in each n-qubit
algorithm that we would expect to find if we had no crosstalk and no correlated errors. If
we had no crosstalk, we would expect the single qubit EPCs from measurements of single
qubit observables σ̂z,i in all n > 1 SRB experiments to be equal to the EPCs obtained
from standard single qubit RB on the respective qubits:

r
(1)
1,i = r

(2)
1,i = r

(3)
1,i = r

(4)
1,i , (4.3)

where i indicates the qubit number. Thus, we calculate the multi-qubit error from single
qubit RB measurements, r

(1)
n , using Eq. (2.55) for the completely uncorrelated multi-qubit

error,

r(1)
n =

(2n − 1)(1− ᾱ(1)
n )

2n
, (4.4)

ᾱ(1)
n =

1

A

(∑
i≤n

3α
(1)
i +

∑
i,j≤n
i<j

9α
(1)
i α

(1)
j +

∑
i,j,k≤n
i<j<k

27α
(1)
i α

(1)
j α

(1)
k + ...+ 3nα

(1)
1 α

(1)
2 ...α(1)

n

)
,

(4.5)
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where now all the depolarizing parameters α
(1)
i in Eq. (4.5) are obtained from measuring

〈σ̂z,i〉 in the single qubit RB experiment on qubit i. We calculate these quantities for
n = 1, 2, 3, 4 and plot the results as the green dot-dashed line in Fig. 4.3 (b). At the
end of this section, we will compare the measured multi-qubit errors against this ideal
quantity in order to see whether we can recover the amount of crosstalk found in Eq. (4.1)
using the multi-qubit error analysis.

The first indication that correlated errors are present in our 4-qubit algorithm is
shown in Fig. 4.3 (a). We have seen in Eq. (2.58) and Appendix B, that the depolarizing
parameter from an s-qubit correlator measurement is greater than or equal to the product
of depolarizing parameters from individual qubit measurements,

αij...s ≥ αiαj...αs, (4.6)

with equality if all errors are completely uncorrelated. To check this inequality, we plot
in Fig. 4.3 (a) the results from the 4-qubit correlator measurement in orange, and the
product of single qubit results 〈σ̂z,3〉〈σ̂z,4〉〈σ̂z,5〉〈σ̂z,7〉 = 〈σ̂z〉⊗4 in purple for each sequence
length m. We can see that the expectation value of the product of single qubit observables
〈σ̂z〉⊗4 decays faster with the sequence length m than the expectation value of the 4-
qubit correlator 〈σ̂⊗4

z 〉. From fits to these two traces, we extract α3457 ' 87.6± 1.3% and
α3α4α5α7 ' 85.3 ± 0.3%, where the indices indicate the qubits used in the experiment.
Thus, we find α3457 > α3α4α5α7, which signals the presence of correlated errors in our
4-qubit algorithm.

In order to quantify the amount of correlated errors in each of the SRB experiments
on all combinations of up to four qubits, we calculate all multi-qubit errors rn∈{1,2,3,4}
defined in Eq. (2.50) and reproduced here for clarity:

rn =
(2n − 1)(1− ᾱn)

2n
, (4.7)

ᾱn =
1

A

(∑
i≤n

3α
(n)
i +

∑
i,j≤n
i<j

9α
(n)
ij +

∑
i,j,k≤n
i<j<k

27α
(n)
ijk + ...+ 3nα

(n)
12...n

)
. (4.8)

Thus, for example in the SRB experiment on n = 4 qubits, we measured all single qubit
observables in order to obtain all the αi, where i indicates the qubit number, and we
calculated all possible correlators on s ≤ 4 qubits in order to obtain all the αij...s in
Eq. (4.8). As described in Sec. 3.1, this was achieved by saving all the shots for each
qubit and averaging the products of all 4 or any subset s < 4 of these results shot-by-
shot. For example, for s = 3, n = 4, we calculated the 4 3-qubit correlators between
qubits 3-4-5, 3-4-7, 3-5-7, and 4-5-7 from the individual shots for each of these qubits
measured in the 4-qubit SRB experiment.

The second column of Table 4.3 shows the multi-qubit errors from the (S)RB measure-
ments on the qubits indicated by the numbers in the first column. The multi-qubit errors
for the single qubit RB measurements are just the EPCs for the respective qubit, which
were also shown in Table 4.1. In order to investigate how the multi-qubit error scales with
the number of operated qubits n, we calculate the average of the multi-qubit errors from
all experiments on n qubits. These average values are shown in bold in Table 4.3, and
they are plotted in yellow (circles) in Fig. 4.3 (b) as a function of n, the number of qubits
in the algorithm. We see that the multi-qubit error increases sharply with n, with a total
4-qubit error of around 9.32 ± 0.46%. In Table 4.3 we see that all the experiments that
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Figure 4.3: Correlated errors in multi-qubit algorithms. (a) The expectation value of the
4-qubit correlator 〈σ̂⊗4

z 〉 (orange) and the product of the expectation values of the four
single qubit observables 〈σ̂z〉⊗4 (purple) as a function of the Clifford sequence length
m. (b) The multi-qubit error as a function of the number of simultaneously operated
qubits, n. Each line represents the multi-qubit error calculated under various assumptions
about the type and degree of correlations: all correlators included in the calculations (rn,
yellow), assuming completely uncorrelated errors (r̃n,1, red), only up to 2-qubit correlators
included in the calculations (r̃n,2, orange), only up to 3-qubit correlators included in the

calculations (r̃n,3, purple), assuming completely uncorrelated errors and no crosstalk (r
(1)
n ,

green). All error bars are 68% confidence intervals obtained from the empirical standard
deviations of the distributions of K = 100 different Clifford sequences for each sequence
length m.
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contain qubit 5 have higher multi-qubit errors than the other experiments on n qubits.
These results are to be expected due to the bad coherence properties of qubit 5 and its
low charging energy Ec (see Sec. 4.1).

Qubit numbers rn (%) ∆rn (%) ∆rn/rn (%)

3 0.37 ± 0.16 (0.09) - -
4 0.51 ± 0.21 (0.13) - -
5 2.10 ± 0.34 (0.23) - -
7 0.45 ± 0.16 (0.09) - -
n = 1 average 0.86± 0.11(0.07) - -
3,4 1.74 ± 0.15 (0.22) 0.38 ± 0.27 21.79 ± 15.65
3,5 3.12 ± 0.25 (0.31) 0.45 ± 0.44 14.33 ± 14.15
3,7 1.58 ± 0.15 (0.19) 0.11 ± 0.28 6.91 ± 17.52
4,5 3.75 ± 0.33 (0.43) 0.40 ± 0.48 10.80 ± 12.81
4,7 1.73 ± 0.17 (0.23) 0.26 ± 0.30 14.83 ± 17.62
5,7 3.25 ± 0.26 (0.32) 0.52 ± 0.47 15.92 ± 14.37
n = 2 average 2.53± 0.09(0.12) 0.35± 0.16 14.10 ± 6.31
3,4,5 6.71 ± 0.40 (0.65) 1.97 ± 0.62 29.27 ± 9.46
3,4,7 3.59 ± 0.19 (0.33) 0.70 ± 0.33 19.42 ± 9.12
3,5,7 5.69 ± 0.32 (0.48) 1.52 ± 0.61 26.65 ± 10.87
4,5,7 6.29 ± 0.37 (0.59) 1.52 ± 0.59 24.12 ± 9.54
n = 3 average 5.57± 0.17 (0.26) 1.43± 0.28 24.87 ± 4.89
3,4,5,7 9.32± 0.46(0.81) 2.46± 0.68 26.39 ± 7.36

Table 4.3: Multi-qubit errors rn calculated from all subsets of correlators in each of the
n-qubit (S)RB measurements shown in the first column, where the numbers indicate the
qubits operated during each experiment. The second and third columns show the amount
∆rn = r̃n,1− rn and percentage ∆rn/rn of correlated errors in the total multi-qubit error
rn. Both sets of error bars represent the 68% confidence intervals; the first set is obtained
from the empirical standard deviations of the distributions of K = 100 different Clifford
sequences for each sequence length m, while the errors in parentheses are upper bounds
on the uncertainty due to finite sampling of the single qubit Clifford group.

In Eq. (2.58) in Sec. 2.3.5.2 I showed that we can quantify the amount of correlated
errors in our algorithms as the difference ∆rn = r̃n,1 − rn between the completely uncor-
related multi-qubit error, r̃n,1, and the multi-qubit error calculated from all correlators
according to Eqs. (4.7)-(4.8). Hence, we calculate r̃n,1 from Eq. (2.55), reproduced here
for clarity:

r̃n,1 =
(2n − 1)(1− α̃n,1)

2n
, (4.9)

α̃n,1 =
1

A

(∑
i≤n

3α
(n)
i +

∑
i,j≤n
i<j

9α
(n)
i α

(n)
j +

∑
i,j,k≤n
i<j<k

27α
(n)
i α

(n)
j α

(n)
k + ...+ 3nα

(n)
1 α

(n)
2 ...α(n)

n

)
.

(4.10)

All the depolarizing parameters α
(n)
i in Eq. (4.10) are obtained from measuring 〈σ̂z,i〉 for

qubit i in the n-qubit SRB experiment. We calculate the averages of all the completely
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uncorrelated multi-qubit errors for each n, and plot the results as a function of n in red
(crosses) in Fig. 4.3 (b). The third column in Table 4.3 shows the amount of correlated
errors ∆rn in the SRB experiments on the qubits in the first column, while the last
column shows what percentage of the total, multi-qubit errors are correlated.

With the exception of SRB on qubits 3 and 7, the amount of correlated errors account
for more than 10% of the multi-qubit errors, and as high as around 29% for SRB on qubits
3, 4, 5, and around 26% for SRB on all four qubits. In addition, notice how ∆rn depends
on the position of the qubits on the processor (see Figs. 2.1 and 3.1). We expect the pairs
and triplets of qubits that are connected by coupling resonators (nearest neighbors) to
show larger amounts of correlated errors. We see in Table 4.3 that, as expected, the SRB
experiment on qubits 3 and 7 has the smallest amount of correlated errors of around
0.11± 0.28%, the experiment on qubits 3, 4, and 5 has the highest amount of correlated
errors out of all 3-qubit experiments (around 1.97 ± 0.62%), and the overall highest
amount of correlated errors of around 2.46 ± 0.68% is found in the SRB experiment on
all four qubits. However, SRB on qubits 3-4-5 and 3-5-7 have approximately the same
amount of correlated errors within the error bars. Similarly, in the 2-qubit experiments,
SRB on qubits 5-7 has a larger amount of correlated errors than SRB on qubits 4-5, and
the SRB measurements on qubits 3-4 and 3-5 appear to have approximately the same
amount of correlated errors of around 0.4%, even though qubits 3 and 5 do not share a
coupling resonator. Nevertheless, ∆r2 for SRB on qubits 3-5 has very large relative error
bars, and hence this result might be inconclusive. Since these unexpected results occur
when qubit 5 is involved in the experiment, some of these effects might be explained by
the bad properties of this qubit mentioned above.

Notice that for the 4-qubit experiment, we obtain the following relations between the
completely uncorrelated multi-qubit error r̃4,1 and the one obtained from single qubit

measurements r
(1)
4 , and between the multi-qubit error with all correlators r4 and the one

obtained from single qubit measurements:

r̃4,1−r(1)
4 ' 7.00± 0.58%, (4.11)

r4 −r(1)
4 ' 4.55± 0.55%, (4.12)

or

r̃4,1 ' 2.47r
(1)
4 , (4.13)

r4 ' 1.95r
(1)
4 . (4.14)

Hence, we find a similar amount of crosstalk as we did in Eq. (4.1) if we compare the multi-
qubit error from single qubit measurements to the completely uncorrelated multi-qubit
error Eq. (4.13), not to the one that includes all correlators Eq. (4.14). This result is an
indication that the crosstalk in our algorithms as defined in Sec. 4.1 might predominantly
contain uncorrelated errors.

Moreover, notice that comparing r
(1)
4 to r4 underestimates the amount of crosstalk.

This effect occurs for the same reason why the completely uncorrelated multi-qubit errors
r̃n,1 are larger than rn, see Fig. 4.3. The mathematical proof for this inequality is derived
in Appendix B. Intuitively, this inequality makes sense because the σ̂⊗nz correlator mea-
surements are parity measurements: they return +1 (-1) if an even (odd) number of the
n qubits are in the excited state [31]. Hence, an error that flips n qubits simultaneously
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is detected as one single error by the correlator measurement, but as n errors by the
n single qubit measurements. This means that the n-qubit fidelities calculated from all
correlators (Eq. (4.8)) will be larger than the ones calculated by multiplying together the
single qubit fidelities obtained by tracing out all other qubits.

In order to understand better the results from SRB, we also measured the pairwise
σzσz-coupling with Ramsey measurements as described in Sec. 2.2.2. We find a coupling
rate of around 300 kHz between qubits 3-4, and of around 600 kHz between qubits 4-5.
If we compare these rates to the average duration of a Clifford gate of 28.125 ns, we
would expect to find on average around 5.3% and 10.6% correlated errors per Clifford
between qubits 3-4 and 4-5, respectively. We do not observe such strong contributions in
the SRB results in Table 4.3. This is an indication that, either the errors affecting the
SRB protocols are not directly proportional to the errors due to the σzσz-coupling, or
that the SRB protocols might capture additional multi-qubit errors that are not seen in
typical pairwise measurements of the σzσz-coupling.

In addition to using SRB to quantify the amount of correlated errors in multi-qubit
algorithms, we also use SRB to investigate the degree of the correlated errors. I.e. we try
to identify the smallest correlated qubit subspace that we need to assume in our analysis
in order to describe the multi-qubit errors rn in each n-qubit SRB experiment. To do this
we use the theory developed in Sec. 2.3.5.3 to calculate lower bounds on the multi-qubit
errors when we assume correlations on only up to s < n qubits. When we assume to
have only up to s = 2-qubit correlations, the multi-qubit errors from SRB experiments
on n = 1, 2, 3, 4 qubits are given by:

r̃1,2 = r1,

r̃2,2 = r2,

r̃3,2 =
(23 − 1)(1− α̃max

3,2 )

23
,

r̃4,2 =
(24 − 1)(1− α̃max

4,2 )

24
. (4.15)

The depolarizing parameters α̃max
3,2 and α̃max

4,2 are upper bounds on the corresponding total
depolarizing parameters calculated only from αi and αij obtained from measuring single
qubit observables and from the measurements of 2-qubit correlators, respectively (see
Sec. 2.3.5.3 and in particular Eq. (2.65)).

We calculate the quantities in Eq. (4.15) for all the SRB experiments on the sets of
qubits indicated in the first column of Table 4.3, and, as before, we average the results from
all n-qubit measurements. These average values are shown by the orange stars in Fig. 4.3
(b) (the value at n = 2 is identical to r2). We see that r̃n,2 (orange) > rn (yellow) for n = 3
and n = 4. Quantitatively, for the 3-qubit algorithm we have r̃3,2 − r3 ' 0.46 ± 0.25%,
and for the 4-qubit algorithm we find r̃4,2 − r4 ' 1.00± 0.63%. These values account for
less than half of the total amount of correlated errors of around 1.43± 0.28% for n = 3,
and around 2.46 ± 0.68% for n = 4, see Table 4.3. However, even though these values
are lower bounds of the true multi-qubit errors with up to 2-qubit correlations, within
the confidence intervals we cannot conclude that we only have 2-qubit correlations in our
algorithms. However, we can say that these correlations make up a significant part of the
total amount of correlated errors.

We have also looked at the lower bounds on the multi-qubit errors calculated by
assuming up to s = 3-qubit correlations, i.e. both 2- and 3-qubit correlations, but no
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4-qubit correlated errors. In this case, the multi-qubit errors from SRB experiments on
n = 1, 2, 3, 4 qubits are given by (see Sec. 2.3.5.3):

r̃1,3 = r1,

r̃2,3 = r2,

r̃3,3 = r3,

r̃4,3 =
(24 − 1)(1− α̃max

4,3 )

24
, (4.16)

with the depolarizing parameter α̃max
4,3 given by Eq. (2.65), which was calculated only from

αi obtained from measuring single qubit observables, and both αij and αijk obtained from
the measurements of 2- and 3-qubit correlators.

Again we calculate r̃4,3 for the 4-qubit experiment according to Eq. (4.16), and plot
the result as the purple dashed line in Fig. 4.3 (b) (the value at n = 3 is identical to
r3). r̃4,3 almost completely overlaps the yellow multi-qubit error r4 calculated from all
correlators (Eq. (4.7)), with a difference of r̃4,3 − r4 ' 0.03 ± 0.64%. Remembering that
the value of r̃4,3 is only a lower bound of the true multi-qubit error with up to 3-qubit
correlations, we can conclude that this result is an indication that our 4-qubit algorithm
likely contains no effects from 4-qubit correlated errors.

Note from the discussion above and from Fig. 4.3 (b), that we have experimentally
verified the expected hierarchy in Eq. (B.3) derived at the end of Appendix B:

r̄4 ≤ r̃4,3 ≤ r̃4,2 ≤ r̃4,1. (4.17)

I will end this section with a brief discussion about the error bars around our results.
All confidence intervals shown in Fig. 4.3 and in Table 4.3 that are not in parentheses
are obtained by using the empirical standard deviations of the distributions of K = 100
different Clifford sequences for each sequence length m (see Sec. 3.2.2). The values in
parentheses in Table 4.3 are calculated from the following upper bounds for the variance
of the distribution of K averaged multi-qubit RB sequences derived by Helsen et al. [47]:

Vmq(m) ≤ d2 − 2

4(d− 1)2
mr2

0α
m−1
0 +

d2

(d− 1)2
r2

0

1 + (m− 1)α2m
0 −mα

2(m−1)
0

(1− α2
0)4

, all m

Vmq(m) ≤ d2 − 2

4(d− 1)2
r2

0 +
d2m(m− 1)

2(d− 1)2
r2

0, mr0 < 1,

(4.18)

where d = 2n, and r0 and α0 are previous estimates of the infidelity and depolarizing
parameter. These bounds for the variance are the multi-qubit equivalents of the quantities
for the single qubit case discussed in Eq. (3.5) in Sec. 3.2.2.

However, the estimates in Eq. (4.18) were derived for a full n-qubit RB experiment
where the twirl is over the full n-qubit Clifford group, Cn (see Sec. 2.3.5.1). In the SRB
experiments, we are instead twirling with the n-fold tensor product of the single qubit
Clifford group, C⊗n1 (see Sec. 2.3.3). Thus, it has not been proven that the upper bounds in
Eq. (4.18) apply to the n-qubit SRB experiments. However, following the same procedure
as explained in Sec. 3.2.2, we calculated the 68% confidence intervals around the expec-
tations values 〈σ̂⊗nz 〉 for each m using the bounds in Eq. (4.18). We verified that for all
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SRB experiments, almost all these intervals are larger than the 68% confidence intervals
calculated from the empirical standard deviations. We can also see in Table 4.3 that all
error values in parentheses for n > 1 qubits are larger than the values in front, obtained
from the empirical standard deviations. Hence, we can conclude as we did in Sec. 4.1,
that our SRB experiments are most probably limited more by insufficient sampling of the
group C1 for each qubit, than by experimental imperfections.

4.3 Readout crosstalk in SRB experiments

In this section I will briefly discuss the potential effects of crosstalk from multiplexed
readout (MRO) on the SRB experiments, and I will show that the results presented in
the previous two sections were most likely not greatly influenced by these readout (RO)
errors.

As already mentioned in Sec. 2.2.2, the consequence of MRO crosstalk is that we
would measure the correlators of qubits whose readout resonators are close in frequency
instead of only measuring single qubit observables. Hence, there is the possibility that
some or even a significant amount of the correlated errors we measured with SRB are
in fact due to crosstalk in the MRO. In order to investigate whether this might be the
case, we add various amounts of MRO crosstalk on top of our results from single qubit
observables in order to see how and by how much do these errors affect our results. In
particular, we look at the inequality in Eq. (4.6) for an n-qubit SRB experiment,

α12...n ≥ α1α2...αn, (4.19)

where α12...n is the depolarizing parameter obtained from measuring the n-qubit correlator
σ̂⊗nz , and the right hand side is the product of depolarizing parameters from measuring
all the n single qubit observables. We then add the same amount of MRO crosstalk ε
between all n qubits according to:

output1 = [1− (n− 1)ε]αm1 + εαm2 + εαm3 + ...+ εαmn ,

output2 = [1− (n− 1)ε]αm2 + εαm1 + εαm3 + ...+ εαmn ,

...

outputn = [1− (n− 1)ε]αmn + εαm1 + εαm2 + ...+ εαmn−1,

where m is the Clifford sequence length. We obtain the product of single qubit depolariz-
ing parameters with ε amount of added crosstalk, (α1α2...αn)ε, from fitting the following
equation:

output1 · output2 · ... · outputn = A(α1α2...αn)ε + B. (4.20)

If the correlated errors that we quantify by ∆α = α12...n − α1α2...αn in the SRB
experiments were due to crosstalk in the multiplexed RO, then we would expect that
adding additional crosstalk would further increase the difference ∆α. Table 4.4 shows
α12...n, α1α2...αn, and ∆α for all SRB experiments on n = 2, 3, 4 qubits. The last three
columns show the results ∆αε = α12...n − (α1α2...αn)ε from adding MRO crosstalk ε of
5%, 25%, and 50%, as explained above. We see that by adding the multiplexed readout
errors we decrease ∆α. Thus, it appears that the effect of crosstalk in multiplexed RO is
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not to produce more correlated errors, but to hide some of the correlated errors that can
be detected with the SRB formalism.

From independent measurements (see Sec. 2.2), we estimate to have around 5%
crosstalk in the multiplexed RO [5]. Table 4.4 shows that the largest change in the es-
timated amount of correlated errors due to such a low ε is only around 0.2%, which is
smaller or approximately equal to the error bars. Another potential effect of these RO
errors is to cause the measured single qubit observables 〈σ̂z〉 to decay with multiple decay
constants corresponding to the depolarizing channels acting in the other qubit subspaces
accessed during multiplexed readout. This effect would result in poor fits to the single
exponential decay in Eq. (4.2) that has been used throughout this project, and these
poor fits would give large empirical confidence intervals around the quantities of interest.
Yet, we have seen in Table 4.1 that we obtain small 68% confidence intervals of at most
approximately 0.6% around the single qubit EPCs obtained from measuring individual
qubit subspaces in the n-qubit SRB experiments. Hence, we can conclude that the results
presented in Sec. 4.1 and Sec. 4.2 are most likely not strongly influenced by the crosstalk
in the multiplexed RO, and that our SRB experiments truly quantify the amounts of
crosstalk and correlated errors in the n-qubit algorithms.

Qubit numbers α12..n (%) α1α2...αn (%) ∆α (%) ∆αε=5% (%) ∆αε=25% (%) ∆αε=50% (%)

3,4 97.32 ± 0.30 96.47 ± 0.78 0.84 ± 0.56 0.84 ± 0.30 0.84 ± 0.30 0.84 ± 0.30
3,5 95.07 ± 0.50 94.07 ± 0.76 0.99 ± 0.91 0.93 ± 0.50 0.74 ± 0.51 0.65 ± 0.51
3,7 97.43 ± 0.30 97.19 ± 0.49 0.24 ± 0.57 0.24 ± 0.30 0.24 ± 0.30 0.24 ± 0.30
4,5 94.01 ± 0.70 93.11 ± 0.72 0.90 ± 1.00 0.86 ± 0.70 0.73 ± 0.70 0.68 ± 0.70
4,7 97.27 ± 0.33 96.71 ± 0.53 0.57 ± 0.62 0.57 ± 0.33 0.57 ± 0.33 0.57 ± 0.33
5,7 94.89 ± 0.52 93.74 ± 0.81 1.15 ± 0.96 1.09 ± 0.52 0.92 ± 0.52 0.84 ± 0.53
3,4,5 90.94 ± 0.94 87.11 ± 1.14 3.83 ± 1.48 3.71 ± 0.94 3.41 ± 0.94 3.49 ± 0.94
3,4,7 94.80 ± 0.46 93.60 ± 0.63 1.20 ± 0.78 1.20 ± 0.46 1.20 ± 0.46 1.20 ± 0.46
3,5,7 91.82 ± 0.76 89.26 ± 1.25 2.56 ± 1.46 2.34 ± 0.76 1.82 ± 0.78 1.95 ± 0.78
4,5,7 91.37 ± 0.87 88.40 ± 1.10 2.97 ± 1.40 2.83 ± 0.87 2.49 ± 0.88 2.58 ± 0.88
3,4,5,7 87.58 ± 1.34 83.56 ± 1.38 4.02 ± 1.94 3.81 ± 1.34 3.44 ± 1.34 3.93 ± 1.34

Table 4.4: Quantifying the amount of correlated errors when we add MRO crosstalk to
the results from the SRB experiments performed on the qubits indicated by the numbers
in the first column. The second and third columns show respectively the depolarizing
parameter from the n-qubit correlator measurement, and the product of n depolarizing
parameters from measuring all n single qubit observables. ∆α is the difference between
the first and second columns, and it quantifies the amount of correlated errors in the
algorithm. ∆αε quantifies the amount of correlated errors after adding 5%, 25%, and
50% MRO crosstalk to the SRB results.
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5 Conclusions and outlook

In this project we performed standard randomized benchmarking (RB) and simultaneous
RB (SRB) on all combinations of n = 1, 2, 3, 4 qubits using the qubits 3, 4, 5, and 7 on
an 8-superconducting-qubit quantum processor. The novelty of this project is that, in
addition to measuring all n single qubit observables σ̂z in each n-qubit experiment, we
also measured correlators σ̂⊗sz on all possible combinations of s ≤ n qubits.

For all experiments, we used the new HV Z decomposition of the elements in the sin-
gle qubit Clifford group into physical X gates and virtual Z gates, and we demonstrated
that this decomposition gives smaller single qubit average infidelities than the XYπ

2
de-

composition, which has on average more physical gates per Clifford element (Sec. 3.2.2).
We used the thresholding feature of our detection instrument, the UHFQC, to perform

qubit state discrimination in single shot readout simultaneously on n qubits directly in
our acquisition device, which leads to a significant data reduction (Sec. 3.1). We also
used the correlator unit of the UHFQC in order to measure the thresholded 2-qubit σ̂zσ̂z
correlators of each shot. Due to a limitation of the correlator unit to only 2 qubits, for
the experiments on n > 2 qubits we saved all the thresholded shots for each qubit, and
calculated the correlators in our data analysis (Sec. 3.1).

From the measurements of all n single qubit observables in each n-qubit SRB experi-
ment, we quantified the amount of crosstalk in our multi-qubit algorithms, defined here
as the increase in the average single qubit errors per Clifford (EPCs) with the number
of qubits operated simultaneously, n. We find that, due to crosstalk, the average single
qubit EPC over all four qubits is around 2.5 times larger when we operate all four qubits
in SRB, r̄

(4)
1 , compared to when we only operate one qubit at a time in standard RB, r̄

(1)
1

(Sec. 4.1):

Cross-talk : r̄
(4)
1 ' 2.5r̄

(1)
1 .

From measurements of all subsets of correlators in each n-qubit SRB experiment,
we calculated the multi-qubit error on n qubits, rn, associated with each simultaneous
application of n Clifford elements, i.e. the total infidelity of the n-qubit error channel Ē⊗n
implemented by each SRB protocol. We quantified the amount of errors that couple to
more than one qubit subspace (correlated errors) as the difference ∆r = r̃n,1−rn between
the completely uncorrelated multi-qubit error, r̃n,1, and the multi-qubit error containing
all correlators, rn (Sec. 4.2). For the 4-qubit SRB experiment, we find a total infidelity
from all correlators of around 9%, and approximately 2.5% correlated errors, which thus
account for around 26% of the total amount of errors:

Total infidelity : r4 ' 9.32 ± 0.46%,

Correlated errors : ∆r4 ' 2.46 ± 0.68%,

∆r4

r4

' 26.39± 7.36%.

We also investigated what is the smallest correlated subspace that we need to assume
in our calculation of the multi-qubit error in order to describe the multi-qubit error
calculated from all correlators (Sec. 4.2). We found lower bounds of the multi-qubit errors
calculated by assuming to have completely uncorrelated errors and only 2-qubit correlated
errors. For the 4-qubit SRB experiment, we find a difference of around 1% between this
lower bound r̃4,2, and the total 4-qubit error r4 that assumes all degrees of correlators,
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which we can interpret as the approximate amount of 2- and -3 qubit correlated errors
in our algorithm:

2- and 3-qubit correlated errors : ∆r4,2 = r̃4,2 − r4 ' 1.00± 0.63%.

We also calculate the lower bounds of the 4-qubit error by assuming to have completely
uncorrelated errors and both 2- and 3-qubit correlated errors, but no 4-qubit correlations.
We obtain almost no difference between this lower bound, r̃4,3, and the total 4-qubit error,
r4, assuming all degrees of correlators:

4-qubit correlated errors : ∆r4,3 = r̃4,3 − r4 ' 0.03± 0.64%.

From these lower bounds and within the confidence intervals, we can conclude that
2-qubit correlations have a significant contribution to our correlated errors, but they may
not completely explain them. However, we have a good indication that we may not have
4-qubit correlated errors in our algorithms.

In the future we will use the techniques presented in this thesis to quantify the multi-
qubit crosstalk and correlated errors in algorithms on up to 8 or more qubits. We saw
in Figs. 4.2 and 4.3 that both crosstalk and the correlated errors continue to increase up
to n = 4 qubits. We will investigate whether these metrics continue to increase even for
n > 4, in order to test the feasibility of our processor and our setup for achieving the
error correction thresholds for fault-tolerance, which assume uncorrelated errors that do
not increase indefinitely with the number of qubits in the algorithm.

In addition, we will also perform a more rigorous analysis of the degrees of error
correlations in our algorithms than the one described in Sec. 2.3.5, where we only esti-
mated lower bounds on the multi-qubit errors calculated from correlated errors on at most
s < n qubits. A more careful analysis would allow us to determine the dominant source
of correlated errors that we must reduce as we move towards implementing fault-tolerant
quantum error corrections codes.
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Appendices

Appendix A Driving a two-level system

In this appendix I will derive the Hamiltonian for a coherently driven transmon, and
the induced AC-Stark shift of its first energy transition E01 = ~ωq if the drive frequency
ωd is detuned from the qubit frequency ωq. I will make use of Ch. 2 in Ref. [43], which
describes the interaction between polarized radiation and an atom with radius r0, under
the assumption that kr0 � 1, where k is the polarization vector of the electromagnetic
wave. Thus, we assume that the electromagnetic field varies very little across the size of
the atom.

We will start by assuming an incident monochromatic radiation field at frequency ωd,
whose electric field component is described by

~E(t) =
1

2

[
~A(t)e−iωdt + ~A(t)∗eiωdt

]
. (A.1)

We further express the complex amplitude A as

~A(t) = ~A0(t)e−iφ, (A.2)

where φ is the phase of the wave, and we obtain

~E(t) =
1

2
~A0(t)

[
e−i(ωdt+φ) + ei(ωdt+φ)

]
. (A.3)

We only focus on the electric field component since the dominant interaction between the
incident radiation field and our (artificial) atom arises from the potential energy of the
electric dipole of the atom in the electric field of the radiation wave. Therefore we can
write the Hamiltonian describing the dynamics of a driven transmon as

Ĥdrive =
~ωq
2
σ̂z + Ĥint(t), (A.4)

where the first term is the energy of the qubit and the second term is the interaction
Hamiltonian. If we assume ~A0 points in the ~x direction, then ~d = −e~x is the electric
dipole moment of the transmon and we can write

Ĥint(t) = −~d · ~E(t). (A.5)

Since the atom possesses inversion symmetry, it follows that [43]

〈0|~d|0〉 = 〈1|~d|1〉 = 0 (A.6)

〈0|~d|1〉 = 〈1|~d|0〉 = −eX01, (A.7)

with X01 = 〈0|~x|1〉. Therefore, we can write the interaction Hamiltonian in the {|0〉, |1〉}
basis as

Ĥint(t) = eX01(σ̂+ + σ̂−) · 1

2
~A0(t)

[
e−i(ωdt+φ) + ei(ωdt+φ)

]
. (A.8)

where σ̂+ = |1〉〈0| and σ̂− = |0〉〈1|. Next we will use the rotating wave approximation
(RWA) |ωq−ωd| << ωq to neglect the terms proportional to σ̂+eiωdt and σ̂−e−iωdt. For an
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unperturbed atom, the time-evolution of σ̂± is described by σ̂±(t) = σ̂±(0)e±iωqt. In the
RWA, the neglected terms proportional to e±i(ωq+ωd)t rotate at a much faster rate ωq +ωd
compared to the remaining terms rotating at ωq − ωd. Therefore, these fast-oscillating
terms are on average equal to zero, and the total Hamiltonian becomes

Ĥdrive =
~ωq
2
σ̂z +

1

2
~eX01

~A0(t)
[
e−i(ωdt+φ)σ− + ei(ωdt+φ)σ+

]
. (A.9)

Defining ΩR(t) = eA0(t)X01/~ as the Rabi frequency of the transmon induced by the
external field, we can rewrite this Hamiltonian in the following matrix form:

Ĥdrive =

(
~ω0/2 ~(ΩR/2)e−i(ωdt+φ)

~(ΩR/2)ei(ωdt+φ) −~ω0/2

)
. (A.10)

We use the unitary transformation

Û =

(
1 0
0 eiωdt

)
, (A.11)

to transform into a frame rotating at ωd. Then our Hamiltonian becomes

Ĥdrive =

(
~∆ωq,d/2 ~(ΩR/2)e−iφ

~(ΩR/2)eiφ −~∆ωq,d/2

)
, (A.12)

where ∆ωq,d = ωq − ωd, or, using that e±iφ = cos(φ)± isin(φ),

Ĥdrive = ~
ωq − ωd

2
σ̂z +

~ΩR(t)

2
(cos(φ)σ̂x + sin(φ)σ̂y),

which is the Hamiltonian in Eq. (2.6) in Sec. 2.1.1. The time-dependence in ΩR(t) comes
from A0(t); above I have been writing ΩR for simplicity.

To obtain the AC-Stark shift of the energy levels of the transmon due to the off-
resonant incident radiation detuned by ∆ωq,d = ωq − ωd, we find the eigenenergies of

Ĥdrive given by the eigenvalues of Eq. (A.13):∣∣∣∣~∆ωq,d/2− E±01 ~ΩR/2
~Ω∗R/2 −~∆ωq,d/2− E±01

∣∣∣∣ = 0. (A.13)

Here, I have absorbed the phase into ΩR, which is now a complex quantity. The eigenen-
ergies are

E±01 = ±~

√(
∆ωq,d

2

)2

+

(
ΩR

2

)2

. (A.14)

If the detuning is very large ∆ωq,d � ΩR, then we can use the approximation
√

1 + x2 '
1 + x2/2 to write

E±01 ' ±
(
~∆ωq,d

2
+

~Ω2
R

4∆ωq,d

)
. (A.15)

We see that in this limit the so-called bare qubit frequencies ±∆ωq,d/2 are shifted by the
AC-Stark shift Ω2

R/4∆ωq,d.
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Appendix B Derivation of the inequality between cor-

related and uncorrelated depolarizing

parameters

In this appendix I will prove that the product of two depolarizing parameters α
(2)
1 , α

(2)
2

obtained from measurements of single qubit observables 〈σ̂z〉 in a 2-qubit SRB experiment

is less than or equal to the depolarizing parameter α
(2)
12 obtained from measuring the two-

qubit correlator 〈σ̂zσ̂z〉:

α
(2)
1 α

(2)
2 ≤ α

(2)
12 . (B.1)

I will then use this result to argue that the same relation is also true for SRB experiments
on any number of qubits.

To prove Eq. (B.1), I will describe the total depolarizing channel associated with the
2-qubit SRB experiment in the general framework introduced in Sec. 2.3.5. Hence, the
channel is given by Eq. (2.59), reproduced here for clarity:

Λ
(2)
12 = a2 Λ12 + b2 Λ1 ◦ Λ2.

As mentioned before, we obtain the depolarizing parameters α
(2)
1 , α

(2)
2 , α

(2)
12 from mea-

surements of 〈σz,1〉, 〈σz,2〉, and 〈σz,1σz,2〉, respectively. We write these parameters in a

similar way as we wrote α
(4)
12 in Eq. (2.62):

α
(2)
1 = a2 α12 + b2 α1 ≤ 1

α
(2)
2 = a2 α12 + b2 α2 ≤ 1

α
(2)
12 = a2 α12 + b2 α1α2 ≤ 1,

with a2 + b2 = 1,

where a2 and b2 are unknown coefficients denoting the weights of the theoretical depolar-
izing parameters α1, α2, and α12 associated with the theoretical channels Λ1, Λ2, and Λ12.
The depolarizing parameters α

(2)
1 , α

(2)
2 , α

(2)
12 all lie in the interval [0, 1], where a value of 0

(1) indicates an error channel that will produce a completely mixed state with probability
0% (100%). From the normalization condition, we obtain b2 = 1− a2, and we can rewrite

α
(2)
1 = α1 + a2(α12 − α1) ≤ 1

α
(2)
2 = α2 + a2(α12 − α2) ≤ 1

α
(2)
12 = α1α2 + a2(α12 − α1α2) ≤ 1.

We want to show that α
(2)
1 α

(2)
2 ≤ α

(2)
12 . To this end we calculate

α
(2)
1 α

(2)
2 = α1α2 + a2α1(α12 − α2) + a2α2(α12 − α1) + a2

2(α12 − α1)(α12 − α2).

Since a2 + b2 = 1, then a2 ≤ 1 and a2
2 ≤ a2. Hence, we can write

α
(2)
1 α

(2)
2 ≤ α1α2 + a2α1(α12 − α2) + a2α2(α12 − α1) + a2(α12 − α1)(α12 − α2)

= α1α2 + a2(α2
12 − α1α2).
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Since the parameter α12 is a depolarizing parameter, it is true that α12 ≤ 1, and thus
α2

12 ≤ α12. We then have that

α
(2)
1 α

(2)
2 ≤ α1α2 + a2(α12 − α1α2), (B.2)

or, using α
(2)
12 = α1α2 + a2(α12 − α1α2),

α
(2)
1 α

(2)
2 ≤ α

(2)
12 .

If Eq. (B.1) is true, then simple inductive arguments can be used to generalize this
result to an SRB experiment on n qubits:

α
(n)
ij...s ≥ α

(n)
i α

(n)
jk...s ≥ α

(n)
i α

(n)
j α

(n)
kl...s ≥ ...,

α
(n)
ij...s ≥ α

(n)
ij α

(n)
kl...s ≥ α

(n)
ij α

(n)
k α

(n)
l...s ≥ ...,

...

α
(n)
ij...s ≥ α

(n)
ij...s−1α

(n)
s ,

for s ≤ n.

Consequently, we expect to find the following hierarchy for the multi-qubit errors calcu-
lated from our 4-qubit SRB experiment:

r̄4 ≤ r̃4,3 ≤ r̃4,2 ≤ r̃4,1. (B.3)

These quantities are defined in Sec. 2.3.3 and Sec. 2.3.5.
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