
Master’s Thesis

21

st

December, 2016

Spectroscopy Automation and Sample

Characterization of Superconducting Qubits

Quantum Device Lab, Department of Physics, ETH Z ¨urich

Author:
Simon Storz

Supervisor:
Prof. Dr. A. Wallraff

Advisor:
Johannes Heinsoo

Abstract

Superconducting qubits are a promising candidate for the realization of a quantum computer,

quantum networks and for experiments towards fundamental research. As the superconducting

circuits used for the experiments in the circuit quantum electrodynamic (cQED) architecture

become more complicated over the years, automized software for performing the experiments

becomes inevitable. Here we develop a new software suit that allows for automized spectroscopy

experiments with superconducting qubits. The present thesis describes this software in detail and

explains how it can be extended for further use. Moreover the thesis provides an overview of the

characterization experiments of a chip in the cQED architecture and suggests a recipe of how to

determine the defining parameters of superconducting qubits in a systematic way.

Contents

1 Introduction 4

1.1 Quantum Technologies . 4

1.2 Towards a Quantum Computer . 5

1.3 Motivation for this project . 6

2 Superconducting Qubits 7

2.1 Introduction . 7

2.2 The Cooper Pair Box . 9

2.3 The Transmon Qubit . 10

2.4 Circuit QED . 11

2.5 Drive and Readout of a Transmon . 14

2.6 Coherence . 15

3 Experiment setup 17

3.1 Overview . 17

3.2 Cryogenics . 17

3.3 Signal modulation . 20

3.4 Downconversion . 21

3.5 Synchronization . 21

4 Software 24

4.1 SweepSpot framework . 24

4.1.1 Concept . 24

4.1.2 Definition of an experiment . 25

4.1.3 SweepSpot generator . 31

4.1.4 SweepSpot.vi . 33

4.1.5 Save measurement data / file handling . 37

4.2 SweepSpot frontend . 40

4.3 Efficiency of time and memory usage . 42

4.4 Improvements and differences to Cleansweep . 44

5 Spectroscopy Automation 45

5.1 Software overview . 45

5.2 Spectroscopy.vi . 46

5.3 Resonator/Qubit spectroscopy . 47

2

5.4 Combined Spectroscopy . 50

5.5 Parking qubits . 50

5.6 Tracking qubits . 51

6 Sample characterization 54

6.1 Sample for example data . 54

6.2 Checking the sample . 55

6.2.1 Purcell filter spectroscopy . 55

6.2.2 Magnetic field dependence . 56

6.3 Qubit spectroscopy . 57

6.3.1 Finding the optimal readout frequency . 58

6.3.2 Broad and fine qubit spectroscopy . 58

6.3.3 AC Stark shift and pulsed spectroscopy . 60

6.3.4 Checking the behavior of the qubit . 60

6.3.5 Anharmonicity . 63

6.3.6 Exact Transition Frequency . 63

6.3.7 QScale calibration . 65

6.3.8 Coherence Times . 66

6.4 Tracking the qubit . 68

6.5 Further experiments . 69

7 Conclusion 70

7.1 Summary . 70

7.2 Proposals . 70

Acknowledgments 72

A Measurement configurations of time statistics experiments 73

B Adding features to SweepSpot 74

B.1 General remarks . 74

B.2 Adding a new sweep type . 75

B.3 Adding a new instrument . 76

B.4 Adding a new acquisition device . 77

B.5 Using SweepSpot as a module . 78

3

Chapter 1

Introduction

1.1 Quantum Technologies

In the last century quantum physics has revolutionized our understanding of nature and the

technologies we interact with in our daily lives. Quantum theories originate in a paper of Max

Planck in 1901 [40] solving the ultraviolet catastrophe problem by suggesting that radiation comes

in quantized units. Based on that Albert Einstein in 1905 proposed the existence of the photon

[19]. In the following years scientists discovered the substructures of the atom and developed

a mathematical theory of the phenomenons at tiny scales. Especially notable are the discovery

of the wave particle duality [16], Wolfgang Paulis exclusion principle [39], Erwin Schr¨odingers

famous equation of the same name [44] and Werner Heisenbergs uncertainty relation [28].

But quantum physics has not only fundamentally changed how we think about nature, it has also

changed technological, economical and sociological foundations of our civilization. Quantum

physics gave birth to lasers that revolutionized the way humans communicate. Highly precise

atomic clocks allowed us to precisely determine our position via GPS and with magnetic reso-

nance imaging (MRI) [36] quantum physics even found its way to medicine. The greatest effect

of quantum theory on our daily lives however was the development of the transistor which led to

the invention of the computer. As these inventions, especially computers, have radically changed

the world, the development of quantum theory in the early 20th century is often referred to as

the ”first quantum revolution”.

In the second half of the 20th century scientists amongst other things began to investigate the

phenomenon of entanglement. As the understanding of this unfamiliar feature of the theory

grew, scientists became able to propose new applications of quantum physics that are based on

entanglement. In 1991, Artur Ekert improved Charles Bennetts secure key distribution scheme

[4] by using entangled quantum states [20]. Two years later Bennett proposed an algorithm to

teleport a quantum state [5]. Alongside that physicists discovered that technology can make use

of quantum physics to outperform classical computers in certain tasks. Most prominently, Peter

Shor showed in 1994 [47] that so-called quantum computers could perform prime factorization

in polynomial time instead of nearly exponential time for classical computers [50]. A little later

Lov Grover showed that quantum computers are way more efficient than classical computers in

searching a database [23]. The development of quantum technologies such as fast quantum com-

puters alongside with secure communication, efficient simulation of other quantum processes

4

and highly accurate quantum sensors is believed to lead to a ”second quantum revolution”.

From all of these new technologies quantum computers could probably have the biggest influence

on humanity. Quantum computers could be used to break most of today’s public key algorithms

[12], they could revolutionize economy through fast and powerful algorithms predicting changes

on the stock market [21], they could be used to dramatically improve radiation therapy and

drug development [30] and they could lead to a deeper understanding of nature itself thanks to

simulations of other quantum mechanical processes [10]. But the exponential speedup a quantum

computer could provide for certain calculations is only one of the main motivations to develop

a quantum processor. The other reason is that classical chips soon cannot be made any smaller.

Quantum effects that begin to interfere with the electronics form a fundamental limit for the

development of better processors [38]. A quantum computer could solve this problem by instead

of being limited by quantum effects making use of them.

1.2 Towards a Quantum Computer

The first specific attempts to control single quantum systems were done in the 1970s [38]. This

was a necessary condition for the implementation of the first qubits. The first qubits were pho-

tons with their perpendicular polarization state as the computational basis. At these days, single

photon sources got developed and the technology to detect photons was already evolved. How-

ever, as the photons only interact weakly with each other, two qubit gates are hard to implement.

This is a serious drawback for an architecture for a quantum computer [38].

Another early implementation of qubits was achieved with spins of atomic nuclei. The so-called

nuclear magnetic resonance (NMR) technology led to an early 3 qubit quantum computer [32].

But also NMR technology has serious drawbacks for quantum computing. First, as the nuclear

magnetic moment is small, a large number of qubits must be used to be able to generate a de-

tectable signal. Second, it is extremely hard to prepare the spins in a pure (ground) state at room

temperature where the technology is usually used at, as the spin energy h̄w is significantly lower

than kBT in this temperature regime [38].

Furthermore qubits have been realized with quantum dots [26] and trapped ions [37]. Trapped

ions are considered to be one of the most promising candidates for quantum computing imple-

mentations, amongst other things as there exists a theoretical approach to scale up an ion trap

quantum computer [34].

The other auspicious technology for quantum information processing are superconducting qubits.

Superconducting qubits are artificial atoms coupled to artificial microwave cavities on a chip (typ-

ically on the order of 1cm

2

; see Chapter 2). The interactions between the electromagnetic field

(photons) and the qubits are described by the theory of circuit quantum electrodynamics (circuit

QED) which is deeply connected to the evolved theory of cavity QED [49]. Superconducting

qubits are especially interesting as their characteristics can be engineered to a large amount. For

fabrication, standard lithography technique can be used which makes it convenient to manufac-

ture the chips and is promising for the scalability of the technology.

The research done in the Quantum Device Lab (Qudev) at ETH is based on superconducting

qubits. Therefore circuit QED is the general setting this Master’s thesis is based on.

5

1.3 Motivation for this project

The qubits on the chips need to be tested and characterized during their development. In the long

run quantum computers are expected to use a few hundreds or thousands of qubits. The more

qubits there are on a sample and the more complex the design of the chip gets the more time-

consuming it becomes to perform measurements by hand. Especially for the characterization of

the samples automation becomes crucial.

As the samples are fabricated by the Qudev group itself they need to be tested and characterized

before they can be used to perform quantum algorithms. Also in between subsequent experi-

ments on a sample one often needs to do spectroscopy measurements again. The aim of this

Master’s project was to automize the most important spectroscopy experiments. In order to

do this the measurement software used in the laboratory had to be rewritten. For that a new

software suit called SweepSpot was developed. Its concept, its advantages and the procedure of

sample characterization itself are the core subjects of this thesis.

The thesis is structured as follows: First, in Chapter 2 a general overview of superconducting

qubits is provided. Then in Chapter 3 the setup of a typical quantum computing experiment

is explained. Afterwards in Chapter 4 the new software suit is presented and Chapter 5 shows

how the software is used to automize spectroscopy experiments. This is followed by a discussion

in Chapter 6 about a systematic approach for sample characterization and about the scientific

background of the experiments. Finally, the thesis will be summarized and proposals for further

projects will be made.

6

Chapter 2

Superconducting Qubits

In 2000, Di Vincenzo summarized 5 criteria that are required for a physical system to be able to

perform quantum computing algorithms [18]:

1. a scalable physical system with well characterized qubits;

2. the ability to initialize the state of the qubits to a simple fiducial state;

3. long relevant decoherence times, much longer than the gate operation time;

4. a ”universal” set of quantum gates;

5. a qubit-specific measurement capability.

There are several types of superconducting qubits that fulfill this criteria. A general overview

of the technology is provided in the first part of this chapter, followed by a discussion of one of

the first superconducting qubits: the Cooper pair box. Then its successor, the Transmon qubit,

will be described. Afterwards there will be given a short overview of circuit QED and it will

be shown how the state of the Transmon qubit can be manipulated and read out. Finally the

coherence times of the qubits will be discussed.

2.1 Introduction

2.1. Electromagnetic Oscillators

Figure 2.1.: Schematic circuit diagrams of basic oscillator loops. (a) LC Oscillator

circuit consisting of a inductor with inductance L and a capacitor with capaci-

tance C. (b) The circuit of an rf-SQUID loop is basically a LC oscillator circuit

with an additional Josephson Junction connected in parallel.

where the generalized position and momentum are given by q = � and p = Q respectively, leads

us to a Hamiltonian

H(Q, �) =
Q2

2C
+

�2

2L
, (2.6)

which is the Hamiltonian of a harmonic oscillator. In this sense, the dynamics of the LC circuit

can be seen as the harmonic movement of charged particles in-between the capacitor and the

coil.

An expansion of the LC oscillator is the circuit shown in Figure 2.1(b). It is called rf-SQUID

or radio frequency superconducting quantum interference device and is similar the dc-SQUID

(direct current). Both are based on a superconducting loop containing Josephson junctions.

The dynamics in such circuits can be described by the superconducting phase di�erence � in

the Josephson junction, which is often simply referred to as the superconducting phase. By the

well-known relation

� =
2e

�

� t

0
V (�) d� =

2e

� �, (2.7)

the superconducting phase is directly connected to the magnetic flux through the coil and the

voltage drop across the junction. In terms of the superconducting phase, the potential energy

stored in the Josephson junction is given by

Epot =

� t

0
I V (�) d�

=

� t

0
IJ sin(�) �̇ d�

=
�
2e

� �

0
IJ sin(�)�̇ d�

=
�
2e

� �

0
IJ sin(�) d� =

�
2e

IJ (1 � cos�),

(2.8)

9

Figure 2.1: A simple LC cir-

cuit. Figure adapted from

[24].

Superconducting qubits are artificial atoms made up of supercon-

ducting metal. Their basic structure can be represented by an elec-

tric circuit diagram. The basic concept is best understood when

first investigating a parallel LC oscillator, shown in Figure 2.1.

Applying Kirchoff’s law to the LC circuit leads to its equation of

motion [3]

L
d2Q
dt2

+
1

C
Q = 0. (2.1)

From here, the Lagrangian L(p,

˙Q) = (1/2)L(dQ/dt)2 �
(1/2C)Q2

can be derived and using a Legendre transformation

H(p, q) = p ˙q � L the Hamiltonian of the system is found as

H(Q, F) =
Q2

2C
+

F2

2L
. (2.2)

Here F denotes the flux which takes the role of the canonical momentum p whereas the charge

Q represents the generalized position q.

7

The next step is to quantize the system. But first it has to be verified whether the LC circuit can

actually be considered as being quantum. The answer is yes, if certain conditions are fulfilled.

Generally, a system can be considered behaving quantum mechanically if its degrees of freedom

are well decoupled from the environment and its state is close to the ground state of the system.

Like that quantum decoherence, which transforms a quantum system to a classical one, can be

suppressed. The collective degrees of freedom in an electric LC circuit are the charge Q stored

on a capacitor and the flux F stored in an inductor [3]. The requirement is therefore to ensure

the electric signals that pass from one part of the chip to another do not dissipate. This can be

done by manufacturing the metal parts on the chip out of superconducting material [17]. Often

Aluminium or Niobium are used for that [48].

Furthermore, thermal noise on the signals needs to be suppressed to a regime where kT << h̄wge
where wge is the transition frequency between the lowest two energy states of the qubit. As the

typical transition frequency of a superconducting qubit lies in the gigahertz range (typically at

5-20 GHz) [17] the temperature of the chip must be in the millikelvin region (typically around

20 mK). Suppressing thermal noise and ensuring superconductivity therefore requires the sam-

ple to be cooled down using a cryostat (see Section 3.2).

Cooling the chip to the mK range therefore ensures that the qubit materials are in the supercon-

ducting regime and that the system behaves quantum mechanically. Now the Hamiltonian in Eq.

2.2 can be safely quantized. This is done by replacing the canonical conjugate variables of the

system by their corresponding anticommuting quantum operators:

Q ! ˆQ, F ! ˆF (2.3)

with [ˆQ,

ˆF] = ih̄. Following the standard quantisation of a harmonic oscillator and using w =
1p
LC

,

ˆQ = i
p

h̄/2Z(ˆa � ˆa†) and

ˆF =
p

Zh̄/2(ˆa + ˆa†), Eq. 2.2 becomes

ˆH = h̄w(ˆa†

ˆa +
1

2

). (2.4)

This leads to a discrete energy spectrum with equally separated levels. However, as the aim is to

construct a qubit, i.e. a two level system, one must find a way to suppress transitions to other lev-

els than between the ground state and the first excited state.

3 Quantum Circuits: On-Chip Quantum Processor

I S2S1

I

(a) (c)

(b)

0 1 2 3 4 5 6
!20

!15

!10

!5

0

5

phase difference ∆ , !Π"

U
,!E J"

I$0

I%Ic

I$Ic

ΩJ

EJ EJ
CJ

CJ RJ

RJ
=^

Figure 3.3: a) Schematic of a current biased S-I-S Josephson tunnel junction. It
consists of two superconducting electrodes S 1 and S 2 with a thin isolation layer in
between. b) A physical Josephson junction can be modeled as an ideal Josephson
element with Josephson energy EJ shunted by a resistance RJ and a capacitance
CJ . c) Washboard potential for di�erent bias currents I. If the bias current is
smaller than the critical current of the junction (I < IC), the potential has well
defined minima around which the potential can be approximated with as a weakly
anharmonic potential with resonance frequency � �J .

and the voltage across an ideal Josephson element to the phase di�erence between
the electrodes are summarized below [Tinkham96].

1. Current phase relation - When no voltage is applied across the Josephson
junction, there is a supercurrent Is through the junction, which depends on
the phase di�erence � between the two macroscopic wave functions of the
two superconducting electrodes. This e�ect is called the DC Josephson e�ect

22

Figure 2.2: A drawing of a Josephson junc-

tion. The blue outer parts represent the su-

perconducting conductors and the yellow

colored part in the middle denotes the in-

sulating film. Figure adapted from [3].

In particular, anharmonicity has to be introduced.

The only known dissipation free electrical ele-

ment that achieves that is a Josephson junction

[3].

The Josephson Junction, first proposed by David

Josephson in 1962 [33], contains two superconduct-

ing electrodes separated by a thin insulator, as

shown in Figure 2.2. As the wavefunctions of the

two electrodes overlap, Cooper pairs (electrons) can

tunnel through the insulator from one side to the

other.

8

The Josephson Junction can be characterized by two energy parameters: First, the Josephson

energy

EJ =
F

0

IC
2C

(2.5)

is the energy stored in the Josephson junction, IC representing the current over the junction, C its

capacitance and FO = h/2e the flux quantum. Moreover, the charging energy

EC =
e2

2C
(2.6)

denotes the energy needed to transfer one electron from one side of the Josephson junction to the

other. These two energies, together with the phase difference d across the element and the total

number N of excess Cooper pairs on one electrode relative to the neutral state fully characterize

the state of the Josephson junction [3].

There are several qubit designs that make use of the Josephson Junction. They can be classified

as charge, flux or phase qubits corresponding to the quantity that determines the state of the

qubit. One of the first designs was the Cooper pair box (a charge qubit), first proposed in 1987

by Markus B ¨uttiker [11].

2.2 The Cooper Pair Box

The schematics of a Cooper pair box (CPB) in combination with a superconducting quantum

interference device loop (SQUID) is shown in Figure 2.3. A SQUID is an electric loop which is

highly sensitive to external magnetic fields. The SQUID splits the Josephson Junctions into two

parts. The Cooper pair box further contains a so-called ”reservoir” of electrons that is separated

from an ”island” by the two Josephson junctions. The SQUID is added to tune the Josephson

energy of the qubit by applying a magnetic flux F.

Figure 2.3: A scheme of

the Cooper pair box with a

SQUID loop. Figure adapted

from [3].

Assuming the two Josephson junctions have equal Josephson en-

ergies the SQUID can be modeled as a single Josephson junction

with effective energy

EJ(F) = 2Emax
J | cos(

pF
F

0

)|. (2.7)

The maximal Josephson energy of the SQUID is given by the sum

of the individual Josephson energies, thus Emax
J = 2EJ . The Hamil-

tonian of the system, given by the potential (EJ) and kinetic energy

(electrostatic energy of the capacitor), can be found as [3]

HCPB = 4EC(ˆN � NG) � EJ(F) cos(ˆd). (2.8)

ˆN is the operator corresponding to the number of excess Cooper

pairs on the island, NG = �CGVG/2e stands for the charge on the

gate capacitor in units of 2e and EC = e2

/2C denotes the charging

energy. The qubit is tunable via the magnetic flux that influences

EJ and by the external gate voltage that changes NG.

9

The Hamiltonian in Eq. 2.8 can be rewritten in the charge representation where

ˆN |Ni = n |Ni,

[ˆd,

ˆN] = i and e±i ˆd |Ni = |N ⌥ 1i. In that basis it reads [9]

HCPB = Â
N

[4EC(N � NG)2 |Ni hN| � EJ

2

(|Ni hN + 1| + |N + 1i hN|)]. (2.9)

This representation emphasizes that the number of Cooper pairs on the island can only be

changed via EJ . The exact eigenenergies of the Cooper pair box can be expressed with the

Mathieu functions [35]

Em(NG) = ECa
2[NG+k(m,NG)](�

EJ

2EC
) (2.10)

where ai(q) is the Mathieu’s characteristic value and k(m, NG) is a function that sorts eigenvalues.

Figure 2.4 shows the first three eigenenergies of the Cooper pair box in relation to the applied

gate voltage, called charge dispersion. Each of the plots represents a different EJ/EC ratio. It can be

seen that the charge dispersion ceases for a higher EJ/EC ratio. Furthermore the anharmonicity

decreases when increasing EJ/EC.

ber of Cooper pairs transferred between the islands and the
gauge-invariant phase difference between the superconduct-
ors, respectively. By means of the additional capacitance CB,
the charging energy EC=e2 /2C! !C!=CJ+CB+Cg" can be
made small compared to the Josephson energy. In contrast to
the CPB, the transmon is operated in the regime EJ�EC.

The qubit Hamiltonian, Eq. !2.1", can be solved exactly in
the phase basis in terms of Mathieu functions, see, e.g., Refs.
#6,16$. The eigenenergies are given by

Em!ng" = EC a2#ng+k!m,ng"$!− EJ/2EC" , !2.2"

where a"!q" denotes Mathieu’s characteristic value, and
k!m ,ng" is a function appropriately sorting the eigenvalues;
see Appendix B for details. Plots for the lowest three energy
levels E0, E1, and E2, as a function of the effective offset
charge ng, are shown in Fig. 2 for several values of EJ /EC.
One clearly observes !i" that the level anharmonicity depends
on EJ /EC, and !ii" that the total charge dispersion decreases
very rapidly with EJ /EC. Both factors !i" and !ii" influence
the operation of the system as a qubit. The charge dispersion
immediately translates into the sensitivity of the system with
respect to charge noise. A sufficiently large anharmonicity is
required for selective control of the transitions, and the ef-
fective separation of the Hilbert space into the relevant qubit
part and the rest, H=Hq ! Hrest. In the following sections,
we systematically investigate these two factors and show that
there exists an optimal range of the ratio EJ /EC with suffi-
cient anharmonicity and charge noise sensitivity drastically
reduced when compared to the conventional CPB.

B. The charge dispersion of the transmon

The sensitivity of a qubit to noise can often be optimized
by operating the system at specific points in parameter space.

An example for this type of setup is the “sweet spot” ex-
ploited in CPBs #21$. In this case, the sensitivity to charge
noise is reduced by biasing the system to the charge-
degeneracy point ng=1/2, see Fig. 2!a". Since the charge
dispersion has no slope there, linear noise contributions can-
not change the qubit transition frequency. With this proce-
dure, the unfavorable sensitivity of CPBs to charge noise can
be improved significantly, potentially raising T2 times from
the nanosecond to the microsecond range. Unfortunately, the
long-time stability of CPBs at the sweet spot still suffers
from large fluctuations which drive the system out of the
sweet spot and necessitate a resetting of the gate voltage.

Here, we show that an increase of the ratio EJ /EC leads to
an exponential decrease of the charge dispersion and thus a
qubit transition frequency that is extremely stable with re-
spect to charge noise; see Fig. 2!d". In fact, with sufficiently
large EJ /EC, it is possible to perform experiments without
any feedback mechanism locking the system to the charge
degeneracy point. In two recent experiments using transmon
qubits, very good charge stability has been observed in the
absence of gate tuning #22,23$.

Away from the degeneracy point, charge noise yields
first-order corrections to the energy levels of the transmon
and the sensitivity of the device to fluctuations of ng is di-
rectly related to the differential charge dispersion !Eij /!ng,
as we will show in detail below. Here Eij %Ej −Ei denotes
the energy separation between the levels i and j. As expected
from a tight-binding treatment, the dispersion relation Em!ng"
is well approximated by a cosine in the limit of large EJ /EC,

Em!ng" & Em!ng = 1/4" −
#m

2
cos!2$ng" , !2.3"

where

#m % Em!ng = 1/2" − Em!ng = 0" !2.4"

gives the peak-to-peak value for the charge dispersion of the
mth energy level. To extract #m, we start from the exact ex-
pression !2.2" for the eigenenergies and study the limit of
large Josephson energies. The asymptotics of the Mathieu
characteristic values can be obtained by semiclassical
!WKB" methods !see, e.g., Refs. #24–26$". The resulting
charge dispersion is given by

#m & !− 1"mEC
24m+5

m!
' 2

$
(EJ

2EC
)m

2
+ 3

4
e−'8EJ/EC, !2.5"

valid for EJ /EC�1. The crucial point of this result is the
exponential decrease of the charge dispersion with 'EJ /EC.

The physics behind this feature can be understood by
mapping the transmon system to a charged quantum rotor,
see Fig. 3. We consider a mass m attached to a stiff, massless
rod of length l, fixed to the coordinate origin by a frictionless
pivot bearing. Using cylindrical coordinates !r ,% ,z", the mo-
tion of the mass is restricted to a circle in the z=0 plane with
the polar angle % completely specifying its position. The
rotor is subject to a strong homogeneous gravitational field
g=gex in x direction, giving rise to a potential energy
V=−mgl cos %. The kinetic energy of the rotor can be ex-
pressed in terms of its angular momentum along the z axis,

FIG. 2. !Color online" Eigenenergies Em !first three levels, m
=0,1 ,2" of the qubit Hamiltonian !2.1" as a function of the effec-
tive offset charge ng for different ratios EJ /EC. Energies are given
in units of the transition energy E01, evaluated at the degeneracy
point ng=1/2. The zero point of energy is chosen as the bottom of
the m=0 level. The vertical dashed lines in !a" mark the charge
sweet spots at half-integer ng.

CHARGE-INSENSITIVE QUBIT DESIGN DERIVED FROM… PHYSICAL REVIEW A 76, 042319 !2007"

042319-3

Figure 2.4: The lowest three eigenenergies Em of the CPB, depending on the gate voltage, for 4

different settings of the EJ/EC ratio. The energies are normalized by the lowest transition energy

E
01

, evaluated at NG = 1/2. Figure adapted from [35].

Aiming for low charge dispersion, in 2007 Koch et. al. introduced the so-called Transmon qubit.

2.3 The Transmon Qubit

The main feature of the Transmon qubit is its high EJ/EC ratio. This allows to have low charge

sensitivity (see Figure 2.4) but still a sufficiently high anharmonicity. In particular, the Transmon

10

qubit manages to reduce charge dispersion exponentially in EJ/EC while the anharmonicity only

ceases algebraically [35]. Additionally, the Transmon design increases the coupling of a qubit to

a resonator for higher EJ/EC.

The main difference between the Transmon design and the one for the Cooper pair box is an

additional shunting connection of the superconducting metal leads via a large capacitance CB, as

shown in Figure 2.5 (b). Additionally, the gate capacitance CG is increased by a similar amount.

The additional shunted capacitance is introduced by increasing the size of the two islands (in that

case the reservoir becomes one of the islands). The additional capacitance lowers the charging en-

ergy EC = e2

/2C and therefore increases the EJ/EC ratio. Figure 2.5 (a) shows a schematic draw-

ing of a Transmon qubit that was used for most of the experiments during this project. The two

big vertical blocks represent the two islands, coupled via the SQUID (denoted by JJ=Josephson

Junctions; thin vertical line on the top of Figure 2.5 (a)) on the top. The Josephson Energy EJ can

be tuned with the flux line (FL) on the top of the sample. The qubit can be driven by the charge

drive line (DL) on the right side of the qubit. Additionally, there are two coupling resonators

(CR1, CR2) that couple the qubit to its neighbors on the sample and there is a readout resonator

(RR) used to readout the population of the qubit. The corresponding electrical circuit is shown

in Figure 2.5 (b).

In general, having found a suitable qubit design the next question to ask is how to do experiments

with it. To perform experiments in the framework of cavity QED the qubit needs to be coupled

to a electromagnetic field.

2.4 Circuit QED

The well-understood framework of cavity quantum electrodynamics [29] can be extended to

electric circuits, as shown in 2004 by Blais et. al. [8]. In this so-called circuit QED architecture the

real atom is replaced by an artificial one (i.e. a superconducting qubit) and instead of a cavity

a microwave transmission line resonator is used. The first implementation of such a setup was

demonstrated by Wallraff et al. [49].

The advantage of circuit QED over cavity QED is that most parameters of a chip with supercon-

ducting qubits can be designed, such as the couplings between the resonators and the qubits or

the qubit frequency range. Furthermore, several qubits can be placed on a sample of the size of

1 cm2

which is beneficial for scalability [3]. At the same time circuit QED uses the same mathe-

matical tools as cavity QED.

In particular, the interaction between a Transmon qubit and a resonator is described by the

Jaynes-Cummings Hamiltonian [35]

ˆH/h̄ =
N�1

Â
i=1

wi |ii hi| + wr ˆa†

ˆa +
N�2

Â
i=0

(gi,i+1

|ii hi + 1| ˆa† + gi+1,i |i + 1i hi| ˆa) (2.11)

where the rotating wave approximation was used (as wi,j + wr � |wi,j � wr|). The first term de-

scribes the qubit with N energy levels and the second term characterizes the bare electromagnetic

field in the resonator (with E
0

= h̄wr set to 0). The third term then describes the interaction be-

tween the qubit and the resonator, including only transitions between neighboring energy levels.

11

Figure 2.5: (a) Schematic, false-colored drawing of a Transmon qubit used in the Qudev laborato-

ries. The big blocks in the middle are the two islands, connected by a SQUID, i.e. two Josephson

Junctions (JJ). The line on the top represents the flux line (FL) that tunes the magnetic flux bias.

On the top left and right one can see the coupling resonators to other qubits (CR1, CR2) that are

capacitively coupled to the qubit. On the right side in the middle one finds the charge drive line

(DL) for the qubit. On the bottom one end of the readout resonator can be seen (RR). Original

image by Yves Salath´e (Qudev).

(b) Circuit diagram of a Transmon qubit. From left to right one can see the gate voltage source,

a coupled resonator (in red), the two gate capacitors CG, the additional shunted capacitor CB
between the islands and the SQUID loop on the right (CJ ,EJ). The flux line is not included to this

circuit. Figure adapted from [35].

This approximation is valid for a sufficiently high anharmonicity of the qubit. The indices gi,j
denote the coupling strengths between the microwave field and the qubit transition from state |ii
to |ji.

For high anharmonicity we can assume a two-level system that simplifies Eq. 2.11 to

ˆH/h̄ = wgesz + wr ˆa†

ˆa + gge(ˆas+ + ˆa†s�) (2.12)

with s± = sx ± isy. The eigenstates of this coupled qubit-resonator system are the so-called

dressed states:

|+, ni = cos Qn |e, n � 1i + sin Qn |g, ni (2.13)

|�, ni = � sin Qn |e, n � 1i + cos Qn |g, ni (2.14)

and the ground state |0, 0i. Here, Qn is the mixing angle Qn = 1/2 arctan (2g
p

n/D
0

) with

the detuning D = |wge � wr| and the resonator-qubit coupling strength g. The corresponding

eigenenergies are

E±,n = nh̄wr ± h̄
2

q
4g2

gen + D2

0

(2.15)

12

–– Fluxlines
–– Purcell Filter
–– Readout Resonators

–– Coupling Resonators
–– Qubit Charge Lines
▢ Qubits

Figure 2.6: A (false-colored) picture of a 4 qubit chip used for quantum computing and simula-

tion experiments in Qudev. Original photo by Yves Salath´e (Qudev).

E
0,0

= � h̄D
0

2

. (2.16)

The qubit can be operated at two different frequency regions: the resonant regime where wge ⇡
wr and the dispersive regime where the detuning D

0

is large. In the resonant regime the bare

eigenstates |g, ni and |e, n � 1i are not eigenstates of the total system anymore as the interaction

term HI = h̄gge(ˆas+ + ˆa†s�) lifts the degeneracy. Instead, the two systems hybridize and the to-

tal eigenstates become |±, ni = 1p
2

(|g, ni + |e, n � 1i) and |0, 0i. The two excited states differ in

energy by a factor of ge f
p

n + 1 compared to the case without interaction (where the two energy

levels are degenerate at D = 0). This is called AC Stark shift [22]. Continuously, the qubit and

the resonator exchange excitations which results in Rabi oscillations.

In the dispersive regime the two systems still influence each other, even though the qubit and the

resonator do not exchange any excitations. In that case the interaction term of the Hamiltonian

2.12 can be neglected to lowest order. Instead we write [35]

ˆH/h̄ =
1

2

(wge + cge) ˆsz + (w0
r + c ˆsz) ˆa†

ˆa (2.17)

where we used a renormalized resonator frequency w0
r = wr � cg f /2 as the resonator resonance

gets slightly shifted due to the interaction with higher energy levels of the Transmon [3]. It can

13

be seen that the qubit state shifts the resonance of the resonator by a so-called dispersive shift

c = cge � ce f /2 (2.18)

where

cij =
g2

ij

wij � wr
. (2.19)

Vice versa, the qubit transition frequency gets slightly shifted by a Lamb shift of cge due to vac-

uum fluctuations in the resonator.

This system is especially interesting as the qubit state has a direct influence on the resonator

frequency, which one can measure without disturbing the qubit population - a mechanism known

as quantum non-demolition readout.

2.5 Drive and Readout of a Transmon

Dispersive Readout To perform a readout of a qubit state the corresponding readout resonator

is driven with a weak microwave signal

ˆHdrive = h̄#d(ˆa†e�iwdt + ˆaeiwdt) (2.20)

to populate it with photons. #d denotes the amplitude of the signal [8]. The sample design de-

picted in Figure 2.6 contains a Purcell filter that couples to the readout resonators to suppress

Purcell decay [46]. In that case all readout resonators are driven through the same input port and

their response is read out through the same output port (namely the input/output port of the

Purcell resonator).

2.5. Coherence Time

ω�-χ ω� ω�+χ
���

���

���

���

���

���

���������

��
��
��
���
��
�
�
�
��

Figure 2.6.: Transmitted amplitude on the output port of a resonator for a un-

coupled resonator (middle, orange) and a coupled qubit-resonator system when the

qubit is in the ground state (blue, left) and in the excited state (green, right).

single pulse rotates the qubit around an axis of the XY-plane of the Bloch sphere. Any rotation

around the z axis can be achieved by a combination of rotations around the x and y axis.

These readout and control methods methods were originally developed for the CPB, but they

also hold for the transmon qubit [27]. The only disadvantage of the transmon qubit is its

reduced anharmonicity. The time of a pulse is limited by the inverse of the maximal bandwidth

in frequency space which is limited by the anharmonicity, since one has to avoid driving the

transmon to the thrid level. On one hand, it is desirable to have as short gate times as possible,

but on the other hand if the gate time is too short there will be leakage out of the qubit subspace.

A way around of this trade-o� is a pulse shape proposed by Motzoi et al. in 2009 [36] called

Derivative Removal by Adiabatic Gate (DRAG).

2.5. Coherence Time

In general, the coherence of a qubit is characterized by the T1, T2 and T �
2 times, occurring due

to weak coupling to the environment [37]. This coupling leads to quantum noise and further

to fluctuations in the qubit transition frequencies. The time a qubit in the excited state needs

to emit its energy and end up in the ground state is called relaxation time T1. Then, the time

until we have lost all information about the qubit phase is represented by the dephasing time T2,

which is also called transversal relaxation. The rate of the dephasing is is given by the relaxation

time of the qubit and a second term [37]

1

T2
=

1

2T1
+

1

��
, (2.27)

17

Figure 2.7: Transmitted am-

plitude of a microwave signal

passing through a readout res-

onator when doing qubit spec-

troscopy. Orange: Unshifted res-

onator. Blue (Green): Response

due to coupling qubit in the

ground (excited) state. Figure

adapted from [24].

The resonator is typically far detuned from the qubit transi-

tion frequency such that we can apply the calculations for

the dispersive regime from Section 2.4. As seen in Eq. 2.17

and Figure 2.7 the resonator shift depends on the state of the

qubit. For a qubit in the excited state the resonator frequency

shifts wr ! wr + c. This shift can be detected by measuring

the response of the driven resonator.

Single qubit gates The qubit can be driven through its

charge line which is shown in Figures 2.6 and 2.5 (a). To

see the effect of a driving microwave signal applied through

the charge line an additional term can be added to the Hamil-

tonian in Eq. 2.17. This additional term represents an oscil-

lating microwave field with frequency wD: [3]

ˆHdrive/h̄ =
W
2

ˆsz (2.21)

with W = 4ECCgVD/eh̄. Diagonalizing the Hamiltonian leads

to

ˆHdrive/h̄ = WR cos(wDt) ˆsx (2.22)

14

with Rabi frequency WR = W sin(q)/2 where q = arctan(EJ
4EC(1�2NG)). In total we now have

ˆH ⇡ 1

2

wge ˆsz + WRcos(wDt) ˆsx (2.23)

which shows that using flux pulses (change wge) and microwave drive pulses (correspond to

WR(wDt)) one can perform arbitrary qubit operations on the Bloch sphere.

Qubit-Qubit interaction Finally, to perform two-qubit gates the qubits on a chip are connected

by a coupling resonator as seen in Figure 2.6. The Hamiltonian 2.2 can then be extended by an

additional term that describes the interaction of a qubit with one of its neighbors [7]

HI,2q = h̄
g

1

g
2

(D
1

+ D
2

)
2D

1

D
2

(s+
1

s�
2

+ s�
1

s+
2

) (2.24)

where higher order terms in gi/Di were neglected. The Di = wqi � wri terms denote the detuning

of the i-th qubit from its resonator readout frequency.

2.6 Coherence

A quantum state that couples to the environment degenerates, i.e. it decays to the thermal equi-

librium state of the system and the phase information gets lost. Long coherence times for qubits

are crucial for quantum information processing and in particular for quantum computing.

One distinguishes two classes of loss of quantum information [17]. First, the Bloch vector decays

to the ground state. This type of error is called energy relaxation. In the Bloch sphere picture, this

process is represented by a Bloch vector that evolves towards the ground state. Second, the Bloch

vector can also diffuse around the z-axis of the Bloch sphere. In that case the information about

the phase of the state is lost, which is why this process is called dephasing.

To formulate a mathematical expression of the coherence times it is helpful to consider the Bloch

sphere picture with eigenvectors

ˆx,

ˆy and

ˆz. A quantum state with Bloch vector

~S
0

at t = 0 will

decohere and reach its equilibrium state represented by

~Seq
with Seq

z = tanh(h̄wge/2kBT).

The relaxation and decoherence rates are now defined as [17]

G
1

= lim

t!•

lnhSz(t) � Seq
z i

t
(2.25)

Gj = lim

t!•

1

t
ln(

h~S(t)~S
0

(t)i
|~S(t) � Seq

z z|
) (2.26)

where an exponential decay of the components of the Bloch vector

~S
0

was assumed. The qubit

relaxation time is then defined as

T
1

=
1

G
(2.27)

where the coherence time is defined as

T
2

=
1

Gj + G
1

/2

. (2.28)

15

The interpretation of the two distinct coherence times is as follows [17]: The T1 time describes

the rate by that the qubit loses energy and decays to the ground state (energy relaxation). As it

includes both contribution of energy relaxation and dephasing, the T2 time characterizes the total

loss of quantum information of the qubit.

16

Chapter 3

Experiment setup

The experiments performed during this project were done in the ”Quantum Device Laboratory”

(Qudev) at ETH Z ¨urich. This chapter provides an overview of the technical aspects of the experi-

ments. In the first section the general experiment setup will be explained. Then it will be shown

how a dilution refrigerator works. Afterwards the electrical parts of the setup will be described

and finally it will be explained how the different steps of an experiment are synchronized.

3.1 Overview

There are three main components of the setup for the quantum computing experiments at the

ETH Qudev laboratory: the software to control the experiments, the electrical parts to send

microwave signals to the chip and to read out the response and cryogenics.

A typical experiment follows a sequence of steps which are depicted in Figure 3.1: First, the

experimenter starts the measurements using a software written in LabView programming lan-

guage. At that stage the experiment is defined and the parameters for the measurement are set.

Using this information the software then sets the settings for the instruments that are used for the

experiment. Typically, these are Arbitrary Waveform Generators (AWGs), Microwave Generators

(MWGs) and an acquisition device. The quantum computing group uses a Field Programmable

Gate Array (FPGA) to analyse the data from the chip. The software ensures that the synchroniza-

tion is correct, i.e. it decides which instrument parameters have to be changed at what stage of

the experiment.

The microwave signals are produced by the microwave generators. These signals are then mod-

ulated (see Section 3.3) and sent through cables to the chip. The chip is placed at the bottom of

the cryostat. On the chip, the different signals interact.

Afterwards the readout signal leaves the cryostat, gets amplified and downconverted before it is

recorded by a FPGA. The FPGA sends the data back to the LabView software where the results

are presented.

3.2 Cryogenics

To ensure the chip is superconducting and to reduce thermal noise (see Section 2.1) the chip is

placed inside a dilution refrigerator from Oxford Cryogenics. A scheme of the ”Kelvinox” model

17

Figure 3.1: The typical steps of a quantum computing experiment at the Qudev laboratory with

the three main components of the setup (software, yellow; up-conversion, red; down-conversion

and readout, blue). The experiment is controlled by a LabView application. First, the signals are

generated, upconverted and sent to the chip in the cryostat. The readout signal is then down-

converted and read out by an FPGA from which the software reads the data. Figure includes

material from [31], [42] and [15].

which was used is shown in Figure 3.2.

The cryostat works as follows [2]:

1. Gaseous

3

He flows from a dump outside of the cryostat to the condenser inside the 1K pot.

These parts are placed on the top inside the refrigerator. As the condenser is much colder

than the incoming gas temperature, the gas condenses.

2. The helium is then sucked into the mixing chamber on the bottom of the refrigerator, next

to the experiment chip. Due to heat exchangers the liquid is cooled further.

3. In the mixing chamber there are two phases of a mixture of

3

He and

4

He: a concentrated

phase rich in

3

He and a dilute phase rich in

4

He. As the enthalpy of the two phases

is different it is possible to move liquid

3

He from the concentrated phase to the dilute

phase. This quantum mechanical process can be simplified as a phase transition (similar to

a ”evaporation” of

3

He, even though we only deal with liquid helium) that removes energy

from the environment and therefore results in a cooling.

4. For a continuous phase transition one has to keep on disturbing the equilibrium. First,

3

He

has to be continuously added to the concentrated phase. At the same time,

3

He has to be

removed from the dilute phase to prevent it from saturation. This is what the still is for.

18

Figure 3.2: Schematic drawing of the Oxford Kelvinox dilution refrigerator. The red numbers

represent the steps of the list in Section 3.2. Figure adapted from [2].

The still is a small container on top of the mixing chamber that warms up the gas in the

dilute phase. Thanks to the different evaporation temperatures of the two isotopes it is

mostly

3

He that evaporates.

5. This gas is now pumped out of the cryostat and warmed up to room temperature. As a side

effect this gas cools down the incoming helium at the opposite side of the fridge through

heat exchangers.

6. Outside of the fridge the

3

He is sent to the ”cleaning” cycle. There the gas is pumped

through a cold trap filled with liquid nitrogen. Like this the gas is cleaned from oil that

may have entered the gas when flowing through the pumps.

7. As the

3

He got sucked out of the fridge its pressure in the still decreases and therefore

new liquid flows from the mixing chamber to the still. At the same time the

3

He that went

through the cleaning cycle is pumped to the fridge again where it enters the condenser. The

cycle repeats.

Theoretically using that technique the mixing chamber can be cooled to absolute zero tem-

19

perature. However practically, there is heat load from the environment that limits the

minimal temperature in the mixing chamber. On one hand heat enters the cryostat through

the cables. This can be suppressed to a certain limit through a smart use of attenuators.

On the other hand heat is supplied form the environment in the laboratory. To suppress

this effect the mixing chamber is shielded by an outer vacuum chamber, a container full of

liquid helium (4.1K), a inner vacuum chamber and a so-called still shield to shield the chip

from radiation heat load. Using this technique the temperature of the mixing chamber of

the Oxford Kelvinox refrigerator in the Qudev laboratory typically reaches 28mK.

3.3 Signal modulation

In this section it will be explained how microwave signals are produced and sent to the chip.

Each MWG that was enabled by the control software produces microwaves. In general, one is not

Figure 3.3: (a) Schematic representation of quadrature upconversion using a mixer. (b) The

output signals after upconversion. In general two sidebands as well as the LO signal can be seen.

Figures reproduced from [3], pages 67-68.

interested in the bare signal a MWG produces but in a modulation of this signal with another one,

typically produced by an AWG. For that a corresponding pulse sequence pattern has to be loaded

to the AWGs. Before the microwave signals are sent to the cryostat they are in general modulated

with other signals using quadrature upconversion. There the bare signal that is produced by the

microwave generator

sLO = Acos(wLOt) (3.1)

is sent into the local oscillator port (LO) of the mixer (see Figure 3.3 (a)). A is the amplitude of

the signal, wLO its frequency. This signal is then split into its I and Q components [3]. The I part

is multiplied with another signal coming from an AWG. That signal oscillates with frequency

wIF and is in phase with the carrier

sI = I cos (wIFt + j) (3.2)

whereas the Q part of the local oscillator is multiplied with a signal phase shifted by jQ,

sQ = Q cos (wIFt + jQ + j). (3.3)

The combined RF signal that goes to the fridge then consists of two sidebands signals. Their

frequencies are shifted by the IF frequency such that wRF = wLO ± wIF. One of the sidebands

20

can be canceled by setting the phase of the mixing Q component to jQ = ±p/2 (called single
sideband mixing). Then a single signal remains that oscillates at a frequency that is shifted by wIF
from wLO. The amplitude of the signal can be tuned using the I and Q amplitudes generated by

the AWG and the phase can be adjusted by j. However, due to mixer imperfections the other

sideband as well as the carrier signal do not get fully suppressed as shown in Figure 3.3 (b). To

decrease the unwanted signals further one can perform a mixer calibration and use filters.

3.4 Downconversion

On the chips used for this Master’s thesis a Purcell filter couples to all readout resonators (see

Section 6.1). A Purcell filter takes the role of an additional resonator with a resonance that is

broad compared to the ones of the readout resonators. As the Purcell filter couples to each of the

readout resonators any of them can be accessed by sending a pulse to the input port of the Purcell

resonator. Likewise, there is only one output port (i.e. the output port of the Purcell resonator)

that carries the response signals of the readout resonators. A signal coming from the sample is

first amplified by a parametric amplifier. This is necessary as the resonator on the chip is only

populated by a few photons. After the amplification the signal is downconverted to typically 25

MHz for a heterodyne detection. For that it has to be ensured that there is a microwave generator

that produces a downconversion LO signal that is always 25 MHz below the readout frequency.

After a further amplification [43] the signal is split into its I and Q parts which are then passed

to the FPGA. The FPGA records the data and provides the data to LabView when asked for it.

3.5 Synchronization

Since there are various devices and signals that are involved in a single measurement, synchro-

nization between the different steps and devices is essential to do sensible experiments. This

section provides an overview of how the different devices and signals are synchronized.

The main AWG controls the timing. The patterns loaded to the AWG determine when the main

AWG should trigger the other devices. An example for a pattern for pulsed spectroscopy is

shown in Figure 3.4:

Figure 3.4: A AWG sequence pattern that is used for pulsed spectroscopy. The yellow line

represents the trigger for the FPGA. The blue line shows the pattern for the resonator drive and

the green line represents the qubit drive signal.

1. First, the AWG triggers the FPGA to start with the measurement (yellow trigger in Figure

3.4).

21

2. After a short delay the AWG triggers the MWG that is responsible for the resonator drive to

start producing microwaves. At the same time the MWG that produces the microwave for

the qubit drive is stopped. 8µs later this is reversed again. More about pulsed spectroscopy

can be found in Section 6.3.

3. A trigger device specifies how often this pattern is repeated. It periodically sends a pulse

to the AWG, indicating that the arbitrary wave generator has to restart the pattern.

There are several parameters that define how long an FPGA measurement takes. The FPGA ac-

quires data with a rate of 100 million samples per second (100MHz). Therefore a single FPGA

sample takes 10ns. Using the FPGA decimation factor parameter (abbr. ”dFactor”) one can

choose how many of these measurements should be skipped. A ”dFactor” value of 2 e.g. means

that only every 2nd sample of the FPGA is stored in the dataset. The number of samples specifies

the number of measurement sets the FPGA should take during one sequence. Then, the number

of segments tells the FPGA how many different patterns are loaded to an AWG. In the above

example, there is only one. Moreover, the number of averages specifies how often such a pattern

should be repeated and averaged over.

As an example it can be considered a dFactor of 2; number of sequences = 1; number of averages

= 1000. This means that there is only one pattern loaded (e.g. the one in Figure 3.4) and that this

pattern is repeated 1000 times such that the FPGA can later average over all of the 1000 datasets.

More averages increases the signal to noise ratio as the noise is averaged out more radically. The

remaining question is how to choose the number of samples wisely. Let us assume the main

trigger is fired every 25µs. This means there are 25µs between two FPGA sequence triggers.

Considering that every sample takes 10ns and that only every second (dFactor = 2) one is taken

there can be recorded at most

25µs
2⇤10ns = 1250 samples during these 25µs. However, depending on

the used AWG sequence pattern one may need to lower the number of samples to not measure

a lot of noise after the qubit has decayed. This can be illustrated with the example sequence

pattern shown in Figure 3.4. Here, the part of the pattern with AWG pulses begins at 10µs,

where the FPGA receives the ”start recording” trigger. The number of samples the FPGA must

record therefore has to be calculated starting from this point in time. In principle, data can now

be recorded until the next segment begins. However, as the qubit lifetime may be shorter than the

remaining time of the pattern, it is wisely to adjust the recording time, i.e. the number of samples,

to not include a lot of noise data at times where the qubit has already decayed. Moreover, the

main repetition rate, which can be set individually from the FPGA and AWG settings, should be

set such that it does not trigger the AWGs before their patterns have finished. Also it should be

prevented that the repetition rate is too high such that when the new pattern begins the qubit

is still excited due to pulses from the former pattern. Finally one can manually adjust the delay

time between the FPGA trigger and the start of the MWGs. For spectroscopy experiments where

the total time trace is integrated out, the data in between the two triggers is noise that lowers the

signal to noise ratio.

The whole measurement cycle is shown in Figure 3.5. First, the software sets the parameters of

the instruments for the current measurement. These are e.g. new frequencies or power param-

eters for a microwave generator. Then SweepSpot calls the FPGA to ensure the device is ready

to gather data. Next, the main trigger sends a notification to the main AWG to start the pattern

that is loaded. The AWG then triggers the relevant devices at the times defined by the pattern.

This includes microwave generators, other AWGs and of course the FPGA. As soon as the FPGA

22

Figure 3.5: The timing sequence of events during one FPGA measurement cycle with SweepSpot.

Each line corresponds to one component of the setup.

receives the ”start recording” trigger it begins with the data acquisition. The acquisition ends

as soon as the pre-defined number of samples has been reached (see above paragraphs). In gen-

eral these three steps, as shown in Figure 3.5, are repeated for as many times as defined by the

number of segments that have been specified in the FPGA settings. Furthermore, all segments

are repeated for the predefined number of FPGA averages. For each FPGA sample, the FPGA

performs post-processing algorithms on the data such as averaging. In LabView the new dataset

is appended to the former data and the next spot of the experiment begins, i.e. the cycle shown

in Figure 3.5 is repeated with other settings.

The part of the setup which is most relevant for this project is the software component. Now

that the basic procedure of an experiment is clear the software part can be introduced. In the

following two chapters the software is explained in much greater detail. It will be shown how

the software controls the experiment, how it is used and what has been improved thanks to this

project.

23

Chapter 4

Software

A complete rewriting of the software used to perform experiments with in the Qudev laborato-

ries is one of the core tasks of this Master’s thesis. In this chapter this new software suit, called

”SweepSpot”, is presented. It will be shown how SweepSpot works, what its advantages are and

how it is used in the laboratory.

SweepSpot is a software suit developed in the Qudev laboratory using LabView 2014 as a part of

this Master’s thesis. SweepSpot on the one hand replaces the old measurement software called

”Cleansweep”. Because of its different concept and cleaner implementation it is more powerful

and also more flexible for implementations of further additions. Additionally it comes with new

features and simplifications for the experimenter. On the other hand, thanks to its new concept

SweepSpot can be used as a module itself, embedded in some higher-level VI. This opens up a

range of new possibilities. This will be the subject of Chapter 5. In this chapter SweepSpot is

described in detail. It will be shown how SweepSpot operates, how one can use its new features

and what the improvements compared to Cleansweep are.

4.1 SweepSpot framework

4.1.1 Concept

The heart of the SweepSpot software environment is the LabView VI SweepSpot main. It can be

called by any higher-level function to perform measurements using the SweepSpot framework.

A natural example is SweepSpot frontend which is the basic frontend VI to perform experiments

with SweepSpot. There, SweepSpot main is the main module that is executed in the background.

The same applies if experiments are performed using the LabView software QubitCalib which is

a higher-level VI used to perform sequences of experiments (see Section 5.1).

SweepSpot main consists of 3 submodules as illustrated in Figure 4.1: the first one, SweepSpot
generator, collects the defining settings about the sweep and recombines them to a spot list, as

described in Section 4.1.3. The actual measurement is then done by SweepSpot.vi and in the third

part, Save measurement data, the software writes the corresponding data files to the database. The

next paragraphs describe the individual steps in SweepSpot main in more detail.

24

Figure 4.1: (a) Schematic representation of SweepSpot main.vi. First the experiment is prepared

(SweepSpot generator.vi), then the experiment is performed (SweepSpot.vi) and afterwards the data

is saved (Save measurement data.vi). (b) The input and output data of SweepSpot main.vi. The

parameters on the left are input values and the ones on the right are output parameters.

4.1.2 Definition of an experiment

This section describes the first step of any measurement, namely how SweepSpot defines the type

of the experiment and its settings. There are 4 main datasets that carry certain information about

the experiment, as shown in Figure 4.1: Sweep Dimensions, Sweep Definitions, Instrument settings
and Save info. All are created in a higher-level VI (e.g. SweepSpot frontend or QubitCalib) and are

passed to SweepSpot main.

Sweep dimensions and Sweep definitions

Figure 4.2: The Sweep Dimensions
array for 3 dimensions.

A sequence of measurements of the transmission signal

through a sample that is performed at different instrument

settings is called a sweep. Typically only few parameters are

changed throughout the experiment. Each step in this se-

quence is called a spot. Sweep dimensions is an array of Lab-

View ”ring” elements (basically just strings) that contain the

information about what parameters are swept. The first ele-

ment of the array corresponds to the fastest dimension which

is ”Frequency 1” in the example shown in Figure 4.2. The

second element corresponds to the next slower dimension.

One can for example think of additionally sweeping the qubit

drive power. In that case a frequency sweep (dimension 1) is

done for each power strength (dimension 2). Cleansweep was limited to 2 sweep dimensions.

SweepSpot can handle an arbitrary number of dimensions. For example in Figure 4.2 a third di-

mension ”DC Voltage” can be imagined that would perform a magnetic field sweep (dimension

3) for each of the MWG power and frequency settings.

Sweep definitions is a class of objects that contain the defining information about each sweep

dimension. Currently there are 6 supported Sweep Types. For each one there is a specific data

type defined in LabView.

• Frequency Sweep changes the frequency of a given microwave generator through a defined

range. It is defined by the start frequency, the stop frequency, the stepsize and the index

of the MWG. This is the only sweep type that has two instances such that one can sweep

combinations of frequencies of two different MWGs.

• MW Power sweeps the output power of a microwave generator through a given range. A

power sweep is defined by the start power, the stop power, the stepsize and the index of

25

the MWG.

• DC Voltage can be used for sweeping the voltage on a magnetic field coil. It changes the

voltage on one of the coils or flux lines through a defined range. This sweep is defined by

the start voltage, the stop voltage, the stepsize and the index of the DC source.

• AWG sequences sweeps through a list of AWG waveform sequence description files that are

loaded to the different arbitrary wave generators of the setup. This sweep is defined by a

list of paths to the desired sequencefiles.

• Laser position is used in experiments where moveable piezoelectric displacement actuators

are installed (such as in the Qudev ”Arctic” laboratory). With this sweep type one can

automatically move the displacement element. The corresponding sweep is defined by the

origin X and Y position of the actuators, the pixel size, the number of points to sweep over

and the path type.

• Repeat can be used to repeat all the faster dimensions by the specified number of times.

Figure 4.3: The Sweep Definitions vari-

ant, represented as a big red box. Its

elements, still LabView variants, are

represented as small red boxes. The

type definitions they can be converted

to are shown as yellow boxes.

Sweep Definitions is structured as a LabView vari-

ant which is similar to a dictionary, as illus-

trated in Figure 4.3. As a dictionary, it contains

an element for each sweep type. One can eas-

ily access any element using the ”Get Variant At-

tribute” LabView function to get the correspond-

ing entry of the variant. These objects (still of

type ”variant”) then need to be type casted to el-

ements of the corresponding type definitions us-

ing another LabView function. These objects can

then be used to e.g. read out parameters of a

sweep.

Instrument settings

Instrument settings is an object that carries parameters of

the instruments that are set before the sweeps. Similarly

to Sweep Definitions, it is a LabView ”variant” with an el-

ement for each instrument of the setup. Such elements

can be FPGA parameters, MWG and AWG settings, Trigger parameters, information about DC

sources, controls for switches and settings for the laser microscope. The parameters defined in

Instrument settings are set once in the beginning of the experiment and are in general not changed.

The only exception is if a sweep type later overwrites certain values. It may be helpful to look

at the above example again. There the fastest dimension was a frequency sweep and the sec-

ond a DC voltage sweep. In the beginning of the experiment SweepSpot sets the values of all

microwave generators and DC sources which are defined in Instrument settings. Then during

the experiment, those (and only those) values defined by Sweep Definitions are changed in each

sweep. In our example these are the microwave frequency of a particular MWG and the voltage

on one of the coils. Other parameters such as the GPIB/Visa address of the devices or the MWG

phase adjustments are not modified as these are not part of the Sweep Definition of a frequency

sweep or a DC voltage sweep. In the following list the individual elements of Instrument settings
are described. Each element is a LabView type definition.

26

Figure 4.4: The Instrument Settings variant, its elements and the conversion to type definitions.

• AWG The AWG control contains information about the Arbitrary Wave Generators that are

connected to the setup, as shown in Figure 4.5.

Figure 4.5: The AWG instrument control.

27

• MWG The MWG section contains information about the microwave generators that are

used in the setup, as shown in Figure 4.6. In the MWG list each element represents one

generator.

Figure 4.6: The MWG instrument control. The controls on the upper list set parameters for

each microwave generator individually. On the bottom there is a list that specifies which

MWG frequencies should be locked to others.

• FPGA The FPGA section is an extensive type definition with parameters that specify how

the FPGA performs the readout. As shown in Figure 4.7, the FPGA section consists of two

sub-type definitions: FPGA Parameters and FPGA Measurement Settings including a Boolean

Average over time that tells whether one wants to integrate the signal over time.

28

Figure 4.7: The FPGA instrument control.

FPGA Measurement Settings contains several sub/typedefs which specify various parameters

that affect the FPGA readout. FPGA parameters contains more global parameters such as

the FPGA address or the FPGA application (e.g. ”tvmodeV02”).

• Trigger The trigger section contains the address to the trigger source, the repetition rate

and an enable button that indicates whether a new repetition rate should be set.

• Stanford Research Systems DC Source (SRS) The section for the SRS instrument (Figure

4.8) contains an enable button and the path to the DC source instrument.

Figure 4.8: The Stanford Research Systems (SRS) DC Source instrument control.

Then it contains an array of the actual DC sources that set the voltages of a particular

coil or flux line. Each element contains an enable button, a slot index and the voltage

to be set. These elements also contain a hidden ”address” element (e.g. a GPIB-address)

which is automatically overwritten by the main path in the backend and is only needed

for operational reasons. It is therefore at the moment not intended that the user changes

29

the individual paths of the DC sources on the frontend as long as there is only one DC

source. This is the reason of the element being hidden at the moment. If there will be

added multiple DC sources at some point one may delete the main address element and

show the individual addresses on the frontend instead.

• Laser microscope This instrument type contains the path to the server that controls the

piezoelectric elements as well as the server host. Additionally there are two parameters ”Z

Out” and ”Delay time” that can be used to change the general behavior of the actuator.

• RF Line Switch and SwitchBoard These controls handle the status of switches. The Switch-
Board control accesses the Advantech switch whereas the RF Line Switch section controls

classic switches.

Instrument settings is a variant that contains elements for each device type that can be accessed by

calling the device type name (e.g. ”AWG”) with the LabView function ”Get Variant Attribute”.

Instrument settings is also one of the outputs of SweepSpot main.

Save info

Save info is a cluster that contains all relevant information about the saving of data- and configu-

ration files with SweepSpot.

Figure 4.9: The Save Info type definition

As Figure 4.9 shows this includes:

• the name and path of the files that SweepSpot saves;

• the filenumber of the current experiment;

• the path to the pattern configuration file. This can be used by a higher-level VI if one wants

to manually save a pulse configuration file for a Mathematica analysis of the data at a later

stage (see Section 4.1.5);

• a boolean indicating whether SweepSpot should save data files or not;

• the file type, a setting that decides whether SweepSpot should save the data in ASCII or

binary format;

• a filename suffix which can be used by a higher level VI to append certain information

about the experiment. This can be useful e.g. if there are several experiments with the same

base filename but performed on different qubits.

30

Soft (Software) averages

This is an integer that sets the number of times the complete experiment is repeated and averaged

over. This type of averaging accounts for fluctuations in the data on a longer timescale. Software

averages are also needed because the number of averages an FPGA can perform is limited. This

is due to overflow problems in certain calculations on the FPGA where the result is represented

by more bits than allowed by the fixed-point number. This is especially an issue as the FPGA

uses fixed-point values. This is a problem for averaging as an overflow can happen for addition.

Feedback and Error

Additionally there are 2 more inputs to SweepSpot main. They do not actually define something

about the experiment but for the sake of completeness they should still be mentioned here. The

first one, Feedback, is a cluster of references to frontend elements. At the moment these are

references to Sweep info (see Section 4.1.3), Measurement data (see Section 4.1.4), Live status

cluster (a cluster that contains information about the current spot) and a frontend status box

and progress bar. It is optional to wire the Feedback input. It can be used if one wants to

gather information about the current state of the experiment and show it on a frontend. More

information can be found in Section B.5. Then, there is a standard LabView error input that

collects error messages throughout the experiment. SweepSpot main has two outputs: First, the

modified Instrument settings and second the error output. Like this SweepSpot main can be used

as a module in some higher-level VI (see Appendix B.5). In the next sections it will be described

how these settings will be used to actually perform an experiment.

4.1.3 SweepSpot generator

SweepSpot Generator converts the defining settings of the experiment to a so-called Spot array.

This is a 2D array that contains the parameters for the relevant devices that have to be set in

each spot (see Figure 4.10). The first dimension of the Spot array runs over all the spots. Then

for each spot there are as many entries as there are new instrument parameters to be set (this is

the second dimension of Spot array). Later SweepSpot will loop over the Spot array, first over its

first dimension (Spots) and then for each spot over its second dimension (Instruments and their

parameters that have to be changed).

Figure 4.10: An example for the Spot Array of a 2D sweep. Its first dimension (horizontal) runs

over the spots, its second dimension (vertical) over the sweep dimensions (here: ”Frequency” and

”DC Voltage”).

31

Figure 4.11: The LabView block diagram of SweepSpot generator. The big for-loop in the middle

runs over the Sweep dimensions. In the VI Spot array generator the spot array of the current di-

mension is created. This is combined with the main spot array in Tuple generator. Additionally,

metadata about the experiment is collected in Spot Info Generator and Sweep Info Generator.

The Spot array is built by SweepSpot generator from the defining settings of the experiment as fol-

lows (see Figure 4.11): First, SweepSpot generator loops over the Sweep dimensions. It begins with

the fastest dimension. First, it takes the corresponding element of Sweep Definitions. If we again

consider the example of Section 4.1.2, this would be a frequency sweep.

Figure 4.12: The raw spot array for

the first dimension, i.e. a Frequency

Sweep.

Such an element usually defines the range and a step

size of the sweep. Spot array generator then builds an ar-

ray out of the definition of this range and step size. For

simplicity it can be assumed that the sweep contains

only three different frequency values, as illustrated in

Figure 4.12. This array is then passed to the subVI Tuple
generator. For the first dimension, this VI does nothing

meaningful to the Spot array. However, Tuple generator
will become important when the second dimension will

be added. Additionally, there is the Spot info array that contains metadata for each sweep dimen-

sion. Usually this is the definition of the sweep, i.e. start point, stop point and the step size. This

information is added to the Spot array in Spot Info generator.

Now the main loop in SweepSpot Generator is repeated for its second iteration. Again the corre-

sponding element of Sweep definitions is taken and a spot array of the current sweep dimension

is created by Spot array generator. Now, Tuple generator has to merge the two spot arrays of the

individual dimensions. As Figure 4.13 shows, Tuple generator combines the two arrays in such a

way that there are as many elements in each spot as there are instruments to be set. If one of

the sweep dimensions does not have to be updated, an empty element is added. This way it is

ensured that SweepSpot does not unnecessarily communicate with instruments as this takes time.

Furthermore, the metadata for the current sweep dimension is added to the Spot info array just

like before. After having iterated over all sweep dimensions, the VI additionally builds the Sweep

32

Figure 4.13: A schematic overview of Tuple Generator.vi. First the current spot array is duplicated

as many times as needed. Then the new elements are appended to this duplicated array.

info cluster. This contains additional ”global” information about the experiment such as the start

time, the length of the data of the fastest sweep dimension or the acquisition devices that are

used. The Spot array with the metadata about the individual sweep dimensions is then added to

Sweep info as a subelement. Most of the information in Sweep info will later be added to the header

of the data files. Some of the information will also be used to generate plots in SweepSpot frontend.

In the end, SweepSpot generator has created two arrays: the Spot array that contains information

about instrument settings that have to be changed in each spot and Sweep info that contains

metadata about the experiment. Additionally, SweepSpot generator writes and saves the frontend

configuration file which contains all the settings of the current experiment. More about that can

be found in Section 4.1.5. Now SweepSpot is ready to begin with the actual measurements. This

is the subject of the next section.

4.1.4 SweepSpot.vi

SweepSpot.vi is the second subVI of SweepSpot main and the one that performs the measurements.

As Figure 4.14 shows it is built up of three parts: Prepare sweep that sets the default settings, a

loop over Spot.vi where the measurement is performed and Motion reversal that cleans up the

software part of the setup.

33

Figure 4.14: Schematic representation of SweepSpot.vi. First the instruments are prepared, then

for each spot a measurement is performed and in the end the setup is cleaned up.

Prepare sweep

As depicted in Figure 4.15, Prepare sweep first initializes the instruments that will be used in the

experiment. This is done by the subVI Initialize instruments. The VI connects to the devices and

ensures they are ready for the experiment.

Figure 4.15: The basic structure of Prepare
Sweep.vi.

Set instrument afterwards sets the initial pa-

rameters of those devices. These are the val-

ues defined in Instrument settings. Set instru-
ment loops over all possible device types (e.g.

”AGW”, ”MWG”, ”FPGA”, ...) and looks for

corresponding elements in the data input ar-

ray. If it finds a corresponding element it sets

the new values using subVIs that are unique to each device type. Furthermore, the Measurement
data array is created with the correct size. Like this LabView only allocates memory for Mea-
surement Data once which makes SweepSpot more time efficient. Now that all initial parameters

are set the sweeps can begin. Next, SweepSpot.vi calls Spot.vi for each intermediate step of the

experiment. In particular, Spot.vi is called as many times as there are spots in the experiment.

Additionally the whole sequence is repeated as many times as specified by the number of soft

(=software) averages. SweepSpot then averages over the different datasets.

Spot.vi

The Spot VI, schematically shown in Figure 4.16, handles all tasks that have to be repeated in

every spot. This includes the setting of the new instrument parameters to the data acquisition

and frontend feedback handling.

Figure 4.16: A schematic representation of Spot.vi which is the main subroutine of SweepSpot.vi.

In each spot the software performs the following steps:

1. The instrument parameters for the current spot have to be updated. This is done by the Set
instrument VI. The VI loops over the remaining dimension of the current Spot array element.

This is the list of changes for each instrument type that are required for the current spot.

2. Then in Make acquisition ready all enabled acquisition devices are set to a ”ready-to-measure”

state.

34

3. Start devices makes sure all relevant AWGs are running. Some AWGs may have been

stopped to prevent sending triggers to other instruments, in particular to the FPGA. In

this step these AWGs are started again if needed. Additionally, if the ”AWG Resync” op-

tion is enabled, this VI stops all AWGs. This sets the first waveform of the sequence to

be output at the next trigger. Then, the AWGs are switched on, with the Master AWG

that triggers the others as the last one. Like this the waveform counters of the AWGs are

synchronized.

4. The readout is done in Readout acquisition. There the acquisition devices start measuring

and append the new data to the former measurement dataset.

Figure 4.17: The four dimensions of the Measurement Data array.

The acquired data is stored in a 4D array called Measurement data (see Figure 4.17). The

first dimension runs over the list of all acquisition devices that were enabled. The second

dimension specifies the channel number of one particular acquisition device. The third

dimension runs over all spots for data coming from a particular channel of a particular acquisition
device. The actual measurement data of this spot is then in general one-dimensional. This

1D array is what the fourth dimension stands for. As an example one can consider taking

data with an FPGA. The FPGA always records a vector of data points for each spot, i.e. a

1D array of data points. The fourth dimension runs over this 1D array. The list can also

consist of only one element (e.g. for the FPGA option ”Average over time”) or it can be a

flattened list of 2D data which will later be unflattened again. This fundamental structure of

how to handle measured data should also be followed when implementing new acquisition

devices, as explained in Appendix B.4.

For more insight to the Readout acquisition VI it will now be shown how SweepSpot handles

different kind of FPGA data:

• One Sweep Dimension ”Frequency 1”, ”Average over time” option disabled

This is the simplest case. Here the FPGA measures a time trace for each spot. We

assume that the FPGA parameter ”Number of segments” is 1. This means that time

trace data is not further processed. A bit in more detail: The FPGA outputs a 2D data

array but as the number of segments is one only the first slice carries data; this is the

time trace. The other array entries are empty.

• One Sweep Dimension ”Frequency 1”, ”Average over time” option enabled

Here the FPGA as usual measures a time trace for each spot. Right after the data is

passed to SweepSpot, LabView averages over the 1D data array. This results in a single

35

point for each spot, i.e. a 1D data array with only one entry.

• Two Sweep Dimensions: ”Frequency 1” and ”DC Voltage”, ”Average over time”

option enabled

This case is similar to the previous one. Generally there are more datapoints as there

are now two sweep dimensions. But for each spot one still gets only one datapoint

which is the average over the time trace of the current spot.

• One Sweep Dimension: ”AWG sequence” with one sequencefile loaded. ”Average

over time” option disabled

This example shows how SweepSpot handles data for an experiment where the num-

ber of FPGA segments is bigger than 1. Here the FPGA delivers 2D data, i.e. a 2D

array of data with as many rows as there are segments. In case of enabled ”Average

over time” option the length of the rows is just 1. SweepSpot now flattens this 2D

matrix to a 1D array to make it fit into the general structure of the data. As depicted

in Figure 4.18, SweepSpot basically treats each segment as an additional spot. In the

end there are as many spot entries in Measurement data as there are FPGA segments,

each containing its 1D time trace data. To keep the concept of the Mathematica anal-

ysis files this data is unflattened again to 2D data in a subVI of Save measurement data.vi.

Figure 4.18: 2D data of an FPGA is flattened to a 1D array.

Let us finally go back to Spot.vi and look at its last subVI (see again Figure 4.16).

5. Finally there is the Feedback VI that sends information about the status of the experiment

back to a frontend. It updates a frontend status box with the information about the cur-

rent spot index and the estimated remaining time. It also updates a frontend progress

bar. Moreover it sends an ”Update” notifier to a frontend stating that new data has been

acquired.

Motion reversal

Finally, after all data has been acquired a proper ”clean up” of the devices is needed. This in-

cludes closing all open VISA handles. In that sense Motion reversal ensures that all the instruments

are ready for the next experiment. Now SweepSpot is ready to save the gathered data.

36

4.1.5 Save measurement data / file handling

Save measurement data is the last subVI of SweepSpot main. Its task is to write the data files and in

general also the pulse configuration files. First an overview of the saved file types is given.

File handling

For each experiment SweepSpot in general writes three type of files to the file system:

• For every experiment there is a frontend configuration file. It has the ending ”.cfg” and

a unique infix ”CFG” in the filename that is required by the Mathematica functions to

identify the file. The configuration file contains all information about the experiment, i.e.

all instrument parameters and some global information such as the number of soft averages

and the filenumber. This file can be used to look up certain settings afterwards. It can

also be loaded using the ”Load” function on SweepSpot frontend to redo the experiment.

The structure of the file is similar to the configuration file that Cleansweep used but it

contains additional instrument settings that are not implemented in Cleansweep but in

SweepSpot. Also the underlying structure is slightly different (it is based on the LabView

cluster SweepSpot settings instead of the Cleansweep datatype Experiment settings).

• Depending on the acquisition devices used to read out the data there are several data files

written. SweepSpot saves at least one file (this depends on the acquisition device) per

readout device with the corresponding data. The files carry the extension ”.dat”. Each ac-

quisition device may handle its data differently. SweepSpot saves I and Q data files for each

active channel, so at the most 4 files for an FPGA based measurement. The channel number

and the quadrature component of the data are also added as an infix to the filename.

• Optionally, SweepSpot writes a pulse configuration file. This file describes the waveforms

generated for the AWG. It contains basically all information of the current ”Pattern Config-

uration” file (a file containing information about the current sample, e.g. the IF-frequency

for a sideband modulation for the qubit drive) and some additional information about the

experiment, such as the index of the segment that carries the calibration information for

the qubit |ei state. For usual spectroscopy experiments one does not need to have such a

file. However, if the data is analysed using the automated Mathematica analysis functions

in ”CalibrateAll.m” such a file is required. More importantly, the file can be used to read

information about the current settings of the experiment at a later stage. SweepSpot saves a

pulse configuration file if it detects a nonempty path in AWG settings ! Sequencefile path.

This default behavior can be overwritten by specifying a different path in Save info ! Pat-

ternConfig file. If both paths are empty SweepSpot does not write a pulse configuration

file. The file carries the ending ”.dat” and the identifying infix ”Pulses”.

The Qudev Mathematica framework has been extended as part of this project such that the

analysis functions can handle Cleansweep and SweepSpot data. To read in SweepSpot data one

has to choose the option value source ! ”SweepSpot” for the function ReadInData. This setting can

potentially also be chosen in a higher level function that calls ReadInData as a subroutine. The

analysis functions have not only been extended to SweepSpot data but have also been generalized.

As an example, there is now the function GetExpFilenames that finds specific files of an experiment

that respect the naming convention. One has to enter the path of the files and can then choose to

look for all files with a certain filenumber, for files with a particular infix or even a very specific

file. These generalizations also appear at various other places in the code.

37

The filenames are logically structured. As shown in Table 4.1 the first part of the name is the

filenumber. Then the prefix specifies what type of file it is, e.g. ”Pulses” for a pulse configuration

file. Then for the data files it follows the channel number the data comes from. Finally all files

carry the ”identifier” which is typically set by the user on a front end and tells something about

what kind of experiment it is (e.g. ”Rabi”).

Table 4.1: SweepSpot file naming convention

Frontend config file Data files Pulses config file

1000 CFGRabi.cfg 1000 I2DPlotCh0Rabi.dat 1000 PulsesRabi.dat

1000 Q2DPlotCh0Rabi.dat

Save measurement data VI

The data files and the pulses file are written in Save measurement data which is depicted in Figure

4.19. The procedure goes as follows:

Figure 4.19: The LabView Block Diagram of the VI Save Measurement Data. The middle for-loop

loops over the different acquisition devices that were enabled. First the header of the files is

prepared and then the data is saved. After the loop (the VIs on the right side of it) the pulse

configuration file is saved and the frontend is updated.

1. First, Update frontend, as the name suggests, makes sure that any frontend plots show the

full measured data by sending an ”Update” notifier and updating the reference to Measure-
ment data with the final dataset.

38

2. Then the actual saving procedure starts. SweepSpot first iterates over the different acqui-

sition devices. This is the first dimension of Measurement data and the main loop in Save
measurement data.

3. As a first part of one such loop iteration, SweepSpot writes the header of the data files. The

header (see Figure 4.20) is formatted as a Mathematica association containing basically all

the information from Sweep info. This includes general metadata such as the current acqui-

sition device and the definitions of all sweep dimensions that are relevant to reconstruct

the measurement points during analysis.

Figure 4.20: A typical header of a SweepSpot data file

4. Then Save instrument data writes the data files for each channel of the current readout de-

vice. At this stage the fastest dimension of Measurement data is unflattened if the number of

segments is bigger than one. This only affects data that was originally 2D (or even higher

dimensional) and that was flattened to 1D data before (see Section 4.1.4). Afterwards the

header is prepended to each datafile. Like this the data files all carry the same structure as

shown in Figure 4.21.

Figure 4.21: A typical SweepSpot data file.

Then the loop is repeated for the second acquisition device, and so on. There are two

supported file formats: ASCII and binary. SweepSpot choses the format that is set in the

Save info cluster.

5. Finally, the pulse configuration file is saved (if needed) and a message is sent to the frontend

that the experiment has finished.

39

4.2 SweepSpot frontend

Sweep Spot frontend is a VI that can be used to perform experiments directly using SweepSpot main.

If one wants to do more complicated sequences of experiments one should use higher-level VIs

such as QubitCalib that also use SweepSpot main as a backend module, as explained in Chapter

5. SweepSpot frontend is shown in Figure 4.22. On the upper left corner there is a status box that

Figure 4.22: SweepSpot frontend.vi: The main user interface of SweepSpot. On the top there are

the main controls, the experiment control buttons and the status feedback box in combination

with a progress bar. In the middle there are the controls for the Sweep Dimensions and the Sweep
Controls as well as a box that displays errors. On the bottom there are the 1D and 2D plots and

their controls and on the right side there are the controls of the instruments.

displays information about the current state of the experiment such as the current spot number,

the estimated remaining time and what SweepSpot is currently doing. The progress bar indicates

how far the experiment is. Then there are 4 buttons: Start/Stop, Quit, Load and Save. The Load

and Save buttons can be used to load/save a frontend configuration and with the Start/Stop

button one can run or abort an experiment. The Quit button aborts the whole VI and only has

to be pressed when SweepSpot is not used anymore. On the top in the middle there are settings

about how and where to save the files. In the middle row one first finds the Sweep Controls where

the individual sweeps can be defined. To actually choose the sweep types the Sweep dimensions

40

box in the middle can be used. On the right-hand side of it there is a box that displays error

messages. On the bottom of the VI there are the 1D and 2D plots and their settings. On the

top right there are the settings for the instruments and on the bottom right the controls for the

acquisition devices.

Start an experiment

If one wants to do a measurement with SweepSpot frontend the following steps have to be done:

1. First the LabView VI has to be running. A VI can be started using the ”Run” button on the

top left corner of the LabView toolbar. This only has to be done for the first time.

2. Now one can set up the first experiment. First, a sensible filename has to be chosen using

the filename text field on the top of the frontend. The name specified here will end up in all

filenames of the current experiment as a suffix (e.g. ”Rabi”). Furthermore, one can check

whether the current filenumber is correct and the file format can be chosen. If one does not

want to save any files at all the ”Save” button can be disabled. If one is not interested in

screenshots of the frontend configuration one can disable the ”Save screenshot” button.

3. Now the actual experiment has to be defined using the Sweep Controls and the Sweep di-
mensions controls. One has to choose which parameters should be swept using the Sweep
dimensions menu. For each item that is selected in this array one also has to set the corre-

sponding parameters using the Sweep Controls tabs.

4. Next, one should make sure that the settings for the instruments and acquisition devices

are fine. These of course depend on the experiment. If not interested in time traces while

using an FPGA, the ”Average over time” button has to be enabled. SweepSpot will read

out measurement data with all acquisition devices that are currently enabled.

5. To begin with the experiment one simply needs to press the big green Start button. To

abort the measurement the same button which has now turned to a big red Stop button

can be clicked again. The data gathered so far, as well as the configuration of the aborted

experiment, are still saved.

Like in QubitCalib frontend, the front panel is meant to be running for the whole set of experiments.

There is no need to stop the whole VI using the Quit button throughout the experiment session.

Plots in Mathematica style

One new feature of SweepSpot is that using the frontend a Mathematica plot of the experiment

data can directly be copied to the clipboard. One simply has to press the ”Copy plot” button on

the right-hand side of the graph. The current Mathematica version can be changed in the code

diagram of SweepSpot frontend. Thanks to this feature the plots in the electronic labbooks will

look more professional than the screenshots of the LabView graphics. However, as the plots may

need to be edited first, there is an option to copy the code that generates the plot instead of the

plot figure itself. Like this the copied code can be pasted to a Mathematica Notebook and edited

there. This makes it possible to analyse data on the fly and display the results of the experiment

in specific ways.

41

Load and save a frontend configuration

As explained before, SweepSpot automatically saves the current frontend settings as a ”.cfg” file

when an experiment is started. There is also an option to save such a file manually: one simply

has to press ”Save”. Then one gets prompted to enter the location where the file should be stored.

Similarly, such a frontend configuration file can easily be loaded to SweepSpot frontend to repeat

a measurement. To do this one has to press the ”Load” button and then choose the frontend

configuration file. This corresponds to the ”Quick Switch” function in Cleansweep. SweepSpot
frontend can read configuration files that were written by SweepSpot or Cleansweep even though

the two files are formatted differently. However, if one uses Cleansweep frontend configuration

files there may be settings that are not set in SweepSpot frontend like the controls for the DC

sources as these are not implemented in Cleansweep.

4.3 Efficiency of time and memory usage

The LabView code of SweepSpot was optimized in terms of time efficiency and memory usage to

a large extent. It was ensured that as little memory as possible is de- and reallocated to prevent

a slowdown of the application. Furthermore it was a goal to only use little memory in general

to prevent a memory overflow. For that the underlying data types were carefully chosen and

time consuming subVIs are ensured to only be executed when absolutely needed. Thanks to

these optimizations SweepSpot outperforms Cleansweep in terms of time efficiency. As shown

in Figure 4.23 (a), SweepSpot can perform the same experiment 15% faster if the experiment is

short (about 10 seconds). For long experiments it outperforms Cleansweep by up to 5% execution

time. For a measurement of a few hours this makes a significant difference. The time efficiency

is bigger for short measurements as SweepSpot performs the preparation steps of an experiment

more efficiently. For short experiments this improvement has a much bigger influence on the

total time.

Figure 4.23 (b) shows the time distribution of the different main steps of an experiment with

SweepSpot. The four main contributions to the total time are the time during that the experi-

ment spot takes place, the time to set up the FPGA before each of the measurements, the time

to communicate with the other instruments (such as AWGs, MWGs) and the time for LabView

to execute the code (including plotting, frontend updates etc.). For a small number of averages,

as shown in Figure 4.23 (b), the FPGA setup takes most of the time. In this step the memory

of the FPGA is cleared for the next experiment. It should be investigated if the FPGA could do

this step more efficiently. If so this would result in a significant decrease of the total experiment

time. Raising the number of spots increases the time spent by the FPGA setup. This is not fully

understood and should be investigated further. Moreover the percentage spent on executing the

software itself decreases for a higher number of spots. The reason is the same as already men-

tioned above: the time for the initialization and preparation of the experiment is now averaged

over a higher number of spots which decreases the contribution of code execution.

The statistics presented in Figure 4.23 strongly depend on the exact configuration of an experi-

ment as there are many factors that influences the overall time of an experiment. The correspond-

ing settings of the test experiments shown in this chapter can be found in Appendix A. First of

all, the AWG pattern, the main repetition rate as well as the FPGA settings determine how long a

42

Figure 4.23: (a) The time difference between performing an experiment with SweepSpot and to

performing it with Cleansweep. SweepSpot outperforms Cleansweep by 15% of the total time of

an experiment for short measurements and by around 5% for long experiments. (b) Time statistics

for an experiment with SweepSpot performed with a different number of spots. The four main

contributions to the experiment time are FPGA setup, FPGA measurement, communication with

instruments and code execution. The FPGA setup takes the most time for a low number of

averages (1k). The detailed configuration of these experiments are described in Appendix A.

measurement takes. Then, the number of spots and software averages determine the total time of

the whole experiment. Also the settling time has an influence on the total execution time. After

the setting of the instruments in the beginning of a spot, SweepSpot pauses the execution for the

time defined by the settling time control. For a multidimensional sweep with different settling

times defined, SweepSpot takes the highest one for a given spot. Moreover, there are two subtle

factors that also have an influence on the total experiment time. First, a large number of enabled

instruments on the SweepSpot frontend may slow down the experiment as the communication

between LabView and an instrument takes time. Each instrument that is enabled is in general

only accessed once in the beginning and once in the end of the experiment. However, in each

spot SweepSpot communicates with all enabled microwave generators and all enabled acquisition de-
vices. Therefore to speed up the software instruments that are not relevant should be disabled.

Second, LabView by default continuously updates every open Front Panel throughout the exper-

iment which takes a significant amount of time. While having the SweepSpot frontend window

open makes sense, further subVIs should only be open if absolutely necessary.

For the experimenter to improve the time efficiency of the experiment SweepSpot shows a feed-

back on the frontend status box stating how efficient the current experiment is in terms of execu-

tion time. The time efficiency is defined as the percentage of the whole experiment time that is

spent on measurement:

time efficiency = 100 ⇤ measurement time

total time

(4.1)

A high time efficiency states that that a good fraction of the overall time is spend by measuring

data. On the other hand a low time efficiency hints that there is some significant amount of

43

time SweepSpot does other things than measuring. In particular, there could be some dead time

where the FPGA waits for a trigger to start measuring, e.g. to wait for the qubit to decay; there

could be a lot of enabled instruments that need to be set in each spot; the FPGA TvMode v01

settings could not be optimized for the current pattern in terms of time efficiency; there could be

lots of open LabView Front Panels in the background; or there could be some other issue. The

efficiency indicator on the frontend should force the experimenter to think about optimizing the

time efficiency of an experiment - in particular if it is a very long one where time efficiency has

a big effect.

4.4 Improvements and differences to Cleansweep

One of the main advantages of the SweepSpot framework compared to Cleansweep is that its

code is designed to be cleaner and more logically structured. This should improve code readabil-

ity and in that way also the process of adding new features. This not only holds for the code

itself but also for the descriptions on the LabView VIs, their conceptual icons and the explana-

tions of the software in this thesis and on the Qudev-Wiki. Overall the SweepSpot framework

also provides a more adaptable environment to implement new functions.

Moreover, as discussed in Section 4.3, the software execution time overhead was reduced.

Third, SweepSpot allows multidimensional sweeps. The user is therefore not limited anymore to

2D sweeps but can use an arbitrary number of sweep dimensions.

Furthermore, there were various improvements made in the Mathematica framework that is used

to read out and analyse the data written by SweepSpot or Cleansweep. Several functions that

has been restricted to certain parameters have been generalized and cleaned up.

Then, there are already instruments that are only implemented in SweepSpot, such as a DC

source or the automation of the movement of piezoelectric elements in a setup with a laser mi-

croscope. However, there are also still some features missing such as the implementation of the

Acquiris and Zurich Instrument devices.

In addition, SweepSpot frontend was designed to provide a clean, user-friendly interface to make

it as intuitive as possible to perform experiments. The software provides status updates during

the experiment that show how far the experiment is and what the software is doing. Opposed to

Cleansweep, the frontend also comes with a progress bar that also tracks the fastest dimension.

Furthermore the remaining time and the time efficiency is calculated. Moreover, the feature to

automatically generate a Mathematica plot of the gathered data is thought to contribute to a

professional documentation of the experiments.

And finally, the concept of using the VIs as sequentially reusable modules is crucial for the con-

struction of higher-level VIs that automize spectroscopy. This will be seen in the next chapter

which describes how the SweepSpot framework can be used for more complicated functions and

how the new software suit opens up to completely new possibilities.

44

Chapter 5

Spectroscopy Automation

As explained in the previous chapter, the SweepSpot framework can easily be used to build

more complex functions such as for the automation of spectroscopy experiments. In this chapter

different LabView/Mathematica functions will be presented which for the first time automize

spectroscopy experiments. The routines have been developed as part of this project and their

implementation only got possible using the new SweepSpot framework. But first it will be

shown how SweepSpot fits into the calibration automization software framework that is used in

the Qudev laboratory to perform more advanced experiments.

5.1 Software overview

The heart of the calibration automatization software framework in the Qudev laboratory is a

LabView application called QubitCalib. It is a program that runs a sequence of experiments

and automatically analyses their results. A typical characterization procedure of a qubit is the

sequence of the following experiments: Rabi, Ramsey, QScale, Rabi, CalTom and T1 and T2

measurements.

Figure 5.1: A schematic overview of the general software framework used in the Qudev labora-

tories. Figure adapted from [27].

45

For each experiment in this list QubitCalib calls SweepSpot main (formerly Cleansweep) to actually

perform the experiment. On the level of QubitCalib the settings for the experiments such as the

AWG sequence patterns are prepared and the data gathered by SweepSpot is analysed. The

procedure depicted in Figure 5.1 goes as follows:

1. First, the user defines the sequence of experiments on the frontend of QubitCalib and starts

the execution.

2. Then, QubitCalib takes the first experiment of the user-defined list and writes a initializing

file (”.ini”) that contains all relevant information about the current experiment. This in-

cludes the type of the experiment, the path to the relevant settings files, information about

which AWG channels and which microwave generators are used and general settings such

as the filenumber.

3. In the next step QubitCalib calls the Mathematica script ”GeneratePattern.m” that loads

this initializing file and generates a AWG sequence pattern that will be loaded to the main

AWG. It may also need to read some parameters from the ”pattern configuration file” (a text

document containing general information about the setup, e.g. the current qubit frequencies

or Ej,max values).

4. Now QubitCalib calls SweepSpot main or another subVI that is based on that. Among other

things, the path to the generated sequence files are passed to SweepSpot main where the pat-

terns are loaded to the corresponding AWGs. Now SweepSpot performs the measurement

and saves the data files as explained in Chapter 4.

5. Afterwards, QubitCalib accesses the data and directly analyses it. This is done in the subVI

AnalyzePattern by calling the Mathematica script ”AnalyzeCalib.m” with the current initial-

izing file. Mathematica reads the data files and the pulse configuration files that have been

saved by SweepSpot main. The Mathematica script also updates the pattern configuration

file if needed and shows a plot with the results of the experiment on the frontend of Qubit-
Calib. For the next iteration QubitCalib repeats the procedure with the next experiment in

the operation sequence list on its frontend.

Whether QubitCalib should call SweepSpot main or Cleansweep as the underlying software can

easily be changed on the QubitCalib frontend on the tab ”QubitCalib Configuration”. Depending

on the underlying module used one has to set a frontend configuration file on the QubitCalib
frontend that was generated by the corresponding software. The operation ”rebias on request”

still requires Cleansweep. On the other hand there is a set of new spectroscopy routines that are

only based on the SweepSpot framework (see Figure 5.4). The new operations that QubitCalib
supports using the SweepSpot framework are:

• resonator spectroscopy;

• qubit spectroscopy;

• park qubits;

• track qubits.

These methods will now be presented in detail.

5.2 Spectroscopy.vi

Before the mentioned routines can be understood, Spectroscopy.vi has to be introduced. Every

time some spectroscopy experiment is performed from a higher level this VI is called at some

point. Spectroscopy.vi is a VI on a higher abstraction layer than SweepSpot main, in particular it

46

calls SweepSpot main as a subroutine in a loop as illustrated in Figure 5.3. Figure 5.4 shows that

Spectroscopy.vi is the connection between all automated spectroscopy functions and the low-level

SweepSpot main. The higher-level functions prepare the data whereas the lower level functions

perform the actual experiment with the given input parameters. Spectroscopy takes as an input

a list of frequency sweeps that has to be performed. For each of them it prepares the input

parameters for SweepSpot and calls SweepSpot main to perform the experiment.

To embed Spectroscopy.vi to another VI one has to wire the following inputs:

• Instrument settings

This type was already explained in detail in the previous chapter. It carries all the informa-

tion about the instruments that are active during the experiment.

• Save info

Similarly to the explanation in Appendix B.5 one also needs to specify where and how the

data files should be saved.

• Spectroscopy parameters

This is an array of so-called spectroscopy elements. A spectroscopy element, shown in Fig-

ure 5.2, is similar to the Sweep Definition ”Frequency 1” (see Section 4.1.2) but in addition

it carries the information about what other MWGs have to be accessed.

Figure 5.2: The spectroscopy element for a qubit spectroscopy experiment. The element

for resonator spectroscopy looks similar but without the upconversion LO element.

• Soft averages (Optional)

This integer specifies how often each experiment should be averaged over on the software

side. Default: 1.

• Feedback (Optional)

If a frontend is used this datatype carries references to frontend objects such as a status box

that can be updated throughout the experiment.

• Error (Optional)

This are the standard error input/output wires that catch errors.

5.3 Resonator/Qubit spectroscopy

The most simple spectroscopy routines are functions that look for the eigenfrequencies of a res-

onator or the |gi $ |ei transition frequency of a qubit. As explained in Section 6.2, the two

methods are conceptually similar. However, they access different parameters in the pattern con-

figuration file to update the measured frequencies and they in general use different Mathematica

fitting functions to find the optimal frequency from the measured data. The model can be chosen

using the option ”FittingModel”. Currently, five models are implemented:

• Single Lorentzian

This model is based on a single Lorentzian resonance on a flat background:

A
|G|

|G + i(w � w
0

)| + b (5.1)

47

A denotes the amplitude of the resonance and G its linewidth. w
0

is the resonance fre-

quency.

• Double Lorentzian

The double Lorentzian model takes into account other qubits/resonators that are close to

the resonance that is fitted. Their effect is quantified by the addition of a second Lorentzian

term to the single Lorentzian model:

A
1

G
1

2

i(w � w
0

) + 1

2

G
1

+ A
2

G
2

2

i(n � n
0

) + 1

2

G
2

(5.2)

Ai are the amplitudes of the two resonances, Gi their linewidth, w
0

and n
0

the resonance

frequencies of the two peaks.

• Fano

This model fits a Fano resonance to the data. It is especially useful for resonances that

appear as dips in a bigger Purcell filter resonance:

T
0

(1 + q2)
(2Q(f � f

0

) + q f
0

)2

f 2

0

+ 4Q2(f � f
0

)2)
(5.3)

T
0

, and q are scaling parameters of the resonance, Q is the linewidth and f
0

is the resonance

frequency. This model deals with a non-flat background.

• FanoExtra

In contrast to the Fano model above, the FanoExtra fit function assumes a flat background:

A
(qG

2

+ w � w
0

)2

(G
2

)2 + (w � w
0

)2

(5.4)

Again, A is the amplitude of the resonance, G its linewidth, q a scaling factor and w
0

the

resonance frequency.

• Minimum

This simple model looks for the minimum in a set of points.

The LabView VIs Get resonator frequency and Get qubit frequency perform the spectroscopy exper-

iment and analyse the data, i.e. they calculate the fit function and find the optimal resonance

frequency. However, QubitCalib calls Mathematica for the analysis which is why QubitCalib calls

a slightly different subfunction which only performs the experiment but does not analyse the

data at this stage. The analysis is done afterwards in the QubitCalib subVI AnalyzePattern.vi.
Working with the two routines one can make use of the additional parameters on the QubitCalib
frontend. The sweep range can be defined with the additional parameter box using the keyword

”SweepRange”. As shown below one should enter the Mathematica command Range[...] with

the start frequency as the first element, the stop frequency as the second and the stepsize as the

third, everything in GHz units.

{SweepRange -> Range[5.5,6,0.001]}

If no range is given or if the SweepRange keyword is set to Automatic the Mathematica routines

automatically choose the sweep range. Then the current qubit (resonator) frequency set in the

pattern configuration file is taken as a reference. The next sweep will now be centered around

48

Figure 5.3: The block diagram of the Spectroscopy VI. It is a for-loop that goes over spectroscopy

experiments that are about to be performed. For each experiment the input data for SweepSpot
main is prepared. Then SweepSpot main is called to do the experiment.

Figure 5.4: A schematic overview of the QubitCalib spectroscopy functions. The VIs on the top

call the VIs on the bottom.

that frequency. The sweep range is defined by the pattern configuration parameter ”qubitSweep-

Range” (”resonatorSweepRange” respectively). The first parameter in the list for the current

qubit (resonator) specifies the half range of the sweep whereas the second entry sets the step-

49

size. The entries are expected to be given in GHz units. Additionally, one can tell SweepSpot to

load pattern files for pulsed spectroscopy to an AWG. To do so, using the additional parameters

textbox the keyword ”ReuseWaveforms” has to be set to False. By default the value is set to True

such that the patterns are not reloaded. Furthermore one can optionally set the power of the res-

onator that is swept using the keyword ”Power” (units: dBm). In total the additional parameters

box should look similar to the following example:

{SweepRange -> Automatic, Power -> "16", ReuseWaveforms -> True}

Table 5.1 provides an overview of all possible options for the operations QubitSpec and Res-

onatorSpec.

Table 5.1: Keywords for ResonatorSpec and QubitSpec operations.

Keyword Default value Further options

SweepRange Automatic Range[5,6,0.001]

Power Power of MWG ”16” (any value)

set in Instrument Settings

ReuseWaveforms True False

FittingModel ”DoubleLorentzian” ”SingleLorentzian”, ”Fano”,

”FanoExtra”, ”Minimum”

5.4 Combined Spectroscopy

For every readout of a qubit transition frequency one first has to ensure that the MWG that drives

the readout resonator produces microwaves with a frequency resonant to the one of the readout

resonator. As this frequency shifts if a magnetic field is applied, as explained in Section 2.4, one

has to look for the proper resonator frequency again before each qubit spectroscopy experiment.

This can become cumbersome. Combined Spectroscopy solves this by performing two experiments

in combination, as can be seen in Figure 5.5: the VI first scans the current eigenfrequency of the

readout resonator, then it sets the corresponding MWG to this frequency to afterwards perform

a qubit frequency sweep with the readout frequency set to the optimal value.

Combined Spectroscopy can be used as a module in a higher level VI. In QubitCalib it is equivalent

to perform ”ResonatorSpec” followed by ”QubitSpec”. Like this it is ensured that the readout

frequency is set to the optimal value for the qubit spectroscopy experiment.

5.5 Parking qubits

A flux model describes the correspondence between the transition frequencies of certain qubits

and the applied magnetic field configuration. It is unique for every sample. If a flux model

50

Figure 5.5: The LabView Block Diagram of the Combined Spectroscopy VI.

has been calculated certain qubits can be set to particular frequencies. This is what the routine

”Parking” is for. A list of frequencies that the qubits should be set to serves as an input for the

routine. The function then calculates the coil voltages that have to be applied to set the qubits to

these particular frequencies.

The Mathematica functions are based on a flux matrix which first have to be calculated using

the Mathematica function ”fitFluxModel”. The data for a flux matrix can be gathered with the

LabView VI FluxMatrix frontend. This VI takes a list of coil voltages as an input. For each step it

sets the coils and performs a combined spectroscopy experiment. Like this one has all the data

that is needed to generate the flux matrix with Mathematica.

After converting the desired frequencies to coil voltages Parking.vi actually sets the coils to their

new values. This is done using SweepSpot as a subroutine. Optionally, as a secondary test for

the correct frequency values, the routine again performs a spectroscopy experiment. To do so,

one has to add ”Mode ! Test” to the additional parameters textbox. Parking can be used as

a standalone VI as it provides a frontend. More practically, it can be used as an operation in

QubitCalib. For that in the operation box on the frontend one has to set two things: first, in

the ”Qubits” list the qubits that should be set have to be selected. Then, using ”Additional

parameters” the list of frequencies for the qubits have to be entered. The additional parameters

should look like this (the ”Test” specifier is optional):

Freq -> {5.1G,6.2G,7.3G}, Mode -> Test

The first value in the ”Freq” list corresponds to the first selected qubit, the second one for the

second selected qubit and so on.

5.6 Tracking qubits

As mentioned in Section 2.4 one of the features of circuit QED is that the qubit transition fre-

quency can be changed on the fly with a magnetic field. This is interesting as the qubit does not

necessarily behave equally at different frequencies. In particular the decoherence times may vary.

Therefore one wants to know the characteristics of the qubit at various external magnetic field

configurations. This means the external magnetic field (and in that way the qubit |gi $ |ei transi-

tion frequency) is changed and at each magnetic field strength several characterizing experiments

51

(Rabi, Ramsey, T1, T2, ...) are performed. This process is called tracking the qubit. Unfortunately

these important experiments were cumbersome to do before. In principle one could use Clean-
sweep or today SweepSpot to sweep the frequency in combination with the magnetic field. But this

can only be done in a small range because the resonator frequency also shifts with the magnetic

field. At some point the resonator is not driven at its resonant frequency anymore and therefore

the qubit state cannot be detected any longer. Now thanks to the SweepSpot framework, mea-

surements that track the qubit can be performed with ease using QubitCalib.

In QubitCalib one can generate a sequence of experiment operations. Each time one wants to

change the magnetic field of the coils the operation type SetTrackerStep can be inserted. As

additional parameters one specifies the new coil voltages like this (in Volts):

{"Voltages" -> {<|"Slot" -> 1, "Voltage" -> 5|>, <|"Slot" -> 3, "Voltage" -> 0|>}}

Alternatively, if a flux matrix is available for the current sample one can also directly enter the

desired qubit frequencies:

Freq -> {5.1G,6.2G,7.3G}

There should be only as many frequency values set as there are qubits included in the flux model.

After SetTrackerStep the next operation typically is ResonatorSpec. As explained above this routine

looks for the readout resonators of the selected qubits and sets the new MWG frequencies in

Instrument settings. Then one can add the QubitSpec operation which finds the qubit frequency

and sets the frequency of the corresponding upconversion MWG in Instrument settings to the cal-

culated value. There automatically the IF frequency is added such that a proper Rabi experiment

can be performed. Then one can add any further operations such as Rabi, Ramsey, T1, T2 and

other characterization routines, as shown in Figure 5.6 (a).

There are two big advantages of this functionality: First, it is highly practical to do tracking mea-

surements with QubitCalib which already has a user friendly interface. Also using the underlying

modules one can combine and reorder the subroutines. Second, one does not have to create the

above sequence list for a tracker measurement by hand. An assistant was built in to QubitCalib
(shown in Figure 5.6 (b)) that allows the user to quickly generate such a list. The assistant can

be started by pressing the ”Insert Tracker Element” button on QubitCalib frontend. Then a pop

up window asks the user to insert information about the experiments that should be performed.

Based on that data the assistant generates a list of operations that track the qubit.

52

Figure 5.6: (a) Screenshot of a tracker sequence in QubitCalib frontend. (b) Screenshot of the

software assistant that can be used to set up a tracker sequence.

53

Chapter 6

Sample characterization

Each quantum computing or quantum simulation experiment requires a sample with certain

properties. Having designed and produced such a chip and having it built into the cryostat the

first step is always to characterize it. No actual experiment can be done if the characteristic param-

eters of the sample such as qubit transition frequencies or coherence times are unknown. After

measuring the properties of the qubits and resonators the experimenter can determine whether

a certain experiment could be successful with the current chip. If the chances are high then the

actual experiment can be performed, using settings that rely on the sample characteristics that

were measured in this first stage.

This chapter provides a systematic approach to characterize a sample. For each step the theoret-

ical background of the experiment will be explained, example data will be presented and it will

be shown how the new software suit can be used to perform the experiments.

6.1 Sample for example data

All data that will be shown in this chapter was acquired with SweepSpot or QubitCalib running

SweepSpot as a backend module. The data, unless noted otherwise, was gathered from the sample

shown in Figure 6.1. This sample is similar in design to the one shown in Figure 2.6 apart from

two differences. First, there are no flux lines on this sample. Instead, the qubit charge lines have

been placed at the the top of the sample. Second, there are no coupling resonators between the

qubits. They were not needed in this particular design as this sample was intended to be a test

sample to investigate a new fabrication procedure of the two qubits on the right side of the chip.

From now on they are denoted as qubit 3 and 4. Furthermore, the qubit design slightly differs

to the one shown in Figure 2.5. Here, the SQUID loop is placed in the middle of the two islands

instead of on the top. Also the resonator-qubit couplings are smaller which will have an effect

when tuning the qubits with a magnetic flux bias, as explained in Section 6.2.1.

Despite these characteristics of the sample most of the steps that were used to characterize it are

directly applicable to any other chip. Notable differences to the characterization procedure of a

sample with coupling resonators and flux lines will be noted.

54

Figure 6.1: (a) A photo of the sample (M65ZZ2) that was used for the experiments in this chapter.

The vertical lines on the top of the qubits are the charge lines. Each qubit on its bottom couples

to its readout resonator. All readout resonators couple to a Purcell filter (horizontal line on the

bottom of the sample). There are no coupling resonators on this chip.

(b) A zoom of the readout resonator of qubit 1. The transmission line is shortened by an alu-

minium flake that touches the ground plane (at the top of the image). Original photo by Sebastian

Krinner (Qudev).

6.2 Checking the sample

As a first step it is recommended to test the general properties of the sample. In particular,

we want to ensure that the resonance frequencies of all resonators are as expected and that

the qubits work properly. Moreover, it is recommended to first calibrate the mixers to ensure

the mixer settings are optimized for the current setup and sample. In particular, the aim is to

maximize the LO suppression. This can be achieved through an iterative algorithm by measuring

the quadrature imbalances and the DC biasing of a mixer [6].

6.2.1 Purcell filter spectroscopy

In a sample containing a Purcell filter the first measurement to perform is a wide spectroscopy

of the Purcell filter. This allows to see whether the resonators have reasonable frequencies. In

the wide spectroscopy one should be able to see all readout resonators that couple to the Purcell

filter as dips in the broad Purcell resonance as shown in Figure 6.2. For the broad resonator

spectroscopy a drive is applied to the input line of the Purcell filter. The frequency of the drive

signal is swept over a broad frequency range. The response, measured at the output line of the

Purcell filter, follows the standard spectral power density of a driven harmonic oscillator [3]:

P(w) = Pr
(k

2

)2

(w � wr)2 + (k
2

)2

(6.1)

55

where wr is the bare resonator frequency, Pr the transmitted power at wr and k the half width at

half maximum. The lifetime of one photon in the resonator is

1

k . This allows to define the quality

factor Q = wr
k as the rate of energy loss for a unit amount of energy stored in the resonator.

Figure 6.2: Spectroscopy of the Purcell filter. The vertical yellow lines show the bare resonances

of the three readout resonators that couple to the Purcell filter.

The first result of this measurement was that the readout resonators of the M65ZZ2 sample did

not have their designed frequencies. First of all, only three readout resonators could be observed.

The readout resonator of qubit 1 was not seen because it got shortened by accident during the

fabrication of the chip. As seen in Figure 6.1 (b), there is an aluminium flake that touches both

the transmission line and the ground plane, causing the resonator to be shortened. Therefore

qubit 1 could not be characterized at all. Moreover, the resonance of readout resonator 3 was

shifted towards lower frequencies by a significant amount. As seen in Figure 6.2, this causes

the resonator to be tiny in amplitude as it is placed in a flat region of the Purcell resonance.

This fact required to drive the resonator much stronger for the spectroscopy of qubit 3. Also

the bare frequency of resonator 2 was shifted from its designed position, towards the left side of

the Purcell filter. Readout resonator 4 is about at its expected position. The broad spectroscopy

experiment is optimally performed with no flux bias, i.e. with all coils set to 0V, as a reference

point. The next step is now to look at the shifts of the resonators due to applied flux bias.

6.2.2 Magnetic field dependence

So far we have tested the resonators. Now it has to be checked whether in principle the qubits

work. In particular, we want to ensure if we can see the qubit frequencies shifting when applying

a magnetic field. Like this it can already be seen whether there might be a problem with some of

the qubits.

For the magnetic field sweep we again do a resonator spectroscopy of the Purcell filter. Applying

a magnetic flux bias to the SQUID changes EJ and therefore the qubit transition frequency (see

Section 2.2). As seen in Eq. 2.17 the resonator frequency experiences a shift due to the change in

the qubit frequency. In that way the shift of the qubits is detected using a resonator spectroscopy.

One of the coils beneath the sample is chosen and using SweepSpot frontend the coil bias voltage

is swept through a large range. In each step, i.e. for each flux bias setting, a Purcell resonator

spectroscopy measurement as shown in Figure 6.3 is performed.

56

Figure 6.3: A spectroscopy of the four readout resonators at different external magnetic fields.

This data was measured from the sample M65B1 which is similar in design to the one shown in

Figure 2.6.

However, it is not guaranteed that one sees shifted resonators through a magnetic field sweep.

Whether a qubit is tunable via the SQUID depends on the qubit design. In addition, it depends

on the qubit-resonator coupling strength whether a tunable qubit induces a shift in the readout

resonator frequency in a magnetic field sweep. In the case of the sample presented in Section 6.1

the coupling was designed to be weak compared to former chip designs. Therefore, one could

only observe a significant shift of the resonators with a high flux bias.

Alternatively, if it is unclear whether the qubits are tunable, their drive power dependency can be

investigated. In our case, as shown in Figure 6.4, we can see the static bare resonator frequency in

the middle whose transmission signal disappears if populated with too few photons. For higher

drive power the resonance becomes broader. This is a typical behavior of a transmitted signal in a

dissipative system that follows a Lorentzian spectral distribution. However, we can also observe

a nonlinear resonance in the background which is likely the shifted resonator frequency, coupled

to the qubit. This nonlinearity strongly suggests that there is a qubit affecting the resonator

frequency.

6.3 Qubit spectroscopy

Now one can choose one of the readout resonators to find its corresponding qubit. The following

steps can be repeated for any other qubit on the same chip.

57

Figure 6.4: A power sweep of one of the readout resonators. The bare resonator frequency

gets broadened towards higher probe power as this is the case for any transmitted signal in a

dissipative system that follows a Lorentzian spectral distribution. Additionally, a nonlinearity

can be observed in the background, originating from the resonator coupling to a qubit.

6.3.1 Finding the optimal readout frequency

The first thing to do when looking for a qubit is to choose the optimal readout frequency. For

the experiments in this section, unless noted otherwise, it is always assumed that no flux bias is

applied to the qubits. As explained before, the resonator frequency in general moves when an

external magnetic field is applied. Second, the shape of its resonance changes in spectroscopy

when the resonator is driven with different power, as explained in Section 6.2.2. As the aim is

to maximize the transmitted signal in qubit spectroscopy, the shape of the resonator resonance

is adjusted using different drive powers for the resonator, such that it will produce a high signal

when shifted during qubit spectroscopy, as discussed in Section 2.4. An example of a resonator

spectroscopy is shown in Figure 6.5. In general the readout resonator should be driven as weak

as possible. Like this one ensures that effects due to the AC Stark shift, as explained in Section

6.3.3, are suppressed.

6.3.2 Broad and fine qubit spectroscopy

Having found a readout frequency one can now sweep the drive frequency of the qubit. It is

recommended to first use high power and scan a broad range to find the approximate position of

the qubit. The result of this experiment is shown in Figure 6.6. The broad peak is the |gi $ |ei
transition frequency whereas the narrow resonance below it is the |gi $ | f i /2 transition. The

next step is to find a more exact estimation of the qubit frequency by narrowing the frequency

range of the sweep and lowering the power.

58

Figure 6.5: A spectroscopy of readout resonator 4, fitted with a double Lorentzian model as

described in Section 5.3.

Figure 6.6: A broad qubit spectroscopy, fitted with two (uncoupled) Lorentzians. The left res-

onance shows the |gi $ | f i /2 transition whereas the right peak corresponds to the |gi $ |ei
transition. Here, the qubit is driven with high power to observe the |gi $ | f i /2 transition. Due

to the high power the |gi $ |ei resonance is strongly broadened.

The effect of the qubit drive power on the transmitted signal can be seen by the following relation

of the half width at half maximum of a resonance [1], [45]

dnHWHM µ
q

1/T2

2

+ PdriveT
1

/T
2

(6.2)

where T1 and T2 are the coherence times of the qubit, as described in Section 2.6, and Pdrive
is the qubit drive power. A larger drive power therefore increases the linewidth. Eq. 6.2 also

shows the effect of the coherence times of the qubit on its linewidth: larger coherence times lead

to narrower resonances in spectroscopy experiments. However, if the drive power is weakened

59

too much the |gi $ |ei transition cannot be driven anymore. The reason is that the transition

element hg| HI |ei and in that way the qubit drive rate becomes small compared to the decay rate

G
1

= 1

T
1

. Here, HI denotes the resonator-qubit interaction Hamiltonian HI = ~dge~E(t) with the

qubit dipole moment

~dge and the electric field

~E(t) in the resonator. This effect directly lowers

the qubit transition probability | hg| HI |ei |2. For the same reason applying a weaker drive power

makes the |gi $ | f i /2 transition vanish.

Therefore, to find a more exact value for wge the qubit drive power is reduced and the qubit is

observed with a fine spectroscopy with a small range and small stepsize.

6.3.3 AC Stark shift and pulsed spectroscopy

When doing usual qubit spectroscopy caution is advised to safely identify effects due to the AC

Stark shift. A resonator populated by photons induces an additional shift on the qubit transition

frequency. This can be seen when revisiting Eq. 2.17. The Hamiltonian can be rewritten as [3]

ˆH/h̄ =
1

2

(wge + cge + 2c ˆa†

ˆa) ˆsz + w0
r ˆa†

ˆa. (6.3)

From here it can be easily seen that a higher number of photons n = ˆa†

ˆa in the resonator

results in a larger shift of the qubit frequency. As this effect depends on the photon number

in the resonator, it is known as number splitting. For a dissipative system this effect becomes

continuous, and is described as AC Stark shift. When doing continuous spectroscopy it is therefore

advised to use low resonator drive power to populate the resonator with only a few photons.

Alternatively, effects related to the AC Stark shift can be avoided by doing pulsed spectroscopy.

Pulsed spectroscopy ensures that the resonator is not populated with photons while the qubit is

driven. For that in SweepSpot frontend the microwave generators that drive the readout resonator

and the qubit have to have the ”Modulation” option enabled. Furthermore a pattern has to be

loaded to the AWG that performs pulsed spectroscopy. Such an example was shown in Figure

3.4. There the resonator drive is only switched on during the time the FPGA records data. Before,

the qubit is excited. At the moment the resonator is populated with photons, the qubit drive is

turned off. A comparison of the two spectroscopy types is depicted in Figure 6.7.

As the qubit is not driven anymore during recording time, it starts to decay. The duration the

FPGA records data should therefore be on the same order as the qubit coherence time to not

measure a lot of noise data after the qubit has decayed.

6.3.4 Checking the behavior of the qubit

Now it needs to be checked whether the detected resonance actually belongs to a qubit transition

and whether it is the correct qubit. For the following experiments the uncertainty on the qubit

frequency needs to be small compared to the bandwidth of the qubit excitation pulses. There are

several ways to test whether a resonance originates from a qubit transition.

As a first indicator, it can be checked if the |gi $ | f i /2 transition below the presumed |gi $ |ei
resonance can be seen. However, not seeing a second transition in this region does not exclude

the presumed |gi $ |ei resonance to origin from a qubit as the fabricated qubit could have a

different anharmonicity than designed.

60

Figure 6.7: (a) Unpulsed qubit spectroscopy with high qubit drive power. There, the actual qubit

frequency is shifted by the AC stark shift due to interactions with the photons in the resonator.

(b) Pulsed spectroscopy of the same qubit with low power. Now the real transition frequency of

the qubit is revealed as the AC Stark shift got suppressed.

A more reliable test is whether the resonance can be shifted by applying a magnetic flux bias.

This test can be performed using SweepSpot frontend with a DC Voltage sweep of one of the coils.

If the resonance moves it is likely to originate from a qubit. However, also this test can fail in

some cases even though the resonance belongs to a qubit transition. In particular, the qubit could

work well but be not tunable via an external magnetic field. Either the qubit design could cause

this (e.g. a screening current around the qubit shielding it from external magnetic fields when

using coils for biasing the magnetic field) or an unintentional problem during fabrication. How-

ever, the qubit test sample from Section 6.1 passed this test, as shown in Figure 6.8.

Figure 6.8: The dependency of the qubit 4 frequency on the flux bias.

Nonetheless, the most reliable test of whether a resonance belongs to a qubit is trying to drive

61

Rabi oscillations with the resonance. Rabi oscillations are a unique feature of a qubit. If they are

observed it can be concluded that the resonance belongs to a qubit. The experiment works as

follows:

1. The qubit is prepared in its ground state, represented by a Bloch vector pointing towards

the negative direction of the z-axis on the Bloch sphere.

2. A pulse with amplitude A and length t is applied to the qubit. In the Bloch sphere picture

this operation can be represented by a rotation sx around the x-axis. The rotation angle is

proportional to the pulse amplitude A, its length t and the drive rate.

3. The qubit population is extracted using a projective measurement.

4. The procedure is repeated either with amplitude A + d and length t or with amplitude A
and length t + d.

In each step either the amplitude of the pulse or the pulse duration is varied. Recalling the

interaction Hamiltonian of the Transmon, Eq. 2.23, one can derive the measured population

when the qubit is driven at its |gi $ |ei transition frequency (ignoring damping) as [3]

|pe|2 = sin

2(WRt/2) (6.4)

where WR denotes the Rabi frequency. The population therefore oscillates in time, known as Rabi
oscillations. The result is depicted in Figure 6.9. From a sinusoidal fit the maximum amplitude

can be extracted, which is expected to correspond to |pe| = 1. The corresponding Rabi amplitude

WR corresponds to a p amplitude on the Bloch sphere.

Figure 6.9: (a) Schematic representation of a Rabi experiment. The vertical line on the top rep-

resents the pulse scheme of the experiment. The two Bloch spheres show the qubit state at the

times marked on the pulse scheme. First, the p pulse rotates the Bloch vector around the x-axis

with angle A. This is followed by a projective measurement of its z-component. (b) A Rabi ex-

periment with the bare experiment data (blue), a sinusoidal fit (red line) and the extracted p and

p/2 pulse amplitudes (red points).

Finally, one may want to check if the resonance actually belongs to the expected qubit on the

sample. In such a sample design as in Figure 6.1 it was discovered that it is possible to drive

qubits by charge lines of neighboring qubits. Therefore, it can be checked whether one looks

at the expected qubit by comparing the qubit spectroscopy responses when driving the qubit

62

through different charge lines. Figure 6.10 shows that the largest response is measured when the

qubit is driven with charge line 2, inferring that charge line 2 is the one that directly couples to

the observed qubit and we therefore look at qubit 2. However, the qubit could also be excited

using the drive line of qubit 3 or 4. It is not fully understood which effect caused the crosstalk

for this sample. One possibility is that the Purcell filter which connects all readout resonators

and like this all qubits served as a coupling bus. However, as the resonators work as bandpass

filters, crosstalk signals caused by the Purcell filter are expected to be lower.

Figure 6.10: Spectroscopy of qubit 2 driven through charge lines of different qubits. The biggest

crosstalk was observed for charge line 3, followed by line 4. As expected, qubit 2 could not be

tuned through the charge line of qubit 1 as its readout resonator was shortened.

6.3.5 Anharmonicity

The next step is to measure the anharmonicity of the qubit. Taking into account only the first

three energy levels, the anharmonicity is defined as

a = we f � wge (6.5)

where the |gi $ |ei transition frequency is measured at low drive power to suppress effects from

the AC Stark shift. The |ei $ | f i transition can be calculated by measuring the |gi $ | f i /2

transition at high power and using the relation we f = 2wg f /2

� wge. An example of a |gi $ | f i /2

transition is shown in Figure 6.6. The anharmonicity allows to calculate EC and EJ using the

function FindEcEj from the Qudev Mathematica library. This function extracts EC and EJ from a

fit of the Mathieu equations solutions of the Transmon Hamiltonian using the measured values

of wge and wg f /2

.

6.3.6 Exact Transition Frequency

The exact transition frequency of a qubit can be found with a Ramsey experiment. As illustrated

in Figure 6.12 it works as follows [41]:

1. The qubit is prepared in its ground state. This corresponds to the Bloch vector pointing

towards the -z direction.

2. A X(p/2) pulse is applied to the qubit, causing the Bloch vector of the qubit state to rotate

around the x-axis by 90

�
.

3. The Bloch vector of the qubit freely evolves around the z axis with frequency Dw which is

the detuning of the drive from the qubit transition frequency.

63

4. A Y(p/2) pulse is applied to the qubit. Like that the x component of the state vector is

projected onto the z axis. The y component remains the same. This allows to determine the

sign of Dw.

5. A projective measurement is performed. In the Bloch sphere picture we actually measure

the z component of the state vector. More precisely, the measured population follows the

distribution [3]

pe =
1

2

+
1

2

e�t/T⇤
2

cos (Dwt) (6.6)

where T⇤
2

is the dephasing rate of the qubit ensemble. The cosine term represents the Rabi

oscillations with frequency Dw. The exponential term describes the decoherence of the

qubit state. It can be directly seen from Eq. 6.6 that for t >> T⇤
2

the qubit reaches the

maximally mixed state r = 1

2

(|0i h0| + |1i h1|).

Then the experiment is repeated for different separation durations t, causing different dephas-

ings and therefore different measured populations. The result are Ramsey fringes, as depicted in

Figure 6.11.

Figure 6.11: Ramsey fringes observed with a Ramsey experiment (blue points). The red line

represents the according model, a sinusoidal, decaying function, with parameters optimized

using a least-squares method.

From the Ramsey fringes the detuning of the drive to the qubit transition frequency can be ex-

tracted which leads to an exact value of the qubit frequency. Of course this requires to perform

the experiment with a drive frequency that is already nearly on-resonant with the qubit.

Additionally to the exact qubit frequency this experiment allows to extract the dephasing time

T⇤
2

. It differs from T
2

as T⇤
2

is the result of an ensemble average [14]. As a Ramsey experiment

is repeated several thousand times, small fluctuations in the qubit frequency (and therefore in

Dw) slightly change the detuning in step 3 and therefore lower the net measured coherence time.

Therefore, we always have T⇤
2

< T
2

. To measure the natural T
2

coherence time of a qubit, a

spin-echo experiment can be performed, as explained in Section 6.3.8.

64

Figure 6.12: Schematic representation of a Ramsey experiment. Two X(p/2) pulses are applied

to the qubit, separated by t. Then, directly after the second pulse the qubit state is measured.

6.3.7 QScale calibration

In general, a pulse applied on a qubit that should drive the |gi $ |ei transition also drives

the |ei $ | f i transition to a certain amount. The latter is mostly unwanted and needs to be

suppressed. For that reason so-called DRAG (Derivative Removal of Adiabatic Gate) pulses are

used. As Figure 6.13 illustrates, a DRAG pulse on wge minimizes its effect on the |ei $ | f i
transition whose frequency is close. At the same time, the pulse contribution on the |gi $ |ei
transition frequency is still large. The amplitude of the DRAG pulse is given by [3] A(t) =q

#x(t)2 + #y(t)2

and its phase is described by j = arctan (#y(t)/#x(t)). #x(t) is chosen as a

Gaussian [13], truncated at 3s around its maximum and starting and ending with zero amplitude.

#y(t) is described by #y(t) = � qs
a

d
dt #x(t) where a is the anharmonicity and qs is called the QScale

factor. The shape of the DRAG pulse needs to be optimized, i.e. the pulse contribution at the

|ei $ | f i transition frequency, to be minimized by calibrating the QScale factor.

Figure 6.13: A DRAG pulse driving the |gi $ |ei transition and minimizing its effect on the

|ei $ | f i transition whose frequency is close. Figure adapted from [13].

65

During calibration, qs is swept in a particular range and for each intermediate value 3 gates are

applied: X(p/2)X(p), X(p/2)Y(p) and X(p/2)Y(�p/2). All those rotations should theoreti-

cally result in a qubit population of |pe| = 1

2

. However, as Figure 6.14 shows, the qubit population

strongly varies with the scale factor qs. After the experiment the #y amplitude is therefore scaled

with the qs value that leads to the best results (i.e. to the qubit populations closest to 0.5).

Figure 6.14: The result of a QScale experiment. The three colors represent the different applied

gates X(p/2)X(p), X(p/2)Y(p) and X(p/2)Y(�p/2). Fitting the results of each gate with a

linear function and calculating the crosspoint of the functions gives the optimal QScale factor.

6.3.8 Coherence Times

Now we can measure the energy relaxation time T1 which was introduced in Section 2.6. This is

done by applying a X(p) pulse to the qubit, as illustrated in Figure 6.15 (a), and then measuring

its state as a function of time. An exponential decay as shown in Figure 6.15 (b) can be observed,

from which, using

|pe| µ e�t/T
1

, (6.7)

T
1

can be extracted.

The dephasing time T
2

can be found with a spin-echo experiment, developed for NMR technology

[25] but directly applicable to superconducting qubits as well. A spin-echo experiment works

similarly as a Ramsey oscillation experiment (see Figure 6.16):

1. The qubit is prepared in its ground state

2. A X(p/2) pulse is applied to the qubit. Like this the Bloch vector rotates around the x-axis

by a 90

�
angle.

3. The Bloch vector freely evolves for a duration t/2 around the z-axis with frequency Dw
(see Ramsey experiment).

4. A Y(p) pulse is applied to rotate the Bloch vector around the y-axis. This accounts for

effects that change the qubit frequency on a longer time scale than the duration of one

66

Figure 6.15: a) Schematic representation of a T1 measurement. A Y(p) pulse is applied to the

qubit and its population is measured as a function of decay time. b) Observation of the energy

relaxation of a qubit with a T
1

experiment.

experiment. The Bloch vector then freely evolves around the z-axis, again reaching the

y-axis.

5. After the same free evolution time t/2 as in step 3 the Bloch vector is again rotated around

the x-axis by the angle p/2.

6. A measurement is performed. Again, we effectively measure the z-component of the Bloch

vector. The length of the z-component got modified due to the decoherence of the qubit

state.

Figure 6.16: Schematic representation of a T
2

experiment. Additionally to the sequence used for

a Ramsey experiment, a Y(p) gate is applied in the middle of the sequence to cancel effects due

to changes in the qubit frequency.

67

6.4 Tracking the qubit

So far we have characterized the qubit for a reference external magnetic field (e.g. all coils tuned

to 0V). Now we want to see how the properties of the qubit change when a flux bias is applied.

This process is called tracking the qubit. A tracking experiment cannot easily be performed with

SweepSpot frontend as sweeping the magnetic field also changes the resonator frequency (see

Section 2.4). At some magnetic field configuration the resonator is not driven at its resonant

frequency anymore and the transmitted signal is only weakly dependent on the qubit state. This

is the main motivation a tracking sequence is needed to measure the characteristics of the qubit at

various magnetic field configurations. To track a qubit, the readout frequency has to be adjusted

in each step. In general, a Tracker sequence performs the following steps:

1. The tracker software sets the coil voltages to a predefined configuration.

2. A resonator spectroscopy determines the optimal readout frequency. The software then

automatically uses this frequency for the following experiments with that magnetic field

configuration.

3. A qubit spectroscopy experiment determines the approximate qubit frequency. The soft-

ware automatically uses this frequency, added by the IF frequency (see Section 3.3) to per-

form the following experiments via a mixer.

4. A sequence of calibration experiments is performed, using corresponding AWG patterns.

Example: Rabi, Ramsey, Rabi, QScale, Rabi, T1, T2.

Then this sequence repeats for the next magnetic field configuration.

As part of this project, a tracker functionality was added to QubitCalib (see Section 5.6). Like this

the qubit can be tracked as shown in Figure 6.17. Figure 6.17 (d) shows that the software actually

tracks the qubit such that one does not need to scan the whole frequency range in each step. At

the moment the function assumes no change of the magnetic field configuration as it centers the

next frequency sweep around the previous frequency. Figure 6.17 (a) shows that also the readout

resonator moves with the magnetic field, even though the dependency is not as strong as in the

case of the qubit. Figure 6.17 (b) shows the magnetic flux dependency of the qubit and in part

(c) the relation to the coherence times can be seen.

A tracker experiment then allows to determine relevant parameters of the qubits, especially EJ,max.

This can be done by fitting the qubit frequency-to-flux bias ratio (see Figure 6.17 (b)) to an

according model. As the fit model the Transmon solution of the Cooper Pair Box Hamiltonian

is used (Mathieu functions, see Section 2.2), plugged in to a Hamiltonian that describes a qubit

with with a coupled readout resonator. The fitting parameters are the bare resonator frequency

wr, the resonator-qubit coupling strength g, the maximal qubit frequency wq,max, the maximal

Josephson energy EJ,max and the flux quantum F
0

. This allows, when having a good estimate for

some of the parameters, to extract the others.

68

Figure 6.17: Data gathered from tracking qubit 4 by sweeping coil B underneath the sample.

(a) The resonator 4 frequency, moving with the biased magnetic flux. (b) The qubit 4 frequency

and its magnetic field dependency. (c) Extracted T
1

and T
2

times at the different magnetic field

settings, respectively the different qubit frequencies. (d) All the data gathered with the qubit

spectroscopy experiments. This Figure shows that the software actually tracks the qubit, i.e. it

estimates the expected frequency of the next step instead of sweeping over the full range each

time.

6.5 Further experiments

There are more experiments that can be performed to characterize a sample. A few examples

are:

• Measurement of the exact value of the dispersive shift of a resonator by comparing its

spectrum in the ground- and excited state

• Observation of the anti-crossing of two qubits for a sample with coupling resonators

• Flux line cross talk analysis for a sample with flux lines

• Randomized benchmarking to estimate the fidelity of single- and multi-qubit gates

After the characterization of a sample one should be able to determine whether the chip is

suitable for a particular experiment. Furthermore, particular steps of the characterization may

have to be repeated at later stages. For example, qubit spectroscopy is a common experiment that

is regularly repeated for diverse reasons, even though the sample is already well characterized.

69

Chapter 7

Conclusion

7.1 Summary

In this project a new LabView software suit for performing experiments in the Qudev laboratory

was developed. SweepSpot was implemented with a clean and well-structured concept. It comes

with built-in implementations of new devices, it is based on an optimized code which allows

faster experiments and it provides new features such as multidimensional sweeps. Additionally

the user interface was improved with the aim to generate a good workflow. The user interface

provides detailed status feedback and an experimenter is able to export data directly to Math-

ematica using it. The SweepSpot framework was designed such that it can be easily extended

for future additions. In particular, for the first time spectroscopy experiments were automized

and their modules were added to the calibration automation LabView software QubitCalib. The

individual modules can also be used for other implementations. A more convenient way to track

qubits was developed to perform the important magnetic flux sweeps with ease. Thanks to de-

tailed documentation of the software in this thesis and on the Qudev Wiki website, members of

the laboratory can use the LabView VIs and Mathematica functions to perform their experiments

with more advanced tools or to automize certain parts of their measurements. Furthermore, this

thesis suggests a systematic approach to characterize a sample. It provides an overview of the

required steps to find the relevant parameters of a chip and it shows how the new software suit

can be used to perform these experiments.

7.2 Proposals

As software development is a never-ending process there are several additions to the SweepSpot

framework one could think of.

First, it would be beneficial to have an option to save data throughout the experiment. This

would prevent data loss in case of an error at a late stage in the experiment.

It could also be investigated whether the data format (.ini) of the configuration files should be

changed for faster loading/writing times and a better handling of the content of the files. Inter-

esting candidates would be to format the files in JSON or XML.

As there will be more DC sources connected to the setup in the future one needs to update the

DC source instrument. It should be able to handle DC sources of different devices.

Then, as explained in Section 4.3, we found a LabView VI connected to the use of an FPGA that

70

was responsible for a big fraction of the duration of an experiment (”FPGA Setup.vi”). I strongly

suggest to check whether there is a bug in the FPGA implementation that slows down the exper-

iment.

Also there are a few instruments that are not yet implemented to SweepSpot, namely the UHFLI

acquisition device of Zurich Instruments and the DAQ of Acquiris.

Another feature that was regularly asked about is a mechanism that allows to read certain param-

eters of devices (e.g. the current coil voltages), to collect and store them in a configuration file

for future analysis. On a higher level the tracker functionality in QubitCalib can be optimized by

covering other measurements than linear magnetic field sweeps or by automatically adjusting the

drive power during the spectroscopy experiments. ”Tracker” could even be built to QubitCalib

as a subroutine itself which would allow to get rid of a long list of tracker step operations on the

QubitCalib frontend.

Furthermore, a plotting VI that could be accessed by various VIs would be useful. During an

experiment, such a VI would show the data gathered so far and it would allow to analyse the

data on the fly, i.e. by looking at different slices of it or making histograms out of it.

Finally, one can also think of more advanced automation routines. For example, a VI could be

built that would park the qubits iteratively, based on a Nelder-Mead algorithm. Like this one

would not need to generate a flux model of the sample. However, it should first be calculated

how long such an algorithm would need to execute and whether it could succeed in a reasonable

amount of time.

71

Acknowledgments

First, I would like to thank Prof. Andreas Wallraff a lot for giving me the opportunity to conduct

my Master’s thesis in his group. It was an interesting project in a highly fascinating field and I

enjoyed it a lot.

Furthermore, I am very grateful to my main advisor Johannes Heinsoo for many valuable discus-

sions and his guidance during this project. I gained a lot from his knowledge and from his great

programming skills and thanks to our jogging activities he even managed to keep me in shape

during these six months.

Moreover, I want to thank Yves Salath´e for practical instructions in the laboratory and for being

supportive whenever I had questions. I also owe thanks to Samuel Haberth ¨ur who made the first

steps in the implementation of SweepSpot before I joined the team. In addition, Fadri Gr ¨unen-

felder developed some of the Mathematica spectroscopy fitting functions as his semester project.

Furthermore, I am grateful to all Qudev members for creating a friendly and enjoyable atmo-

sphere in the laboratory. And finally, I want to thank my girlfriend and my family for their great

support throughout my studies, especially during this Master’s project.

72

Appendix A

Measurement configurations of time

statistics experiments

The following table shows the relevant experiment settings for the data shown in Section 4.3. The

number of spots was changed as shown in Figure 4.23.

Table A.1: SweepSpot speed statistics, shown in Figure 4.23.

Soft avgs Settl. Time Rep. rate dFactor Samples Segments Averages No. of MWGs

1 0 s 10 µs 2 250 1 1k 3

73

Appendix B

Adding features to SweepSpot

SweepSpot is built such that adding new features can be implemented with a clear procedure,

opposed to Cleansweep where the implementation of new methods and instruments was cum-

bersome. To stick to the concept of the software and to keep the code clean one should follow

some general rules. These will be presented in the following paragraph. Afterwards it will be

shown how to implement new instruments or sweep types and how to use SweepSpot as a subVI

in a higher level function.

B.1 General remarks

One of the main motivation to build SweepSpot was that the untidy implementation of Clean-

sweep limited the development of new features. Also the code was often unclear. This fate should

not happen to SweepSpot. Such that new users do not brake with the concept of SweepSpot they

should follow the 3 golden rules of SweepSpot implementations:

1. Keep the concept

This sounds obvious but actually it is the most important rule: make sure you understand

the basic concept of SweepSpot if you implement new features. Do not try to reinvent VIs

that are already here and implement the additions at the correct place.

2. Choose the level of the implementation wisely

This rule directly follows after the first one. Whenever you implement a new feature to the

SweepSpot framework, make sure that you do it at a sensible level. As a rule of thumb,

SweepSpot main and its subfunctions should be kept as simple as possible. Changes in

these VIs should be either of fundamental nature or they should provide general new

functionality such as the addition of a new instrument or a new sweep type. Features

that involve different stages of an experiment or repetitions of certain steps should be

implemented as higher-level functions, calling SweepSpot main whenever needed, e.g. in a

loop. Like this one ensures that the ground structure of the framework (SweepSpot main) is

kept simple and clean whereas the more complicated functions are on a higher level (see

Section B.5).

3. KISS: keep it stupid simple

This is a general rule for software development and should also be in mind for modifica-

tions to SweepSpot. The simpler an implementation, the better. Clean and easy implemen-

tations of features make it easy for other people to understand the code and to build upon

74

it or to reuse it. If one has to write a complicated piece of code it is very helpful to add

comments to the LabView block diagrams that explain what is going on in which step.

Furthermore, one should make sure that new VIs carry reasonable names and paths and an icon

that explains the basic purpose of the function at first sight. If everyone respects these 3 golden

rules of SweepSpot implementations it probably can be ensured that there will not have to be a

software cleanup for a long time.

B.2 Adding a new sweep type

This paragraph describes how to add a new sweep type such as ”Frequency” or ”MW Power”.

SweepSpot frontend

1. On the front panel of Sweep Spot frontend there is the list of sweep dimensions. To add

a new sweep type to choose from this list one has to right-click one of the list elements

(which is a LabView type definition called Sweep dimension element) and add the new type.

For simplicity, for now it will be called ”Magic type”.

2. Still on the frontend, in the Sweep controls Section one has to add a tab for ”Magic Sweep”.

Optimally one creates a type definition that contains all the controls of this sweep type.

3. On the block diagram of SweepSpot frontend there is the new data cluster of the ”Magic

sweep” control that has just been added. It now should be combined with the other sweep

types inside Create Sweep Definitions.vi to add this type to the Sweep Definitions array.

4. Now the new sweep type should be added to the functions that write and load the fron-

tend configuration files, namely Unbundle SweepSpot settings.vi and Save SweepSpot Frontend
data.vi. These can be found on the frontend in the consumer main case structure under the

cases ”Load” and ”Save”.

5. It is important that the new sweep types are also added to the type definition SweepSpot
settings.ctl. In particular, inside SweepSpot settings.ctl the ”Magic sweep” type has to be

added to the ”Sweep Definitions” subcluster.

6. Finally, to populate the controls on the frontend one has to add a reference to the new

sweep type to the Sweep Controls Reference type definition (found in the case ”Load” on the

frontend Block Diagram).

SweepSpot generator

In this VI the Spot Array is built. As explained in Section 4.1.3, this is a list of spots containing

the relevant parameters of the instruments that have to be set in each spot. In Spot Array element
generator there has to be added a new function, i.e. a new case, that creates a Spot array with the

parameters to be set in each spot. Additionally, there should be output relevant metadata about

the new sweep type, i.e. start, stop and step size of the range of the parameter that is swept and

the total number of steps. Basically one should add here all information that one later wants

to have written to the header of the data files. In certain special cases one may even need to

change the type definition Sweep info for that, but normally one can use the ”Start”, ”Stop”, and

”Step size” parameters that are already there. Every time one updates Sweep info one should also

75

update Feedback controls.ctl. This type control contains a reference to Sweep info, so one just has to

replace the current reference with a new one, carrying the name ”Sweep info”.

Save measurement data

Finally, the defining information about the new sweep type has to be added to the header of the

data files. In the SubVI MakeConfigStringForSweepSpot!Add Sweep Info to Header one has to add a

new case that writes the relevant information of the new sweep type to the header. As the header

is formatted as a Mathematica association one should make sure that this is also the case for the

new sweep type. Now the new sweep type is officially implemented.

B.3 Adding a new instrument

This paragraph describes how to add a new instrument to the SweepSpot framework. For all

devices that measure the steps of the next Section B.4 should be followed.

SweepSpot frontend

1. On the front panel of SweepSpot frontend there has to be added a new tab to the ”Instrument

settings” section. There the new controls can be placed. All new controls should be bundled

to a LabView type definition.

2. On the block diagram of SweepSpot frontend the cluster with the settings of the new device

has to be wired to Create Instrument Settings.vi where the new controls can be added to the

Instrument settings variant.

3. To provide frontend settings loading/saving functionality one has to add the property node

of the new control to the ”Load” case on the block diagram. Then the new instrument has

to be added to the two functions that write and read the frontend configuration file. For

that follow steps 4 and 5 of Section B.2 ! SweepSpot frontend.

SweepSpot Generator does not have to be changed.

SweepSpot.vi

Now the functions that call the devices to change certain parameters have to be added.

1. In Prepare Sweep ! Initialize Instrument the string constant the array loops over has to be

completed with an entry of the new instrument. Then there has to be added a new case in

the case structure containing the VI that initializes the device. If no initialization is needed,

this step can be skipped.

2. In Prepare sweep ! Base set a new case has to be added where the default parameters of the

instrument that one sets before the first spot are chosen. One can get an idea by looking at

the corresponding implementations of the other instruments.

3. In Prepare sweep ! Set instrument the function that actually sets new values of device-

specific parameters has to be added. For that, analogously to Initialize Instrument, one

has to complete the string array the VI loops over and one has to add a new case in the

loop. There one places the VI that sets the new parameters. Note that the VI Set instrument
is called in every spot (see Section 4.1.4).

76

4. Finally, one should modify Motion reversal similarly to the other two VIs Initialize instrument
and Set instrument. In the new case of the case structure there has to be added the function

that ”cleans up” the device, i.e. that makes it ready for the next experiment. Usually this

involves closing open VISA handles.

Save measurement data does not have to be changed.

B.4 Adding a new acquisition device

This section describes how to implement a device that performs a readout.

SweepSpot frontend

First one needs to add frontend controls to SweepSpot frontend.

1. On the front panel of SweepSpot frontend there has to be added another tab to the section

called ”Acquisition Instrument settings”. It makes sense to have nested type definitions

as with the FPGA. Overall there should be a single type definition which may contain the

sub-type definitions. Like this one can use this single type definition of the acquisition

device (e.g. ”FPGA.ctl”) throughout the whole software. The device should also have a

main ”Enabled” button to activate/deactivate the readout with this device.

2. On the block diagram of the frontend one then needs to append the new device settings to

Instrument settings.

3. Additionally the controls of the new device should be added to the functions that write/load

the frontend configuration files. For that one has to follow the steps 4 and 5 of Section B.2.

SweepSpot generator

Here one needs to add information about the new device to the Sweep Info cluster.

1. In the subVI Sweep Info generator there has to be added a new case for the new readout

device that writes the name of the new device. This ensures that if the new device is

enabled the name of the device will be added to the header in the data files.

2. In Sweep Info generator!Dimension calculator the size of the lowest dimension of the mea-

sured data has to be calculated. The 2nd lowest data dimension is always 1D (see Section

4.1.4). For FPGA firmwares TVMode and Correlator this represents a time trace. For an

FPGA therefore this VI calculates the length of this 1D array, i.e. the number of points in

the time trace. There should be a similar case for the new acquisition device.

SweepSpot.vi

Here where we actually perform the measurement one needs to add functions that gather the

data read out by the new device.

1. First the new acquisition device has to be initialized. For that, similarly to the equivalent

step in Section B.3, one has to implement the corresponding function in Prepare sweep !
Initialize instrument.

2. In Spot.vi ! Make acquisition ready one has to tell the acquisition device to be ready for the

next measurement using a subVI that accesses the new device.

77

3. The readout is performed in Spot.vi ! Readout acquisition. There the subfunction that per-

forms the readout has to be added to the For-loop and the case structure by adding a

corresponding new case for the new instrument. The measurement data for each spot has

to be 1D. It therefore has to be ensured that higher dimensional data is flattened. The

unflattening is done automatically in Save measurement data.

4. Finally, in Motion reversal the software part of the readout device has to be ”cleaned up”

and all open Visa handles should be closed.

Save measurement data

Here one only need to set a unique infix in the filename which indicates that the dataset in this

file was acquired by the new readout device. This can be done in Save measurement data ! Save
Instrument Data ! Filename Creator.

B.5 Using SweepSpot as a module

One of the big advantages of SweepSpot compared to Cleansweep is that SweepSpot main can be

easily used as a module in a higher-level VI. The SweepSpot framework was designed such that

basically every VI can be used as a module, especially the most important VI SweepSpot main.

This section shows how to embed it into another LabView function.

The only thing that has to be taken care of if a LabView VI calls SweepSpot main is to wire the

proper datatypes to it. There are required and optional inputs as the following overview shows.

More information about those data types can be found in Section 4.1.2.

• Save info

This type definition contains

– the filenumber;

– the filename in combination with its path;

– a boolean ”Save” indicating whether any data files should be written;

– the path to a pattern configuration file if one wants to save a pulse configuration file

(optional);

– a ring element/integer indicating the file format (ASCII or binary);

– a suffix to the filename if needed.

• Sweep Dimensions

A list of ring elements, where each one should be an element of the ”Sweep Dimensions

element” type definition, that specifies which sweep types should be used and in which

order. The first array element corresponds to the fastest dimension.

• Sweep Instruments

A variant containing elements that correspond to the sweep types one wants to use (e.g.

”Frequency 1”, ”DC Voltage”). It is required to add an element for every different sweep

type one has specified in Sweep Dimensions.

• Instrument settings

A variant containing as elements all information about the relevant devices connected to

the setup.

• Soft averages (Optional)

The number of times the software should repeat the experiment and average over the re-

78

sults.

• Error (Optional)

The standard LabView error wire input.

• Feedback (Optional)

A wire of type Feedback.ctl containing references to higher-level elements for plotting and

status updates such as a status box or a progress bar.

As SweepSpot main is designed as a sequentially reusable module there are also wires that can be

used as outputs. In particular, this is the standard error output and the (potentially modified)

Instrument settings. The concept is that Instrument settings is the wire that flows through the

whole higher-level VI. It may be modified by some subVI (e.g. SweepSpot main) and then reused

by another subfunction.

79

Bibliography

[1] Anatole Abragam. The principles of nuclear magnetism. Number 32. Oxford university press,

1961.

[2] NH Balshaw. Practical cryogenics, 2001.

[3] Matthias Baur. Realizing quantum gates and algorithms with three superconducting qubits. PhD

thesis, Diss., Eidgen¨ossische Technische Hochschule ETH Z ¨urich, Nr. 20359, 2012, 2012.

[4] Charles H Bennett. Quantum cryptography: Public key distribution and coin tossing. In

International Conference on Computer System and Signal Processing, IEEE, 1984, pages 175–179,

1984.

[5] Charles H Bennett, Gilles Brassard, Claude Cr´epeau, Richard Jozsa, Asher Peres, and

William K Wootters. Teleporting an unknown quantum state via dual classical and einstein-

podolsky-rosen channels. Physical review letters, 70(13):1895, 1993.

[6] Simon Berger. Geometric phases and noise in circuit QED. PhD thesis, Diss., Eidgen¨ossische

Technische Hochschule ETH Z ¨urich, Nr. 22524, 2015, 2015.

[7] Alexandre Blais, Jay Gambetta, A Wallraff, DI Schuster, SM Girvin, MH Devoret, and

RJ Schoelkopf. Quantum-information processing with circuit quantum electrodynamics.

Physical Review A, 75(3):032329, 2007.

[8] Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, SM Girvin, and R Jun Schoelkopf.

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for

quantum computation. Physical Review A, 69(6):062320, 2004.

[9] Vincent Bouchiat, D Vion, Ph Joyez, D Esteve, and MH Devoret. Quantum coherence with a

single cooper pair. Physica Scripta, 1998(T76):165, 1998.

[10] Katherine L Brown, William J Munro, and Vivien M Kendon. Using quantum computers for

quantum simulation. Entropy, 12(11):2268–2307, 2010.

[11] M B ¨uttiker. Zero-current persistent potential drop across small-capacitance josephson junc-

tions. Physical Review B, 36(7):3548, 1987.

[12] Chris Cesare. Online security braces for quantum revolution. Nature, 525(7568):167–168,

2015.

[13] Livio Ciorciaro. Automatic single qubit routines, 2015.

80

[14] John Clarke and Frank K Wilhelm. Superconducting quantum bits. Nature, 453(7198):1031–

1042, 2008.

[15] Altera Corporation. FPGA photo. https://upload.wikimedia.org/wikipedia/commons/

f/fa/Altera_StratixIVGX_FPGA.jpg.

[16] Louis De Broglie. Waves and quanta. Nature, 112:540, 1923.

[17] Michel H Devoret, Andreas Wallraff, and John M Martinis. Superconducting qubits: A short

review. arXiv preprint cond-mat/0411174, 2004.

[18] David P DiVincenzo et al. The physical implementation of quantum computation. arXiv
preprint quant-ph/0002077, 2000.

[19] Albert Einstein.

¨

Uber einen die erzeugung und verwandlung des lichtes betreffenden heuris-

tischen gesichtspunkt. Annalen der physik, 322(6):132–148, 1905.

[20] Artur K Ekert. Quantum cryptography based on bell’s theorem. Physical review letters,

67(6):661, 1991.

[21] Andrew Fursman. What can quantum computing do for us? https://www.weforum.org/

agenda/2015/08/qa-what-quantum-computing-can-do-for-us/.

[22] Christopher Gerry and Peter Knight. Introductory quantum optics. Cambridge university

press, 2005.

[23] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219. ACM, 1996.

[24] Samuel Haberth ¨ur. Randomized benchmarking of two-qubit gates. Master’s thesis, Masther

Thesis, Eidgen¨ossische Technische Hochschule ETH Z ¨urich, 2015, 2015.

[25] Erwin L Hahn. Spin echoes. Physical review, 80(4):580, 1950.

[26] Ronald Hanson and David D Awschalom. Coherent manipulation of single spins in semi-

conductors. Nature, 453(7198):1043–1049, 2008.

[27] Johannes Heinsoo. Automatic multi-qubit gate calibration, 2013.

[28] Werner Heisenberg.

¨

Uber den anschaulichen inhalt der quantentheoretischen kinematik

und mechanik. Zeitschrift für Physik, 43(3-4):172–198, 1927.

[29] Serge Horoche and Daniel Kleppner. Cavity quantum electrodynamics. Phys. Today, 42(1):24,

1989.

[30] D-Wave Systems Inc. Applications of a Quantum Computer. http://www.dwavesys.com/

quantum-computing/applications.

[31] National Instruments. LabView icon. http://southafrica.ni.com/sites/default/files/

labview-logo.jpg.

81

https://upload.wikimedia.org/wikipedia/commons/f/fa/Altera_StratixIVGX_FPGA.jpg
https://upload.wikimedia.org/wikipedia/commons/f/fa/Altera_StratixIVGX_FPGA.jpg
https://www.weforum.org/agenda/2015/08/qa-what-quantum-computing-can-do-for-us/
https://www.weforum.org/agenda/2015/08/qa-what-quantum-computing-can-do-for-us/
http://www.dwavesys.com/quantum-computing/applications
http://www.dwavesys.com/quantum-computing/applications
http://southafrica.ni.com/sites/default/files/labview-logo.jpg
http://southafrica.ni.com/sites/default/files/labview-logo.jpg

[32] Jonathan A Jones and Michele Mosca. Implementation of a quantum algorithm on a nuclear

magnetic resonance quantum computer. The Journal of chemical physics, 109(5):1648–1653,

1998.

[33] Brian David Josephson. Possible new effects in superconductive tunnelling. Physics letters,

1(7):251–253, 1962.

[34] David Kielpinski, Chris Monroe, and David J Wineland. Architecture for a large-scale ion-

trap quantum computer. Nature, 417(6890):709–711, 2002.

[35] Jens Koch, M Yu Terri, Jay Gambetta, Andrew A Houck, DI Schuster, J Majer, Alexandre

Blais, Michel H Devoret, Steven M Girvin, and Robert J Schoelkopf. Charge-insensitive

qubit design derived from the cooper pair box. Physical Review A, 76(4):042319, 2007.

[36] Paul C Lauterbur. Image formation by induced local interactions: examples employing

nuclear magnetic resonance. 1973.

[37] Chris Monroe, DM Meekhof, BE King, WM Itano, and DJ Wineland. Demonstration of a

fundamental quantum logic gate. Physical review letters, 75(25):4714, 1995.

[38] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cam-

bridge university press, 2010.

[39] Wolfgang Pauli.

¨

Uber den zusammenhang des abschlusses der elektronengruppen im atom

mit der komplexstruktur der spektren. Zeitschrift für Physik A Hadrons and Nuclei, 31(1):765–

783, 1925.

[40] Max Planck. On the law of distribution of energy in the normal spectrum. Annalen der Physik,

4(553):1, 1901.

[41] Norman F Ramsey. A molecular beam resonance method with separated oscillating fields.

Physical Review, 78(6):695, 1950.

[42] Rohde and Schwarz. MWG photo. http://mwrf.com/site-files/mwrf.com/files/

gallery_images/SGU_46945_538ef94600c65.jpg?1447168029.

[43] Y. Salath´e, M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers, A. Potoˇcnik, A. Mezzacapo,

U. Las Heras, L. Lamata, E. Solano, S. Filipp, and A. Wallraff. Digital quantum simulation

of spin models with circuit quantum electrodynamics. Phys. Rev. X, 5:021027, Jun 2015.

[44] Erwin Schr¨odinger. Quantisierung als eigenwertproblem. Annalen der physik, 385(13):437–

490, 1926.

[45] David Isaac Schuster. Circuit quantum electrodynamics. 2007.

[46] Eyob A Sete, John M Martinis, and Alexander N Korotkov. Quantum theory of a bandpass

purcell filter for qubit readout. Physical Review A, 92(1):012325, 2015.

[47] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer. SIAM review, 41(2):303–332, 1999.

82

http://mwrf.com/site-files/mwrf.com/files/gallery_images/SGU_46945_538ef94600c65.jpg?1447168029
http://mwrf.com/site-files/mwrf.com/files/gallery_images/SGU_46945_538ef94600c65.jpg?1447168029

[48] Michael Tinkham. Introduction to superconductivity. Courier Corporation, 1996.

[49] Andreas Wallraff, David I Schuster, Alexandre Blais, L Frunzio, R-S Huang, J Majer, S Ku-

mar, Steven M Girvin, and Robert J Schoelkopf. Strong coupling of a single photon to a

superconducting qubit using circuit quantum electrodynamics. Nature, 431(7005):162–167,

2004.

[50] Inc. Wolfram Research. Number Field Sieve. http://mathworld.wolfram.com/

NumberFieldSieve.html.

83

http://mathworld.wolfram.com/NumberFieldSieve.html
http://mathworld.wolfram.com/NumberFieldSieve.html

	Introduction
	Quantum Technologies
	Towards a Quantum Computer
	Motivation for this project

	Superconducting Qubits
	Introduction
	The Cooper Pair Box
	The Transmon Qubit
	Circuit QED
	Drive and Readout of a Transmon
	Coherence

	Experiment setup
	Overview
	Cryogenics
	Signal modulation
	Downconversion
	Synchronization

	Software
	SweepSpot framework
	Concept
	Definition of an experiment
	SweepSpot generator
	SweepSpot.vi
	Save measurement data / file handling

	SweepSpot frontend
	Efficiency of time and memory usage
	Improvements and differences to Cleansweep

	Spectroscopy Automation
	Software overview
	Spectroscopy.vi
	Resonator/Qubit spectroscopy
	Combined Spectroscopy
	Parking qubits
	Tracking qubits

	Sample characterization
	Sample for example data
	Checking the sample
	Purcell filter spectroscopy
	Magnetic field dependence

	Qubit spectroscopy
	Finding the optimal readout frequency
	Broad and fine qubit spectroscopy
	AC Stark shift and pulsed spectroscopy
	Checking the behavior of the qubit
	Anharmonicity
	Exact Transition Frequency
	QScale calibration
	Coherence Times

	Tracking the qubit
	Further experiments

	Conclusion
	Summary
	Proposals

	Acknowledgments
	Measurement configurations of time statistics experiments
	Adding features to SweepSpot
	General remarks
	Adding a new sweep type
	Adding a new instrument
	Adding a new acquisition device
	Using SweepSpot as a module

