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Abstract

The objective of cavity quantum electrodynamics (cavity QED) is to study the interaction
between a spin—% particle and a quantum harmonic oscillator. In this thesis such a system is
implemented with Rydberg atoms passing through a 3D microwave cavity. The thesis is part
of the Rydberg project that aims to combine Rydberg atoms with superconducting circuits in
a hybrid system. The interaction between the atoms and the superconducting qubits will be
mediated by photons at microwave frequencies. Ultimately, this would allow to store quantum
information processed with superconducting qubits in long-lived atomic Rydberg states.

In a first set of experiments we study the interaction of Rydberg atoms with the electric
fields inside the cavity. We develop a method to characterize the spatial distribution of the
electric field in a particular mode by observing Rydberg atoms undergoing Rabi oscillations.
By applying a potential difference between two electrodes inside the cavity, we can shift the
transition frequency of the Rydberg atoms via the quadratic Stark effect with the created DC
electric field. From the measurements we can then reconstruct the electric field profile of the
electrodes along the beam axis for any given potential.

Up to this point we have studied the electric field inside the cavity by observing the population
of the Rydberg states. We then aim at doing the reverse: measuring the state of the Rydberg
atoms with the cavity - for example in a dispersive shift experiment. To this end we design a
new cavity with a constant electric field over a long plateau and low inhomogeneity.
Furthermore, we need to characterize the amplification system necessary to observe a dispersive
shift. We measure the gain and the noise temperature of the amplifiers at room temperature

and in a dip stick measurement at liquid helium temperature.

iii






Contents

1. Introduction

2. Theory

2.1. Rydberg atoms . . .. ... ...

2.1.1.
2.1.2.
2.1.3.
2.1.4.

Historical background . .
Theoretical description . .

Lifetime . . . . . .. ...

Interaction with electric fields . . . . . . . . . . . . ... ... .. ...

2.2. 3D microwave cavities . . . . . .

2.2.1.

2.2.2. Quality factor, coupling and insertion loss . . . . . . .. ... ... ..
2.3. Cavity QED . . . . ... ... ..

2.3.1.
2.3.2.
2.3.3.
2.3.4.

Jaynes-Cummings Hamiltonian . . . . . . . ... .. ... ... ....

Dressed states . . . . ..

Resonant case: Rabi oscillations . . . . . . . . .. .. .. ... ....

Dispersive limit . . . . . .

2.4. Noise in amplifiers . . .. .. ..

2.4.1.

Noise temperature . . . .

2.4.2. Noise figure, signal-to-noise ratio and cascaded systems . .. ... ..

3. Experimental setup and measurement procedure

3.1. The vacuum and cryogenic system

3.2. The supersonic atom beam . . .

3.3. Excitation of atoms to Rydberg states . . . . . ... ... ... ... ...

3.4. The 3D microwave cavity . . . .
3.5. Detection of the Rydberg atoms with an MCP detector . . . .. ... .. ..

4. Measurement results for cavity 4B

4.1. Resonance spectrum of the cavity

4.2. Initialization: alignment and optimization of the pulses . . . ... ... ...

4.2.1.
4.2.2.
4.2.3.
4.2.4.

Metastable Helium and Rydberg picture . . . . . . . ... .. .. ...

Velocity measurement . .
Rydberg spectrum . . . .

Optimization of the s-pulse

S ot ot @

11
13
18
19
20
22
22
24
26
27
28
29
30

32
35
36
36
37
42

44
44
48
49
52
54
95



Contents

4.3. Rabi oscillation measurements . . . . . . . . . ... ... L. 57
4.3.1. Measurement procedure . . . . . . . . . .. ... 58

4.3.2. Results: Amplitude/powers for a m-pulse and its Stark shift . . . . . . 59

4.3.3. Results: Mode function . . . .. ... ... ... ... ... ..., 60

4.4. Stark shift measurements . . . . . . .. ... . L L 61
4.4.1. Electric field from the electrodes . . . . ... .. .. ... ... .... 62

4.4.2. Stray fields along the beam axis . . . . ... ... ... .. ...... 64

4.5. Comparison of the measurements . . . . . . . ... ... .. ... ....... 66

5. Design of a new cavity 69
5.1. Requirements . . . . . . . . . . e 69
5.2. Optimizing the field inhomogeneity and plateau length . . . . . . . . ... .. 71
5.3. Final cavities . . . . . . . . ... 75

6. Characterization of the amplification system 78
6.1. Components . . . . . . . . . . . 78
6.2. Gain of the amplifiers . . . . . . .. . .. ... 82
6.2.1. Measurements at 300 K . . . . . ... ... ... oL, 82

6.2.2. Measurements at 14 K . . . . . . . . ... oL 82

6.2.3. Influence of the applied gate and drain voltages . . . . . . . . ... .. 85

6.3. Spectrum of the down conversion board . . . . . ... ... ... ... ... . 85
6.4. Noise temperatures of the amplifiers . . . . .. ... ... ... ... ... 89
6.4.1. Room temperature measurement: UMS1 and UMS2 . . .. ... ... 89

6.4.2. Room temperature measurement: ZFL . . . . . . ... ... ... ... 94

6.4.3. Dip stick measurement: HEMT108 and HEMT116 . . . . .. ... .. 95

6.4.4. EITOr SOUICES . . . . .« v v it i e e e e e e e 103

6.4.5. DC-block measurement . . . . . . . . . .. ... ... 103

7. Conclusion and Outlook 107
Acknowledgments 110
Bibliography 111
List of Figures 116
List of Tables 119
A. Units and conversions 120
A.l. Atomic units . . . .. L 120
A.2. Conversion: power and voltages . . . . . . . . . . ... ... ... 120
A.3. Conversion: noise figures and noise temperatures . . . . . .. ... ... ... 121

vi



1. Introduction

The development of quantum mechanics in the last century revolutionized physics and strongly
affected how we perceive the world around us. Quantum mechanics defines a set of rules for
the construction of physical theories [1]. These rules are simple, but some of the predictions
made using quantum mechanics (e.g. entanglement, EPR paradox) are counter-intuitive -
which is why even leading scientists like Albert Einstein rejected the theory. Nonetheless,
no experiment has so far been found that strictly violates quantum mechanics and no other
consistent theory has been developed that manages to predict comparably accurate results.
Quantum mechanics correctly describes the physics on the microscopic, the mesoscopic and the
macroscopic length scales: it can explain the structure of the atom, the DNA, superconductors
and nuclear fusion in stars. The successful application of quantum mechanics to many different

fields made it indispensable to many branches of physics [1].

Quantum mechanics did not only change our view of the world, it also led to the invention of
many new devices like the laser [2], the electron microscope and the atomic clock [3]. One
of the most important inventions in the last century was the transistor. Its application in
integrated circuits made it possible to store and process information efficiently. Computers
are nowadays ubiquitous in our daily life and our demand for computational power remains
unbroken. In 1965 Gordon Moore predicted the growth in computer power in what has come
to be known as Moore’s Law [4]: computer power will double for constant cost roughly once
every two years. His prediction has been valid since more than 40 years. But as the electronic
circuits are made smaller and smaller (soon reaching the size of atoms), quantum effects begin
to interfere in the functioning of the devices and disturb further improvement.

More important, for some problems no efficient! algorithm running on a classical computer
has been found, meaning that even with a fast computer the problem could not be solved
in a sensible amount of time. In 1982, for example, Richard. P. Feynman realized that it
is not possible to efficiently simulate arbitrary quantum mechanical systems using classical

computers [5]. How can these limitations be overcome?

Quantum Computation

One approach is to move to a new computing paradigm as the theory of quantum compu-

tation suggests. The key idea is to build a computer based on quantum phenomena (i.e.

!The notion efficient in the field of computational complexity refers to algorithms running in time polynomial in
the size of the problem solved, whereas inefficient algorithms require superpolynomial (typically exponential)
time.



a quantum computer). This computer can for example be used to perform simulations of
quantum mechanical systems, which would revolutionize atomic physics, material physics and
biochemistry.

In 1985 David Deutsch presented the concept of an Universal Quantum Computer [6]. He
searched for a device that could efficiently simulate an arbitrary physical system and constructed
a first algorithm that was more efficient than the associated classical one. The algorithm
determines whether a given boolean function with 1 input bit (f: {0,1} — {0,1}) is constant.
In his example he exploited the superposition principle: in contrast to a classical bit, a
quantum bit (qubit) can not only be in the zero or the one state but in both simultaneously.
Together with Richard Jozsa he later made a multidimensional version of his algorithm, which
got known as the Deutsch-Jozsa algorithm [7].

Further evidence that quantum computers are more powerful than classical ones was given
in 1994 by Peter Shor and in 1995 by Lov Grover, who both found an algorithm solving
an important problem. Grover’s algorithm leads to a quadratic speed up (compared to the
classical algorithm) for the problem of searching an element in an unstructured database [8].
Peter Shor found an algorithm on a quantum computer that was able to calculate prime
factors of an integer efficiently [9]. The algorithm has attracted widespread interest until today,
because the security protocols of public key cryptography like RSA are based on the difficulty
of factorizing larger numbers [10], meaning that a quantum computer could successfully attack
an RSA system. Fortunately, there are also quantum cryptography protocols that allow secure

communication over public quantum channels [11].

Building a quantum computer

So how do we build quantum computers? For the successful physical implementation David P.
DiVincenzo defined 7 criteria [12]:

1. Qubits: A scalable physical system with well characterized qubits

2. Initialization: The ability to initialize the state of the qubits

3. Coherence: Long relevant decoherence times, much longer than the gate operation time
4. Gates: A universal set of quantum gates

5. Read-out: A qubit-specific measurement capability

6. Conversion: The ability to interconvert stationary and flying qubits

7. Transmission: The ability to faithfully transmit flying qubits between specified locations

Several promising candidates that could serve as qubits have been suggested and investigated
during the last decades: photons [13], trapped ions and cold atoms [14], superconducting
circuits [15], quantum dots [16], nuclear magnetic resonance (NMR) [17] and nitrogen-vacancy

(NV) centers [18]. Scientists succeeded in implementing Shor’s algorithm factoring the number



15 on an NMR system [19] as well as the Deutsch-Josza algorithm on a trapped ion system [20].

Two main challenges arise when trying to build a quantum computer. The first is the trade-off
between coherence and intractability. A system must be coherent, meaning that the qubit
does not decay or dephase before the measurement is done. As decoherence occurs due to
uncontrolled interactions with the environment (e.g. noise), the system must be isolated from
the environment. On the other hand, the application of gates and the read-out require an
interaction of parts of the environment with the system.

The second challenge is to scale the system up to more than just a few qubits. For the
factorization of a 200 digit number, a machine capable of storing 3300 qubits would be needed
[21]. The record so far is to entangle 14 qubits in a trapped ion system [22]. The main
problem is to distribute the entanglement over a large distance and number of qubits before

decoherence occurs.

Hybrid Systems

The systems mentioned above all have their weaknesses and advantages. The idea of Hybrid
Systems is to combine two different kinds of quantum systems in one experimental setup and
use the advantages of each system. Certain states and transitions in ions and atoms, for
example, can have long coherence times due to efficient isolation from the environment. On
the other hand, they only weakly interact with control fields, meaning that the effective time
scales over which they can be manipulated is limited. The reversed situation is achieved in
most solid state systems (e.g. superconducting qubits). There the quantum system interacts
strongly with its environment and thus its control field, which allows a fast manipulation of
the qubits, but the coherence times are reduced. These properties make it interesting to merge
the two systems. The computation can be done in the solid state system, while the ions or
atoms act as quantum memories. Several proposals how to combine these two systems have
been made [23, 24].

The goal of the Rydberg Project in the Quantum Device Lab at ETH Ziirich is to develop such
a hybrid system. Rydberg atoms are used due to their large dipole moment and long lifetimes
of up to several tens of milliseconds [25]. Superconducting qubits have short gate times in the
order of tens of nanoseconds and lifetimes up to 100 us [26]. Both superconducting artificial
atoms and Rydberg atoms interact with radiation fields and the interaction between the two
systems will therefore be mediated by microwave photons stored in resonators.

The first focus of the project is to investigate the interaction and manipulation of Rydberg
atoms with a classical microwave field. So far Rydberg-Rydberg transitions, Rabi oscillations
and stray fields in the vicinity of a solid-state coplanar waveguide were observed [27]. A
method was developed to measure, minimize and compensate the stray fields, which makes
the preservation of the coherence for several microseconds possible [28].

Two types of resonators are basically used. The first is a two dimensional resonator on a chip.

This geometry exhibits strong electric fields, which however decay exponentially with distance



from the chip, meaning that the distance between the atom beam and the chip has to be
smaller than 500 pm [28] to reach the strong coupling regime. In the vicinity of the chip, stray
electric fields detune the Rydberg atoms, which is a problem. The second type of resonator is a
three dimensional rectangular cavity, in which the the AC electric field magnitude is generally
smaller due to the reduced mode volume. On the other hand, the field is homogeneous over the
size of the atomic beam, meaning that the atoms can interact with the electric field without
approaching the cavity walls by more than a few millimeters and stray fields are thus less a

problem.

This thesis

In my thesis I work on the project with the 3 dimensional cavity. At the starting point of my
thesis, the cavity is well understood and characterized, but no experiments involving Rydberg
atoms have yet been conducted. The aim is to realize typical cavity QED experiments. We
start with experiments studying Rabi oscillations, which result from the interaction between
a classically driven field inside the microwave cavity and the Rydberg atoms. The first
measurements show that the alignment is essential - else wise the atomic beam does not
properly go through the holes inside the cavity and we observe strong stray fields. From the
observance of Rabi oscillations we draw conclusions on the strength of the oscillating electric
field inside the cavity and measure cavity properties such as the modefunction. The stray
fields can be estimated by measuring the Stark shift of the atomic transition frequency. In a
second experiment we introduce two round electrodes parallel to the atomic beam inside the
cavity. By applying voltages to the electrodes, we can manipulate the detuning thanks to the
Stark shift.

In the first part of the thesis we study the electric fields inside the cavity by observing the
MCP signal from the Rydberg atoms. In the second part we aim at measuring a dispersive
shift in the cavity resonance frequency, which allows to extract the state of the Rydberg atoms.
In order to be able to measure a dispersive shift, we need a new cavity and a measurement
system with a high signal to noise ratio. We therefore perform FEM simulations to find an
optimal cavity geometry and characterize the amplification system. The signal to noise ratio
mostly depends on the gain and the noise temperature of the first amplifiers, which we measure

with a network analyzer and the Y-Method, respectively.

The structure of this thesis is the following: in chapter 2 the most important theoretical aspects
concerning Rydberg atoms, 3D microwave cavities, cavity quantum electrodynamics and noise
in amplifiers will be summarized. Chapter 3 describes the experimental setup and measurement
procedure for the Rydberg atom measurements. In chapter 4 these measurements are detailed
and the results presented. After the measurements a new cavity is designed for which the static
electric field distribution is optimized (chapter 5). We then switch to the amplification system
in chapter 6 and describe our down conversion board, the gain and the noise temperature

measurements. The thesis ends with a conclusion and an outlook (chapter 7).



2. Theory

2.1. Rydberg atoms

Rydberg atoms have one or multiple electrons in highly excited states (principle quantum
number n), which gives them exaggerated properties such as big radii, long lifetimes, a high
number of adjacent energy levels and an exaggerated response to electric and magnetic fields.
The simplest Rydberg atom is the hydrogen atom, which can be described analytically. Since
the core electrons shield the highly excited outer electron from the electric field of the nucleus,
non-hydrogen Rydberg atoms show hydrogen-like behavior and can thus be described in a
similar way.

In this chapter we will give a short introduction to the physics of Rydberg atoms. We will
follow the outline in Gallagher’s book on Rydberg atoms [29] and start with the discovery of
Rydberg atoms in section 2.1.1. We will then continue with the theoretical description (section
2.1.2) by reviewing Bohr’s model, which gives the correct n-scaling of most properties like the
radius, the energy level spacing and the dipole moment. A more thorough description is then
given by quantum defect theory. In section 2.1.3 we move on to an important property, the
lifetime. In the last section (2.1.4) we will summarize the interaction of the Rydberg atoms
with an electric field. Perturbation theory leads us to the linear and the quadratic DC-Stark

effect depending on the degeneracy of the energy levels.

2.1.1. Historical background

In the early 19th century several scientists like Frauenhofer, Kirchhoff and Bunsen studied
emission and absorption spectra. They found that each chemical element had its own unique
spectral pattern - like an optical fingerprint. The Balmer series, for instance, is a sequence
of spectral lines in the emission spectrum of the hydrogen atom. In this series Rydberg
atoms appeared for the first time and have since then played a role in atomic physics and
spectroscopy. The hydrogen atom was the first atom to be understood quantitatively. In 1885,
Johann Balmer described the wavelength A of the visible series of atomic H with the formula
[20]

A= —— (2.1)
where b = 3645.6 A and n is a natural number greater than 2. One crucial step towards

understanding the formula was made by Harley, who was the first to realize the significance

of the frequency f (or the wavenumber v, with f = ¢ - v, where c is the speed of light) in
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contrast to the wavelength. Using the wavenumber, we can rewrite Balmer’s formula and later

recognize it as describing transitions from a higher energy level n to the second level

1 4/1 1

The hydrogen atom was not the only atom leading to new insights. Liveing and Dewar
observed the spectral lines of Na and found out that they could be grouped into different series.
They were looking at the transitions between the levels ns and 3p or nd and 3p emitted from
an arc. The ns-3p doublets gave sharp lines, while the nd-3p doublets were diffuse. Hence also
the names s for sharp, d for diffuse and p for principle. Nowadays we know that the d states
are almost degenerate with higher angular momentum states for the same n state and can
therefore understand that the lines are diffuse. At that time the most important observation
was that the sharp and diffuse doublets were members of two related series.

Johannes Rydberg continued the work of Liveing and Dewar and classified the spectra of
other atoms into sharp, principal and diffuse series with one common lower level. He found an

expression for the wavenumbers v of each series 1 = s, p or d

R

(=P >

V="Voo) —
where v, is the series limit and ¢; the quantum defect, which is 0 for the hydrogen atom.
The constant Ro, = 10.97um ™! is known as the Rydberg constant. It is an universal constant
describing the wavenumbers of the transitions independent of the series or the atom type.

By studying the series limits, Rydberg made a major accomplishment: he could find a general
expression for the wavenumbers of lines connecting different series. For the hydrogen atom,

the wavenumber of the transition from the initial state n to the final state n’ can be calculated

with
y:Roo.<1 1>. (2.4)

n2  n2
Balmer’s formula (2.2) can be retrieved by choosing n’=2 and noticing that Ro, = %. Rydberg’s
formula (2.4) gave excellent predictions and was confirmed in different series for the hydrogen
atom: Lyman (n=1), Balmer (n=2), Paschen (n=3) Brackett (n=4) and Pfund (n=5). Using
the quantum defects ¢;, other atoms could also be described. At that time n was just a natural

number.

2.1.2. Theoretical description

The physical significance of n became clear when Niels Bohr proposed his model of the hydrogen
atom in 1913. The Bohr model is important for Rydberg atoms as it manages to describe
many properties of Rydberg atoms by giving the correct scaling laws. We will therefore first
look at Bohr’s model and derive the scaling laws for the radius, the energy levels and the

difference between the energy levels. As the Bohr model oversimplifies the problem, especially
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for non-hydrogen atoms, we will continue with a more thorough approach: quantum defect

theory, which takes the finite extents of the core into account.

Bohr model

The Bohr model describes an electron moving around a proton in a circular orbit of radius r.
The electron has a mass m and a charge -e, while the proton has a positive charge e. Other
Rydberg atoms can also be represented by replacing the proton with an ionic core of charge
Ze. The excited Rydberg atom sees the ionic core and the electron cloud as having a net
charge e like for the proton.

Bohr added two new notions to the classical description. First, the electron does not radiate
continuously in a classical manner but only emits radiation in transitions between different
orbits. Second, the angular momentum of the electron is quantized: | = mrv = n - h. Using
these two assumptions, the radius r , the energy E of an orbital and the transition frequencies
f can be calculated. The radius of the atom in state n is obtained by setting the centripetal

force equal to the Coulomb force, which leads to

n° =ag-n°, (2.5)

meaning that the radius scales quadratically with the principle quantum number n. The
ground state hydrogen atom has a radius ag of 0.53 A, while a Rydberg atom with n = 10 is
already 100 times bigger.

The energy E of a hydrogen atom in state n can be found by adding the kinetic and the

potential energy and inserting the expression obtained for the radius:

mu? 1 €2 ~1  e*m 9

E = — - = . 2.6
2 dmeg T (47r60)2 2n2h2 xn (2:6)

The energies are negative, meaning that the electron is bound to the proton. The binding
energy decreases as 1/n?. The differences between the energy levels represent the allowed

transition frequencies:

1 e*m (1 1
hf=F—Fl=——5— | = —— 9
f 2 1 (47760)2 272 (n% ng)a ( 7)
~——

R,

where R, = hcRo = 13.6 eV is the Rydberg energy. Using Bohr’s model we can relate the
Rydberg constant to the properties of the atom.

For non-hydrogen atoms the quantum number n has to be replaced by the effective quantum
number n*, which will be discussed in more detail in quantum defect theory. The scaling laws
are the same for hydrogen and hydrogen-like atoms. The most important scaling laws for
Rydberg atoms are summarized in Table 2.1.

Two assumptions were made that oversimplify the problem. First, the electron moves around
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the core in a circular orbit. Second, the core has infinite mass. Nonetheless the model manages
to predict the correct scaling laws. In order to obtain further properties of Rydberg atoms,
especially for non-hydrogen atoms, we will apply quantum defect theory and derive the wave
function of a Rydberg atom using Schrédinger’s equation. In this way we are not restricted to

circular motion and can take the extend of the core into account.

Property n* dependance
Binding energy (n"‘)f2
Energy between adjacent n states (n*)f?’
Orbital radius (n*)?
Cross section (n*)*
Dipole moment (n*)?
Radiative lifetime (n*)? to (n*)°

Table 2.1.: Scaling laws for Rydberg atoms [29]

Quantum defect theory

Quantum defect theory allows us to accurately calculate many properties of single valence
electron Rydberg atoms. One special case is the H atom, as its wave functions are well known
and give analytic solution to a large number of problems. Quantum defect theory can be
easily understood by starting with the hydrogen atom and then modifying the result to obtain
a description for non-hydrogen Rydberg atoms with one valence electron. In the step from
the hydrogen atom to the hydrogen-like atom, the extend of the core is taken into account
defining the quantum defect. How this is done in detail will be explained when the necessary

terms are introduced for the hydrogen atom.

Hydrogen atom

We will start with the time independent Schrodinger equation in atomic units, which are
chosen such that all relevant parameters are in units corresponding to the hydrogen ground
state. The unit of length is for example given by Bohr’s radius ag. The Schrédinger equation

for the wave function W (r, 6, ¢) of the electron in a hydrogen atom is given by [29]

2
<_v _ i) U (r,0,¢) = EV(r,0,9), (2.8)

where E is the energy and r the distance between the electron and the proton. Due to the
symmetry of the problem, spherical coordinates are chosen, where 6 is the polar and ¢ the
azimuthal angle of the electron’s position. Equation (2.8) can be separated into a product of

radial and angular functions:

W (r,0,¢) = nim) = R (r) Yim (0,9), (2.9)
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where Y}, (0, ¢) is the normalized spherical harmonic for the orbital angular momentum
quantum number | and the magnetic quantum number m. A more detailed derivation and a
description of the spherical harmonics can be found in Gallagher’s book on Rydberg atoms
[29] or in the textbook ”Quantum mechanics of one- and two- electron atoms” [30]. Here we
will focus on the most important steps and results.
The radial function R (r) solves the radial equation and has the two physically interesting
solutions

Ry (r) = JLE) and Ry (r) = M (2.10)

T r
The functions f and g are the regular and irregular Coulomb function. For E > 0 and large
radius r, they are simply sine and cosine waves. For E < 0 we get bound solutions. Since the
wave function has to be square integrable, we have to take a closer look at the limits r — 0

and r — oo. For radii r close to 0, the functions have the forms
f,E,r) o rit (2.11a)

g(,E,r)ocr !, (2.11b)

meaning that only the regular Coulomb function f is allowed. From the r — oo boundary
condition and further knowledge about the behavior of the regular Coulomb function at large

radius, we can retrieve the formula for the energies of the hydrogen atom (2.6) in atomic units:
E=_—. (2.12)

The wave function still has to be normalized. This results in a normalization constant that
decreases as 1/n3/? [29]. For small r, the wave function only depends on energy through the
normalization constant. The wavefunction can now be used to calculate expectation values
and find scaling properties of Rydberg atoms. The most important scaling properties are

summarized in Table 2.1.

Hydrogen-like atoms

The treatment of the hydrogen atom with Coulomb waves (instead of the more common
Hermite polynomial solution for the radial function) enables us to easily extend the solution
from the hydrogen atom to other single valence electron atoms. This is done in quantum
defect theory and allows to generate wave functions that are accurate in the case that the
Rydberg electron is outside the ionic core.

The main difference between the hydrogen atom and non-hydrogen Rydberg atoms is the
extent of the core the Rydberg atom orbits. For the proton we usually assume a point charge,
whereas for the ionic core we have to take it’s finite size into account. Far from the core, the
potential experienced by the Rydberg atom is the same as the one due to a proton and it
only sees a net charge of e. However, when the Rydberg atom gets close to the ionic core, the

precise (and unknown) charge distribution of the other electrons starts to play a role. The
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Rydberg electron penetrates the electron cloud and is exposed to the unshielded charge of the
nucleus, which increases it’s binding energy due to Coulomb interaction. This in turn decreases
the total energy, which is additionally lowered due to core polarization. We will assume that
the potential of the core is spherically symmetric and frozen in place. The resulting effective
potential with the contribution from the core (Vioore) is deeper than the Coulomb potential

—1/r alone (see Figure 2.1).

W

A e

1

1 V)~ ——

V(f‘) - —3 I,fmre(r) (; ) 7

7
0] > I
ol Ya

o : “‘}PnH

Figure 2.1.: Illustration of the quantum defect. Figure by Tobias Thiele.

This change only affects the radial part R (r) of the wave function for the Rydberg electron,
the angular function stays the same. In a lower potential, the kinetic energy of the Rydberg
electron is increased, which leads to a smaller wavelength of the radial oscillations relative
to those obtained for the hydrogen atom. For r bigger than the radius of the ionic core rg,
the potentials for the hydrogen and the non-hydrogen atom are identical. Therefore the wave
function is merely shifted by the radial phase shift 7. This phase shift leads to a different
boundary condition as for the hydrogen atom: the wave function no longer needs to be finite
at the origin but has to be shifted by 7 compared to the hydrogenic wave function for radii

larger than rg. The pure regular Coulomb function f is replaced by
fLEr)— f(,E,r)cos(T)—g(l,E,r)sin(T). (2.13)

The r — oo boundary condition is also changed and 7n 4+ 7 has to be an integer multiple of 7.
The effective quantum number n* = n — 7/7 differs from the integer n by the amount 7 /7
known as the quantum defect §;. The binding energies are given by

-1

E= T (2.14)

10
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The quantum defect §; is constant for a series of 1 states because 7 is independent of the energy.
For higher 1 states the Rydberg electron circles the ionic core and behaves more or less like the
electron of the hydrogen atom resulting in very small quantum defects. For low 1 states the
orbits are more elliptical and the electron comes close to the core. This leads to high quantum
defects, which depresses the low 1 states in energy as can be seen in Figure 2.2 for sodium
and hydrogen as a comparison. For the helium atom the quantum defects are 1.1397, 0.9879,
0.0021 and 0.0004 for s, p, d and f [27].

SODIUM HYDROGEN
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Figure 2.2.: Comparision energy levels of Na and H. Figure from [29]

2.1.3. Lifetime

In experiments it is essential that the lifetime of the relevant Rydberg atom states exceeds the
duration of the experiment cycle. For atoms in free space, the decay to lower levels is due to
spontaneous decay and black body radiation induced transitions. The two decay rates can

simply be added. Since the lifetimes are given by the inverse of the decay rates, the resulting
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2.1. Rydberg atoms

lifetime 7 at a temperature T is given by

111
— =4, (2.15)
T T Tvb

where 7 is the 0 K lifetime of a state (limited by spontaneous decay) and %bb the decay rate due
to black body radiation. The two contributions will be calculated separately in the following

subsections.

Spontaneous decay

Fermi’s golden rule gives a general expression for the transition rate from one energy state nl
to another state n’l’. The Einstein A coefficient describes the spontaneous transition rate and

is given by [30]

3
A In/ll = %MZ //w3 //40( 9>
ne,m 3 nl,n’l nl,nl29n+1’

(2.16)
where « is the fine-structure constant, p,; /7 the electric dipole matrix element and wy, .1/
the frequency of the nl — n’l’ transition, g, and g/, are the degeneracies of the nl and the n'l’
state, and g~ is the greater of g,, and g¢/,. The lifetime 7,;; of the nl state can now be obtained

by summing the decay rates to all possible lower n’l’ states:

1
— =) A (2.17)

Tnl ol

The scaling of the decay rate in (2.16) with w? implies that the decay into the lowest allowed
state contributes most heavily to the total decay rate. For low-1 Rydberg states with reasonably
high n, the frequency of the decay is nearly independent of n as the lowest 1’ states are bound
orders of magnitudes stronger than the Rydberg states. The only n dependence comes from
the squared electric dipole moment “?zl,n'l' that goes as n ™3, because of the normalization of

the Rydberg wave function. Therefore the lifetime of the low-1 states scales as
Tt ¢ A7 o 172 o . (2.18)

For high-1 Rydberg states the n dependence is completely different. Due to selection rules the
1 = n-1 state for example can only decay to the n’ = n-1 state with 1 = n-2 (the photon carries
away one quantum of angular momentum). The frequency of a n — n-1 transition scales as
n~3. The overlap of the wave functions scales as n? like the orbital radius. This leads to a

lifetime for the 1 = n-1 states that scales as

Tam-1 < A7 oc p2w ™ ocn™ 0 oc n®. (2.19)

The average decay rate of all 1 and m states of the same n scales as n*® [30]. In our case
we have helium Rydberg atoms in the s or p state (1 = 0 or 1). For these two states it is

important to take the effective quantum number n* instead of n and the scaling law for low 1
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2.1. Rydberg atoms

states. The lifetime 7 of the np series can be estimated with [28]
=7l =P (n—6,)°, (2.20)

with 7} 22 3.8 - 107! s determined from the measured lifetime of 1.4 us of the 34p state and
the quantum defect 77 = 0.9879. The s state lives a lot longer: about 100 us for the 34s state
[28]. In the experiments done for this master’s thesis, the n = 37 state is used. Calculations
using the numbers above give a life time of about 1.8 us for the 37p state and 130 us for the
37s state.

Black body radiation

Up to now we have looked at the spontaneous decays driven by the vacuum. At room
temperature (300 K) there are many thermal photons driving the n — n+1 transitions of
Rydberg states with n>10. We will therefore have a closer look at transitions induced by
black body radiation photons.

The transmission rate K, 7y of a transition from the nl state to the n’l’ state due to stimulated
emission or absorption is only boosted by the number of thermal photons n compared to the

spontaneous emission rate (2.16) and given by [31]

4 5 3 a’ngs
Knl,n’l/ = gunl,n’l’wnl,n’l’ 29 +1 . (221)
n
The photon occupation number 7 is described by Bose-Einstein statistics:
1 kT
n= ~ P xnd (2.22)

exp/@/ksT —1 7 hw

The photon occupation number of the black body radiation field is high at low frequencies and
negligible at higher frequencies. Due to the small gap energy, black body induced transitions
take place preferably between neighboring energy levels with high n. The total black body

decay rate is also calculated by summing the decay rates over n” and I’:

1
— = K. (2.23)

Tob T

The decay rate due to black body radiation % differs from the spontaneous decay rate
proportional to n~° by the factor n? due to the photon occupation number and thus scales as
n~2. For high n the lifetime 77 is hence dominated by the decay due to black body radiation,

which is one reason why measurements at 4 K are done.

2.1.4. Interaction with electric fields

An external electric field alters the energy levels of an atom and splits its spectral lines. This

effect is called the (DC) Stark effect and it is the electric analogon to the (magnetic) Zeeman
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2.1. Rydberg atoms
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Figure 2.3.: Stark maps for hydrogen and helium around the 12p state. Figures by Tobias

Thiele.
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2.1. Rydberg atoms

effect. Onme distinguishes between first- and second-order Stark effects depending on the
degeneracy of the energy levels. For hydrogen atoms and hydrogen-like atoms (such as He™
and LiT) with degenerate energy levels, the linear Stark effect leads to a shift of the energy
levels proportional to the applied electric field [32]. The quadratic Stark effect is observed
for all atoms with non-degenerate energy levels and denotes the quadratic dependence of the
shift in the energy levels on the applied electric field. Both Stark effects can be obtained with

perturbation theory.

Linear Stark effect for the hydrogen atom and Inglis-Teller limit

We will now examine the effect of a static electric field F in the z-direction on the energy
levels of the hydrogen atom and later describe the effect on non-hydrogen atoms. The field is
assumed to be small enough to be treated as a perturbation. We can describe this new system
with the Hamiltonian

H=Hy+ Fz= Hy+ Frcos(0), (2.24)

where Hj is the zero field Hamiltonian of the hydrogen atom as introduced in equation (2.8).
By using the zero field |nlm) states in spherical coordinates, we can calculate the matrix
elements (nlm| Frcos (8) [n'lI'm’) of the Stark perturbation, which couples states with the
same energy. From the symmetry properties of the spherical harmonics the selection rules for
the electric dipole coupling can be derived: the matrix elements are non-vanishing if m’=m
and I’= I+£1. The electric field therefore couples 1 and 1+1 states with the same m and n
and we get off diagonal perturbation matrix elements F (nlm|rcos () |n (I £ 1) m) that are
all linear in the electric field F. The eigenvalues are thus all proportional to F, while the
eigenvectors are independent of F. The energies of the Stark states can be calculated using
parabolic coordinates to diagonalize the perturbation matrix. The energies of the Stark states

are in first order given by [29]

1 3
E = _ﬁ + 5 (n1 - TLQ) nkF (225)

where ny and ngy are the parabolic quantum numbers satisfying
ny+ng+|ml+1=n. (2.26)

The states with different £ = ny; — no have different energies, which leads to a field dependent
splitting of the spectral lines as displayed in Figure 2.3 (a) for the hydrogen states around 12p.
For positive k the state is shifted up in energy, while it is shifted down for negative k. For
m = 0 we get the most extreme cases. The state ny — ny = n — 1 for example is shifted up
in energy by % (n — 1)nF and is called the extreme blue Stark state. The state has a large
permanent dipole moment and the Rydberg electron spends most of its time on the high field
side of the proton. For the ns —n; = n — 1 state we get the opposite: the state is shifted

down in energy and is called the extreme red state, for which the electron spends most of the
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2.1. Rydberg atoms

time on the low field side of the proton.

For a specific electric field Erp o< n® the red n+1 and the blue n levels cross. This field
is associated with the Inglis-Teller limit, where Stark broadening makes adjacent n levels
unresolvable. For the hydrogen atom the two states cross perfectly at the crossing. This is the
case because the conserved Runge-Lenz vector commutes with the Hamiltonian, leading to an

extra degeneracy and no interaction.

Quadratic Stark effect

The quadratic Stark effect is obtained for non-degenerate energy levels with second order

perturbation theory, where the shift in the energy levels is given by [32]

) |(nlm |z n/U'm/)|?
AE =F (nlm |z|nlm) + F? ) : (2.27)

Enlm - En/l’m’

n'l'm’#nlm

With the same selection rules m’ = m and I’ = [ + 1 as before, the linear term in the Stark

shift vanishes and the sum is reduced to

AE=F Y (b || Vm)* 1 (2.28)
= =——« .
' —+ Enlm - En/l/m’ 2 nim ’
n/ l'=l+1

where oy, is known as the electrical polarizability of the atom in state [nlm). Qualitatively,
the quadratic Stark effect can be explained as following: the applied electric field F induces
an electric dipole moment p'= anlmﬁ, which leads to an additional term in the energy of the
atom proportional to F2.

We will look at the shifts in the transition frequency Avgq,-r induced by the quadratic Stark
effect. For electric field strength F of less than 1 V/cm the Stark shift is [28]

1
AVSiark = 5AaF? (2.29)

For the 34p < 34s transition in Helium, Aa is 1078 MHz (V/em) ™2 [28]. Using the scaling
law A oc n7, we get Ao = 1948 MHz (V/em) ™2 for the 37p » 37s transition, which we use

in our experiment.

Non-hydrogen atoms

For non-hydrogen atoms the Stark effect is similar and can be calculated using a Numerov
method, but there are two important differences due to the other electrons and finite sized
cores of non-hydrogen atoms (see Figure 2.3 for a comparison of hydrogen and helium). First,
the levels from the s and p states with nonzero quantum defects join the the manifold of the
Stark states at a nonzero field. Theses states exhibit a quadratic Stark effect followed by a
linear one for higher fields. Second, there are avoided crossings where the red n+1 and the

blue n levels would meet. In contrast to the case of the hydrogen atom, the Coulomb potential
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2.1. Rydberg atoms

is modified and the Runge-Lenz vector is not conserved, meaning that the crossing becomes
avoided [33].

Field ionization

Field ionization is of great importance for the detection of Rydberg atoms. It enables to
determine the position [34] and the state of the Rydberg atom [33]. The simplest picture is
given by looking at the potential of an atom in the electric F in z-direction as we had before.

The combined Coulomb-Stark potential is given by
1

and depicted in Figure 2.4. Classically, an atom with an energy E relative to the zero field
can ionize if the energy E lies above the saddle point of the potential. The saddle point on the
7 axis is at z = —1/\/? and has a value of V = —2v/F there. The required field to ionize the
atom is thus F' = E?/4. Without taking the Stark shift into account, we get with the energy
relation £ = 1/n? that the required field depends on the principle quantum number n as
= ﬁ xn (2.31)
This was the classical approach. Some electrons also escape from the core potential by quantum
mechanical tunneling at lower fields. Further on, the blue and the red states ionize at different
fields due to their changed energy levels and different positions in the potential. The red state
lies closer to the saddle point of the potential and ionizes at lower energies. This changes
equation (2.31) to
F= 9—7114 ocn (2.32)
for the most extreme red state. The blue states on the contrary lie on the up field side of the
potential and are held there by an effective potential similar to a centrifugal potential [35].
For the extreme blue state the required field is about double as high as for the extreme red
state. This means that the red states ionizes at lower fields then the blue states, which can be

used for state selective detection.
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Figure 2.4.: Combined Coulomb-Stark potential along the z axis for an applied field of 2700
V/em in z-direction (solid line). The extreme red state R is near the saddle point,
while the extreme blue state B is on the high field side of the atom. It is held there
by an effective potential (dashed). Figure from [35]

2.2. 3D microwave cavities

A 3D microwave cavity is a resonator that consists of a metal structure confining electromagnetic
fields. The most common closed cavity geometries are rectangular and cylindrical. Some
experiments also use open cavity geometries consisting of 2 parallel flat (Fabry-Pérot cavity)
or parabolic mirrors [25]. In our case the cavity is rectangular with 4 slightly rounded edges
(see section 3.4 for details on our cavity). The analytic formulae for the rectangular cavity can

be used to estimate the properties of our cavity.

¥

y4

Figure 2.5.: Schematic of a rectangular 3D cavity with length a, height b and depth d.
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2.2. 3D microwave cavities

A rectangular 3D cavity is defined by its width a, its height b and its depth d as shown in
Figure 2.5. For the following formulae we will assume that a is the longest side, followed by d
and then b. The cavity can in principle be filled with a dielectric material with permeability
= prpp and permittivity € = €€y (i, is the relative permeability of the material compared
to the vacuum permeability 1o and analogously for the permittivity). In our case the cavity is
either filled with air or with vacuum, which have nearly the same permittivity and permeability.
Still a change in the resonance frequencies is visible due to the higher permittivity of air
compared to vacuum (€q;, = 1.0006 - €y ), and the formula is thus given for different filling
materials.

The most important property of a cavity is that only certain modes can be excited. We will
first look at the mode spectrum of a rectangular cavity and then review another essential

quantity, the quality factor.

2.2.1. Modes

The electromagnetic field inside the cavity has to fulfill Maxwell’s equations and the boundary

conditions, meaning that

1. the divergence of the electric field has to be zero as there is no electric field source inside

the cavity,

2. the electric field close to the conductor has to be zero or orthogonal to the conductor

surface,

3. the magnetic field close to the conductor has to be zero or parallel to the conductor

surface.

These boundary conditions lead to the quantization of the cavity field into modes and can only
be fulfilled by the TE (transverse electric) and the TM (transverse magnetic) modes, but not
the TEM (transverse electromagnetic) modes. TE and TM modes also occur in rectangular
waveguides, where the TE mode has the electric field orthogonal to the propagation direction of
the wave, while for the TM mode the magnetic field is orthogonal to the propagation direction.
A cavity can be obtained from a waveguide by short circuiting both ends (longest side a), thus
forming a closed box. The propagating wave of the waveguide turns into a standing wave in
the cavity that has zero electric field at the cavity boundaries. This means that the cavity only
supports waves with integer multiples of the half wavelength corresponding to all three cavity

dimension. We can define a resonance wave number k,,; for the rectangular cavity as [30]

[ \/(T)Z v (%)2 + (ZZZT>2. (2.33)

The modes are labeled with the indices m, n and 1 by counting the number of antinodes in the

standing wave pattern in the x, y and z directions, respectively. The resonant frequency of
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2.2. 3D microwave cavities
the TE,,;,; and the TM,,,,,;; mode is given by [30]

o= o () () () gEn

Using the property b<d<a, the lowest frequency mode occurs for TEjg;. In our cavities we

use the TE3p; mode, which has 3 maxima in the electric field magnitude along the x-direction
and one along the z-direction. In y-direction the field is constant. The TE33; mode is the

third lowest mode.

2.2.2. Quality factor, coupling and insertion loss

An important quantity for a resonator is the quality factor (3 measuring the rate of energy
loss compared to the stored energy. The oscillations of a resonator with a high Q decay slower
and the resonators damping is lower. We distinguish between 3 different quality factors: the
internal quality factor of the resonator Q;,:, the external quality factor of the measurement
system Qez+ and the combined quality factor Q. The internal quality factor ;s of a cavity
results from the power dissipated in the finite resistance of the metallic walls and in the
dielectric filling. For the TE;j; mode of a rectangular waveguide, the internal quality factor

due to the sheet resistance R; of the metallic walls can be calculated analytically with [36]

k3n (ad)®b
2m2R,  212d3b + 2ba3 + 12d3a + da3’

QrEi01 = (2.35)
where n = y/p/€ is the intrinsic impedance of the dielectric. The internal quality factor due
to the dielectric filling can be calculated with the inverse of the loss tangent of the dielectric
material. External losses due to radiation and the coupling of the cavity to the measurement
system are accounted for with the external quality factor Q..¢. The three quality factors are

related by the equation
1 1 1

6 - Qint * Qemt.

How well the resonator is coupled to the outside (e.g. the measurement system) can be

(2.36)

described by the coupling coefficient g, which is defined by

g = Qint
Qe:pt

(2.37)

The coupling can be increased by sticking the coupling pins exciting the cavity mode further

into the cavity. The resonator is called [37]
e overcoupled if g > 1 = Q =~ Qext,
e critically coupled if g =1 and

e undercoupled if g K 1 = Q ~ Qinyt -
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2.2. 3D microwave cavities

The quality factors can be found in two-port measurements using a network analyzer [36]. When
measuring the power transmission coefficient ]521]2 as a function of frequency, a Lorentzian
lineshape (compare with Figure 2.38) is obtained for each resonance. Three quantities define
the Lorentzian function: the amplitude A, the resonance frequency fo and the bandwidth ¢ f
at full width half maximum. The Lorentzian function is given by

Fror = a2 (2.38)
—Jo
(&) +1
A
&
[
Ke)
B3
e
2
g
o
2
5
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Frequency f
Figure 2.6.: Lorentzian for the definition of the quality factors. From [38]
With these quantities the quality factor Q is defined as
Jo
= 2.39
Q=1 (239)

The internal and external quality factor can also be obtained from the fit by describing the

microwave cavity as a series RLC circuit. In this case the coupling g is given by [36]

_ V4
9= 1" 77

where v/A already replaces S (fo). Using equations (2.37), (2.36) and (2.40), the internal
and external quality factor can be obtained:

(2.40)

9

ant— 1_ 74 (241&)
_ 9

Qeat = T (2.41b)

In order to measure the internal quality factor directly with the network analyzer, the cavity
has to be undercoupled.
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The insertion loss of a resonator expresses the deviation of peak transmission from unity and

depends on the coupling coefficient g [37]:

Lo = —201og <g> dB %Y _10log(A)dB. (2.42)
g+1
From the 3 quality factors the coupling coefficients -, %2t and "=t can be calculated:
K Jo
— == 2.43
w0 (2.43)

and analogous for %2t and “¢zt. The coupling coefficient 5 corresponds to the width 0 f of
the resonance and k describes the decay rate of the field energy stored inside the resonator.
This decay rate is composed of the photon decay rate due to dissipation described by x;,+ and
the photon escape rate to the ports described by ker:. By changing the coupling, the photon

escape rate into the measurement system can be adjusted.

2.3. Cavity QED

The field of cavity quantum electrodynamics (cavity QED) studies the interaction between a
spin—% particle and a quantum harmonic oscillator [25]. In our experiment the Rydberg atom
represents the spin and the 3D microwave cavity the harmonic oscillator. The interaction
strength between an atom and a mode of the free space vacuum field is weak, while the
quantized modes inside a cavity can have a high electric field strength due to the reduced
mode volume and multiple reflections resulting in resonances. This leads to an enhanced
dipole coupling between the atom and the cavity. Usually cavities with a high quality factor
are chosen, which gives the photons within the cavity the possibility to interact many times
with the atoms before escaping. This setup provides us with the opportunity to study and

control single quantum systems and can be exploited for quantum information processing [1].

2.3.1. Jaynes-Cummings Hamiltonian

The combined system of the atom and the cavity can be described with the Jaynes-Cummings
model, which was originally proposed by Edwin Jaynes and Fred Cummings in 1963 to describe
the phenomenon of spontaneous emission [39]. The Jaynes-Cummings model is not limited to
atoms, but can also be applied to artificial atoms, like superconducting qubits, coupled to a
resonator [40].
The Jaynes-Cummings Hamiltonian consists of the atomic Hamiltonian H,, the cavity Hamil-
tonian H. and the coupling Hamiltonian H,. as well as the damping terms H, and H,
[41]:

H=H,+H .+ Hy.+ H,+ Hy. (2.44)

We will now go through all components separately and start with the atom. As a simplification

it is described as a two-level system with a transition frequency w, between the ground state
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2.3. Cavity QED

|g) and the excited state |e) and can be modeled as a spin-3 particle with the Hamiltonian

1
Ha = §ﬁwacrz, (245)

where oz is the Pauli z matrix. The cavity can be described with the well known Hamiltonian
of a harmonic oscillator: .
H, = hw, <aTa + 2> , (2.46)

using the creation (a') and annihilation (a) operators. The coupling Hamiltonian H,. in the

dipole approximation is given by [25]

—

Hye=—D - E,, (2.47)

where D is the atomic dipole operator and E, the cavity electric field operator at the atomic

location. The atomic dipole operator is [42]
D=d-op=d- (04 +0_), (2.48)

where d is the transition dipole moment, o, is the Pauli x matrix and o4 are the atomic
raising and lowering operators fulfilling the conditions o4 |g) = |e) and o_ |e) = |g). The

electric field operator,

E. = _;msf (r) (a + aT) , (2.49)

can be derived by quantizing the electric field. It depends on the cavity spatial mode f (),
which for example varies sinusoidally inside a rectangular cavity, and the rms zero-point

electric field &,,5, which can be calculated with

hewe
2€0V ’

Erms = (2.50)
where €y the vacuum permittivity. The mode volume V of the excited mode can be obtained
by integrating the mode function squared over the cavity volume. From equation (2.50) it
becomes clear that a smaller mode volume leads to a higher zero-point electric field inside the

cavity and thus a stronger coupling.

We can now insert equations (2.48) and (2.49) into equation (2.47). The expansion of the
operator scalar product involves four terms. One of them is proportional to ota, which stands
for the excitation of the atom by photon absorption. Another is proportional to o_a! and
corresponds to the inverse process in which the excited state decays and a photon is emitted.
When the cavity resonance w, and the atomic transition frequency w, are close, the two terms
conserve the energy. Under this condition the two other cases proportional to o, al and o_a
correspond to two highly non-resonant processes: for oy a' the atom is excited and a photon
emitted, while for o_a the atom decays from the excited to ground state and a photon is

annihilated. Neglecting these two anti-resonant terms is equal to performing the rotating wave
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approximation [25]. The resulting coupling Hamiltonian is [41]
H,. = hg (CLTU_ + aa+> , (2.51)
where g is called the coupling constant, which can be calculated with [41]

Ermsd
9= (2.52)

The two damping terms include that in reality the atom and the chosen cavity mode are not
the only terms coupling to each other. The damping term H., describes the coupling of the
atom to other cavity modes causing the excited state to decay at the rate v. The coupling
of the cavity to the continuum produces the cavity decay rate k = w./Q and is described by
H,.. The case in which the coupling constant g is a lot larger than the decay rates x and ~ is
called the strong coupling limit. This is the interesting regime for cavity QED as the coherent
exchange of energy between the quantized electromagnetic field and the quantum two-level

system can be observed [40]. The total Jaynes-Cummings Hamiltonian can now be written as

1 1
H= 5hwaoz + hw, (aTa + 2) + hg <aTU, + a0+) +H, + H,. (2.53)

2.3.2. Dressed states

In the absence of damping, the eigenstates can be found by diagonalization of the Jaynes-
Cummings Hamiltonian. Let us first examine the uncoupled eigenstates of H, + H. given
by the tensor products |e,n) and |g,n) of the atomic and cavity energy states. The states
have energies if“"T‘l + hw, (n + %), where the higher energy belongs to the atom being in the
excited state. For small detunings A = w, — w, the states |e,n) and |g,n + 1) are nearly
degenerate. The energy states are then organized as a ladder of doublets separated by Aw..
The only unpaired state is the ground state |g,0) at the bottom of the ladder, representing
the unexcited atom in the cavity vacuum. Each doublet |g,n + 1) and |e,n) stores n + 1
elementary excitations, either as n 4+ 1 photons or as n photons plus one atomic excitation.

The operator M = a'a + o, 0_ represents the total number of atomic and field excitations.

Due to the commutation relation [M, H] = 0, the atom field coupling H,. only connects states
inside each doublet, leaving the excitation number conserved [25]. It is therefore sufficient to
diagonalize the Hamiltonian in the basis |e,n) and |g,n 4 1) of one doublet. In this basis the

Hamiltonian is given by

(2.54)

) _ [Fwe (4 3) + 5 hgvn +1
hgv/n + 1 hwe (R +1) + 3) — 22 ]

The eigenvalues of H(™ represent the energies of the excited eigenstates of the undamped
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Jaynes-Cummings Hamiltonian:

h
Ein:hmxn+1yt§¢A2+@ﬁ@p+n, (2.55)
with the corresponding eigenstates, called the dressed states:

|+,n) = cos (©,) |e,n) +sin (0,) |g,n + 1)

(2.56)
|—,n) =sin (0, |e,n) — cos (0,) |g,n +1).
The mixing angle O, is given by
2g+v/ 1
tan (20,) = V0L (2.57)

A

The energy of the ground state |g,0) does not change due to the coupling, but remains at
E_o=-"8.

)

Two limiting cases are interesting: the resonant case with A = 0 and the large detuning case
A < g, which is also called the dispersive limit. For zero detuning the uncoupled states |e, n)
and |g,n + 1) cross. Due to the coupling between the atom and the cavity, this crossing is
avoided as can be seen in Figure 2.7. For very large detunings, the dressed states almost

coincide with the uncoupled states. We will now have a closer look at these two limiting cases.

Energy

Figure 2.7.: Dressed states in the Jaynes-Cummings model for different detunings A. The
uncoupled state energies are represented as dotted lines. From [25]
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2.3.3. Resonant case: Rabi oscillations

For zero detuning, the mixing angle is ©,, = /4 for all n values. This simplifies the dressed

states from equation (2.56) to

1

+,n) =
+.m) = —

(le;n) +1g,n+ 1))
(2.58)

S

= n) = 7 (le,n) —lg,n +1)).

These two states are called the polariton states and are separated by an energy 2hg/n + 1,
which can be obtained from equation 2.55 by inserting A = 0. The polariton states are
analogous to the normal modes of two coupled degenerate oscillators, which are also given by
the symmetric and anti-symmetric superpositions of the independent free modes [25]. They
can be observed in spectroscopy measurements of the cavity frequency. The phenomena is
called vacuum Rabi mode splitting and has been witnessed for atoms in an optical cavity [43]
and superconducting qubits coupled to a resonator [44].

Another interesting consequence based on the fact that the states |e,n) and |g,n) are not
the eigenstates of the Jaynes-Cummings Hamiltonian are Rabi oscillations. The atom-field
coupling leads to a reversible exchange of an energy quantum between the |e,n) and the |g, n)
state. A system prepared in the initial state |e, n) evolves to the state |g,n) by the emission of
a photon and back by reabsorption of the photon. These oscillations occur at the so called n
photon Rabi frequency 2, depending on the doublet they occur between. The Rabi frequency
can be calculated from the energy difference between the two polariton eigenstates of the

oscillation:

Q, = 2gVn + 1. (2.59)

For the initial states |e, 0) or |g, 1) this oscillation takes place with a frequency Qy = 2¢ called
the vacuum Rabi frequency. It can be seen as an oscillatory spontaneous emission [25].
When the transition is driven with a strong coherent drive tone with an amplitude a < 1 as it
is, for example, the case in our experiment, the tone can be approximated by a Fock state |n)
with n = |a|2. In this limit the n photon Rabi frequency €, converges to the Rabi frequency
Q=2g|al.

Rabi oscillations also exist in the case that the detuning is not exactly zero. The Rabi frequency

Q for zero detuning is then increased and given by the generalized Rabi frequency ' [45]:
O =VQ2+ A2, (2.60)

In the experiment we drive Rabi oscillations with a classical microwave pulse inside the 3D
cavity for a certain duration 0t. For a population of atoms that is initially in the s state, the

excitation probability to the p state is given by [2§]

sin? (‘St \/W) = (Q) i <5tQ’> . (2.61)

Posy (A, Q,6t) = 5 5

A2 40?2
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2.3. Cavity QED

If the we apply the pulse exactly on resonance, we can drive the whole population from the
s to the p state by implementing a pulse with the duration d¢t = 7/, which is known as a
m-pulse. In the case of non-zero detuning, we can just drive a fraction of maximally (/€ )2
of the population to the p state. From Rabi frequency measurements we can draw conclusions

on the detuning and the fields inside the cavity that the atoms interact with.

a) resonant case b) dispersive limit
Energy
Energy | g A
n>
N 2gin+1 ] |
n+1> —— —_—|n> )
I : ]_ E | |n> _______ |2>
13> |2> .
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|2> [1> |2>——— w+g’/A
2 0  g===== |0>
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10> — 0>
9> |e> le>

Figure 2.8.: States in the Jaynes-Cummings model. The blue and the pink levels are the
uncoupled states of the Hamiltonian H, + H.. The blue states |g,n) correspond to
the ground state of the atom with n excitation as given to the left of the respective
state, while the pink states |e,n) correspond to the excited atom states with n
photons as noted on the right of the state. The resonant case is displayed in a)
and shows the coupled eigenstates (polariton states) in the middle. The coupled
states in the dispersive limit with a detuning A > 0 are shown in b). Here each
uncoupled state is subject to a slight shift in energy. The transition frequencies
between the coupled states are shown above the arrows. In b) w stands for the
frequency of the transition between the uncoupled states. Figure from [/1] and
edited.

2.3.4. Dispersive limit

For large detunings A > g, we are in the dispersive limit, where the dressed states tend
towards the uncoupled states, |e,n) and |g,n + 1), as we have seen in Figure 2.7. In this case
(%)2 is negligibly small, meaning that we do not observe Rabi oscillations and no excitations
are exchanged between the atom and the cavity. There is however a renormalization of the
energy due to the coupling. This leads to shifts in the energy levels, which can be calculated
by expanding the energy level equation (2.55) under the condition g/A < 1. More insightful

is however applying a unitary transformation to the Jaynes-Cummings Hamiltonian. The
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2.4. Noise in amplifiers

relevant transformation is [41]

U =exp {% (ao+ - aTU_ﬂ , (2.62)

which leads us to the Hamiltonian in the dispersive limit [41]:

Hyisp = UHUT = I Y atg+ ! g

disp = = <wc + A> a'a + B <wa + A) o, (2.63)
From this expression we can conclude that the atomic transition is shifted by %n + %%, where
the first term is called the AC-Stark shift and the second the Lamb shift. The AC-Stark shift
is also known as light shift and depends on the number of photons n in the resonator. Light
shifts were first predicted and observed by Claude Cohen-Tannoudji in 1966 [45]. They have
recently been observed for Rydberg atoms [46] and for superconducting qubits [47]. The Lamb
shift is named after one of its discoverers, Willis Lamb, and was first measured by him and
Robert Retherford in 1947 [48]. The Lamb shift was also observed in Rydberg systems [49]
and for superconducting qubits [50].

On the other hand, the shifts can also be viewed as an atomic state dependent shift of the
cavity frequency. The cavity experiences a so called dispersive shift x, which in the case of
positive detuning increases the cavity resonance frequency w, if the atom is in the excited

state, and decreases the frequency if the atom is in the ground state. The dispersive shift is

X=5- (2.64)
This effect allows to perform quantum non-demolition measurements on the atomic/qubit
state, meaning that the qubit state can be read out without disturbing it. These dispersive
readouts are regularly used with superconducting circuits [40] and Rydberg atoms [25]. One of
the main tasks in this master’s thesis is to prepare and characterize the amplification system
necessary for detecting a dispersive shift. The shift can be seen in amplitude and phase

measurements of the transmission through the cavity for different frequencies.

2.4. Noise in amplifiers

An important parameter describing an amplifier is the gain G. Assuming that the amplifier is
linear and deterministic, the output power P,,; can be calculated from the input power P,
with P,y = G - Py,. In reality, the amplifier only performs in this ideal way in the so called
dynamic range [36]. For powers above this range, the output power no longer increases linearly
with the input power, but begins to saturate. The one-dB compression point describes the
input power for which the output power varies by 1 dB from the ideal linearly extrapolated
gain curve of the amplifier. Excessive input powers cause the amplifier to fail. At the other
extreme, very low input power levels will result in an output dominated by the noise generated

by the amplifier. Even at zero input power, the amplifier delivers nonzero noise power, because
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2.4. Noise in amplifiers

the amplifier generates noise by itself. This level is called the noise floor of the amplifier. The
noise level sets a lower limit on the strength of a signal that can be detected [36]. It is hence

desirable to minimize the noise level of the system.

Sources of noise

Internal noise of a device is usually generated by the random motion of charge carriers inside
the device. Depending on the the mechanism causing the motion, we distinguish between
different types of noise [36]. The most basic type is thermal noise (also known as Johnson
or Nyquist noise), which arises due to the thermal vibration of bound charges. Shot noise
occurs in solid-state devices due to random fluctuation of charge carriers. The quantum nature
of charge carriers and photons leads to quantum noise, which is however often insignificant
compared to other noise sources. In solid-state components Flicker noise can be found, whose
power varies inversely with frequency.

Regardless of the source, we talk about white noise when the power spectral density is nearly
constant throughout the frequency spectrum of the component. In this case we can characterize

the noise effects of a component in terms of noise temperature and noise figure.

2.4.1. Noise temperature

In 1928, John B. Johnson studied and described the statistical fluctuations of electric charge
in conductors [51]. He reported his discoveries to Harry Nyquist, who was able to explain
his results and formulated a first version of the fluctuation-dissipation theorem [52]. This
theorem was proven by Herbert Callen and Theodore A. Welton in 1951 [53]. It is valid for
both classical and quantum mechanical systems and can for example be applied to Brownian
motion and thermal noise. The fluctuation-dissipation theorem describes the relation between
dissipation (described by the resistance) and certain fluctuations. In the case of thermal noise,
the relevant fluctuations are in the voltage.

Let us consider a resistor R at a physical temperature T. The electrons in the resistor have a
kinetic energy proportional to the temperature and move randomly. This produces random
voltage fluctuations between the two ends of the resistor. The average voltage is 0, but the

root mean square (rms) value is given by Planck’s blackbody radiation law [36)]

[Ah-f-B-R
Vems =\| ket — 1 (2.65)

where B is the bandwidth of the system, f the center frequency of the bandwidth, kg
Boltzmann’s constant and h Planck’s constant. At microwave frequencies, where hf < kT,

we can use Taylor expansion to approximate the exponential term:

hf
RITkET 1 g 2.66
e T (2.66)

In our noise temperature measurements f is 21 GHz and the lowest temperature around 10
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2.4. Noise in amplifiers

K. In this case hf = 1.39- 10723 J is ten times smaller than kg7 = 1.38 - 10722 J and the

approximation gives valid results.

The root mean square voltage in this approximation is simply
Vims = V 4]’CBTB}B (267)

The noisy resistor can be described with the Thevenin equivalent circuit consisting of a
noiseless resistor and a voltage generator supplying the voltage V,.,,s. The maximum noise
power transfer is achieved in the impedance matching case, in which the Thevenin equivalent
circuit is connected to a load with resistance R. The maximum noise power from a noisy

resistor is thus given by

2 2
N=1I? . R= <V2]”;> ‘R = % = kpBT, (2.68)

which is independent of the the resistance R and the frequency (white noise). The noise
power is directly proportional to the temperature T. It therefore makes sense to describe the
noise power of a source by this temperature. For a source creating white noise (in some fixed

bandwidth B) with a noise power N, we can define the equivalent noise temperature T, by

N

T, = ——.
° kpB

(2.69)
In a similar way we can define the noise temperature of an amplifier with gain G. If we connect
the amplifier to a source with a (hypothetical) temperature Ts = 0 K, then the input power of
the amplifier will be N;, = 0 and the output power N,,; the noise generated by the amplifier
itself. Since we can not connect a noiseless source, we model the system with an equivalent
system consisting of a noiseless amplifier connected to a source at temperature T.. The input
noise power N;, to the amplifier is then equal to kBT, and the output noise power given by

Noyt = G- Nj. The system has the same output noise power, when the temperature is given by

Te: Nout ’
GkpB

(2.70)

which is known as the equivalent noise temperature of the amplifier. The noise temperature

can also be used to describe the noise level in systems with more than one component.

2.4.2. Noise figure, signal-to-noise ratio and cascaded systems

A noisy microwave component can be characterized by an equivalent noise temperature 7, or
alternatively with the noise figure F, which measures the degradation in the signal-to-noise
ratio (SNR) between input and output of the component. The signal-to-noise ratio compares

the desired signal power S with the undesired noise power N. With this definition, the noise
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2.4. Noise in amplifiers

figure is given by

F=mm o 2.71
Sout/Nout - ( )

where the subscript in stands for the input and out for the output. We can now use noise
temperatures to calculate the noise powers. The input noise power from a source at temperature
Ty is given by N;, = kgTyB. The output noise power is the sum of the amplified input noise
and the noise generated by the amplifier: Ny = kpG BTy + kpGBT,. The output signal
power is simply obtained by multiplying the input signal power with the gain. Equation (2.71)

can then be rewritten as

Sin/kpToB T,
/ksTh =1+ =, (2.72)

F =
GSm/k:BGB (To + Te) T()

In this way we have found a relation between the noise figure F and the noise temperature
T.. In appendix A.2 there is a table converting the noise figure in dB to the associated noise

temperature in Kelvin for the range of our amplifiers.

Cascaded systems

A typical microwave system consists of a cascade of many different components. Each of
these components degrades the signal-to-noise ratio. From the noise figure F; or the noise
temperature T; of the individual components with gain G;, we can calculate the noise figure

or temperature of the whole system. The noise figure of the cascaded system is given by [306]

-1 F3-1

Foos = F e 2.73
cas 1+ Gl + G1G2 + ( )
and the noise temperature by
Ty Ts
Teas =11 + — e 2.74
cas 1+G1+G1G2+ ( )

These equations lead to the important conclusion that the noise characteristics of a cascaded
system are dominated by the first stage. The effect of the second stage is reduced by the gain
of the first and the later stages have even less impact on the overall noise performance. Due

to this reason, the first stage should have a very low noise figure and a high gain.
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3. Experimental setup and measurement
procedure

The experimental setup used in this Master’s thesis to manipulate Rydberg atoms with a 3D
microwave cavity is described in [27, 28]. The setup consists of 3 main vacuum chambers of
different pressures: the source chamber in which the atomic beam is generated, the cryogenic
chamber with a pulse-tube cooler and the experimental chamber where the microwave resonator
is placed (see Figures 3.1 and 3.2). To get an overview, we will follow a helium atom’s path
through the setup with our description. All parts of the setup will be described in more detail

in the following sections of this chapter.

cryogenic pulse-tube
chamber (HV) cooler
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diff. pumping cryo
lock
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30 K stagq experimental
source chamber | 5z0r-
(HV) blades

residual gas analyzer
discharge ‘

l —

pulsed valve electrode stack heat shield
—experimental

\ 280V ]
)| S ““H chamber
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Figure 3.1.: Schematic view of the experimental setup. Figure from [28].
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(b) Photograph of the total setup: Vacuum chambers (c) Photograph of the 3K stage with the tubes of the
on the left, optical table that hosts the excitation laser pulse tube cooler and the electrode stack below.
on the right.

Figure 3.2.: CAD model and photographs showing parts of the setup.
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Overview

In the source chamber the helium atom beam is generated at the valve orifice and undergoes a
supersonic expansion. A pulsed electric discharge created by electrons from a hot filament
transfers the helium atoms to the metastable (1s)! (2s)" 1Sy state. These metastable helium
atoms He* then travel through a skimmer with a 1-mm-diameter hole from the source chamber
into the experimental chamber. The beam can be further collimated in the horizontal plane
by two parallel razor blades. In the experimental chamber there are 7 circular electrodes with
5-mm-diameter holes in the middle, through which the beam can pass (see Figure 3.3). The
electrodes divide the experimental setup into 3 distinct zones.

The first is called the excitation region and lays between the first and the second electrode.
Here a fraction of the metastable helium atoms is photoexcited to Rydberg np states with
a tunable pulsed uv laser. The laser beam is applied at a right angle to the atomic beam.
Using a microwave horn antenna pointing into the excitation region, Rydberg atoms can be
transferred to longer living ns states.

The second zone is the sample zone and lays between electrodes 2 and 3. In our case the
sample is a 3D microwave cavity. The Rydberg atoms pass through a hole into the cavity,
interact with the electric fields inside the cavity and leave the cavity through another hole at
the back.

The third zone is the detection zone and starts with electrode 3. By applying a pulsed potential
difference between electrodes 3 and 4 or 4 and 5, the Rydberg atoms can be field ionized. The
resulting electrons are accelerated towards a micro channel plate (MCP) detector, where their
image on a phosphor screen is recorded by a CCD camera and the total signal is displayed on
an oscilloscope. The signal from the oscilloscope can be accessed via a LabView program on

the computer.

Figure 3.3.: Photograph of the electrode stack while it was still outside the setup. The numbers
name the electrodes. Photograph by Tobias Thiele.
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3.1. The vacuum and cryogenic system

3.1. The vacuum and cryogenic system

Vacuum system

The whole experiment is conducted in vacuum to prevent collisions with background gas atoms.
The cryogenic chamber and the source chamber contain high-vacuum, whereas the experimental
region contains ultra-high-vacuum. This is achieved by a Adixen ACP15 fore-vacuum pump
that reduces the pressure from atmospheric pressure (102 mbar) to about 10~! mbar and three
Pfeiffer Vacuum Turbopumps for the three vacuum chambers. The Pfeiffer vacuum pumps

require a pressure of less than 5 mbar to work.

In order to achieve a better vacuum in the experimental chamber, differential pumping between
the source chamber and the experimental chamber as well as between the cryogenic chamber
and the experimental chamber is used. In this way a pressure of 3 - 10~% mbar at room
temperature can be achieved in the experimental chamber. The steady-state pressure in
the source chamber is 2 - 10~7 mbar and rises to about 10~° mbar when the pulsed valve is
operated. The pressure in the experimental chamber rises slightly when the pulsed valve is

turned on - to about 5 - 10~® mbar on average.

Cryogenic system

A pulse tube cooler Cryomech PT415RM is used to cool the sample down to about 3 K. It
operates in a two stage configuration, where the first stage is held at about 30 K and the second
stage at 3 K (see Figures 3.1 and 3.2). The pulse-tube cooler requires a helium compressor and

works like a Stirling heat pump. Further information on pulse-tube refrigeration is available
in Ref. [54].

One problem that arises during the cool down and at low temperatures is the adsorption
of residual gas onto the surfaces and the resulting build-up of stray fields. Two measures
were introduced to minimize this effect. First, helium-4 was chosen for the atomic beam
because it is not easily polarized as a noble gas and therefore hardly interacts with the surfaces.
Secondly, a procedure was developed to avoid the adsorption of residual gas onto the surfaces
in the experimental chamber [28]. The main idea is to force the residual gas to predominantly
adsorb at the first stage and not on the sample. The setup was therefore designed such that
gas diffusing into the vacuum chambers first collides with a cold surface before it can reach
the experimental chamber. Further on, the cool down process was optimized by monitoring
the partial pressures of the relevant gaseous species HoO, CO2, N2 and Os. The partial
pressures are measured with a residual gas analyzer (RGA). The temperature is held above
the adsorption temperature of the different gaseous components as long as these have partial
pressures above 5 - 107! mbar. This is done with a heater mounted on top of the sample

holder. With this technique the gases predominantly adsorb onto the first cooling stage.
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3.2. The supersonic atom beam

3.2. The supersonic atom beam

The supersonic atom beam is generated by a pulsed valve that opens for 190 us with a
repetition rate of 25 Hz. Inside the reservoir the velocity v is given by the Maxwell-Boltzmann

distribution

P(v) x v%exp (;}Z”;) . (3.1)

When the valve is opened, about 10'® ground-state helium atoms exit through the orifice [28],
collide with each other and thus thermalize. The gas expands adiabatically and the velocity of
the particles increases. In the region called the zone of silence, the dynamics can be described
linearly, while the outer zone shows turbulent flow dynamics. As we want a beam with a
low spread in the velocity distribution, two skimmers are placed in the beam path. The first
skimmer with a diameter of 1 mm selects a small part from the zone of silence with a low
forward velocity spread. The transverse velocity spread Awv, is limited by the geometrical
placement of the skimmers, whose entrance holes are 60 mm apart. The second skimmer has
a diameter of 1.5 mm, which gives a relative transverse velocity spread of 2.08 %:
Avy  (1+1.5)/2

= = 2.08%. 3.2
v 60 % (3:2)

The temperature of the atoms T and the spread in velocity are linked by equalizing the kinetic
and the thermal energies

%m (Av)? = kT, (3.3)

In this way we can a achieve a beam with a low temperature. The velocity of the beam after
the skimmer lays between 1700 m/s and 1800 m/s and will be measured in the experiments

described later.

3.3. Excitation of atoms to Rydberg states

Metastable helium

The first step of the excitation of the ground state helium atoms to Rydberg atoms takes
place 2 mm after the opening of the valve where a pulsed electric discharge excites the helium
atoms to the metastable (1s)' (2s)* 1S, state. Like in a lightening, the discharge is ignited by
a potential difference. The required potential difference for the discharge is lowered to 280 V
by a hot tungsten filament and is applied for 30 us. The discharge is necessary to overcome
the very strong binding energy of the ground state helium atoms, which corresponds to light
in the xuv range. For the metastable state a laser in the uv range suffices to transfer the

electron to a Rydberg state.
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3.4. The 3D microwave cavity

Laser excitation

In the second step Rydberg states are produced by laser excitation of the metastable
(15)1 (25)1 18,y state to the singlet np Rydberg state. The singlet p state is chosen due
to the restrictions given by optical selection rules. The n state depends on the frequency of
the laser and ranges in our case from n = 30 to infinity; however, we can not resolve or excite

pure n state for n above 60.

The laser system used to create the photo excitation of the Rydberg states consists of two
lasers. The first is a pulsed green Nd:YAG laser from Innolas with 300 mJ pulses of 10 ns
length. It is controlled by a computer solely running the control software of the laser. The
first laser pumps the dye laser, which contains a red liquid solution (rhodamine) as the laser
medium. The dye is excited by the first laser and fluoresces. The advantage of a dye laser is
that it can be used over a wide range of wavelengths. For our spectroscopy measurements
the wavelength of the dye laser is usually varied from 624.3 to 627 nm starting at the longer
wavelength. This variation is achieved by changing the length of the Fabry-Pérot laser cavity.
A small fraction is branched off in order to measure the wavelength with a wavelength meter.
Next, the laser pulse is frequency doubled in a crystal to a wavelength of around 313 nm,
focused with lenses and guided through a window in the setup to the excitation region between
the first two electrodes. With the last two mirrors the position of the laser beam can be varied
and the signal maximized. For this procedure the state n = 40 with a wavelength of 312.6815
nm is used, as it gives the signal with the highest magnitude. For the experiments with the

cavity, the state n = 37 with a wavelength of 313.003 nm is relevant.

S-pulse

In the third step the Rydberg atoms are transferred from the short-lived np to the longer-living
ns state (see section 2.1.3 for the lifetimes). For Rydberg spectrum measurements this step is
left away, because a long lifetime is not necessary as the states are not further manipulated
before they are field-ionized and recorded. The frequencies of the transitions between np and
ns for n= 30 - 40 lie in the convenient range between 15 and 42 GHz. Using a microwave
horn antenna mounted directly in front of the window where the laser beam enters, we can
coherently transfer the Rydberg state population from the p to the s state. The microwave
pulse is applied shortly after the laser pulse. The optimal starting point and duration are
identified in the alignment measurements before every experiment set (see section 4.2). The
atoms are now prepared in the ns state and can be manipulated with pulses applied to the 3D

microwave cavity.

3.4. The 3D microwave cavity

In the experiments described in this Master’s thesis we use a rectangular 3D cavity that consists

of two almost symmetric halves. Each half is a OFHC copper block with the dimensions 52
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3.4. The 3D microwave cavity

mm x 26 mm x 5.5 mm (compare with Figure 3.4, 3.5 and 3.6). Inside each half a rectangular
cavity is milled out. The cavity was produced with a length a = 42.8 mm, a height b = 6 mm
and a depth d = 8 mm. Due to manufacturing constraints, the cavity is not fully rectangular,
but round. The radius of curvature is 3 mm, which decreases the volume of the cavity and

increases the resonance frequency of the modes slightly.

The two cavity halves can be screwed together using three screws. There are 2 small alignment
holes through which two stainless steel rodes can be pushed to align the two cavity halves
such that there is no kink at the interface.

The atomic beam passes through hole 1 in Figure 3.4. The hole has a diameter of 3 mm and a
length of 1.5 mm and was altered twice, which will be described in more detail later.

The microwave field inside the cavity is inserted by one of two microwave couplers consisting
of a UT-85 cable with a center conductor that is freed on a length of 3 mm. The position of
this antenna determines the overlap with the modes and the amount of external coupling. The
microwave couplers are usually positioned symmetrically while the cavity is open and fixed in
place with the pin holders (see Figure 3.6 and 3.8 (a)). The resonance frequency, the quality
factor and the coupling can only be measured when the cavity is closed. If adjustments have

to be made, the cavity has to be opened again.

Figure 3.4.: CAD design of cavity 4B. The outer dimensions of the two copper block are 52
mm X 26 mm x 5.5 mm. The dimensions of the cavity as first produced by the
workshop are 42.8 mm x 6 mm X 8 mm. The atomic beam enters the cavity
through hole (1). The modes inside the cavity are excited with the microwave
couplers (2). An additional electric field can be applied with electrodes (3) that
are 13.36 mm apart. The two cavity halves ”front” and ”back” can be screwed
together using the holes (4). For this task the alignment holes (5) can be used.

coupling pin
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3.4. The 3D microwave cavity

Figure 3.5.: Photograph of the cavity front with the holder and the heater on top of the cavity.
The shields for the electrodes can be seen to the left and the right of the atomic
beam hole.

Figure 3.6.: Photograph of the backside of the cavity with the microwave cables attached. Their
position s fived by the pin holders.
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3.4. The 3D microwave cavity

With this cavity Rydberg atoms in the n = 37 state can be driven from the p to the s state
and back by applying a microwave field inside the cavity. For this task the third mode (TE301)
is used, which has 3 maxima in the electric field magnitude along the long side (see Figure
3.7). There is one maximum in the middle where the atom beam transits the cavity, meaning

that the atoms can be manipulated with the field.
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Figure 3.7.: Simulation of the third mode with the electrodes in the minima. Red refers to
high electric field magnitudes, blue to low ones. Simulation done by Mathias
Stammeier.
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Electrodes

In the minima of the electric field, two electrodes are placed. They are separated by 13.36
mm. With these electrodes an additional electric field can be generated that influences the
energy levels of the Rydberg atoms. Since the electrodes sit in the minima of the microwave
field, the spectrum and the quality factor of the cavity are only slightly changed compared to

leaving the electrodes away. This motivates the choice of the third mode.

The electrodes are made out of 0.6 mm thin steel wire as pictured in Figure 3.8 (b). One
end is pressed into a PEEK cylinder for isolation and then inserted into an indentation in
the cavity back (see Figure 3.8 (c). The other end is pressed into another cylinder and its tip
soldered to a wire for connection to the voltage source. The opening in the cavity front is
covered with a shield (see Figures 3.8 (d) and 3.5). The two cavity halves are almost identical

except that the front has two indentations for the shield.
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3.4. The 3D microwave cavity

(a) Photograph of the microwave coupler and its holder.  (b) Photograph of the cavity-electrode with the PEEK
isolation.

(c) Photograph of the cavity back with the two inden- (d) Photograph of the cavity front with the holes for
tations to the left and right of the atom beam hole for  the two electrodes and the indentations for the shields.
the PEEK tips of the electrodes (here cavity 4A, which

has a bigger beam hole than 4B).

Figure 3.8.: Photographs of the microwave couplers, the electrode and the cavity halves with
the holes for the electrodes.

Changes to cavity 4B during the measurements

The cavity described above was used in the first experiments. Two kinds of changes were
made to the cavity in the course of this master’s thesis. First, the cavity was tuned to be
resonant at a slightly different frequency. By grinding of the top layer of the copper block,
the height d can be decreased, whereas it can be increased by grinding of a layer inside the
cavity. In this way the resonance frequency and thus the detuning can be adjusted. This
kind of tuning was done after the first and the second set of measurements and the resulting

resonance frequencies and detunings are discussed in section 4.1.

The second kind of change concerned the shape of the holes through which the Rydberg atoms
enter and leave the cavity. Sharp metallic edges lead to increased stray electric fields, which
can influence the Rydberg atoms [55]. The cavity holes were therefore rounded on the inside

of the cavity by a fillet of 0.7 mm radius. The next set of measurements however did not show
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3.5. Detection of the Rydberg atoms with an MCP detector

less stray fields and we then decided to replace the fillet with a chamfer of 0.8 mm vertical and
horizontal length. The fillet was created in the workshop by cutting the rounding stepwise
and increasing the radius with every step. This can mean that on the microscopic scale the
edges did not disappear but were actually multiplied to many smaller edges. The chamfer on
the contrary only has two edges. The advantage of a chamfer compared to the bare hole is
that the atoms are further away from the metal on the inside of the cavity. The fillet was cut
on the 8th of May and the following measurements were called ’fillet’. The chamfer was made

on the 13th of June and is part of the final configuration of cavity 4B.

3.5. Detection of the Rydberg atoms with an MCP detector

The Rydberg atoms are field ionized by applying an electric field either between the electrodes
3 and 4 or 4 and 5 depending on how much of the p-state signal we want to record. The
electric field is generated in a 10 ns pulsed potential difference of -1.2 kV between the two
electrodes separated by 1 cm. Since the ionization field for a Rydberg atom depends on the
quantum numbers, applying different ionization fields would also allow us to determine the
states of the atoms.

After the ionization of the Rydberg atoms, the generated electrons hit the micro channel
plate (MCP), which multiplies the low incoming signal to a detectable one and accelerates
the emerging electrons towards a phosphor screen at the back of the MCP by a potential
difference. The phosphor screen generates a fluorescence signal when a particle arrives.
The signal is recorded by a CCD camera. With this setup we can get the spatial and the
temporal distribution of the Rydberg atoms. The signal is then amplified and observed on an
oscilloscope, which can be read out with our LabView software and stored in a data file for

further manipulation.

MCP detector

The micro channel plate detector is a single particle detector that can detect Rydberg electrons
and metastable atoms. In contrast to a normal electron multiplier, it can also give the spatial
distribution. The device consists of three plates: the front and the back plate as well as
the phosphor screen for the picture. The MCP contains a vast number of 10 um diameter
channels, which are tilted in an angle of 8 degrees for half the way and then tilted the other
way for the rest of the path (see Figure 3.9 (A)). This insures that every incoming particle
(B) hits the walls of the channel. The particle hitting the wall causes secondary emission of
electrons (C). The electrons are accelerated down the tube and hit out more electrons causing
an avalanche-like effect. Each initial particle knocks about 107 electrons out. The emerging
electrons (D) are then accelerated towards the phosphor screen as described abov