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1 Introduction

Since 1960, Gordon Moore’s law, which states that the computer power will double
every two years for constant cost, held true. But one will expect that this will
end some time, since the fabrication of computer hardware will have fundamental
difficulties due to its tiny size. Which means that quantum effects will be observable
and interfere in the functionality of the electronic devices. In 1982, Richard Feynman
had the idea to make use of the quantum mechanics in a so-called quantum computer,
such that it might perform more powerful calculations than a classical computer. It’s
not that easy to realize such a quantum computer, based on the fundamental units
of information, the so called quantum bits, qubits.[17] Qubits do not only take the
value 0 or 1 like the classical bits, it is in a linear superposition of those two states.
If one writes the ground state of a quantum system as |0) and the excited state as
|1), the qubit can be written as a combination of them and is represented by a vector
contained in a sphere (Bloch sphere), see section

The implementation of such a qubit requires a quantum mechanical two-level system
that can be well controlled and measured. A physical state will always have some
interaction with its environment. Due to this external influence, a pure superposition
state (|0) £]1)) /v/2 has a time-development into the state |0), which is equivalent
to a collapse of the superposition state. This loss of the superposition property of
a quantum state is called decoherence. It’s one of the main problem in building
quantum computers. A good isolation of the qubit from its environment is therefore
necessary (beside the preparing and readout of the qubit-state), such that it has a long
decoherence time, which allows to perform many operations before the superposition
state is destroyed. An other important time scale is the so called relaxation time: If
one leaves a system to its own, it tend to the state of lowest energy. David DiVincenzo,

of IBM, listed the following requirements for a practical quantum computer:



scalable physically to increase the number of qubits

qubits can be initialized to arbitrary values

quantum gate-operation time shorter than decoherence time

universal set of quantum gates

e each qubit-state can be read-out easily

A quantum gate is a basic quantum circuit operating on a small number of qubits.[5]

1.1 Superconducting circuits

The theory of quantum mechanics was originally developed to account for the ob-
served behaviour of electrons in atoms. More than 80 years later, it is being used to
explain the behaviour of superconducting circuits that can be hundreds of nanometers
in size and can contain trillions of electrons. The quantum nature of these circuits is
observable because they can be engineered to be isolated from the electrical environ-
ment. Unlike atoms, these circuits can be designed and constructed to tailor their
characteristic frequencies, as well as other parameters like the energy gap between the
ground- and excited state. Superconducting qubits form the key component of these
circuits, where its state can be manipulated by using electromagnetic pulses. One
promising approach toward quantum computers which allows to isolate the qubits
efficiently from the environment while still providing good measurement and control
possibilities is called circuit quantum electrodynamics (cQED). A charge qubit is
formed by a tiny superconducting island (Cooper-pair box) coupled by a Josephson
junction to a superconducting reservoir. The Cooper pair box is strongly coupled to
a microwave cavity, which is realised with a coplanar transmission line resonator. By
applying microwave signals to the resonator, one can couple the photons in the cavity
to the qubit, which allows to control or measure the qubit state. In contrast to other
candidates like trapped ions or quantum dots where the qubits are built on single
quantum objects (i.e. microscopic systems) one uses a macroscopic object in cQED.
The quantum behavior of a macroscopic system is usually not observable, although
each particle in a given system behaves quantum mechanically. This has to do with
the Fermi-Dirac-Statistic of identical Fermions without mutual interaction, which
predict that no two fermions can occupy the same energy-state. It’s only possible
to observe quantum mechanical behavior in a macroscopic system if the component
particles populate the same state, i.e. if they obey the Bose-Einstein-Statistics. Two
prominent examples of such systems are Bose-Einstein condensates and superconduc-
tors. In a conventional superconductor, the electronic fluid consists of bound pairs

of electrons known as Cooper pairs. This pairing is caused by an attractive force



between electrons due to the exchange of phonons. The Cooper pairs are then con-
densed into one single state with a defined phase O (7, t) and a local density ng of the

superconducting entities
1) = /ng (7, 1) ! O (1.1)

A Cooper-pair box (CPB) can be used to form a non-linear two-level system which is
then strongly coupled to a single mode of an electromagnetic field. It’s important to a
have a system which is non-linear, otherwise one can’t see any difference between the
classical and the quantum mechanical behavior. This can be seen by considering the
Ehrenfest-Theorem, which predict the classical relation of motion for the expectation
value of any quantum mechanical observable if the potential is of quadratic form
in position (i.e. harmonic oscillator). The analog of the position in a electrical
harmonic oscillator is the magnetic flux ®. By analysing an electrical LC oscillator

and comparing it to an mechanical oscillator one got the following correspondences

mechanical oscillator | electrical LC oscillator
momentum Pz (t) q(t)
position x (t) D (1)
mass m C
frequency Vk/m 1/VLC
commutator [z, pg] = iR [®,q] =ih

Table 1.1: Correspondence table of a one-dimensional mechanical oscillator and an
electrical LC oscillator circuit.[7]

It’s therefore necessary to have a nonlinear system to even measure non-classical
effects. In cQED this is realised with a Josephson junction which behave like an
LC-circuit but the inductance L then build the nonlinearity.

We use superconducting materials to observe quantum effects on a single non-degenerate
macroscopic ground state, another advantage of using such materials is the energy
gap A in the excitation spectrum which makes it easier to stay in the ground state
due to the elimination of low-energy excitations. The energy gap A is the minimum
amount of energy that must be supplied to one Cooper pair in order to excite it. Our

superconducting materials are Niobium (Nb) and Aluminum (Al)

Niobium | Aluminum
critical Temperature T, 9.2 K 1.2 K
2A/h 725 GHz | 100 GHz

Table 1.2: Characteristics of Niobium and Aluminum in the superconducting state.

The state of the qubit can be controlled by applying microwave pulses with a certain

amplitude and phase. It’s therefore desired to have a full amplitude- and phase



control of the pulses applied on the qubit. This can be done by using an [Q-mixer
in the upconverting operative range. To reach this goal, a high degree of accuracy
on the IQ-mixer calibration is necessary, which was the main task of the work. A
demonstration of the full control was shown in a tomography experiment performed
on one qubit. An other goal was to test a new setup to do sideband-operations, i.e.
the |g,0) — |e, 1) transition, with demonstrating phase sensitive measurements on

this transition.



2 Theory

2.1 Quantum Bits

The classical bit is the unit of computer information and can only take the value 0
or 1, for example: the voltage level at the input of a transistor in a digital circuit. In

contrast, a quantum bit (qubit) can also be in a superposition state
@) = ar]0) + B11), ol + 18" =1 (2.1)

the second condition for the two complex probability amplitudes o and 3 makes sure
that the sum over all probabilities of finding the qubit in any state is 1. When the
state of a qubit is measured one will find the probability \Oz|2 to be in the state |0)
and the a probability of |8 to find it in state [1). A qubit can be represented as

vectors in a 2-dimensional Hilbert space, where the Dirac notation is used as a set of

yog(é) |1>E<§’> (2.2)

In a two level system, the state |0) is called ground state, where |1) is the excited state.

orthonormal basis

There are a lot of different physical systems which can be used to realize qubits: the
two different polarizations of a photon, the alignment of a nuclear spin in a uniform
magnetic field, spin of a single electron and of course by a Josephson junction as shown
later. The first postulate of quantum mechanics associated to any isolated physical
system a complex vector space with an inner product (i.e. Hilbert space) which is
known as the state space of the system, where the system is completely described by
its unit state vector. The time evolution a such a state vector in a closed quantum
system is described by the Schroedinger equation,

L d|® ~

Zh(’1t> = H |D) (2.3)
If the system is not closed anymore and interacts with its environment, the third
postulate of quantum mechanics describes the effect of measurements on the system

by operators acting on the state space [17].



2.2 Bloch sphere representation of qubit state space

The equation [2.T] can be rewritten using the additional condition
; © ; ©
|®) = e (cos B |0) 4 €' sin 3 ]1)) (2.4)

where O, ¢ and v are real numbers. The outer factor e’ describes the global phase v,
which can be ignored, because it’s impossible to measure it. This reduced equation
then defines a point on the unit three-dimensional sphere, also called Bloch sphere.
In this representation, © is called polar angleand ¢ defines the azimuth angle, see

Figure The ground state corresponds to a vector pointing on the north pole and

Z
A

1)

Figure 2.1: Bloch sphere representation of a qubit state.

the excited to the south pole. All the equal superposition state are located on the
equator, i.e. —= (|0) + €?|1)) A rotation around an arbitrary axis @ = (ng,n,, n.
NG} Y

with an angle o can be written as
R (o) = exp (—iafi - 3/2), Fg=(1,X,Y,7) (2.5)

Where & is the Pauli vector which consists of the 4 matrices given by

IE(l()) X5<01> YE(Q_i> ZE<10>(2.6)
01 10 i 0 0 —1



This can now be used to prepare any specific qubit state. Let’s take the ground state

as the initial one and by applying a m-pulse the excited state can be reached

R, (Qpt=m) |0) — 1) (2.7)
R,(Qt=m) : |0) — —i|1) (2.8)

But it’s also possible to prepare a superposition state with a 7/2-pulse

0) + 1)
V2

0) —i|1)
V2

Notice that the angle o was replaced by the product of an angular velocity 2, , and

Ry (Qut = 7/2) - 0) — (2.9)

R, (Qt=m/2) : |0y — (2.10)

the pulse length t.

2.3 Realization of the superconducting qubits

To build a quantum electrical circuit it’s necessary to have low dissipation, low ther-
mal noise and the circuit has to be non-linear as already discussed in the introduction
section. To reach this goal, one uses Josephson tunnel junctions which are made of
superconducting and insulating materials and to avoid thermal noise, the experiment

is operating at low temperature of about 20 mK.

2.3.1 Quantization of the electrical parallel LC harmonic oscillator

A parallel LC oscillator circuit consists of an inductor L where a magnetic flux ¢ is

stored and a conductor C where the charge Q is accumulated on it, see Figure

\Y

Figure 2.2: Circuit diagram of the parallel LC harmonic oscillator.



The voltage across the oscillator can therefore be written by

Q ol
= — = —Li
v C ot

(2.11)
where the time-varying current I is passing through it. The capacitor stores energy
in the electric field between its plates, depending on the voltage across it, and the in-
ductor stores energy in its magnetic field, depending on the current. By summarizing
this two energies one gets
1 1 1Q? 1¢72
H=_CV*4 _LI*= -+ - 2.12
2 + 2 2 C + 2 L ( )
since the inductance gives the linear relation between the magnetic flux and the
current, i.e. ¢ = LI. By considering the total energy as a Hamiltonian (i.e. the
Legendre-transformation of the Lagrange-function) H(Q, ¢, t), the equation of motion

in a classical system can then be calculated by the derivative

oH  Q B or L

67@) - Cc- ot ¢ (2.13)
oH ¢

% — 1-1-9 (2.14)

Now, the two conjugated variables Q and ¢ can be replaced by its corresponding

quantum mechanical operators

— b (2.15)

Q= _ind (2.16)

¢
Q 90

l

So, the classical Hamilton-function can be replaced by the Hamilton operator H

QB e
H=56"50= "2c002 T oL (2.17)

Comparing this Hamilton operator with a particle in a harmonic potential which has

10



the following properties [20]

X o1
Hpo = o—+ §mw2562 (2.18)
1
= hw <d+d + 2) (2.19)
[Z,p] = ih (2.20)
. mw [, P
a = on <a; + mw) (2.21)
~ mw [ . P
+ = - - =
at = o7 <a; mw) (2.22)

The raising a®™ and lowering a operators act on the Fock-state, where the number of

energy quanta Aw can be in- or decreased by definition

aln)y = nln—-1) (2.23)
atn) = Vn+1ln+1) (2.24)

Due to this well known system of a linear quantum oscillator, one can compare it to

the electrical analogy

i = \/Q;iizc(zcégﬂi)) (2.25)
o+ = \/2;7 (ZCQ—ZE)) (2.26)

Q = \/QTZC(a—I—aJr) (2.27)
b= ) (2.28)
Z, = \/g (2.29)
[é, } — in (2.30)
o= (2.31)

VLC

Further relationships can be read out in tabel[I.1} Z. is called characteristic impedance of
the oscillator. The resonance frequency in our experiment is around w ~ 276 GHz
and therefore the energy distance between two neighboring states correspond to a
temperature of % ~ 300mK, this is also the ground state energy. The calculated
eigenstates of the Hamiltonian [2.17] are shown in Figure for the first ten energy lev-
els, depending on the magnetic flux. As mentioned in the Introduction is an equally
separated energy spectrum improper to measure quantum mechanical effects since

they will be averaged out. So on, it’s necessary to have at least 2 states (ground- and

11
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Figure 2.3: Wavefunction representations for the first ten eigenstates of the LC oscil-
lator. The horizontal axis shows the magnetic flux ¢ and the vertical its
corresponding energy.

excited) which have a different energy separation compared to higher energy states.
To build an anharmonic spectrum one uses a Josephson junction, which yields an

nonlinear inductance if added to the LC-oscillator.

2.3.2 Josephson junction

A Josephson junction is made of two superconducting materials separated by a tun-
neling barrier which is normal conducting. The Cooper pairs can now tunnel through
this barrier if one applies a small current. But there is a critical current I. above
which the Cooper pairs will break open such that a resistance occurs due to the tun-

neling of single electrons and a voltage is therefore measurable. Each superconductor

Non-conducting barrier

Superconductor 1 Superconductor 2

Figure 2.4: Schematic image of a Josephson junction. Theoretical prediction 1962 by
Brian D. Josephson.

can be described by a single wave function which overlap another, but each wave

function itself obey the Schroedinger equation

j R

maatl = HU, + k0, (2.32)
oW .

ma—; = HyUy+ kT (2.33)

12



where k expresses the coupling between the superconductors given by the tunnel bar-
rier and H; respectively H, are the Hamilton operators acting on the corresponding
wave function. [I0] As mentioned before, this two wavefunctions ¥y, Wy overlap
and gives rise to a phase difference across the junction §(¢) depending on time. The

supercurrent through the tunnel barrier is then given by the 1.Josephson equation
I(t) = I.sind(t) (2.34)

Notice that even if there is no external voltage supply, a supercurrent is flowing,

but equivalent cooper pairs are tunneling in each direction. The second Josephson

equation describes the time behavior of §(¢) if an additional voltage U (t) across the
junction is applied

94(t)  2e

—— = —=U(t 2.35

= 2o (2:35)

Q—he is called Josephson constantand is the inverse of a magnetic flux quantum. The

three main effects predicted by Josephson follow from these equations [1]

1. The DC Josephson effect
If there is no potential difference between the two superconductors, the phase

doesn’t varies in time given by the second Josephson equation
Ut)=0—4d(t)=0(t=0) — Iy = I.sind(t = 0) (2.36)

Now it’s obvious that no net supercurrent is flowing, because of the alternating

oscillation given by the sine function.

2. The AC Josephson effect
With a constant voltage Upc # 0 across the junction, the phase will vary
linearly in time and the current is a sinusoidal AC at the Josephson frequency

2eUpc/h with an amplitude given by the critical current I

2eU
sty = ¢ hDCt +6(t = 0) (2.37)

2eU,
f; = = th 2.38)
Iy = I.sin(2rfst+6(t=0)) (2.39)

3. The inverse AC Josephson effect

By treating the junction with an ideal voltage bias of

U(t) = Uy + Uy coswit (2.40)

13



and now integrating the 2.Josephson equation by time and inserting the phase
difference in the first Josephson equation (and using the standard mathematical

expansion of the sine of a sine in terms of Bessel funcions) yields [24]

5(t) = 6(0)+ wot + (2eUy/hwy) sinwyt (2.41)
wo = 2¢eUy/h (2.42)

I, = I Y (=1)"Ju (2eUs/hwi)sin (6(0) + wot — nwt)  (2.43)
—+o00
This contributes a DC component only when wy = nwi, i.e. when the DC
voltage Uy has on of the Shapiro stepvalues [22]: U,, = nhw; /2e.

As proposed this should yield a non-linear inductance. To extract this fact, one just

derives the 1.Josephson equation by t and insert it into the first:

oI, 00
Tl 1. cos(é)a (2.44)
h 00 h 1 0I
ult) = 2¢Ot  2el,cosd Ot (2.45)

By comparing the last result with the induction law U(t) = —L%, the Josephson
inductance L; can be defined by

h 1
2el. coso(t)

L= (2.46)

The nonlinearity is given by the cosine-term of the phase difference. In a circuit
diagram one draw the Josephson inductance as a cross, where the the the whole

junction consists of an additional Josephson capacitance C;. Imagine that initially at

*V

O fp— XLl

|

Figure 2.5: The Josephson junction as a circuit element.

time t=0 the junction was in the ground state, i.e. §(t = 0) = 0 and finally at time

14



t the junction has the phase §(t). So the junction energy is increased by

t hoftoost) . ko[t Ik
E; = I = — I,——=dt = — I.si =—(1- 2.4
y /0 Udt 5 /0 5t dt 5 /0 sin (0) dd P (1 —cosd) (2.47)

Here Ej,O =

sets its dependence on the phase difference.

I.h
2

- sets the the characteristic scale of the Josephson energy and (1 — cos 9)

2.4 The Cooper pair box

/o

E,->< = ’

Reservoir

@<
1
m|n

Figure 2.6: Left: Circuit diagram of a single CPB. Right: The superconducting island
(dark green) is coupled to a superconducting reservoir via a Josephson
tunnel junction (orange). A gate voltage is applied between the reservoir
and the gate electrode.[19]

A single Cooper pair box consists of a small metallic island which is connected to a
reservoir via a Josephson junction. In the superconducting state, the Cooper pairs
are free to tunnel to and from the island, whose potential can be controlled by a gate
voltage, Vj.[2] The behavior of the CPB is governed by two characteristic energies, the
electrostatic charging energy, Ec = e? /2C;o1 with Cyop = Cj4Cy the total capacitance
of the CPB and the Josephson energey, E; = 1205 cosd. Notice the neglect of the
1263 which occurred in equation due to the integration, but

this term can be set to zero by changing the lower integration limit, i.e. d(t = 0) =

constant energy term

+7/2 so the wavefunctions of the two superconductors do not overlap in the initial
state. The applied gate voltage induces a certain number of polarization charges n,
on one plate of the capacitor and thus the total charge on the island is given by
2e(n — ng), where ng = C4Vy/2e. This gate charges serves as a control parameter
to change the number of Cooper pairs on the island, therefore the qubit is called

charged qubit. The Hamiltonian of the Cooper pair box consists of an electrostatic

15



and a tunneling part

Hepp = Ha+ f{j (2.48)
_ L o4 :
= 2CtotQ — Ejocoso(t) (2.49)
= i a)? - Bpcosi(t) (2.50)
2(Cj + Cg) 7 g

The first term of the CPB Hamiltonian represents the energy of a capacitor with a
fixed, integer-quantized charge. The Josephson term H ; on the other hand describes
the coherent tunneling of Copper pairs onto the superconducting island, where E;
is the energy required for such a transfer of a Cooper pair from the reservoir to the
island and H ; can then be considered as a discrete kinetic energy term of the tunneling
process.[7] To find the eigenstates of the Hamiltonian, one has to define a complete
basis for all states of the CPB, it’s quite obvious to choose the charge basis which is

defined by the number operator of the Cooper pairs on the island, i.e.

nin) = nln) (2.51)
I = Y n)(n (2.52)
<m‘n> = Omn (2'53)

To rewrite the CPB Hamiltonian into this basis, it’s necessary to transform the
conjugate variable § into the charge basis. This can be done by using cosd =
(exp(id) + exp(—id))/2 and [6,7] = i

Hepp = Y <4EC,O(ﬁ — fg)?|n)(n| — % (Jny(n + 1|+ |n + 1><ny)> (2.54)

n
2

e
Ec
0 2C0t

(2.55)

In the charge basis, the Schroedinger equation of the CPB can only be solved numer-
ically.

The shape of the energy bands can be expressed in terms of the gate charge ng, as
shown in figure The diagonal elements of the Hamiltonian in the charge basis
are parabolic in ng, i.e. 4Eco(f — fiy)?, and have a periodicity of 2e. Degeneracy
occurs at the crossing point of this energy parabolas. This so-called charge degen-
eracy points are abolished by the off-diagonal matrix elements of the second term in
the Hamiltonian. Perturbation leads to a coupling of the charge eigenstates |n) and
|n + 1) which has an energy difference of E; at the degeneracy point, i.e. ng = odd.
Now we can also see the non-linear energy differences between the charge eigenstates,

which is due to the non-linear Josephson inductance. The possibility of realizing an

16



anharmonicity in the energy diagram makes it possible to treat the CPB as a to level

system.

Figure 2.7: CPB energy levels. Dotted and dashed black lines show electrostatic
energy of island for 0 and 1 Cooper pairs present on the island. The blue,
red, and green solid bands show the ground, and the first two excited
state energy levels. At ny, = 1 there is an avoided crossing, where the
eigenstates are superpositions of n and n + 1 Cooper pairs.[19]

2.5 Split CPB

In the last section, one applied a gate voltage to tune the electrostatic energy (ﬁel).
But it is also possible to tune the tunneling component of the Hamiltonian (H;).

This can be done by splitting the Josephson junction, as shown in Figure Each

E

0

J2'72

Vg— E

0

J1771

E ©

Figure 2.8: Schematic draw of a split Cooper pair box, where the island is now con-
nected with two Josephson junctions with different Josephson energies,
labeled by Eji, Ejz. With an additional external magnetic flux ® one can
tune this characteristic energies.[19]

17



Josephson junction has a characteristic tunneling energy Ejq, Ej2 and also different
phase differences ©1,0,. By adding this second split CPB to the tunneling part of

the Hamiltonian one get
IA{j = Ejl Ccos (:)1 + Ej2 Ccos éz (2.56)

Introducing the following new variables

(@}
Il

(2.57)
= @1 — @2 (258)

It can be shown by calculating the free energy density in the Ginzburg-Landau-
Approximation and using Stokes-Theorem that the global phase difference operator

3 can be expressed in terms of the magnetic flux through the loop[24]

B =2r®/®, (2.59)

where ®g = h/2e is called the fluz quantum. Now, rewriting ﬁj by using some

trigonometric substitutions

. d A o A
H; = (Ej1 + Ej2) cos (Wq)) cos © + (Ej1 — Ej2) sin <7T(I)> sin © (2.60)
0 0

If the two junctions are symmetric, i.e. Ej; = Eja, or if there is no external flux, i.e.

® = 0, the expression simplifies to

R b .
Ej1 =Ej: H; = 2Ej cos (7‘('(1)) cos © (2.61)
0
d=0: H; = (Eji+ Ej2)cos© (2.62)

So, for identical Josephson junctions, the tunneling energy is periodical in the external
magnetic flux (periodicity given by ® = 2n®). And if no external flux is applied,

one can observe the well known behavior.

2.6 Transmon

The CPB is quite sensitive to fluctuations of the gate charge n, as one can see in
Figl2.71 It’s therefore desirable to have an energy diagram which is not that sensitive,
i.e. the shape of the energy versus gate charge should be more flatten for the ground
and first excited state. This will yield a much more immune qubit frequency to charge
noise. It can be achieved by enlarging the total capacitance between the island and

the reservoir. This lead to a much larger linearity of the CPB as shown in Fig. [2.9

18



These improved Cooper pair boxes are called Transmons. As shown in Figure [2.10

(a) E_]/EC =1.0 (b) EJ/EC = 50
I I i I [ I J I L I : I )

e L I —
_ 4

2 -1 0 1 2 -2 -1 0 1 2
(¢) E;/Ec =10.0 (d) Es/Ec =50.0
T ‘ 1 I T I T T | T ‘ T | T
R %, T ]
—
£1 1
Sa
i 7 3 I ~ \/SE_]EC 1
O 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
2 1 0 1 2 =2 1 0 1 2
ng ng

Figure 2.9: CPB energy bands at different E;/E¢ ratios. As the ratio is increased
one can immunizing the CPB to charge fluctuations. A side effect is that
anharmonicity is also reduced.[11]

the parallel capacitor Cp is realized with a finger liker structure.

Cg,Ng" N
1 e

| c EJ1 EJu2
k TORER % TN
=

Figure 2.10: Reduced circuit diagram and sketch of a transmon capacitively coupled
to a transmission line resonator|7]

2.7 Microwave cavity

So far, the artificial atom which is realized in cQED by a Transmon has been discussed.
To excite and read out the qubit one has to couple this Transmon to a photon in a
cavity. In typical experiments, a single mode of an electromagnetic field is trapped
between two mirrors with a high reflectivity such that it can be considered as a

standing wave. Remember the second quantization of the elm field yields again a

19



description like the harmonic oscillator in quantum mechanics. In this section the
photon cavity would be analysed.
2.7.1 The lumped-element circuit model for a transmission line

To develop a differential equation for the voltage and the current through a two-wire
line we want to look at an infinitesimal short piece of line, which can be modeled as

a lumped-element circuit: where

i(z, 1)

—
+
v(z, D
Az 4
(@
i(z, t) i(z+Az, 1)
— —_—
o—AMMN——YY M ’o)
+ RAz LAz ap
v(z, 1) GAz == CAz v(z+Az1)
o o

- Az
()

Figure 2.11: Voltage and current definitions and equivalent circuit diagram for an
incremental length of transmission line. [1§]

R = series resistance per unit length, for both conductors, in Q/m

L = series inductance per unit length, for both conductors, in H/m

G = shunt conductance per unit length, in Q=1 /m

C = shunt capacitance per unit length due to the close proximity of the two conduc-

tors, in F//m.

G describes the dielectric loss in the material between the conductors.
The characteristic impedance Z; is defined by
Voo Y%

Zo=-0 = _C (2.63)
Iy I
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We find the general solution

’U(Z, t) — Vb—&—e—'yz—i—iwt + Vo— ewz—f—iwt (2.64)
; — ‘/E)+ —yz+iwt ‘/07 yz+iwt
’l(Z, t) = 706 706 (265)
R+ iwlL R+ iwlL
7 _ I 2.66
0 v G+ iwC ( )
v = a+if=+(R+iwL)(G +iwC) (2.67)

It has the same form as a plane wave in a lossy medium, where a describes the rate

of decay. With this similarity we can define a wavelength A and a phase velocity v,

|

A = (2.68)

= \w/2m (2.69)

’Up =

D E

The lossless line fulfills the condition R=G=0.

2.7.2 Conventional coplanar waveguide

A coplanar waveguide (CPW) consists of a dielectric substrate with conductors on
the top surface. The conductors formed a center strip separated by a narrow gap
from two ground planes on either side. If we know the dimensions of the center strip,
the gap, the thickness and permittivity of the dielectric substrate we can calculate
the effective dielectric constant €.y, characteristic impedance Zp and the attenuation

« of the line.

Conductor-backed coplanar waveguide

Figure 2.12: Schematic of conductor backed coplanar waveguide (CBCPW).[21]
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This is just a coplanar waveguide with a lower ground plate as shown in figure .
The lower ground plane provides mechanical strength for a thin and fragile wafer
and acts as a heat sink for circuits with active devices. Such a waveguide is called
conductor-backed coplanar waveguide, short CBCPW. The characteristic impedance
is determined by the ratio of a/b, the substrate height h and the dielectric constant

of the substrate ¢,

607 1
z§PW = = (2.70)
. (k) | K(ks)
VEIT Kmy TR
where the effective dielectric constant is given by
1+eK
Cyf = it (2.71)
1+ K
= K(K') K (ks)
K = (2.72)
K (k)K (k3)
kE = a/b (2.73)
tanh (52
S ) (2.74)
tanh(Z;)

where K is the complete elliptic integral of the first kind, i.e.
w/2
K(m) := / (1—m-sin?©)"/240 (2.77)
0

Notice that in our case h < a,b and we can therefore do the approximation k3 ~

1+€,

a/b =k and also k" ~ k3 which leads to e.fy ~ =5=.

2.7.3 parallel RLC resonant circuit

If we cut the CPW such that two equal gaps arise, we have a resonator which is
capacitive coupled to the input and output waveguides. The gap capacitors is then
in accordance with the mirros to trap the electromagnetic wave. Near its resonance
frequency it can be modeled by a parallel RLC resonant circuit. Firstly, a parallel
RLC resonator will be discussed. Figure a) shows a RLC resonator.
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Figure 2.13: A parallel RLC resonator and its response. (a) The parallel RLC circuit.
(b) The input impedance magnitude versus frequency.

The input impedance is given by

o1 N\
Zin = (R to T sz’) (2.78)

which is dependent on w as shown in figure (2.13) b).
As for the LC-oscillator, one has the same resonant frequency which is independent

of the resistance

1
wy = \/Tic (2.79)

Another important parameter of a resonant circuit is its quality factor @), which is
defined as

(average energy stored)

Qw) = w- (2.80)

(energy loss per second)

Thus, @ (w) is a measure of the loss of a resonant circuit, i.e. lower loss implies a
higher quality factor.

At w = wy
Q (wo) = woRC (2.81)

This result shows that the Q of a parallel resonant circuit increases as R increases.

Near the resonance frequency, the input impedance can be simplified by using w =
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wo + Aw where Aw is small compared to wy

R R

Zin = = 2.82
! 1+ 2IAwRC 14 2iQAw/wy ( )
When R — oo we can write near the resonance
Lin = L (2.83)
e 2iC (w - u)g) '
The effect of loss can be accounted by replacing wy
wo — wo - (1 + 2ZQ> (2.84)

A resonator with loss can therefore be modeled as a lossless resonator whose resonant
frequency wg has been replaced by a complex effective resonant frequency.
The half-power bandwidth occurs when the real part of Py, = |V|?|Z;,|71/2 is half
of the maximum

R2

| Zin|? = - (2.85)

which, from (2.82]), implies

1
bandwidth (BW) = 0 (2.86)

see figure (2.13) b).

2.7.4 Loaded and unloaded Q

The quality factor Q is a characteristic of the resonant circuit itself in the absence of
any loading effects caused by external circuits and so it is called the unloaded Q. But
often, a resonant circuit is coupled to an other external circuit. Figure (2.14]) shows a

resonator coupled to an external load resistor Ry. If the resonator is a parallel RLC

Resonant circuit

Q R

Figure 2.14: A resonant circuit connected to an external load, Ry,
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circuit, the load resistor R, combines with R so that the effective resistance is RﬁRﬁL'

We can define an external quality factor Q. as

Ry,
o= —— 2.87
Q.- % (287)
then the loaded @7, can be expressed as
1 1 1
— = 4+ = 2.88
QL Qe Q ( )

In the measurement the loaded @ of the resonator is determined. The unloaded

quality factor Q is given by

Qr

Q=1"70-Lom (2.89)

where Lg is the insertion loss. 28] [26]

2.7.5 Open-Circuited )\/2 Line

As mentioned in chapter the gaps in a CPW cause a capacitive coupling
and therefore build a microwave resonator. Near its resonance frequency wgy, such
a resonator will behave as a parallel RLC resonator, when the length of the open-
circuited transmission line is A/2, or multiples of A/2. Consider a lossy transmission
line of given length [, which has a characteristic impedance Zj , propagation constant

B, and an attenuation constant «. The relation between the RLC circuit and the

1%
< 0
n=2
o o)
Zin;‘> Zy, B, @
o -0

l

Figure 2.15: An open-circuited length of lossy line, and the voltage distributions for
n=1(A/2) and n =2 (I = \) resonators
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open-circuited A/2 line can be expressed as

Z
= = 2.90
- (2.90)
T
= 2.91
2WQZO ( )
1
L = — 2.92
w%C’ ( )
Q = whC=—" -5 (2.93)
- 2l 20 '

since [ = % at resonance. Where the left-hand side of the equations are the parameters
of the RLC circuit.

2.7.6 Capacitive coupling

The open-circuited A/2 line is just connected to the other transmission line by a gap
which can be described as a capacitive coupling. We have first to calculate the external
quality factor (). due to the series R Cy-circuit which couples to the resonator. At

the resonant frequency

r 1+ RGO
e=Qelwo) = — ——F5 5 2.94

Now the loaded quality factor of the resonator, @y, is found

1 1 1
@ = @ + @ (295)

where Q = Rn/ (4Zp)

It is useful to define a coefficient of coupling, g, as

Q

=3 (2.96)

g

Then, three cases can be disinguished
1. g<1 The resonator is said to be undercoupled to the feedline
2. g=1 The resonator is critically coupled to the feedline
3.9g>1 The resonator is said to be overcoupled to the feedline

To obtain maximum power transfer between a resonator and a feedline, the resonator

must be matched to the feed at the resonant frequency, this occurs when

1 1

w . /27,RR;, — R

Cyerit = (2.97)
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2.8 Circuit QED

As discussed in the previous sections, the Cooper pair box respectively the Transmon
can be treated as an artificial atom (2-level system) which can then be coupled to
a transmission line resonator to control and read out the qubit state. In this chap-
ter the interaction between the atom and the radiation field will be discussed on a
fully quantum mechanical level. Therefore, the hats on top of the operators will be

neglected.

2.8.1 Cavity quantum electrodynamics

The interaction between the two-level atom and a harmonic oscillator whose excita-

tions are photons is described by the Jaynes-Cummings Hamiltonian|27]:
Hjc = hw(ata+1/2) + ﬁ%az + hg(ato™ +aoc™) + H, + H, (2.98)

where the first term represents the energy of the electromagnetic field, each photon
contains an energy hw, which is also twice the zero energy level. The second term
represents the atom as 2-level system with a transition energy Aw,. The third term
describes a dipole interaction where the artificial atom can absorb (ac™) and emit
(a*o™) a photon from/to the field at rate g. These three terms describe the coherent
dynamics, whereas the last two terms describe decoherence effects, where H, stands
for the energy losses due to the cavity decay rate k = w,/Q depending on the quality
factor of the transmission line resonator. The second loss effect happens by the
coupling of the atom to other modes of the electromagnetic field which therefore
causes a decoherence of the excited state, given by the decay rate ~.

When the cavity and atom frequencies are degenerate, i.e. w, = w,, the eigenstates of
the Jaynes-Cummings Hamiltonian in absence of the last two decoherence effects are
the entangled states between the atom and the field |¢+) = (| |,n) £| T,n — 1)) /V2.
An initial state where the atom is in the excited state and n photons are in the cavity
therefore decays into the ground state and with one less photon, this process is then
reversed such that this transition occurs at the vacuum Rabi frequency g/m. The
entangled state decays at a rate of (k 4+ )/2. The energies of these new states are
split by 2¢g4/n and is therefore not linear in the photon number, see Figure left.
When many oscillations can be completed before the atom decays or the photon gets
lost, the system is then in the strong coupling limit of cQED, i.e. ¢ > kv, 1/Tirans-[3]
By detuning the atom and the cavity by A = w, — w,, where ¢ << A one reaches
the so-called dispersive limit. In this limit, the Jaynes-Cummings Hamiltonian can

be approximated using perturbation theory.[3] Expanding in powers of g/A to second
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Figure 2.16: A two level atom interacts with the field inside cavity with highly reflec-
tive mirrors, i.e. a large quality factor. The atom coherently interacts
with the cavity at a rage g. Also visible: The photon decay rate x out
of the cavity and the atom decay rate « into other field modes. The rate
at which the atom leaves the cavity, 1/T} qnsit i not relevant for cQED.
To reach the strong coupling limit, the interaction rate must be larger
than the rates of decoherence g > k,v,1/Tiransit- [19)]

order yields

. . g2 N I g2
o~ <wr + AUZ> a a+ 3 (wa + A) o, (2.99)
As one can see, the energies of the atom and the photons are shifted. The first term
remains the Hamiltonian of the harmonic oscillator, but the frequency is shifted by
g%/ A and also depends on the state of the atom, as we will see later, this can be used
to readout the qubit state without demolition of its state. The second term shifts
the atom transition frequency by the amount of g?/A and is called Lamb shift[]]. It
means that the photons which are used to measure the state of the atom will also
be modified, due to the Heisenberg uncertainty principle, but neither the state of
the atom nor the of the photon will be destroyed. Such a measurement is called
Quantum Non-demolition measurement, QND, which preserves the integrity of the
system and the value of the measured observable. This allows to measures the same
system repeatedly, but it does not imply that the wave function fails to collapse, it’s
just the ideal quantum projective measurement.[13]
By rewriting the Hamiltonian in the dispersive limit by leaving the electromagnetic
field unaffected one gets

Hjc =~ hwy(ata+1/2) + h <wa + 2792a+a + 92> o (2.100)

2 A A

Such that a photon number-dependent Stark shift[19], 2ng?/A and again the vacuum

noise induced Lamb shift, g?/A occurs to the atom transition frequency.

28



- =A >
w-0=A>g

— (0, +(2n+1)g%/A) - )
) = === 2gyn - === -1 [N+1) = = !
f p— ‘ == 12
e ————2 Ny =———-
I N N
2) == == 2972] ====1D ==~ (0+g%A)
— (0 -g%A) ' —~ — = |0
[M) === 29 | =e==|0 Mo = —
| © o, | w ((')a+92/A) O,
|O> — e e — — |O> -— @ e e — @ — @ — @ — @ — @ — @ —
lg) le) lg) le)

Figure 2.17: Energy level diagrams of the Jaynes-Cummings Hamiltonian. The
dashed lines are the eigenstates of the uncoupled Hamiltonian, where
|g) respectively |e) correspond to the ground/excited state of the atom
and |n) describes the photon number inside the cavity. The solid line
then represents the eigenstates of the coupled system. a) Resonant case,
ie. wy —w, << g. Eigenstates are then a symmetric and antisysm-
metric entanglement of the uncoupled atom and the resonator mode.
Notice the photon number square-root dependence of the splitting. b)
Dispersive limit , w, — w, >> ¢ of the Jaynes-Cummings Hamiltonian.
Frequency shift of the resonator and the atom transition frequency due to
the Heisenberg uncertainty principle which can be used to do a Quantum
Non-Demolition Measurement (QND).[19]

2.8.2 Coupling the CPB to the cavity

The circuit QED system consists of the coplanar microwave resonator of length L with
its standing wave (electrical component shown in Figure and the integrated,
superconducting qubit which is located between the resonator line and the ground
plane. To reach a maximal coupling between them, the CPB is positioned near
an antinode of the field. The island of the CPB is therefore positioned near the
center conductor of the resonator, which acts as a gate electrode for the Cooper pairs
tunneling between the island and the reservoir. This allows to apply a DC voltage
at the center conductor of the resonator via capacitive coupling over the input gap
capacitance and therefore apply a gate voltage Vpe to the CPB via the capacitance
between the center conductor and the island. Another parameter is the external
magnetic field which induces a flux through the split CPB and therefore tune the
tunneling energy (E;). One can regard the Josephson energy E; gained when a
Cooper pair tunnels through the tunnel barrier (about 1 nm thick).

The total voltage can be written as the sum of the classical DC voltage and a quantum

voltage due to the photons inside the resonator.

Vy=Vpc+V (2.101)
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Figure 2.18: Schematic layout and equivalent lumped circuit representation of the
implementation of cavity QED using superconducting circuits.[3]

where V = Q /C, compare to equation This leads to

V= \/Zg(a+a+) =Vola+a™) (2.102)

with Vp indicates the rms of the vacuum fluctuations. By inserting this into the
electrostatic part of the CPB-Hamiltonian (equation [2.48]) one can find the capacitive

coupling strength between the qubit and the resonator

Heowp = 2hg(a™ +a)n (2.103)
1%

g = 7077 (2.104)

n = C’g/Ctot (2105)

The corresponding voltage of the vacuum fluctuations can easily be derived by the
zero point energy of the resonator, i.e. fiw, /2 where half of this value is stored in the
electrical field and can be identified by a voltage

1/1 1
5 (57%) = %VOZ (2.106)

The coupling constant 2hg can be seen as the energy in moving a Cooper pair across
the portion of the rms vacuum voltage fluctuations, Vj, in the resonator.

Let’s assume ny, = 1 where the CPB is usually operated and the number operator
of the Cooper pairs on the island can be written as n = X/2 (X is the Pauli matrix
given in . By making the rotating wave approximation which neglect higher
frequency terms of the form w, + w, and is a valid approximation when the applied

electromagnetic radiation is near resonance with the qubit transition frequency, and
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the intensity is low
(at™+a)X ~ato™ +aoct (2.107)

In the charge basis, this approximation ignores terms like a*o* and ac~ which would
change the number of excitations in the whole system (photons and qubit). The

coupling Hamiltonian the yields the already defined term in equation [2.98
Heoup = hg(a*o™ +ao™) (2.108)

2.8.3 Readout Scheme

In the dispersive limit, where no photons are absorbed by the atom, which can be
achieved by detuning the atom and cavity much larger than g, i.e. A > g, one can
observe a photon number dependent frequency shift of the atom and a qubit state
dependent frequency shift of the light inside the resonator. This second shift of the
resonator spectrum, w, ~ w, + g?/A, where A = |w, — w,| is the detuning, provides
the possibility to probe the qubit state by measuring the phase and the intensity of
the transmitted microwave. The phase shift is expected to be [3] arctan (2g%/kA). A
necessary condition in order to be able to resolve the states nicely is that & ~ 2¢2/A
or smaller, which means that the linewidth of the resonator has to be at least in the

order of the frequency shift that arises when the qubit changes its state.

n
1 SN ¢ E
= | /AKX s o
—_ ;/ / | | \
805" | % | T
2 |- m
: - ~
| | m — = -
[ .
| T
2
vo—g?/A vo vo+g7/A vo—g/A vo vo+g/A
a) Frequency, v b) Frequency, v

Figure 2.19: a) Amplitude and b) phase of the transmission spectrum of the cavity for
the ground (red) and excited (blue) qubit state. Dashed line represents
the bare resonant frequency. [0]
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2.8.4 Sideband transitions

The general solutions of the Jaynes-Cumming Hamiltonian (equation|2.98)) in absence
of the damping term, i.e. H,and H, are given by the so-called dressed states [3]

|+,n) = cos®yle,n) +sinO,|g,n + 1) (2.109)
|—,n) = —sinBOule,n) + cosOylg,n+ 1) (2.110)
1 2gv/ 1
©, = - arctan <W> (2.111)
2 A
A = wg—wyr (2.112)

The ground state of this Hamiltonian is |g,n) with corresponding eigenenergies

h

Brm = (n+1hwr £ 5v/4g2(n+1) + A? (2.113)
A

Eyo —% (2.114)

Figurd2.17)shows the corresponding energy diagram for two different detuning regimes.
To see which transitions are allowed, one has to look at the behavior of the parity

operator P =% > (—1)"|n)(n|o. acting on this eigenstates:

Plg,0) = —|g,0) (2.115)
PlEn) = (=1)"%£n) (2.116)

The selection rule now only allows transitions between states of different parity. To
show this one has to calculate the dipole matrix element of to states with the same

parity[9]

Dy = /d?’rqf;(f’)[eﬂ\pl(f‘) (2.117)

By substitute 7 = —7, which has the same effect as the parity operator acting on

them, yields the negative value

Dy = /d3r’\Il§(—F’)[e(—F')]\II1(—F’) (2.118)
- / dr! [+ 03] [eF) [+ (7)] (2.119)
= — Dy (2.120)

this can only be valid for Do = 0.
At the charge degeneracy point the dipole moment is given by [3] d = hg/€pms, where
€rms 18 the electric field which correspond to the rms vacuum voltage fluctuations,

Vo and is about 2 - 10%eag. A transition between |g,0) and |g,1) (blue sideband) is
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therefore forbidden to first order in the dispersive limit, A >> ¢g. In the same way,
a transition between |g,1) and |e,0) (red sideband) is not allowed in the dispersive
limit. But it’s possible to reach this transition with 2 photons driving it.

In the dispersive regime as already discussed, the qubit and the resonator do not
directly exchange energy but the residual dispersive coupling still allows sideband
transitions linking the qubit and resonator states by driving it with a strong additional
microwave. [12]

The so-called blue sideband transition involves the simultaneous excitation of the qubit
by also adding a photon, this occurs at a transition frequency of wX = w, + w4y,
while the red sidebandis the transition between the states |gl) < |e0) with frequency
wy = |wy —wal, see Figure This sideband transitions can only be driven by 2
photons, here we choose to drive the blue sideband with 2 photons of equal energy
whereby only one signal generator is necessary. In this configuration the drive is
equally detuned from the qubit and the resonator, such that undesired offresonant
driving of the bare qubit transition and off-resonant population of the resonator would

occur at the same rate.

@ [1)

®red IO)

1)
or I Oblue ®a
|0) O

[e) |e)

Figure 2.20: Left: Dispersive dressed states energy level diagram. Red and blue side-
band transitions are indicated.[25] Right: Combined level diagram for
the blue sideband transition, which is forbidden to first order, but may
be driven using two photons.[12]
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3 1Q-mixer calibration for accurate pulse
shaping

An IQ-mixer consists of two balanced mixers and two hybrids. One hybrid is a so
called quadrature hybrid, which is a 3 dB directional coupler with a 90 degree phase
difference in the outputs. Figure shows the circuit diagram of a 90 degree hybrid,
where the input signal is on port 1 and is then evenly divided between ports 2 and 3,
with a 90 degree phase shift. Port 4 is the isolation port. Observe that this hybrid
is highly symmetric such that any port can be used as the input port. The second

Zo ZoN2 Zo

Input Output
® i@

Zo Zo

Isolated Output
i Z Zo2 Z i@

Figure 3.1: Circuit of the quadrature hybrid.

hybrid just acts as a directional coupler and can be realized by a T-junction. A
circuit diagram for a double balanced mixer is shown in Fig. Both the LO and
RF ports are balanced and all ports of the mixer are inherently isolated from each
other. Depending on the the sign of the LO-Signal, either the diodes Dy and Dy or
the diodes Dy and D3 let pass the signal. This switching between the two different
path is the fundamental principle of a mixer. A detailed analysis of this process can

be found in reference [18].
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LO ° RF

Figure 3.2: Block diagram of a double balanced mixer.

In our settings (up-converter) it should provide one RF (Radio Frequency) signal at
the frequency fro — frr, but in the uncalibrated case it leads to two RF signals at
fro £ frr which are 2 times the IF (Intermediate Frequency) apart in the frequency-
space with different powers. We need this mixers to generate modulated pulses at a
high frequency (around 4-6 GHz) to control our qubit. The two mixers we used are

fabricated by Marki Microwave Inc. with the following specifications

Model 1Q-4509 MO07078

RF [Gliz] 1510 9.0 | 4.0 to 8.0

LO |G| 150 9.0 | 4.0 to 8.0

IF [MIlZ] DC-500 | DC-500
Conversion Loss [dB] 5.5 7
Phase Deviation [deg] 4 3
Amplitude Deviation [dB] 0.3 0.3
LO-RF Isolation [dB] 30 22
LO-IF Isolation [dB] 20 20

Table 3.1: Specifications of the [Q-mixers.

The conversion loss is discussed in section [3.3] The phase deviation is a measure for
the imbalance of the relative phase between the signals on the IF-ports, where the
amplitude deviation is just the logarithm of the ratio between the squared amplitudes
on the I and Q channel.
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3.1 The ideal I1Q-mixer

( ) Mixer 1
LO 3dB 3dB
90°-Hybrid 0°-Hybrid

RF
Mixer 2

Q

Figure 3.3: Block diagram of an IQ-mixer.

Figure shows a block diagram of an IQ-mixer. The LO-signal (Local Oscillator)
is split up in the 90 degree hybrid, which are then in phase quadrature. Each of the
mixers multiplies then one of the split signal with one of the IF (I and Q) inputs
which are then added in the Hybrid without any additional phase shift. So, the

output signal at the RF-port can be calculated, by assuming three input signals

LO vro (t) = Aro cos 2mfrot) (3.1)
I : vr (t) = Az (t) cos (2mfrt) (3.2)
Q : vq (t) = Agq (t) cos (2mfot — ¢) (3.3)

The LO-signal with time independent amplitude Aro is first split up into two 90
degree phase shifted signals

0 Aro

= 7 cos (2w frot) (3.4)
vro (t) = Ao cos (2w frot) (3.5)
X fi;; sin 2nfrot) (3.6)
The output of each mixer is given by the product of the LO and IF signals:
ALo
v (t) = wvr- 7 cos (2mfrot) (3.7)
Aro Ag (t
L0 feos (2n (fuo + f1)1) + cos 2 (fuo = )0} (38)
va(t) = wvg- fifg sin (27 fLo t) (3.9)
Aro Aq (1)

= =5 {sin (27 (fro + fo)t — @) +sin (27 (fro — fo)t + #3.10)
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If the two IF signals are in phase quadrature, i.e. ¢ = m/2 with the same frequency
fr = fo = frr and by assuming the same time dependent amplitude, i.e. A;(t) =
Agq (t) the upper sideband at frequency fro + frr vanishes. In the second hybrid, the
signals of the two mixers are combined without any phase shift

vrE (t) =01 (£) + va () = ALO\gf(t) cos (27 (fro — frr)t) (3.11)
We see that the IQ-mixer has then the effect of up-convertingthe IF signals to higher
frequencies without changing its shapes, which means, that the amplitude of the IF-
waveform is just multiplied by the constant factor Aro/v/2 but the phase is still the
same. The sum and difference frequencies, fro £+ frr, are called the sidebands of
the IQ-mixer. The spectra of the input and output signals are shown in the Figure
B4 Notice that in the discussed case, only the signal with a frequency of fro — fir
should be visible at the output, where the upper sideband signal at fro + frr should

vanish. The input frequencies are located at fro and frp.

Power

| N

fLo
fro-fie frotfir

Figure 3.4: Spectra of the up-conversion process.

This behavior of an IQ-mixer is idealised as mentioned before, since there is no loss
of signal and only one sideband should be visible in the considered case and this can
only be achieved by assuming a perfect 90 degree phase shift in the first hybrid and

by an identical mixing process of the two split signals in each mixer.
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3.2 Nonlinearities

A mixer is a nonlinear element since there occurs additional frequencies at the out-

put. Physically, the characteristic voltage-current curve of a Schottky diode can be

modeled as a nonlinear resistor, see Figure which causes the nonlinear behavior

of a mixer.

Current

A

» Voltage

Figure 3.5: V-I characteristics of a Schottky diode.

Every nonlinear component can generate a wide variety of intermodulation disortions

(IMD) and other products of the input frequencies [I§]. In the discussed case in

chapter [3.1] one would therefore see some additional peaks in the spectrum space

which are located at multiples of the IF frequency around the sidebands. In the most

general sense, the output response (v,) of a nonlinear device can be modeled as a

Taylor series in terms of the input signal voltage v;

Vo = Qo + A10; + agv? + CL3U? + ...

where the Taylor coefficients are defiened as

ap = o [0]
o, -

ap = B0, [v; = 0]
9%v,

a2 = 55 [v; = 0]

)

(3.12)

(3.13)
(3.14)

(3.15)

and higher order terms. If ag is the only nonzero coefficient in the Taylor series,

the input signal (AC signal) will be converted into DC. If a; is the only nonzero
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coefficient, one has a linear attenuator (a; < 1) or amplifier (a; > 1). And if a9 is the
only nonzero coefficient, one can achieve mixing signals. Usually, practical devices
have more than one nonzero coefficient.

Now, consider a two-toneinput voltage, with frequencies fi; and fo, i.e.

v; = Vp (cos 27 fit + cos 27 fat) (3.16)

By using the above expansion the output is given by

1
Vo =ag + a1Vpcos2nfit + a1V cos 2w fot + §a2V02 (1 + cosdmfit) (3.17)

(3.18)
(3.19)

1
+ §a2V02 (1 + cos 47 fot) + aaViE cos 27 (fo — f1)t
+ asVicos2m (fi + fo) t+© (v))

where © (U?) is representative for third and higher orders. The output spectrum

consists of harmonics which can be written in the form

m-fi+n-fo (3.20)

with mn=0,41,£2,£3,.... These combinations of the two input frequencies are called
intermodulation products, and the order of a given product is definied as |m| + |n|.
Tabel shows the frequencies of the intermodulation products up to the fourth

order

first order | second order | third order | fourth order
f1 2f1 3f1 411
f2 2f2 3f2 4f2
fox fi 2fo % f1 3fa % f1
foE2f1 2f2+2f1
fo£3f1

Table 3.2: Output frequencies of first to fourth order two-tone intermodulation prod-
ucts, assuming f; << fa.

If fi and fy are far apart, e.g. f1=100 MHz, fo=4.0 GHz, all the entries in table
with higher harmonics of fo can easily filtered out. The only signals which are
located near fo2, are given by fo =m - fi, m > 1, and can’t therefore easily filtered
out. Notice that this additional signals are symmetrically distributed around the
dominant frequency. Physically, the rectification of the LO signal to a DC power
done in the diodes causes the intermodulations. So, the general treatment of the
nonlinearities above just shows the so called small-signal approximationof the diode,

where the voltage applied on a diode consists of a DC bias voltage and a small-signal
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high frequency voltage. One can then expand the current in a Taylor series in terms
of the total voltage applied on the diode around the DC bias voltage. However, in an
IQ-mixer 2 mixers are used, where in every single mixer the LO and an IF signal is
mixed. It is not possible to identify which of the two double balanced mixers cause
which IMD, by just measuring the output spectrum. So, the frequency distribution
of the nonlinearities of the IQ-mixer do not have to be symmetrically.

Figure [3.6| clearly shows the measured IMD’s for the Mixer 1Q-4509. The power
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Figure 3.6: IMD’s due to a high input amplitude (500 mV) at the I/Q ports.
LO: 4.0 GHz, IF: 100 MHz and left Sideband at 3.9 GHz.

of nonlinearities are very large which could be achieved by applying a sinusoidal
waveform on the I and Q port with a high amplitude of 500 mV. The drive level of the
LO was at +16dBm and therefore in its linear regime, which is at the upper limit of the
suggested LO powers (13 to 16 dBm). In this regime, the output voltage of the diodes
is linear in the input power of the LO signal. The peaks at the frequencies 3.8 GHz
and 4.2 GHz are caused by the second order intermodulations, where the additional
signals at 3.7 GHz and 4.3 GHz can be ascribed to the third order nonlinearity of
each single mixer. A detailed analysis of the additional peaks is discussed in a later

section.
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3.3 Mixer losses

The so-called conversion loss summarizes the 3 possible losses in a mixer:
1. mismatch loss
2. parasitic loss
3. junction loss

An important figure of merit is therefore the conversion loss of a mixer, which is
defined as the ratio of available IF input power to the available RF output power,
expressed in dB [18]:

available IF input power

Le =10 log > 0dB (3.21)

available RF output power —

Mismatch losses is a function of the impedance match at the RF and IF ports and
occurs if the mixer port impedance and the source impedance are not matched. The
mismatch loss is the sum of RF and IF port mismatch losses. This is one of the
principal reasons for losses in mixers. [4]

In reality it’s not possible to block all the unwanted leakages (parasitic loss), but
for the up-conversion mixing it’s only the original LO-signal which may disturb the
spectrum since it is only frequency shifted by the much smaller IF from the sidebands.
As shown later the LO leakage can be stashed away by applying a DC-offset to the
I and Q ports. If only one sideband is desired at the output it is necessary that the
signal on the I and ) channel are in phase quadrature with the same time dependent
envelope where the modulating signals must have the same frequency.

Junction losses add noise to the input signals, which will then be diminished. This
kind of loss is a function of the diode’s V-I-curve and is therefore mainly generated

in the mixers. For more details, see reference [4].

3.4 Calibration of the 1Q-mixer

All different losses generate imbalances in the mixing process which can be divided

into three categories:

DC-offsets: They are mainly caused by the 2 double balanced mixers and is a
measure of the unbalance of the IQ-mixer. For an ideal mixer, the DC-offset is zero.
DC-offset defines the IF output voltage when the IQ-mixer is used as a down-converter

and only a LO-signal is applied where the RF-port is terminated in 50 ohms.[16]
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Amplitude imbalance: An ideal IQ-mixer handles the I and the Q signal identi-
cally but one observes a slightly different amplification/attenuation on both channels,

due to unbalances in both hybrids and different conversion losses in the two mixers.

Phase imbalance: These errors are caused by phase unbalances in the 90 degree

hybrid and also occurs by different electrical length.

Taking all this errors into account leads to a correction of the input signals on the I

and Q ports
I vi (t) = (B(t) +e3) K cos(2mfrt) (3.22)
Q" v (1) = (C(t) £ e1) Keg cos(2mfot — (¢ + Ag)) (3.23)

where e and eg are DC-constants, es consider the amplitude imbalance and A¢ takes
into account the phase imbalance. The 3 additional parameters allow to calibrate the
IQ-mixer such that the output at the RF can be describe by equation .

By ignoring the discussed imbalances and just applying 90 degrees (i.e. A¢ = 0) phase
shifted sinusoidal waves on the I and Q channels with identical amplitude (ez = 1)
and abstracting away from the DC-offsets (e; = e3 = 0) the spectrum shows 3 peaks.

Due to the phase- and amplitude imbalances, it’s the main aim to determine A¢ and
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Figure 3.7: Uncalibrated 1Q-mixer with the two sidebans and the LO leakage.
LO: 4.0 GHz, IF: 100 MHz and left Sideband at 3.9 GHz. Notice that the
power of the signals at 4.0 GHz and 4.1 GHz are not the same although
it seems so in this plot. The IMD’s are out of range.

eo which then minimize the right sideband at fro + frr, Fig. a). But leakage of
the LO signal is still visible and can be eliminated by the DC-offsets on the I/Q ports.
This will vanish the signal at the LO-frequency which is exactly located between the

two sidebands. A calibrated IQ-mixer should therefore only demonstrate one peak

42



on the spectrum analyzer, as shown in Figure b). The amplitude and quadrature
phase deviation of any IQ-mixer necessitate a calibration of the mixer at a certain

LO and IF frequency/amplitude.
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Figure 3.8: a) After the phase and amplitude calibration (e; = 1.053 +0.001, A¢ =
(—=5.7£0.1) deg). b) Final calibration, including applied DC-offsets (e; =
(3.3+0.1) mV, e3 = (—17.6 £0.1) mV). The IMD’s are out of range but
still existing.
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3.5 Automation of the calibration

As the calibration coefficients are frequency dependent it is useful to automate the
calibration routine. This was realized by a Labview-Program which do this phase and
amplitude calibration automated.

By fixing a sinusoidal signal on I with a certain amplitude, one varies the amplitude
and phase of the sinusoidal waveform on the Q channel by simultaneously measuring
the power of the upper sideband, which can be done with a spectrum analyzer (Agilent
E4407B). One starts with the same Q-amplitude as on the Q channel and sweeps the
relative phase around 90 degrees until a minimum power on the upper sideband has
been found. In a next step, this minimum-phase is fixed and the Q-amplitude is
swept until again a minimum in power has been found. This algorithm stops if three
times after another the same minimum phase and amplitude was detected on the Q

channel. Figure [3.9] demonstrates this algorithm visually.

Q-Amplitude
A

[I-AL I+ Al —

L

» rel. phase

:__e- b
:;e- [ ———

|
[90°-A$,90°+ Ad]

Figure 3.9: Algorithm of the Labview-program to find the minimum phase and am-
plitude at a fixed waveform on the I channel.

The waveforms in the usual experiments were generated by Mathematica as pattern
files which were then uploaded onto an arbitrary waveform generator (AWG) and the
waveform is output using a digital to analog converter (DAC). This is an intricate
way for the mixer calibration as a lot of different sinusoidal waveforms are needed,
depending on the accuracy. A SubVI now generates the sinusoidal waves with modi-
fiable amplitude and phase, which save time and computer memory given that only

the currently required waveforms are directly generated and sent to the AWG.
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Figure [3.10] shows a typical plot, where only one strong minimum is visible if a large

range of amplitudes and relative phases on the Q channel is scanned.

—45dBm|

Amplitude on Q [mV]

-94dBm

80 82 84 86 88 90

Relative phase [deg]

Figure 3.10: Typical calibration plot, where blue represent a low power at the right
sideband (3.1 GHz) and red a high one. LO: 3.0 GHz, IF: 100 MHz

A LO-frequency of 3.0 GHz was chosen with a power of +16 dBm and the I-
channel settings are the following: amplitude = 85 mV, IF = 100 MHz. This
yields a strong minimum for the Q-channel: phase = (85.0 +0.1)° and amplitude =
(87.38 £0.17)mV. The phase imbalance is therefore A¢ = (5.0 £ 0.1)° and the
amplitude imbalance e = 1.028.
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The next two plots shows a cross-section through the minimum point in both direc-
tion, where the power is now given in a linear scale. Notice the smaller resolution in
amplitude compared to the phase-resolution. Anyway, the phase and amplitude are

sensitive at the minimum point.
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Figure 3.11: (a) Cross-section in the phase direction. (b) Cross-section in the ampli-
tude direction.

This calibration can be repeated for different amplitudes on one channel (here: I)
by implementing a loop in the LabView-VI. To get a significant statistic, this has be
done for 187 different amplitudes up to 400 mV. The IF is again 100 MHz and the
LO is chosen to be at 4 GHz with +16 dBm power. By sweeping now the amplitude
of channel I and detecting the calibrated amplitude of the other IF-input amplitude
yields a linear relationship, Figure left. Notice that the phase imbalance is al-

ready corrected.
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Figure 3.12: a) Calibration data of the amplitudes yields a linear relation.

The relative amplitude imbalance is defined as (Vg — Vr)/Vr, and should be near 0.
For low amplitudes up to 150 mV on the I port, the imbalance increases, but decreases
for larger amplitudes than 150 mV, see Figure [3.12| right. The deviation from point
to point for low amplitudes is also bigger than for I-amplitudes > 150 mV.
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There is no obvious dependence between the amplitude of I versus the calibrated

phase which says that A¢ is largely independent of the I-amplitude. The different

relative phases are distributed in a small range (between 84.1° and 85.0°)
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Figure 3.13: (a) Amplitude sweep versus the calibrated phase at which the right side-
band (4.1 GHz) power is indistinguishable from the noise level. (b)
Corresponding histogram.

The discrete distribution along the vertical axis has to do with the accuracy of the
phase which is £0.1°. This choice has to do with the sampling rate of the AWG: 1
GS/s, and the relative phase between the two channels were changed around 90 deg
by +5°, so there are 100 digital points per period for a 100 MHz sinusoidal signal
and therefore a resolution of 10°/100 = 0.1° was chosen. The question is now, if it is
possible to fix a relative phase for a large range of I-Amplitudes and to use a linear
relation between the I- and Q-Amplitudes, since the the calibration has a sensitive
minimum, see Figure To show this, the mixer was phase-calibrated at a fixed
I and Q amplitude of V,, = 500mV (V,, means the peak-to-peak voltage of the
sinusoidal waveform, i.e. 2 times the amplitude), with the calibration parameters:
¢+ Agp =90° — 9.2°, DC-offset of Q: (—2.24+0.1) mV and of

I: (5.54+0.1) mV. The amplitude imbalance is given by e2=500/482. The LO signal
has a frequency of 5.0 GHz and a power of 16 dBm, where the M07078-mixer was
used.

To analyse the behavior of a fixed calibrated phase for different IF-amplitudes, one

has to define the Rejection ratios

Carrier Rejection: The amount of carrier (=LO-signal) measured in dB below the
desired output signal when a coherent signal of equal amplitude and 90° phase dif-
ference is applied to the I and Q ports. This definition can be used for the calibrated

and also for the uncalibrated case.
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Sideband Rejection: The amount of undesired sideband measured in dB below

the desired sideband under the same conditions as the carrier rejection measurement

[15].
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Figure 3.14: Definition of the different rejections.

Figure a) presents the measured rejection ratios. The point of calibration was

chosen arbitrary to be at V},, = 500 mV, because the maximum output voltage of the
AWG is 1 Volt. It’s to be expected that the largest rejection is to be found at the

calibration point, i.e. V},, = 500mV , but this isn’t true for the carrier rejection. This

can be explained by the accuracy of the DC-offsets which were in this case £0.1 mV,

since another DC supply was used for this experiment.

For amplitudes larger than the calibration point, the carrier rejection remain still at

a high level (> 40dB) where the sideband rejection is quite sensitive of increasing

amplitudes.
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Figure 3.15: (a) Blue: Carrier Rejection, Red: Sideband Rejection. (b) Left side-
band amplitude versus the Input amplitude on the IF signals. The line
shows a linear interpolation of the first 13 points. For large amplitudes
a deviation from the linear correlation is visible.
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For this large amplitude range it’s also meaningful to take the IMD’s into account.
The rejection for the IMD’s is again the relation between the wanted signal at 3.9
GHz and the nonlinearities which are multiplies of 100 MHz apart (Figure [3.16)).
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Figure 3.16: Rejection of the nonlinearities in the calibrated case.

Is’s obvious that the rejection ratios of the two intermodulation distortions get smaller
for increasing amplitudes of the IF signals. But even for large amplitudes, the side-
band rejection (Figure a)) is much smaller than the rejection of the IMD and

would therefore have a bigger influence on the desired output.

3.6 Calibrated versus uncalibrated 1Q-mixer

In this section the measurements are done with the M07078. It’s interesting to see the
difference between the calibrated and the uncalibrated case of the IQ-mixer. Firstly,
measuring the sideband rejection for the two cases shows the big difference between
them. The LO frequency was set at 4.0 GHz with +16 dBm power, then a sinusoidal
waveform was applied at the I and Q ports, where the amplitude and phase calibration
was arranged for every point to obtain the maximum signal on the lower sideband at
3.9 GHz. The DC-offset were set at a Q-Amplitude of 200 mV and never changed
again for other amplitudes: Q-Offset = (20.1 £0.2) mV and I-Offset = (37.7 £ 0.2)
mV.Figure ) shows the measured sideband rejection for the calibrated and the

uncalibrated mixer.
The building up effect of the red curve in Figure a) for small input amplitudes

(<200 mV) can be explained by the small power of the lower sideband peak at this

voltage of the I and @ channel. But for higher amplitudes the difference is enormous
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Figure 3.17: a) Sideband rejection of the calibrated (red) and uncalibrated (blue)
IQ-mixer. b) Carrier Rejection

(about 25 dB) between the two curves. This big difference can’t be observe for the
carrier rejection, where the two lines are almost the same and vary in a small range
of around 8 dB, but there is no obvious dependence of the carrier rejection on the
amplitude.

As mentioned the calibration has be done for every change of the IF-amplitudes.
Once again a linear relation between the amplitudes on the I and Q is observable,
Figure a), but the phase-calibration does not look the same for small amplitudes

(<150 mV) as the other IQ-mixer, Figure b) and a). Notice that for larger
amplitudes the relative phase still decrease.
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Figure 3.18: a) Amplitude-calibration, solid line shows a linear interpolation. b)
Phase-calibration, no obvious dependence on the amplitude.
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To do sideband transitions on the qubit, high drive amplitudes are required, since
the |g,0) — |e, 1) transition can only be driven with two photons, as discussed in the
section about the sideband transitions. So the pulses generated with the IQ-mixer
need a high power, although they will be amplified after the generation. Anyway, it is
useful to see an application of the calibration process. Mostly, Square- and Gaussian
pulses are needed for the experiments which is the reason to apply the calibration on
these shapes. These pulses were generated in a SubVI of Labview by multiplying the
required envelope with a sinusoidal waveform of a given IF-frequency. The generated
table was then directly sent via LAN to the arbitrary waveform generator (AWG)
Agilent N8242A , with 1.25 GS/s and 10 Bit resolution. For the uncalibrated case,
these two pulses have the same envelope (Ar(t) = Ag(t)) but the carrier wave are
90° phase shifted without considering the phase (A¢) and amplitude imbalances (e2),
but with the same IF-frequency. One will therefore also see the LO-leakage and the
upper sideband signal in the frequency space. It’s therefore necessary to determine
the imbalances of the phase and the amplitude. To do a calibrated pulse, one just
applies the single sinusoidal (time independent envelope) waves on each IF-port and
does the calibration on them, which then yields the phase and amplitude correction
terms. The calibration also includes the additional DC-offsets on the IF-ports to get
rid of the leakage (LO-signal). These carrier waves can then be multiplied with the
desired envelope. The pulses were then led to the I and Q port of the mixer via two
SMA-cables. An Analog Signal Generator (Agilent E8257D) provide the LO-signal
(6.0 GHz at +16 dBm power).

To record enough points, a 100 ns long Gaussian pulse was chosen, for a sampling rate
of 1.2 GS/s, we get therefore a pulse form built by 120 points. The left Figure below
shows the uncalibrated (blue) and the calibrated (red) version of the pulse shape,
where the red line is vertically shifted around -50 mV for better comparison. At a
this large scale they almost look the same, but by zooming-in, a 200 MHz oscillation
is visible at the uncalibrated measurement, which is caused by the upper sideband

since the two sidebands are 200 MHz apart from each other.
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Figure 3.19: a) 100 ns Gaussian pulses, blue: uncalibrated, red: calibrated with a
-50 mV offset for better visibility. b) 200 MHz oscillations on the uncal-
ibrated pulse.

An other important pulse is the square one. A similar result can be observed, but
there is also an oscillation at the beginning at the end of the pulse, see Figure [3.21
which can be explained by the finite spectrum of the AWG to generate the pulse, since
it can’t use an infinity range of frequencies. Figure shows qualitatively the effect of
a finite frequency range. Mathematically, a finite range was taken into account for
the inverse Fourier transformation of a sinc-function, since the sinc-function is the

Fourier transform of a square pulse. And the asymmetric behavior of this additional
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Figure 3.20: a) 100 ns Square pulses, blue: uncalibrated, red: calibrated. b) 200 MHz
and 100 MHz oscillations on the uncalibrated pulse.

oscillation which only occurs at the beginning and at the end of the pulse can be
explained by a low-pass filter, due to the SMA cables which acts as a low-pass filter.
Figure b) shows qualitatively the effect of a SMA cable on a square pulse, which

can therefore explain the asymmetric pulse shape of the measured square pulse.
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Figure 3.21: The effect of a finite frequency range in the inverse Fourier transforma-
tion of a sinh-function.

3.7 One-Qubit Tomography

Figure shows a schematic representation of the experimental setup. A sample
with two qubits installed inside a dilution refrigerator at a temperature of around
15 mK, with microwaves for control and readout generated at room temperature
was used for experiments. In my experiment only Transmon A was use, where the
other one was tuned to a small transition (|gg) — |ep)) frequency, such that the two
Transmons won’t interfere each other. The pulses are generated with an arbitrary
waveform generator with 1 ns resolution which is connected to the IF-ports of the
IQ-mixer and then upconverted to the desired transition frequency. The RF signals
are filtered and attenuated several times to minimize thermal noise. The DC signals
are low-pass filtered with stainless steel powder filters at different temperature stages
[23]. The magnetic flux, which tunes the qubits is generated by two different coils.
One of the coils has an inner diameter of 4 mm and couples in good approximation
to only one qubit, where the other coil has a diameter of 16 mm and couples to
both qubits. Adjusting the current of both coils gives the possibility to tune the
flux through the two qubits individually. Operations on the qubits are done by using
charge gate lines. The gate line is a wave guide, which is capacitively coupled to the
reservoir of one of the qubit which gives the opportunity to manipulate the qubit
individually. Each gate line is then connected to a microwave generator. Between the
generator and the gate line a mixer is implemented. The mixer is used to modulate

the amplitude and the phase of the microwave pulse [14].
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Figure 3.22: The graphic shows schematically the measurement and control circuitry.
The signal generation for measurement and control pulses are pictured
in the top left corner and the readout and calibration output are placed
in the top right corner. The different temperature stages are indicated
by color. The graphic shows all filters, attenuators and amplifiers. The
two coils which have been used for individual detuning of the qubits are
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The pulse sequence of the one-qubit tomography is shown in Figure [3.23] where first
a 15 ns preparation pulse is applied to initialize the qubit state and after 5 ns one
applies the tomography pulses which are square pulses on the I and Q channel with
different amplitudes. To readout the qubit state, a pulsed measurement was done
at the end of the sequence. The advantage of pulsed measurement compared to the
continuous one, which means that the resonator has always been populated with
photons (at the resonator frequency) during the whole sequence, is that no AC-Stark
shift occurs. On the other hand, continuous measurement has the clear advantage
that one can observe the qubit before, while and right after applying the operation

pulses.

tomography pulses
prep. pulse 30 ns

15 ns

I-Amplitude

measurement pulse

Q-Amplitude

Figure 3.23: The pulse sequence starts with a preparation pulse of 15 ns length fol-
lowed by the tomography pulses with different amplitudes and at the end
a measurement pulse to determine the population of the excited state of
the qubit

By plotting the population of the excited state in a 2 dimensional graphic in which
the Q- and I-amplitudes were changed independently on each axis one got the 2
dimensional tomography of the qubit. It no preparation pulse is applied, the initial
state of the qubit is the ground state, a m,-pulse initialize the qubit into the excited
state. To reach the superposition states one just applies a 7/2; ,-pulse, the rotation
around the x-axis yields the |0) + i|1) state, where the rotation around the y-axis
prepares the qubit in the |0) 4 |1) state. Figures till show the results of
this 4 measurements and compare it with its corresponding simulation which was just
done by calculating the population of the excited state if one performs a manipulation
described by H = h) 0, + h{)yo,. The power of the RF generator has been set to a
value of -20 dBm at a frequency of 6.45 GHz. The measurement have been averaged
655350 times. The transition frequency for the qubit was set to 4.6 GHz, which
corresponds to a detuning of 1.85 GHz. The pulse length was chosen to be 30 ns.
One can clearly see the concentric circles which is an indication that a full phase
and amplitude control is possible on the IQ-mixer, since the amplitude and phase are

independent of each other, otherwise one would see ellipses.
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Figure 3.24: Initial state: ground state. The graphics show the population of the
excited state, where yellow is 1 and blue is 0. The right hand side is a
simulation and the left hand side is the measurement.
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Figure 3.25: Initial state: excited state. The graphics show the population of the
excited state, where yellow is 1 and blue is 0. The right hand side is a
simulation and the left hand side is the measurement.
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Figure 3.26: Initial state: superposition state |0) + |1). The graphics show the pop-
ulation of the excited state, where yellow is 1 and blue is 0. The right
hand side is a simulation and the left hand side is the measurement.
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Figure 3.27: Initial state: superposition state |0) +i|1). The graphics show the pop-
ulation of the excited state, where yellow is 1 and blue is 0. The right
hand side is a simulation and the right hand side is the measurement.
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4 Sideband transitions

The new setup used to drive the qubit sideband transition, which needs a high power
signal, is shown in Fig[fI] The upper IQ-mixer can be used for direct qubit tran-
sitions, where the 3 dB attenuator prevents reflections between the mixer and the
splitter. On the lower setup, an additional amplifier with a gain of ~30 dB has been
installed to reach the desired output power for qubit sideband transitions. A splitter

at the output allows to install the spectrum analyzer to calibrate the IQ-mixers.

. Lo:signa K
| Generator |
| |
| |
| |
| . |
| Mixer |
| AWG CH2—> MO07078 [«—AWG CH1
| 0731 |
| |
| |
! |
Qubit | |
©
I - I
| . |
o |
e 1
Splitter [« Splitter
R —— ——— ]
¥ £
Spectrum Amplifier
Analyzer S/N:
1398404

Mixer
AWG CH4 —> 1IQ4509MXP [«—AWG CH3
0836

LO: Signal
e _______Generator ____ __ !

— [-3 dB]

Figure 4.1: Final Setup for sideband transition (green dashed box) and single qubit
drive (red dashed box). Channel 1/3 are connected to the I-port of the
mixer, and channel 2/4 to the Q-port. The additional attenuators of 3
dB should avoid reflections.
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The amplifiers are manufactured by MITEQ N.Y.and have a gain between 28 dB and
31 dB, depending on the frequency. The test result of the AFS3-00101200-40-20P-
4(SN: 1398404) is presented here. A power supply was applied to the amplifier with
a DC-voltage of +15 V (current: 263 mA) and the frequency range of the incoming
signal is given by (100-12000) MHz. An important Figure Of Merit (FOM) is the 1
dB compression point which defines the output level at which the amplifier’s gain is 1
dB less than the small signal gain (linear behavior), or is compressed by 1 dB. For the
tested device this point is reached when the output power is +20 dBm (datasheet).

It’s quite important to heat up the amplifier (=~ 10 minutes), since the amplification
is about 2 dB larger in the cold case, but when the amplifier has reached its working
temperature the gain is not time dependent anymore. The gain over the whole fre-

quency range was measured, see Fig. Up to 11 GHz the amplifier works in its

32~

i, o,
31: M

i S
S /5
- S

25" M L L L L R

Gain [dB]

Frequency [GHz]

Figure 4.2: Gain depending on the frequency. Blue: Cold case, Red: Warmed up by
bias.

predicted gain range, but above this frequncy the gain is around 1 dB smaller. Since
we later need a range of 3-6 GHz it doesn’t matter. To check the linear regime of the
amplifier one has to measure the output power for different input powers. Near the

20 dBm output the nonlinear behavior should be visible.
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The input signal has a frequency of 3.0 GHz. Extracted from the previous measure-

ment the gain is 27.9 dB at this frequency. A linear fit up to an input power of

-21 dBm is plotted (solid green line), which clearly indicates the nonlinearity of the

amplifier near 20 dBm (output). The compression point can therefore be extracted

depending on the input power: (-6.5+0.5) dBm input power. For the used frequency
of 3.0 GHz, the output power is (21.4£0.5) dBm.

Output power [dBm]

-10f
-20/

—30L

20}

10}

o

//

~

—

-50

-40

-30 -20 -10

Input power [dBm]

Figure 4.3: Output versus Input power. Solid line is a linear interpolation of the low
power regime.

An other important fact is that a +20 dBm output power has been reached with this

amplifier. The next figure illustrates a more accurate way to find the compression

point using the same data. Here, the gain is plotted versus the input power. If the

low-power gain is compressed by 1 dB one has found the compression point.
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Figure 4.4: More accurate way to find the compression point.

To show the operability of the new setup, the qubit sideband Rabi oscillations has

60



been measured. The bare fundamental resonant frequency of the coplanar waveguide
resonator is v, = 6.445 GHz. For the experiment, the qubit was tuned to a transition
frequency of w,/2m = 4.549 GHz, well into the dispersive limit. At sufficient drive
amplitude, time resolved Rabi oscillations are observed on the blue sideband transi-
tion by applying microwave square pulses of fixed amplitude and varying the length.
The qubit excited state population is then measured by applying a microwave pulse
to the resonator after the Rabi-pulse. A m-pulse onto the qubit at the end allows
to normalize the population. Figure [4.5] shows the extracted excited state popula-
tion for the transition, average of 6.6 x 10% repetitions. The blue data points show
the results obtained when the system is initially in its ground state |g,0), the solid
line shows the master equation simulation of the time evolution, using values for the
qubit relaxation rate /2w = 0.24 MHz and photon decay rate x/2m = 1.95 MHz.
The frequency of the Rabi oscillation is given by 6.95 MHz as a fit parameter. At
long times the qubit excited state population tends to a steady state value, which can
be explained by looking at the two different decay channels in the system as shown
in the inset. Since the photon decay rate is much larger than the qubit relaxation
rate (k >> 1), the decay channel with the transition |e,1) — |e, 0) is favored which

therefore results in a build up population of the population in the state |e, 0).

|e) population

00 01 02 03 04 05
Pulse length [us]

Figure 4.5: Blue sideband transition, done with square pulses of length between 0 ns
and 200 ns. Qubit was tuned to a transition frequency of 4.549 GHz.
Blue points correspond to the time resolved measurement of the excited
state population of the qubit as a function of the pulse length. Solid blue
line shows the master equation simulations. Inset: Level diagram showing
competing drive and decay rates in the system.

To show full control of the phase of the qubit, we changed the phase of the pulse by
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m/2 after 35 ns. Notice that 2 photons are involved in the sideband transitions such
that the total phase shift is 7. As one can see in Figure[£.6] there is a good agreement
with the theoretical prediction. The blue points and solid line is again the response
of a Rabi pulse with different length and the red points and solid line correspond to
a total phase shift of 7 after 35 ns.

|e) population

0.0 0.1 0.2 0.3 0.4 0.5
Pulse length [us]

Figure 4.6: Blue sideband transition, done with square pulses of length between 0 ns
and 500 ns. Qubit was tuned to a transition frequency of 4.549 GHz. Blue
points correspond to the measurement of the sideband Rabi pulses. Red
points: By changing the total phase around 7 after 35 ns, the response
function is mirrored. Solid lines shows the theoretical prediction.

In a second experiment, we applied two 7/2-pulses with a certain delay time (5 ns
and 20 ns), where the phase of the second pulse is swept from 0 to 27 relative to
the first pulse. Each pulse has a length of 35 ns. During the pulses, the frequency
of the qubit is shifted due to the Stark effect, such that in the rotating frame of the
bare qubit frequency (during the delay time) the corresponding vector in the Bloch
sphere starts rotating with the difference frequency, the angle of the rotation depends
linearly on the delay time between the pulses. The second 7 /2-pulse acts then on a
rotated vector such that the projection on the z-axis is different. The red curve in
Figure [4.7| shows a linear fit to the data points. Notice that 2 photons are involved in
the transition, such that one can see 2 full oscillations in figure [£.7] when the phase

of one photon is changed between 0 and 360 degrees.
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Figure 4.7: Left: Excited state population by applying 2 7 /2-pulses with a delay time
of 5 ns, where the phase of the second pulse is swept relative to the first
one. Each pulse has a length of 35 ns. Right: Delay time between the
two pulses is 20 ns. Red curve is a sinusoidal fit.
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5 Conclusion

The main goal of this thesis was the generation of amplitude and phase controlled
microwave pulses for qubit manipulation, which could be reached by calibrating an
IQ-mixer. The full phase and amplitude control was demonstrated in different exper-
iments. Furthermore, a new setup for sideband-operations was installed and tested
by demonstrating the blue-sideband transition |g,0) — |g,1).

The task of the [Q-mixer in this work was to upconvert the envelope of a pulse, gen-
erated in an arbitrary waveform generator with a low carrier frequency, to a pulse
with a high carrier frequency. But the mixing process itself generates unwanted
nonlinearities (so-called intermodulation distortions) which is due to the non-linear
current-voltage-dependence of a Schottky-diode, the fundamental circuit element of
every mixer. Beside this nonlinearites, one also get a signal at the output port which
has the frequency corresponding to the LO input signal, but by applying two DC
voltages on the two [F-ports one can minimize this disturbing signal. Another signal
results from the imbalances of the amplitudes and relative phase of the IF-signals
which is then visible as an additional signal with a frequency of fro + frr, but also
this signal can be minimized by an accurate phase and amplitude calibration of the
mixer. A Labview program has been written to automate this amplitude and phase
calibration for different amplitudes on each IF-channel. The phase- and amplitude
imbalances were measured. A fixed relative phase and a constant amplitude correc-
tion term can take into account the imbalances for different amplitudes on the I and
Q port, but only if the IF- and the LO-frequencies are unchanged. The best result of
the calibration can be achieved if the peak-to-peak voltages of the IF-ports are below
600 mV to avoid the nonlinear regime of the IQ-mixer.

The two dimensional one-qubit-tomography was used to show that the phase and
amplitude of the square-pulses could be changed independently with four different
initial qubit states. Also the new setup with additional high-gain amplifiers could
demonstrate a phase-sensitive measurements onto the blue-sideband transition which

are all in good agreement with the theoretical prediction.
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