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To read our E-mail, how mean
of the spies and their quantum machine;
Be comforted though,
they do not yet know
how to factorize twelve or fifteen.

Volker Strassen, 1998



Abstract

Quantum information processing is a concept which uses the laws of quantum mechanics
to process and transport data in a fundamentally more efficient way than classical in-
formation technology. One of the schemes proposed to achieve reliable coherent control
of quantum devices and to overcome decoherence effects, the biggest obstacle on the
way towards practical implementations of quantum information processing, is based on
geometric effects. The so-called geometric phase is a property of quantal evolution which
only depends on the trajectory followed by the system in the space of quantum states and
not on the dynamical properties of the evolution – its time scale and the eigenenergies
of the underlying Hamiltonian. In this thesis, the geometric phase of an adiabatically
manipulated harmonic oscillator realized as a transmission line resonator in a supercon-
ducting circuit is measured. We observe the expected scaling of the geometric phase
with the square of the drive signal amplitude, its dependence on the direction and the
shape of the path traced by the quantum state and its insensitivity to the length of the
adiabatic sequence. We investigate dephasing effects caused by deviations from the ideal
adiabatic regime. The results of our measurements are compared with the theoretical
predictions and good quantitative agreements is found. In light of our results, a har-
monic oscillator, a well-understood simple system, appears to be a convenient tool for
studying the geometric phase and its potential use for quantum information processing.
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1 INTRODUCTION

1 Introduction

The theoretical concept of quantum computation emerged almost three decades ago
when Richard P. Feynman [1] noted that general quantum systems cannot be efficiently
simulated on classical computers. He pointed out that a new kind of computer, itself
quantum mechanical in nature, is much better suited for simulating other quantum
systems. This idea served as a direct evidence that there are certain computational
tasks, at least in the field of quantum simulations, for which a suitable quantum computer
outperforms a classical one.

Just a few years after Feynman, David Deutsch [2] came up with the concept of a univer-
sal quantum computer and showed that it is indeed computationally more powerful than
its classical counterpart – the famous Turing machine. His quantum computer architec-
ture operating with two-state quantum systems as elementary carriers of information,
commonly known as qubits, has proven to be very convenient thanks to its similarity
to the classical model of computation. This similarity makes it particularly easy to see
that a quantum computer can simulate a classical one. The crucial aspect of efficient
quantum computation is that a qubit can exist not only in its two basis states but also in
their arbitrary linear superposition. This means that a quantum computer can process
multiple inputs at the same time, thus allowing certain tasks to be solved significantly
faster than on a classical computer.

Since Deutsch’s pioneering theoretical work, a range of quantum algorithms have been
found that offer more efficient solutions than classical ones for many concrete computa-
tional problems unrelated to simulating quantum mechanics. Some of the more famous
examples are the Deutsch-Jozsa algorithm [3], Grover’s search algorithm [4] and Shor’s
factoring algorithm [5]. The latter is widely known thanks to its serious implications for
cryptography.

A natural set of requirements that a physical system has to meet to realize quantum
computation has been formulated by David P. DiVincenzo [6]. These criteria are: the
existence of well-defined qubits, the possibility to initialize them in a pure quantum
state, manipulate them unitarily by a universal set of quantum gates and measure the
state of individual qubits. Also, the coherence time of the system needs to be long com-
pared to the typical operation time. In the past two decades, several different physical
implementations of quantum computation [7] that satisfy some or all of the DiVincenzo
criteria have been proposed and experimentally tested. Examples are trapped ions [8],
nuclear spins inside organic molecules [9], semiconducting quantum dots [10] and super-
conducting qubits [11].

The latter approach is currently developed at the Quantum Device Lab at ETH Zurich.
Quantum bits based on superconducting electrical circuits are well controllable [12] and
exhibit relatively long coherence times. They can be easily coupled via microwave trans-
mission line resonators [13] which also serve as an efficient read-out channel [14]. The
interactions between the qubits and photons mediating the coupling are described by
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1 INTRODUCTION

the theory of circuit quantum electrodynamics. Superconducting circuits are therefore
a promising candidate for quantum computation and considerable effort is currently
devoted to their study and further development.

Significant effort is directed towards solving one of the big problems inevitably facing
any quantum device – the loss of quantum coherence due to dissipation and dephasing
processes. These effects can be caused by interactions of the quantum system with its
environment or by fluctuations of the control parameters used to manipulate the device.
One interesting possibility to deal with the latter is offered by the concept of geometric
quantum computation. It is based on the fact that a quantum state tracing out a given
path in the projective Hilbert space acquires a complex phase which contains a geometric
contribution – a part of the total phase which does not depend on dynamical quantities
such as energy and time but only on the path traversed by the state [15]. Consequently,
qubit operations utilizing the geometric rather than the dynamical phase are believed
to be less susceptible to noise in their control parameters. Apart from its potential
practical application, the geometric phase is also interesting from the theory point of
view because of its intriguing connections with differential geometry [16]. Recently, the
geometric phase has been studied experimentally in superconducting qubits [17, 18].

Another simple quantum system in which geometric effects can be observed and in-
vestigated is the harmonic oscillator whose exact integrability allows us to study the
geometric phase analytically.

The use of the geometric phase of a harmonic oscillator for the realization of quantum
gates has been studied theoretically [19, 20] and demonstrated experimentally in trapped
ion qubits [21]. In the present work, we experimentally observe the geometric phase of an
adiabatically manipulated harmonic oscillator in a superconducting circuit. We make
use of the circuit QED setup – a microwave resonator coupled to a superconducting
qubit – in the so-called dispersive regime. In this way, the resonator can be treated as
a harmonic oscillator with a frequency depending on the state of the qubit. This allows
us to measure the difference between the geometric phases for the two different resonator
frequencies in a simple interference experiment.

A theoretical description of the measurement as well as a presentation and discussion of
its results are the main aims of this thesis. An introduction into superconducting circuits
used for quantum information processing together with a general theoretical overview
of the geometric phase is given in Sections 2 and 3. Section 4 presents a more specific
theoretical description of the geometric phase for the circuit QED system used in our
experiment. Section 5 comprises a description of the experimental setup and methods,
the obtained results and their discussion.
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2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

2 Superconducting qubits and circuit QED

2.1 Superconducting qubits

Superconductivity in metals, a remarkable phenomenon where at sufficiently low tem-
peratures a material becomes a perfect electrical conductor, is caused by condensation
of electrons into bosonic Cooper pairs – two-particle bound states held together by
a phonon-mediated attractive interaction [22]. The fact that charge carriers in a super-
conductor macroscopically occupy a single quantum ground state allows superconducting
circuits to exhibit quantum mechanical properties on a much larger scale than most other
systems (µm as opposed to nm scale of quantum dots or sub-nm scale of trapped ions).

The classical passive electronic components alone, capacitors and inductors, cannot con-
stitute a non-trivial quantum system because of their linearity. Any circuit composed
solely of these linear components is equivalent to a system of harmonic oscillators. To
create an anharmonic system usable for quantum computation, a non-linear element is
needed. This can be provided by incorporating a Josephson junction into the circuit.

2.1.1 Josephson junctions

As predicted theoretically by B. D. Josephson [23], electric current can flow through
a thin insulating junction separating two superconductors due to quantum tunneling of
Cooper pairs. This tunneling current I depends on the phase difference ∆ϕ between
the macroscopic wave function of the two superconductors which is in turn related to
the voltage V across the junction. The non-linear equations describing the electrical
properties of a Josephson junction are [22]

I = Ic sin∆ϕ, (1a)

∆ϕ̇ =
2πV

Φ0
, (1b)

where the so-called critical current Ic is a parameter of the junction and Φ0 = h/2e
is the magnetic flux quantum. The two equations imply the following direct relation
between the current and the voltage:

İ =
2πV

Φ0

√

I2c − I2.

This means that a Josephson junction can be viewed as a non-linear inductor with
a current-dependent inductance L = Φ0/2π

√

I2c − I2. The energy of the junction is
given by

E =

∫

V I dt =

∫
Φ0Ic
2π

sin∆ϕd∆ϕ = −Φ0Ic
2π

cos∆ϕ. (2)

The quantity Φ0Ic/2π is usually called Josephson energy of the junction and denoted by
EJ .

3



2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

The Josephson junction as described above is obviously a highly idealized concept. Real
junctions can possess additional non-zero conductance, inductance or capacitance. How-
ever, it turns out that the first two quantities can be indeed neglected in most cases and
a real Josephson junction can be quite accurately modelled as an ideal junction with an
additional capacitance connected in parallel (see Fig. 1a).

a) b)

EJ , CJ EJ

CJ=

EJ1 EJ2

Φ

EJ(Φ)

=

Figure 1: Equivalent circuits for a real and a split Josephson junction. (a) A real Josephson junction
(commonly represented in circuit diagrams by a crossed square) can be described as an ideal junction
(represented by a cross) characterised by its Josephson energy EJ and a parallel capacitance CJ connected
in parallel. (b) A split Josephson junction is equivalent to a simple junction with a variable Josephson
energy depending on the magnetic flux Φ through the loop.

It can be easily shown that two junctions with Josephson energies EJ1 and EJ2 connected
in parallel – the so-called split Josephson junction – are equivalent to a single junction
with a Josephson energy which depends on the magnetic flux through the loop (see
Fig. 1b). The phase differences across the junctions are related to the flux by [22]
∆ϕ1 −∆ϕ2 = 2πΦ/Φ0. This together with Eqs. (1) implies that the relations between
the current, the phase difference and the voltage for the split junction are of the same
form as Eqs. (1) with

Ic =
√

I2c1 + I2c2 + 2Ic1Ic2 cos(2πΦ/Φ0),

∆ϕ =
1

2
(∆ϕ1 +∆ϕ2) + arg(Ic1e

iπΦ/Φ0 + Ic2e
−iπΦ/Φ0).

This configuration of two junctions can therefore be conveniently used to tune the Joseph-
son energy by an externally applied magnetic field.

2.1.2 Quantization of a circuit – Cooper pair box

The procedure of quantizing the circuit is rather straightforward (see e.g. [24]). After
expressing the energy of the system in terms of the wave function phases ϕi and numbers
ni of Cooper pairs in all disconnected parts of the circuit, one replaces these quantities
by operators to obtain the quantum-mechanical Hamiltonian and imposes the canonical
commutation relations

[n̂i, ϕ̂j ] = iδij

for each pair of indices i, j. It is noteworthy that the energy term Ĥij
J deduced from

Eq. (2) that corresponds to a Josephson junction between superconducting islands i and
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2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

j, when written in terms of ϕ̂i and ϕ̂j , can be expressed as a sum of two operators Ĥij
J± =

EJe
±i(ϕ̂i−ϕ̂j)/2. These satisfy [n̂i, Ĥ

ij
J±] = ∓Ĥij

J± and [n̂j , Ĥ
ij
J±] = ±Ĥij

J±, reminiscent of

the commutation relations [â†â, â] = −â and [â†â, â†] = â† of creation and annihilation
operators. They can therefore be very naturally interpreted as representing the process
of one Cooper pair tunneling through the junction.

There are several widely used types of superconducting qubits (see Fig. 2). They are
usually classified according to the macroscopic quantity which is most relevant to in-
teractions and readout of the qubit. Examples include the flux qubit consisting of
a superconducting ring divided by one or three Josephson junction [25], the phase qubit
which is essentially a single current-biased junction [26] and the Cooper pair box qubit
in which tunneling of charge carriers between a reservoir and a superconducting island
is controlled by a bias voltage [24].

a) b) c)

Φ I Vg

EJ , CJ

Cg Qg

Figure 2: Types of superconducting qubits. Circuit diagrams of (a) a flux qubit, (b) a phase qubit and
(c) a Cooper pair box as three examples of superconducting qubit designs. The dotted rectangle in (c)
marks the island of the Cooper pair box.

We will further focus on the Cooper pair box as it is closely related to the transmon qubit
used in our setup. If we denote the electric potential of the Cooper pair box (see Fig. 2c)
by V , the total charge Qg on the superconducting island is given by Cg(V − Vg)+CJV .
The electrostatic energy of the system is

Eel =
1

2
Cg(V − Vg)

2 +
1

2
CJV

2 − CgVg(V − Vg)

=
(Qg − CgVg)

2

2(Cg + CJ)
+ . . . ,

where the omitted terms represent an irrelevant overall energy shift independent of
Qg. After expressing the charge in terms of the excess number n of Cooper pairs on
the island as Qg = −2en and defining a convenient dimensionless measure of the bias
voltage ng = −CgVg/2e we obtain [24]

Eel =
2e2

Cg + CJ
(n− ng)

2.
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2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

The factor e2/2(Cg + CJ) is commonly denoted as the charging energy1 EC of the
Cooper pair box. After adding the contribution of the Josephson junction we arrive at
the Hamiltonian of the system

Ĥ = 4EC(n̂ − ng)
2 − EJ cos∆ϕ̂. (3)

The operators e±i∆ϕ̂ satisfy commutation relations

[n̂, e±i∆ϕ̂] = ∓e±i∆ϕ̂

and therefore act as ladder operators on eigenstates of n̂. The Hamiltonian (3) can then
be written in the eigenbasis of n̂ as [24]

Ĥ = 4EC

∑

n

(n− ng)
2|n〉〈n|+ EJ

∑

n

|n〉〈n + 1|+ |n + 1〉〈n|
2

.

The Cooper pair box is typically operated in a regime where the charging energy EC

dominates over the Josephson energy EJ , i.e. EC ≫ EJ , and with the bias voltage
adjusted so that ng is a half-integer. Let us assume without loss of generality that
ng = 1/2. Then the only pair of states |n〉 for which the coupling terms cannot be
neglected are |0〉 and |1〉. All other pairs of consecutive states are separated by energies
much larger than the coupling energy EJ and can be considered as effectively decoupled.

The Hamiltonian restricted to the space spanned by the states |0〉 and |1〉 then takes the
simple form

Ĥ =
1

2
EJ (|0〉〈1| + |1〉〈0|) .

The eigenvectors of this Hamiltonian are |g〉 = (|0〉 − |1〉)/
√
2 with eigenenergy −EJ/2

and |e〉 = (|0〉 + |1〉)/
√
2 with eigenenergy EJ/2. These two states are well separated

from the rest of the energy spectrum which means that the Cooper pair box can be
operated as an effectively two-level system and used as a qubit.

It can be manipulated by means of an additional voltage source Ve coupled by a capac-
itance Ce to the superconducting island in the same way as the bias voltage Vg. The
derivation of the Hamiltonian is analogous to that of Eq. (3) and results in a similar
expression but with the total capacitance in the charging energy now including Ce and
with ng replaced by ng − CeVe/2e. Apart from a simple change in the definition of
EC and an overall energy shift, this modification therefore amounts to adding the term
4(n − ng)ECCeVe/e to the Hamiltonian. When written in terms of the computational
basis states |g〉 and |e〉, the total Hamiltonian has the form

Ĥ =
1

2
EJ(|e〉〈e| − |g〉〈g|) − 2ECCe

e
Ve(|e〉〈g| + |g〉〈e|),

1Note that the definitions of this quantity in Refs. [24] and [27] differ by a factor of 4 due to the
definition of n in terms of electrons or Cooper pairs. Here we employ the convention used in [27].
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2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

which we can express using the Pauli matrices

σ̂x = |e〉〈g| + |g〉〈e|,
σ̂y = i|g〉〈e| − i|e〉〈g|,
σ̂z = |e〉〈e| − |g〉〈g|

as

Ĥ =
1

2
~ωqσ̂z + ~Ωxσ̂x, (4)

where ωq = EJ/~ and Ωx = −4ECCeVe/~e. This form is strongly reminiscent of the
Hamiltonian of a spin 1/2 particle with a magnetic moment in a magnetic field, a well
understood system, very extensively studied in the context of nuclear magnetic reso-
nance.

Note that the simple scheme described above is by no means the only way in which
external voltage can be capacitively coupled to the qubit. For example, the qubit need
not be physically connected to the ground, as is the case for our experimental sample.
In that case, it is more appropriate to think of the qubit as consisting of two supercon-
ducting islands rather than an island and a reservoir. In general, there can be arbitrary
cross-capacitances between the two islands, the ground and the voltage source. Although
this makes the derivation of the Hamiltonian more tedious, the resulting coupling term
has always the same form proportional to Ven̂.

As the energy separation between the two qubit levels depends on the bias voltage Vg,
fluctuations in this control parameter will result in dephasing of the qubit. Close to the
working point ng = 1/2 the relative qubit frequency shift ∆ωq/ωq caused by a small
deviation of ng by ∆ng (charge dispersion) can be approximated as [27]

∆ωq

ωq
= 32∆n2g

(
EC

EJ

)2

.

Since Cooper pair box qubits operate at EC/EJ > 1 this relation makes it clear that
they are particularly sensitive to noise in the bias voltage which can be brought about
by charge fluctuations in the surrounding conductors.

2.1.3 The transmon qubit

It may seem natural to use the opposite regime EJ ≫ EC to circumvent this problem.
However, such possibility has not been seriously considered until relatively recently be-
cause it was thought the weak anharmonicity of the system would render it unusable as
a qubit. As shown in Ref. [27], one can still benefit from the reduced charge dispersion
while keeping the anharmonicity sufficiently high by shunting the Josephson junction
with a large capacitance CB , thus decreasing EC . The modified version of the Cooper
pair box is then operated in the regime EJ ≫ EC . Since the charge dispersion of the

7



2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

qubit is then significantly suppressed, it is no longer necessary to precisely tune ng and
the bias voltage can be omitted altogether. Still, the energy of the qubit can be tuned by
an external magnetic field if a split Josephson junction is used in the circuit. A diagram
of the resulting transmon qubit is shown in Fig. 3a. For comparison, Fig. 3b shows the
real qubit fabricated on a chip as seen under an optical microscope.

a) b)

CB

EJ(Φ), CJ

Φ

Figure 3: The transmon qubit. (a) Its circuit diagram shows the split Josephson junction shunted by a
large capacitance CB. Unlike for the Cooper pair box, voltage bias is not needed in the transmon qubit.
(b) Optical microscope image of the qubit (in false colours as red) showing the zipper-like structure of
the shunting capacitance on the right as well as the split Josephson junction on the left. The additional
structures in the picture are used to manipulate and read out the qubit. The image is courtesy of J. Fink.

As the structure of the transmon qubit is essentially identical to that of a Cooper pair
box with Cg = CB and Vg = 0, we can directly use Eq. (3) and write the Hamiltonian
of the transmon as

Ĥ = 4EC n̂
2 − EJ cos ϕ̂,

where EC = e2/2(CB + CJ) ≈ e2/2CB is the charging energy of the qubit. Because
EJ ≫ EC , it turns out to be more convenient to express the state vector of the system
in the eigenbasis of ϕ̂ instead of n̂. The phase ϕ is a continuous variable and the state
|Ψ〉 can be represented by a wave function Ψ(ϕ) = 〈ϕ|Ψ〉. Since two values of the phase
differing by a multiple of 2π are physically indistinguishable, the wave function has to
be periodic, i.e. Ψ(ϕ+ 2π) = Ψ(ϕ).

The commutation relation [n̂, ϕ̂] = i implies that n̂ in the ϕ-representation is given by
the differential operator i d/dϕ. We can then write the time-independent Schrödinger
equation as

−4EC
d2Ψ(ϕ)

dϕ2
− EJΨ(ϕ) cosϕ = EΨ(ϕ). (5)

The transmon qubit is therefore equivalent to a quantum mechanical particle moving
in a one-dimensional periodic potential (with the additional requirement of periodicity
forcing the lattice momentum generating discrete translations by 2π to be zero). The
wave functions satisfying Eq. (5) can be expressed in terms of the so-called Mathieu
functions [28]. However, in the limit EJ ≫ EC a simple approximate solution of the
Schrödinger equation can be found using perturbation theory.

8



2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

The condition EJ ≫ EC implies that the minimum of the “potential energy” V (ϕ) =
−EJ cosϕ is very deep. It is therefore quite reasonable to expect the wave function
to be strongly peaked around ϕ = 0 where V (ϕ) can be well approximated by its
Taylor series. We will take into consideration only the terms up to fourth order in ϕ,
i.e. V (ϕ) = −EJ(1 − ϕ2/2 + ϕ4/24). Neglecting the fourth order term for the moment,
we see that the Hamiltonian exactly matches that of a harmonic oscillator with mass m
and frequency ω if we make the following correspondence:

harmonic oscillator transmon qubit

x ϕ
~
2/2m 4EC

mω2 EJ

This parallel allows us to immediately write the Hamiltonian and the operators n̂ and ϕ̂
in terms of the well known ladder operators [29] as

Ĥ =
√

8ECEJ

(

b̂†b̂ +
1

2

)

− 1

12
EC(b̂

† − b̂)4 − EJ , (6a)

n̂ = 4

√

EJ

32EC
(b̂† + b̂), (6b)

ϕ̂ = i 4

√

2EC

EJ
(b̂† − b̂). (6c)

Here we have again included the term quartic in ϕ̂ in our Hamiltonian (6a) and we
substituted for ϕ̂ from Eq. (6c). In order to determine the energy levels of the transmon
qubit, we can treat this term as a perturbation. The first order correction to the n-th

level energy is ∆E
(1)
n = −EC〈n|(b̂† − b̂)4|n〉/12. This expression can be easily evaluated

using the properties of annihilation and creation operators and the corrected energy can
be cast into the form

En =
(√

8ECEJ −EC

)

n− EC
n(n− 1)

2
+ . . .

The ellipsis here stands for the omitted ground state energy. We can see that the
presence of the quartic term leads to a small relative shift of the transmon transition
energy ~ωq = E1−E0 from

√
8ECEJ to

√
8ECEJ −EC as well as to anharmonic energy

level spacing given by
(En+1 − En)− (E1 − E0) = ~αn,

where the anharmonicity of the transmon qubit is simply α = −EC/~.

We can then rewrite the diagonalized transmon Hamiltonian to lowest order in the
quartic interaction as

Ĥ = ~

∞∑

n=0

(

ωqn+
1

2
αn(n− 1)

)

︸ ︷︷ ︸

ωqn

|n〉〈n|. (7)

9



2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

Note that the states |n〉 appearing here are eigenstates of the perturbed Hamiltonian,
not the harmonic oscillator. Consequently, the ladder operators b̂, b̂† in this basis do not
satisfy the standard relation b̂|n〉 = √

n|n − 1〉 but are rather given by the formula

b̂ =

∞∑

m,n=0

λmn|m〉〈n|, (8)

where λmn = δm,n−1
√
n+O(

√

EC/EJ ).

The anharmonic level structure of the transmon makes it possible to manipulate the
qubit in the subspace spanned by the two lowest levels |0〉 and |1〉. In this case one
can describe the transmon by a Hamiltonian of the type given in Eq. (4). Nevertheless,
the magnitude of the anharmonicity ~α relative to the transition energy ~ωq scales as
(EJ/EC)

−1/2 and is therefore small in the transmon regime EJ ≫ EC . This means that
a special care has to be taken to keep the qubit inside the computational subspace and
eliminate possible unwanted effects of the higher energy levels. The similarity between
the spectra of a transmon and a harmonic oscillator is illustrated in Fig. 4.

ϕ

E
n
er
gy

−π−π−π 000 πππ

−EJ

EJ

a) b) c)

Figure 4: Energy levels of a transmon qubit (in blue) compared to those of a harmonic oscillator
obtained by second order Taylor expansion of the Hamiltonian around ϕ = 0 (in purple). The levels
represented by horizontal lines are superimposed on plots of the “potential energy” V (ϕ) shown by thick
lines. Comparison of the qubit energy levels for progressively increasing values of (a) EJ/EC = 20,
(b) EJ/EC = 100 and (c) EJ/EC = 400 illustrates that the anharmonicity decreases as EJ/EC → ∞.

The slight drawback presented by a weak anharmonicity has a bright side in a signif-
icantly reduced charge dispersion of the qubit. Although we set the bias voltage Vg
to zero at the very beginning, it can obviously fluctuate around zero due to environ-
mental effects. After replacing i d/dϕ in the Schrödinger equation (5) by i d/dϕ − ng,
one can restore its original form by substituting Ψ(ϕ) = e−ingϕΨ ′(ϕ). The new wave
function Ψ ′(ϕ) then again satisfies Eq. (5) but unlike Ψ(ϕ), its boundary condition is
Ψ ′(ϕ+2π) = e2πingΨ ′(ϕ). After finding the eigenenergies as functions of ng, one can ob-
serve that as the ratio EJ/EC increases, the energy levels of the qubit become “flat” very
quickly. In fact, the relative variation of the transition energies decreases exponentially
[27] with increasing value of EJ/EC , as is shown in Fig. 5. This significant suppression
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2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

of the charge dispersion makes the transmon qubit relatively resistant to dephasing due
to environmental charge noise.

a) b)
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Figure 5: Charge dispersion of a transmon qubit. (a) Comparison between the dependence of the first
few energy levels on the offset charge ng for a qubit with EJ/EC = 1 (in blue) and for a qubit in the
transmon regime with EJ/EC = 20 (in yellow). The figure shows a reduced sensitivity of the qubit
transition energy to changes in the offset charge in the transmon regime EJ ≫ EC . (b) The relative
variation of the transition energy between the ground and the first excited state decreases exponentially
with increasing ratio EJ/EC .

Just like for the Cooper pair box, one can simply extend the transmon Hamiltonian (7)
to include coupling between the qubit and an external capacitively coupled drive voltage
Ve. The additional interaction term in the Hamiltonian is again proportional to Ven̂
with the proportionality constant depending on the charging energy of the qubit and
the capacitance coupling it to the voltage source. After substituting for n̂ from Eq. (6b)
and expressing the ladder operators in the transmon eigenstate basis using Eq. (8), we
obtain a multilevel generalization of the Hamiltonian given in Eq. (4)

Ĥ = ~

∞∑

n=0

ωqn|n〉〈n|+ ~

∞∑

n=0

(λnΩx|n〉〈n+ 1|+ h.c.). (9)

The quantity Ωx = (8E3
CEJ)

1/4CeVe/~e represents the drive strength and is proportional
to the voltage Ve. In writing this Hamiltonian, we also neglect the matrix elements λmn

of b̂ with |m−n| 6= 1 as they tend to zero in the limit EJ ≫ EC and denote the remaining
coupling terms λn,n+1 between neighbouring states simply by λn.

Although the drive Ωx is real-valued, which might seem to be a limitation for the con-
trollability of the qubit, it can be made effectively complex by going to a rotating frame
and using the so-called rotating wave approximation. Suppose the drive is a quickly
oscillating function of time given by Ωx(t) = Ω(t) cos(ωt+ φ) where the envelope func-
tion Ω(t) changes slowly in comparison to ω. The state vector in the frame rotating
at the drive frequency ω is defined as |Ψr〉 = Û|Ψ〉, where Û = exp(iωt

∑

n n|n〉〈n|). It
is straightforward to show that its evolution is governed by the effective rotating frame
Hamiltonian

Ĥr = ÛĤÛ
† + i~

dÛ

dt
Û†.

11



2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

The second term on the right-hand side of this formula arises due to the time-dependence
of the transformation and is equal to −~ω

∑

n n|n〉〈n|. It corresponds to a shift of the
effective qubit frequency from ωq to δq = ωq − ω.

The unitary transformation Û acting on the Hamiltonian given in Eq. (9) results in
multiplication of the operators |n〉〈n + 1| by e−iωt and |n + 1〉〈n| by eiωt. The cosine
factor from Ωx(t) multiplied by e±iωt yields a sum of two terms – one of them constant
and the other oscillating with frequency 2ω. Since the timescale of the qubit evolution in
the rotating frame is basically set by ωq−ω and Ω, the oscillating term can be neglected if
2ω ≫ |ωq−ω|, |Ω| (the rotating wave approximation). In this way Ωx(t)e

±iωt is replaced
by Ω(t)e∓iφ/2 and after defining a complex drive Ω̃(t) = Ω(t)e−iφ, we arrive at the final
form of the rotating frame Hamiltonian

Ĥr = ~

∞∑

n=0

δqn|n〉〈n|+
1

2
~

∞∑

n=0

(λnΩ̃
∗|n〉〈n+ 1|+ h.c.). (10)

In summary, this procedure, illustrated in Fig. 6, allows one to replace the Hamiltonian
(9) by a Hamiltonian of the same form but with the drive being complex rather than
just real. The effective qubit transition energy is in this frame adjustable by changing
the detuning δq between the drive and the qubit frequency.

a) b)

ωq

ωq − ω
ei(ωt+ϕ)

e−i(ωt+ϕ)

eiϕ

e−i(2ωt+ϕ)

cos(ωt+ ϕ)

ω

Figure 6: Illustration of the rotating wave approximation. (a) A harmonic signal proportional to
cos(ωt+ϕ) is coupled to a qubit with transition frequency ωq. The real harmonic drive can be decomposed
into two complex rotating waves proportional to ei(ωt+ϕ) (red) and e−i(ωt+ϕ) (blue). (b) In a frame
rotating at the frequency ω around the z-axis the corotating wave (red) is constant in time while the
counterrotating wave (blue) varies with frequency 2ω and can be neglected. Due to the transformation
into a time-dependent frame, an additional term needs to be added to the Hamiltonian which reduces
the effective qubit transition frequency by ω.

2.2 Circuit QED

One of the essential ingredients for quantum information processing is efficient and con-
trollable coupling between qubits. Although this is in principle achievable using direct
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2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

qubit-qubit interactions, such a simple approach usually requires the coupled systems
to be spatially close which may pose difficulties for scaling the device. For this reason,
coupling mechanisms relying on non-local interactions mediated by mobile or spatially
extended physical systems are preferred.

Such a mediator of interactions between qubits can be for instance a collective motional
degree of freedom of the qubits like in ion-trap experiments [8], real photons that couple
distant atoms [30] or virtual photons to couple superconducting qubits [13]. Here we
will focus on the coupling between superconducting qubits due to exchange of virtual
microwave photons through a transmission line resonator.

The qubits are embedded in an electromagnetic resonator consisting of a coplanar waveg-
uide of finite length – a superconducting strip separated by a gap from a ground plane at
each side (see Fig. 7). The one-dimensional nature of the resonator, which confines the
electromagnetic field to a smaller volume than in a three-dimensional resonant cavity,
leads to larger intensities of the field and consequently to a stronger coupling between
the resonator and the qubits. The interactions between the qubits and photons are de-
scribed by the theory of circuit quantum electrodynamics [11]. As shown in Ref. [13],
the strong coupling can be used to coherently exchange quantum information between
qubits in a controlled way.

The length L of the resonator is much larger than its transverse dimensions which allows
it to be treated as a quasi-one-dimensional system supporting a number of discrete
electromagnetic field modes. In a lumped element approach, it can be viewed as an
electrical circuit composed of a chain of infinitesimal ideal capacitances and inductances,
as shown in Fig. 8a. As we almost exclusively deal with situations where the qubits are
far detuned from all but one of the resonator modes, we can further approximate the
resonator as a simple LC circuit.

Figure 7: Circuit QED architecture. The coplanar transmission line resonator (in blue) supports
a standing electromagnetic wave whose electric field (schematically shown by orange arrows) couples the
qubits (in red) placed inside the resonator.

The LC circuit can be treated as a harmonic oscillator. Once again, we can employ
the analogy with the mechanical case and by noting that the charge Q, magnetic flux
Φ, inductance L and capacitance C correspond to position, momentum, mass and the
combination 1/mω2, respectively, we can immediately write down relations between the

13
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Figure 8: The resonator and its coupling to the qubit. (a) The resonator as a chain of inductances and
capacitances and its approximation by a simple LC circuit. (b) The qubit (in blue) is coupled to the
resonator (in red) through a gate capacitance Cg.

Hamiltonian, the ladder operators â, â† and the operators Q̂ and Φ̂

Ĥ = ~

ωr
︷ ︸︸ ︷
√

1

LC

(

â†â +
1

2

)

, (11a)

Q̂ =

√

~ωrC

2
(â† + â), (11b)

Φ̂ = i

√

~ωrL

2
(â† − â). (11c)

This seemingly crude approximation by a harmonic oscillator is in fact not too far
away from the truth. When the electromagnetic field inside the resonator is quantized
properly [11], one finds that each of its individual modes behaves indeed as an isolated
harmonic oscillator. If we analyzed the resonator in this way and only made the single-
mode approximation afterwards, we would arrive at a result identical in its form to
Eqs. (11). If more than just one mode is relevant, the expressions on the right-hand side
of Eqs. (11) are simply replaced by sums of the corresponding terms for the different
modes. We will now restrict ourselves to only one mode and one qubit, knowing that
the resulting Hamiltonian can be readily generalized to multiple modes and qubits.

2.2.1 The Jaynes-Cummings Hamiltonian

If the qubit is capacitively coupled to the resonator, as depicted in Fig. 8b, we can view
the resonator LC circuit as a source of a quantum drive voltage Q̂/C =

√

~ωr/2C(â†+â)
applied to the qubit. We use Eq. (9), add the resonator energy term given by Eq. (11a)
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and replace Ωx, which is proportional to the voltage, by g(â† + â). Here the coupling
constant g incorporates the proportionality coefficients between Ωx, the voltage and
â† + â.

Since we are now describing the composite system within the tensor product of the
qubit and resonator Hilbert spaces, we will from now on denote the qubit and resonator
states and operators respectively with subscripts q and r (e.g. |mq, nr〉, |n〉〈n|q or âr).
Alternatively, we can sometimes distinguish between them by using the letters g, e and
f for the three lowest qubit states and numbers for the resonator states (e.g. |e, 3〉).

Out of the four types of coupling terms â†r|n + 1〉〈n|q, â†r|n〉〈n + 1|q, âr|n + 1〉〈n|q and
âr|n〉〈n + 1|q arising in the Hamiltonian, the first and the last one are in a sense “less
energy-conserving” than the remaining two. In the interaction picture, they oscillate at
a frequency given by the sum of the qubit and resonator frequencies whereas the other
terms oscillate at the frequency difference. Just like in the case of a classical harmonic
drive, one can make the rotating wave approximation and if g, |ωq − ωr| ≪ ωr, neglect

the terms â†r|n+ 1〉〈n|q and âr|n〉〈n + 1|q.
The result is the well-known Jaynes-Cummings Hamiltonian [31]

Ĥ = ~

∞∑

n=0

ωqn|n〉〈n|q + ~ωrâ
†
râr + ~g

∞∑

n=0

(λnâ
†
r|n〉〈n + 1|q + h.c.). (12)

Thanks to the rotating wave approximation, the interaction term can move excitations
between the qubit and the resonator but leaves their total number unchanged. In other
words, the operator N̂ = â†râr+

∑

n n|n〉〈n|q which counts the total number of excitations
commutes with the Hamiltonian (12).

In particular, if the qubit has only two levels |g〉 and |e〉, the form of the Hamiltonian
becomes very simple. For any n it only couples the state |e, n〉 to |g, n + 1〉. The
resulting structure (illustrated in Fig. 9a), in which the Hilbert space decomposes into
two-dimensional decoupled subspaces, is commonly referred to as the Jaynes-Cummings
ladder .

In this case, the Hamiltonian can be exactly diagonalized by performing a unitary trans-
formation acting separately on each subspace, which can be formally written as

Û = exp

(
1

2
ϑ(N̂)(â†|g〉〈e| − â|e〉〈g|)

)

,

where ϑ(N̂) = arctan(2gN̂1/2/(ωr − ωq))/N̂
1/2. The transformed Hamiltonian then is

ÛĤÛ† = ~ωq|e〉〈e| + ~ωrâ
†â − ~χ(N̂)(|e〉〈e| − |g〉〈g|), (13)

where χ(N̂) =
ωr − ωq

2





√

4g2N̂

(ωr − ωq)2
+ 1− 1



 .
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Figure 9: (a) The Jaynes-Cummings ladder for a two-level system interacting with an electromagnetic
mode. The qubit levels are marked by letters (g for the ground and e for the excited state) to avoid
confusion with the numbered Fock states of the resonator. The Jaynes-Cummings Hamiltonian only
couples states within the same two-dimensional excitation manifold. (b) The Jaynes-Cummings ladder
for a transmon. The individual excitation manifolds grow in size due to the multilevel structure of the
qubit.

The first two terms are simply the decoupled qubit and resonator energies while the
third term describes shifts of eigenenergies due to the Jaynes-Cummings coupling. The
eigenstates related to |g, n + 1〉 by the unitary transformation above get their energies
shifted by ~χ(n + 1) whereas the states obtained by transforming |e, n〉 undergo a shift
of the same magnitude but opposite sign.

In the case of a multilevel qubit, the Hamiltonian (12) still conserves the total number N̂
of excitations in the system but the decoupled subspaces grow in size with increasing N̂
(see Fig. 9b) since there is an ever increasing number of ways in which the excitations can
be distributed between the resonator and the qubit. As a consequence, the Hamiltonian
cannot be diagonalized exactly and approximate or numerical methods need to be used
to find its eigenstates and eigenenergies.

2.2.2 The dispersive regime

The Jaynes-Cummings Hamiltonian can be approximately diagonalized in the so-called
dispersive limit [11] when 2gN̂1/2/|ωr−ωq| ≪ 1, regardless of whether the qubit is a two-
level system or not. Let us first look at the two-level case as the dispersive limit can
then be very simply derived from the exact result given by Eq. (13).

First of all, note that the condition 2gN̂1/2/|ωr−ωq| ≪ 1 depends on N̂ and can therefore
be satisfied only in a finite subspace of the whole Hilbert space with the number of exci-
tations not exceeding certain critical number given by ncrit = (ωr −ωq)

2/4g2. Moreover,
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for the dispersive limit to be valid at all, the critical number needs to satisfy ncrit ≫ 1.
Otherwise the approximation is only applicable to the zero-excitation manifold and thus
not very useful. If the inequality above holds the unitary transformation parameter ϑ(N̂)
as well as the energy shift χ(N̂) can be expanded to lowest order in N̂ which yields

Ûdisp = exp

(
g

ωr − ωq
(â†|g〉〈e| − â|e〉〈g|)

)

, (14)

Ĥdisp = ÛdispĤÛ
†
disp = ~ωq|e〉〈e| + ~ωrâ

†â − ~
g2N̂

ωr − ωq
(|e〉〈e| − |g〉〈g|).

If we express N̂ in terms of the qubit and resonator operators the interaction term
becomes easy to interpret. We obtain

Ĥdisp = ~

(

ωq +
g2

ωq − ωr

)

|e〉〈e| + ~

(

ωr +
g2

ωq − ωr
(|e〉〈e| − |g〉〈g|)

)

â†â. (15)

The qubit frequency is shifted by χ = g2/(ωq − ωr) while the resonator frequency un-
dergoes a dispersive shift by ±χ depending on the state of the qubit. This point of view
where ωr is qubit-dependent is of course not the only one possible. The terms in Eq. (15)
can be rearranged into a form where ωr is unchanged and the qubit frequency is shifted
by (2â†â+1)χ. This effect can be understood as an AC Stark shift of the qubit induced
by the resonator field.

Although both of these standpoints are equally valid and interchangeable we will further
adopt the first one since it allows more natural treatment of the processes we are about
to study.

The Hamiltonian (12) of a multilevel transmon qubit interacting with the resonator
mode can be diagonalized to first order in the parameter g/(ωr − ωq) by a unitary
transformation which is a straightforward generalization of the two-level case given by
Eq. (14), namely [27]

Ûdisp = exp

(
∞∑

n=0

gηn(â
†
r|n〉〈n+ 1|q − h.c.)

)

. (16)

The coefficients ηn need to be chosen so as to eliminate the energy exchange terms
â
†
r|n〉〈n+1| and âr|n+1〉〈n| from Ĥdisp to first order in g/(ωr −ωq). Using the operator

identity exp(Â)Ĥ exp(−Â) = Ĥ + [Â, Ĥ] + 1
2 [Â, [Â, Ĥ]] + . . . truncated at second order in

the dispersive transformation generator Â, we first calculate

[Â, Ĥ] = ~

∞∑

n=0

gηn(ωq,n+1 − ωqn − ωr)(â
†
r|n〉〈n+ 1|q + h.c.) +O(g2),

which implies that the desired cancellation can be achieved if ηn(ωq,n+1−ωqn−ωr) = −λn.
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This particular choice of ηn then yields

Ĥdisp =~

∞∑

n=0

ωqn|n〉〈n|q + ~ωrâ
†
râr + ~g2

∞∑

n=0

λnηn(â
†
râr|n〉〈n|q − ârâ†r|n+ 1〉〈n + 1|q)

+
1

2
~g2

∞∑

n=0

(λnηn−1 − λn−1ηn)(â
†
râ

†
r|n− 1〉〈n + 1|q + h.c.) +O(g3).

It can be argued that the term in the second line which transfers two excitations between
the qubit and the resonator can be neglected due to the difference λnηn−1 − λn−1ηn
being small for a weakly anharmonic qubit. Within this approximation, the multilevel
dispersive Hamiltonian up to second order in g can be expressed as

Ĥdisp = ~

∞∑

n=0

(ωqn + χn)|n〉〈n|q + ~

(

ωr −
∞∑

n=0

(χn+1 − χn)|n〉〈n|q
)

â†râr, (17a)

where χn =
g2λ2n−1

ωqn − ωq,n−1 − ωr
=

g2n

ωq + (n− 1)α− ωr
. (17b)

The last expression for χn is derived by plugging in the approximate value of λn−1 =
√
n

and the frequencies ωqn and ωq,n−1 in terms of the qubit transition frequency ωq and its
anharmonicity α.

The result for a multilevel qubit is thus qualitatively identical to what we obtained for
a purely two-level qubit. Once again, the qubit energy levels are renormalized by qubit-
resonator interactions and the resonator frequency is shifted by an amount depending
on the qubit state. In particular, the frequencies of the resonator for the |e〉 and |g〉
qubit states differ by

ω(e)
r − ω(g)

r = 2χ1 − χ2.

In comparison with the value 2χ1 we got for a two-level qubit, the resonator frequency
difference for a multilevel qubit is in general lower2 since the quantity χ2 typically
has the same sign as χ1 and is comparable in magnitude. In fact, it is obvious from
Eq. (17b) that χ2 is very close to 2χ1 if |α| ≪ |ωr − ωq| and consequently, the resonator
energy difference for a transmon is significantly smaller than for a two-level qubit. This
reduction in the dispersive shift can be qualitatively understood in terms of energy level
repulsion, as shown in Fig. 10.

Let us now look at how the dispersive Hamiltonian changes when a second qubit is
added and an external drive is applied to the resonator. We assume that both qubits
are capacitively coupled to the resonator and that there is no direct interaction between
them. To distinguish between the two qubits, we will denote them as A and B and mark
their respective parameters by a subscript.

2It has been shown in Ref. [27] that there is a (so-called straddling) regime where the dispersive shift
is enhanced instead of reduced. However, entering this regime while staying in the dispersive limit turns
out to be rather difficult.
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Figure 10: Resonator dispersive shift by a multilevel qubit. The shift can be viewed as a result of level
repulsion of the bare energy levels (in grey) – the energies of states |g, n〉 move to lower values (in the
depicted case ωq > ωr) due to their coupling to states |e, n〉 (red arrows). This coupling also lifts the
energies of |e, n〉 by the same amount χ1. But unlike in the two-level case, these levels are in addition
lowered by their couplings to states |f, n〉 (blue arrows), which reduces the total energy shift by χ2. The
resulting dressed energy levels are shown in black.

The Jaynes-Cummings Hamiltonian given by Eq. (12) is modified by adding an energy
term and a resonator coupling term for the second qubit. These are completely analogous
to the two infinite sums in the one-qubit Hamiltonian. One can show that a drive voltage
capacitively coupled to the transmission line resonator can be described by a term of
the form ~εx(t)(â

†
r + âr), where εx(t) is a drive strength proportional to the voltage. In

summary, the Jaynes-Cummings Hamiltonian takes the form

Ĥ =~

∑

i=A,B

∞∑

n=0

ωin|n〉〈n|i + ~ωrâ
†
râr + ~

∑

i=A,B

∞∑

n=0

gi(λinâ
†
r|n〉〈n + 1|i + h.c.)

+ ~εx(t)(â
†
r + âr). (18)

The dispersive transformation has the same form as in Eq. (16) except that the argument
of the exponential now consists of a sum of the corresponding terms for both qubits.
After performing the expansion outlined above for the one-qubit case, one obtains the
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approximate dispersive Hamiltonian

Ĥdisp =~

∑

i=A,B

∞∑

n=0

(ωin + χin)|n〉〈n|i + ~



ωr −
∑

i=A,B

∞∑

n=0

(χi,n+1 − χin)|n〉〈n|i



 â†râr

− ~gAgB

∞∑

m,n=0

(ηAm

√
n+ 1 + ηBn

√
m+ 1)(|mA, n + 1B〉〈m+ 1A, nB|+ h.c.)

+ ~εx(t)(â
†
r + âr)



1− 1

2

∑

i=A,B

∞∑

n=0

g2i
(
η2in − η2i,n−1

)
|n〉〈n|i





− ~εx(t)
∑

i=A,B

∞∑

n=0

giηin(|n〉〈n + 1|i + h.c.), (19)

where ηin =

√
n+ 1

ωi + nαi − ωr
.

The terms in the first line are analogous to those in the one-qubit dispersive Hamiltonian
(17a) – the energy levels of each qubit are shifted by χin given by Eq. (17b) and the
dispersive shift of the resonator is simply a sum of contributions from the two qubits.
The second line represents an interaction between the qubits mediated by virtual photon
exchange through the resonator. This terms has a form similar to that of the Jaynes-
Cummings interaction term – it can move excitations between the two qubits. The third
line contains the resonator drive term. The drive strength is renormalized by a factor
which depends on the qubit state. The last term corresponds to the external signal εx(t)
driving the qubits indirectly via the cavity.

The dispersive regime therefore offers a way of driving the qubit alternative to the direct
drive described in Eq. (9). If the drive frequency is close to the qubit transition frequency
but far detuned from the resonator frequency then the signal can efficiently drive the
qubit while only weakly affecting the resonator which in this process acts merely as
a mediating channel.

Note that the indirect drive term does not have the same form as the direct drive
term in Eq. (9) where the operators |n〉〈n + 1| are multiplied by λn =

√
n+ 1. This

coefficient is in the indirect drive case replaced by gηn which depends on the detuning
of the particular n ↔ n + 1 transition from the resonator frequency. Not surprisingly,
the transitions whose frequencies are closer to the resonator frequency are in this case
driven more strongly than if the drive is applied directly to the qubit.

For comparison, as well as for completeness, and in order to better elucidate the aspects
of the dispersive Hamiltonian which might get obscured by the multilevel structure of
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the transmon qubit, we also present the dispersive Hamiltonian [11] for a two-level qubit

Ĥdisp =~

∑

i=A,B

(

ωi +
g2i

ωi − ωr

)

|e〉〈e|i + ~



ωr +
∑

i=A,B

g2i
ωi − ωr

(|e〉〈e|i − |g〉〈g|i)



 â†râr

− ~gAgB

(
1

ωA − ωr
+

1

ωB − ωr

)

(|gA, eB〉〈eA, gB |+ h.c.)

+ ~εx(t)(â
†
r + âr)



1− 1

2

∑

i=A,B

(
gi

ωi − ωr

)2

(|g〉〈g|i − |e〉〈e|i)





− ~εx(t)
∑

i=A,B

gi
ωi − ωr

(|g〉〈e|i + h.c.). (20)

Just like in the case of a direct qubit drive discussed in Section 2.1.3, rotating wave
approximation can be used to replace a real harmonic drive εx(t) = ε(t) cos(ωt + φ)
with slowly varying amplitude ε(t) by ε̃(t)/2 where ε̃(t) = ε(t)eiφ is the complex drive
strength. At the same time, transformation into a frame rotating at the drive frequency
ω given by the unitary operation exp(iωt(â†â +

∑

n,i |n〉〈n|i)) results in replacement of
all the frequencies ωA, ωB and ωr by the corresponding detunings δA, δB and δr from
the drive frequency.

The dispersive approximation is a useful tool allowing the qubit and the resonator to be
treated as two system which do not exchange energy but only couple together by shifting
each other’s energy levels. The viewpoint in which the resonator is seen as an isolated
harmonic oscillator with qubit-dependent frequency and drive strength is particularly
convenient for understanding the mechanism of dispersive readout and plays a key role
in the geometric phase measurement described in this thesis.

2.3 Dispersive readout and Qubit tomography

Apart from mediating interaction between qubits, the resonator in the dispersive regime
can also serve as a measurement channel for quantum non-demolition readout of the
qubits. The resonator is equipped with an output port connected to a series of amplifiers,
allowing to measure the electromagnetic field inside. By probing the resonator with
a drive signal, its transmission characteristic can be obtained as a function of frequency.

Within the previously introduced simplified model describing the resonator as an LC cir-
cuit, the measurement setup can be represented by the circuit diagram shown in Fig. 11.
The photons leaking out of the resonator are absorbed and detected. This dissipative
process is modelled by the resistance R. The measured signal is then proportional to
the output current Iout.

If the resonance curve of the LC circuit is sufficiently narrow so that the frequency
dependence of the impedances Zin and Zout can be neglected, then the frequency response
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C L

Cin CoutVin

R Iout

Figure 11: Circuit diagram of resonator response measurement. A drive signal is applied to the
resonator (LC circuit). The signal transmitted from the input to the output port is amplified and
measured to obtain the transmission characteristics of the resonator.

of the circuit is given by a Lorentzian function centered around the resonant frequency.

As discussed above, the Jaynes-Cummings type interaction between the resonator and
the qubit in the dispersive limit leads to a shift of the resonator frequency depending
on the state of the qubit. Therefore, information about the qubit state can be inferred
from the measured shift of the resonator response curve.

Fig. 12 illustrates how the two qubit states can be distinguished by measuring the steady-
state resonator response at a fixed frequency. The differing detunings between the drive
and the resonator frequency translate into different powers of the transmitted signal.
Alternatively, the measurement can be also based on observing the phase shift of the
transmitted field rather than its amplitude.

Although the frequency of the probe signal can be in principle arbitrary as depicted in

Fig. 12, it is usually chosen to coincide with one of the resonant frequencies ω
(g)
r , ω

(e)
r for

convenience. The procedure can be obviously generalized to multiple qubits provided
that the individual resonance peaks are well enough separated to be resolved.
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Figure 12: Resonator transmission in a continuous dispersive measurement. The power of the trans-
mitted probe signal at a fixed frequency ω depends on its detuning from the resonator frequency and on
the state of the qubit due to the dispersive shift.
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The presented picture of the dispersive readout, although illustrative, is somewhat
simplistic since it only covers the stationary response case and neglects effects of the
resonator-mediated qubit drive. To provide a better model of the resonator response
applicable also to the more general case of a time-dependent drive, the evolution equa-
tion of the system needs to be solved. As the resonator is now subject to dissipation
and the system is thus no longer in a pure state, it has to be described within the mixed
state formalism. The equation governing the time evolution of its density matrix ρ̂ is
the quantum master equation [32] which in general has the form

dρ̂

dt
= − i

~
[Ĥ, ρ̂] +

1

2

∑

m

Γm(L̂mρ̂L̂
†
m − L̂†mL̂mρ̂− ρ̂L̂†mL̂m), (21)

where Γm are non-negative constants and L̂m are the so-called Lindblad operators de-
scribing the non-unitary dynamics associated with dissipation and dephasing. In the case
of a dispersively coupled two-level qubit and a resonator, Ĥ is the dispersive Hamilto-
nian given by Eq. (20) and there are three Lindblad operators L̂1 = âr, L̂2 = |g〉〈e|q and

L̂3 = |e〉〈e|q with the corresponding coefficients commonly denoted as Γ1 = κ, Γ2 = Γ
and Γ3 = Γφ. These terms represent resonator dissipation, qubit dissipation and qubit
dephasing, respectively.

To solve the quantum master equation numerically, one can start by choosing a suitable
set of operators Â and considering the evolution equations for their expectation values

d〈Â〉
dt

=
i

~
〈[Ĥ, Â]〉+ 1

2

∑

m

Γm(〈L̂†mÂL̂m〉 − 〈L̂†mL̂mÂ〉 − 〈ÂL̂†mL̂m〉).

This step in general results in a system of infinitely many coupled differential equations
because an equation for any given expectation value involves expectation values of even
higher order in the ladder operators. To render the system finite, an approximation
can be employed whereby higher-order expectation values are factored into products of
lower-order ones, e.g.

〈
â
†
râr|e〉〈g|q

〉
≈
〈
â
†
râr
〉〈
|e〉〈g|q

〉
,
〈
â
†
rârâr|e〉〈e|q

〉
≈
〈
â
†
râr
〉〈
âr|e〉〈e|q

〉

etc. In this way, the original master equation can be approximated by the so-called cavity
Bloch equations [14] – a set of eight differential equations for the expectation values of

the eight operators âr, â
†
râr, |e〉〈e|q , |e〉〈g|q , |g〉〈e|q , âr|e〉〈e|q , âr|e〉〈g|q and âr|g〉〈e|q .

Once the time evolution of the density matrix is solved, the detected signal which is
proportional to the electric field inside the resonator, i.e. to â†r + âr, can be calculated.

Dispersive measurement with time-dependent resonator drive (the so-called pulsed mea-
surement) which can be simulated using cavity Bloch equations has several advantages
over steady-state continuous probing of the resonator. The drive can be switched on
only when the measurement is actually needed and does not have to be on during the
qubit manipulation which in turn is not disrupted by the measurement. Consequently,
pulsed readout can be performed with higher power and therefore higher signal-to-noise
ratio. Also, since the decay rates of the resonator and the qubit are often of the same
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order of magnitude, the simpler stationary regime may not be suitable for readout of the
final qubit state simply because the qubit relaxes even before the resonator can reach
the steady state. In the case of the pulsed measurement, the desired information about
the qubit state is encoded in the dynamical response of the resonator and cavity Bloch
equations can be used to extract this information.

Fig. 13 shows an example of the dynamical resonator response during a pulsed measure-
ment obtained by numerical solution of the cavity Bloch equations with realistic values
of the parameters (qubit and resonator frequencies, the dispersive shift and relaxation
times). The transmitted power expected for the stationary case from the simple model
based on a shift of the Lorentzian transmission profile is shown for comparison. The
figure clearly illustrates that as expected, the transmitted signal corresponding to the
excited qubit state would only approach the same value as in the continuous measure-
ment in the absence of qubit relaxation. Nevertheless, since the ground state trans-
mission changes on a time scale given by the resonator relaxation time τ whereas the
characteristic time for the excited state transmission is the qubit relaxation time T1, the
two dynamical responses are easily distinguishable. This difference can then be indeed
used to obtain information about the qubit state at the point when the measurement is
switched on.
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Figure 13: Dynamical resonator transmission in a pulsed dispersive measurement. (a) The power
transmitted through the resonator in response to a drive switched on at time t = 0. The two signals
for the qubits ground (in blue) and excited (in purple) states were obtained by solving the cavity Bloch
equations numerically for realistic values of the resonator and qubit relaxation times τ ≈ 200 ns and
T1 ≈ 1 µs, qubit dephasing rate γ = 0 and dispersive shift χ/2π ≈ 0.7 MHz. The ground state response
and the excited state response in the absence of qubit dissipation (dashed purple line) asymptotically
approach values which agree with the simple stationary model based on Lorentzian response curves (b).

Just like any other quantum-mechanical measurement, the dispersive readout also in-
evitably changes the state of the measured system. However, it does so in a very specific
way. If qubit dissipation during the readout process can be neglected then the dispersive
measurement can be considered to be projective [7]. This special class of processes, upon
producing a particular outcome a from the spectrum of the operator Â representing the
measured quantity, projects the state of the system onto the eigenspace corresponding
to a. More specifically, the measurement yields the eigenvalue a and changes the density
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matrix ρ̂ of the system to P̂aρ̂P̂a with probability pa = Tr P̂aρ̂, where P̂a is a projector
onto the eigenspace of a.

A projective measurement also obviously preserves the eigenvectors of the measured op-
erator Â, although it reduces general pure superposition states to mixed states. This
special property distinguishes projective readout from general measurement processes
for which there need not be a complete basis unaffected by the measurement. A sim-
ple example of a non-projective process is photodetection – photons registered by the
detector are absorbed which means that the only quantum state invariant under this
measurement is the vacuum state.

An important subclass of projective measurements are so-called quantum non-demolition
measurements for which the projectors P̂a commute with the Hamiltonian. The eigen-
states of such a measurement are therefore invariant under the free evolution of the
system and the measurement will yield the same result when repeated.

In our case the dispersive qubit readout projects onto the qubit energy eigenstates |g〉 and
|e〉. If a given qubit state described by a density matrix ρ̂ can be prepared and measured
repeatedly then the statistics of the measurement outcomes provide an estimate of the
probabilities pg = Tr |g〉〈g|ρ̂ and pe = Tr |e〉〈e|ρ̂ to find the qubit in the two eigenstates.
This is equivalent to determining the quantity pe − pg = Tr σ̂zρ̂, i.e. the expectation
value 〈σ̂z〉 of the Pauli matrix ρ̂z. In the well-known Bloch vector representation of the

qubit state as ρ̂ = (1+ ~̂σ · ~n)/2 this expectation value corresponds to the projection of
the vector ~n onto the z-axis, as depicted in Fig. 14a.

The remaining components of the vector can be determined by applying a suitable
unitary operation Û to the qubit prior to measurement. The obtained probability dif-
ference pe − pg is then equal to Tr σ̂zÛρ̂Û

† = 〈Û†σ̂zÛ〉. By choosing Û = exp(iπσ̂y/4)

or Û = exp(−iπσ̂x/4) the expectation value simplifies to 〈σ̂x〉 and 〈σ̂y〉, respectively.
The two given unitary operations correspond to rotations of the Bloch vector by −π/2
around the y-axis and by π/2 around the x-axis which transform the x and y compo-
nents of ~n into the measurable z component. The described procedure which allows
the Bloch vector to be determined by measuring its three projections separately is for
obvious reasons called qubit tomography and is schematically outlined in Fig. 14.

Qubit tomography is a useful technique for determining the qubit density matrix. It is
a probabilistic process and its result therefore has a non-zero statistical error. However,
this uncertainty decreases as 1/

√
N with the number N of measurements and can thus

be in principle made arbitrarily small by increasing N .

The method can be also generalized to n > 1 qubits. The quantity measured in the
dispersive readout then corresponds to some non-trivial combination of the Pauli ma-
trices σ̂iz for the individual qubits. By applying 22n − 1 different unitary operations
before the measurement, one can obtain 22n− 1 linearly independent expectation values
which can then be used to extract the 22n − 1 unknown elements of the 2n × 2n density
matrix. A more sophisticated way of density matrix reconstruction relies on a maximum
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Figure 14: Qubit tomography. (a) Direct dispersive measurement of the qubit state yields the z
component of the Bloch vector. Applying rotations by π/2 around the (b) y and (c) x axis before the
readout allows the x and y components to be measured as well.

likelihood fit of the matrix elements. In this way, constraints can be added to avoid un-
physical results, e.g. density matrices with negative eigenvalues, which could otherwise
arise from a simple solution of the linear equation system for ρ̂ due to statistical errors.
When using the maximum likelihood method, more than the necessary 22n − 1 expecta-
tion values can be measured. The redundant information then improves the accuracy of
the result.

The simple case of one-qubit tomography has been successfully used in an experiment
[12] and has since become a standard tool in circuit QED experiments. The two-qubit
and three-qubit cases have been demonstrated in Refs. [33] and [34, 35], respectively.
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3 Geometric phase

The concept of a geometric phase – a phase accumulated by a quantum system that
depends only on the trajectory of the state vector in the Hilbert space – is closely
related to adiabaticity. It was first described in the context of adiabatic processes by
Berry [15] and it was soon discovered to be deeply connected to differential geometry
[16].

Adiabatic processes also occur in classical mechanics. Studying them in this context can
provide useful insight relevant to the quantum case, as described in Section 3.1.

3.1 Adiabatic limit in classical mechanics

Our experience with the everyday world tells us that objects tend to stay near equilibrium
if they are not disturbed too violently. This rather intuitive and vague statement can
be made more precise – under very general assumptions, a classical system with a time-
dependent Hamiltonian remains in a stationary state if the Hamiltonian varies infinitely
slowly. In the special case of periodic systems, this result can be shown to be a rather
straightforward consequence of the action variable

∮
~p · d~q being an adiabatic invariant

[36]. It remains valid for ergodic processes for which the adiabatic invariant is the
phase space volume Ω(t) enclosed within a constant energy shell [37] characterised by
H(p, q) = E(t). In both cases, the adiabatic invariant is zero if and only if the system is
in a stationary state.

The notion of an adiabatic process, which in its ideal form does not cause deviations from
the equilibrium state, can be elucidated using the following real-life analogy. Runners
in the popular egg-and-spoon race (see Fig. 15a) try to transport the potential energy
minimum (the center of the spoon) from its initial position (start) to a given final position
(finish) without the egg deviating too much from the equilibrium (falling from the spoon)
in the process.

It is rather easy to show that the deviation of the system from equilibrium for this
particular example indeed vanishes in the limit of infinitely slow evolution. Let us
consider that the runner starts moving instantaneously at t = 0, maintains a constant
velocity ~v and stops abruptly at the finish line. The egg, initially at rest, starts moving
with the velocity −~v in the reference frame comoving with the runner. As depicted in
Fig. 15b, it oscillates around the equilibrium position with the amplitude v/ω, where
ω is the angular frequency of its periodic motion in the confining potential (which we
assume to be quadratic for simplicity). When the runner stops, the velocity of the egg
changes by +~v and depending on the phase of its periodic motion at this moment, it is
left oscillating with an amplitude between 0 and 2v/ω. We can see that the maximum
deviation from the equilibrium position both during and after the end of the process
scales with the ratio v/ω and goes to zero as v → 0.
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Figure 15: (a) The egg-and-spoon race as an analogy for an adiabatic process. (b) When the runner
moves at a constant velocity v changing discontinuously at the start and the finish of the race, the typical
deviation of the egg from the equilibrium position is proportional to v/ω. (c) Moving with a constant
acceleration a leads to a typical deviation proportional to a/ω2.

However, as the term egg-and-spoon race suggests, going as slowly as possible is not the
only way to get the egg across the finish line. Since the source of the egg’s motion within
the potential well in the described case is obviously the sudden change of the runner’s
velocity, it might be a good idea to let him/her speed up and slow down gradually. We
will consider their acceleration ~a to be constant for a given time after the start, zero
for most of the race, then again non-zero, equal to −~a before the end. As before, we
choose to describe the system within the comoving reference frame whose non-inertiality
manifests itself in the appearance of a pseudo-force acting on the egg during the runner’s
acceleration and deceleration. A constant additional force −m~a causes the equilibrium
position inside the confining potential to shift by ~a/ω2. This shift and the resulting
oscillations of the egg around the new equilibrium position with amplitude ~a/ω2 are
shown in Fig. 15c. When the runner stops accelerating the inertial force vanishes and
the egg starts moving around the undisturbed potential energy minimum. The amplitude
of this motion once again depends on the phase of the egg’s oscillations at the moment
when the acceleration ends and can range from 0 to 2a/ω2. The motion during the
deceleration phase can be analyzed in the same way and the maximum deviation from
the equilibrium position after the race is found to be 4a/ω2.

Considering that the minimum acceleration needed to finish a race of length L in total
time T scales as L/T 2 whereas the necessary velocity behaves as L/T , we can see that the

28



3 GEOMETRIC PHASE

maximum deviation from equilibrium is of the order of L/ωT in the first discussed case
with constant velocity and of L/(ωT )2 for continuously changing velocity and piecewise
constant acceleration. Provided that the duration of the race is longer that the period
of the egg’s oscillations in the spoon, the latter scenario is obviously preferable.

It is relatively easy to see that our assumption of constant acceleration was still not
the best choice with regard to adiabaticity. The discontinuity in acceleration causes
a sudden displacement of the equilibrium position. As we have just seen, performing the
displacement gradually rather than instantaneously helps in reducing the amplitude of
oscillations around the shifted equilibrium shown in Fig. 15c. Therefore, by making the
acceleration continuous in time, the deviation from equilibrium can be lowered to higher
than second order in 1/ωT .

In fact, there is a direct relation between the asymptotic behaviour of the deviation from
equilibrium in the adiabatic limit and differentiability of the equilibrium position. It is
not very difficult to show rigorously that for a quadratic potential the final amplitude of
oscillations around the equilibrium asymptotically behaves as o(1/T k−1) for T → ∞ if
the position of the runner is a k-times differentiable function of time and all derivatives
of order k − 1 and lower have zero initial and final values. A derivation of this result is
presented in Section 4.2 for a quantum oscillator but applies equally well for a classical
one.

We should point out that this is a statement about the asymptotic behaviour of the
final oscillation amplitude in the adiabatic limit T → ∞ and does not give us any
actual comparison between these amplitudes for two evolutions of the Hamiltonian with
different degrees of differentiability and a finite time T . A smoother evolution does not
necessarily imply better adiabaticity. Also, the asymptotic formula only holds for the
final deviation from equilibrium and not the deviation during the process which is still
given by the acceleration and therefore asymptotically behaves as 1/T 2.

In conclusion of our simple classical example, we have seen that the deviations from
equilibrium during a variation of the Hamiltonian are smaller if the variation is slower.
The asymptotic behaviour of the deviation at the end of the process depends on the dif-
ferentiability of the evolution. Therefore, especially if taking the system from the initial
to the final equilibrium state with good accuracy is more crucial than the intermediate
deviations, it is often advantageous to use smoother variations of the Hamiltonian.

3.2 Adiabatic transport in quantum mechanics and geometric phase

The concept of adiabaticity is not restricted to classical physics applies to quantum
mechanics as well. It has been postulated already in the old quantum theory that as
the classical adiabatic invariant – the action variable – is related to the integer quantum
number by the Bohr-Sommerfeld quantization procedure, the quantum number should
be an adiabatic invariant in quantum theory. This adiabatic theorem outlived the old
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theory and was proven to be correct within the modern operator formalism by Born and
Fock [38].

It states that a quantum mechanical system with a time-dependent Hamiltonian Ĥ(t)
initially in an eigenstate belonging to the discrete spectrum of Ĥ(t0) remains in the
corresponding instantaneous eigenstate of Ĥ(t) if the Hamiltonian evolves adiabatically,
i.e. infinitely slowly. Corresponding eigenstate here means the one with the same quan-
tum numbers as the initial state.

In the simplest case of a non-degenerate Hamiltonian with a discrete spectrum whose
eigenstates can be uniquely numbered by their increasing eigenenergy, this means that
the system remains in the eigenstate with the same number as the initial state during
an adiabatic evolution. This correspondence between eigenstates can be seen as very
natural, considering that they change continuously as the Hamiltonian is varied and
therefore a jump of the system between eigenstates with different numbers would imply
a discontinuous change in the system’s state vector.

Of course the adiabatic theorem in the form stated above is not very useful in practice
because it assumes infinitely slow evolution. In reality, physical processes cannot pro-
ceed infinitely slowly. It is therefore natural to look for some quantitative criterion for
adiabaticity, i.e. under what conditions can a real process be considered as effectively
adiabatic. It turns out that the process needs to be slow with respect to the timescale set
by separations between eigenenergies of the Hamiltonian. Somewhat vaguely speaking,
the typical rate of change of the Hamiltonian needs to be much slower than the transition
frequencies (Ei − Ej)/~. For a more detailed treatment of this adiabatic condition, see
for example Ref. [39].

Fig. 16 shows an example of an adiabatic process in a harmonic oscillator with a varying
strength of the confining potential. It illustrates that in the adiabatic limit the first
excited state of the initial Hamiltonian evolves into the corresponding eigenstate, the
first excited state of the final Hamiltonian. On the other hand, a non-adiabatic sudden
change of the Hamiltonian results in a transition into different energy eigenstates.

If crossing of energy levels occurs during the adiabatic evolution then the simple way of
tracking the eigenstates by eigenenergy ordering fails at the crossing point. In this case,
however, the requirement of continuous evolution of the state vector usually provides an
unambiguous way of connecting the ingoing and outgoing energy levels at the degeneracy
point. In some cases, the crossing is facilitated by a special structure of the Hamiltonian
Ĥ(t) for all times t, for example the presence of a conserved quantity Â which implies
that the Hamiltonian does not couple different eigenspaces of Â. As a consequence,
the eigenstates can be identified by the value of Â and eigenenergy ordering within the
individual eigenspaces of Â. These two quantum numbers are then conserved during an
adiabatic evolution.

This behaviour at the degeneracy point can be illustrated by a simple example of a spin
1/2 particle with a magnetic moment in an adiabatically changing magnetic field Bz
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Figure 16: An example of an adiabatic change in a quantum system. A massive particle moving
in a 1D harmonic potential with time-dependent strength is initially in the first excited state. The
potential then changes so that the particle’s oscillation frequency reduces to one third of its initial value.
(a) If this variation is performed gradually the system has a very high probability of being found in the
corresponding state of the changed Hamiltonian. (b) If the change is sudden there is a significant chance
of inducing transitions to other energy eigenstates.

oriented along the z-axis. The z-component of the spin, given by the operator σ̂z,
commutes with the Hamiltonian and is therefore conserved. As the system crosses the
degeneracy point Bz = 0, its evolution is uniquely determined by this conservation law.
Since the energy of the state is proportional to Bzσz, it crosses from the ground state
to the excited state or vice versa as Bz changes its sign.

The existence of a conserved quantity can also cause the spectrum of the Hamiltonian
to be degenerate during the whole evolution rather than just at isolated crossing points.
Nevertheless, these two cases are in principle not different from the point of view of the
adiabatic theorem, as both of them allow the adiabatic evolution of the state vector to
be determined by requiring conservation of all the quantum numbers.

An interesting non-trivial situation arises when the degeneracy is present permanently
but there is no global conservation law to account for it, i.e. the symmetry correspond-
ing to the degeneracy is not the same during the whole evolution. In such cases, the
adiabatic theorem does not uniquely determine the evolution of the state vector within
the degenerate energy eigenspaces because there is no conserved quantity to distinguish
between the vectors in the subspaces. The result of the adiabatic evolution can then in
general depend on the way the Hamiltonian was transformed from its initial to its final
value. Or equivalently, a cyclic evolution of the Hamiltonian can result in non-trivial
unitary rotations within the degenerate energy eigenspaces, a phenomenon commonly
known as non-abelian geometric phase [40] which is the basis of the proposed concept of
holonomic quantum computation [41].
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But even in the case of an adiabatic transport of a non-degenerate eigenstate the adi-
abatic theorem does not determine its evolution uniquely. The requirement that the
system is at all times in the instantaneous energy eigenstate only specifies the state
vector up to an unknown complex factor.

The question about the nature of this phase factor has only been addressed as late
as 1984 by M.V. Berry [15] who discovered that it contains a non-trivial component
connected with the geometric properties of the underlying Hilbert space. Although this
observation was essentially new to the field of quantum mechanics, it has been quickly
recognized that an analogous concept had been studied earlier in the context of classical
light polarization by S. Pancharatnam [42].

The complex phase γ acquired by an eigenstate |ϕ(t)〉 of an adiabatically changing
Hamiltonian Ĥ(t) corresponding to the eigenenergy E(t) could be naively expected to
be given by

γ(t) = −1

~

∫ t

t0

E(τ) dτ . (INCORRECT)

However, such relation turns out to be incorrect. This can be verified either directly by
showing that the state eiγ(t)|ϕ(t)〉 does not satisfy the Schrödinger equation or simply
based on the following argument. The phase γ(t) is not an absolute quantity but is
only defined relatively to the reference eigenvectors |ϕ(t)〉 and as such it should change
if this reference frame is redefined. In particular, if the vectors |ϕ(t)〉 are replaced
by eiδ(t)|ϕ(t)〉 with some arbitrary phase shift δ(t), the phase γ(t) needs to change to
γ(t)+δ(t0)−δ(t) in order to preserve the evolution of the physical state vector eiγ(t)|ϕ(t)〉
which has to be independent of the choice of the reference eigenvectors. Clearly, this
is inconsistent with the previous formula which does not involve the vectors |ϕ(t)〉 at
all and is therefore obviously incorrect. The described redefinition of the eigenvectors
|ϕ(t)〉 by an arbitrary phase change which has no observable consequences is usually
called gauge transformation. Thus a more refined way of stating the argument above is
that our incorrect form of the phase γ(t) violates gauge invariance of the physical state
vector eiγ(t)|ϕ(t)〉.
Let us now derive an expression for the complex phase accompanying an arbitrary
(i.e. not necessarily adiabatic) quantal evolution. We shall assume that the evolution of
the state vector is again given up to an unknown phase factor eiγ(t) by a vector |ϕ(t)〉
which in this case need not be an energy eigenvector. Substituting the state vector
eiγ(t)|ϕ(t)〉 into the Schrödinger equation results in

(

i
dγ(t)

dt
+

d

dt

)

|ϕ(t)〉 = − i

~
Ĥ(t)|ϕ(t)〉.

After multiplying this equation by the bra vector 〈ϕ(t)| and integrating from the initial
time t0 to the time t we obtain

γ(t) = −1

~

∫ t

t0

〈ϕ(τ)|Ĥ(τ)|ϕ(τ)〉dτ + i

∫ t

t0

〈ϕ(τ)| d
dτ

|ϕ(τ)〉 dτ.
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We can see that apart from the expected term given by the energy integral, there is
an additional gauge-dependent contribution to the phase. It is easy to show that the
presence of this additional term results in the correct behaviour of the phase under gauge
transformations as described above. Also, the new term is clearly independent of the way
the evolution of the vector |ϕ(t)〉 is parametrized. In other words, using any parameter
λ in place of time in the integral

∫ t
t0
〈ϕ(τ)|d/dτ |ϕ(τ)〉 dτ yields the same result. The

integral therefore only depends on the trajectory of the vector in the Hilbert space and
not on the dynamical quantities – energy and time. Based on this observation, the phase
γ(t) can be split into a geometric part γg(λ) and a dynamical part γd(t) defined as

γd(t) = −1

~

∫ t

t0

〈ϕ(τ)|Ĥ(τ)|ϕ(τ)〉dτ , (22a)

γg(λ) = i

∫

〈ϕ(λ)| d
dλ

|ϕ(λ)〉 dλ. (22b)

These two generally valid equations, first derived by Aharonov and Anandan [43] for
cyclic evolution, can of course be applied to adiabatic processes in which case they
transform into the form used originally by Berry [15]. The vector |ϕ(t)〉 is then simply
the eigenvector of the Hamiltonian Ĥ(t) and the expectation value 〈ϕ(τ)|Ĥ(τ)|ϕ(τ)〉 can
be replaced by the eigenenergy E(τ).

Even though we have obtained an additional geometric phase term which can be seen
as a necessary ingredient ensuring gauge invariance of the adiabatically evolving state
vector, it is perhaps not immediately obvious whether the presence of this new term has
any physically observable consequences.

Maybe the only effect the geometric term has is to cancel the phase changes induced
by gauge transformations? In that case, the geometric phase would indeed be quite
uninteresting because it could be completely cancelled by choosing an appropriate gauge
for the eigenvectors |ϕ(λ)〉. Fortunately, there is more to the geometric phase than that.
Let us imagine a cyclic adiabatic evolution. The reference eigenvectors |ϕ(λ)〉 at the
beginning and at the end of the process are identical and the phase γ is therefore a gauge-
invariant quantity. If the system is transported along a non-trivial loop (i.e. one enclosing
a non-zero area) in the Hilbert space then the line integral in Eq. (22b) can in general be
non-zero. This cyclic geometric phase, being gauge-invariant, cannot be eliminated by
a gauge transformation and if it is not identical for all energy eigenstates, its presence
can be observed experimentally since phase differences are quantities measurable in an
interference experiment.

The fact that the geometric phase only depends on the path traced by the eigenvector
is generally believed to make it less susceptible to unwanted fluctuations in control pa-
rameters of the Hamiltonian [44]. For example, it is not affected by errors in dynamical
parameters such as speed of the evolution or eigenenergies of the Hamiltonian, as long
as the adiabatic approximation can still be used. Such resilience to noise is obviously
a highly desirable property for quantum information processing. As any unitary oper-
ation is just a multiplication by phase factors in its eigenbasis, a universal set of gates
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needed for quantum computation can in principle be realized using the geometric phase
simply by designing an appropriate adiabatically changing Hamiltonian. The experimen-
tal realization of this seemingly simple task can of course be quite challenging. It might
be difficult to find a suitable system with a well-controllable Hamiltonian or the presence
of decoherence effects might force the operation time of the device to be as short as pos-
sible, thus making it potentially problematic to satisfy the requirement of adiabaticity.
Another obstacle for using the geometric phase in quantum computation is the need to
eliminate the dynamical phase given by Eq. (22a), an inevitable part of the total phase.
This is usually accomplished by using the spin-echo technique. Another, conceptually
simpler approach, is offered by the non-abelian geometric phase which arises during adi-
abatic transport of degenerate eigenstates. If all the computational states have equal
eigenenergies they acquire the same dynamical phase which can then be neglected.

To compute the geometric phase using Eq. (22b), we parametrize the space of all possible
Hamiltonians of the system by some coordinate system x1, x2, . . . , xd. If the adiabatically
changing Hamiltonian follows a path P given parametrically by a vector function x(λ) =
(x1(λ), x2(λ), . . . , xd(λ)), then the geometric phase can be expressed as a line integral in
the d-dimensional parameter space

γg(λ) = i

∫

P
〈ϕ(x)|∇|ϕ(x)〉 · dx. (23)

The vector field i〈ϕ(x)|∇|ϕ(x)〉 therefore fully characterises the geometric phase in the
given system. If the path P traced by the Hamiltonian is closed then the cyclic ge-
ometric phase can be rewritten using Stokes’ theorem and a few elementary algebraic
manipulations as

γg = i

∫

Σ
∇〈ϕ(x)| × ∇|ϕ(x)〉 · dΣ, (24)

where Σ is the surface enclosed by P . We can express the vector field in the integrand
with the help of the following identity:

〈ϕ′(x)|∇|ϕ(x)〉 = 〈ϕ′(x)|(∇Ĥ(x))|ϕ(x)〉
E(x) − E′(x)

,

which holds for any two distinct eigenvectors |ϕ(x)〉, |ϕ′(x)〉 with the respective eigen-
values E(x), E′(x) and can be very simply derived by applying the operator ∇ to the
identity 〈ϕ′(x)|Ĥ(x)|ϕ(x)〉 = 0. The resulting expression for the cyclic geometric phase
is then

γg = i
∑

ϕ′ 6=ϕ

∫

Σ

〈ϕ(x)|(∇Ĥ(x))|ϕ′(x)〉 × 〈ϕ′(x)|(∇Ĥ(x))|ϕ(x)〉
(E(x) − E′(x))2

· dΣ, (25)

where the summation extends over all eigenvectors |ϕ′(x)〉 of Ĥ(x) distinct from |ϕ(x)〉.
Whereas the original Eq. (24) is simpler in its form, Eq. (25) does not involve derivatives
of the eigenvectors but only matrix elements of the operator ∇Ĥ(x) in the energy eigen-
basis, which is in many cases easier to calculate. Moreover, Eq. (25) is also manifestly
gauge-invariant.

34



3 GEOMETRIC PHASE

3.3 Geometric phase in simple quantum systems

We will now use the general formulas derived in the previous Section to calculate the
geometric phase for three simple quantum-mechanical system – a qubit, a harmonic
oscillator and a tripod system. While the first and the last one are included only to
illustrate the results discussed above with concrete examples, the derivation of the har-
monic oscillator geometric phase is relevant to the experiment described in detail in
Sections 4 and 5 of this thesis.

3.3.1 Two-level system

Let us first take a look at a simple two-level system which represents the elementary
unit of quantum information – a qubit. A general Hamiltonian of such system can be
expressed up to a trivial overall energy shift as a linear combination of the Pauli matrices

Ĥ = axσ̂x + ayσ̂y + azσ̂z, (26)

where ax, ay and az are arbitrary real coefficients, forming a three-dimensional vector
~a. Similarly, vectors in a two-dimensional Hilbert space can be up to a complex phase
factor parametrized by two angles ϑ and ϕ as

|ψ〉 = cos
ϑ

2
e−iϕ/2|z+〉+ sin

ϑ

2
e+iϕ/2|z−〉, (27)

where |z±〉 are the eigenvectors of σ̂z corresponding to eigenvalues ±1. The angles ϑ
and ϕ can be also viewed as spherical coordinates of a unit vector ~n with components
nx = sinϑ cosϕ, ny = sinϑ sinϕ and nz = cos ϑ – the so-called Bloch vector . This nat-
ural correspondence between three-dimensional real unit vectors ~n and two-dimensional
complex vectors |~n〉 gives rise to the well-known pictorial representation of states of a two
level quantum system as points on a Bloch sphere (see Fig. 17).

The described parametrizations of hermitian operators and vectors in a two-dimensional
Hilbert space are closely interlinked. It can be shown that a Hamiltonian given by
a vector ~a has eigenvalues ±|~a| with corresponding eigenvectors | ± ~n〉, where ~n = ~a/|~a|.
If the Hamiltonian evolves adiabatically and the varying direction of the vector parameter
~a(t) is described by the spherical coordinates ϑ(t) and ϕ(t), then the evolution of the
eigenvector |~n(t)〉 is given simply by Eq. (27). For the eigenvector | − ~n(t)〉, whose
corresponding Bloch vector has the opposite sign, the angle ϑ needs to be replaced by
ϑ + π. Using Eq. (23), we easily obtain an expression for the geometric phase acquired
by the eigenvectors | ± ~n〉 during a cyclic adiabatic evolution

γ±g = i

∮

P
〈±~n| ∂

∂ϑ
| ± ~n〉dϑ+ 〈±~n| ∂

∂ϕ
| ± ~n〉 dϕ

= ±1

2

∮

P
cos ϑ dϕ.
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Figure 17: The Bloch sphere. The two eigenvectors |z±〉 of σ̂z are represented by unit vectors collinear
and anticollinear with the z-axis. A general superposition |~n〉 of these basis vectors in the form given by
Eq. (27) corresponds to a unit vector ~n characterised by spherical coordinates ϑ and ϕ.

It is easy to derive that the integral
∮

P (1 − cos ϑ) dϕ equals the solid angle A enclosed
by the path of the unit vector ~n. The geometric phase is then given by ±1

2(2πν − A),
where ν =

∮

P dϕ/2π is the winding number of the path P , i.e. the number of times it
encircles the z-axis. The appearance of ν in the formula for the geometric phase might
seem paradoxical at first glance because it privileges the z-axis, although we expect
the result to be isotropic. However, the vector given by Eq. (27), which we chose to
parametrize the eigenvectors, changes its sign when ϕ is increased by 2π. The geometric
phase derived above is therefore taken with respect to initial and final eigenvectors with
opposite signs if ν is odd. If we want to express the cyclic geometric phase properly, that
is with respect to the same initial and final eigenvector, we need to multiply the phase
factor eiγg by (−1)ν which effectively eliminates the dependence of the geometric phase
on ν. We could have also avoided this little complication by calculating the geometric
phase using Eq. (24) instead of Eq. (23). We would have of course arrived at the same
result which is

γ±g = ∓1

2
A. (28)

This simple relation between the geometric phase acquired by a two-level system and
the solid angle (see Fig. 18) enclosed by the trajectory of the system on the Bloch sphere
was first derived in Berry’s original paper [15].

3.3.2 Harmonic oscillator

Let us now look at the geometric phase in another simple quantum system – a harmonic
oscillator. We will consider a driven oscillator whose Hamiltonian is given by

Ĥ(t) = ~ωâ†â +
1

2
~(ε̃(t)â† + ε̃∗(t)â),
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~a(λ)

|+ ~n(λ)〉
| − ~n(λ)〉

A

Figure 18: Solid angle traced by a state vector on the Bloch sphere. The three-dimensional vector
~n (in blue) representing the eigenvector | + ~n〉 of the two-level Hamiltonian traces a trajectory on the
unit Bloch sphere. The solid angle A is defined as the area of the spherical segment enclosed by this
trajectory.

where ε̃(t) is the (complex) drive strength. The Hamiltonian can be also expressed as

Ĥ(t) = ~ω

(

â +
ε̃(t)

2ω

)†(

â +
ε̃(t)

2ω

)

− ~
|ε̃(t)|2
4ω

.

This has the same form as the free harmonic oscillator Hamiltonian Ĥ0 = ~ωâ†â but
with the overall energy shifted by −|ε̃(t)|2/4ω and the ladder operator â replaced by
â+ ε̃(t)/2ω. This displacement process can be illustrated with a simple classical analogy
as depicted in Fig. 19 – a quadratic potential whose equilibrium point is shifted after
addition of a constant force. The “shifted” ladder operators obviously satisfy the same
commutation relation as â and â†. The spectrum of the driven oscillator has the same
harmonic structure as the free oscillator and its ground state |α(t)〉 is annihilated by
the operator â + ε̃(t)/2ω. In other words, it is an eigenvector of â with an eigenvalue
α(t) = −ε̃(t)/2ω.
Eigenvectors of â are usually called coherent states and they can be expressed in the free
oscillator eigenbasis as

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!
|n〉. (29)

More generally, the n-th eigenstate |ϕn(t)〉 of Ĥ(t) is related to |n〉 by the so-called
displacement operator

D̂(α) = exp(αâ† − α∗â), (30)

which is unitary and satisfies D̂†(α)âD̂(α) = â + α and therefore

Ĥ(t) D̂(α(t))|n〉
︸ ︷︷ ︸

|ϕn(t)〉

=

En(t)
︷ ︸︸ ︷

~

(

ωn− |ε̃(t)|2
4ω

)

D̂(α(t))|n〉
︸ ︷︷ ︸

|ϕn(t)〉

.
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Figure 19: Shift of a harmonic potential by a linear term. An additional linear term εx (in blue) is
added to a classical quadratic potential ωx2 (in red). The resulting quadratic potential (in purple) has
an equilibrium point which is shifted by −ε/2ω from its original position and its energy is lowered by
ε2/4ω. This can be seen as a simple classical analogy of the quantum harmonic oscillator displacement.

If the drive strength ε̃(t) changes adiabatically, the state vector of the harmonic oscillator
initially in the Fock state |n〉 – according to the adiabatic theorem – follows the displaced
eigenvector |ϕn(t)〉 = D̂(α(t))|n〉. The dynamical and geometric phases acquired during
the adiabatic evolution can then be calculated using Eqs. (22). After substituting the
eigenvector |ϕn(t)〉 we obtain

γ
(n)
d (t) =

∫ t

t0

( |ε̃(τ)|2
4ω

− ωn

)

dτ, (31a)

γ(n)g (λ) = i

∫

〈n|D̂†(α(λ))
d

dλ
D̂(α(λ))|n〉dλ. (31b)

The derivative dD̂(α(λ))/dλ can be calculated using the well-known Baker-Campbell-
Hausdorff formula

exp(Â+ B̂) = exp Â exp B̂ exp
1

2
[B̂, Â], (32)

which is valid for any operators Â, B̂ satisfying [Â, [Â, B̂]] = [Â, [Â, B̂]] = 0. This con-
dition obviously holds for any linear combinations of the ladder operators since their
commutator is a c-number. Applying this formula to the operators Â = αâ† − α∗â and
B̂ = dαâ† − dα∗â then yields

D̂(α+ dα) = D̂(α)D̂(dα) exp
α∗ dα− α dα∗

2

and consequently

D̂†(α) dD̂(α) =D̂(dα) exp
α∗ dα− αdα∗

2
− 1

=â† dα− â dα∗ +
1

2
α∗ dα− 1

2
α dα∗.
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Since the Fock states satisfy 〈n|â|n〉 = 〈n|â†|n〉 = 0 we obtain for the geometric phase
an equation

γg(λ) = −
∫

Imα∗(λ)
dα(λ)

dλ
dλ. (33)

Interestingly, the accumulated phase does not depend on the Fock state number n and is
therefore completely independent of the initial state of the resonator. It can be observed
even if the resonator is initially in a mixed state (e.g. a thermal state with non-zero
temperature).

If the adiabatic evolution is cyclic this integral has a natural interpretation in terms of
the area Aα enclosed by the curve α(λ) in the complex plane (see Fig. 20). Equivalently,
the phase can be expressed using the area Aε̃ enclosed by the trajectory of the complex
drive strength ε̃(λ) which is related to α(λ) by the equation α = −ε̃/2ω derived above.
The resulting expressions for the geometric phase are

γg = −2Aα = − 1

2ω2
Aε̃. (34)

Reα

Imα

Aα

|0〉

|α〉

Figure 20: Path of the coherent state quadrature in the complex plane. The quadrature α = 〈â〉 of
a coherent state of an adiabatically driven harmonic oscillator follows a path α(λ) in the complex plane.
The area Aα enclosed by this curve determines the geometric phase acquired by the oscillator during
the cyclic adiabatic evolution.

The harmonic oscillator geometric phase has been experimentally implemented in a trap-
ped-ion two-qubit geometric gate [21]. There are also theoretical proposals for a similar
experiment in a cavity QED system with two three-level atoms coupled to an electro-
magnetic mode [45]. Both of these experiments make use of the non-adiabatic geometric
phase. A careful inspection of these cases raises an interesting question about the def-
inition of the geometric and dynamical which – as it turns out – transform into each
other if the rotating reference frame in which the system is described changes. We will
address this issue in more detail in Section 3.4.
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In this thesis, we have studied the adiabatic harmonic oscillator geometric phase in a cir-
cuit QED setup with transmon qubits, both theoretically (Section 4) and experimentally
(Section 5).

3.3.3 The tripod system – non-abelian geometric phase

To illustrate the concept of non-abelian geometric phase, we will now describe one of
the simplest systems in which it can be observed – the so-called tripod system, originally
proposed in Ref. [46]. It is a four-level system with a Hamiltonian of the form

Ĥ = Ωa|a〉〈0| +Ωb|b〉〈0| +Ωc|c〉〈0| + h.c., (35)

where |a〉, |b〉, |c〉 and |0〉 are four basis states of the system and Ωa, Ωb, Ωc are complex
coupling constants. The name tripod refers to the structure of the Hamiltonian shown
in Fig. 21 – it couples the three states |a〉, |b〉 and |c〉 to |0〉 but not to each other.

|0〉

|a〉

Ωa

|b〉

Ωb

|c〉

Ωc

Figure 21: Structure of the tripod system. Three basis states |a〉, |b〉 and |c〉 couple to the fourth basis
state |0〉 but not to each other.

All diagonal matrix elements of the Hamiltonian are zero, i.e. the basis states have
the same (zero) energy. However, a Hamiltonian with the structure shown in Fig. 21
can be transformed into the off-diagonal form given by Eq. (35) even if the four states
are not degenerate. The energy differences between them can be effectively eliminated
by making the couplings Ωa, Ωb and Ωc oscillating functions of time, transforming the
Hamiltonian into a rotating frame and performing the rotating wave approximation.

If we define a normalized vector

|Ω〉 = Ωa|a〉+Ωb|b〉+Ωc|c〉
√

|Ωa|2 + |Ωb|2 + |Ωc|2

and rewrite the Hamiltonian in the form Ĥ =
√

|Ωa|2 + |Ωb|2 + |Ωc|2|Ω〉〈0| + h.c., it
becomes obvious that it has two eigenvectors |ϕ±〉 = (|0〉 ± |Ω〉)/

√
2 with eigenener-

gies ±
√

|Ωa|2 + |Ωb|2 + |Ωc|2 and a two-dimensional degenerate eigenspace with zero
eigenenergy orthogonal to |0〉 and |Ω〉 which can be used to encode the two computa-
tional states of a qubit.

The degenerate eigenspace S is restricted to the three-dimensional subspace spanned
by |a〉, |b〉 and |c〉. If the couplings Ωa, Ωb and Ωc are real, S can be easily visualized
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as a two-dimensional plane in a three-dimensional Euclidean space in the following way.
We can map state vectors |ϕ〉 = A|a〉 + B|b〉 + C|c〉 with real coefficients A,B,C to
Euclidean vectors ~ϕ = A~ex+B~ey+C~ez. The degenerate subspace is then simply a plane

σ perpendicular to the vector ~Ω = Ωa~ex+Ωb~ey+Ωc~ez . In this geometric picture, a state
vector |ϕ〉 starting in the degenerate eigenspace and evolving under adiabatic variation
of the couplings Ωa, Ωb and Ωc is represented by a vector ~ϕ which is being continuously
projected onto the moving plane σ. This process can be also seen as a parallel transport
on a sphere where the varying vector ~Ω determines a path and the plane σ is a tangent
plane at each point of the path.

This shows that one can realize arbitrary rotations in the plane σ. For example, to
rotate a vector by π/2, we can simply transport it along an equilateral spherical triangle
with sides of length π/2. However, if the couplings Ωa, Ωb and Ωc are kept real, one can
implement only orthogonal transformations O(2) in the eigenspace S . To extend the
possible operations to all elements of the unitary group SU(2), Ωa, Ωb and Ωc need to
be complex and the convenient direct analogy with parallel transport on a sphere has to
be abandoned.

Nevertheless, by choosing an appropriate path in the parameter space of Ωa, Ωb and
Ωc, one can in principle implement any unitary operation in the degenerate eigenspace
of the tripod system. Unlike in the non-degenerate case, no additional manipulation
is needed to cancel the dynamical phase, simply because the eigenenergies of the two
computational states are equal.

3.4 Ambiguity of the non-adiabatic geometric and dynamical phase

Circuit QED systems are often described by an effective Hamiltonian in a rotating ref-
erence frame. It is important to note that time-dependent unitary transformations do
not preserve the geometric phase. Upon replacing a state vector |ϕ(t)〉 by its rotating
frame form Û(t)|ϕ(t)〉, the integrand in Eq. (22b) which determines the geometric phase
transforms as

〈ϕ(t)| d
dt

|ϕ(t)〉 → 〈ϕ(t)|Û†(t) d
dt
Û(t)|ϕ(t)〉

→ 〈ϕ(t)| d
dt

|ϕ(t)〉 + 〈ϕ(t)|Û†(t)dÛ(t)
dt

|ϕ(t)〉.

If we describe the system without using rotating reference frames, the geometric phase
is of course defined uniquely. Otherwise, however, it depends on the reference frame we
choose to describe the system in. What frame should we use to define the geometric phase
in a meaningful way? In the adiabatic case, it is natural to require that the trajectory
of the adiabatically evolving eigenvector as well as its eigenenergy are invariant under
a mere change of the timescale of the process. This criterion is enough to uniquely
specify the phases.
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However, it obviously cannot be used for non-adiabatic processes. In this case, the
definition of the geometric and dynamical phase by Eqs. (22) remains ambiguous, as we
will now illustrate with an example.

There is a proposal by Zheng [45] to implement the so-called unconventional geometric
phase gate. It relies on the non-adiabatic geometric and dynamical phases associated
with driving a coherent state of a harmonic oscillator resonantly along a circular path in
the quadrature plane. In the frame rotating at the frequency of the harmonic oscillator,
the Hamiltonian is

Ĥ(t) =
1

2
~(ε̃(t)â† + ε̃∗(t)â),

where ε̃(t) is the complex drive strength in the oscillator-corotating frame. In the case of
constant magnitude ε0 and one rotation in the complex plane (see Fig. 22a) with angular
frequency Ω, i.e. ε̃(t) = ε0 exp(iΩt), the quadrature α = 〈â〉 obeys the Heisenberg
equation

dα(t)

dt
=

i

~
〈[Ĥ(t), â]〉 = − i

2
ε̃(t).

Its solution with the initial condition α(t) = 0 is

α(t) =
ε0
2Ω

(1− exp(iΩt)).

The quadrature traces in the complex plane a circle with radius ε0/2Ω (see Fig. 22a).
Using Eq. (34) we obtain the geometric phase

γg = − πε20
2Ω2

.

The dynamical phase can be expressed in terms of the energy expectation value using
Eq. (22a)

γd = −1

~

∫ 2π/Ω

0
〈α(t)|Ĥ(t)|α(t)〉dt = −1

2

∫ 2π/Ω

0
(ε̃(t)α∗(t) + ε̃∗(t)α(t)) dt

=
πε20
Ω2

.

We can see that there is a relation between the geometric and the dynamical phase,
namely γd = −2γg. It is this special property that the name unconventional geometric
phase refers to.

Let us now look at the same process in another reference frame – the one corotating at
the drive frequency. In this case the Hamiltonian takes the form

Ĥ′(t) = ~Ωâ†â +
1

2
~ε0(â

† + â) = ~Ω
(

â +
ε0
2Ω

)† (

â +
ε0
2Ω

)

− ~
ε20
4Ω

.

This is just the displaced harmonic oscillator Hamiltonian discussed in Section 3.3.2. If
we denote the displaced ladder operators by b̂ and b̂†, the initial vacuum state of the
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a) b)
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Figure 22: Two interpretations of the unconventional geometric phase. (a) In the oscillator-corotating
frame, the drive ε̃ (in red) undergoes one rotation in the complex plane. The coherent state quadrature
α (in blue) whose time derivative is proportional to ε̃ traces out a circle with the same orientation. (b) In
the drive-corotating frame, the drive is time-independent and displaces the vacuum state of the oscillator.
The coherent state |α〉 then rotates around this displaced vacuum state in the opposite direction than
in the oscillator-corotating frame.

original oscillator is simply a coherent state |β〉 of the new Hamiltonian where β = 〈b̂〉 =
ε0/2Ω. Its evolution is given by the Heisenberg equation

dβ(t)

dt
=

i

~
〈[Ĥ′(t), b̂]〉 = −iΩβ(t),

which gives us β(t) = ε0 exp(−iΩt)/2Ω. Once again, the coherent state traces a circle
of radius ε0/2Ω but this time in the opposite direction than before (see Fig. 22b). The
geometric phase is therefore

γ′g =
πε20
2Ω2

,

whereas the dynamical phase is

γ′d = −1

~

∫ 2π/Ω

0
〈β(t)|Ĥ′(t)|β(t)〉dt = −

∫ 2π/Ω

0

(

Ω|β|2 − ε20
4Ω

)

dt = 0.

We can see that whereas the total phase remains the same in both reference frames,
the way it is divided between the geometric and dynamical part differs. If we adopt yet
another viewpoint and calculate the evolution operator of the oscillator directly from
the time-independent Hamiltonian Ĥ′, we get

Û′(T ) = exp(−iΩT b̂†b̂) exp

(

i
ε20
4Ω

T

)

.

After using the relation ΩT = 2π which implies exp(−iΩT b̂†b̂) = 1, we obtain simply

Û′(T ) = exp

(

i
πε20
2Ω2

)

.
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This is the same phase factor we calculated using the two previous approaches but now
the phase originates from the overall energy shift −~ε20/4Ω of the displaced Hamiltonian
Ĥ′ and the connection with geometry seems to have disappeared altogether.

By deriving the non-adiabatic phase for this particular process in three different ways and
showing how it can be interpreted rather arbitrarily as either geometric or dynamical,
we have hopefully demonstrated that finding a proper definition of the non-adiabatic
geometric phase may pose some problems.

This becomes even more apparent if we consider the question of measurement of the
geometric phase. In the adiabatic case, reversing the evolution of the Hamiltonian, i.e.
replacing Ĥ(t) by Ĥ(T − t), simply changes the direction of the trajectory traced by
the adiabatically evolving eigenstate. This implies that the geometric phase given by
Eq. (22b) changes its sign whereas the dynamical phase expressed in Eq. (22a) remains
unchanged. One can therefore isolate the geometric part of the total phase simply by
taking the difference between the phases for the two opposite orientations of the path.

Quite obviously, the situation becomes more complicated for a general non-adiabatic
evolution. Reversing the variation of the Hamiltonian does not simply lead to a time-
reversal of the state vector trajectory and the energy expectation value. Consequently,
it is not possible to measure the geometric phase in the same way as for the adiabatic
case.

It is considerably more difficult to control the evolution of the state vector and the energy
expectation value at the same time for non-adiabatic processes. This shows us that the
separation of the total phase into a geometric and a dynamical part given by Eqs. (22)
might not be the most convenient way from an experimentalist’s point of view.

As we would still like to study the geometric phase even in the non-adiabatic regime,
we could perhaps adopt a slightly different definition which does not rely on our ability
to find a special time-dependent Hamiltonian which exactly reverses the evolution of
the state vector and its energy expectation value. Let us generalize the simple way
of determining the geometric phase in the adiabatic limit discussed above and define
a modified “geometric phase” in this way even for a general non-adiabatic evolution, i.e.

γexpg =
γ − γrev

2
, (36)

where γ and γrev are the phases accumulated by the state vector under the influence of
the original Hamiltonian Ĥ(t) and the time-reversed one Ĥ(T − t), respectively. This
“experimental definition” and the one derived from Schrödinger equation expressed in
Eq. (22b) differ for non-adiabatic processes but they are clearly equivalent in the adia-
batic limit.

We will touch on the difference between these two definitions again in Section 4 when
we analytically calculate the phase acquired during a non-adiabatic evolution of the
harmonic oscillator.
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3.5 Generalizations of the geometric phase

Since the first description of the quantum-mechanical geometric phase by Berry [15],
various generalized schemes have been proposed to extend its definition past the special
case of cyclic adiabatic unitary evolution.

Aharonov and Anandan [43] made the important observation that the phase acquired
by a state vector can be decomposed into a geometric and a dynamical term not only
for the adiabatic case considered by Berry but for any cyclic unitary evolution. This
generalization only requires a change in the definition of the dynamical phase which,
instead of being expressed in terms of the adiabatically changing eigenenergy, is given
by the energy expectation value 〈ϕ(t)|Ĥ(t)|ϕ(t)〉 (see Eqs. (22)). Their paper also pointed
out an interesting connection between the Aharonov-Bohm effect [47] and the geometric
phase.

Another generalization emerged in a paper by Samuel and Bhandari [48] who extend
the concept of geometric phase to non-cyclic and certain non-unitary processes. As we
have seen, the phase accumulated during the evolution of a quantum system is in general
not gauge-invariant, unless the evolution is cyclic. However, the phase for a non-cyclic
process taking an initial state |ϕ1〉 to a final state |ϕ2〉 can be specified relatively to the
phase of the inner product 〈ϕ2|ϕ1〉. Both of these phases transform in the same way
under a change of gauge which implies that the non-cyclic phase defined as

γ̃g = γg − arg〈ϕ2|ϕ1〉

is a gauge-invariant quantity. It is possible to show that this modified phase can be
expressed as a cyclic geometric phase corresponding to a closed trajectory obtained by
concatenation of the original path going from |ϕ1〉 to |ϕ2〉 with a geodesic path going
back from |ϕ2〉 to |ϕ1〉.
The geodesic property is expressed in the usual way with respect to a gauge-invariant
metric defined on the unit sphere in the Hilbert space H as

d2(|ϕ〉, |ϕ〉 + d|ϕ〉) = 〈dϕ|(1− P̂ϕ)|dϕ〉.

They also discuss the case of non-unitary evolution induced by projective measurements.
They show that the geometric phase can be once again calculated as a cyclic phase by
connecting the states before and after the measurement operations by geodesic paths.

The non-cyclic geometric phase described above is undefined if the initial and final states
|ϕ1〉 and |ϕ2〉 are orthogonal. However, it was shown [49] that even in this case one
can construct gauge-invariant objects containing non-trivial phase information. This
so-called off-diagonal geometric phase involves relative phases of two or more energy
eigenstates evolving at the same time.

An extension of the geometric phase to systems governed by non-hermitian Hamiltoni-
ans was described by Garrison and Wright [50]. The phase in their approach becomes
a complex quantity whose imaginary part contributes to dissipation.
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Generalization of the geometric phase from pure to mixed states has proven to be rather
difficult. A treatment motivated by interferometric measurements was delineated in
a paper by Sjöqvist et al. [51] and later extended to the off-diagonal phase in [52].
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4 Geometric phase of a resonator in circuit QED

In the following section, we will theoretically describe an experiment in which we mea-
sure the geometric phase of a harmonic oscillator in circuit QED and whose practical
realization and results will be presented in Section 5. The harmonic oscillator in our
circuit QED setup is the microwave transmission line resonator used to read-out and
couple qubits. The resonator is driven by an externally applied microwave signal and
the system is then described by the rotating frame Hamiltonian

Ĥ(t) = ~δâ†â +
1

2
~(ε̃(t)â† + ε̃∗(t)â). (37)

δ = ωr − ω is the detuning between the resonator frequency and the frequency of the
drive signal and ε̃(t) is the complex drive amplitude in the rotating frame, related to the
oscillating value of the drive εx(t) by εx(t) = Re

(
ε̃(t)e−iωt

)
.

This Hamiltonian is identical to the one discussed in Section 3.3.2, except for the fre-
quency ω of the oscillator being replaced by the detuning δ. If the drive amplitude ε̃(t)
is varied adiabatically along a closed path in the complex plane the resonator accumu-
lates a phase whose dynamical and geometric parts are given by Eqs. (31a) and (34),
respectively.

However, as we have seen, this geometric phase and the drive-dependent part of the
dynamical phase do not depend on the energy eigenvector being transported around.
Since only differences between phases are actually measurable, the geometric phase of
a harmonic oscillator cannot be directly observed [17, 18] by preparing a superposition
of different eigenvalues of a two-level system which then acquire different phases.

In order to be able to measure a difference between geometric phases, one needs to have
access to a control parameter to change the phase. In our case, this parameter is the
detuning between the drive signal and the resonator frequency. If a qubit is dispersively
coupled to the resonator, the Hamiltonian of the system is given by Eq. (20), originally
derived for two qubits but we will now simply ignore the second qubit. As it turns out, we
can also omit the resonator-mediated qubit drive term because in our case the resonator
drive signal is far detuned from the qubit frequency. We will justify this step later at
the end of this section. Finally, a careful inspection shows that the qubit-dependent
correction to the resonator drive can be neglected as well and the qubit energy term
~(ωq + χ)|e〉〈e| can be eliminated by a transformation into the qubit-corotating frame.
In the end we are left with the simple Hamiltonian

Ĥ = ~(δ + 2χ|e〉〈e|)â†â + 1

2
~(ε̃(t)â† + ε̃∗(t)â),

where δ is now the detuning between the resonator drive signal and the resonator fre-
quency if the qubit is in the ground state. The only difference from the bare resonator
Hamiltonian is the presence of the resonator frequency dispersive shift by 2χ if the qubit
is in the excited state. The dispersive shift parameter χ is given by χ = g2/(ωq − ωr)
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for a two-level qubit or – in the case of a multi-level qubit which is more relevant to our
experimental setup,

χ =
g2

ωq − ωr
− g2

ωq + α− ωr
,

as derived in Section 2.2.2.

Note that no matter if the qubit is an ideal two-level system or not, our system can be
still described by the same type of Hamiltonian, as long as the dispersive limit is valid.
The details of the qubit structure are “hidden” in the single parameter χ.

As a consequence of the dispersive shift, the detuning between the resonator drive signal
and the resonator frequency depends on the state of the qubit – it is either δ if the qubit
is in the ground state or δ+2χ if it is in the excited state. The trajectory α(t) traced by
an adiabatically transported state of the resonator in the quadrature plane is given by
α(t) = −ε̃(t)/2δ and therefore depends on the qubit state as well. The different areas
enclosed by the trajectories for the two qubit states (see Fig. 23) then lead to a difference
between the accumulated geometric phases, a quantity which is measurable unlike the
phases themselves.

Reα

Imα

A
(e)
α

A
(g)
α

|0〉

|α(e)〉

|α(g)〉

Figure 23: Qubit-dependent path of the coherent state quadrature. The path α(λ) traced by the
quadrature α = 〈â〉 of an adiabatically driven resonator in the complex plane depends on the resonator-
drive detuning. Since the qubit dispersively shifts the resonator frequency, the enclosed area Aα and the
geometric phase depends on the qubit state.

Using Eqs. (31a) and (34) we can express the differences between the dynamical and
geometric phases acquired for the two different qubit states as

∆γd = γ
(e)
d − γ

(g)
d =

(
1

δ + 2χ
− 1

δ

)∫ T

0

|ε̃(t)|2
4

dt, (38a)

∆γg = γ(e)g − γ(g)g =−
(

1

(δ + 2χ)2
− 1

δ2

)
Aε̃

2
, (38b)

where Aε̃ is the area enclosed by the path of ε̃ in the complex plane.
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We can now have a look at a specific example of the drive amplitude trajectory ε̃(t) and
calculate the phase differences expressed by Eqs. (38). Let the drive amplitude be given
as

ε̃(t) =
1

2
ε0(1− eiΩt). (39)

The corresponding trajectory is a simple circle going through the origin, centered at
ε0/2, as shown in Fig. 24. The maximum drive amplitude during the cycle is ε0 and
its duration is T = 2π/|Ω|. This was the type of drive signal typically used in our
experiment.

a) b)

Re ε̃

Im ε̃

ε0ε0/2

ε0/2

−ε0/2

t
R
e
ε̃(
t)
,
Im

ε̃(
t)

ε0

ε0/2

0

−ε0/2

Figure 24: Resonator drive with a circular trajectory. (a) The complex drive strength ε̃(t) given by
Eq. (39) traces a circle in the complex plane. (b) Time dependence of the real and imaginary parts of
ε̃(t).

The integral
∫ T
0 |ε̃(t)|2 dt as well as the area Aε̃ are very easy to calculate. The resulting

phases are

∆γd =
1

8

(
1

δ + 2χ
− 1

δ

)

|ε0|2T, (40a)

∆γg =∓ π

8

(
1

(δ + 2χ)2
− 1

δ2

)

|ε0|2, (40b)

where the signs − and + in ∓ correspond respectively to the counterclockwise and
clockwise orientations of the cycle.

We can now briefly return to our previous claim that the qubit drive term mediated by
the resonator can be neglected. The term in question is gε̃σ̂+/2∆+h.c., where ∆ is the
detuning between the resonator and the qubit frequency. If we use the analogy between
the qubit and a spin 1/2 particle, the magnetic field to which the spin is subjected
forms an angle ϑ = arctan g|ε̃|/∆2 with the z axis. Here we have used the fact that
the difference between the resonator frequency ωr and the drive frequency ω is much
smaller than ∆ which allows us to approximate the qubit-drive detuning ωq − ω by ∆.
Using Eq. (40b) and assuming for simplicity that χ ≪ δ, we can show that tan2 ϑ is of
the same order of magnitude as ∆γgδ

3g2/χ∆4. We can further express the dispersive
shift parameter of a transmon qubit approximately as χ = αg2/∆2 and rewrite the
estimate above as ∆γgδ

3/α∆2. Since in our experiment we have δ ≪ α,∆ and the
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observed geometric phase is of the order of unity, we get ϑ ≪ 1. This implies that the
resonator drive signal does not significantly affect the state of the qubit. Additionally,
the geometric phase accumulated by the qubit is comparable with tan2 ϑ and is therefore
much smaller than the resonator geometric phase. Hence, neglecting the qubit drive by
the resonator field is indeed justifiable.

4.1 Ramsey measurement of the phase

One of the simplest and most commonly used ways of measuring a difference between
phases accumulated by two given quantum states is the Ramsey measurement . It starts
by preparing an equal superposition of the two states – in our case the ground and the
excited qubit state. This can be done for example by applying the unitary transformation
R̂

y
−π/2 = exp(iπσ̂y/4) to the qubit which is initialized in its ground state. This operation,

which can be represented as a rotation by −π/2 around the y-axis on the Bloch sphere,
can be represented in the computational qubit basis by the matrix

R̂
y
−π/2 =

1√
2

(
1 1

−1 1

)

.

In this way, we obtain the superposition state (|g〉 + |e〉)/
√
2. So far, we have not

considered that our system consists of the qubit and the resonator. The latter is initially
in the vacuum state |0〉, independently of the qubit. The state of the whole system is
therefore simply an equal superposition of the states |g〉 ⊗ |0〉 and |e〉 ⊗ |0〉.
When we then drive the state of the resonator adiabatically along a closed path starting
and ending in the vacuum state, the two states |g〉⊗ |0〉 and |e〉⊗ |0〉 acquire phases γ(g)
and γ(e), respectively. The fact that the resonator ends up back in the vacuum state for
both states of the qubit is actually very important – it allows us to write the resulting
state vector as a product state

1√
2
(eiγ

(g) |g〉 + eiγ
(e) |e〉)⊗ |0〉. (41a)

The resonator is disentangled from the qubit just as it was in the beginning. We can
therefore forget about its existence again and concentrate on the qubit. If we apply the
operation R̂y

−π/2 once again, we get the final qubit state

ei(γ
(e)+γ(g))/2

(

cos
γ(e) − γ(g)

2
|e〉 − i sin

γ(e) − γ(g)

2
|g〉
)

. (41b)

By measuring the population of the excited state, we obtain

pe = cos2
∆γ

2
, (42)
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where ∆γ = γ(e) − γ(g) = ∆γd +∆γg. This simple measurement allows us to determine
the phase difference ∆γ up to sign reversal and unphysical shift by multiples of 2π.

The described measurement sequence together with the qubit states between the indi-
vidual steps is illustrated in Fig. 25.

Qubit drive

Resonator drive

Time

xxxx

yyyy

zzzz

R̂
y
−π/2R̂

y
−π/2

∆γ ∆γ

Figure 25: Ramsey measurement. The two pulses applied to the qubit realize the unitary operation
R̂

y
−π/2. The enclosed adiabatic resonator pulse drives the resonator state along a closed path. The Bloch

state pictures schematically show the initial and the final state of the qubit as well as the states between
the pulses. The axial angle ∆γ accumulated during the adiabatic cycle is mapped to an inclination angle
with respect to the z-axis by the second qubit pulse.

If we want to determine the sign of ∆γ as well, we can simply remove the second
Bloch sphere rotation and perform qubit tomography on the state immediately after the
adiabatic resonator pulse (Eq. (41a)). The resulting expectation values 〈σ̂x〉 and 〈σ̂y〉
are

〈σ̂x〉 =cos∆γ,

〈σ̂y〉 =− sin∆γ,

while 〈σ̂z〉 = 0. These results can be used to reconstruct the phase difference ∆γ up to
a multiple of 2π.

The question of how one can measure the geometric phase separately from the dynamical
one using a spin echo technique will be discussed later in Section 5.3.5.
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4.2 Exact solution of the harmonic oscillator evolution

One of the great advantages of dealing with a harmonic oscillator is its simplicity. Its
evolution operator can be calculated exactly which makes investigation of effects such
as non-adiabaticity rather easy.

We will now derive expressions for the displacement and the phase accumulated by a state
of a harmonic oscillator evolving under the influence of an arbitrary time-dependent drive
ε̃(t).

By a transformation of the Hamiltonian (37) into the qubit-corotating frame, we obtain
a Hamiltonian

Ĥ(t) =
1

2
~(ε̃(t)eiδtâ† + ε̃∗(t)e−iδtâ), (43)

which contains only terms linear in the ladder operators â and â†. This allows us to
simplify the evolution operator

Û(t) = T exp

(

− i

2

∫ t

0
(ε̃(τ)eiδτ â† + ε̃∗(τ)e−iδτ â) dτ

)

using the identity

T exp

(∫ t

0
Â(τ) dτ

)

= exp

(∫ t

0
Â(τ) dτ

)

exp

(
1

2

∫ t

0

∫ τ

0
[Â(τ), Â(τ ′)] dτ ′ dτ

)

, (44)

which holds for any time-dependent operator Â(t) satisfying [Â(t1), [Â(t2), Â(t3)]] = 0
for all t1, t2, t3 ∈ (0, t). This relation is a straightforward generalization of the Baker-
Campbell-Hausdorff formula in Eq. (32).

As the interaction Hamiltonian is a linear combination of ladder operators, its nested
commutators vanish and the identity (44) can be used to calculate the evolution operator

Û(t) = exp

(

− i

2

∫ t

0
(ε̃(τ)eiδτ â† + ε̃∗(τ)e−iδτ â) dτ

)

exp(iγ(t)),

where the phase γ(t) is given by

γ(t) = −1

4

∫ t

0

∫ τ

0
Im ε̃∗(τ)ε̃(τ ′)e−iδ(τ−τ ′) dτ ′ dτ. (45a)

We will transform the evolution operator back to the drive-corotating frame to be able to
compare the exact result with that obtained using the adiabatic theorem. After replacing
Û(t) by exp(−iδâ†ât)Û(t) we use simple algebra to rewrite the evolution operator in the
form

Û(t) = D̂(α(t))eiγ(t) exp(−iδâ†ât), (45b)
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where D̂ is the displacement operator defined by Eq. (30) and the displacement α(t) is
given by

α(t) = − i

2
e−iδt

∫ t

0
ε̃(τ)eiδτ dτ . (45c)

Eqs. (45) describe the evolution of the harmonic oscillator exactly within the rotating
wave approximation which was used to obtain the Hamiltonian (37).

We can easily check that Eq. (45c) is consistent with the results obtained in Section
3.3.2 for adiabatic processes, specifically that an adiabatic change of the drive from 0
to ε̃ transports the vacuum state into a coherent state |α〉 with α = −ε̃/2δ which is the
vacuum state of the displaced Hamiltonian. Integrating the expression in Eq. (45c) by
parts results in

α(t) = − ε̃(t)
2δ

+
1

2δ
e−iδt

∫ t

0

˙̃ε(τ)eiδτ dτ.

The first term is exactly the adiabatic result while the second one represents non-
adiabatic corrections. Its dependence on the characteristic time scale T of the adiabatic
process can be extracted by writing the drive amplitude in the form ε̃(τ) = f(τ/T )
where f(u) is a function of a dimensionless argument u = t/T . The integral then takes
the form

∫ t/T

0
ḟ(u)eiδTu du,

which can be shown to approach zero in the limit T → ∞, assuming that ḟ(u) is an L1

integrable function3.

This result can be easily generalized to derive the relation between adiabaticity and
differentiability of the drive discussed for a classical harmonic oscillator in the context
of the “egg-and-spoon race analogy” in Section 3.1. Let us assume that ε̃(τ) is k-times
differentiable and the derivatives satisfy ε̃(j)(0) = ε̃(j)(t) = 0 for all j < k.

To obtain the displacement of the resonator state, we can integrate the expression in
Eq. (45c) by parts k-times and get

α(t) = − ε̃(t)
2δ

− i

2

(
i

δ

)k

e−iδt

∫ t

0
ε̃(k)(τ)eiδτ dτ,

where the second term on the right-hand side is the non-adiabatic correction. By the
same argument as before, the integral can be cast into the form

1

T k−1

∫ t/T

0
f (k)(u)eiδTu du,

which obviously behaves as o(1/T k−1) for T → ∞. This confirms our previous ob-
servation based on the classical analogy – namely that a smoother variation of the
Hamiltonian leads to a faster asymptotic decrease of the non-adiabatic corrections with
increasing length of the process.

3This statement is sometimes known as the Riemann-Lebesgue lemma.
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4.2.1 Example – circular trajectory drive

Let us now illustrate these general results with a simple example – the drive along
a circular trajectory expressed by Eq. (39) – and use Eqs. (45a) and (45c) to calculate
the phase accumulated by the resonator state as well as its trajectory in the quadrature
plane.

Substituting the drive amplitude into Eq. (45c) gives us the displacement

α(t) = − ε0
4δ

(1− eiΩt)− ε0Ω

4δ(δ +Ω)
(eiΩt − e−iδt). (46)

The first term on the right-hand side is again the adiabatic result −ε̃(t)/2δ while the
other one is the non-adiabatic correction. In the adiabatic limit as Ω/δ → 0, the second
term obviously vanishes as expected.

The shape of the trajectory traced by the resonator state is determined by the dimen-
sionless ratio N = δ/Ω which can be interpreted as the number of resonator oscillations
that fit into the adiabatic cycle. The higher N , the closer the process is to the ideal
adiabatic limit.

Some examples of the trajectories given by Eq. (46) are shown in Fig. 26. These curves,

a) b)

ransmitted

Re α

Im
α

−ε0/4δ 0

Re α

Im
α

−ε0/4δ 0

Figure 26: Exact trajectories of the resonator state driven by a circular pulse. (a) The coherent state
quadrature of a harmonic oscillator evolving under the influence of the drive given by Eq. (39) follows
a hypocycloid curve if δ/Ω > 0. The curves shown in the plot correspond to the ideal adiabatic case
δ/Ω → ∞ (in blue), δ/Ω = 24 (in purple) and δ/Ω = 8 (in yellow). (b) If δ/Ω < 0, the trajectory is an
epicycloid. The values of δ/Ω for the plots are the same as in (a) except for a change of sign.

commonly known as hypocycloids and epicycloids, naturally emerge in geometry as tra-
jectories of points on a circle rolling along the circumference of another circle (see Fig. 27).
The size of their “lobes” decreases with increasing length of the drive pulse and their
number is |δ/Ω + 1|. The trajectories are closed only if δ/Ω is an integer number. In
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general, the drive pulse given by Eq. (39) leads to a final displacement of the resonator
state by

α(T ) = − ε0Ω

4δ(δ +Ω)
(1− e−2πiδ/Ω). (47)

Figure 27: Geometric interpretation of the exact resonator state trajectories. The trajectories of the
resonator state described by Eq. (46) can be seen as curves traced by a point on a circle rolling on the
inside (for δ/Ω > 0, shown in blue) or the outside (for δ/Ω < 0, shown in purple) of a larger circle. The
curves shown here correspond to δ/Ω = 5. The fixed circle is the ideal adiabatic trajectory with radius
|ε0/4δ|. The rolling circle has a radius |ε0Ω/4δ(δ + Ω)| and the point at which the two circles touch
is the displaced ground state quadrature −ε̃(t)/2δ. At each point in time, the resonator state rotates
around this touching point with angular velocity δ.

We can calculate the geometric phase accumulated by the resonator state by substituting
the displacement α(t) from Eq. (46) into Eq. (33) which holds even for non-adiabatic
processes. To evaluate the dynamical phase, we need to use the general equation (22a)
instead of Eq. (31a) which is valid only in the adiabatic limit. The final results that we
obtain are

γg =
|ε0|2Ω

16δ(δ +Ω)2

(

(Ω − δ)T − Ω(Ω + 3δ)

Ω + δ

sin δT

δ

)

, (48a)

γd =
|ε0|2Ω

16δ(δ +Ω)2

(
2δ(2Ω + δ)

Ω
T +

2Ωδ

Ω + δ

sin δT

δ

)

. (48b)

If we were interested only in the total phase, we could of course obtain it also using
Eq. (45a).

In order to distinguish the adiabatic limit from the non-adiabatic corrections, we will
substitute Ω = ±2π/T , where the signs ± correspond to the two possible directions of
the drive cycle, and expand the phases in powers of T . We get the following series:

γg =
|ε0|2
8δ2

(

∓π +
6π2

δT
− 2π2

(δT )2
(±10π + 3 sin δT ) + . . .

)

,

γd =
|ε0|2
8δ2

(

δT − 4π2

δT
+

4π2

(δT )2
(±4π + sin δT ) + . . .

)

.
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As expected, the dynamical phase contains a term linear in time while the leading term
of the geometric phase is constant and its sign depends on the direction of the cycle.
The non-adiabatic corrections to both phases are of the order O(1/T ).

Both γg and γd contain terms whose sign depends on the direction of the drive trajectory
as well as those which are invariant under a reversal of the path. This confirms that it
is not possible to separate γg from γd simply by taking the difference between the total
phases accumulated for the two different orientations of the drive path, in accordance
with what we have learned about practical aspects of non-adiabatic geometric phase
measurement in Section 3.4.

If we adopt a modified definition of the “experimental geometric phase” by Eq. (36) in
terms of the difference between the phases for a clockwise and a counterclockwise cycle,
it will be given exactly by the part of the total phase which is antisymmetric in Ω, i.e.

γexpg = ∓|ε0|2
8δ2

(

π +
4π3

(δT )2
+ . . .

)

,

while the dynamical phase in this definition is the symmetric part

γexpd =
|ε0|2
8δ2

(

δT +
2π2

δT
− 2π2

(δT )2
sin δT + . . .

)

.

A rather interesting difference between the “proper” (Eq. (22b)) and the “experimental”
(Eq. (36)) geometric phase is that the latter includes only non-adiabatic terms of second
and higher order in 1/T . The missing term proportional to 1/T can be understood as
a contribution from the area of the “lobes”. For δ/Ω < 0, they extend outwards, thus
increasing the absolute value of the area enclosed by the trajectory. When taking into
account the orientation of the path, the area is actually negative and the lobes in fact
decrease it. Similarly, if δ/Ω > 0, the area is positive and the inwards extending lobes
decrease it again. Since the area of the lobes is to first order in 1/T identical for both
orientations of the trajectory, their leading-order contribution to the phase gets cancelled
when we subtract the phases.

To measure only the dynamical part of the adiabatic phase, a drive with fixed phase
obtained by replacing ε̃(t) → |ε̃(t)| can be used. In this case, the area enclosed by
the trajectory of the resonator state is zero and the geometric phase therefore vanishes.
However, the dynamical phase, which only depends on the absolute value of the drive
amplitude, is the same as for the original path. For the circular trajectory (Eq. (39)),
the fixed-phase drive is

ε̃(t) =
1

2
|ε0(1− eiΩt)| = |ε0| sin

Ωt

2
. (49)

Here we assume that Ω > 0 and 0 ≤ t ≤ T . Using Eq. (45a), we obtain the total phase

γ =
|ε0|2

2(4δ2 −Ω2)

(

δT +
2Ω2

4δ2 −Ω2
sin δT

)

, (50)
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which can be again expanded in T as

γ =
|ε0|2
8δ2

(

δT +
π2

δT
+

2π2

(δT )2
sin δT + . . .

)

.

We can see that it indeed contains only the adiabatic dynamical phase term proportional
to T and non-adiabatic corrections. The constant term is zero as expected. Fig. 28 shows
a comparison of the total phases given by the sum of Eqs. (48) for the two orientations of
the circular path and the phase for the real drive expressed in Eq. (50). The calculated

δT/2π

γ

0 2 4 6
0

π
2

|ε0|
2

δ2

π |ε0|
2

δ2

3π
2

|ε0|
2

δ2

Figure 28: Phases induced by a drive with a circular trajectory. A comparison of the total phases for
the drive defined in Eq. (39) as a function of δT/2π with Ω > 0 (in blue) and Ω < 0 (in purple). The
yellow curve shows the phase induced by the real drive given in Eq. (49). The dashed lines represent the
adiabatic limit.

phases approach the adiabatic limit as T → ∞ where we expect the phases for the two
cycles to differ by the time-independent adiabatic geometric phase from the phase for
the straight line trajectory, which is proportional to T .

It is quite noteworthy that the adiabatic limit describes the calculated exact phases
rather accurately even for low values of δT/2π. The geometric phase of a harmonic
oscillator is surprisingly robust against non-adiabatic effects.

4.3 Dephasing due to residual qubit-resonator entanglement

However, in the highly non-adiabatic regime where δT/2π & 1, another effect starts to
complicate measurements or potential practical utilization of the geometric phase.

A non-adiabatic process with a cyclically varying Hamiltonian does not in general drive
the state of the system along a closed path. We have seen that the circular drive
of a harmonic oscillator defined by Eq. (39) transports the initial vacuum state into
a coherent state |α〉 with α given by Eq. (47). The phase accumulated by the system
can be described within the framework introduced for non-cyclic processes by Samuel
and Bhandari [48].
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Since the final displacement of the coherent state depends on the detuning δ (see Fig. 29)
between the resonator and the drive frequency, it will interfere with the Ramsey-type
phase measurement procedure (Section 4.1) which assumes that the state of the system
after the resonator drive pulse can be written as a product state.

Re α

Im
α

|g〉

|e〉

|α(g)〉
|α(e)〉

Figure 29: Qubit dependent final displacement of the resonator state. The final state of the resonator
after a non-adiabatic pulse depends on the state of the qubit through the resonator-drive detuning δ.
One reason is the different scale of the trajectory given by ε0/δ, the other is the different phase of the
non-adiabatic corrections which oscillate with frequency δ. The paths shown here correspond to rather
arbitrarily chosen values of δT/2π = 7.25 for the excited state and δT/2π = 5.5 for the ground state.

Taking into account non-adiabatic effects, instead of the separable state given in Eq. (41a),
the resonator drive pulse will result in a state

|ψ〉 = 1√
2
(eiγ

(g) |g〉 ⊗ |α(g)〉+ eiγ
(e) |e〉 ⊗ |α(e)〉),

in which the qubit and the resonator are entangled. The state of the qubit is then
described by the reduced density matrix obtained from the full density matrix

ρ̂ = |ψ〉〈ψ| = 1

2

∑

i,j∈{g,e}

ei(γ
(i)−γ(j))|i〉〈j| ⊗ |α(i)〉〈α(j)|

by tracing over the resonator Hilbert space. The resulting expression is

ρ̂q =
1

2
(1+ |e〉〈g|ei(γ(e)−γ(g))〈α(g)|α(e)〉+ |g〉〈e|ei(γ(g)−γ(e))〈α(e)|α(g)〉).

This density matrix differs from the one which we would get in the ideal adiabatic case
for α(g) = α(e) by the presence of the factor 〈α(g)|α(e)〉 which represents the overlap of
the two final resonator states. It reduces the off-diagonal elements of the qubit density
matrix, thereby effectively contributing to dephasing. In the Bloch sphere picture, it
can be interpreted as a decrease in the x and y components of the Bloch vector.

Using Eq. (29) to express the coherent states in the Fock basis, the overlap factor can
be easily calculated as

〈α(g)|α(e)〉 = exp

(

α(g)∗α(e) − 1

2
|α(g)|2 − 1

2
|α(e)|2

)

,
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which can be further rewritten in the form

〈α(g)|α(e)〉 = exp
(

i Imα(g)∗α(e)
)

exp

(

−1

2
|α(g) − α(e)|2

)

.

The first exponential term is a phase factor which can be seen as an additional contri-
bution to the geometric phase difference. This phase shift, which we will denote as γ∆,
can be very naturally accounted for by a simple change of the definition of the area in
the quadrature plane, as illustrated in Fig. 30.

a) b)

γ
(g)
g

γ
(e)
g

γ∆

γ
(g)
g − γ

(e)
g − γ∆

Figure 30: Interpretation of the coherent state overlap phase. (a) For an open trajectory in the
quadrature plane, the “enclosed” area defined by Eq. (34) is obtained by joining the initial vacuum
state with the final state, thus closing the path. (b) The additional phase term γ∆ = Imα(g)∗α(e) is
equivalent to a geometric phase corresponding to the area of a triangle (in orange) with vertices in the
origin (black point) and the two quadratures α(e) (red point) and α(g) (blue point). The geometric phase
difference together with this additional term then corresponds to the area (shown in purple) enclosed by
the trajectories of the ground (in blue) and the excited (in red) states while joining the final resonator
states directly instead of through the vacuum state.

The second exponential factor exp(−|α(g) − α(e)|2/2) determines the magnitude of the
off-diagonal terms in ρ̂q and therefore the maximum possible value of the measured x
and y spin projections.

This dephasing effect can be theoretically reduced in two ways. One of them is of course
using longer adiabatic pulse. According to Eq. (47), the final resonator state quadratures
decrease as O(1/T ) in the adiabatic limit T → ∞ which implies that the dephasing factor
behaves as 1−O(1/T 2). Another way to reduce the non-adiabatic dephasing is to choose
the detuning δ and the time T carefully so that δT is an integer number for both states
of the qubit. Eq. (47) then implies that α(g) = α(e) = 0.

4.4 Two-qubit geometric phase gate

The non-linearity of the relation between the resonator-drive detuning and the geometric
phase offers an interesting possibility to realize a two-qubit geometric phase gate.

Two-qubit gates utilizing the non-adiabatic harmonic oscillator geometric phase in sys-
tems with trapped ion qubits have been theoretically proposed in Refs. [19] and [53]. An
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experimental implementation based on a process of the type described in Section 3.4 has
been demonstrated in Ref. [21]. An important distinction between this experiment and
the one performed in our work is that the drive of the harmonic oscillator in the trapped
ion setup can be made highly selective to the qubit states. Specifically, the stretch mode
of the collective oscillations in the trap is excited by the drive only if the qubits are
in one of the states |ge〉 and |eg〉. On the other hand, in our circuit QED experiment
the sensitivity of the resonator to the drive depends on the qubit states only weakly
through the dispersive shifts. This causes the geometric phase differences measured in
our experiment to be considerably smaller.

Let us consider a resonator dispersively coupled to two qubits. Just like in the one-qubit
case, the resonator can be still treated as a harmonic oscillator but its frequency now
depends on the state of the qubit due to the dispersive shift. We can write the detuning
between the resonator and the drive frequency as

δ + χ(1)σ̂(1)z + χ(2)σ̂(2)z ,

where χ(1,2) are the dispersive shifts of the two qubits and σ̂
(1,2)
z are their Pauli matrices.

As we have now expressed the dispersive shift in terms of the Pauli matrices instead of
the projectors |e〉〈e|, the detuning δ is now measured from the bare frequency of the
resonator rather than its dressed frequency corresponding to the qubit in the ground
state.

The adiabatic dynamical and geometric phases can be expressed using Eqs. (31a) and
(34) as

γd =
1

δ + χ
(1)
σ̂
(1)
z + χ

(2)
σ̂
(2)
z

∫ T

0

|ε̃(t)|2
4

dt,

γg =− 1
(

δ + χ
(1)
σ̂
(1)
z + χ

(2)
σ̂
(2)
z

)2

Aε̃

2
.

Both of the qubit-dependent prefactors can be written in the form

A+Bσ̂(1)z + Cσ̂(2)z +Dσ̂(1)z σ̂
(2)
z

for some coefficients A, B, C and D which can be easily determined by replacing the
Pauli matrices with their eigenvalues ±1 and solving the four resulting linear equations.
Instead of calculating the coefficients exactly, we will settle for an approximation. By
expanding the prefactors in powers of the dispersive shifts and truncating the series at
the second order, we find that

γd ≈
(

1

δ
− χ(1)

δ2
σ̂(1)z − χ(2)

δ2
σ̂(2)z +

2χ(1)χ(2)

δ3
σ̂(1)z σ̂

(2)
z

)
∫ T

0

|ε̃(t)|2
4

dt,

γg ≈−
(

1

δ2
− 2χ(1)

δ3
σ̂(1)z − 2χ(2)

δ3
σ̂(2)z +

6χ(1)χ(2)

δ4
σ̂(1)z σ̂

(2)
z

)

Aε̃

2
.
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The presence of the term σ̂
(1)
z σ̂

(2)
z shows that the adiabatic cycles realizes a unitary

operation which cannot be decomposed into a combination of one-qubit operations.

The total two-qubit phase can be isolated using a simple spin echo sequence similar to
that described in subsequent Section 5.3.5 – the only difference being that the spin-flip
operation ÛF needs to be applied to both qubits and the direction of the second adiabatic
cycle is not reversed. Assuming that the qubits are flipped back to their initial state in
the end, the phases accumulated by the system during the two cycles have the form

A+Bσ̂(1)z + Cσ̂(2)z +Dσ̂(1)z σ̂
(2)
z ,

A−Bσ̂(1)z − Cσ̂(2)z +Dσ̂(1)z σ̂
(2)
z .

In this way we get rid of the one-qubit terms. The overall constant phase 2A can
be neglected and the result is a simple two-qubit operation which can be written as

exp(2iDσ̂
(1)
z σ̂

(2)
z ). Obviously, the procedure we have just described gives us the total

two-qubit phase, i.e. it does not separate the dynamical and the geometric part. If we
are interested in the geometric phase, a more complicated spin echo sequence is needed.

It consists of four adiabatic cycles out of which the second and the fourth are reversed.
Between the first and the second cycle, one of the qubits is spin-flipped. The other
qubit is then flipped between the second and the third cycle and finally, the first qubit
is flipped again between the last pair of cycles. The acquired phases are

A+Bσ̂(1)z + Cσ̂(2)z +Dσ̂(1)z σ̂
(2)
z ,

±(A−Bσ̂(1)z + Cσ̂(2)z −Dσ̂(1)z σ̂
(2)
z ),

A−Bσ̂(1)z − Cσ̂(2)z +Dσ̂(1)z σ̂
(2)
z ,

±(A+Bσ̂(1)z − Cσ̂(2)z −Dσ̂(1)z σ̂
(2)
z ),

where the signs + and − in ± correspond respectively to the dynamical and the geometric
phase. We can see that the dynamical phase gets completely cancelled except for the
irrelevant constant term whereas the only part remaining from the geometric phase is

the two-qubit term 4Dσ̂
(1)
z σ̂

(2)
z .

An experimental demonstration of this two-qubit geometric phase gate will most likely
be quite demanding. The fact that the two-qubit phase term is of second order in the
dispersive shifts means that it is significantly smaller in magnitude than the one-qubit
phases which we have measured so far. Also, the need for a spin echo sequence consisting
of four adiabatic cycles implies that the length of the sequence and related decoherence
effects will probably be a cause for concern.
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5 Experiment

5.1 Experimental setup

5.1.1 The sample

The sample containing the superconducting qubits is a chip with an in-plane transmis-
sion line resonator with its centre line and ground planes fabricated out of niobium
on a sapphire substrate by optical lithography (Fig. 31). More information about on-
chip superconducting transmission line resonators and their fabrication can be found in
Ref. [54].

Figure 31: Optical microscope image of the sample (shown in false colours). The transmission line
resonator is displayed in blue. The meander-like sections increase its total length without the need for
a larger chip. Three transmon qubits – the rectangular structures shown in orange, green and yellow
(for a close-up image, see Fig. 3b) – are located near the antinodes of the first harmonic mode of the
resonator. They can be coherently manipulated using charge lines (dark green) and dynamically tuned
by applying magnetic flux using flux lines (purple). The image was provided by J. Fink.

The sample contains three transmon qubits although only one of them was used in
our experiment. They are embedded inside the resonator close to the antinodes of one
of its electromagnetic modes. Their superconducting islands are made of aluminium
and separated by a thin tunnel barrier of aluminium oxide constituting the Josephson
junctions. For a more detailed description of the transmon qubit and its microscope
image, see Section 2.1.3 and Fig. 3b.

A circuit diagram of the sample is shown in Fig. 32. The resonator can be driven by
a microwave signal applied to its input port and the electric field inside can be observed
via the output port. The qubits can be manipulated either through the resonator to
which they are capacitively coupled or – as was the case in our experiment – using
charge lines coupled directly to the qubits. Readout of the qubits is realized by dispersive
measurement (see Section 2.3) using the resonator as a probe of the qubit state.
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Figure 32: Circuit diagram of the sample. The transmon qubits, only one of which is shown here for
simplicity, are capacitively coupled to a transmission line resonator equipped with an input and output
port. External coils and on-chip flux lines are used to tune the qubit energies. The qubits can be driven
directly by applying signals through their charge lines.

5.1.2 The dilution refrigerator

The sample is placed inside a dilution refrigerator where it is kept at a temperature of
approximately 20 mK – sufficiently low to effectively cool the resonator and the qubits
to their ground states. The typical qubit and resonator frequencies are in the range
of 6 to 10 GHz. The corresponding excitation energies are equivalent to temperatures
between 40 and 70 mK.

The dilution refrigerator operates by transporting helium-3 between two distinct ther-
modynamic phases of a 4He/3He mixture [55].

5.1.3 Measuring instruments

The microwave signals used to manipulate and read out the system are provided by RF
signal generators producing frequencies in the gigahertz range. In our experiment, three
microwave sources were connected to the resonator input, as illustrated in Fig. 33.

One of them, typically tuned close to the resonator frequency, is used for probing the
resonator transmission. The signal transmitted through the resonator is then measured
using heterodyne detection – it is mixed with a local oscillator signal, detuned from the
probe frequency by 25 MHz, using a non-linear element – the IQ mixer. This component
is designed to multiply two electrical signals, as described in more detail in Ref. [56].
In this case, multiplication of the probe and the local oscillator signals with respective
frequencies fR and fL produces two side-band frequencies |fR − fL| and fR + fL. The
first of these components oscillates at 25 MHz – slowly enough to be time-resolved by
a field programmable gate array (FPGA). The detected signal in a typical circuit QED
measurement is extremely weak – the input signal is heavily attenuated in order to reach
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the quantum regime where the mean number of photons in the resonator is of order unity.
Consequently, the signal to be detected is much weaker than the noise imposed by the
standard quantum limit as well as by non-ideal properties of the amplifiers used in
the measurement process. The collected data therefore have to be hardware-averaged
over many realizations of the measurement before they can be used to reconstruct the
amplitude and the phase of the transmitted probe signal.
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Figure 33: Schematic diagram of the experimental setup. The sample placed inside the dilution
refrigerator is connected to four RF signal generators – three of them are connected to the input of the
microwave resonator and one to the charge line of the qubit. The drive signals whose amplitudes and
phases need to be modulated are mixed with a lower frequency output of arbitrary waveform generators.
The AC signals are strongly attenuated before they enter the sample. DC sources are used to apply
a magnetic flux to the split Josephson junction of the qubit and tune its frequency. The field at the
output of the resonator is amplified and, after mixing with a detuned local oscillator tone, measured by
an FPGA.

Another RF source is used to apply a coherent tone for qubit spectroscopy measurements
which will be described in Section 5.2.2. The third generator provides the detuned
resonator drive signal for transporting the resonator state along an adiabatic cycle.
Frequency mixing is used to modulate the amplitude and the phase of the microwave
signal [56]. A signal at a lower intermediate frequency fIF with the desired amplitude
and phase envelope is first generated by an arbitrary waveform generator (AWG). Mixing
with the high frequency fL yields two sidebands at frequencies fL±fIF . The amplitudes,
phases and DC components of the input signals can be adjusted (in a so-called mixer
calibration procedure) to eliminate one of the output frequency components as well as
any direct leakage of the frequency fL caused by imperfect operation of the device. As
a result of the upconversion process, the phase and amplitude of the low frequency signal
is imprinted on the high frequency wave.

The same technique is used to generate a modulated drive signal applied to the qubit
through its charge line.
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5.2 Methods

5.2.1 Resonator spectroscopy

The two key parameters of the microwave resonator – its resonant frequency νr and its
photon life-time τ can be easily measured in a simple transmission measurement. The
power P of a harmonic probe signal transmitted through the resonator as a function of
its frequency is given by a Lorentzian function

P (ν) = Pmax
δν2

(ν − νr)2 + δν2
,

where Pmax is the peak power and δν is the FWHM of the spectral line, related to the
photon life-time by τ = 1/4πδν.

Fig. 34 shows the result of a resonator transmission measurements. A fit of the the-
oretical Lorentzian lineshape to the experimental data yields the resonant frequency
νr = ωr/2π = 7020.39 MHz and the photon lifetime τ = (335 ± 1) ns, corresponding to
a decay rate κ/2π = 2δν = (475 ± 2) kHz.
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Figure 34: Resonator transmission spectrum. The plot shows the measured power transmitted through
the resonator as a function of the signal frequency. The yellow curve is the fitted Lorentzian lineshape.

5.2.2 Qubit spectroscopy

The transition frequency of the qubit can be determined by a continuous spectroscopy
measurement with two coherent tones being sent into the resonator. One of them is tuned
to the resonator frequency while the other serves as the qubit drive. The stationary state
of the qubit depends on the detuning δq between the drive signal and the qubit frequency.
In a simple model which neglects the interactions between the resonator and the qubit,
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solving the quantum master equation for the qubit yields the mean population pe of the
excited state in the stationary limit

pe =
Ω2

Γ 2 + 4δ2q + 2Ω2
, (51)

where Ω is the Rabi frequency corresponding to the applied qubit drive strength and
Γ is the qubit relaxation rate. If the qubit is dispersively coupled to the resonator, it
induces a shift of the resonator frequency depending on its quantum state, as expressed
in Eq. (15). We can therefore (naively) expect that in the stationary state described
above, the resonator frequency will be shifted on average by 2peχ from its frequency
for the qubit in the ground state. If the resonator probe signal is set to the frequency
ωr when pe = 0, it will become off-resonant for pe > 0 and the transmitted power
will decrease. As we have seen, the excited state population pe is largest when the
qubit drive is resonant with the qubit frequency, i.e. δq = 0, and becomes negligible
when δq ≫ Γ,Ω. In summary, if the experiment is repeated for varying frequencies
of the qubit drive signal, we expect to observe a drop in the power of the transmitted
resonator probe when the qubit drive is close to the qubit frequency.

This simple explanation of the qubit spectroscopy measurement relies on a rather crude
assumption that the qubit can be treated separately from the resonator. In reality, the
measured transmission spectrum as a function of the qubit drive frequency typically
looks as shown in Fig. 35. The presence of multiple dips in the spectrum – a feature
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Figure 35: Qubit spectrum. The plot shows the measured relative voltage of the transmitted resonator
probe signal as a function of the qubit drive frequency. The curve is a fit of three Lorentzian functions
to the experimental data, which yields an estimate of the qubit frequency as well as the dispersive shift.

known as photon number splitting – is a result of the quantum nature of the resonator.
The qubit frequency is shifted by 2χn with n photons in the resonator. The resulting
spectrum can then be understood as a superposition of the individual discretely spaced
spectral dips for the different photon numbers.
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This description is still somewhat simplistic. In fact, the real form of the qubit spectrum
can be quantitatively understood only by solving the full quantum master equation (21).
However, the simple picture can still be used to at least estimate the qubit frequency ωq

and the dispersive shift χ. We did this by fitting a sum of three Lorentzian functions
centered around ωq, ωq + 2χ and ωq + 4χ to the measured data shown in Fig. 35.
In this case, the choice of Lorentzian lineshapes was rather arbitrary. The obtained
values of the qubit frequency and the dispersive shift were ωq/2π = 8.3040 GHz and
χ/2π = −0.99 MHz.

A more precise estimate of the qubit frequency can be obtained using a measurement of
the Ramsey fringes which will be described in Section 5.2.4.

5.2.3 Qubit manipulation pulses

Unlike the continuous measurements described so far, most circuit QED experiments
make use of microwave pulses to manipulate the qubit on a time scale much shorter
than its coherence time. They can be applied either via the resonator or directly using
the qubit’s charge line. In both cases, the qubit – when approximated as an ideal two-
level system – can be described by the simple Hamiltonian given in Eq. (4), which in
the frame rotating with the drive frequency ωd takes the form

Ĥ(t) =
1

2
~δqσ̂z +

1

2
~

(

Ω̃(t)σ̂+ + Ω̃∗(t)σ̂−

)

, (52)

where δq = ωq − ωd is the detuning between the qubit and the drive frequency, Ω̃ is the
complex qubit drive in the rotating frame and σ̂± = (σ̂x ± σ̂y)/2.
By using resonant pulses, i.e. δq = 0, with appropriate phases, simple unitary operations
such as exp(−iβσ̂x/2) and exp(−iβσ̂y/2), corresponding to rotations by β around the x
and y axes on the Bloch sphere, can be realized. For example, if Ω̃(t) is real then then
the evolution operator is

Û(T ) = exp

(

− i

2
σ̂x

∫ T

0
Ω̃(t) dt

)

.

If one chooses Ω̃(t) such that its time integral is equal to β, the resulting evolution is
exactly a rotation by β around the x axis. Similarly, if the phase of the drive signal is
shifted by π/2 – meaning that Ω̃(t) is purely imaginary – one obtains rotations around
the y axis.

In this simple model, the resulting operation does obviously not depend on the shape
and length of the drive pulse as long as the time integral of Ω̃(t) is fixed. In practice,
using too short pulses will result in a violation of one of the approximations used to
derive Eq. (52) – the rotating wave approximation or the assumption that the qubit is
an ideal two-level system. Shorter pulses have a broader frequency spectrum and can
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contain Fourier components which induce unwanted transitions into higher energy states
of the qubit.

To avoid these effects, pulses with a smoother variation of the drive amplitude Ω̃(t) are
usually preferred – for instance a Gaussian pulse has a narrower spectrum than a square
pulse of the same length and with the same time integral of Ω̃(t). In our experiment, we
use the so-called DRAG pulses proposed in Ref. [57] to reduce leakage to higher energy
levels in weakly non-linear qubits.

These pulses are generated by adding a term proportional to −i ˙̃Ω(t)/α, where α is the
qubit anharmonicity, to the complex drive amplitude Ω̃(t). While theory dictates that
the additional drive contribution should be equal to this expression, experimental data
have shown [18] that the best results are obtained if it is scaled by a factor determined
from a calibration measurement.

Fig. 36 shows a typical DRAG pulse used in our experiment. It is derived from a trun-
cated Gaussian pulse and its length is 20 ns.

−10 0 10

R
e
Ω̃
,
Im

Ω̃
[a
.u
.]

Time [ns]

Figure 36: DRAG pulse. This plot shows the time variation of the two drive quadratures for a Gaussian
DRAG pulse used in the experiment. It realizes a rotation around the x axis on the Bloch sphere. The
DRAG correction Im Ω̃(t) is proportional to the time derivative of the original pulse Re Ω̃(t).

5.2.4 Ramsey fringes

A simple Ramsey interference measurement is typically used to improve the estimate
of the qubit frequency obtained in a spectroscopy measurement. As described before
in Section 4.1, this technique is a useful tool for measuring the difference between the
phases accumulated by the two qubit states. In this case, it can be used to determine
the phase associated with a free evolution of the qubit. The Ramsey sequence consists
of two pulses rotating the qubit by π/2 around the x or the y axis and a time period
between the two pulses during which the qubit accumulates the phase to be measured.
If we let the qubit evolve freely, this phase will be equal to −δqT (Eq. (52)) where T is
the time separation between the two qubit pulses. The measured population of the qubit
excited state is then related to the phase (Eq. (42)). If we take into account dephasing
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effects which cause an exponential decay of the magnitude of the qubit’s Bloch vector
during its free evolution, the final excited state population measured in the experiment
is

pe(T ) =
1

2

(

1 + cos (δqT ) exp

(

− T

T2

))

,

where T2 is the dephasing time of the qubit. As the time T increases, pe(T ) undergoes
damped oscillations – so-called Ramsey fringes – whose parameters δq and T2 can be
estimated from the measured data. Since the estimation is more accurate if δq 6= 0, the
objective of the qubit frequency measurement is usually to find a drive frequency which
is detuned from the qubit by some given amount – typically δq/2π = 5 MHz. The result
of such Ramsey measurement is illustrated in Fig. 37a. The dephasing time obtained
from the fit to the data is T2 = 0.96 µs.

a) b)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

E
x
ci
te
d
st
a
te

p
o
p
u
la
ti
o
n

Pulse separation T [µs]

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

E
x
ci
te
d
st
a
te

p
o
p
u
la
ti
o
n

Pulse separation T [µs]

Figure 37: Ramsey and relaxation time measurement. (a) Results of a Ramsey measurement. The
excited state population as a function of the separation T between the two qubit pulses oscillates with
the frequency δq/2π = 5 MHz. The green line is the theoretical fit of the damped Ramsey oscillations.
(b) Results of a qubit relaxation measurement. The excited state population decays exponentially with
increasing time delay T between the excitation pulse and the measurement.

5.2.5 Qubit relaxation time measurement

Apart from the dephasing time, the decoherence of the qubit is characterised by its
relaxation time. It determines the rate at which the qubit spontaneously decays from
the excited to the ground state. It can be determined by preparing the qubit in the
excited state and measuring the population pe(T ) as a function of the delay T between
the state preparation and the measurement. The theoretically expected form of pe(T ) is

pe(T ) = exp

(

− T

T1

)

.

The measured data are shown in Fig. 37b. The extracted relaxation time is T1 = 0.68 µs.
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5.2.6 Rabi oscillations

The qubit and resonator drive parameters Ω̃ and ε̃ are proportional to the voltage
amplitudes of the microwave signals generated by the RF sources or the AWGs. The
proportionality constant between these quantities is determined in a calibration mea-
surement.

The Rabi frequency Ω̃ for stronger signals, such as those used in qubit manipulation
pulses, is usually calibrated by applying a short pulse to the qubit in its ground state
and measuring the excited state population pe(a) as a function of the dimensionless
pulse amplitude a passed as an input parameter to the AWG. The qubit undergoes
flipping between the ground and the excited state whose angle β is proportional to a.
By observing the Rabi oscillations of pe(a), one can obtain the relation between β and
a or, if needed, between Ω̃ and a.

Another type of calibration measurement for Ω̃ uses a pulse of a given constant amplitude
and observes the Rabi oscillations as a function of the pulse length T . It can be shown by
solving the quantum master equation that the excited state population pe(T ) in this case
approaches the limiting value given by Eq. (51) as T → ∞ and the deviation from this
stationary value undergoes damped oscillations with a frequency

√

Ω2 − Γ 2/16 where
Ω = |Ω̃| and Γ = 1/T1. By fitting this theoretical time dependence to the measured
data, Ω̃ can be determined for any given amplitude of the pulse. A result of this type of
Rabi frequency measurement for a = 0.04 is shown in Fig. 38. The corresponding value
of Ω̃ extracted from the fit is Ω̃ = 4.4 MHz.
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Figure 38: Rabi frequency measurement. The plot shows Rabi oscillations of the excited state popu-
lation induced by a pulse of a constant amplitude a = 0.04 and a varying length T . The Rabi frequency
can be determined from a fit of exponentially decaying oscillations (orange line) to the data. The range
of the measured population is obviously incorrect as it clearly exceeds the maximum value of 1. This is
most likely due to a poor calibration of the read-out but it does not affect the results of the fit.
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5.2.7 Calibration of the resonator drive strength

The usual procedure for calibrating the resonator drive strength ε̃ is based on a mea-
surement of the dispersive shift of the qubit frequency by the resonator field – sometimes
also called AC Stark shift . A resonantly driven damped harmonic oscillator asymptot-
ically approaches a stationary state in which the mean number of excitations is given
by n = 〈â†â〉 = |ε̃|2/κ2. We can therefore expect the qubit frequency to be dispersively
shifted by 2χ|ε̃|2/κ2. This shift is measured in a simple spectroscopy experiment (Section
5.2.2) whose results are shown in Fig. 39a. Provided that the dispersive shift parameter
χ and the resonator decay rate κ are known, we can then determine the drive strength
ε̃.

This method is quite simple but it has a drawback. It can be used reliably only in the
regime where the resonator field can be described classically, i.e. 〈â†â〉 ≫ 1. At the same
time, it relies on the dispersive approximation which – as discussed in Section 2.2.2 –
is justifiable only if n ≪ ncrit. The domain of validity of the simple model is therefore
rather restricted and not very well defined.

Here we will describe an alternative calibration technique which we have tried out in
our experiment. It is based on the same principle, i.e. measuring the qubit spectrum as
a function of the resonator probe amplitude, but uses numerical calculations to relate
the shape of the obtained spectral line to the unknown drive strength ε̃.

The outcome of the continuous qubit spectroscopy measurement can be found theoret-
ically by calculating the stationary solution of the quantum master equation (21). It
contains seven parameters. Three of them are fixed but can be determined in separate
measurements as described earlier – the two dissipation rates Γ and κ and the dispersive
shift χ. The two detunings δq and δr of the qubit and the resonator from their respective
drive signals are freely adjustable. The resonator detuning is usually set to δr = 0 and
the value of δq is varied to obtain the qubit spectrum. The two drive amplitudes Ω̃ and ε̃
can be also varied. The qubit drive can be determined by the Rabi frequency calibration
procedure outlined above and the resonator drive is the only unknown parameter in the
master equation.

We can therefore simulate the outcome of the spectroscopy measurement depending on
the value of ε̃ and by comparison with the experimental results obtained for varying
amplitude a of the resonator drive signal, we can find the unknown proportionality
constant between ε̃ and a.

We solved the master equation numerically after restricting the infinite-dimensional
Hilbert space of the resonator to a finite-dimensional one spanned by a certain num-
ber of the lowest lying Fock states. We chose a cutoff photon number of 12 and checked
that this was indeed high enough by reproducing the stationary mean number of pho-
tons |ε̃|2/κ2 for a drive of the resonator without driving the qubit at the same time.
We then ran the simulation long enough for the system to get sufficiently close to the
stationary state and calculated the expected voltage quadrature measured at the output
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of the resonator, which is proportional to 〈â〉 = Tr âρ̂ (see Fig. 39).
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Figure 39: AC Stark shift measurement. (a) Experimental results of a qubit spectroscopy measurement
versus the amplitude of the applied resonator drive. For better visibility, the detected signal is normalized
to have the same maximum value for each amplitude of the resonator drive. Lighter colours correspond
to higher voltage values. (b) Theoretical simulation based on the quantum master equation. The qubit
spectrum is shown as a function of the dimensionless ratio between the resonator drive strength ε̃ and
the decay rate κ.

The simulation agrees with the measured data reasonably well. The next step was to find
for each measured qubit spectrum the most similar simulated spectrum, thus obtaining
a correspondence between the signal amplitudes a and the drive strengths ε̃. Once
again, the agreement between the experimental spectra and the theoretical predictions
was relatively good although not perfect, as illustrated in Figs. 40a-c. The differences
may be due to errors in some of the fixed parameters of the model.

We expect the relation between the drive signal amplitudes a and the corresponding
drive strength ε̃ to be linear. Fig. 40d presents the complete set of data obtained by the
above described procedure. The dependence of ε̃/κ on a is indeed approximately linear
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Figure 40: Measured and theoretically calculated qubit spectra. Plots (a), (b) and (c) give a comparison
between the measured qubit spectroscopy results (blue points) and the corresponding theoretical spectra
(red lines) for resonator drive amplitudes equal to (a) a = 0.25, (b) a = 0.50 and (c) a = 0.75. The drive
strengths ε̃/κ obtained from the fit in these three cases are respectively 0.72, 1.28 and 2.06. Plot (d)
shows the resulting values of ε̃/κ as a function of the drive amplitude a for all spectroscopy data sets.
The blue line is a fitted linear function.

for higher values of a but it deviates from the linear relation for a≪ 1. This could once
again be a consequence of errors in the input parameters of the theoretical model.

From the linear fit of the data in Fig. 40d we obtained the proportionality constant
between a and ε̃ equal to ε̃/a = 1.27 MHz. The described calibration measurement is
done with a resonant drive of the resonator. In our geometric phase experiment, where
we need to drive the resonator off-resonantly and therefore more strongly to achieve the
same field strength, we reduced the attenuation in the resonator drive line by 50 dB
which results in an increase of ε̃ by a factor of 105/2. The calibration parameter is then
ε̃/a = 400 MHz.
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5.3 Geometric phase measurements

We measured the resonator geometric in a simple Ramsey-type interference experiment
as well as in a spin-echo measurement. These techniques were used in previous experi-
ments focused on the geometric phase in a Cooper-pair box [17] and a transmon qubit
[18].

5.3.1 Practical considerations

Although the theory behind the geometric phase of a harmonic oscillator and its mea-
surement is relatively simple, choosing the appropriate parameters of the measurement
can be in practice somewhat difficult. For example, the adiabaticity condition requires
that the detuning δ between the resonator and the drive and the duration T of the cycle
satisfy δT ≫ 1. But at the same time, decoherence effects place a constraint on the time
T , namely that T ≪ T1, T2. As it turns out, the condition T ≪ 1/κ which we might
expect to be imposed by resonator dissipation is not very critical if the drive signal is
sufficiently off-resonant, specifically if δ ≫ κ.

According to Eqs. (38), the dynamical and geometric phase differences are proportional
to 1/δ − 1/(δ + 2χ) and 1/δ2 − 1/(δ + 2χ)2 – expressions which increase with the ratio
χ/δ. To get appreciable phase differences to measure, the detuning δ should be as low as
possible without violating the adiabatic condition δ ≫ 1/T . We might also hope to get
larger phase differences by increasing the dispersive shift χ. Unfortunately, this quantity
is constrained by the dispersive limit and typically cannot exceed values of several MHz.

An attempt to boost the phases by driving the resonator more strongly could result in
a violation of the dispersive approximation which requires n = |ε̃|2/4δ2 ≪ ncrit. It would
also increase the pulse-induced dephasing discussed in Section 4.3.

We can see that there is a relatively complex system of conditions which should be
satisfied if we want to observe the geometric phase and be able to describe the mea-
surement by the simple theoretical model outlined in previous sections. After taking all
of these requirements into consideration, we decided to use a resonator-drive detuning
δ/2π = 40 MHz and pulse length T = 200 ns as a starting point of our measurements.

5.3.2 Measurement of the total phase

The simplest possible measurement of the resonator geometric phase makes use of the
Ramsey sequence described in Section 4.1. We used the resonator drive signal given in
Eq. (39), which transports the resonator state along a circular path, and performed the
measurement for different values of the dimensionless pulse amplitude a ranging from
0.0 to 1.0. This corresponds to values of the maximum drive strength ε0/2π between 0
and 400 MHz.
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According to Eqs. (40), the total phase difference ∆γ grows quadratically with ε0 and
a. Therefore, if we take into account the dephasing effect (Section 4.3), we expect the
final excited state population to oscillate as

pe(a) = A cos(∆γmaxa
2 + φ) exp(−ka2) +B, (53)

where ∆γmax is the phase difference for a = 1.0. In the ideal case, the coefficients A
and B would be both equal to 1/2. In practice, A will be generally smaller due to qubit
dephasing and B can be slightly different from the ideal value of 1/2 because of errors
in readout calibration. The phase offset φ accounts for a possible non-zero detuning
δq between the qubit and the manipulation pulses which results in accumulation of an
additional phase φ = δqT . The positive parameter k characterises the dephasing induced
by the resonator pulse.

The outcome of the experiment agrees with the theoretically expected Ramsey oscilla-
tions given by Eq. (53) (see Fig. 41). The maximal accumulated phases extracted from
the fit for the two orientations of the drive cycle, ∆γmax = (25.1 ± 0.1) rad (counter-
clockwise) and ∆γmax = (34.0 ± 0.1) rad (clockwise), clearly depend on the direction of
the trajectory.
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Figure 41: Ramsey measurement of the total accumulated phase. The plots shows the observed Ramsey
oscillations of the excited state population as the accumulated phase difference∆γ increases quadratically
with the maximum drive amplitude ε0 of the (a) counterclockwise and (b) clockwise circular pulse. The
solid curves are fitted theoretical oscillations given by Eq. (53).

5.3.3 The total phase as a function of the pulse length

We used the Ramsey measurement to determine the total phase difference for several
different lengths of the resonator drive pulse from 60 to 800 ns. As Fig. 42 illustrates,
the Ramsey oscillations are robust against non-adiabatic effects and are clearly visible
even for T = 60 ns which allows us to measure the phase well outside the adiabatic
regime. Apart from the two circular drive pulses with opposite orientations, we have
also measured the phase for the drive with fixed phase defined in Eq. (49) which in
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Figure 42: Ramsey oscillations for a strongly non-adiabatic pulse. The presence of clearly visible
Ramsey oscillations for pulse lengths as short as T = 60ns in this plot demonstrates that the accumulated
phase can be measured even in the non-adiabatic regime.

the adiabatic limit yields the same dynamical phase as the two cycles but no geometric
phase.

The phase accumulated by the system when the resonator state is transported along
a straight line is approximately proportional to the pulse length T (see Fig. 43). The
phases for the two cyclic paths are shifted from this linear function by the geometric
phase which – in the adiabatic limit – is independent of time and changes its sign when
the orientation of the path is reversed.
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Figure 43: Total accumulated phase as a function of the pulse length. The phases measured in the
Ramsey experiment for the counterclockwise (blue points) and clockwise (purple points) cycles and the
drive pulse with fixed phase (yellow points) are plotted versus the duration T of the pulse. The solid
lines are theoretical fits obtained from the exact solution of the harmonic oscillator evolution.

The experimental data in Fig. 43 are compared with the exact theoretical results from
Eqs. (48) and (50) with the pulse amplitude ε0 as a single free parameter fitted to the
data. The theory reproduces some qualitative features of the measured non-adiabatic
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corrections visible in the three shortest pulses – specifically the marked difference between
the phases for the two orientations and the local minimum of the phase for the clockwise
cycle. Nevertheless, the quantitative agreement is far from perfect. The cause of this
discrepancy is not clear. One of the possible explanations could be a distortion of the
drive pulses by some of the elements in the drive line.

Also, the value of the drive amplitude ε0 resulting from the fit is about 370 MHz – about
10 % lower that the 400 MHz obtained from the calibration procedure descibed earlier.
This could mean either that the calibration is not entirely correct or that the dynamical
phase – which is the dominant component of the total phase and therefore determines
the fitted amplitude ε0 – for some reason deviates from the theoretically expected value.

It is quite straightforward to isolate the geometric phase difference ∆γg from the mea-
sured data – we simply fit linear functions of the form cT +∆γg and cT −∆γg to the
phases for the two cycle directions. For this fit, we use only the data from the four
longest pulses to ensure that the phases are sufficiently close to the adiabatic limit. This
procedure yields the geometric phase difference ∆γg = (4.37±0.05) rad. The dynamical
phase difference per unit time, which is simply the parameter c in the previous fit, is
∆γd/T = (143.2 ± 0.3) rad · µs−1.

The theoretically expected values calculated from Eqs. (40) using the calibrated pulse
amplitude ε0 are ∆γg = (4.24 ± 0.11) rad and ∆γd/T = (165 ± 4) rad · µs−1. The esti-
mated uncertainties of these quantities are based on the expected error of the measured
dispersive shift parameter χ, which we expect to be the most important source of er-
ror in the calibration procedure. While the measured geometric phase agrees with the
prediction quite well, the dynamical phase deviates from it by more than 10 %.

This result speaks in favour of the calibration being correct and the dynamical phase
skewed by some unknown process although we cannot rule out the other possibility.

5.3.4 The phases for different path shapes

We repeated the measurement described above for other shapes of the drive path –
a semicircle, a square and a figure-eight curve (see Fig. 44). The measured phases
and their theoretically expected values are summarized in Table 1a and presented in
a graphical form in Fig. 45.

As we have already seen for the circular path, the geometric phases are generally in
a relatively good agreement with theoretical predictions whereas the dynamical phases
are consistently smaller than the expected values. Quite interestingly, if we look at the
ratios between the accumulated phases for the different paths then – as the values in
Table 1b illustrate – the dynamical phases also match the theory reasonably well with
the exception of the figure-eight curve.

There are several important things to bear in mind when inspecting the data in Ta-
ble 1 and Fig. 45. The presented uncertainties of the measured phases include only
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Figure 44: Alternative shapes of the drive path. (a) a semicircle, (b) a square and (c) a figure-eight
curve. The plots in the top row show the trajectories and the bottom row presents the drive strength ε̃
as a function of time – its real and imaginary part are plotted respectively in blue and purple.

a)

Geometric phase [rad] Dynamical phase [rad·µs−1]
Experiment Theory Experiment Theory

Circle 4.37 ± 0.05 4.24± 0.11 143.1 ± 0.3 165± 4
Semicircle 2.06 ± 0.04 2.12± 0.06 123.4 ± 0.2 146± 4
Square 2.91 ± 0.07 2.70± 0.07 118.7 ± 0.3 138± 4
Figure-eight curve −0.04± 0.04 0 150.4 ± 0.2 207± 6

b)

Geometric phase ratio Dynamical phase ratio
Experiment Theory Experiment Theory

Semicircle / Circle 0.47 ± 0.01 0.5 0.862 ± 0.002 0.875
Square / Circle 0.67 ± 0.02 0.637 . . . 0.829 ± 0.003 0.833 . . .
Figure-eight / Circle 1.051 ± 0.003 1.25

Table 1: Comparison of the measured and theoretically predicted (a) phases and (b) phase ratios.

the estimated errors of the fit – any potential sources of systematic errors such as non-
adiabatic corrections are not considered here. Also, the uncertainty of the drive strength
calibration, being based on a numerical simulation, is quite difficult to estimate.

The larger deviation of the experimental result from theory in the case of the figure-eight
trajectory might be related to the fact that this particular measurement was performed
later than the remaining three. These were all done in the course of approximately
24 hours. It is possible that the outcome of the experiment is influenced by some pa-
rameters of the experimental setup which change over time. One particularly important
change in the settings of the experiment made between the set of the first three measure-
ments and the last one was calibration of the IQ mixers. The first three measurements
were performed without proper mixer calibration due to technical problems. While this
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Figure 45: Measured phases for different path shapes. The bar charts show the measured and theoreti-
cally calculated (a) geometric and (b) dynamical phases for the four different path geometries represented
by the symbols below the bars. The measured phases are displayed by the left-hand (blue and green)
bars in each pair while the right-hand (red and orange) bars show the values predicted by theory.

could explain why the last measurement outcome is inconsistent with the other three,
it is unclear how performing mixer calibration could lead to a worse agreement of the
dynamical phase with theory.

5.3.5 Direct measurement of the geometric phase

The simple Ramsey measurement allows us to measure the total phase difference ac-
cumulated by the system but it does not provide means to separate the geometric and
the dynamical phase except by subtracting the phases obtained from two separate Ram-
sey measurements. If we want to measure the geometric phase in a single experiment
a slightly more complicated measurement sequence is needed.

The so-called spin echo measurement , well-known in the context of nuclear magnetic
resonance, is a technique which can be used to subtract phases accumulated by a system.
Like the Ramsey sequence, it starts by preparing a superposition state and applying the
adiabatic pulse which causes the two components of the superposition state to acquire
different phases. The resulting state

1√
2
(ei(γ

(g)
d +γ

(g)
g )|g〉 + ei(γ

(e)
d +γ

(e)
g )|e〉) ⊗ |0〉 (54a)

is then transformed by a unitary operation R̂y
−π = exp(iπσ̂y/2), which exchanges the

states |g〉 and |e〉 and can be interpreted as a rotation by −π around the y-axis on the
Bloch sphere, into the state

1√
2
(ei(γ

(g)
d +γ

(g)
g )|e〉 − ei(γ

(e)
d +γ

(e)
g )|g〉) ⊗ |0〉. (54b)
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Then the adiabatic cycle is applied again but this time in the opposite direction. Re-
versing the path leads to a sign-reversal of the geometric phase but leaves the dynamical

phase unchanged. The vectors |g〉 ⊗ |0〉 and |e〉 ⊗ |0〉 therefore acquire phases γ
(g)
d − γ

(g)
g

and γ
(e)
d − γ

(e)
g and the state of the system becomes

1√
2
ei(γ

(g)
d +γ

(e)
d )(e−i∆γg |e〉 − ei∆γg |g〉) ⊗ |0〉. (54c)

Applying the operation R̂y
−π/2 one more time and measuring the population of the qubit

excited states then yields
pe = sin2∆γg,

from which the geometric phase difference ∆γg can be determined up to a sign and
a shift by a multiple of π. The full spin echo sequence is shown in Fig. 46.

Qubit drive

Resonator drive

Time

xxxxxx

yyyyyy

zzzzzz

R̂
y
−π

R̂
y
−π/2R̂

y
−π/2

∆γd +∆γg ∆γd −∆γg 2∆γg

Figure 46: Spin echo measurement. The two outermost pulses applied to the qubit realize the unitary
operation R̂y

−π/2
, while the central pulse with double the amplitude realizes the operation R̂y

−π, exchang-
ing the ground and the excited state of the qubit. The adiabatic resonator pulses enclosed between the
qubit pulses both drive the resonator state along the same closed path but in opposite directions. The
Bloch state pictures schematically show the initial and the final state of the qubit as well as the states
between the pulses. The axial angle 2∆γg accumulated during the adiabatic cycles is mapped to an
inclination angle with respect to the z-axis by the third qubit pulse.

Just like for the Ramsey sequence, replacing the last gate and the simple excited state
population measurement by qubit tomography allows us to extract the sign of ∆γg from
the two spin projections

〈σ̂x〉 =− cos 2∆γg,

〈σ̂y〉 =− sin 2∆γg.
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Similarly to Eq. (53), if we take dephasing and possible imprecision of readout calibration
into consideration, we expect the projections to vary according to

〈σ̂x + iσ̂y〉 = −A exp(2i∆γmax
g a2 − ka2) +B, (55a)

〈σ̂z〉 = C, (55b)

where∆γmax
g is the geometric phase difference accumulated for the maximum drive pulse

amplitude a = 1.0, k determines the dephasing induced by the resonator pulse and the
constants A, B and C are in the ideal case equal to A = 1, B = 0 and C = 0. In reality,
C will be negative due to qubit dissipation and the magnitude of A reduced because of
qubit dephasing. Its phase, argA, corresponds to a residual phase accumulated by the
qubit during the spin echo sequence in the absence of the resonator drive pulse. While
this phase should be ideally zero, i.e. A should be a real number, we account for the
possibility of the spin echo sequence being non-ideal by allowing A to be complex.

Figs. 47 show the results of a spin echo measurement for a circular drive trajectory
with detuning δ/2π = 40 MHz and pulse length T = 200 ns together with the fitted
theoretical functions. In this case, the calculated offset parameter B is subtracted from
the measured data and set to zero in the theoretical curves.
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Figure 47: Ramsey oscillations in the spin echo measurement. (a) Three projections of the final spin
in a spin echo measurement of the geometric phase onto the x (in blue), y (in red) and z (in orange)
axes as a function of the resonator drive amplitude. The measurement was done for δ/2π = 40 MHz
and T = 200 ns. (b) The curve traced by the final spin in the xy plane as the drive amplitude increases.
The solid lines are fitted functions of the form given in Eqs. (55).

We can see in Fig. 47b that as the drive amplitude increases and the geometric phase
difference accumulated by the system grows, the Bloch vector rotates around the z axis
and decreases in magnitude due to dephasing.

While we could use the fits to determine the maximum accumulated geometric phase
difference ∆γmax

g in the same way as for the Ramsey measurement, we can now also
extract the geometric phase directly from the x and y spin projections using the relation

2∆γg = arg(−〈σ̂x + iσ̂y〉).
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The phase 2∆γg can be obtained simply as the angle of rotation between the Bloch vector
and the axis −x in Fig. 47b. Although in this case we could in principle do completely
without the theoretical fit, we still use it to determine the population offset given by
the parameter B which we then subtract from the measured data before calculating the
phase.

The results of two measurements for resonator drive pulse lengths T = 200 ns and
T = 400 ns are presented in Figs. 48. This time we plot the phase against the area Aa

enclosed by the trajectory of the dimensionless drive amplitude a to illustrate that the
relation between these quantities is with a good precision linear as expected.
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Figure 48: Measured geometric phase versus the area enclosed by the circular trajectory. The detuning
is δ/2π = 40 MHz and pulse lengths (a) T = 200 ns and (b) T = 400 ns. The solid red lines represent
fitted linear functions.

The proportionality constants between the geometric phase difference ∆γg and the area
Aa obtained from the fitted linear functions are ∆γg/Aa = (−4.93 ± 0.03) rad for T =
200 ns and ∆γg/Aa = (−4.43 ± 0.11) rad for T = 400 ns. The difference between these
values is probably due to non-adiabatic corrections.

Based on Eqs. (40) and the drive strength calibration constant ε0/a = 400 MHz, the
value predicted by theory for the geometric phase in the adiabatic limit is ∆γg/Aa =
(−5.40 ± 0.14) rad. The agreement between theory and experimental results is worse
than for the simpler Ramsey experiment.

It is possible that non-adiabatic effects could lead to a systematic shift of the phase
measured in a spin-echo sequence. If the first resonator drive cycle is not ideally adiabatic
it generally leaves the resonator in a coherent state |α〉 with a quadrature α 6= 0 which
depends on the qubit state. The second drive cycle will therefore start in a state in
which the resonator and the qubit are entangled. This could potentially change the
phase accumulated during the second cycle.

Despite the discrepancy between the experimental results and theoretical predictions,
the data shown in Figs. 48 clearly show that the geometric phase is very insensitive to
the drive pulse length. In this particular example, its value changes by just 10 % when
the duration of the pulse doubles.
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5.3.6 Observed non-linearity of the geometric phase

Although the measured data presented in Figs. 48 apparently obey the expected linear
relation between the geometric phase and the area enclosed by the drive path, we have
also observed what appears to be a deviation from this simple dependence.

After decreasing the detuning δ/2π between the resonator and the drive frequency to
30 MHz, we have measured the geometric phase plotted in Fig. 49. It seems to depend
on the area Aa in a slightly non-linear way. This effect is not very pronounced but if we
compare the geometric phase obtained for the maximum drive amplitude a = 1.0 with
the value predicted by theory, we find that it is more than 30 % higher. Considering that
the measured phases presented in Section 5.3.5 were lower than the values calculated
from theory, this indicates that we might be indeed looking at some additional correction
to the phases, different from what causes the deviations in Section 5.3.5.
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Figure 49: Observed non-linearity of the geometric phase. This plot shows the measured geometric
phase as a function of the area enclosed by the circular trajectory of the drive amplitude for detuning
δ/2π = 30 MHz and pulse length T = 200 ns. The dependence of the phase on the area seems to deviate
from the linear fit.

We suspect that this non-linearity could be related to the fact that the maximum number
of photons present in the resonator during the drive pulse is relatively large. It is given by
nmax = ε20/4δ

2 which for δ/2π = 30 MHz gives us approximately nmax = 45. The critical
photon number, which determines the domain of validity of the dispersive approximation,
is in our system close to ncrit = 140. Violation of the dispersive approximation would
certainly cause a shift of the geometric phase. It should be relatively straightforward to
obtain an approximation of this correction using perturbation theory and check whether
it can account for the observed increase of the geometric phase.

5.3.7 Measurement of the pulse-induced dephasing

The dephasing induced by the resonator pulse (Section 4.3) was observed in most of our
measurements. We have therefore performed a separate experiment in an attempt to
quantify it and compare the results with our theoretical expectations.
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In the Ramsey measurement of the phase, the state of the qubit right after the resonator
drive pulse is characterised by its Bloch vector ~b lying in the xy plane. Applying the
operation R̂y

−π/2 and measuring the excited state population allowed us to determine
the projection of the Bloch vector onto the x axis. By changing the phase of the second
qubit manipulation pulse, we can measure any desired projection in the xy plane. If
we sweep the phase of the pulse from 0 to 2π, the measured projection undergoes one
oscillation whose amplitude is equal to |~b| – the magnitude of the Bloch vector. We
can perform this measurement with different amplitudes of the resonator pulse and
determine the visibility of the population oscillations for each of them. In this way we
obtain the magnitude of the Bloch vector after the resonator pulse as a function of the
pulse amplitude.

The theoretical result derived in Section 4.3 tells us that a resonator drive pulse with
amplitude a should reduce |~b| by a factor of the form exp(−ka2). Here k is a constant
depending on the shape of the drive path, the proportionality constant between ε0 and a,
the detuning δ and the dispersive shift parameter χ. Its exact form is rather complicated
but we generally expect it to decrease with the length of the pulse because longer, more
adiabatic pulses result in less entanglement of the qubit and the resonator, which is the
key factor behind this dephasing effect.

Two plots showing how the dephasing changes with the amplitude of the pulse are
presented in Fig. 50.
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Figure 50: Dephasing induced by the resonator pulse. The plots show the magnitude of the Bloch
vector ~b after the resonator drive pulse as a function of the pulse amplitude and demonstrate that the
pulse causes dephasing of the qubit. The lengths of the pulses are (a) T = 60 ns and (b) T = 40 ns. The
solid lines represent the theoretically expected dependence of the form A exp(−ka2) with the parameters
A and k fitted to the data.

The measured data clearly confirm that the dephasing increases with the pulse ampli-
tude. The decrease in the magnitude of the Bloch vector seems to be consistent with
the theoretically predicted dephasing factor A exp(−ka2). The constant A < 1 describes
dephasing coming from other sources which does not depend on the amplitude. A com-
parison of the plots in Fig. 50 also supports our theoretical expectation that the effect
is weaker for longer pulses.
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6 Conclusion

6.1 Summary of the results

Over the course of this four months’ work, we have designed and performed an exper-
iment to analyze the geometric phase of an adiabatically driven harmonic oscillator –
a microwave transmission line resonator in a superconducting circuit QED system. We
made use of a qubit dispersively coupled to the resonator which makes the value of the
resonator phase dependent on the qubit state. This allowed us to measure the phase
difference in a simple Ramsey interference experiment.

In this way, we have successfully observed the geometric phase and demonstrated its
dependence on the shape and direction of the trajectory traced by the state of the
system in its Hilbert space only, insensitive to dynamical parameters of the evolution.
We have studied the behaviour of the phase both in the adiabatic and non-adiabatic
regime and found that it is robust against non-adiabatic effects. Its measurement and
potential utilisation is, however, complicated by entanglement between the qubit and
the resonator which induces dephasing of the reduced qubit state.

In this thesis, we present a theoretical introduction to superconducting qubits and circuit
QED and an overview of the geometric phase – both in its general form and in the specific
context of our circuit QED system. Thanks to the exact integrability of the harmonic
oscillator, we are able to derive analytical expressions for the evolution of the system
as well as the accumulated phases and describe the processes theoretically even in the
non-adiabatic regime to compare the theoretical predictions with experimental results.

The geometric phase determined from a set of simple Ramsey measurement is in good
agreement with theory but the dynamical phase is consistently lower than predicted. By
measuring the phase for several different path geometries, it is shown that the geometric
phase is proportional to the area enclosed by the trajectory of the coherent state in
the quadrature plane and that the dynamical phase scales with the time integral of the
squared drive amplitude.

The geometric phase measured in a spin echo experiment also shows good linear scaling
with the area enclosed by the path, but its values differ from those predicted by theory.
As of now, we do not have a good explanation for the differences between the measured
phases and theoretical predictions. We observe a small deviation from the linear relation
between the phase and the enclosed area in a measurement with smaller detuning of
the drive signal from the resonator frequency – we suspect that this could be a sign of
a potentially interesting regime in which the dispersive approximation of qubit-resonator
interactions starts to break down and the resonator can no longer be described as an
ideal harmonic system.

In addition, we also investigate the dephasing effects of qubit-resonator entanglement
caused by non-adiabaticity of the resonator drive pulse – specifically its dependence on
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the resonator drive amplitude and the length of the drive pulse – and find qualitative
agreement with the theoretically expected behaviour. The effect is enhanced as the drive
amplitude increases and as the pulses become less adiabatic.

6.2 Outlook

We believe that the simplicity and exact integrability of the harmonic oscillator make
it a very convenient system for studying the geometric phase both experimentally and
theoretically. For example, by adding artificially generated noise to the resonator drive
signal, one can easily study its effects on the phase and compare them with theoreti-
cal predictions. Another potentially interesting topic to address could be the relation
between adiabaticity and differentiability of the drive path discussed in this thesis.

It would of course be highly desirable to find an explanation of the discrepancy between
some of our phase measurement and theoretical predictions. We therefore plan to double-
check our calibrations and determine whether the drive pulses do not get distorted on
the way from the AWG to the sample.

In future experiments, we would like to extend our measurement and try to observe
the two-qubit geometric phase. This may require a different sample with parameters
specifically designed to increase our chances of seeing this presumably weak effect.

We also want to look closer at the transition regime in which the dispersive approxima-
tion ceases to be valid. This could allow us to measure the geometric phase of a weakly
anharmonic oscillator and possibly compare the results with the geometric phase mea-
sured in a transmon qubit.

These are just a few possible directions for future investigation of the harmonic oscillator
geometric phase. We think they illustrate that this area definitely offers many intriguing
topics to study.
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A Geometric phase in the context of differential geometry

It was noted by Simon [16] immediately after Berry’s insightful discovery of the geometric
phase that it can be conveniently described in the language of differential geometry [58]
as a result of the non-trivial geometric properties of complex Hilbert spaces.

A projective Hilbert space corresponding to a given Hilbert space H is a set H /C
of equivalence classes on H containing vectors which only differ by multiplication by
a complex number. In other words, it is the set of all physically distinct states.

The full Hilbert space H can be viewed as collection of rays – classes of physically
equivalent states – which are isomorphic to C. Each ray then obviously corresponds
to an element of the projective space H /C. Such mathematical structure is known in
differential geometry as a fibre bundle [58]. Simply speaking, it is a manifold M (called
the base space, in our case the projective space) with a copy of a space F (called the
fibre, in our case the set of all equivalent states) embedded at each point of M .

As we have mentioned earlier, the adiabatic theorem in the case of a non-degenerate
energy spectrum determines the state vector only up to a complex phase factor, i.e. it
specifies the path followed by the state in the projective base space H /C. Determin-
ing the phase associated with the evolution is in the language of differential geometry
equivalent to finding the corresponding path in the bundle H .

For general fibre bundles, elements of different fibres cannot be directly compared since
they belong to different instances of the fibre space F . In order to define transport in the
bundle in a meaningful way, an additional geometrical structure is needed. A so-called
connection defines a correspondence between elements of a fibre at a point x ∈ M in the
base space and elements of fibres in an infinitesimal neighbourhood of x. For bundles
with a linear fibre space F – so-called vector bundles – a connection allows to add
and subtract elements of infinitesimally separated fibres and thereby define a covariant
derivative and parallel transport on the bundle.

A.1 Parallel transport

As we will see, in our case where the bundle is the Hilbert space H , the connection is
related to the inner product on H and the evolution of the state vector after eliminat-
ing the trivial dynamical phase is given by the corresponding parallel transport. The
connection can in general be curved, i.e. an element parallel-transported along a closed
curve in the projective base space back to the original fibre need not be the same as the
initial element, as shown schematically in Fig. 51. This is nothing else than a statement
that there is a non-zero geometric phase, which can therefore be viewed as a consequence
of a curved connection on the Hilbert space fibre bundle.

Let us now derive the form of the covariant derivative which determines the adiabatic
evolution of the state vector |ψ(t)〉 = eiγ(t)|ϕ(t)〉 expressed in Eqs. (22). We can eliminate
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H /CH

|ϕ(λ)〉

eiγg(λ)|ϕ(λ)〉

C

Figure 51: Adiabatic evolution as a parallel transport in a fibre bundle. The eigenvector |ϕ(λ)〉 of the
adiabatically changing Hamiltonian determines the path (in red) followed by the state in the projective
Hilbert space H /C. The path in the Hilbert space H itself (in blue) is given by a connection on the
bundle of rays induced naturally by the inner product. This connection is in general not flat and can
result in a non-zero cyclic geometric phase.

the dynamical evolution of the state if we multiply |ψ(t)〉 by e−iγd(t), thereby isolating
the purely geometric evolution. Substituting the resulting modified state vector |ψg(t)〉
into the Schrödinger equation yields

d|ψ(t)〉
dt

= eiγd(t)
(

i
dγd(t)

dt
+

d

dt

)

|ψg(t)〉 = − i

~
Ĥ(t)|ψ(t)〉.

Multiplying this equation by 〈ϕ(t)| and using Eq. (22a) for the dynamical phase γd(t)
then results in the simple relation

〈ϕ(t)| d
dt

|ψg(t)〉 = 0. (56)

Once again, the time in this equation can be replaced by an arbitrary parametrization
λ of the path the vector traces in the Hilbert space. We would like to find a covariant
derivative ∇λ for which the evolution of |ψg(λ)〉 is simply a parallel transport. Based on
Eq. (56), it is not difficult to guess the correct form of ∇λ and show that it indeed has
all the properties required for a derivative

∇λ|u(λ)〉 = P̂u(λ)
d

dλ
|u(λ)〉. (57)

Here |u(λ)〉 is an arbitrary, not necessarily normalized vector from H and P̂u(λ) is the
projector onto |u(λ)〉. With this definition, Eq. (56) can be shown to be equivalent to
the parallel transport equation ∇λ|ψg(λ)〉 = 0.

This form of parallel transport has a very natural interpretation. It means that the
derivative of |ψg(λ)〉 is at each point of the adiabatic evolution perpendicular to the
eigenvector |ϕ(λ)〉. Since |ψg(λ)〉 has to lie in the one-dimensional space spanned by
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|ϕ(λ)〉, the vector |ψg(λ)〉 can be obtained from |ψg(λ− dλ)〉 by projection onto |ϕ(λ)〉.
Thus, the evolution of the vector |ψg(λ)〉 is in some sense given by continuously projecting
|ψg(λ)〉 onto the changing eigenvector |ϕ(λ)〉, a process which can be perhaps somewhat
simplistically expressed by the relation

|ψg(λ2)〉 = P
∏

λ∈[λ1,λ2]

P̂ϕ(λ)|ψg(λ1)〉, (58)

where the symbol P stands for path-ordering of the projectors. This process is very
similar to the standard parallel transport of vectors in a curved manifold embedded
in a Euclidean space. There, the transported vector is being continuously projected
onto the tangent space to the manifold at each point of the path. But while this kind of
parallel transport for a one-dimensional manifold is trivial due to the tangent space being
real, our case of adiabatic transport is more interesting. Even though the eigenspace
spanned by |ϕ(λ)〉 onto which we project is also one-dimensional, the fact that the space
is complex makes all the difference and can give rise to a non-trivial geometric phase.

It may be noteworthy that Eq. (58) determines the evolution of |ψg(λ)〉 in a gauge-

invariant way because the projectors P̂ϕ(λ) = |ϕ(λ)〉〈ϕ(λ)| do not depend on the phases
of the eigenvectors |ϕ(λ)〉. It also makes manifest the gauge-transformation properties
of the geometric phase. Since |ψg(λ)〉 = eiγg(λ)|ϕ(λ)〉, the geometric phase clearly obeys
the relation

ei(γg(λ2)−γg(λ1)) = 〈ϕ(λ2)|P
∏

λ∈[λ1,λ2]

P̂ϕ(λ)|ϕ(λ1)〉

and as the product of projectors is gauge-invariant, the phase factor on the left-hand side
transforms under a change of gauge in the same way as the inner product 〈ϕ(λ2)|ϕ(λ1)〉,
in accordance with the transformation property discussed previously in Section 3.2.

This shows one of the strengths of the differential geometry framework as a tool to study
inherently geometric properties of objects without the need to resort to any specific
reference frame (gauge) or coordinate system. Sometimes it can offer more insight into
the nature and origin of the geometric phase. For example, the described picture of
adiabatic evolution as continuous projection onto the energy eigenspace is probably more
intuitive than the treatment using Schrödinger equation (Eq. (22b)) which essentially
conveys the same concept in a gauge-dependent way.

On the other hand, the abstract formalism of differential geometry is not particularly
useful for actual calculations of the geometric phase which usually need to be done for
some specific gauge choice and a system of coordinates within the projective space. In
most cases, the calculation eventually boils down to evaluating the integral in Eq. (22b).

The differential-geometric approach also lends itself to generalization of the previous
results to the case of degenerate eigenvectors. As discussed before, if the adiabatically
evolving Hamiltonian Ĥ(t) has a degenerate eigenspace S (t) then a state vector initially
in S (t) will be restricted to it. But unless there is some additional conserved quantity
Â whose presence splits S (t) into one-dimensional eigenspaces of Â not connected by
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the Hamiltonian, the evolution of the state vector within S (t) is not fully determined
by the adiabatic theorem.

It can be easily shown that the parallel transport law (Eq. (56)) remains valid even in
the degenerate case and holds if |ϕ(t)〉 is any vector in S . Consequently, the covariant
derivative governing the adiabatic transport then has a form almost identical to Eq. (57).
The only difference is that the projector P̂u(λ) is replaced by P̂S (λ) – a projector onto
the eigenspace S (λ), i.e.

∇λ|u(λ)〉 = P̂S (λ)
d

dλ
|u(λ)〉. (59)

Just like in the non-degenerate case, the corresponding parallel transport can be in-
terpreted as continuous orthogonal projection of the modified state vector |ψg(λ)〉 onto
S (λ). The fact that a cyclic evolution starting and ending in the same degenerate
eigenspace S can lead to a non-trivial rotation in S is in this case perhaps even more
obvious than for the simpler one-dimensional parallel transport. The connection can be
curved even for real degenerate eigenspaces. In that special case we have a situation
completely identical to the parallel transport in Riemannian manifolds, previously men-
tioned only to illustrate the state vector transport given by Eq. (58). Now we see that
this analogy is in certain cases rather accurate.

There is one particular quantum system commonly studied in the context of holonomic
quantum computation – the so-called tripod system [46]. Its Hamiltonian has a two-
fold degenerate eigenspace which can be arbitrarily manipulated within a fixed three-
dimensional space. If the subspace is adiabatically varied in such a way that it always
remains real, the evolution of the state vector |ψg(λ)〉 is equivalent to the parallel trans-
port on a classical textbook-example of a curved manifold – a sphere. The non-trivial
nature of such transport is clear to anyone who has ever wondered at the principle of
Foucault’s pendulum. It is perhaps partly due to this convenient and simple geomet-
ric interpretation that the tripod system is currently a popular basis for proposals of
potential experimental realizations of holonomic quantum computation.

Fig. 52 presents this simple case of parallel transport. It shows a vector being parallel-
transported along a closed curve on the surface of a sphere, returning to the point of
origin rotated by a non-zero angle. It also illustrates how the vector evolves by successive
projections onto infinitesimally separated tangent spaces.

A.2 The parallel transport law in a specific basis

In order to perform real calculations of the geometric phase in the degenerate case,
we need to express the covariant derivative given by Eq. (59) in some specific basis
|ϕ1(λ)〉, |ϕ2(λ)〉, . . . of the degenerate eigenspace. If we denote the components of the
modified state vector |ψg(λ)〉 in this basis by c1(λ), c2(λ), . . . then the parallel transport
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Figure 52: Parallel transport on a sphere. (a) The vector ui is transported along a closed curve on
the surface of a sphere (counterclockwise). The final vector uf upon returning to the original point is
different from ui. (b) The parallel transport can be interpreted as a continuous projection of the vector
u(λ) onto the tangent space T (λ), i.e. the red vector u(λ) is obtained by projecting the blue vector
u(λ− dλ) onto the tangent space T (λ).

equation ∇λ|ψg(λ)〉 = 0 takes the form

∑

i

(∇λci(λ))|ϕi(λ)〉 + ci(λ)∇λ|ϕi(λ)〉 = 0.

As the components ci(λ) are scalars, the covariant derivative acts on them as a standard
total derivative. After multiplying the previous equation by 〈ϕj(λ)|, we obtain

dcj(λ)

dλ
+
∑

i

ci(λ)〈ϕj(λ)|∇λ|ϕi(λ)〉 = 0.

This equation can be conveniently expressed in a matrix form as

dc(λ)

dλ
= A(λ) · c(λ), (60)

where c(λ) is a vector of the components ci(λ) and the elements of the matrix A(λ)
are defined as Aji(λ) = −〈ϕj(λ)|∇λ|ϕi(λ)〉 or, after using the definition of ∇λ given in

Eq. (59) and considering that P̂S (λ)|ϕj(λ)〉 = |ϕj(λ)〉, as

Aji(λ) = −〈ϕj(λ)|
d

dλ
|ϕi(λ)〉. (61)

The solution of Eq. (60) can be formally written in terms of a path-ordered exponential,

c(λ2) = U(λ2, λ1) · c(λ1) =
(

P exp

∫ λ2

λ1

A(λ) dλ

)

· c(λ1). (62)
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We can immediately recognize the matrix U(λ2, λ1) relating c(λ1) to c(λ2) as a gen-
eralization of the geometric phase factor ei(γg(λ2)−γg(λ1)) (Eq. (22b)) in the simple non-
degenerate case. There the vector c(λ) has only one component equal to eiγg(λ), and
the matrix A(λ) acts as a simple scalar multiplication. This allows us to drop the path
ordering in Eq. (62) and arrive at Eq. (22b). On the other hand, such simplification
may not be possible in the degenerate case because the matrices A(λ) for different val-
ues λ need not commute. For this reason, the unitary matrix U(λ2, λ1) is often called
non-abelian geometric phase.

Just like in the non-degenerate case, the matrix analogue of the geometric phase factor
can be expressed using a line integral in a space of parameters x1, x2, . . . , xd of the
Hamiltonian, namely as

U = P exp

∫

P
Ai(x) dxi, where

Ai(x) = −〈ϕj(x)|
∂

∂xi
|ϕi(x)〉.

Here we explicitly write the index i, enumerating the parameters x1, x2, . . . , xd, in order
to avoid confusion with the matrix indices of Ai(x) acting on the components c1, c2, . . .
of the state vector. The matrix-valued vector Ai(x) is usually called gauge potential [40]
because it shares all the properties of this key object of gauge field theories.

All the gauge-dependent results derived here for the non-abelian geometric phase can be
of course also obtained without using the fancy language of differential geometry, simply
by working in a specified basis from the very beginning. But as we have just seen,
there are certain interesting parallels between the geometric phase, curved manifolds
and gauge fields, which may be useful for developing an understanding of the geometric
phase. Differential geometry is just a natural tool to study these similarities.

Let us now consider the set of matrices U corresponding to all possible closed paths P
starting and ending in a fixed given point x. Such set obviously forms a group under
matrix multiplication since any two closed paths P1 and P2 can be joined to form another
closed path P and the matrix U corresponding to P is given by the product U2 ·U1 of
the matrices for P1 and P2. Moreover, a degenerate loop consisting of only one point
yields U = id and reversing the direction of the path clearly transforms U into U−1.
The matrix group defined in this way is called the holonomy of the parallel transport.

If this group is rich enough, specifically if it contains the group SU(2) as its subgroup then
it allows to perform arbitrary unitary operations on some two-dimensional computational
subspace of the eigenspace S (x) by following suitably chosen closed paths starting and
ending in x. The geometric nature of such manipulation makes the resulting one-qubit
gates less sensitive to noise, as discussed previously. The degeneracy of the computational
states also eliminates the need to cancel the dynamical phases. Higher-dimensional
degenerate eigenspaces could be used to accommodate two-qubit computational states
and perform two-qubit fault-tolerant non-abelian geometric gates. It is therefore quite
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natural that holonomic quantum computation based on non-abelian geometric phases
is currently in the limelight of quantum information processing research – albeit mostly
theoretically at this point.
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B PARAMETERS OF THE SAMPLE

B Parameters of the sample

Resonator

Frequency . . . ωr/2π . . . 7.0204 GHz
Decay rate . . . κ/2π . . . 0.475 MHz
Mean photon lifetime . . . τ, 1/κ . . . 0.335 µs
Quality factor . . . Q,ωr/κ . . . 14800

Qubit

Charging energy . . . EC/2π~ . . . 360 MHz
Max. Josephson energy . . . Emax

J /2π~ . . . 26 GHz
Max. frequency . . . ωmax

q /2π . . . 8.3 GHz

Anharmonicity . . . α/2π . . . −0.4 GHz
Resonator coupling . . . g/2π . . . 56 MHz
Relaxation time . . . T1, 1/Γ . . . . 0.9∗ µs
Dephasing time . . . T2, 1/γ . . . . 1.5∗ µs

Dispersive shift . . . χ/2π . . . 1.0 MHz

*) Value varies over time by almost 50 %.
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Cavity Bloch equations, 23
Charging energy, 6
Coherent state, 37
Connection (fibre bundle), 87
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Gauge potential, 92
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Parallel transport, 87
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Projective Hilbert space, 87
Projective measurement, 24
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Qubit tomography, 25

Ramsey measurement, 50
Rotating wave approximation, 11

Sideband modulation, 64
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Split Josephson junction, 4

Transmission line resonator, 13
Transmon qubit, 8

anharmonicity, 9
charge dispersion, 11
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Hamiltonian, 8–10
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