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Abstract

This thesis studies quantum circuit electrodynamics, which is an implementa-
tion of cavity quantum electrodynamics with superconducting qubits as artificial
atoms and a microwave resonator as a cavity. It is used to implement an ef-
fective Dicke-like model of two qubits and the Dicke states for one excitation
are fully characterized. Also symmetry selective Rabi oscillations between the
ground and the Dicke states are observed. For two and three qubit, the disper-
sive qubit-qubit coupling induces an avoided crossing. The qubit states of this
anticrossing are characterized with quantum state tomography. Furthermore
the entanglement generation, which is a truly quantum mechanical effect, of
two and three qubits on a timescale of a few nanoseconds is studied.
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Chapter 1

Introduction

In the early 19th century a revolution in physics was on its way. It would change
the understanding of mankind, what light and matter is. This revolution would
even change the perception of information. In the following introduction, this
big revolution, its implication for information as well as its practical investiga-
tion will be outlined.

The triggers for the revolution were, among others, the photoelectric ef-
fect, the spectrum of the hydrogen atom, Brownian motion and the ultra violet
catastrophe. They were all explained by quantizing matter or light. These early
quantum mechanical approaches were often phenomenological and contradicting
to each other [1]. They were summed up and extended by Erwin Schroedinger,
Werner Heisenberg, Max Born and Wolfgang Pauli to form a consistent, revo-
lutionary and fantastic theory of quantum mechanics. The concept of matter
and light was completely altered, as both are simoultaneausly acting like waves
and like particles in this theory. This is known as wave-particle duality.

Information encoded in these quantum mechanical states also changed the
understanding of information. It is known as quantum information and differs
from classical information to a large extent. When a quantum state is read out,
it becomes the state associated with the measured value. An arbitrary state can
not be cloned. And one of the most interesting difference is the entanglement of
two quantum mechanical systems. Entanglement means, that the states are not
correlated in a classical way. Nevertheless, the information which can be read
out from a two level quantum system, the qubit, is equal to the information of
one classical bit.

The big practical difference to the classical case is during information pro-
cessing. This was investigated by David Deutsch with a universal quantum
computer in 1985 [2]. He showed that it outperforms its classical counter part,
the Turing machine, on certain tasks and it also allows for universal classical
computation, as it can simulate the Turing machine. The two architectures are
quiet similar, as a quantum computer operates with qubits, compared to bits.
However the quantum computer can process many inputs in paralles, which is
coming from the superposition principle [3].

Since this ground-breaking work many algorithms were found for the quan-
tum computer. In 1994 Peter Shor came up with algorithms, which can fac-
torize and take the logarithms of large numbers exponentially faster than a
classical computer. This gathered a lot of attention, as it would be possible
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to attack the commonly used ”public-key” cryptography [4] successfully in a
reasonable amount of time. Also the algorithm by Low Grover needs to be
mentioned. It searches an unsorted data base quadratically faster than the
classical algorithms[5].

Another very important application for quantum computers is the simulation
of quantum systems. A classical computer can not simulate a quantum system
with even a few degrees of freedom, as stated by Richard Feynman [6]. In the
fields of nuclear physics, atomic physics and chemistry, many key system of
interest, only have tens to hundreds of degrees freedom. Being able to simulate
this quantum systems from first principle, could revolutionize many aspects of
technology [7].

To implement a quantum computer, a physical system has to fulfill the
DiVincenzo criteria [8]. They demand, that there are well-defined qubits, which
can be intilized in a pure state and one needs to be able to apply an universal
set of unitary transformation on the states. The state of each qubit needs to be
individually measurable, as well as the coherence time of the system needs to
be long, compared to the processing time.

Many practical approaches exist to implement such a quantum computer. A
very promising architecture is the use of superconducting circuits. The qubits
are based on Cooper Pair boxes. This qubits are coupled to each other by a
superconducting transmission line, which also serves a readout. The interaction
between the photons and the qubits is described by circuit quantum electrody-
namics (QED).

This architecture is explored in the current thesis. The thesis is structured
the following way: It starts with the theoretical background of circuit QED
in Chapter 2. The experimental setup is discussed in the following Chapter
3. Chapter 4 is dedicated to fast control of the excited level of the qubit by
means of magnetic flux pulses. The experimental results for two qubits are then
presented in Chapter 5. It contains a discussion of Dicke states, dark states and
fast entanglement protocols. This is followed by Chapter 6, talking about three
qubit states and their anticrossing and the W-state.
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Chapter 2

Theory review

One of the most promising practical implementation for quantum information
processor is a circuit QED architecture. It realizes a cavity QED system by
means of electrical circuits. Usually an LC-circuit serves as a 1D resonator
which is coupled to another LC-circuit with a nonlinearity(artificial atom). The
coupling between the two systems is impressively high in contrast to standard
cavity QED experiments. The whole architecture gives relatively long coherence
times (on the order of microseconds) with respect to the duration of the single
universal gates. The resonator can be used for joint quantum non-demolition
read-out [9] of the qubits and simultaneously as a coupling bus between them
[10].

In order to understand this implementation, the theory of circuit QED and
superconducting qubits will be shortly reviewed in this chapter. It starts with
the architecture of the resonator and the quantization of the circuit in Section2.1.
To study the superconducting circuit, which has an atom like energy spectrum,
the evolution from the Josephson junction to the transmon qubit is outlined
in Section 2.2. The building blocks are then combined to create a practical
implementation of the Jaynes-Cummings Hamiltonian. This system is operated
in far detuned regimes, which is addressed by Section 2.2.5

2.1 Microwave resonator

2.1.1 Coplanar waveguide

In our case, the resonator is implemented by a coplanar waveguide (CPW).
The CPW is a practical implementation of the transmission line, which can be
modeled as a series of lumped element circuits, see Fig. 2.1 b. Here Cl,Ll,Rl and
Gl are the capacitance, inductance, resistance and conductance per unit length.
The conductance Gl is normally related to loss in the dielectric whereas the
resistance is coming from conduction loss[7]. The impedance of such a lumped
element circuit is given by

Z0 =

√
Rl − iωLl
Gl − iωCl

. (2.1)

The propagation coefficient γ for a wave eγl propagating through the transmis-
sion line is given by γ = α + iβ

√
(Rl − iωLl)/(Gl − iωCl), where α and β are
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Figure 2.1: Transmission line: The transmission line can be modeled as infinite
many single lumped element circuits. a) Representation of a transmission line
as circuit diagram element. b) The single circuits have the same capacitance
Cl per unit length and inductance Ll per unit length.

real coefficients. From this the attenuation, related to α, and phase evolution,
related to β, of the wave can be extracted. This also defines the phase veloc-
ity ν = ω/β at the frequency ω. In the lossless case the impedance becomes
Z0 =

√
Ll/Cl and the wavelength of the wave is λ = 2π/β = 2πν/ω

To build a resonator one can first introduce at a distance l a load impedance
ZL. The effective input impedance when looking into the transmission line at a
distance l from the load impedance ZL reads

Zin = Z0
ZL + Z0 tanh γl

Z0 + ZL tanh γl
. (2.2)

When the transmission line is terminated with an circuit (infinite impedance),
the input impedance becomes

Zopen
in = −Z0 coth γl. (2.3)

In a second step towards a resonator, one adds a second open impedance at the
other end. Depending on the length one gets a high impedance(l=nλ/2) or a
high admittance resonance(l=(2n+1)λ/4), where n is an arbitrary integer. In
this thesis high impedance resonances have been used. The resonance frequency
is then given by

ωopen
in =

1√
LlCl

nπ
l

. (2.4)

The resonator so far discussed could be capacitively coupled to a transmission
line for interaction, with a capacitance Ck is introduced on both sides. Due to
the large impedance mismatch the wave can be confined within the circuit. The
impedance mismatch acts like a dielectric mirror in the Fabry-Perot cavity.

The loaded quality factor of the resonator is given by 1/Ql = 1/Qext+1/Qint

for the quality factor [11][12]. The internal quality factor Qint ∝ 1/α is related to
the dissipative energy loss. The external quality factor Qext ∝ 1/Ck is influenced
by the input/output coupling. This can be engineered by the input capacitance
and the real part of the load impedance. And the rate of energy loss κ is given
by κ = ω/QL.

In our experiment the transmission line is implemented by a coplanar waveg-
uide, depicted in Fig. 2.2. It resembles a 2D version of an coaxial cable: the
ground is in the same plane as the center pin. An advantage of the CPW is
that the gap can be scaled from microns to millimeters, thereby holding the
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Figure 2.2: Coplanar-Waveguide. The center conductor is grounded and they
can be seen as a 2 dimensional coaxial cable.

Figure 2.3: The LC-resonator is a non dissipative circuit with a inductance and
a capacitance. It is the lumped element model of an electromagnetic resonator

same impedance Z0[7]. The impedance Z0 depends on the ratio of the center
pin width a to the gap size s. Fig. 2.2. The central planes should be much
larger than the gap size, in order approximate them as infinite. To receive the
actual impedance of the coplanar waveguide, one can use conformal mapping
[13]. And the resulting impedance is expressed with elliptical integrals.

The resonator build from coplanar wave guides can be seen as an analog to
a one dimensional cavity. The role of a mirror for the photons is again played
by two capacitance at both end. For one dimensional cavities the mode density
gets reduces drastically. This is because the spatial expansion in the remaining 2
dimensions of 3 dimensional space is much smaller than the typical wavelength.
This leads to enhancement of the electric field per photon of three orders of
magnitude[12].

2.1.2 Circuit quantization

In the previous subsection, lumped element and distributed effective LC circuits
were used to make an electronic harmonic oscillator. In this subsection, an LC
circuit, seen in Fig. 2.3, will be described as a (quantum) harmonic oscillator,
with the operators expressed in terms of electrical circuit quantities.

The equation of motion of the LC oscillator has the same form as the one
for the harmonic oscillator [14, 15].

d2Q

dt2
+

Q

LC
= 0, (2.5)
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where Q is the amount of charge on the capacitor. The quantization of such
a circuit can be done in the same way, as for the harmonic oscillator. The
commutation relation for the two conjugated variables charge Q̂ and magnetic
flux Φ̂ is the following

[
Q̂, Φ̂

]
= i~. Here the charge Q̂ plays the role of the

position coordinate, whereas the magnetic flux Φ̂ is the analog to the conjugate
momentum. The Hamiltonian is H = Φ̂2/2L + Q̂2/2C. In correspondence

to the harmonic oscillator a creation â† and a annihilation â operator can be
introduced and the Hamiltonian reads

H = ~ω0(â†â+ 1/2). (2.6)

The resonance frequency is ω0 =
√

1/LC and the commutation relation is[
â, â†

]
= 1.

2.2 Superconducting Qubits

The spectrum of the circuits so far presented are harmonic. In order to be
able to define a qubit, the spectrum needs to be anharmonic. To achieve this,
one introduces another LC circuit with an anharmonicity, given by a Josephson
junction. The Josephson junction is the only known dissipation free circuit
element which is non linear [15].

2.2.1 Josephson junction

The Josephson junction consist of two superconducting electrodes separated by
a thin isolating layer. The Josephson junction can be split into a pure Josephson
element and a capacitor, see Fig. 2.4 a [16]. The Hamiltonian of this element is
given by

ĤJ = −EJ

2

∑
n∈Z

(|n〉〈n+ 1|+ |n+ 1〉〈n|), (2.7)

where |n〉 are the eigenstates of the charge operator n̂ associated with the num-
ber of Cooper pairs on one side of the junction and EJ is the Josephson energy.
One can see in this Hamiltonian the effect when a Cooper pair is tunneling
through junction, denoted by |n〉〈n + 1| + |n + 1〉〈n|. Taking into account

that the superconducting phase difference δ̂ and n̂ are conjugate variables, the
Hamiltonian takes the the form:

ĤJ = −EJ cos δ̂. (2.8)

For the total Hamiltonian the contribution from CJ has to be taken into account
as well. This is discussed in more detail in the next section.

2.2.2 Cooper pair box

The Cooper pair box consists of a Josephson junction, where one part is grounded,
called reservoir and the other part is connected to a capacitor, called island. The
capacitor can be biased by a gate voltage which, as seen in Fig. 2.4 b. There is
now a second energy, the charging energy EC, beside EJ. It is associated with
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Figure 2.4: The Cooper pair box and the transmon a) Shows the Josephson
junction and the corresponding circuit diagram b) The Cooper pair box is a
Josephson junction which can be tuned over a gate capacitance [16].

the total capacitance of the Cooper Pair box. Accordingly the Hamiltonian
reads

Ĥ = EC(n̂− ng)2 − EJ cos δ̂, (2.9)

where ng = (CgVg)/(2e) is the reduced gate charge and EC = 2e2/(Cg + CJ).
To solve the Schrödinger equation it is convenient to change to the phase rep-
resentation. The equation is then a Mathieu equation [16]:

− EC
∂2

∂δ2
φk − EJ cos(δ)φk(θ) = Ekφk(δ). (2.10)

This equation can be solved analytically [17] by means of the Mathieu functions.
The resulting energy bands are shown in Fig. 2.5. For ng ∈ 0.5 Z, the energy
degeneracy for the EC(n̂−ng)2 energy is lifted by the Josephson term. This is in
analog to the tight binding model. Also, at these points the linear charge noise
is suppressed, because at this ”sweet spot” the energy levels are to first order
insensitive to the gate charge ng. Cooper pair box based qubits are operated
at ng = 0.5 with EJ/EC small. This gives a very good anharmonicity, meaning
that E01/E12 � 1, where Eij is the energy gap between the ith and the jth
level. Another fact to note is the flattening of the energy levels with increasing
EJ/EC ratios. This regime is explored by state of the art transmon qubits.

In order to couple a drive to the qubit base on the Cooper pair box, one
can introduce another interaction mechanism. This is done for example by
coupling another voltage source Ve to the island. The resulting Hamiltonian is
qualitatively the same as for the CPB in Equation (2.9). There is just a change
in EC and overall shift and ng gets the additional term ng − CeVe/2e. If one
works in the charge basis with only two states, the resulting Hamiltonian reads

Ĥ =
EJ

2
σ̂z −

ECCeVe

2e
σ̂x

=
1

2
~ωqσ̂z + ~Ωxσ̂x. (2.11)

Where the σ̂i are the Pauli operators and Ωx = −ECCeVe

~2e is a Rabi frequency.
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Figure 2.5: Energy Spectrum of the Cooper pair Box for different Coulomb and
Josephson energy ratios. The energies are scaled by the energy between the
ground and first excited energy level at ng = 0.

2.2.3 Split Cooper pair box

The split Cooper pair is a Cooper pair box, where the Josephson junction is split
into two junctions, see Fig. 2.6[16]. They form a superconducting loop. The
phase between the two superconducting parts can be changed by the magnetic
flux Φ through the loop. For a loop with equal Josephson junctions, just the
Josephson energy is shifted by

EJ = 2Esingle
J | cosπ

Φ

Φ0
|, (2.12)

where δ is the phase difference between the two superconductors. EsingleC
J is the

energy for a single Josephson junction, which was used in the previous Sections.
Φ0 = h/2e is the magnetic flux quantum, in which the Josephson energy is
periodic. The energy spectrum stays qualitatively the same as for the Cooper
pair box, but the Josephson energy is tunable. If the junctions are not equal
EJ acquires additional terms.

2.2.4 Transmon

For a long time the EJ � EC regime was not explored for qubit production, as
the anharmonicity was not high enough. This is not the case for the transmon
qubit. With its design, the qubit anharmonicity decreases with a low power law
in EJ/EC, while the charge dispersion reduces exponentially with EJ/EC[18].
This is achieved by introducing an extra capacitance CB between the supercon-
ducting island and the reservoir and a similar scaling of the gate capacitance
Cg, see Fig. 2.7. It doesn’t need to be operated at the charge ”sweet spot”,
because the charge dispersion is very flat and the qubit is therefore insensitive
to charge noise. The effective Hamiltonian stays the same as for the split CPB.

If one now couples this qubit to a model of the transmission line resonator,
one gets the following effective Hamiltonian [18]

Ĥ = 4EC(n̂− ng)2 − EJ cos δ + ~ωrâ
†â+ 2βeV 0

rmsn̂(â+ â†). (2.13)

Here â, â† denotes the annihilation-/creation operator, ω2
r = 1/LrCr is the local

oscillator frequency and V 0
rms =

√
~ωr/2Cr is the root mean square voltage of
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Figure 2.6: The split Cooper pair box can be biased using an external magnetic
flux source [16].
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Figure 2.7: Transmon Qubit coupled to a transmission line, a) schematic draw-
ing of the implementation of b). The Transmon qubit is seen on the right hand
side. It can be biased by external coils (brown) ant it is coupled to a transmis-
sion line (red/blue)
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the resonator and β is the ratio between the gate capacitance Cg and the total
capacitance CΣ = CB +Cg +CJ. The charging energy is given by EC = e2/2CΣ.
The jth energy level of the transmon can be found from the first two terms in
the Hamiltonian (2.13). When the terms are approximated in EC/EJ � 1 up
to 4th order the energy is given by [18]

~ωj = −EJ +
√

8ECEJ(j +
1

2
)− EC

12
(6j2 + j + 3). (2.14)

Equation 2.13 forms a generalized Jaynes Cummings Hamiltonian for the
bare Transmon states [18],

Ĥ = ~
∑
j

ωj |j〉〈j|+ ~ωrâ
†â+ ~

∑
i,j

gij |i〉〈j|(â+ â†), (2.15)

with the coupling strength gij = 2βeV 0
rms〈i|n̂|j〉. When approximating the trans-

mon perturbatively, applying the rotating wave approximation and examining
off-diagonal matrix elements, this Hamiltonian can even be reduced further[18].
The result is a block diagonal Jaynes Cummings Hamiltonian with only nearest
neighbor coupling gi,i+1.

Ĥ = ~
∑
j

ωj |j〉〈j|+ ~ωrâ
†â

+ ~(
∑
i

gi,i+1|i〉〈i+ 1|â† +H.c.) (2.16)

Here H.c. stands for the Hermitian conjugate. This Hamiltonian conserves
number of excitations, meaning that it commutes with the operator Nexi = â†â+∑
j ωj |j〉〈j| [19]. This is very convenient, as to diagonalize this Hamiltonian,

only states with the same number of excitations have to be taken into account.

2.2.5 Dispersive limit

The dispersive limit of the Jaynes Cummings Hamiltonian is highly interesting,
since it allows a Quantum-Non-Demolition(QND) readout of the qubit. Another
remarkable application is the coupling between different qubits via virtual pho-
tons. The dispersive limit is the regime where the detunings ∆i = ωi,i+1 − ωr

between the resonator and the qubit is large, in particular g01/|∆i |� 1,
g01/|∆i + α| � 1 for all levels, where α = ω12 − ω01 is the anharmonicity.
The Hamiltonian (2.16) can then be transformed by using a canonical transfor-
mation and the Hausdorff relation to a two level Hamiltonian[18]

Ĥeff =
~
2
ω′01σ̂z + ~(ω′r + χ̃σ̂z)â

†â. (2.17)

Here ω′01 = ω01 +g/01/∆0 is the Lamb shifted transition frequency of the qubit,
ω′r = ωr− g12/(2∆1) is renormalized resonance frequency of the resonator. The
dispersive shifts are given for the transmon limit as

χ̃ ≈ −g2
01

EC/~
∆0(∆0 − EC/~)

. (2.18)
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Figure 2.8: Qubit state dependent transmission spectrum a) transmission ampli-
tude, which depends on the state of the qubit: it is plotted with for a resonator
with an excited (red) qubit and a qubit in the ground state(blue), as well as
for the resonator without a qubit at all (dotted) b) relative phase shift of the
transmitted microwave [12]

The χ̃ term accounts for the presence of the transmon in the resonator. It shifts
the resonance frequency depending on state of the qubit. This can be used to
perform Quantum-Non-Demolition measurements of the qubit state. This class
of measurement is very interesting, as it leaves the measured state unchanged
and can therefore be repeated many times. In the current work, it was used to
read out the qubits in a time resolved measurement.

This was done by applying a continuous coherent measurement tone with
the amplitude εm(t) and the frequency ωm to the resonator[20], which can be
described by

Ĥdrive = ~εm(t)(e−iωmtâ† +H.c), (2.19)

As seen from Equation (2.17) the resonator frequency incorporates information
about the qubit state. Hence by measuring the shift of the resonator, the state
of the transmon can be deduced.

It is done by observing the transmitted signal at a fix frequency. Normally
it is chosen to coincide with the resonator frequency ω′r − χ̃ for the qubit in the
ground state. As seen from Fig. 2.8 a and b, the transmitted amplitude as well
as the phase shift of the signal can be used. In our case, one quadrature of the
heterodyne detected signal was measured. This scheme can also be used to read
out higher excited transmon levels and as a simultaneous read-out of multiple
qubits coupled to the resonator. Even single shot readout for up to 3 qubits
have been demonstrated [21, 22, 12].
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Chapter 3

Measurement Setup

The conducted experiments were all in the gigahertz/megahertz regime. The
wavelengths are on the scale: 1mm - 1m. For these wavelengths, the main tech-
nology development has been done for telecommunication and radio-astronomy.
However, as the aim is to study coherent physical phenomenas with single en-
ergy quanta, very low powers, down to 10−18 W, need to be detected. Beside
this challenge, another key aspect of the experimental setup is the thermal isola-
tion of the system to avoid distortion of the quantum mechanical system, which
destroys the coherence.

The components to achieve this goals as well and to perform the experi-
ments are discussed in this chapter. It starts with the fabrication of the sample
in Section 3.1 and proceeds with the cryogenic setup in Sections 3.2 and 3.3.
The attenuation/amplification (Section 3.4) generation (Section 3.5) and detec-
tion(Section 3.6) of microwave signals are discussed thereafter.

3.1 Sample

Various methods are used to fabricate the sample. Standard photo-lithographic
processes had been employed for the coplanar waveguide. They are made out
of Niobium which turns superconducting at liquid Helium temperatures. It is
sputtered on a sapphire substrate and then patterned with reactive-ion etching
techniques. To get a specific resonator frequency, witch depends on the length
of the resonator, a meander form had been applied. Here the curvature needed
to be lower than the distance between the coplanar waveguides centerpin.

The transmons are made out of Aluminum, using standard electron beam
lithography. A double angle shadow evaporation technique is used to deposit
two Al layers. This step includes an oxidation to form the Josephson junctions.
The charging energies EC, the Josephson energy EJ and the coupling g of the
transmon to the resonator can be engineered independently. The resulting chip
is shown in Fig. 3.1

In this sample there were 3 transmon qubits with charging energies EC/h =
(0.264, 0.296, 0.307) GHz, maximum qubit transition frequencies νmax

A,B,C =
(6.714, 6.050, 4.999) GHz and the coupling strength to the resonator g/2π =
(0.36, 0.30, 0.34) GHz. At the maximal frequencies the energy relaxation time
is T1 = (0.55, 0.70, 1.10)µs and the phase coherence time T ?2 = (0.45, 0.60,
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Figure 3.1: Optical microscope image of the chip a) The Transmon qubits A,B
and C are at the end of the transmission line resonator. b) The Transmon qubit
with its large capacitance CB and the charge line on the left and the flux line on
the right c) Zoom to the Josephson junctions, which can be seen on the upper
right of the picture d) lumped circuit diagram of the chip: The black parts are
the resonator and the transmons, the green elements are the coils resp. the flux
lines and the blue ones are the charge lines for fast qubit manipulations.
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0.65)µs. The resonator has a bare frequency of νr = 8.625 GHz and a quality
factor of Q = 3300 [23, 24].

3.2 Wiring, electromagnetic shielding and coils

To connect microwave cables to on-chip transmission lines, used for qubit ma-
nipulation and readout, the chip was placed on a printed circuit board (PCB).
Here, the main challenge is the elimination of parasitic resonances caused by
impedance mismatches. This PCB is placed in a copper sample holder, in order
to shield the chip from electromagnetic fields. Again the suppression of un-
wanted resonances is the main design goal for the holder. The sample holder
is connected with semi rigid coaxial cables. For biasing the three transmons,
three superconducting coils where are placed beneath the sample.

3.3 Cryogenic setup

The typical energy scale of a transmon is 1-10 GHz, which is in the order of
50-500 mK. The big challenge is to minimize the temperature and its fluctuation
as well as the Josephson noise. On the other hand, the signals which carry the
readout and manipulation pulses need to be distorted as little as possible by the
cryogenic setup. This is in order to keep a good signal to noise ratio.

To get the temperature as low as possible the dilution refrigerator Kelvinox
400HA from Oxford was used. Dilution refrigerators use the fact that below 870
mK a 3He and 4He mixture splits into a 3He rich and a 3He poor phase. For
3He it takes energy to cross the phase boundary from the rich to the poor phase.
By pumping on the poor phase, 3He is moving from the rich to the poor phase.
This means taking 3He away from the poor phase. To restore equilibrium, 3He is
crossing the phase boundary. This takes energy and therefore effectively cools
the system. In order to be in a continuous mode, the 3He is again fed into
the system on the 3He rich phase. Like this temperatures down to 5 mK are
reachable.

3.4 Microwave attenuation/amplification

Microwaves are generated at quite high powers of -30dBm to 15 dBm, but just
-145 dBm are needed at the input of the chip for measurement and -60dBm for
single qubit gates in the nanosecond regime[12]. The specific numbers depend
on the capacitive coupling strength between the relevant transmission line.

For the radiation above 100mK, the Johnson noise, generated by the thermal
agitation of charge carriers in the conductor, is the dominant noise source for
microwave radiation. The noise power spectral density scales linearly with the
temperature T and the resistance R as SV̄ 2 = 4kBT and kB is the Boltzmann
constant. As just a very small fraction of the generated signal is needed, the
easiest way to get rid of the thermal radiation, is to attenuate the signal at low
temperatures [12]. So to get the same signal to noise ratio at 300 K and 4 K one
has to attenuate the signal by 20 dB. This is no problem, as the cooling power
of the refrigerator is roughly 23dBm at the 1.5K stage. Therefore the signal is
sequentially attenuated at different temperatures.
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On the other hand, when the signal is leaving the cavity, it has very low power
- roughly one photon energy per cavity photon lifetime. In order to detect this
signal, one needs to amplify the signal. The amplification is done by a chain of
high electron mobility transistor (HEMT) amplifier. The noise temperature of
this array can by be calculated using Fri’s law. In order to prevent the photons
going back from the first amplifier to the sample, circulators were used.

3.5 Microwave generation

The microwaves for qubit manipulation and readout are generated using mi-
crowave generators E8257D from Agilent, which produce a phase coherent con-
tinuous wave. To modulate the phase and the amplitude of the signal on a
nanosecond timescale, arbitrary waveform generators (AWG) 5014 from Tek-
tronix and mixers from Marki are used. These mixers have a local oscillator
(LO) input, two intermediate frequency (IF) input and a radio frequency (RF)
output. They have typical frequencies of DC-500 MHz for the IF and GHz for
RF and LO ports. In the mixer the LO is split into 2 parts. One is phase
shifted by 90 degrees and the other is not modified. The first part gets multi-
plied by one of the IF inputs, the so called Q quadrature and the second part
gets multiplied by the other IF input, the I quadrature.

The resulting output signal has generally 2 different frequencies, called side-
bands, νLO − νIF and νLO + νIF, where νLO and νIF denotes the frequencies of
the corresponding input signals. The output frequencies as well as the phase of
the signal can be selected. For example, if the I and the Q quadrature have a
phase shift of φ = ±π/2 and have the same amplitude, only the left sideband/
right sideband doesn’t vanish and the RF amplitude is proportional to the IF
amplitude.

Leakage of the LO signal or of signals at the other sideband frequency can
cause a major problem for accurate state preparation. This leakage is driving
the qubit although it should be switched off. It can be reduced by pulsing the
LO or by using an IF frequency around 100 MHz, so that the LO leakage is far
detuned from the used sideband. In addition one can accurately calibrate the
phase φ, I and Q offsets to reduce unwanted leakage signals.

3.6 Microwave detection

For data acquisition a PCI card from Acquiris is used. This card has an on board
analog to digital (AD) converter. The sampling rate of the card is one Giga-
Samples per second (1 GS/s). In order to fully analyze the signal, it is down
converted by mixing it with a coherent tone before detection. The heterodyne
detection scheme is done by applying an LO frequency offset by νIF = 20 MHz.
The I and Q quadratures were processed further: They are low pass filtered in
order to eliminate high frequency noise. As mentioned in Section 3.4, the signal
to noise ratio is bellow 1. Therefore the coherently mixed signal is averaged in
order to remove the uncorrelated noise.

15



Chapter 4

Flux Pulses

In the experiments carried out during this in thesis, it it crucial to tune the
qubit frequency on a fast nanosecond time scale. This is achieved with short
current pulses sent through a transmission line passing by the the SQUID loop
of the qubit. These current pulses change the magnetic flux Φ through the loop.
For the generation of the current pulses, an AWG from Tectronix is used. The
experiments, discussed later in Section 5, require a high precision of the current
pulses, they need to be accurate up to the mil. But there are many factors
who modify the signal. Even the AWG itself, on the coaxial cables from the
AWG to the refrigerator, on the cables down to the sample and the circuitry on
the chip itself introduces distortion. To tackle this problems an introduction to
classical control theory and the correction schemes will be given in Section 4.1.
The results from examining the magnetic flux pulses will be shown in Section
4.2.

4.1 Classical signal theory

The aim of this Section is to explain how to get a desired output signal from a
linear system. The output y(t) for such a system is given by

y(t) =

∫ ∞
−∞

dτx(τ)g(t− τ). (4.1)

Here x(t) is the input function and g(t) is the impulse response function. It is the
response of the system to a delta-distribution, so an infinity high and infinity
short, input signal. In the ideal case it should also be an delta-distribution
and the signal gets transmitted without modification. Normally the response
function is not known and needs to be measured. It is highly depending on
the physical system. This function depends highly on the physical systems. To
investigate this function, one can rewrite Equation (4.1) in the Fourier space.
It simplifies due to convolution theorem to

Y (ν) = X(ν)G(ν), (4.2)

where G(ν) is the transfer function and capital letters stand for the Fourier
transform of the corresponding quantity. The transfer function can be seen as
filter of the original signal.
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In the ideal case, the easiest way to find the impulse function is to apply
a Dirac delta-distribution as an input in the time domain. The output y(t) is
then the impulse response g(t), what can be seen from Equation (4.1). This
strategy is applied in our experiment in the discrete way, by replacing the delta-
distribution by the Kronecker delta.

Another approach to tackle the problem is to apply a Heaviside step function
as an input. Only the rise, instead of the rise and the fall at the same time, of
the pulse are examined. The output is given by

y(t) =

∫ ∞
0

dτg(t− τ) (4.3)

and g(t) = ẏ(t). Now we want to correct for g(t), in order to choose the output
signal. To do so, one can work in a discrete or in a continuous representation.
In the continous limit and for a infinite long measurement time they are equal.
First we want to have a look at the continous approach, where the analysis is
simpler. Then we move on to the discrete representation, which is more suited
for data processing.

In the Fourier space of the continous representation, the correction is simply
given by C(ν) = 1/G(ν), as seen from Equation (4.2). Due to the associativity
of the convolution one gets the desired output:

y(t) = g(t) ? (c(t) ? x(t)) = x(t) (4.4)

If the Fourier transform G(ν) is zero for a certain frequency ν, the correction
has a singularity and the method breaks down. This is not the case for many
applications.

Knowing the response function, one can generate any output signal. In
practice this is limited by the restricted sampling frequency and channel filtering.
As the data processing is discrete in our experiments, the analysis is done in a
discrete manner. So integrals become sums and the Fourier Transform becomes
a discrete Fourier Transform (DFT). In analog to Equation (4.1), the output
signal is then given by

~y = g~x, (4.5)

with yj = y(jTc) and xi = x(iTs). G̃cij = g(jTc − iTs) is the convolution
matrix, Ts is the sampling rate of the AWG and Tc is the sampling rate for
the convolution. Ts is constrained by the AWG, whereas Tc can be chosen
arbitrarily. In order to get signal as continous as possible and to make G̃ij
periodical, Tc is set to Ts = 10Tc. So, if one is interested in a pulse of length T,
G̃ is a {T/Ts, T/Tc} matrix.

In order to find a ~x for an optimal ~y, as close as possible to the desired ~y?,
one can minimize the error ‖~y?− G̃~x‖ in a dedicated norm. For the 2 norm this
gives a least square approximation. This problem is solved by the pseudoinverse

L = (G̃T G̃)−1G̃T . (4.6)

4.2 Flux pulse measured

The presented methods in Section 4 for flux pulse correction are experimentally
easy at room temperatures. Measuring the actual signal seen by the qubit is
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more demanding, because it can not simply be measured with a commercial
high frequency oscilloscope. Instead we use the qubit itself as flux pulse “spec-
trometer” [25] 1. The applied pattern can be found in Fig. 4.1. During the flux
pulse a microwave, with constant length and amplitude, is applied to the qubit
at different times. The amplitude was chosen such that the pulse is a π-pulse,
when driving the qubit on resonance. In the pattern applied the detuning of
the qubit and the pulse is varied and swept over the flux pulse. Depending on
the detuning of the pulse from the qubit, it is only partially excited. One can
then infer from the population of the excited stated the detuning. In order to
be sensitive to the detuning, a Gaussian shaped microwave π-pulse is applied
to the qubit, because it has a narrower spectrum than a square pulse. The
envelope of a Gaussian pulse is given by

Ωenv(t) = Ae−
(t−t0)2

2σ2 , (4.7)

where σ is the standard deviation and A the amplitude of the pulse centered
around time t = t0. On each side the pulse is truncated at t = tc ± 2σ, such
that the total length is 4σ.

The evolution of the qubit under such a driving pulse can be calculated in a
rotating frame, which is rotating with the drive frequency ωd. For example, for
the Hamiltonian given in Equation (2.11) and a complex envelope, one gets

Ĥ(t) =
1

2
~∆dσ̂z +

1

2
~(Ωenv(t)σ̂+ + Ω?env(t)σ̂−). (4.8)

Here ∆d = ω01 − ωd is the detuning of the drive and the qubit. As Ωenv(t) is
real in our case and assuming ∆d = 0, the propagator of the system reads

Û(t) = exp(− i
~

∫ t

0

Ĥ(t̃) dt̃) (4.9)

= exp(− i
2

∫ t

0

Ωenv(t̃)σ̂x dt̃). (4.10)

So in order to make a π-rotation on the Bloch sphere, A has to compensate
for the integral over the Gaussian. This gives A =

√
π/(
√

2σErf(2)), where
Erf(2) is the error function and is related to the integral over the Gaussian.
The general case for ∆d 6= 0 can simply be deduced from Equation (4.9).

For a Gaussian pulse with σ = 5 ns, which is swept over the top of a not
perfectly corrected flux pulse, the result can be seen in Fig. 4.2 a. The qubit
A is parked at the flux ”sweet spot”, where Φ = 0 and linear flux noise is
suppressed. It is then tuned with a flux pulse 350 MHz or 130 mΦ0 for 50 ns.
It is a square pulse with rise/fall times of 2 ns. Here Φ0 is the flux quantum, in
which the transmon is periodic. The pulse is quiet long in order to reduce the
pulse bandwidth. A simulation of the measurement is shown in Fig. 4.2 b with
the flux pulse given in Fig. 4.2 c. The detuning, shown in Fig. 4.2 b and c is
with respect of the qubit frequency at the end of flux pulse.

As a result, one sees a clear overshoot and then 10 ns later an undershoot
with a reduced amplitude of the flux pulse. The reason for the phenomena is
still unclear. It could come from reflections on connectors within the cryostat.

1A similar work has been done in the supplement of [26]
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Flux

MeasurementΜWave

Time

Figure 4.1: Microwave π-pulse swept over a flux pulse at different frequencies.
Every point represents the |e〉-population after a Gaussian pulse centered at
the corresponding time. The left picture is a measurement and the right a
simulation with the qubit frequency indicated at the right hand side.

(a) (c)(b)

Figure 4.2: Microwave π-pulse swept over a flux pulse at different frequencies.
Every point represents the |e〉-population after a Gaussian pulse centered at the
corresponding time. a)Experimental result for a 20 ns long pulse. b) Simulation
of the measurement, using the flux pulse given in c).

19



A A

-A

1 2 3

-5

-4

-3

-2

-1

0

Time @hD

Q
ub

it
de

tu
ni

ng
@M

H
zD

HaL HbL

Figure 4.3: a) A flux pulse with amplitude A is replaced by two flux pulses with
opposite amplitude. The average current is kept constant by adding a flux pulse
with opposite amplitude. Or in other words, the integral over the current during
all flux pulses is kept zero and therefore the average DC current is conserved.
b) The qubit frequency 20 µs after a flux pulse of length 500ns is measured.
The flux pulses are constantly applied during the whole time.

Another reason could be, that a large inductance acts as low pass filter. Such
an inductance could for example be caused by a superconducting loop on the
sample enclosing the SQUID loop. A changing magnetic field produced by the
flux pulse induces screening currents in this loop and thus acts as low pass filter.

Therefore there are many different physical models for the overshoot. It can
not be approximated by a simple under-damped oscillator, as there would be
a third oscillation with reduced amplitude. The ratio of the 3rd amplitude to
the 2nd would be the same as the ratio between the 1st and the 2nd amplitude.
A similar argument applies for a rectangular low pass filter. In order to be
correctable given by the method in Section 4.1, there should not be a zero in
the spectrum. Also, the characteristic features of the response need to be in
the low spectrum beneath 1 GHz. Else they would be filtered out by on board
filters of the cryostat.

Another problem arises with the flux pulse on a longer timescale. The flux
pulse response has a tail of roughly 200 µs. This can also be be explained by
the presence of a large inductance. In order to compensate for the inductance,
one can add a flux pulse with opposite amplitude. This is shown in Fig. 4.3 a.
With this method the average current stays the same.

The response of many flux pulses even extends to hours. This can be seen in
Fig. 4.3 b. The detuning of the qubit from its equilibrium position, 20µs after
a compensated flux pulse is shown. The frequency was measured by a Ramsey
experiment. The flux pulse is 500 ns long. The clear change in frequency over
an hour can be attributed to heating of the sample caused by the currents used
for the flux pulse generation. The heating changes the flux through the SQUID-
loop. The temperature dependence of the flux is associated with spin ordering,
and is further discussed in [27].
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Chapter 5

Bell states and dark states

Symmetry transformation, like translation or rotation, which leaves a quantum
system unchanged cause selection rules for transitions. In a system of identical
atoms, the permutation invariance generates such a selection rule. Only transi-
tion between collective symmetric states are allowed [28, 29]. When these atoms
are interacting with a radiation field, these symmetries cause an enhancement
or suppression of spontaneous emission [28, 29, 30]. This phenomena is known
as superradiance and subradiance. The subradiant state can be very robust
against decoherence and is therefore very interesting for quantum information
processing [30].

In circuit QED, such states have already been prepared and spectroscopically
measured[28, 29]. To get the full knowledge about these states, we reconstructed
their density matrix with full state tomography. Since superradiant and subra-
diant states are closely related to Dicke states, a short review on these states
is made in Section 5.1. This is followed by a discussion of subradiance and the
Purcell effect in Section 5.2. To prepare the the Dicke states in circuit QED the
dispersive regime and the avoided crossing of qubits will be treated in Section
5.3 and 5.4. Depending on the symmetry of the drive, these states become dark
and are covered in Section 5.6. The related Bell state production is examined
in Section 5.7.

5.1 Dicke states

For a Tavis-Cummings Hamiltonian with N qubits coupled to a single mode
resonator, these subradiant and superradiant qubit states are the Dicke states.
In this Section we will explore the symmetries of these states and in Section 5.2
there will be an explanation, how these symmetries lead to superradiance and
subradiance. The starting point is the Tavis-Cummings Hamiltonian, which
reads

Ĥ = ~ωrâ
†â+ ~

∑
a

ωa
2
σ̂az + ~

∑
a

ga(âσ̂a+ + σ̂a−â
†). (5.1)

Here a is the index of the ath qubit, σ̂± = σ̂x ± ıσ̂y are the raising/lowering
operators with the Pauli operators σ̂x,y,z and â(†) are the creation/ annihila-
tion operators of the resonator mode. The three terms describe the energy of

21



the resonator, the energy of the qubits and the coupling of the qubits to the
resonator with coupling strength ga, respectively.

It is instructive to rewrite the Hamiltonian (5.1) in terms of the collective
angular momentum operators [31, 32]. This makes it easier to identify the states
which couple to the photon field and to identify their symmetries. The radiative
decay rate of these states depends crucially on the symmetries, as we will see
later. The operators read

Ĵµ =
1

2

N∑
a=1

σ̂aµ(µ = x, z, y) (5.2)

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z , (5.3)

Ĵµ are the collective angular momentum operators in the direction of µ and Ĵ2

is the total collective angular momentum operator. They have the same com-
mutator relations as the Pauli σx, σy and σz operators. One can also introduce

the lowering Ĵ− and raising Ĵ+ operators by the corresponding commutator
relations

Ĵ± = Ĵx ± iĴy

=

N∑
a=1

σ̂±a

Ĵz =
1

2
(Ĵ+Ĵ− − Ĵ−Ĵ+)

[Ĵ−, Ĵ+] = −2Ĵz

[Ĵ−, Ĵz] = Ĵ−

[Ĵ+, Ĵz] = −Ĵ+. (5.4)

Assuming now an equal coupling strength g and transition frequency ω for
all qubits, the Hamiltonian (5.1) can be written in a compact form

Ĥ = ~ωrâ
†â+ ~ωĴz + ~g(âĴ+ + Ĵ−â

†). (5.5)

This is the Hamiltonian of the Dicke model, which is a collective angular momen-
tum model. Nevertheless, in this discussion the eigenvalues of the Ĵ operators
have nothing to do with the angular momentum of the physical system. They
are introduced because of the mathematical analogy of a spin 1/2 system and
a two level system. And it makes it much easier to study the eigenstates of the
system

Because Ĵz and Ĵ2 commute, they can be simultaneously diagonalized and
have common eigenstates. They are called Dicke states and given by |J,M〉,
with Ĵ2|J,M〉 = J(J + 1)|J,M〉 and Ĵz|J,M〉 = M |J,M〉. These states are
orthogonal, as Ĵ2 and Ĵz are hermitian operators. But the states can be degen-
erate. M can be interpreted as the energy of the states without the resonator.
The energy is given by EM = ~(M + 1/2N). J is the cooperation number and
is important for determining the collective radiation and the coupling to the
resonator mode. In analogy to the angular momentum, M and J are integers or
half integers. They have the constraint

|M | 6 J 6
N

2
. (5.6)
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The single states are constructed by applying the raising operator J+, which
has the effect Ĵ+|J,M〉 = ((J+M)(J−M+1))0.5|J, M+1〉, (J+M)-times on the
lowest energy state with cooperation number J |J,−J〉 and is given by

|J,M〉 =

√
(J −M)!

(2J)!(J +M)!
(Ĵ+)J+M |J,−J〉. (5.7)

To get the state |J,−J〉 we first have to discuss the degeneracy of the single
states. Another reason to study the degeneracy is the following: As we will see
later, the coupling to the radiation field is heavily depending on the cooperation
number J. Therefor knowing the degeneracy of J is crucial.

In order to derive this degeneracy we will first investigate how many qubit
states exists for an arbitrary energy, which is experimentally also important.
Here we neglect J, as the energy is not depending on this quantity, and we only
focus on the Hamiltonian (5.1) in this paragraph with the constraints given
before, but without the resonator. For N qubits in the M th excitation manifold,
Ng = N

2 −M qubits are in the ground state and Ne = N
2 +M qubits are in the

excited state. This also can be seen from Equation (5.3). The degeneracy of M
is then simply given by the different permutations of the excitations

dM =
N !

Ng!Ne!

=
N !

(N2 +M)!(N2 −M)!
. (5.8)

To get the general degeneracy of the state |J,M〉, one can start with the
degeneracy of the |−N/2, −N/2〉 state, which is D−N2

= 1, as all qubits are

in the ground state. For a state |J,Mi〉 the degeneracy does not depend on
Mi, only on J[32]. Or in other words, when applying the Ĵ+ operator, which
changes M, the degeneracy is conserved. So DJ denotes the degeneracy of the
state |J,M〉.

At energy M, we have a degeneracy of dM given by Equation (5.8). DJ=M

states are of the type | J=|M |,M 〉. The others are from higher J’s (Equation
(5.6)) and they have the form | J=|M |+1, M 〉, | J=|M |+2, M 〉, ... ,|J=N/2, M〉.
One gets

dM = D|M | +D|M |+1 + ...+DN/2. (5.9)

The degeneracy of the |J,M〉-state is then given by, using Equation (5.8) and
(5.9)

DJ = dJ − dJ+1

=
(2J + 1)N !

(N2 + J + 1)!(N2 − J)!
. (5.10)

The whole degeneracy discussion is summed up in Fig. 5.1. Here the de-
generacy for the cooperation number J and the energy related to M is shown.
Each vertical line corresponds to an simultaneous eigenstate of the Ĵz and Ĵ2

operator. They are orthogonal.
Examining the dipole interaction in Equation (5.5) and the matrix element

〈J,M |J±|J ′,M ′〉, it again makes it easier to find the eigenstates of the Hamil-
tonian (5.5), as well to find the radiative decay rate of the state later on. One
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Figure 5.1: The degeneracy of the Dicke states. The degeneracy of the state
|J,M〉 only depends on the cooperation number J and not on the energy asso-
ciated with M.

gets the first order selection rules

∆J = 0 (5.11)

∆M = ±1. (5.12)

And one gets for the first excitation manifold of the Hamiltonian, one qubit
state |N/2,−N/2+1〉, which couples to the photon field, as it can fulfill ∆M =
±1. And there are N-1 qubit states |N/2−1,−N/2+1〉, which don’t couple, as
Ĵ−|N/2−1,−N/2+1〉 = 0. We can introduce the notations |n; J ;M〉 for a state
with n photons. The first excitation manifold eigenstates can then be calculated
as

|Ψ+〉 = cos θm|1;N/2;−N/2〉+ sin θm|0;
N

2
;−N

2
+ 1〉

|Ψ−〉 = sin θm|1;N/2;−N/2〉 − cos θm|0;
N

2
;−N

2
+ 1〉

|Ψ0〉 = |0;
N

2
− 1;

N

2
− 1〉, (5.13)

with the mixing angle θm defined by cos 2θm = −∆/
√

4(
√
Ng)2 + ∆2 and ∆ =

ωa − ωr. One can see that the coupling of the collective state |N/2,−N/2+1〉
to the resonator is enhanced by the square root of the number of qubits to√
Ng. The state |Ψ0〉 is N-1 times degenerate. So we have 2 states which are

dressed with the resonator and N-1 states which are pure qubit states and have
no radiative decay channel into the resonator, see Section 5.22. The energies
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Figure 5.2: 2 Qubits in resonance in the dispersive regime. a) schematic drawing
of the experiment with 2 drives on the qubit b) Energy levels for the 2 qubits
and the characteristic energy splitting 2Jc in the dispersive regime, which is
discussed in Section 5.3.

can be found analytically:

E+ = ~(ωr +
∆ +

√
∆2 + 4(

√
Ng)2

2
)

E− = ~(ωa −
∆ +

√
∆2 + 4(

√
Ng)2

2
)

E0 = ~ωa. (5.14)

In order to clarify the concepts introduced we will have a look on the case
with two and three qubits. This treatment is also important as most of the
experiments are conducted with this number of qubits. For N=2 qubits in
resonance the first excited manifold states (5.13) can be rewritten in a notation
using the population of the qubits. It is shown here because this population will
get measured later on in the experiment, when characterizing the states. The
states read

|Ψ+〉 = cos θm|1; gg〉+ sin θm|0; Ψs〉
|Ψ−〉 = sin θm|1; gg〉 − cos θm|0; Ψs〉,
|Ψ0〉 = |0; Ψm〉, (5.15)

where |Ψs,a〉 = 1/
√

2(|ge〉 ± |eg〉) are the symmetric and the antisymmetric
state. The symmetric state |Ψs〉 = |J = 1,M = 0〉 can be changed into the
ground |gg〉 = |1,−1〉 and the double excited state |ee〉 = |1, 1〉 with the Ĵ±
operators. This states are therefore called triplet states. The antisymmetric
state |0, 0〉 is a singlet state, as it does not couple to any other state. The
corresponding energies in the dispersive limit are shown in Fig. 5.2, for a large
detuning g/∆� 1.

The N=2 case is quite simple, as one works with the symmetric and the
antisymmetric state and no states are degenerate. For the the N=3 case it
becomes a little bit more tricky, because the |J = 1

2 ,M = 1
2 〉 state is now

degenerated. The symmetric state | 32 ,
1
2 〉 is simply obtained by acting with the

creation operator Ĵ+ on the ground state. The | 12 ,
1
2 〉 can be represented by any

state of the form
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|Ψa〉 = c1|egg〉+ c2|geg〉+ c3|gge〉, (5.16)

with c1+c2+c3 = 0 and the normalization |c1|2+|c2|2+|c3|2 = 1 [32]. Obviously
this state is degenerated. The symmetric state | 32 ,

1
2 〉 is called W-state and reads

|Ψs〉 =
1√
3

(|egg〉+ |geg〉+ |gge〉). (5.17)

A longer discussion of this state can be found in Chapter 6.
The so far discussed states can all be made nicely symmetric or antisymmet-

ric. This changes when the couplings are not equal anymore. In the following
paragraph we will have a short look on this case. It is important, as on our
sample the coupling doesn’t seem to be equal. The interaction between the
resonator and the qubits is given in Hamiltonian (5.1). One can again define
operators in analogy to Equation (5.4)

Ĵ�± =
∑
a

gaσ̂±a. (5.18)

And the interaction then reads similar as in Equation (5.5):

Ĥ�int = ~(âĴ�+ + Ĵ�−â
†). (5.19)

Again one can get the coupling between the resonator and single states by
examining the effect of the Ĵ�− operator. An arbitrary qubit state of the first
excitation manifold can be written as

|Ψ�〉 = c1|eg...g〉+ c2|geg...g〉+ ...+ cN |g...ge〉, (5.20)

with the normalization
∑
a |ca|2 = 1. Here the photonic part is not included.

In order to investigate the eigenstates of the Hamiltonian (5.19), one can have
a look on the impact of Ĵ�−. The kernel span{|Ψ�〉 | Ĵ�−|Ψ�〉 = 0} is given by the
condition

c1g1 + ...+ cNgN = 0. (5.21)

It is simply found by acting Ĵ�− on |Ψ�〉. There exists N-1 linear independent
states, which fulfill this condition. If this states are extended by a photonic part,
which is zero, they are eigenstates of the interaction Hamiltonian (5.19), with
eigenvalue 0, and of the Hamiltonian (5.1). They don’t couple to the radiation
field.

To find the state, which couples to the resonator, one can apply Ĵ�+ to the
ground state |g...g〉. Like this one can examine the effect of the Hamiltonian
5.19. One gets the condition,

c1
g1

= ... =
cN
gN

= c, (5.22)

for the state which couples to the resonator. The constant c is related to the
normalization and given by c = 1/(

∑
a |ga|2)0.5. One can see from Equation

(5.22) and (5.21), that this state is orthogonal to the states described before.
The main point of this discussion, is that nothing really changes when the

coupling strengths ga are not equal anymore. The only slight differences are,
that the states don’t have anymore nice symmetrical properties. And the energy
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and the mixing angle between the qubit state and the photonic state are altered.
They are given by

E+ = ~(ωr +
∆ +

√
∆2 + 4(1/c)2

2
)

E− = ~(ωa −
∆ +

√
∆2 + 4(1/c)2

2
)

E0 = ~ωa. (5.23)

And the mixing angle between the qubit state and the photonic state |1; g...g〉
is given by cos 2θm = −∆/

√
4(1/c)2 + ∆2

5.2 Superradiance and Purcell effect

The phenomena of superradiance was first studied by Dicke in 1954 for N two
level atoms. He predicted, that for an ensemble of N atoms their radiation
could be enhanced or suppressed. This is due to the collective coupling over the
resonator.

For a given initial Dicke state |i〉 of N 2-level atoms and all field modes are in
the vacuum state, the rate R for the transition to the final state |f〉 by emitting
one photon of frequency ωr is given by Fermi’s golden rule [31]. For a normal
dipole interaction of atoms, one finds that the transition rate R is proportional
to the matrix element squared R ∝ |〈f |Ĵ−|i〉|2. For Dicke state, this is given by
〈f |Ĵ−|i〉 = ((J +M)(J −M + 1))0.5. This results in

R = A(J +M)(J −M + 1), (5.24)

where A is the Einstein A coefficient and is the spontaneous emission rate of
a single atom into the vacuum. For the ground state J=N/2 and M=-N/2 one
gets the emission rate 0 as expected. For all atoms excited, J=N/2 and M=N/2,
one gets R=N A, as one would expect for N independent atoms.

When not all atoms are excited, the radiance is either enhanced (superra-
diance) or suppressed (subradiance). For example for M=0, half of the atoms
are excited. If J(J+1)≈ N2/4 one gets superradiance and the decay rate is en-
hanced by a factor of N. For J ≈ 0 the radiation is highly suppressed resulting
in subradiance.

The effect of superradiance and subradiance also influences the decay rate
of the transmon coupled to a resonator, described by the Hamiltonian (2.16).
In our experiment it is given by γ = γκ +γi, γi is associated with non-radiative,
intrinsic decay and γκ with the radiative decay. The radiative decay is mainly
coming from the Purcell effect and not from dipole interaction to free space
[33, 18, 28]. During the Purcell relaxation the photonic part of the qubits, decays
through the resonator into free space. It is coming from the coupling of the
resonator to an external photon bath, which includes the external transmission
line. The interaction can be described by the Hamiltonian

Hκ = ~
∑
k

λk[b̂†â+ â†b̂], (5.25)

where b̂† and b̂ are creation and annihilation operators of the photon reservoir
and the coupling of the resonator to the kth mode is given by the coupling
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strength λk. To calculate the transition rate, one can use Fermi‘s golden rule
and a continuum limit [18]. The result for the one photon loss is

γi,fκ =
2π

~
p(ωk)|

∑
k′

λk′〈1k, f |[b̂†â+ â†b̂]|0, i〉|2. (5.26)

Here the photon of the resonator has a frequency of ωr. p(ωk) is the bath’s
density of states at energy ~ωk. κ can be defined as κ = 2π~p(ωk)|λ|2, which
gives

γi,fκ = κ|〈f |â|i〉|2. (5.27)

In order to suppress this decay one can operate in the dispersive regime. To
investigate this, qubit A and B of our sample were tuned in resonance at the
sweet spot of qubit B. For the relaxation times, one gets with Equation (5.15),

γΨ0
κ ≈ 0 (5.28)

γΨ−
κ ≈ κ sin2 θm ≈ 20kHz, (5.29)

from the dressing. The measured values of the energy relaxation time T1 = 1/γ
is T 0

1 = 890±60 ns and T−1 = 764±74 ns. The times are found, by measuring the
decay over 1µs, which is quiet short. The decay does not seem to be governed
by the Purcell effect. However, this drastically changes, when the qubits are
not anymore far detuned from the resonator and the Purcell effect plays a role
[34]. Also in this analysis the Hamiltonian (5.1), instead of (2.16) is used.

5.3 Dispersive regime

As the transmons are operated in the dispersive regime, this section discusses
the dispersive regime of the Hamiltonian (5.1). In contrast to the Hamiltonian
(2.16), there is a restriction to two levels, as we are only interested in them.
Similar to Section 2.2.5, the direct qubit-resonator interaction can be pertur-
batively eliminated by using a Schrieffer-Wolf transformation and the Housdorf
expansion [35, 7].

Ĥ = ~ωrâ
†â

+
~
2

∑
a

(ωa + χa + 2χaâ
†â)σ̂z,a

+ ~
∑
a′,a

Ja′,a(σ̂a′,−σ̂a,+ + σ̂a,−σ̂a′,+) (5.30)

Here the first term is the normal resonator frequency. In the second term we
get the qubit energies with a ”Lamb” shift χa = g2

a/∆a with ∆a = ωa − ωr and
an ”AC-Stark” shift (2χan) due to the presence of photons[7]. The Stark shift
can also be seen as a qubit dependent shift of the cavity frequency.

In the third term of (5.1), we get an effective flip-flop coupling of the single
qubits via virtual photons. This is called Ja′,a-coupling or dispersive exchange
coupling. This should not be mixed up with the total angular momentum num-
ber J in the previous chapter. The dispersive coupling is therefore denoted by
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two subscripts Ja′,a. Ja′,a and given by

Ja′,a =
1

2
ga′ga(

1

∆a′
+

1

∆a
). (5.31)

This mechanism can be used to entangle qubits and gives an anticrossing of the
excited qubit levels. The anticrossing is discussed in depth in Section 5.4.

5.4 Dispersive qubit-qubit interaction

In order to investigate the Dicke states of two qubits one has to tune the qubits
in resonance. This leads to an avoided crossing of the energy levels. One can use
the Hamiltonian in Equation (5.30) to analysis the anticrossing. The avoided
crossing is governed by the dispersive coupling strength J1,2.

In order to find the dispersive coupling strength J1,2 and the resonance of two
arbitrary qubits, named 1 and 2, the following procedure is applied: One qubit,
say qubit 1, is tuned by changing the flux Φ with external coils. The energy
of the qubit is approximately changing linearly. As a single coil couples to all
qubits two coils are used, in order to keep the flux at the second qubit constant.
The qubit frequencies and the dispersive coupling strength are extracted from
a fit to the energies:

E±(ωge
1 , ω

ge
2 , J1,2) = ~(

ωge
1 + ωge

2

2
±

√
(ωge

1 − ω
ge
2 )2 + 4J2

1,2

2
) (5.32)

Here ωge
i = ωi + χi is the Lamb shifted energy of the ith qubit. ωge

1 is a
linear function of the magnetic flux. The energy of the second qubit is ωge

2 and
constant.

This procedure was done for qubit A and B, by keeping qubit B constant,
see Fig. 5.3. For each flux bias the qubit frequencies were measured with pulsed
spectroscopy. One sees the avoided crossing due to the transverse exchange
coupling, with a minimum frequency difference of 2JA,B. At the upper level,
there is a reduction of the transmission amplitude during the crossing. In the
middle, is the 2 photon process to the |ee〉-level.

Fitting this data to the previously discussed formula, one finds JA,B = 25.1±
1.4 MHz and ωge

B = 6.06(53) GHz. Calculating the JA,B-coupling from formula
(5.31) with the numbers given in Section 3.1, results in JA,B = 42.1 MHz. higher
order resonator modes [34] can partially account for this deviation. Another
reason for the deviation is the qubit frequency dependence of the coupling ga ∝
〈g|n̂|e〉 ∝ √ωa [36], which was neglected when measuring the coupling strengths
of the qubits.

The effectiveness of this method was checked by the use of flux pulse and
Ramsey experiments. When the qubits are in resonance according to the fit,
one qubit was tuned out of resonance and the dispersively shifted frequency of
the fixed qubit is measured with a Ramsey Measurement. The pattern can be
found in Fig. 5.4.

In a Ramsey experiment the qubit is first prepared in the ground state.

A slightly detuned π/2 pulse around the x-axis (R
π/2
x ) is then applied, which

rotates the qubit state into the equatorial plane of the Bloch sphere. In a
frame, rotating with the drive frequency, the qubit state then rotates around
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Figure 5.3: Avoided crossing between qubit A and B. The energy levels as a
function of flux on qubit A are plotted. The yellow is a fit to the energy levels,
the black dashed lines are the transition frequencies of the dispersively shifted
qubits without J-coupling.

the z-axis with a frequency determined by the detuning. After a time ∆t, a
second π/2-pulse around the x-axis is applied. The phase picked up during the
time ∆t is called dynamical phase. Depending on the amount of dynamical
phase accumulated, the pulse around the x-axis rotates the qubit to the ground
or to the excited state. From the measured qubit population as a function of
time ∆t, the detuning and the qubit frequency can be inferred.

For the given anticrossing the qubits are found to be in resonance with
an accuracy of about 1 MHz. The dispersively shifted qubits then form the
symmetric and the antisymmetric state due to the JA,B coupling. These states
are maximally entangled.

If the states are not totally in resonance and detuned by δ = ωge
A − ω

ge
B , the

eigenstate of the Hamiltonian (5.30) are then given by

|Ψu〉 = sin θm|eg〉+ cos θm|ge〉
|Ψl〉 = cos θm|eg〉 − sin θm|ge〉. (5.33)

θm is the mixing angle and given by cos 2θm = −δ/
√

4J2 + δ2 and sin 2θm =
2J/
√

4J2 + δ2. |Ψu〉 is the state of the upper energy level and |Ψl〉 of the lower,
if JA,B is positive. For large detuning |δ| � JA,B, the single qubit states are
recovered.

Having a closer look on the anticrossing, not from the perspective of the dis-
persive Hamiltonian, but from the normal Tavis-Cummings Hamiltonian (5.1),
the picture doesn’t changes much. In Fig. 5.5, the absolute amplitude of the sin-
gle basis vectors for qubit A |0; eg〉, qubit B |0; ge〉 and the resonator |1; gg〉 are
shown. The asymmetry of the resonator-qubit coupling is taken from Section
3.1 and assumed to have opposite sign, which is discussed in the next section.
On the x-axis, the detuning of the Lamb shifted frequencies is shown.
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Figure 5.4: Ramsey type measurement: qubit 1 is kept constant at the same
frequency. Qubit 2 is tuned out of the resonance by a flux pulse (blue). During
this, a Ramsey measurement is performed on qubit 1 to determine its frequency.
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Although we have Dicke states, they both have a dressing. This is due to
the coupling asymmetry discussed in Section 5.1 and the bare qubit frequencies
are not in resonance. At δ = 0 the bare qubit frequencies have a difference of
ωA−ωB = χA−χB. Also at this point the energy difference between the states
is at a minimum. So one has to note from this pictures, that for the anticrossing,
the difference between the Lamb shifted frequencies is important and not the
bare qubit frequencies.

5.5 Dark states

Another feature of Dicke states, beside superradiance, is the forming of dark
states for drives. Their decay can be made small, as seen in the the last Section,
but also they can be hard to populate. Dark stakes are defined by

〈gg|Hd|Ψdark〉 = 0, (5.34)

for an external drive Hd. The vanishing of the matrix element is highly depen-
dent on the symmetry of the drive and of the state. First we investigate a drive
which is applied through the resonator. This drive can be written in an rotating
frame, rotating with the drive frequency ωd [34, 35, 10]:

Hd =
ε

|ωr − ωd|
(
∑
a

gaσ
a
+ +H.c.), (5.35)

ε denotes the drive strength. The relative sign of the coupling strengths ga are
conditioned on the symmetry of the electromagnetic wave inside the resonator.
Depending on this symmetry, the relative sign of the electromagnetic field will
change at the single places of the qubits. In the case of our resonator with
the fundamental mode ω0 = ceff/2L, this can be seen in Fig. 5.6. Here, L is
the length of the cavity and ceff ≈ c/

√
5.5 is the effective speed of light in the

transmission line. The phase difference is then given by ∆φ = ωdL/ceff .
For the two qubits A and B in resonance, driven beneath the first funda-

mental mode, the ga have opposite signs. Since Hd can only drive transitions
from the ground state |gg〉 to states that reflect the same symmetry as Hd, the
antisymmetric state |Ψa〉 is bright and the symmetric state |Ψs〉.

A drive with an arbitrary symmetry will present a different picture. It reads
for two qubits

Hd = ε~(σ̂1
+ + ξeiφσ̂2

+) +H.c., (5.36)

where ξ is again the drive strength and ξ is the difference of the two drive
strength on the two qubits. The phase difference of the two drives, which
influences the symmetry of the drive, is denoted by φ. The schematic of the
experiment can also be seen in Fig. 5.2 a. The matrix element for the symmetric
and the antisymmetric state can then be written as [28]

|〈gg|Hd|Ψs/a〉| = ε~
√

1 + ξ2 ± 2ξ cosφ

2
. (5.37)

If the drive is neither symmetric nor antisymmetric, it couples |gg〉 to both
states. For two qubits in resonance this can be seen in Fig. 5.7. The measure-
ment was made with pulsed spectroscopy: After a 500 ns long saturation pulse,
the measurement tone is switched on and the transmitted signal is measured.
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Figure 5.6: The fundamental resonator mode ωr has opposite sign of electro-
magnetic field at the end of the resonator. For our experiments the qubits were
placed here. When a drive with frequency ωd, approximately the same as ωr, is
applied through the resonator, it has approximately the same symmetry as the
fundamental mode.

Here the drive is applied on the single qubits. The upper state has a dark
state at 0.6 2π and the lower state at 0.14 2π. A reason for the not perfect
phase difference of 0.5 2π might be the different cable lengths of the drive line.
Further discussion of the topic can be found in [28]. This dark states are not
due to limited bandwidth of the resonances and therefore a resolution problem
of the spectroscopy, which has been verified in different experiments.

5.6 Tomography of Dark and Dicke states

We now have all the tools to examine the dark states. The states which are
dark to a drive applied to the resonator can be found again by measuring the
anticrossing between the qubits with the corresponding drive, see Fig. 5.8. The
upper state is the symmetric state, as the coupling to the resonator has opposite
signs, and the lower state is the antisymmetric state. The wobbling of the lines
coincide with thermal fluctuations of the cryostat, which’s origin are unknown.
The shifting of the dark state can be explained by the different coupling ampli-
tude, as seen in Fig. 5.6. The qubits can than be tuned into resonance using
the formula of Equation (5.32).

We can then drive Rabi oscillations between the ground state and first ex-
citation manifold. This is done over the gatelines in order to select the phase
difference of the drive between the single qubits. In Fig. 5.9 a one can see the
Rabi oscillations for Gaussian microwave pulse of different length, but with the
same amplitude (Equation (4.7)). The Gaussian pulse is truncated after 2 σ,
such that it has a length of 4 σ, as discussed in Section 4.2. One can see that
the oscillations for the two one-excitation states at 6.04 GHz and 6.09 GHz are
excited during the Rabi oscillation. Whereas the double excitation state |ee〉 is
only partially excited as we can see later. The phase difference of the drive at
the two gate lines is in favour of the upper state, and the Rabi oscillation has a
higher frequency.

In Fig. 5.9 b Rabi oscillation between the ground state |gg〉 and the anti-
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Figure 5.7: Phase dependence of the Transmission amplitude, as a function
of the drive frequency ωd. When the two qubit are in resonance, the phase
dependence on the drive of the two 2-qubit states gives two dark states. They
are phase shifted by roughly π.

Figure 5.8: Avoided crossing between qubit A and B driven through the cavity.
This gives a dark state around the anticrossing.
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Figure 5.9: Rabi oscillations of the qubits in resonance, a) Rabi oscillations for
Gaussian pulse with different length. The upper state is at 6.09 GHz and the
lower is at 6.04 GHz. b) Rabi oscillation of the upper state with Gaussian pulse
of different length.

symmetric state at frequency 6.09 GHz using square pulses with varying length
is shown. This is the symmetric state. Due to broader bandwidth of the square
pulse, the amplitude is reduced. Therefore the Rabi frequency is smaller. Due
to decoherence effects the amplitude of the Rabi oscillation decays with an ex-
ponential envelope. For the square pulse, as well as for the Gaussian pulse, the
rotation on the Bloch sphere is linear in the pulse length. This can be seen from
Equation (4.9). From both pictures, one can see, that the single states can be
driven individually. Using a pulse length, that corresponds to half a period of
the Rabi oscillations, we can then prepare the symmetric or the antisymmetric
state.

To get the density matrix ρ, state tomography was applied, which is shortly
revised here: With a single measurement of the qubit state is not possible to
extract its full information, as the state gets projected on the eigenstates of the
measurement operator. It is thus only possible to determine one component of
the Bloch sphere exactly, but the other two components remain totally unknown.
This problem can be solved by the quantum state tomography. Here the state is
prepared many times. The projection of the state on the different Bloch sphere
axes are determined. But instead of changing the measurement and measuring
the projection on each axis, one rotates the states. Now, the projection on the
same axis is measured. Hence, one can infer the projection on all the other axis.
In this way, the density matrix ρ can be determined to arbitrary precision.

There is a major draw back of this procedure: The physical state is in-
ferred by linear inversion and this is prone to measurement errors. The calcu-
lated density matrices are normally not physical, usually meaning not positive-
semidefinite and not normalized. One can get the physical state with a maxi-
mum likelihood procedure [37, 38]. Normally, these procedures are non trivial
and involve iterative methods. These methods are an active topic of research
[39].

To make a tomography of the states in resonance, the qubits have to be tuned

35



Resonator

Qubit B
Qubit A

Π-pulse on collective state Tomography
rotations

Measurement

Time @nsD

F
re

qu
en

cy
@G

H
zD

6

6.2

8.7

0 30 60 90

Figure 5.10: Excitation of a collective state, when the qubits are in resonance
and characterization with quantum state tomography.

out of resonance, in order to address the qubits separately. The detuning should
be fast, due to decoherence effects of the states. The detuning is done with a
flux pulse. The corresponding pattern can be found in Fig. 5.10. The collective
state is driven with a 60 ns long Gaussian pulse with a standard deviation of
σ = 15 ns. The length of the pulse is chosen such that the |ee〉-level does not get
populated. The qubits are then tuned 180 MHz out of resonance. The qubits
are rotated by 12ns long tomography pulses. These pulses are DRAG-pulses in
order not to populate other states and they are discussed in [40]. Between the
microwave pulses on the qubits and the start of the fluxpulse we add a 15ns
long time buffer. This ensures that the microwave pulse does not overlap with
the overshoot and undershoot of the flux pulse discussed in Section 4.2.

The reconstructed density matrices after applying the max. likelihood method
are shown in Fig. 5.11 for the symmetric state in Fig. 5.11 a and for the anti-
symmetric state in Fig. 5.11 c. Qubit A was rotated by 0.14π on the x,y-Plane
of the Bloch sphere. This was done in both cases after the data processing, in
order to compensate for dynamical phase errors. Also there was a compensa-
tion of the finite detuning during the state tomography, which is discussed in
the second half of this section.

In Fig. 5.11 b and d are the Pauli sets which show the expectation value for
the observables deduced from Pauli operators, discussed in [41]. And the theo-
retical stabilizers for the symmetric and the antisymmetric states are indicated.
The stabilizers are elements of the Pauli group, which leave the state unchanged.
The symmetric state and the antisymmetric state are produced with a fidelity
of 85% and 93%.

In the plots, the first thing to notice is the population of the ground state.
This can be accounted by a slightly off resonant drive of 2.5 MHz. For a detuned
60ns Gaussian pulse, the ground state population rises to 0.05. The limiting
factor for shortening this pulse is the population of the |ee〉-level by 2 photon
transitions. Also the not perfectly calibrated amplitude of a π-pulse can account
for this ground state.

The ground state population is influenced by the decay of the qubits, too.
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Figure 5.11: Collective states, when the two qubits A and B are in resonance.
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Figure 5.12: Original data of the symmetric state with no compensation of the
finite detuning.

This mechanism contributes with the same order of magnitude as the detuning.
The corresponding numbers can be found in Section 5.2. The result of the decay
is a mixed state. This in contrast to the off resonant drive, where the result
is a pure state. The process can therefore be distinguished with the help of
the off-diagonal elements. The symmetric state is driven slightly off-resonant,
whereas the ground population of the antisymmetric is governed by the decay.

Another error source for the |gg〉 state is the state tomography: A prepared
ground state is reconstructed with a fidelity of 97.5%. This error could account
for the fallowing factors: One is the not perfect flatness of the flux pulse during
the tomography. Therefore the single gates are not perfect. The other is, that
qubit A is not operated at the flux sweetspot and is therefor prone to fluxnoise,
which affects the quality of the single tomography rotations.

Now we want to investigate the effect of the finite detuning on the state to-
mography. The detuning during the state tomography was 180 MHz. The low
detuning is chosen, in order not to heat the sample too much. This heating is
discussed in Section 4.2. The rather low detuning implies a remaining entangle-
ment between the single states. It has a impact on the state tomography, which
one can not be neglect. In the next few paragraphs this remaining mixture and
its effect on the state tomography will be examined.

In an ideal situation, the eigenbasis of the system during the state tomogra-
phy are the product states |gg〉,|eg〉,|ge〉 and |ee〉. Applied tomography pulses
then only affect a single qubit. If there is a finite detuning, the eigenbasis is
|gg〉, |Ψtom

u 〉 = α|eg〉+ β|ge〉,|Ψtom
l 〉 = β|eg〉 − α|ge〉 and |ee〉 due to the disper-

sive qubit-qubit coupling. The coefficients α and β are found from Equation
(5.33). The tomography rotation then acts on the corresponding eigenstates of
the system.

On first sight this mixing doesn’t seem to affect the state tomography a lot:
According to Equation (5.33), the lower state |Ψtom

l 〉 has a mixing of α2 = 97.5%
with qubit B and β2 = 2.5% with qubit A. This can be seen from Equation
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Figure 5.13: Compensation of the not perfect decoupling of the qubits. The
prepared states are slightly shifted in order to be symmetric in the basis of the
far detuned qubits

(5.33). It corresponds to a mixing angle of 0.45π. The lower state has still a
slight contribution from the antisymmetric state |Psia〉, as discussed in Section
5.4. Or in other words, it is of the form |Ψtom

l 〉 = γ|ge〉 −
√

2α|Ψa〉, where
α = sin θm is small and γ = β − α. For a prepared symmetric state |Ψs〉,
the diagonal element is then given by |〈Ψtom

l |Ψs〉|2 = |γ|2 = 0.34. The upper
state has a slightly symmetric contribution. Therefore the symmetric state has a
bigger overlap with the upper state than with the lower state and |〈Ψtom

u |Ψs〉|2 =
0.66. For the antisymmetric state |Ψa〉 a similar argument applies. For the
symmetric state, the measured state was therefore not totally symmetric, as
seen in Fig.5.12.

To check if the basis change was justified, one can get equal diagonal elements
in the tomography basis by shifting the qubit A by -16 MHz. In the single qubit
basis |eg〉 and |ge〉, the diagonal elements of the density matrix are not equal
anymore. This -16 MHz shift corresponds to changing the mixing by an angle
of −0.05π. The corresponding sketch can be seen in Fig. 5.13. The generated
phase then have a mixing angle difference of π/4 to the detuned qubits basis.
The symmetric state |Ψ̃s〉 is then not anymore totally symmetric, but has a
higher overlap with qubit B, |ge〉. The corresponding diagonal elements become
equal in amplitude |〈Ψtom

u |Ψ̃s〉|2 = |〈Ψtom
l |Ψ̃s〉|2 = 0.5.

This shift was also conducted experimentally. It can be seen as a good hint,
that the above considerations are valid: for a detuning of ∆tom = 240 MHz
and a shift of qubit A, ∆gen = −13± 2 MHz, during the generation procedure.
It can be seen in figure Fig. 5.14. Again the first state is rotated by −0.33π.
And the shift of Qubit A is determined in Ramsey measurements, described in
Section 5.4. This measurement should be a check, where the asymmetry of the
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Figure 5.14: Symmetric state in the basis of the dispersive Hamiltonian with
240 MHz detuned qubits and a J-coupling of 25 MHz. The scale is the same as
in Fig. 5.11

states in Fig. 5.11 is coming from and there seems to be a good agreement to
the theory.

To check it more precisley, it would be better to change the pattern in
Fig. 5.10 and to start with far detuned qubits. And then shortly tune them
into resonance for the excitation of the symmetric and antisymmetric state. For
example leave qubit A and B at their sweet spot and then tune A in resonance
with qubit B. But the flatness of the fluxpulse is not anymore totally given. And
qubit A will leave the resonance. As well, a strong 70 µs fluxpulse will induce
certain heating.

5.7 Bell state generation

The Bell-type states have drawn a lot of attention as they are maximally en-
tangled states. They can be used to violate Bell’s inequality [42, 43]. Another
field of interest is quantum computation [44, 23].

Here a method is shown how to generate this states in a shorter time sequence
than in the previous section. The pulse sequence used is shown in Figure 5.15.
First qubit B is excited with a π pulse and then the qubits are tuned into
resonance for 14 ns. There is a 5 ns intermediated step at the beginning of
the flux pulse in order to reduce the flux pulse overshoot. The excitation is
oscillating between the two qubits due to the dispersive JA,B-coupling. After
waiting a quarter of a period, the two qubit state is the maximally entangled
Bell state, which is then read out with quantum state tomography, see Fig. 5.16.
Again the dynamic phase picked up by qubit A during the frequency excursion
away from the biasing frequency during the flux pulse is compensated by rotating
the phase of qubit A by 0.274π after the reconstruction of the two qubit state.

The length as well as the fluxpulse amplitude was determined by measuring
the oscillation of the excited state of qubit B. Coming from the JA,B-coupling
of 25MHz, only 5 ns of resonance would be needed to entangle the qubits.
Therefore, slight timing errors have a huge impact. and the fidelity was found
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Figure 5.15: Bellstate generation by excitation of one qubit an then swapping
the excitation until the excitation is equally distributed. The fluxpulse length
was 14ns, not including a 5 ns buffer before the resonance.

to be 93.3%, neglecting the dynamical phase error.
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Figure 5.16: Bellstate generated by a short resonant time, using the scheme of
Fig. 5.16

.
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Chapter 6

Three qubit states

In this chapter, we discuss the collective dispersive coupling between three qubits
and the generation of three qubit entanglement. Again the new eigenstates of
the system consists of dark states and 3 qubit entangled states. There is the
forming of Dicke states. Three qubit entanglement is important for quantum
processing is many algorithms, such as the bit flip error correction or for a
potential storage states s[45, 46]. First the anticrossing will be investigated in
Section 6.1. This will be followed by a discussion of the states of the avoided
crossing in Section 6.1. Then Section 6.3 will concern the W state generation.

6.1 Anticrossing of three qubits

The dispersive exchange coupling, discussed in Section 5.3, also leads in the
three qubit case to an avoided crossings. The discussion of this anticrossing is
important, in order to find the Dicke states. From this anticrossing, one can
read out, if the qubits are in resonance or not. The dispersive couplings can also
be read of from the avoided crossing with the method from Section 5.4. This
points will be discussed in the following paragraphs.

To compare the resonance of three qubits and two qubits, first the dispersive
coupling between two qubits is investigated, neglecting the third qubit. In order
to do so, two qubits are tuned to 5GHz, while the third is tuned 500 MHz away.
5 GHz is the flux sweet spot of qubit C and the highest frequency point, which is
reachable for all qubits. The values found for the dispersive exchange coupling
are JA,C = 2.5±1 MHz, JA,B = 16.6±1.6 MHz and JB,C = 16.4±0.9 MHz. The
small coupling between qubit A and C has the following reason: They couple
directly to each other capacitively over the resonator, as they are spatially very
close, see Fig. 3.1. This coupling cancels the coupling over the resonator by
virtual photons.

As in the two qubit case, the dispersive Ja,a‘-coupling is smaller than the
calculated values from formula (5.31). They are roughly one half. The same
discussion applies as for the coupling at 6 GHz, which can be found in Section
5.4. The different amplitudes for JA,B at 5 GHz and 6 GHz can be explained by
the different detunings from the resonator and by the square root dependence
of the coupling strength g on the qubit frequency. The calculated value from
J6GHz

A,B for J5GHz
A,B is 16(.2) MHz.

43



Figure 6.1: Anticrossing of three qubits: Qubit B is tuned through the resonance
of qubit A and C. The red lines shows a fit to the energy levels from diagonalizing
the three qubit dispersive Hamiltonian. The black doted line corresponds to
single qubit frequencies. Qubit C is constraint to be constant. The states 1-4
of the anticrossing are discussed in Section 6.2

.
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To get three qubits into resonance, first qubit A and C are brought into
resonance and then qubit B is tuned through this resonance, seen in Fig. 6.1.
Like in the two qubit case, again the energies were fitted to find the dispersive
exchange coupling and the qubit frequency. The following procedure was ap-
plied: According to formula (5.30), there are three states in the first excitation
manifold, beside the resonator state. The excitation manifolds are not mixed,
as the dispersive exchange coupling doesn’t change the number of excitations.
Therefore one has to diagonalize a 3x3 matrix to find the energies. The effective,
reduced Hamiltonian simply reads

Hred =

 ωge
A JA,B JA,C

JA,B ωge
B JB,C

JA,C JB,C ωge
C .

 (6.1)

The energies of the subsystem are found by using the trigonometric cubic
formula[47]. In contrast to other root functions, for example Cardano’s method,
they are real and ordered in magnitude[48].

The dispersive coupling strengths extracted from the fit to the data shown in
Fig. 6.1 are JA,B = 12.5±1.5 MHz, JB,C = 17.4±1 MHz and JA,C = −2.3±0.3
MHz. The different signs are coming from the different positions of the qubits in
the cavity, which can be seen in Figure 3.1 and 5.6 and from Equation (5.31). To
find out, where the difference to the two qubit measured values is coming from,
one can constrain the fit on the individually measured values. The residual, or
the root mean square of the errors, is then only changing by 0.5%. So the fit to
this data is not really sensitive to small perturbations in the dispersive exchange
coupling strength.

However the small difference might also come from qubit A. It is operated
0.302 Φ0 from the magnetic flux sweet spot, which makes it sensitive to flux
noise. Drifts and jumps up to 10 MHz were observed within 30 minutes. This
could explain the drift of qubit A in Fig. 6.1, as the shown measurement took two
hours. On the other hand, the collective system, when all qubits are roughly in
resonance, was observed to drift only 3 MHz in 10 hours. Obviously, the effect of
the qubit A drift is screened in this measurement of the collective system, has the
qubit A drift affects more than one state. Another reason is the following: From
the crosstalk of the flux lines, one would expect Qubit A to change 4.6 10−4 Φ0

or 5.5 MHz over the whole pattern. Which is less than extracted from the fit: 9
MHz. On the other hand, taking qubit A to be constant in the fit changes the
root mean square error by 20%.

6.2 3 Qubit Dicke state

In analogy to the measurements discussed in Section 5.6, one can also measure
the symmetry of 3 qubit states. One can have a look if the anticrossing states are
really Dicke states or not. First one has to note, that due to different coupling
strengths, tuning all qubits just in resonance, doesn’t produce symmetric states.
We have decided to investigate the W state, as it is a very important state for
many quantum information algorithms and it shows three-qubit entanglement
[45, 46].

In the following, a scheme to find the W state, defined by |W 〉 = 1/
√

3(|egg〉+
|geg〉+ |gge〉) is presented. However, the state found by applying the scheme is
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Figure 6.2: Pulse scheme for the generation and tomographic reconstruction of
three qubit Dicke states: Qubit B, which couples the most to the other qubits
is tuned to qubit A and C with a flux pulses. The relevant Dicke state is then
prepared by applying a microwave pulse simultaneously to all three qubits with
a fixed phase and amplitude relation. After the preparation, qubit A and C are
detuned by 100MHz and qubit B is brought to its initial position in order to
apply quantum state tomography.

not the W state. Nevertheless, the state is shown, in order to investigate, where
the error is coming from. It is not obvious and different mechanism come into
consideration, why the wrong state was generated. There is no final conclu-
sion, why this error is there. The main part of this section is dedicated to the
search of the error source. For completeness, the other two states at the given
qubit detuning are shown as well. Nevertheless the W state was found and is
presented at the end of the section.

First we have look how we prepare and readout the anticrossing states. The
pulse scheme used is shown in Fig. 6.2. The state is driven with a weak Gaussian
pulse, as the detuning to the next one-excitation state is normally very small,
and two photon transitions are lying between. After this pulse, the qubits are
detuned in order to perform quantum state tomography and read out the qubits.

For generating a symmetric W-state, we leave qubit B slightly detuned from
qubit A and C during the π-pulse, instead of tuning all qubits in resonance.
This is due to the different dispersive couplings. The detuning between the
qubits should be

ωge
B − ω

ge
A = JA,C − JA,B

ωge
A − ω

ge
C = JB,C − JA,B, (6.2)

to get a W-State. This can easily be seen from Equation (6.1) by calculating
the energy of a W state. The eigenstates, ordered in energy, for JA,B = JB,C =
16 MHz and JA,C = −2.5 MHz are |W 〉, 1/

√
2 (|egg〉− |gge〉) and 1/

√
6 (|egg〉−

2|geg〉+ |gge〉).
The measured density matrix and Pauli sets of the first state, created fol-

lowing this scheme, is shown in Fig. 6.3. Only the real part is shown, as the
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Figure 6.3: State 1: Anticrossing state of the highest energy band in Fig. 6.1
near the expected W state. a) Real part of the density matrix with a dominant
term of qubit B. b) corresponding Pauli set.
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imaginary part is roughly zero. There is quiet a big decay during the generation
of the state, which give the corresponding |ggg〉 population. The the signs of
the off-diagonal elements are not the same, which would be needed for a sym-
metric W-state. The asymmetry of the diagonal elements of the first excitation
manifold (egg, geg, gge) is obvious and the state is not the expected |W 〉-state.

One error source for this is the state tomography itself: the ground state
was reconstructed with a fidelity of 92%, which is rather low[22]. Nevertheless
this measurement of the presumed W-state was repeated twice from scratch
and qualitavely the same assymetry was found. This is remarkable, given large
frequency shifts of qubit A, discussed in the previous section and the bad state
tomogrpahy. However, this hints to a systematical error.

As in Section 5.6, the finite detuning of the qubits can influence the state
tomography. The single eigenstates of the reduced Hamiltonian (6.1) during the
read-out procedure, seen in Fig. 6.2, are

|Ψtom
Ã
〉 = (0.995,−0.095,−0.041)

|Ψtom
B̃
〉 = (0.097, 0.994, 0.060)

|Ψtom
C̃
〉 = (0.035,−0.063, 0.997), (6.3)

and they still have a not negligible overlap with other bare qubit states. This
can still have an impact on the state tomography, as we have seen in Section
5.6. Therefore the states are projected on the single qubit states, which changes
the elements of the density matrix by roughly 15%. Hence, it doesn’t have the
same impact as in the two qubit case. Nevertheless it was done for all density
matrices, shown in this chapter.

The main error source for the wrong state might be a simple sign error.
As it can be seen in Equation (6.2), the state is highly depending on the sign
of the dispersive exchange couplings. The position even alters between the
different energy levels of Fig. 6.1, depending on the sign. The sign of JA,B was
investigated in Section 5.6. It is positive, else it would exchange the symmetric
and the antisymmetric state at the avoided crossing [28]. Hence, the wrong sign
could come from the other two couplings. Another indication to different signs
are the off-diagonal elements. They indicate that the state is not a symmetric
state, meaning not all amplitudes of the state have the same sign. This indicates
that the W state, which is symmetric, is on a different energy level, seen in
Fig. 6.1.

In order to investigate the detuning of Qubit A and C, one can have a look at
the state next to the previously measured. As expected from diagonalizing the
Hamiltonian (5.30), the state 8 MHz next to the previously discussed state is an
antisymmetric Bell-state in a 2 qubit subspace, |Ψ−Bell〉 = 1/

√
2(|egg〉 − |gge〉).

The measured density matrix and Pauli set is shown in Fig. 6.4. This is a
good indication, that qubit A and C are really in resonance, as the Bell state
is very sensitive to detuning between qubit A and C. This was investigated by
numerically diagonalizing the Hamiltonian (5.30). Nevertheless it could also
be a reminiscent from the bad tomography and the finite detuning during the
tomography and the detuning during the π-pulse. It also indicates that the
asymmetry of the diagonal elements in Fig. 6.3 might come from a detuning of
qubit B.

To get the whole picture of the situation, one can also determine the sym-
metry of the third state, seen in figure 6.5. One would expect the 1/

√
6(|egg〉−
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Figure 6.4: State 2: a Bell state a) Real part of the density matrix with a Bell
state between Qubit A and C. b) corresponding Pauli set with the theoreti-
cal expectation values of the Pauli operators for the antisymmetric Bell state
|Ψ−Bell〉.
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Figure 6.5: State 3 of the lowest energy band a) Real part of the symmetric
state with an off resonant drive b) corresponding Pauli set with the theoretical
expectation values of the Pauli operators for the W state.

2|geg〉+ |gge〉) state. The large off-diagonal elements |ggg〉〈gge|,|ggg〉〈geg| and
|ggg〉〈egg| are coming from an off-resonant state preparation pulse. Those off-
resonant terms also have a large imaginary part, which is not shown, as it only in-
dicates, how the state is driven. The off-diagonal elements |geg〉〈egg|,|gge〉〈egg|
and |gge〉〈geg| of the first excitation manifold indicate, that all basis states have
the same sign. Therefore one can investigate this energy band further to find
the W-state.

Shifting the qubit B by 14 MHz to a larger frequency gives the searched
W-state with a fidelity of 67%, shown in Figure 6.6, where qubit B was rotated
by 0.45π and qubit A by 0.04π during data processing. The state was generated
using a 160ns long Gaussian pulse. The fidelity is limited by the decay, which
populates the ground state and the decoherence, as mentioned in the text before.
The working of this method again indicates that there is a sign error in the
dispersive exchange coupling, as the W-state is not on the expected energy
level.

To conclude, one can say, that there are many indications to an unknown sign
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Figure 6.6: State 4, W-state a) Real part of the density matrix, the state decays
and has decoherence during the 160ns long Gaussian pulse b) corresponding
Pauli set with the theoretical expectation values of the Pauli operators for the
W state.
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error in the dispersive exchange coupling. And it seems, that single states are
addressable, although qubits are shifting. This data should be further analyzed
using higher transmon levels, which were neglected during the analysis. Also the
approximation of the Jaynes Cummings Hamiltonian in the dispersive regime
should be made with higher orders in g/(ωr − ωa), leading to other coupling
mechanisms than only the dispersive exchange coupling Ja,a′ . On the other
hand, also a systematical error in the state tomography could be the reason,
which would also affect the result in the next section.

6.3 W-state generation

For quantum information processing, the W-state needs to be generated fast.
The W-state can for example be used as a memory state due to its robustness
to qubit loss [45]. In analogy to Section 5.7, such a generation scheme is shortly
reviewed. And the tripartite entanglement is shown later in the text.

The pattern is nearly the same as in Fig. 6.2, with the difference, that qubit
B is first excited and then tuned in resonance with qubit A and C. The excitation
then oscillates between the states due to the dispersive exchange coupling. For
the state in Fig. 6.7, the resonance time is 7,5 ns long and the produced state
is measured with quantum state tomography.

It has a fidelity of 77%. This is on the same order of magnetidue as previously
reported experiments in circuit QED:78% [46]. However the presented result has
a large error due to the bad state tomography, which could be improved. Also
the phase of qubit A was rotated by 0.84π during data processing.

To investigate the entanglement, one can use entanglement witnesses[46,
22]. An entanglement witness is a function which detects entanglement. An
operator Ŵ is an entanglement witness, if Tr(Ŵ ρ̂) > 0 for all separable states
ρ̂ and Tr(Ŵ ρ̂) < 0 for some entangled states. If Tr(Ŵ ρ̂) < 0 the entanglement
is detected. This is a sufficient condition, but not necessary condition. In
general there are many different entanglement witnesses, which detect different
entanglement.

In order to detect entanglement, not the full state tomography needs to be
done, but only this witness could be measured. Which is very convenient for
a large number of qubits. In our case the whole density matrix was measured
anyway, and it can be used. A simple entanglement witness is

ŴW =
2

3
I − |W 〉〈W |, (6.4)

and |W 〉 is the pure W-state. Hence, the state is tripartite entangled if 〈W |ρ̂|W 〉 >
2/3. This is obviously the case for this measurement, as 77% > 67%. So it is
trully not a biseparable state.
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Figure 6.7: W-state produced by oscillating an excitation between the qubits
a) Real part of the density matrix, with an higher population of qubit B b)
corresponding Pauli set with the theoretical expectation for the W state.
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Chapter 7

Conclusion

In this thesis the effect of magnetic flux pulses, the dispersive exchange coupling
of two and three qubits, as well as the generation of entanglement between qubits
in circuit QED was studied.

For the magnetic flux pulses, many different sources of distortions from the
optimal value were identified. For example, the presence of a large inductance
was recognized and heating due to flux pulses was observed. The large induc-
tance can be overcome by applying a second flux pulse opposite in amplitude,
whereas the heating can be compensated by applying a constant amount of flux
pulses for a long time, until the temperature of the sample is stabilized at a
slightly higher temperature.

For the second topic discussed in the thesis, the implementation of a two
qubit Dicke-like Hamiltonian, where a certain asymmetry of the coupling strengths
remains, and the study of the dispersive exchange coupling, good results were
achieved. The fully characterized Dicke states are in good agreement with the
theoretical prediction. The main challenges were the finite detuning of the
qubits during the tomographic process, as well as the not perfect flux pulses.
However, the sub-/superradiant character of the states was not observed, as
the associated Purcell effect might not have been the preliminary decay channel
in our setup. On the other hand symmetry selective Rabi oscillations between
these states were found.

In the three qubit case, distinct qubit states of the avoided crossing were
fully characterized. Though, a certain mismatch between the theory and the
experiment was recognized. It might be accounted to an unknown phase differ-
ence between the dispersive exchange couplings or a not perfect quantum state
tomography.

The dispersive exchange coupling was also used to entangle the qubits in a
few nanoseconds. The results where Bell states as well a W-class-state.

All these studied mechanisms can be used to observe advanced quantum
information processing algorithms and even more sophisticated quantum me-
chanical effects for more than three qubits. In the future, the number of qubits
might even be extended to observe the Dicke superradiant phase transition
[49, 50]. Or, with an array of resonators coupled to the qubits, it could also be
possible to implement a Bose and Jaynes-Cummings Hubbard model [51] and
to investigate the superfluid to Mott transition of light [12, 52].

On the other hand, circuit quantum electrodynamics is a promising candi-
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date for the implementation of a quantum computer. Nevertheless coherence is
still an issue for the scalability to an arbitrary quantum computer, but there
are many suggestions [53] how to address this problem. Elaborated algorithms
for two [44] and for three [24, 23, 54, 55] qubits have been shown, promising a
bright future with good prospects.
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