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Abstract

One of the most challenging problems in quantum communication is the reliable
quantum state transfer between distant nodes of a network. As it turns out, photons
serve well for transmitting quantum states over large distances. It is therefore
necessary to find a way to control the interactions between light and matter to map
quantum states from a solid state system to a single photon and vice versa [1].
In this work we present a setup for realizing efficient quantum state transfer in a
CQED system consisting of two samples connected by a one-way coaxial cable link.
Besides the development and characterization we introduce a method for photon
shaping using a microwave-induced tunable second-order coupling between qubit
and resonator. We use simulations to show that we can theoretically reach 90.5 %
of state transfer efficiency within our setup. Finally we show that we can shape single
photons using the described method as well as an alternative first-order coupling
scheme. The results show that the setup allows for the realization of quantum state
transfer between the two samples.
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1 Introduction

In 1981 Richard P. Feynman gave a talk at the First Conference on the Physics of Com-
putation at MIT, stating that it is not possible to simulate arbitrary quantum mechanical
systems efficiently using classical computers [2]. Instead he proposed to use quantum phe-
nomena to build a computer capable of performing simulations of such systems, giving a
first idea of a simple quantum computer.

Only a few years later David Deutsch presented the concept of a universal quantum
computer which can not only simulate the classical Turing machine, but also any arbitrary
quantum computer [3]. He also gave a first example of a simple algorithm which is more
efficient than the corresponding algorithm for a classical computer, using the fact that a
quantum bit (qubit) in contrast to a classical bit can not only exist in the state zero or one
but in any arbitrary superposition of these to states. This so-called Deutsch algorithm
determines whether a function acting on one bit is constant or balanced.

Based on these theoretical foundations several algorithms were developed in the fol-
lowing years, which solve specific problems more efficiently than any known classical algo-
rithm. For example the Deutsch-Jozsa algorithm [4], which is a multidimensional version
of the Deutsch algorithm presented in [3] or Grover’s algorithm for searching unstructured
databases, leading to a quadratic speedup compared to the best classical algorithm [5].

The most famous example is Shor’s factorization algorithm, providing a method to
efficiently factorize integers [6]. It offers an exponential speedup in comparison to any
known classical algorithm, affecting the security of today’s public-key cryptography, since
state of the art encryption schemes like RSA are based on the difficulty of factorizing
large numbers [7].

Fortunately there are also quantum cryptography protocols which offer secure key
distribution over public quantum channels, like the BB84 [8] or the E91 protocol [9].

Other important steps for quantum communication were the proposal of super dense
coding by C. H. Bennett and S. J. Wiesner, which provides the ability to send two bits
of classical information using only one quantum channel [10], as well as the quantum
teleportation protocol [11].

For the physical realization of a quantum computer a system needs to fulfill the five
so-called DiVincenzo criteria plus two additional ones regarding the possibility to transmit
information, given by [12]:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits

3. Long relevant decoherence times with respect to the gate operation time

4. A universal set of quantum gates

5. A qubit-specific measurement capability

6. The ability to interconvert stationary and flying qubits

7. The ability to faithfully transmit flying qubits between specified locations

Several candidates for the physical realization of such systems have been proposed
and investigated during the last decades including trapped ions [13], photons [14], nuclear
spins in molecules [15], quantum dots [16], and superconducting circuits [17].
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1 INTRODUCTION

In analogy to cavity quantum electrodynamics (QED), where a system of an atom
interacting with a cavity-field is analyzed [18], the Quantum Device Lab at the ETH
Zurich focuses on superconducting qubits coupled to a transmission line resonator. In
this case the superconducting qubit can be seen as a tunable artificial atom and the
transmission line resonator acts as the cavity. This so-called Circuit QED offers a nice
controllable system, which allows to manipulate, selectively read-out and couple qubits
using photons in the resonator [19–22].

One other important aspect of Circuit QED is the fact that it gives rise to the pos-
sibility of quantum state transfer between distant nodes, which is crucial for realizing
quantum networks [1]. Thanks to the strong coupling of the qubit to the microwave filed
in the resonator which in turn can be coupled efficiently to propagating modes in a coaxial
cable, we have a natural way of transferring the state of the stationary two level system
into a flying qubit, which enables fast state transfer.

Using shaped photons is one possibility for highly efficient state transfer between dis-
tant nodes in a quantum network [23]. The basic idea is to use a photon wavepacket with
a symmetric time shape to achieve high absorption rates due to time-reversal symmetry
of the process.

In this Thesis a possible way for shaping such photons is discussed with the goal
of realizing an experiment, where a photon is shaped and emitted in one sample and
subsequently reabsorbed in a second sample. After a basic description of the principles of
superconducting qubits and circuit QED in Section 2, the photon shaping method used
in this thesis will be discussed in Section 3. In the following the measurement setup
along with some theoretical estimations of the system dealt with is presented in Section
4, where we also briefly summarize reflection measurements. After a short summary of
the sample design used in this experiments together with some lifetime estimations in
Section 5 we look at numerical simulations of the carried out experiments, giving an idea
about expected results (Sec. 6). Finally in Section 7 the experiments and their results
are discussed.
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Figure 1: Circuit diagram of a LC oscillator.

2 Superconducting qubits and Circuit QED

2.1 Superconducting qubits

Superconducting qubits are electronic circuits made out of superconducting materials and
therefore have greatly reduced losses due to electrical resistances. Superconductivity is a
phase where the electrons feel an attractive interaction due to virtual phonons which is
stronger than the Coulomb repulsion [26], leading to states formed by bosonic electron
pairs, so-called Cooper pairs.

To excite a Cooper pair a certain minimal energy is needed. If this energy is higher
than the thermal energy of the ion lattice in the conductor, the Cooper pairs cannot be
scattered by the lattice and thus flow without dissipating energy. This corresponds to a
perfect conductor with zero electrical resistance. As the thermal energy needs to be very
low, the second order phase transition into the superconducting state usually occurs only
close to the absolute zero point (0 K).

To understand how superconducting electronic circuits can form artificial atoms we
first review the basic properties of electronic harmonic oscillators.

2.1.1 Electronic harmonic oscillator

A conventional electronic LC oscillator consists of two basic elements: capacitor and
inductor (see Fig. 1). This system is characterized by the charge on the capacitor Q =
C V and the flux Φ = L I through the inductor, which are linked by the equations of
motion Q̇ = I and Φ̇ = −V . These can be described as Hamilton’s equations from the
Hamiltonian

H = Hel +Hmag =
CV 2

2
+
LI2

2
=
Q2

2C
+

Φ2

2L
, (1)

by taking Q and Φ as the canonical conjugate variables.
Comparing this Hamiltonian with the Hamiltonian of the mechanical harmonic os-

cillator, the Capacitance C can be regarded as a ’mass’, which is moving in a potential
of curvature 1

L
, or the other way around. Using this analogy one defines the quantum

mechanical operators as

Φ̂ = Φ, Q̂ = −i~ ∂

∂Φ
. (2)

These fulfill the following commutation relation

3



2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

[Φ̂, Q̂] = i~. (3)

Therefore, the Hamilton operator of the system is given by

Ĥ =
Q̂2

2C
+

Φ̂2

2L
= − ~2

2C

∂2

∂Φ2
+

1

2L
Φ2. (4)

Using creation and annihilation operators one gets the well known expression for a
harmonic oscillator

Ĥ = ~ω
(
â†â+

1

2

)
, (5)

with ω = 1√
LC

being the resonance frequency and the creation and annihilation operators
given by

â† =
1√

2~ZC

(
ZCQ̂+ iΦ̂

)
,

â =
1√

2~ZC

(
ZCQ̂− iΦ̂

)
,

(6)

where ZC =
√

L
C

denotes the characteristic impedance of the oscillator.

In the end individual control of each energy level as well as the corresponding transi-
tions is needed. This means that the electronic harmonic oscillator as such is not sufficient
for building a artificial atom, as it only provides equally spaced energy levels. Therefore,
an anharmonicity in the energy level spacing is required. This can be realized by in-
troducing a loss free, non-linear inductance to the system using a so-called Josephson
junction.

2.1.2 Josephson Junction

A Josephson junction consists of two superconducting layers that are separated by a
small insulating layer, which provides a weak coupling between the former ones. In 1962
B.D. Josephson theoretically predicted that Cooper pairs can tunnel through this barrier
and thus produce a supercurrent through the junction [24]. There are two equations
describing the dynamics of this so-called Josephson effect [25]

I = I0 sin δ, (7)

V =
Φ0

2π
δ̇. (8)

Where δ = δ2 − δ1 denotes the phase difference between the two superconductors which
can also be regarded as a normalized magnetic flux δ = 2π Φ

Φ0
. Here, Φ0 = h

2e
denotes the

flux quantum and I0 is the critical current of the junction. If a current I > I0 is applied
to the junction also single electrons start to tunnel through the barrier and a voltage drop
over the junction occurs.

In combination with the induction law these equations show that the Josephson junc-
tion acts as a non-linear inductor, where the Josephson inductance is given by

4
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LJ =
V

İ
=

Φ0

2πI0

1

cos δ
≡ LJ0

1

cos δ
, (9)

LJ0 denoting the specific Josephson inductance.
Integrating V I over time gives the (specific) Josephson energy

EJ =

∫
V Idt =

Φ0I0

2π
cos δ ≡ EJ0 cos δ. (10)

2.1.3 Qubit types

The combination of the loss free, non-linear inductance with an electronic harmonic os-
cillator gives rise to a energy level spectrum with different transition frequencies between
the various energy levels, as required for realizing an artificial atom.

Besides the non-linear inductance, a Josephson junction also provides a capacitance Cj
which can be used in designing the qubits. This leads to various possibilities for circuits
that can be used as a qubit. One can distinguish three basic designs [27] (Fig.2):

Phase qubit The Phase qubit consists of a Josephson junction biased by a current
source. The bias current is chosen to be close to the critical current I0 leading to a large
non-linearity in the inductance of the Josephson junction. Here, the potential is defined by
the phase difference δ between the two parts of the junction and the conjugate variable is
given by the charge on the capacitance Cj. This leads to a so-called washboard potential,
which is tilted according to the ratio I/I0. In the wells of this potential non-degenerate
energy levels can be found, defining the qubit.

Flux qubit In the flux qubit design both sides of the Josephson junction are connected
via a superconducting wire acting as a inductor and thus forming a superconducting loop.
To bias the qubit an external flux is applied using another inductance, implementing a
transformer. In this system the free parameters are the flux Φ through the supercon-
ducting loop and the charge Q on the capacitance Cj. The qubit is operated in a region
where the potential has two degenerate wells, using the symmetric and anti symmetric
combination of the wavefunctions in these wells.

Charge qubit The charge qubit consists of a Josephson junction in series with a ca-
pacitor and is biased by a voltage. The capacitance Cj of the junction together with the
capacitor define a so-called island where the number of charges Ng on the capacitor can
be varied using the bias voltage. This design is also called Cooper pair box and will be
discussed in more detail in the following, as the currently used design in the Quantum
Device Lab is a modification of this version.

2.1.4 Cooper pair box

The Cooper pair box as shown in Figure 3 consists of an island which is coupled to a
reservoir of charges through the Josephson junction. As mentioned, this design allows to
store Cooper pairs on the island and the physics is the same as for a particle in a box
potential.

5



2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

Cg

Vg

a) b) c)

Figure 2: The basic types of superconducting qubits: a) the current biased phase qubit,
b)the flux biased flux qubit and c) the charge biased charge qubit.

Vg

Cg

Cj I0

island

reservoir

N

Figure 3: Schematic drawing of the Cooper pair box.

The number of Cooper pairs on the island with respect to charge neutrality is a discrete
variable which is given by

N =
Q

2e
. (11)

By varying the voltage Vg applied to the gate Capacitor Cg one can change the polarization
charge on the gate capacitor Ng, which is in contrast to N a continuous variable given by

Ng =
CgVg

2e
. (12)

The electrostatic energy in such a system is given by

Hel =
(2e)2(N −Ng)

2

2CΣ

= 4EC(N −Ng)
2, (13)

where CΣ = Cj + Cg denotes the total capacitance of the island and EC = e2

2CΣ
denotes

the charging energy. The corresponding first four energy levels can be seen in Fig. 4a).
By raising Vg from Ng = 0 a degeneracy at Ng = 1/2 is reached and a Cooper pair

will tunnel from the reservoir onto the island to minimize the energy of the system. Thus
it is possible to alter N by varying Ng.

In addition to the electrostatic energy there is also a magnetic term corresponding to
the Josephson energy given in Eq. (10).

Hmag = −EJ0 cos δ ≈ −Φ0I0

2π

(
1− 1

2

(
Φ

Φ0

2π

)2

+ ...

)
≈ 1

2

Φ2

LJ0

. (14)

6
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Figure 4: The first four energy levels for a) EJ=0 and b) EJ/EC = 10.

This leads to the Cooper pair box Hamilton operator

Ĥ = EC

(
N̂ −Ng

)2

− EJ0 cos δ̂, (15)

with [
δ̂, N̂

]
= i. (16)

Noting that the cosine can be written as

cos δ̂ =
1

2

(
eiδ̂ + e−iδ̂

)
(17)

and using the basis transformation

|δ〉 =
1√
2π

∑
N

eiNδ |N〉 (18)

we find that this operator acts on a number state as

e±iδ̂ |N〉 = |N ∓ 1〉 . (19)

This allows us to write the Hamilton operator in the number basis

Ĥ =
∑
N

(
EC(N −Ng)

2 |N〉 〈N | − EJ0

2
(|N〉 〈N + 1|+ |N + 1〉 〈N |)

)
. (20)

Equivalently the Hamilton operator can be written in the phase basis using

N̂ =
Q̂

2e
= −i~ 1

2e

∂

∂φ̂
= −i ∂

∂δ̂
, (21)

leading to

Ĥ = EC

(
−i ∂
∂δ̂
−Ng

)2

− EJ0 cos δ̂. (22)

In this basis it is possible to solve for the exact solution of the Schroedinger equation,
where the energy eigenstates Ψn(δ) = 〈δ|Ψn〉 are given by Mathieu functions.

7



2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

The Hamilton operator of the Cooper pair box shows, that the Josephson coupling
lifts the degeneracy between the energy levels as presented in Fig. 4b), the separation
scales proportional to EJ . This gives the required tunable atom and the two lowest states
can be used to define qubit ground and excited state.

To make the artificial atom even more flexible, we can go one step further by using a
superconducting quantum interference device (SQUID) loop, which means to connect two
Josephson junctions in parallel. This gives rise to the advantage that the phase difference
is tunable by applying an external magnetic field, allowing to tune the Josephson energy
and thus the energy splitting. The tunable Josephson energy is given by

EJ = Emax
J

∣∣∣∣cos

(
π

Φext

Φ0

)∣∣∣∣ , (23)

where Φext is the flux through the SQUID loop due to the applied external magnetic field.

Two state approximation It is sometimes convenient to consider only the two state
approximation for the Cooper pair box, as the first two levels define our qubit. In order
to do so we substitute the operators in Eq. (15) by

N̂ =

(
0 0
0 1

)
=

1− σ̂z
2

, (24)

cos δ̂ =
σ̂x
2
. (25)

Neglecting the term only dependent on Ng the Hamilton operator in this approximation
is given by

Ĥ = −EC
2

(1− 2Ng)σ̂z −
EJ
2
σ̂x (26)

and one gets an avoided crossing between the two states (Fig. 5).
The Energy level diagrams of the Cooper pair box show that it is quite sensitive to

fluctuations in the gate voltage, or equivalently in the number of charges Ng on the gate
capacitor. In experiments this leads to dephasing as the energy difference between the
different states strongly depends on the continuous variable Ng. For specific gate voltages,
leading to Ng = 0.5 + n, n ∈ Z, the energy levels have a zero slope, meaning that linear
noise in the gate voltage cannot lead to dephasing in this so-called sweet spot.

However the system can still be perturbed by higher order noise, which could drive the
qubit away from the sweet spot, resulting in dephasing of the qubit states. To minimize
the effect of such fluctuations one has to reduce the charge dispersion by modifications of
the qubit design.

2.1.5 Transmon qubit

The strength of the modulation of a single energy level by changes in the offset charge Ng

depends on the ratio between Josephson and charging energy. The idea of the transmon
design is to lower the charging energy compared to the Josephson energy by introducing
a large capacitance in parallel to the SQUID loop [28] (Fig. 6).

This effectively flattens out the energy level dependence on Ng (Fig. 7) and the spacing
between the first two levels can be approximated by [28]

8
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Figure 5: Ground (blue) and excited (red) state of the qubit in the two state approxima-
tion (EC/EJ = 4).

Vg

Figure 6: In the transmon design an additional capacitance lowers the charging energy to
get rid of charge noise.

E01 ≈
√

8EJEC − EC . (27)

Unfortunately this comes for the price of the anharmonicity being reduced (|E01−E12| �
E01). This makes it harder to address specific transitions individually, which is important
for manipulating the qubit.

The peak-to-peak charge dispersion εm and the relative anharmonicity αr are defined
as [28]

εm = Em(Ng = 1)− Em(Ng = 0.5), (28)

αr =
E12 − E01

E01

, (29)

where En(Ng) denotes the energy of level n at Ng starting from n = 0 for the ground
state and En,n+1 gives the energy difference between the levels n and n + 1 at Ng = 0.5.
Nevertheless it is possible to find a regime were the influence of voltage fluctuations

9
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0 1 2 3 4
0

5

10

15

20

Ng

E
/E
c

a)

0 1 2 3 4
0

10

20

30

40

50

Ng

E
/E
c

b)

Figure 7: The first four energy levels of the transmon qubit for a) EJ/EC = 10 and b)
EJ/EC = 50.

is significantly reduced but the anharmonicity is still high enough to adress individual
transitions, as illustrated in Fig. 8.

0 20 40 60 80 100

10-6

10-4

0.01

1

EJ /EC

|ε

-ε

|

a)

0 20 40 60 80 100
- 0.2

0.0

0.2

0.4

0.6

0.8

1.0

EJ /EC

α
r

b)

α
r

Figure 8: a) The dependency of the charge dispersion between the ground and the excited
state on EJ , determining the dephasing of a |g〉+ |e〉 superposition state. b) The relative
anharmonicity with respect to EJ/EC at Ng = 0.5.

2.1.6 Driving the qubit

By applying microwave pulses of controllable amplitude, length and phase to the qubit
it is possible to control the qubit state. In terms of the Hamiltonian (Eq. (26)) this
means to couple a voltage to the gate capacitor, which can be described by substituting
Ng = N0

g + Ng(t), where Ng(t) describes the applied drive. For simplicity we assume
N0
g = 1/2 and Ng(t) = A cos(ωdt+ φ), thus the Hamiltonian is given by

Ĥ = ~Ω cos(ωdt+ φ)σ̂z −
~
2
ωqσ̂x, (30)

10
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where Ω = ECA gives the drive strength and ωq is the qubit frequency. Transforming Ĥ
into the eigenbasis {|0〉 + |1〉 , |0〉 − |1〉} of the non-driven Hamiltonian (applying a π/2
rotation around the y-axis) leads to

Ĥ = ~Ω cos(ωdt+ φ)σ̂x +
~
2
ωqσ̂z. (31)

Using the unitary transformation Û = ei
ωt
2
σ̂z we can go into the reference frame rotat-

ing at frequency ω, by using

Ĥr = ÛĤÛ † + i~
dÛ

dt
Û †. (32)

Choosing ω = ωd now allows to see how the qubit state changes relative to the applied
field. In the rotating frame the Hamiltonian is given by

Ĥr =
~
2

Ω (cosφ σ̂x + sinφ σ̂y) +
~
2

(ωq − ωd)

=
~
2
~M · ~σ,

(33)

with ~M = (Ω cosφ,Ω sinφ, ωq − ωd) ≡ (Ωx,Ωy, ωq − ωd). Thus we can induce rotations
about all axes using phase, amplitude and frequency of the applied drive.

2.2 Circuit QED

In quantum optics the studies of interactions between atoms and electromagnetic fields
in high quality cavities, so-called cavity QED, lead to observation of various phenomena
and also to applications in quantum information processing [18].

As the interaction strength between an atom and the free space vacuum field is weak,
the idea of caity QED is to reduce the mode volume and therefore increase the field
strength by placing the atom inside a high quality cavity. This leads to an altered sponta-
neous emission rate of the atom as the cavity supports only a discrete number of modes.
If the resonance frequency of the cavity is far detuned from the transition frequency of
the atom the spontaneous emission is inhibited [29], whereas if the cavity is on resonance
with the atom the spontaneous emission is enhanced by the Purcell effect [30]. Besides
this, the vacuum fluctuations inside the cavity also induce a shifting of the atomic levels
known as the Lamb shift [31].

The idea of realizing a cavity QED system on a chip, using the qubit as an artificial
atom and a one-dimensional transmission line resonator was proposed in 2004 [19] and
has first been realized by A. Wallraff et al. [20] in Yale.

2.2.1 Jaynes-Cummings Hammiltonian

In circuit QED photons are coupled to the qubits by connecting the qubit to a coplanar
transmission line resonator. Such a transmission line resonator can be realized in an on
chip architecture and approximately be treated as a one-dimensional resonator. In the
picture of lumped elements one deals with a chain of infinitesimally small capacitances
and inductances, which can be approximated by a simple LC circuit, if the system is

11



2 SUPERCONDUCTING QUBITS AND CIRCUIT QED

Cg

L C

Figure 9: A transmon capacitively coupled to a harmonic oscillator.

considered to be close to resonance. This approximation is justified as later only systems
where the qubit is far detuned from all but one mode of the resonator are considered.

If the qubit is now capacitivly coupled to the resonator (Fig. 9) the Hamiltonian of
the system can be approximated by

Ĥ =
Q̂2

2C
+

Φ̂2

2L
− EC

2
(1− 2(Ng +N qm

g ))σ̂x −
EJ
2
σ̂z, (34)

where N qm
g denotes the quantum fluctuations of charge on the gate capacitor. The first

two terms describe the harmonic oscillator approximated by the total capacitance C and
the total inductance L and the other two are given by the two state approximation of the
qubit (Eq. (26)).

We can express the quantum fluctuations of the charge on the gate capacitor by writing
V̂ = Q̂/C in terms of the creation and annihilation operators (Eq. (6)), which gives

N qm
g =

Cg
2e
V̂ qm =

Cg
2e

√
~ωr
2C

(â† + â). (35)

Now choosing Ng = 1
2

leads to

Ĥ = ~ωr
(
â†â+

1

2

)
+
EC
2

Cg
e

√
~ωr
2C

(â† + â)σ̂x +
EJ
2
σ̂z, (36)

where we now introduce the qubit raising and lowering operators σ̂+ and σ̂−, defined as

σ̂+ |g〉 = |e〉 , σ̂− |e〉 = |g〉 , σ̂x = (σ̂+ + σ̂−). (37)

Using the new operators and applying the rotating wave approximation where high
frequency oscillations are neglected, we end up with the full Hamiltonian

Ĥ = ~ωr
(
â†â+

1

2

)
+ ~g

(
â†σ̂− + âσ̂+

)
+

~
2
ωqσ̂z, (38)

with coupling constant ~g = Cg
CΣ
e
√

~ωr
2C

and qubit frequency ωq = EJ/~.

In this context applying the rotating wave approximation removes terms which do not
conserve the total number of excitations, meaning they would either excite or destroy
excitations in both the qubit and the resonator. This approximation holds as long as
|ωr − ωq| � ωr + ωq and g � ωr, ωq.

12
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Considering a transmon qubit the two state approximation is no longer sufficient and
one has to take higher levels into account. In this case the Jaynes-Cummings Hamiltonian
is given by [28]

Ĥ = ~
∑
i

ωi |i〉 〈i|+ ~ωrâ†â+ ~
∑
i

gi,i+1

(
|i〉 〈i+ 1| â† + h.c.

)
, (39)

now written in the basis of the uncoupled transmon states |i〉.
The interaction term of the Hamiltonian shows that we can swap excitations between

resonator and qubit states, if the system is in the strong coupling limit g � κ, γ where
the coupling is much stronger than the photon decay rate κ and the decay rate of the
qubit γ. In this case the two subsystems cannot be seen as individual systems anymore
but hybridize and form so-called dressed states. This can be seen by diagonalizing the
Jaynes-Cummings Hamiltonian in the two state approximation, where it has an analytic
solution. The interaction term only couples the states |e, n〉 , |g, n+ 1〉 such that the
Hamiltonian (Eq. (38)) can be written in this basis, given by the matrix(~

2
(ωr(2n+ 1) + ωq) ~g

√
n+ 1

~g
√
n+ 1 ~

2
(ωr(2(n+ 1) + 1)− ωq)

)
, (40)

which has the eigenvalues

E1/2 = ~ωr(n+ 1)± ~
2

√
∆2 + 4g2(n+ 1), (41)

where ∆ = ωq − ωr. The corresponding eigenvectors are then given by

|−, n〉 = sin θn |e, n〉+ cos θn |g, n+ 1〉 ,
|+, n〉 = cos θn |e, n〉 − sin θn |g, n+ 1〉 , (42)

where

tan θn =
2g
√
n+ 1√

∆2 + 4g2(n+ 1) + ∆
. (43)

In the special case that the qubit and the resonator are on resonance ∆ ≈ 0 these two
eigenstates reduce to

|−, n〉 =
1√
2

(|e, n〉+ |g, n+ 1〉) ,

|+, n〉 =
1√
2

(|e, n〉 − |g, n+ 1〉) .
(44)

These so-called polariton states which are separated by 2~g
√
n+ 1 (see Fig. 10a)) can

experimentally be seen in a resonant vacuum Rabi mode splitting [32].

2.2.2 Dispersive regime

In the case where the qubit is far detuned from the resonator, such that g � |∆|, we are
in the dispersive limit. In that case excitations cannot be exchanged between the qubit

13
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Figure 10: The bare (black) and dressed (green) states of the Jaynes-Cummings ladder a)
for ∆ = 0, where we can observe vacuum rabi oscillations and the formation of polariton
states and b) for g � |∆| where the corresponding energy levels are shifted with respect
to the qubit state.

and the resonator but the energy levels are subject to a shift dependent on the state of
qubit or resonator, respectively. The Hamiltonian for such a decoupled system can be
approximated by [19]

Ĥ ≈ ~
(
ωr +

g2

∆
σ̂z

)
â†â+

~
2

(
ωq +

g2

∆

)
σ̂z. (45)

The second term in this expression shows that the qubit transition frequency is shifted
ω̃q = ωq + g2

∆
, which is due to the Lamb shift [33]. The first term explains the AC-Stark

shift, as it shifts ω̃q depending on the photon number â†â if the resonator is assumed to
be at its bare frequency. On the other hand this can be viewed as qubit dependent shift
of the harmonic oscillator frequency ω̃r = ωr + ωq + g2

∆
σ̂z (see Fig. 10b)).

This effect is one of the big advantages of such circuit QED systems, as it allows to
perform quantum non-demolition measurements on the qubit state. This means that we
can determine the qubit state by a projective measurement without disturbing it. For
such measurements we can use the fact that σ̂z is correlated with the qubit state, and
therefore the shift of the resonator frequency provides information about the qubit state.
This shift can be seen in amplitude as well as in phase measurements, a theoretical result
of such measurements is shown in Figure 11. In practice we probe the resonator at the
frequency ω = ωr − χ (χ = g2

∆
) corresponding to the groundstate. If the qubit is then

excited into the |e〉 state the amplitude and the phase of the transmitted signal changes.
Such measurements are therefore often called dispersive readout.
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Figure 11: The dispersive shift a) of the amplitude peak of the transmission and b) of the
phase shift.

3 Photon shaping

The process of photon shaping denotes the generation of single photons with given shape
of its waveform. This shape is determined by the probability, that the photon emitting
process takes place as a function of time. This means, if we deal with a simple sponta-
neously decaying two level system, the emitted photon will always have an exponentially
decaying shape, as the intrinsic decay occurs randomly with a probability distribution
exponential in time, with time constant T1.

The reason for investigating ways to alter the shape of such photons lies in the possible
applications for quantum communications, namely the realization of quantum networks
[1]. In order to realize such networks it is crucial to achieve quantum state transfer
with unit efficiency, allowing to entangle distant nodes and also teleportation of quantum
states [36]. In general photons are well suited to be used as flying qubits, as they allow for
fast and state preserving transfer, even over longer distances. However the spontaneous
emission of a two level system is irreversible, resulting in an absorption efficiency of
maximally 54% [37]. The basic idea to get to higher efficiency presented by Cirac et
al. in [23] is, that the time reversed process would theoretically allow to absorb the
photon with unit efficiency. This means if we could create a photon with exponentially
increasing shape and apart from that equal characteristics, it would mimic the reverse
of the emission and therefore be absorbed with unit probability. Thus it is necessary
to alter the emission process to reach the required efficiency in coherent state transfer,
as we cannot manipulate the photon and change its shape when it is already in flight.
The goal is to get a photon with a symmetric time shape as this is equivalent to time
reversing the process, if emitting and absorbing cavities have the same characteristics.
Such a system has already been realized using atoms in optical cavities, although still
limited in efficiency [38].

Photon shaping methods using circuit QED have also recently been proposed and
realized, based on tunable coupling either between the resonator and the Transmission
line [39, 40] or between the qubit and the resonator [41, 42]. Both use tunable SQUID
loops to realize the variable coupling. In this work we choose a different method based
on a tunable coupling between resonator and qubit, induced by a phase- and amplitude-
modulated microwave signal [43]. In contrast to the aforementioned schemes, our method
does not require tunable elements, but instead the shaping is fully controlled by the
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Figure 12: a) Schematic drawing of the photon shaping method, indicating Jaynes-
Cummings coupling g and the applied microwave drive Ω. b) The effective coupling
induced by the drive and the single photon decay shown in the rotating frame of the drive
frequency.

amplitude and phase of the applied microwave drive. This has the advantage that the
Josephson inductance is kept constant, which otherwise leads to frequency shifts that need
to be corrected to gain full control over phase and envelope of the photon. Therefore,
schemes utilizing tunable Josephson inductances require an additional tunable parameter
to allow to correct for the frequency shifts.

3.1 Microwave induced second order coupling

In our scheme we make use of a second-order process, using a microwave signal to drive
the transition between the |f0〉 and |g1〉 state as illustrated in Fig. 12. This introduces an
effective coupling between the qubit and the resonator, allowing to control the emission
of the photon. The system is operated in the dispersive regime |∆| = |ωq −ωr| � g, such
that no energy is coherently exchanged between qubit and resonator in the absence of a
drive. Driving the qubit at a frequency ωd = 2ωq + α− ωr given by the energy difference
between the states |f0〉 and |g1〉, introduces an effective second order coupling between
these states.

Using creation and annihilation operators for the transmon given by b̂ = |g〉 |e〉 +√
2 |e〉 〈f | +

√
3 |f〉 〈h| + ..., we can rewrite the transmon-resonator Hamiltonian (Eq.

(39)) as follows

Ĥ

~
= ωq b̂

†b̂+
1

2
αb̂†b̂†b̂b̂+ ωrâ

†â+ g
(
b̂â† + b̂†â

)
+

1

2
Ω0(t)

(
ei(ωdt−φ(t))b̂+ e−i(ωdt−φ(t))b̂†

)
,

(46)
now including the applied drive with phase φ(t) and amplitude Ω0(t), slowly varying in

time. Applying the unitary transformation Û = eiωd(b̂†b̂+â†â) we can look at the Hamilto-
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nian in the reference frame rotating at the frequency ωd, using Eq. (32)

Ĥr

~
= δq b̂

†b̂+
1

2
αb̂†b̂†b̂b̂+ δrâ

†â+ g
(
b̂â† + b̂†â

)
+

1

2
Ω0(t)

(
e−iφ(t)b̂+ eiφ(t)b̂†

)
. (47)

The transition frequencies of the qubit and the resonator in the rotating frame are given
by δq = ωq − ωd = −∆− α and δr = −2∆− α. In this rotating frame, |f0〉 and |g1〉 are
resonant, whereas |e0〉 and |e1〉 are detuned by ∆ and −∆− α and thus far off resonant.
This allows to restrict the system to a two level subspace consisting of the states |g〉
and|f〉, by adiabatically eliminating the |e〉 states, as they are not populated by the off-
resonant drive. The resulting system possesses an effective second-order coupling g̃(t),
which can be approximated using perturbation theory [44]

g̃(t) =
1√
2

gα

∆(∆ + α)
Ω0(t)eiφ(t). (48)

Using this effective Jaynes-Cummings type coupling we can write down the effective
Hamiltonian of the system [43]

Heff = ∆f0g1(t) |f〉 〈f |+ g̃(t) |f0〉 〈g1|+ h.c., (49)

where only the difference between the AC stark shifts ∆f0g1 of the states |f0〉 and |g1〉
dependent on the drive is kept. This factor is to leading order quadratic in the drive
strength ω0 [43] and needs to be calibrated for the experiments.

As the effective coupling g̃(t) is proportional to the amplitude and phase of the applied
drive, it is fully tunable by the microwave drive signal. Therefore, it is now possible with
this scheme to generate shaped photons by controlling the population of the |g1〉 state,
which then decays into the |g0〉 state via emitting a photon. For a detailed discussion
about the constraints on the drive see Sec. 6.2.

Besides the scheme that has been described above, we also realized photon shaping
using a first order coupling by tuning qubit and resonator into resonance. The drive is
then applied between the |f0〉 and one of the polariton states |1,−〉 , |1,+〉.
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4 MEASUREMENT SETUP

4 Measurement setup

The final goal of this experiment is to emit a shaped photon and reabsorb it with another
sample, realizing a state transfer between two distant nodes. Therefore two identical
samples consisting of a resonator and a qubit are needed, connected in a way that it is
possible to efficiently exchange a photon. To understand what happens if we couple two
resonators directly, or using a transmission line, we consider some theoretical estimations.

4.1 Two directly coupled resonators

First we look at a system consisting out of two directly coupled resonators as shown in
Fig. 13.

C1 C2/2 C1

Figure 13: Two directly coupled resonators.

The resonance frequencies of a system are in general given by the divergences of the
frequency dependent impedance Z(ω). To calculate the impedance of the given system
we can make use of the symmetry by splitting the center capacitance into two equal
capacitors, calculating the impedance by only looking at the first half of the system. In
addition we consider even and odd solutions separately, leading to two distinct cases. For
the odd solutions the standing waves have a voltage node at the center point between the
resonators and the system can be assumed to be connected to ground, on the other hand
for the even solutions the standing waves have a current node at the center point and the
two halfs can be considered to be disconnected from each other, see Fig. 14.

C1 C2

C1 C2

Figure 14: The two cases for two directly coupled resonators: upper one connected to
ground (odd solutions), lower one to an open output (even solutions).

In general the impedance of a capacitor is given by

ZC(ω) =
1

iωC
(50)

and for a lossless transmission line, which is connected to ground via an impedance Z ′ we
get

ZT (ω) = Z ′
1 + iZ0

Z′
tan
(
ω
v
l
)

1 + iZ
′

Z0
tan
(
ω
v
l
) , (51)
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where v is the propagation velocity in the transmission line, l denotes the length of the
resonator and Z0 = 50 Ω the characteristic impedance of the line. Note that we consider
the system without impedance matched 50 Ω input- and output-ports, which means that
we neglect dissipation here.

4.1.1 First case: connected to ground

Looking at the impedances with respect to the point between the transmission line and
C2, denoting them Z1 and Z2, we get the following condition for resonances

1

Z1

+
1

Z2

=
1

Ztot

Ztot→∞−−−−−→ 0 =⇒ Z1 = −Z2. (52)

Using Eqs. (50) & (51) leads to the following relation

− 1

iωC2

=
1

iωC1

1− Z0ωC1 tan
(
ω
v
l
)

1 + 1
Z0ωC1

tan
(
ω
v
l
) =

1− Z0ωC1 tan
(
ω
v
l
)

iωC1 + i 1
Z0

tan
(
ω
v
l
) . (53)

As the left-hand side is connected to an open output we take the limit of ωC1 → 0 and
get

− 1

iωC2

=
1

i 1
Z0

tan
(
ω
v
l
) . (54)

Now we substitute ω by ω0
r+δω where ω0

r denotes the bare resonance frequency without
coupling to a second resonator, leading to

− 1

i(ω0
r + δω)C2

=
1

i 1
Z0

tan
(
ω0
r+δω
v

l
) ≈ 1

i 1
Z0

(
δω
v
l
) . (55)

Where we used that ω0
r = v/l π and tan(x) ≈ x, for x � 1. Using some algebra we can

finally find an expression for the frequency shift δω due to the coupling

δω = − Z0ω
0
rC2

l
v

+ Z0C2

. (56)

4.1.2 Second case: connected to an open output

In the second case the transmission line is not connected to the ground but to an open
output on both sides. Thus Z2 →∞ and we have to search for solutions where ZT (ω)→
∞ for Z ′ →∞. Considering Eq. (51) this limit gives

ZT (ω) =
1 + iZ0

Z′
tan
(
ω
v
l
)

1
Z′

+ i 1
Z0

tan
(
ω
v
l
) ≈ Z0

i tan
(
ω
v
l
) , (57)

from where it is obvious that ZT (ω)→∞ for ω
v
l = nπ with n ∈ N.
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4.1.3 Comparing with simulations

Now we can calculate the effect of the coupling on our system of two identical resonators,
plugging in the values of one of our test sample for the setup, given in Table 1. The
derived formulas give a resonance frequency of νr = 7 GHz for the first even mode (n = 1
in Eq. (57)) and a shift of the resonance frequency of the odd mode due to the coupling
of δνr = 229.55 MHz (Eq. (56)).

C1 4.84352 pF
C2 48.4352 pF
l 0.015 m
v 2.1×108m/s
ω0
r 7 GHz
Z0 50 Ohm

Table 1: Designed values for an asymmetric resonator sample.

To check the validity of our approximations we compare the results with simulations
of the system using Microwave Office and also using the ABCD-matrix formalism in
combination with Mathematica.

For the simulation with Microwave Office the distance between the two maxima
amounts to δνsimr = 228.6 MHz, showing that the difference between the analytical cal-
culation and the simulation is below 0.5%. But in contrast to our approximations the
resonances in the simulations are in total shifted to lower frequencies (Fig. 15), leading
to a resonance frequency of νsimr = 6.9861 GHz for the bare resonance frequency. This is
due to the fact that we have considered the resonator to be connected to an open output,
whereas in the simulations the system is connected to ground via a 50 Ohm impedance.

For the simulation with ABCD-matrices in Mathematica the frequency shift is given
by δνsimr = 227.25 MHz, which is still in good agreement with our calculations. Also here
the bare resonance peak is not located at 7 GHz but at νsimr = 6.976 GHz.

In fact using the slightly shifted bare resonance frequencies as initial values in the ap-
proximation gives even better results for δνr with respect to the values of the simulations.
This shows that our approximation is in good agreement with both simulations and thus
the given estimate is sufficient for the regime we are interested in.

4.2 Two resonators coupled through a transmission line.

In the experiment we want to realize the transfer of a shaped photon between two sepa-
rated samples, therefore we would not directly couple the two resonators, but use coaxial
cable to transmit the photon. This coaxial cable acts as a transmission line between the
two resonators and thus we have to consider the corresponding circuit shown in Fig. 16.

To estimate the resonances in this case, we again look for a symmetric situation which
can be achieved by splitting the middle transmission line into two equally long pieces. As
before we consider only one half of the symmetric circuit and distinguish the cases for
odd and even solutions, which leaves us with the two circuits shown in Fig. 17.
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Figure 15: Simulation of two coupled capacitively resonators using: a) Microwave Office,
b) ABCD-matrix formalism.

C1 C2l1 2 l2 C2 l1 C1

Figure 16: Two identical resonators coupled through a coaxial cable.

4.2.1 First case: connected to ground

As we have seen in the case of two directly coupled resonators the impedance of a trans-
mission line connected to an open output is approximately given by (see Eq. (54))

Z(ω) ≈ −iZ0 cot
(ω
v
l
)
. (58)

Whereas the impedance of a transmission line connected to ground can be approximated
by taking the limit of Z ′ → 0 in Eq. (51), which leads to

Z(ω) ≈ iZ0 tan
(ω
v
l
)
. (59)

Therefore, calculating the impedance at the point between the first transmission line
and C2 leads to

− iZ0 cot
(ω
v
l1

)
= − 1

iωC2

− iZ0 tan
(ω
v
l2

)
. (60)

C1 C2l1 l2

C1 C2l1 l2

Figure 17: The two cases for two resonators coupled through a transmission line: upper
one connected to ground (odd solutions), lower one to an open output (even solutions).
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4.2.2 Second case: connected to an open output

In this case we calculate the impedance at the same point as for the first case, but this
time the right transmission line is also connected to an open output, which gives

− iZ0 cot
(ω
v
l1

)
= − 1

iωC2

+ iZ0 cot
(ω
v
l2

)
. (61)

4.3 Comparison to measurements and simulations

This estimations show that such a system can have more resonances as the coaxial cable
also acts as a resonator.

To see if we can validate the estimations we also did some measurements of such a
system at 4 K in a bath of liquid Helium using a dipstick. For the measurement we
used two identical, asymmetric resonators connected at the strongly coupled ports using
a coaxial cable. Probing the system in transmission we found in contradiction to our
expectations not only two resonance peaks around the expected position but three (Fig.
18). The first idea was that this must be due to the coaxial cable working as a third
resonator with a resonance frequency right in between the other two resonances and
indeed choosing a much shorter cable lead to the case of only two separated resonance
peaks.
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Figure 18: Measurement of two resonators connected with a coaxial cable (blue),
Lorentzian fit (red).

To be able to estimate the resonance frequencies we need to know the length of the
transmission lines l1 and l2. As we now want to be able to compare the theoretical
estimation with the actual measured data, we cannot rely on the designed length and
resonance frequency of the resonator, but have to find a realistic value for l1 in terms of
the measured resonance frequency.

We can estimate l1 by comparing the measured resonance frequency of just the res-
onator with a simulation in Microwave Office, where we vary the length of the resonator
such that we get the corresponding frequency. The measured resonance frequency we
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Figure 19: Lorenzian fitted to the measurement data (grey line indicates resonance fre-
quency).

get from fitting a Lorentzian to our data and determining the maximum position is
νmeas = 7.15323 GHz (Fig. 19).

If we now simulate the resonator connected to ground via matched 50 Ohm impedances
in Microwave Office we can approximate the physical length by comparing the resulting
resonance frequency to νmeas, which gives l1 = 0.0141 m.

To determine the length of the cable we measured the group delay of the cable and
used this to calculate the physical length, resulting in l2 = 0.0749 m.

First simulations using l2 show that the resonances we get are lower than expected
from the measurement (Fig. 18), but as l2 is determined at room temperature and without
the dipstick we have some uncertainty in the actual length of the cable. Therefore we
simulate the transmission for varying l2 using ABCD matrices in Mathematica. From
the plot in Fig. 20 we can see that 2 × l2 ∈ [0.146 m, 0.147 m] would give some results
comparable to the actually measured data, meaning that the resonance of the cable is
around νr ≈ 1.43 GHz.

Simulations with Microwave Office also show that νr ≈ 1.431 GHz is a reasonable
choice in comparison to the measurement data, which corresponds to l2 ≈ 0.0734 m. The
approximated length is 1.5 mm shorter than the actual measured one, corresponding to a
difference of 2%, which seems realistic as the measurements of the resonators were taken
at 4 K instead of room temperature.

ν
(1)
r [GHz] ν

(2)
r [GHz] ν

(3)
r [GHz] δω12[MHz] δω23[MHz]

measurement 7.023 7.138 7.219 115 81
Microwave Office 7.021 7.151 7.241 130 90

Mathematica 7.021 7.151 7.242 130 89
theo. approx. 7.030 7.175 7.257 145 82

Table 2: Resulting resonance frequencies and spacing between them.

Having determined the length of the transmission line, we are now able to compare our
measurements with simulations and the theoretical approximations derived earlier. The
results of the simulation in comparison to theoretical approximation and measurement
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Figure 20: Transmission with as a function of frequency and l2.

results are shown in Tab. 2. For the values of the theoretical approximation we used
Mathematica to find the corresponding roots of the derived impedance.

Again we can see that the theoretical estimation gives in general higher frequencies.
This is, as mentioned earlier, due to the fact that for our calculations we assume the
circuit to be connected to an open output, whereas in the simulations it is connected to
impedance matched ports.

Keeping in mind that we know the actual parameters of the measured circuit only
approximately, the results show that the theoretical approximation as well as the simula-
tions are able to describe the general behavior of the frequency spectrum and that both
types of simulations give comparable results.
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4.4 Circulator setup

For the planned experiment we actually want to avoid a direct coupling of the two res-
onators and thus a hybridization of the two systems, as we want to transmit a photon
between two independent but identical subsystems. Therefore a circulator is introduced
in the middle of the connecting transmission line, allowing only transfer of photons in
a certain direction. This setup is chosen as it also allows to probe the whole system in
reflection using only one measurement channel. A schematic drawing of the setup can be
seen in Fig. 21.

1

2 3

input/output

QA QB

Sample A Sample B

Figure 21: Circulator setup for measuring both resonators through one port.

4.4.1 Reflection measurement

Due to the chosen setup it will only be possible to measure in reflection. As this types
of measurement are not very common in our laboratory we present some theoretical
estimations using the input-output formalism to get an idea of what to expect.

First we look at a system as shown in Fig. 22, where a resonator coupled to a qubit
is measured in reflection.

Within the input-output formalism [45], the time dependent field in the cavity is given
by

ȧ = −iωra−
√
κain −

κ

2
a− igb, (62)

where g is the coupling constant between resonator and qubit and b describes the filed
due to the qubit, given by

ḃ = −iωqb− iga. (63)

By Fourier transforming these equations we get the following matrix equation(
i(ωr − ω) + κ

2
ig

ig i(ωq − ω)

)(
a
b

)
=

(
−√κain

0

)
. (64)
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4 MEASUREMENT SETUP

a

κain

aout
Qubit, b

Figure 22: Reflection measurement of a resonator including one qubit.

Figure 23: Simulation of reflection measurement in phase of a resonator coupled to a
qubit as a function of probe signal and qubit frequency.

Using the relation between internal and external fields

aout =
√
κa+ ain (65)

we can calculate the reflection coefficient

r =
aout
ain

=

√
κa+ ain
ain

=
ωr − ω + g2

ω−ωq + iκ
2

ωr − ω + g2

ω−ωq − i
κ
2

. (66)

For the simulations we choose g/2π = 50 MHz, κ/2π = 20 MHz and ωr/2π = 7 GHz,
which is in the order of our sample’s parameters. In order to see what to expect from a
measurement we can sweep the probe frequency ω and the qubit frequency ωq and look
at the density plots of the reflected signal in phase, amplitude, I and Q. The result in
Fig. 23 shows that we can clearly see an anti-crossing in phase and both quadratures but
not in amplitude, which is due to the fact, that everything gets reflected. Also we can see
that when crossing the resonance the phase wraps around by 2π.
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Now we can look at the simulation of the actual planned measurements with the setup
shown in Fig. 21. For this, we fix the frequency of the first qubit to ω/2π = 8 GHz and
sweep the frequencies of the probe signal and the second qubit. Since the resonators in
our setup will not be coupled, the phase of the measurement signal is given by the sum
of the phases acquired by the signal upon reflection at both resonators individually. As
presented in Fig. 24 the simulations show that it is possible to measure both resonators in
reflection and that one expects a phase jump 2× 2π if both resonators are on resonance.
Another important aspect is, that it is clearly possible to observe the crossing of only one
of the qubits if the frequency of the other qubit is far detuned.

Thus we can conclude that it is possible to carry out all measurements in reflection
that are required for characterization of the individual samples as well as for the actual
experiments with both samples.
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Figure 24: Simulations of reflection measurements of the actual planned setup, a) density
plot of the phase of the reflected signal as a function of probe signal and qubit frequency
and b) first slice of the density plot, clearly showing the phase jump of 4π.

4.4.2 Dipstick measurements

In order to check that if the circulator setup would work in principle, we first tested it in
a dipstick measurement at 4 K with the two identical resonators already used for testing
the coupling (see Sec. 4.3). The results show that we can see both resonators in reflection
measurements if we look at the phase of the signal. For each resonator we expect a phase
jump of 2π on resonance and indeed we can see a 4π phase jump if we measure in reflection
as shown in Fig. 25.

4.5 Setup inside the dilution refrigerator

In order to operate systems such as those used in this experiment quantum mechanically
we need to avoid dissipation, which is one reason for using superconducting materials.
Another important point is, that we need to isolate our system from the environment,
meaning we need to decouple the qubit from all classical elements, e.g. current sources,
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Figure 25: Phase and amplitude of the reflection measurement of the circulator setup.
Clearly visible the expected phase jump of 4 π.

cables, etc. In our circuit QED design this decoupling is taken care of by the capacitative
coupling of the qubit to the resonator, which acts as a resonant impedance transformer
and allows to control the spontaneous emission due to vacuum fluctuations, as discussed
above.

Finally we need to operate the system at low temperatures to avoid thermal excitations
of the energy levels. We can estimate the characteristic temperature corresponding to
νq = 8 GHz to be T ≈ 380 mK. To avoid thermal population of the higher energy level in
the qubit we therefore need to stay well below this temperature. The thermal population
can be approximated by the Bose-Einstein distribution

< nth >=
1

e
hν
kBT − 1

. (67)

For T = 40 mK and νq = 8 GHz this gives a thermal population of the |e〉 state of
around 6.8 ·10−5. To achieve the required temperature the whole setup needs to be placed
inside a cryogen-free dilution refrigerator, which uses a pulse tube refrigerator to precool
the Helium mixture. With our system we can cool the setup down to base temperatures
below 40 mK.

To achieve such temperatures the wiring inside the refrigerator needs to be well ther-
malized at each temperature stage and the material has to be chosen such that the heat
load on the lower plates is sufficiently low. Besides the thermal heat transfer of the cables
we also want to reduce the Johnson-Nyquist noise due to thermal excitation of electrons
inside the cables. Therefore one applies the signals at room temperature with much higher
power than actually needed, such that the signal is well above the noise level. Inside the
refrigerator the lines are then attenuated at different temperature stages in order to get
the required low power signal at the sample. This allows to reduce the Johnson-Nyquist
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Figure 26: Comparison of the new built ECCOSORB filter and the already installed (old)
one.

noise by thermalizing the center conductor and the field propagating in the coaxial ca-
bles to a low temperature. Thermally connecting the cable alone to the low temperature
stages is not sufficient since it only allows us to thermalize the outer conductor due to the
thermal conductance of the dielectric being very low.

In addition to the attenuators the input lines going to the sample are further attenuated
by low-pass filters made out of ECCOSORB CR-124 [34], an absorptive epoxy material.
In order to built these filters a piece of the dielectric in an SMA connector is replaced
with ECCOSORB which has a frequency dependent attenuation, starting at 10 MHz and
increasing with frequency. Thus it acts as a low pass filter serving to attenuate infrared
radiation from the room temperature environment at higher frequencies, which lie outside
of the working band of the standard attenuators.

To get two identical gate lines, we had to modify a former fluxline by changing some
attenuators and adding an ECCOSORB filter. Several ECCOSORB filters were built to
finally choose one that is closest to the filter already installed in the other gate line. In
Fig. 26 VNA measurements of the new and the already installed filter are shown and it
can be seen that they are in good agreement regarding their characteristics.

As the samples are very sensitive to magnetic fluxes one important part is the shielding
of the samples with respect to static and slowly varying magnetic fields. Therefore the
sample is surrounded by two layers of magnetic shielding made out of mu-metal with a
high permeability, which effectively provides a path for the magnetic field lines leading
around the surrounded area. This reduces the magnetic field by about a factor of104.

For the installation of the new parts for our two sample setup it is important that the
circulator is placed outside of the magnetic shielding of the sample, as it contains ferrite
material. This sets a lower limit for the cable length between sample and circulator, which
is about 25 cm, leading to a distance of ≈ 0.5 m between the two samples. In order to
ensure the thermal anchoring the circulator is mounted to the base plate using a copper
plate. The mounting of the circulator can be seen in Fig. 27

The two samples are mounted on half PCBs to allow for flexibility of only changing
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Figure 27: The circulator mounted to the base plate with the input/output line connected
to port 3 and the cables connecting the samples entering the magnetic shieldings.

one of the installed samples. Below the sample holder a small and a big coil are mounted
to allow control of the fluxes through each of the qubits’ SQUID loops. A picture with
the components of the sample holder is shown in Fig. 28.

To get a signal with a good signal to noise ratio we need to amplify the output
of the resonator. This is achieved using a quantum limited Josephson Parametric Dimer
amplifier (JPD) [35] that is operated at base temperature. It is mounted in its own sample
holder together with a coil to realize tunability and surrounded by a single magnetic shield.
Due to the narrow bandwidth it is important to accurately calibrate the amplifier such
that it operates at the frequency of the output signal, at which a gain of 20 dB can
be reached. Although the JPD is operated in reflection, the measurements are phase
preserving.

After amplification in the JPD the signal passes through an isolator, a component
consisting of a circulator with one port terminated at 50 Ω such that it transmits the
signal only in one direction and thus prevents the coupling of high temperature modes to
the sample and the JDP. In addition to this the isolator is followed by a bandpass filter
with a bandwidth of 4-8 GHz, which also strongly attenuates signals that are outside
the frequency range of our devices. After passing these two filters the signal is further
amplified by a low noise high electron mobility transistor (HEMT) amplifier at the 4K
plate, which provides an additional gain of 40 dB.

Besides the RF cabling also some DC lines are needed for the coils that are used to
apply B-fields to the samples and the JPD as well as for the HEMT amplifier.

The complete configuration of the wiring inside the refrigerator is shown in Fig. 29.

4.6 Room temperature electronics

To be able to apply and measure microwave signals on the various in- and output-ports
one also needs various components outside of the fridge. The signals are generated with
Microwave Generators (MG) and then modified (attenuated, amplified, frequency-mixed)
according to the port they are connected to and the planned measurements. In general
attenuators are also used outside the fridge as they help to reduce standing waves due to
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Figure 28: PCBs mounted to the bottom of the sample holder (left), upper part of the
sample holder (right) and the cover for the PCBs (middle)

impedance mismatches of the various components.
As we want to measure in reflection we need to split the signal of the MG connected

to the resonator input to get a phase reference signal. This is necessary because the phase
of the MG is randomized as soon as we change the frequency of the applied tone.

To be able to apply arbitrary pulses to the qubit gate lines we need IQ-mixers, which
modulate the signal of the local oscillator (LO) by the applied I and Q quadratures. The
output of such a mixer is given by

<
[
(I(t) + iQ(t))eiωLOt

]
= I(t) cos(ωLOt)−Q(t) sin(ωLOt) (68)

Choosing I(t) = AI cos(ωIF t + ϕI) and Q(t) = AQ cos(ωIF t + ϕQ) we get for the output
signal

SRF =AI cos(ωIF t+ ϕI) cos(ωLOt)− AQ cos(ωIF t+ ϕQ) sin(ωLOt)

=
1

2

[
AI cos(ω+t+ ϕI)− AQ sin(ω+t+ ϕQ) + AI cos(ω−t− ϕI)− AQ sin(ω−t− ϕQ)

]
,

(69)

showing that we get two sidebands at ω± = ωLO ± ωIF . It also shows that either one
of the sidebands can be canceled out by choosing the phases to be ϕI = 0, ϕQ = π

2
for

cancellation of the right and ϕI = π
2
, ϕQ = 0 for cancellation of the left sideband.

This procedure is often referred to as upconversion, as the low frequency modulations
of I and Q are mapped to the high frequency LO signal. In reality the sideband cancellation
is often not perfect for the discussed phase values, therefore the signal is split after the
mixer to get a signal for calibrating phase and amplitude of I and Q for each sideband. In
addition also the LO leakage can be calibrated by adding a constant offset to the I and Q
signals, which are generated by an Arbitrary Waveform Generator (AWG). By loading the
corresponding waveform patterns into the AWG the mixer allows us to apply arbitrary
shaped pulses to the gate lines. In particular we are interested in applying gaussian pulses
to drive qubit transitions. Depending on the actual configuration of the gate lines and
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the sample parameters it can be necessary to amplify the signal after the mixer to get
enough power to drive e.g. second order transitions in the qubit.

Besides the shaped pulses it is also possible to use markers of the AWG to gate a MG
to obtain a square pulse witha few ns rise time.

In order to measure the signal coming from the fridge we need to use again an IQ-
mixer to perform a downconversion of the signal to a lower intermediate frequency (IF)
of 25 MHz such that the analog to digital converter (ADC) can digitize the signal at
a rate of 100 MS/s. The signal is then processed by a field-programmable gate array
(FPGA) programmed to average, filter and process the data according to the measurement
settings chosen on the measurement computer. The whole experiment is controlled using
a Labview-based program called ”CleanSweep”, continuously improved and extended in
the laboratory. It allows to modify all the settings of the MG’s and to load patterns into
the AWG, as well as to choose different measurement modes, number of averages and coil
voltages. To control the timing of the various components all measurements are triggered
by the AWG.

As the number of MG’s and measurement channels is limited we also use switches in
the setup that can be set using the measurement computer. The setup that was used for
the second order process with the latest samples can be seen in Fig. 30.
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Figure 30: Wiring of all components outside the dilution refrigerator.
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Figure 31: A sample glued and wire bonded to one half of a PCB with SMP connectors
for the coaxial lines.

5 Qubit design and life time estimations

One important aspect of the experiment is the design of the samples. On one hand we need
to find a design which provides the right parameters for our experiments and on the other
hand the overall lifetime of the qubit states is affected by the chosen design and needs
to be reasonably high. The important parameters of qubit and resonator determined
by the design and fabrication are the characteristic energies Ej and Ec as well as the
couplings between resonator, qubit and the control lines. Therefore, α, ωmaxq , κ and g are
determined for each sample and cannot be altered during the experiments, at least not in
the designs used here.

In general the samples in our laboratory are all fabricated by members of the group
in the cleanroom facility of the ETH (Swiss federal institute of technology). Our samples
are based on sapphire wafers with a niobium layer on top of it. All structures on the
chip are written in optical lithography, except for the qubits, which are written in the
last step using electron beam lithography and shadow evaporation of aluminum. Finally
the samples are glued and wire bonded to a PCB, which provides the connections to the
coaxial lines. A sample ready to be put in the setup can be seen in Fig. 31.

5.1 Resonator parameters

The chips used for the experiments presented in this thesis were all produced using the
same mask for the optical lithography. Therefore, the parameters and design of the chips
are the same throughout all experiments, whereas the design of the qubit was adjusted
after the first run of experiments.

The design of the resonator was chosen to have a high asymmetry given by an order
of magnitude difference between the two coupling capacitors. The reason for choosing
this asymmetric design is that it ensures that the photon decays mostly into the readout
line of our system. In addition the values of the capacitances are chosen such that the
decay rate κ is high, enabling a fast photon decay. The mask design includes ports on
both sides of the resonator, but since for the experiment only the strongly coupled port is
required, the second port is connected to ground on the PCB using wire bonds. Besides
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C1 3.04 fF
C2 30.44 fF
κ/2π 20 MHz
ωr/2π 7.0 GHz

Table 3: Designed parameters for the resonator.

the resonator the mask design also includes a gate line which is needed to drive the qubit
and a fluxline. The latter can be used to apply flux pulses to the SQUID, allowing for fast
control of the qubit frequency. As our experiments do not require such fast control, the
two coils below the sample holder suffice to control the qubit frequencies. Therefore, the
fluxline is also connected to ground on the PCB using wire bonds in order to minimize the
fluctuations that can be induced by such control lines. The ground planes are connected
using aluminum airbridges and wire bonds in such a way, that no current loop enclosing
the qubit is created on the superconducting chip. A false colored picture of the chip
without the qubit is given in Fig. 32a) and the designed parameters are summarized in
Tab. 3.

5.2 Qubit design

The qubit design for our samples was done using the program Maxwell 3D, which uses
finite elements for numerically solving the Maxwell equations for three-dimensional struc-
tures. The structure can be drawn directly within the program and after specifying the
materials of the different layers one can set up a mesh of electric fields, which is then used
for the simulations. To reliably simulate the system including the different couplings, we
not only take the qubit into account, but also the surrounding area including parts of
the resonator and the control lines. The parameters of the qubit are determined by the
different capacitances, which can be adjusted by varying the size and shape of the differ-
ent components as well as the positions and distances with respect to each other. The
program returns a matrix containing the capacitances between the various parts, which
allows to give an estimate for Ec and g.

5.2.1 Qubit lifetimes

As pointed out, it is important to get an estimate for the qubit lifetimes as these can be
a limiting factor in the experiments. The qubit relaxation time T1 denotes the lifetime of
the |e〉 state due to decay into the ground state. There are several decay channels that
contribute to this decay and it is still not fully understood how large the contributions
of the various channels are. As the sample is placed inside a resonator the spontaneous
emission is altered due to the Purcell effect, which leads to an additional decay rate given
by [28]

γ = κ
g2

∆2
. (70)

Other mechanisms that might contribute to an increasing decay rate are dielectric losses
due to surface interfaces [47] as well as the tunneling of nonequilibrium quasiparticles [48],
which can occur due to an uneven number of electrons or breaking of Cooper pairs due
to non zero temperature.
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Figure 32: a) A false colored picture of the chip, where the position of the qubit is given
by the blue box in the center and the orange boxes indicate which ports are connected
to ground. b) The corresponding labeling of the components in combination with an
equivalent circuit for the qubit resonator system used in this thesis.

Due to fluctuations of the qubit transition frequency the qubit dephases which leads
to decoherence in the system. The coherence time T2 experiences an upper bound due to
the energy losses originating from the qubit relaxation, given by T2 ≤ 2T1. In addition
to this, several sources can induce so-called pure dephasing, for example charge and
flux noises can induce variations of the qubit frequency as well as noise in the critical
current [28]. Furthermore, in addition to the qubit relaxation time the quasiparticle
tunneling contributes also to the dephasing time [49].

To get an upper bound for the T1 time we started by analysing the admittance of
a simplified equivalent circuit of the system to get an idea of the order of κ. We ap-
proximated the qubit as a LC harmonic oscillator and assumed the control lines to be
connected to ground via a matched 50Ω impedance. Finally for the resonator we only
considered the capacitative coupling. A schematic of the simplified equivalent circuit is
shown in Fig. 33.
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Figure 33: Simplified equivalent circuit of the qubit for estimating an upper bound on
the qubit lifetime by analyzing the admittance of the circuit, taking into account the 5
marked nodes.

In order to get the admittance of the circuit we use

Ii =
Vi
Zi

+
∑
i 6=j

Vi − Vj
Zij

= M~V , (71)

where Zi denotes the impedance from node i to ground and Zij the impedance between
the nodes i and j. Therefore, the admittance matrix of our system is given by

Y (ωq + i
κ

2
) =

1

M−1
. (72)

To approximate κ we search for poles of the impedance, i.e. zeros of Y . We do this by
minimizing the absolute square of the admittance at one node of the network

|Yii(ωq − i
κ

2
)|2, (73)

at a given ωq. The inductance L can be approximated by using ωq = 1/
√
LC, giving a

value on the order of several nH. Therefore, we can get an estimate of the life time given
by T1 = 1

2πκ
. However, as we do not take the resonator into account, as well as we assume

that the gate line is not connected, we exclude some prominent decay channels and thus
only get a rough upper bound.

A more appropriate approximation was done using Microwave Office in order to sim-
ulate the equivalent circuit of the qubit including resonator and control lines, shown in
Fig. 32b). Using this circuit we can simulate experimental measurements of the system
by probing the two ports and look at the phase and the amplitude of the measured sig-
nals. Since this gives us an estimate for the linewidth κ of the resonances, we can again
approximate the lifetime. An example for such a simulated phase measurement is given
in Fig. 34.
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Figure 34: Example of a simulation for the equivalent circuit of qubit design 1, the
linewidth for the resonator probe (port2) amounts to 101 kHz.

Design 1 Design 2
Ec [MHz] 379 404
g [MHz] 48 39

T1 [µs](admittance) 23.5 24.0
T1 [µs](Maxwell) 1.58 3.00

Table 4: Designed parameters for the two different qubit designs.

Note that the SQUID loop is approximated as an inductor in the simulations. Further,
the value of Ej and thus also ∆ is determined by the size of the two Josephson junctions
as well as their oxide layer thickness.

For the experiments presented in this thesis we used two slightly different qubit designs.
The second design is chosen to have a lower resonator coupling g and also a higher maximal
detuning from the resonator ∆max, in order to reduce the Purcell decay rate (Eq. (70)),
as this seems to be the main limitation for the relaxation time in our samples.

The simulated characteristic values of both designs as well as the lifetime approxima-
tions of both methods are summarized in Tab. 4. The difference in the two approximations
of the lifetime shows, that for our samples the decay through the resonator is the limiting
factor on the qubit lifetime, which is due to the fact that we have chosen a large decay
rate κ of the resonator to enable for a fast decay of the single photon into the transmis-
sion line. Therefore, we could improve the theoretical T1 time by lowering the coupling g
between the qubit and the resonator.
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a b

aout bin
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Figure 35: Circulator setup described by the fields and couplings within input-output
theory.

6 Simulations with Master equation

Before realizing the setup we first performed some simulations of the system to get an idea
of the possible success probabilities and their dependence on the system parameters. In a
first step we looked at the system using input-output formalism to derive the interaction
Hamiltonian between the two resonators.

6.1 Derivation of the Hamiltonian

We denote the fields in the the resonators with a and b, respectively, and the corresponding
couplings are given by κa, κb, as shown in the Schematic in Fig. 35.

As the input for the second resonator is equivalent to the output of the first, only
delayed by some time constant τ (bin(t) = aout(t− τ)), we can assume bin = aout as long
as we can neglect losses in the cables or the circulator connecting the resonators. As there
will be no microwave tone applied to the resonator a during the photon shaping, the input
field is zero ain = 0 and therefore we have

aout =
√
κaa,

bout = bin +
√
κbb =

√
κaa+

√
κbb = cout.

(74)

The time evolution of the fields in the individual resonators is given by

ȧ =
i

~
[Ha, a]− 1

2
κaa,

ḃ =
i

~
[Hb, b]−

1

2
κbb−

√
κbκaa,

(75)

where we used that ain = 0 and bin =
√
κaa and Ha, Hb denote the Hamiltonian of the

corresponding independent systems.
As we want to realize a perfect state transfer, nothing should be reflected at the

second resonator and therefore in this simplified system we can assume that everything
that would leave the system is dissipated. Later this energy will be used to excite the
second qubit and thus complete the state transfer. For a system including dissipation the
time evolution of an operator X is in general given by
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Ẋ =
i

~
[Hsys, X] + L†XL− 1

2

(
XL†L+ L†LX,

)
(76)

where L is the dissipator. Therefore, we can describe the time evolution of the resonator
fields taking into account the whole dynamics system by choosing L = cout and we get

ȧ =
i

~
[Ha, a] +

i

~
[Hint, a]− 1

2
κaa−

1

2

√
κaκbb,

ḃ =
i

~
[Hb, b] +

i

~
[Hint, b]−

1

2
κbb−

1

2

√
κaκba.

(77)

Here the yet unknown interaction Hamiltonian enters which nwe need to choose to repro-
duce Eq. (75). Comparing Eq. (75) with Eq. (77) leads to

i

~
[Hint, a] =

1

2

√
κaκbb,

i

~
[Hint, b] = −1

2

√
κaκba.

(78)

Choosing the ansatz Hint = λa†b+ λ∗b†a finally gives

− i
~
λb =

1

2

√
κaκbb −→ λ = i

~
2

√
κaκb

i

~
λ∗a =

1

2

√
κaκba −→ λ∗ = −i~

2

√
κaκb

(79)

and we can express the interaction Hamiltonian as follows

Hint = i
~
2

√
κaκb

(
a†b− b†a

)
. (80)

If we also want to include losses in between the two resonators we can assume that
bin = ηaout, meaning that we introduce an additional dissipator L =

√
(1− η2)κaa, which

is equivalent to adding a beamsplitter into the path between the resonators.
Now we can write down the full Hamiltonian of the system including the qubits

H

~
=

∑
i∈{r1,q1,r2,q2}

δia
†
iai +

∑
i∈{q1,q2}

1

2
αia

†
ia
†
iaiai +

1

2

(
Ωi(t)a

†
i + Ω∗i (t)ai

)
+

∑
i,j∈{r1,q1,r2,q2}

gija
†
iaj,

(81)

where gij is given by

gij =


0 g1

i
2

√
κ1κ2 0

g1 0 0 0
− i

2

√
κ1κ2 0 0 g2

0 0 g2 0

 . (82)
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6.2 Drive pulse

Having the Hamiltonian we have to derive the conditions for the drive, such that we
can achieve a perfect transmission of the photon. The derivation of these conditions is
analogous to [23]. The state of the system can be described by

|Ψ(t)〉 = α1(t) |f0g0〉+ α2(t) |g0f0〉+ β1(t) |g1g0〉+ β2(t) |g0g1〉 . (83)

The condition for the perfect state transfer without any reflection can be expressed as
cout |Ψ〉 = 0, which directly leads to the condition β1 + β2 = 0. For now we assume that
the system consists of two perfectly identical resonator-qubit systems, in particular this
means that κ = κa = κb and g1 = g2 = g, also we set ~ = 1. Now we can look at the time
evolution of the system given by

|Ψ̇(t)〉 = −iHint |Ψ(t)〉 , (84)

where

Hint =ig̃1(t)
(
|g〉1 〈f |1 a†1 − |f〉1 〈g|1 a1

)
+ ig̃2(t)

(
|g〉2 〈f |2 a†2 − |f〉2 〈g|2 a2

)
+
i

2
κ
(
a†1a2 − a†2a1

)
,

(85)

now also includes the effective coupling Hamiltonian (Eq. (49)). Here the effective cou-
plings are proportional to the drive applied to the corresponding system g̃i(t) ∝ gΩi(t).
This allows us to get the evolution of the coefficients from

|Ψ̇(t)〉 =α̇1(t) |f0g0〉+ α̇2(t) |g0f0〉+ β̇1(t) (|g1g0〉 − |g0g1〉)
=g̃1 (α1(t) |g1g0〉 − β1(t) |f0g0〉) + g̃2 (α2(t) |g0g1〉+ β1(t) |g0f0〉)
− κ

2
β1(t) (|g1g0〉+ |g0g1〉) ,

(86)

leading to

α̇1(t) = −g̃1(t)β1(t) (87)

α̇2(t) = g̃2(t)β1(t) (88)

β̇1(t) = g̃1(t)α1(t)− 1

2
κβ1(t) = −g̃2(t)α2(t)− 1

2
κβ1(t). (89)

From the last equation we can derive a relation between g̃1(t) and g̃2(t)

g̃2(t) =
κβ1(t)− g̃1(t)α1(t)

α2(t)
. (90)

Besides that we also have the normalization condition

|α1(t)|2 + |α2(t)|2 + 2 |β1(t)|2 = 1. (91)

The problem now is to find drive pulses that fulfil these conditions. As we are trying
to mimic a time reversed process for the second resonator we can restrict the solutions by
assuming

g̃2(t) = g̃1(−t) (92)

α1(t) = α2(−t). (93)
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This shows that the photon is shaped symmetrically as it implies β1(t) = β1(−t), which
can be seen by looking at the derivative

d

dt
β1(−t) = −β̇1(−t) = −g̃1(−t)α1(−t) +

1

2
κβ1(−t). (94)

If we now choose the second half of the drive pulse Ω1(t) for t ≥ 0, the first half (t < 0)
of the pulse is determined by Eq. (90) and the condition given by Eq. (92). Therefore,
we can solve the problem by solving the two inhomogeneous differential equations (87)
and (89). The corresponding initial conditions can be derived from the normalization
condition Eq. (91) for t = 0

|α1(0)|2 + |β1(0)|2 =
1

2
(95)

and are given by

|α1(0)| =
√√√√ 1

2
(

1 +
4g2

1(0)

κ2

) (96)

|β1(0)| =

√√√√√ 4g2
1(0)

κ2

2
(

1 +
4g2

1(0)

κ2

) . (97)

6.2.1 Symmetric drive pulse

These equations can now be solved for different drive pulses. In general we would also
like to keep the photon pulse as short as possible. Nevertheless, it cannot decay faster
than e−κt/2, since the decay rate κ limits the photon emission rate, setting a lower bound
for the slope of the pulse. Therefore, in contrast to the example chosen in [23], we choose
a drive proportional to

g̃1(t) =
κ

2 cosh
(
tκ
2

) , (98)

for t ≥ 0. Solving the differential equations with respect to this coupling leads to

α1(t) =
1

2 cosh
(
κt
2

)e−κt2 , (99)

βi(t) =
1

2 cosh
(
κt
2

) . (100)

By plugging these equations into Eq. (90) it follows directly that the drive pulse is
symmetric in time and therefore the couplings are given by

g̃i(t) =
κ

2 cosh
(
tκ
2

) . (101)

Another nice feature of this drive pulse is that the shape of the photon is proportional
to the shape of the drive as g̃i(t) = κβ(t) and thus offers the possibility to generate
short photon pulses. The time evolution of the coefficients is shown in Fig. 36. As
discussed earlier, we need a symmetric shape of the photon to achieve ideal quantum
state transmission. In combination we would like to keep the photon pulse as short as
possible.
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Figure 36: Time evolution of the coefficients of |Ψ(t)〉 for κ = 40MHz and a symmetric
drive pulse proportional to g̃i(t) as defined in Eq. (101).

6.3 Simulations

Given everything that is required to describe the system theoretically we can simulate the
process by solving the time dependent master equation

ρ̇(t) = −i [H(t), ρ(t)] +
∑
i

Liρ(t)L†i −
1

2

(
ρ(t)L†iLi − L†iLiρ(t)

)
, (102)

where H(t) is given by Eq. (81) and the Li are the dissipators in our system. The only
dissipator we consider for now is given by L1 = cout =

√
κ(a1 + a2).

For our simulations we have several parameters which we can set to a fixed value
or sweep during the simulations. We assume that the system consists of two perfectly
identical samples, one for emitting and one for absorbing the photon. For now we also
only consider a symmetric drive, as this provides the shortest photon shape. Besides the
parameters of the samples, that is, the anharmonicity α, the couplings κ, g and the qubit-
resonator detuning ∆, we also have to set the dimensions of the Hilbert space for qubits
(dima) and resonators (dimr) and the total duration of the drive pulse tmax. These have a
large impact on the actual run time of the simulations, as they determine the dimensions
of the density matrix and the time interval for which the master equation needs to be
solved.

As mentioned in Sec. 3, we also need to correct for the difference of the AC-stark
shift of the two energy levels, which enters as a phase factor eiφ(t) for the drive in the
rotating frame Hamiltonian. Otherwise, the two energy levels would not be perfectly on
resonance which reduces the efficiency of the shaping scheme. Therefore, we determine
the time-dependent energy difference between the |f0〉 and |g1〉 state for time steps dt
and interpolate the total energy difference with respect to time in order to get the time
dependent phase correction

φ(t) =

∫ t

0

Ef0(τ)− Eg1(τ)dτ ≈ dt

t/dt∑
τ=1

Ef0(τ)− Eg1(τ), (103)

which is then added to the drive. The time dependent energies are approximated by
finding the closest eigenvectors and eigenenergies for the Hamiltonian at time t, with
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respect to the density matrix corresponding to the states. Again we have a trade off
between the accuracy and the run time of the simulations determined by the size of the
time step dt. The last parameter we can choose is given by the amplitude of the drive Ω0.

The simulations are done using Mathematica, where we define the Hamiltonian and
the density matrices and implement the desired functions for estimating the eigenenergies
as well as the phase correction. The parameters are loaded from an external file at the
beginning of each iteration and after calculating the phase correction the time dependent
density matrix is approximated by numerical integration of the master equation.

Finally we can determine the time dependent population of the various states (|f1〉1,2 ,
|f1〉1,2 , |e1〉1,2 , |e0〉1,2 , |g1〉1,2 , |g0〉1,2) which we evaluate at times t = 0 to tmax in steps of
1 ns. These results are then stored in an external file, such that we can not only compare
the final population of the |f0〉2 state, but also can plot the complete time evolution of
the system.

6.3.1 Unrealistic parameters

We started the simulations by taking into account two energy levels of the resonators and
three of the qubits. The time steps for the phase corrections were set to dt = 0.5 ns and
we fixed κ/2π = 6 MHz and g/2π = 60 MHz. For the first runs we chose some unrealistic
values for the detuning ∆ ∈ [4, 8] GHz and the anharmonicity α = 3.6 GHz, in order
to achieve high efficient state transfer without too much tuning of the parameters. By
sweeping ∆, tmax and the amplitude of the drive Ω0 we could easily reach 98.9% final
population of the |g0f0〉 state.

In order to see if our simulation gives reasonable results we also compared it with a
simulation done by solving the Schroedinger equation, where the effective, non-hermitian
Hamiltonian taking into account the dissipation is given by [46]

Heff = H − i1
2
c†outcout. (104)

As presented in Fig. 37 both methods give comparable results, showing that both de-
scriptions are in good agreement.
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Figure 37: Comparison of the simulations using a) the Schroedinger equation and b)
for the master equation for identical parameters. The graphs indicate the population of
|f0g0〉 (blue), |g1g0〉 (red), |g0g1〉 (yellow) and |g0f0〉 (green).
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parameter value or range
dt 0.5 ns
dimr 2
dimq 4
α/2π 300 MHz
κ/2π 6 MHz
g/2π 60 MHz
∆/2π [1.3, 2] GHz
Ω0/2π [50, 160] MHz
tmax [250, 325] ns

Table 5: Values chosen for the simulations.

parameter value or range
dt 0.5 ns
dimr 2
dimq 4
α/2π 430 MHz
κ/2π 20 MHz
g/2π 50 MHz
∆/2π [0.9, 1.1] GHz
Ω0/2π [280, 460] MHz
tmax [250, 325] ns

Table 6: Values chosen for the simulations.

6.3.2 Realistic parameters

In order to learn something about the process fidelity of the state transfer we need to go to
more realistic parameters, which can be realized in our CQED systems. The parameters
we have chosen for the next step of the simulations are summarized in Tab. 5. Note that
we now also included four energy levels of the qubit, aiming for more accurate results.

After running the simulations with 249 different combinations of ∆, Ω0 and tmax it
was found that the maximal final population was 95% for the |g0f0〉 state. This shows
that we should be able to realize high efficient state transfer in a CQED system using the
proposed photon shaping scheme in combination with the chosen setup.

6.3.3 Sample parameters

The next step for the simulations was not only to consider realistic, but actual parameters
of a fabricated sample. Therefore, we used the values of the design for the sample, which
was used in the first run of measurements, as parameters for the simulations.

To get a first impression for the right intervals of the swept parameters, we start with
simulations of random sets of these. From this we localize the interesting region and
choose our intervals for a systematic sweep. The parameters are summarized in Tab.6.

In Fig. 38 we present a part of the results from over 1000 simulations done for these
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parameters. The plots show the final population of the |g0f0〉 state depending on the
parameters ∆, Ω0 and tmax. In addition, the time evolution of the state populations for
best result, leading to a final population of 84.7%, is given.

In parallel to the systematic sweep of parameters, we also simulated the efficiency for
more than 2000 random sets of parameters. However, we could not reach higher values
than with the systematic approach. As we are only reaching 84.7%, we tried to understand
what limits the efficiency of the state transfer. Besides the Purcell effect, which leads to
an overall decay in the system, an insufficient correction for the AC Stark effect would
also cause a reduction of the maximal efficiency.

Therefore, we thought about a different way of approximating the phase, where the
drive frequency is varied in order to find the frequency shift corresponding to the position
of the energy level anti-crossing. This gives the change in the energy difference of the two
states and by adding the constant offset due to the initial splitting of the energy levels,
we can again interpolate the total energy difference with respect to time to get the time
dependent phase correction. Nevertheless, implementing this new method for determining
the phase due to the AC-stark shift did not lead to better results in terms of efficiency.

Subsequently we tried to use an asymmetric drive as derived in Appendix A using the
factor k/κ, which determines the asymmetry as another sweeping parameter. Due to the
asymmetry of the drive we needed to calculate two phase corrections, since we now have
to apply the time reversed drive at the second qubit. Again we did simulations for more
than 4000 sets of different parameter combinations, showing that the highest efficiency of
85.2% is still reached for the symmetric drive (k = κ/2).

Finally we could improve the result by additionally varying the initial value of the
energy level splitting between the two states for the AC-Stark shift correction. Leading
to the best obtained efficiency of 90.5%.

After deciding to modify the design of our samples, in order to reduce the coupling
g = 39 MHz, we checked with some simulations if this affects the efficiency of the process.
As expected we could reach again 89.3% population of |g0f0〉 with a small number of
iterations, showing that the changes done to the sample do not have a big impact on the
success probability.
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Figure 38: Time resolved population of the states for the highest state transfer efficiency
for the given parameters and a cutout of the systematic sweep of ∆, Ω0 and tmax for the
parameters of sample 1. The four plots show the final population of the |g0f0〉 state for
different values of ∆ (specified at the top of each plot), dependent on tmax and Ω0.
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Figure 39: Reflection measurement of the two resonators (blue points) shown in combi-
nation with a theoretical fit (red), we can see the expected phase jump of 4π as both
resonators are at the same frequency.

7 Experiment

In this section we will summarize the measurements, which were done using the two sample
setup. All measurements were analyzed using Mathematica. First we will briefly introduce
the standard measurements for characterizing the resonator and qubit frequencies as well
as for determining the qubit lifetimes. In the following we show how we can characterize
the samples in our new setup and specify the parameters of our system. Finally we present
some first results on the photon shaping experiment using two slightly different methods.

7.1 Standard measurements

7.1.1 Resonator probe

To determine the resonator frequency we apply a probe tone to the resonator input and
sweep the frequency. By measuring the phase of the reflected signal we can determine
the resonator frequency. As discussed earlier the resonance results in a phase shift of 2π
per resonator and we can fit the phase of a complex Lorentzian to the measurement data,
see Fig. 39. As expected we get a phase jump of 4π. For the fit we assumed that both
resonators are at the same frequency. To reliably determine the phase we use a reference
signal by splitting the applied tone outside the dilution refrigerator. This allows to avoid
the phase randomization of the microwave generator due to the change of the frequency.

7.1.2 Qubit spectroscopy

In analogy to the resonator probe tone we can also apply a probe tone at the gate line
of the qubits, performing the so-called qubit spectroscopy. It allows to determine the
transition frequency from |g〉 to |e〉 as well as higher order transitions if the applied
power is strong enough. To measure this transition we again sweep the frequency of the
microwave tone applied to the gate line of the qubit, while probing the resonator at its
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resonance frequency. Due to the dispersive shift we can detect the change of the qubit
state when driving the transition.

7.1.3 Rabi

To determine the energy relaxation time of our qubits we use so-called Rabi oscillations.
Once we have determined the transition frequency ωge we can apply a pulse to the gate
line using either a gated microwave generator or an IQ-mixer in combination with an
arbitrary waveform generator. The latter method is better suited as it allows to use
Gaussian pulses. In the first step one sweeps the amplitude of the applied pulse to find
the value which corresponds to a π pulse, meaning a full swap of the excitation from the
ground to the first excited state. After determining the amplitude we can measure the
energy relaxation time by preparing the system in the excited state and measuring the
residual population after different waiting times τ . The corresponding pulse scheme is
shown in Fig. 40a). We expect to see an exponential decay with a decay rate 1/T1. By
fitting the data we can extract T1 (see Fig. 40b).
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Figure 40: a) the pulse scheme for an energy relaxation measurement and b) a measure-
ment (blue points) together with the theoretical fit (purple) for T1 of the second design
(sample A).

7.1.4 Ramsey

To extract the frequency of the qubit more precisely and to determine the dephasing time
T2 of the qubit we use a so-called Ramsey measurement. Here the qubit is prepared in a
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superposition state by applying this time only a π/2 rotation to the qubit. After some
time τ we apply again a π/2 pulse to swap the qubit excitation fully to the excited state.
Also here we expect an exponential decay with a decay rate 1/T2. In addition we can
detune the frequency of the preparation pulses which leads to sinusoidal oscillations of the
measured signal due to the fact that the qubit Bloch vector in the rotating frame precesses
around the z axis, causing the final excited state population to oscillate as a function of
the waiting time τ . This allows us to correct the drive frequency as the frequency of the
oscillations should be equal to the detuning from the ideal drive frequency.
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Figure 41: a) the pulse scheme for a measurement of the dephasing time and b) a mea-
surement (blue points) together with the theoretical fit (purple) for T2ge of the second
design (sample A).

7.2 Sample characterization

7.2.1 Fitting avoided crossings - method 1

In the first run of experiments done with the new two sample setup we planned to test the
setup and show that we can individually control and measure the samples. Subsequently
we wanted to continue with the photon shaping experiments.

After the first cooldown of the system, spectroscopy measurements showed only one
qubit and one resonator. In addition, we saw jumps in the qubit frequency of the working
sample while changing the applied magnetic field. The origin of these jumps is not fully
understood, but might be due to trapped vortices or current loops on the superconducting
chip.
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We decided to warm up the system in order to see if we can get rid of this jumping
behavior of sample B. In addition we took a closer look at sample A again, trying to
find the reason why it was not visible in our measurements. We decided to remove the
airbridges above the resonator as these might have been collapsed, in addition we found
a piece of dirt, probably bond wire, lying across one of the coupling capacitors of the
resonator, which was also removed.

After cooling down the system again we could now see both of the samples, unfortu-
nately the qubit frequency of sample B was still jumping while continuously changing the
applied magnetic field. Therefore, we concentrated on determining some of the character-
istic parameters of our samples. Besides getting familiar with all the equipment and the
measurement software, this offered the chance to study the standard methods for sample
characterization and to realize these using reflection measurements.

In order to determine the resonator frequency and the coupling constant g we mea-
sured avoided crossings for both of our samples. This is done by measuring the phase
of the reflected signal while sweeping the coil voltage and the resonator frequency. This
effectively realizes a two dimensional sweep of qubit and resonator frequency and we there-
fore expect to see a behaviour similar to the simulations presented in Sec. 4.4.1. Due to
the fact that we have removed the airbridges across one of the resonators, the resonator
frequencies of our two samples differed by more than 100 MHz. Therefore, it was possible
to look at each resonator individually, without taking into account the second sample at
all.

For the analysis of the data we first localized the position of the resonances for each
voltage, which is done by looking at the change of the phase between each voltage step.
We chose this method because the derivative of the phase of a Lorentzian is given by a
Lorentzian peak, which is easy to fit. The positions of the resonances are indicated by
the orange dots in Fig. 42.

Having the position of the resonances we can fit the dressed frequencies close to the
crossing, which are given by

ω1,2 =
∆

2
+ ωr ±

√(
∆

2

)2

+ g2, (105)

where for the measurement ∆ can be expressed as ∆(V ) = β(V − Vc). Here Vc gives the
position of the crossing and β is a scaling factor giving the change of the qubit frequency
per Volt. Using Vc, β, ωr and g as fitting parameters we can get an estimate for the
parameters of our system. The fit of the dressed frequencies is given by the red line in
Fig. 42 and the fitted values are given in Tab. 7. These are in good agreement with the
designed ones with the exception of the resonator frequency of sample A, which can be
understood as a consequence of replacing the airbridges with wire bonds, as mentioned
earlier.

The second, smaller crossing right next to the main crossing in Fig. 42 can be un-
derstood by simulating the system including non-zero thermal population of the higher
qubit states, which shows that this is the crossing of the gf/2 transition.

7.2.2 Fitting avoided crossings - method 2

For the run with the second design of the qubits both samples were fabricated without
airbridges and we managed to get two resonators at approximately the same frequency.
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Figure 42: Avoided crossing of resonator and qubit measured with sample A. The orange
dots indicate the fitted position of the resonances and the red line shows the fit of the
dressed frequencies.

Sample A Sample B Design
g/2π [MHz] 46.8 50.6 48
ωr/2π [GHz] 7.214 7.080 7.0

Table 7: Values of the parameters obtained from fitting the avoided crossings. The devi-
ation of the resonator frequency of sample A is a consequence of the removed airbridges.
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Figure 43: An avoided crossing of one of the qubits with the resonator, where now both
resonators are at approximately the same frequency.

Therefore, we used a slightly different method for fitting the data, as we wanted to only
look at the sample where the qubit is actually crossing the resonator. A plot of one of
the crossings is given in Fig. 43.

We started by taking a reference measurement where the qubits are both far detuned
from the resonators (Fig. 39). The phase obtained in this measurement was then sub-
tracted from the measurement of the crossing. In this way we can eliminate the phase
contribution from the resonator whose qubit is far detuned.

In the following we fitted the sine and the cosine of the phase φ to the theoretical
value given by input-output theory. In contrast to directly fitting the phase this allows
to circumvent possible problems with 2π phase discontinuities. The expression for the
phase is in principle the same as derived in Sec. 4.4.1, with the difference that we have
now also included a relaxation term for the qubit, which is assumed to decay at a rate Γ.
This leads to the expression for the reflection coefficient given by

r =
4g2 + i(Γ + 2i(ωq − ω)(2(ωr − ω) + iκ)

4g2 + i(Γ + 2i(ωq − ω)(2(ωr − ω)− iκ)
. (106)

We also need to subtract the phase coming from the bare resonator to compensate for the
subtraction of the reference signal. This is given by setting ωq = Γ = 0. Now we can fit
the data by minimizing the squared difference of the sine and cosine of the phases

Min
[
(cosφfit − cosφmeas)

2 + (sinφfit − sinφmeas)
2
]
. (107)

The parameters that we used to fit the data are the coupling g and κ, the resonator
frequency ωr, the position of the crossing Vc and again also β which is defined as before and
gives the frequency change of the qubit per unit voltage. Therefore, the qubit frequency
can be expressed as ωq(V ) = ∆(V ) + ωr = β(V − Vc) + ωr. The qubit decay rate was
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Figure 44: The fitted cos and sin of the phase (upper row), in comparison with the
measurement data (lower row).

fixed to Γ = 10−3 1/ns. A result of the fit is shown in Fig. 44, where the upper row shows
the fit and the lower row the measured data. In Addition we used the small crossing of
the gf/2 transition to get an estimate for EC . Here we used the fact that the distance
between the two crossings is given by α/2. Thus, we can use the scaling factor β to get
the anharmonicity out of the positions of the two crossings. Subsequently we can then
use this to approximate EC and EJ at the crossing by minimizing

[
(Eg(EC , EJ) + Ef (EC , EJ)− 2Ee(EC , EJ)− αmeas)2 + (Ee(EC , EJ)− Eg(EC , EJ)− ωq)2

]
,

(108)
where in this case ωq = ωr since we are at the crossing. The values that we determined
for the two samples out of fitting the crossings are given in Tab. 8 and are in quite good
agreement with the designed values, again with the exception of the resonator frequen-
cies which were shifted due to fabrication of the resonators with wirebonds instead of
airbridges.

7.2.3 Qubit coherence times

Qubit design 1 As part of the characterization we also determined the energy relax-
ation T1 and the dephasing T2 times of the qubits by performing standard Rabi and
Ramsey measurements. For the T1 time of the |f〉 state we need to correct for the sub-
sequent relaxation of the |e〉 state, using calibration measurements. The coherence times
are determined at the sweetspot of the qubits. For sample B, which is jumping while
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Sample A Sample B Design
g/2π [MHz] 35 37 39
κ/2π [MHz] 24 18 20
ωr/2π [GHz] 7.224 7.229 7.0
EC [MHz] 406 392 404

Table 8: Values of the parameters obtained from fitting the avoided crossings. The devia-
tion of the resonator frequency is a consequence of the the fabrication without airbridges.

Sample A Sample B
T1 [ns] 1203 514
T2 [ns] 1895 755
T1f [ns] 334 305
T2gf [ns] 228 206

Table 9: Measured coherence times for the qubits of design 1.

sweeping the coil voltage, we stopped a spectroscopy versus magnetic field measurement
at a moment where the qubit was approximately at its sweetspot, resulting in a transition
frequency of ωBq = 8.21 GHz. This was necessary because the jumps occur randomly and
not in a reproducible fashion. Nevertheless, the qubit is stable as long as we do not change
the coil voltage. For Sample A the maximal qubit frequency is given by ωAq = 8.22 GHz.
The results of the measurements are summarized in Tab. 9. There is a great difference
between the coherence times of the two samples for the ground state, which is assumed
to be correlated with the jumping behavior of the qubit and the fact that we cannot be
sure that the qubit is at its sweetspot. Due to the relatively low coherence times for the
|f〉 state we decided to adjust the qubit design as discussed in Section 5.2.1.

Qubit design 2 The idea for the second design was to improve the coherence times
of the qubit, as especially the coherence times of the |f〉 state were quite low for the
first sample design. For the new sample the qubit sweetspot frequencies were given by
ωAq = 8.67 GHz and ωBq = 9.05 GHz. Due to the higher detuning the resulting dispersive
shift of the resonator is smaller which leads to the fact that we need to average significantly
more to be able to resolve the qubit. As a consequence we were not able to determine
reliable values for the coherence times of the |f〉 state of the qubit of Sample B. The
results presented in Tab. 10 show that we the effect of the changes in the design on the
coherence times of the |e〉 state is very small, but for the |f〉 state we can actually see an
improvement. In particular it seems that now T2gf is mainly limited by T1f .

7.2.4 Coil matrix

In order to be able to tune the qubits independently to arbitrary frequencies, we need
to know which combinations voltages corresponds to which fluxes in the SQUID loops
of our samples. Therefore, we perform qubit spectroscopy dependent on the magnetic
field. As our qubits have a high detuning and are hard to resolve at higher frequencies,
as mentioned earlier, we focused on the regions close to the resonator and voltage ranges
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Sample A Sample B
T1 [ns] 1721 1769
T2 [ns] 1427 1119
T1f [ns] 473 -
T2gf [ns] 788 -

Table 10: Measured coherence times for the qubits of design 2. For Sample B it was not
possible to get reliable data for the f state, possibly due to the large detuning.

Figure 45: Sweep of the resonator probe frequency versus the voltage of the big coil. One
can clearly identify that there are two working qubits crossing the resonators by looking
at the directions of the crossings.

where we would expect a qubit to be in the regions. These were determined by a sweep of
the resonator probe frequency and the magnetic field, whose results are shown in Fig. 45,
and a rough qubit spectroscopy with only one of the qubits. This allowed us to determine
which of the crossings belong to which qubit and therefore, we could zoom into the regions
of interest.

After having measured the qubit spectroscopy for both samples and both coils, we
fitted the dressed qubit frequencies to the data poinst. For this we first approximated the
bare qubit frequency by

ωq =

√√√√8ECEJ

√
cos

(
π(V − V0)

Vp

)
+ λ− EC , (109)

where we used Eq. (27) and introduced an asymmetry for the SQUID loop, which im-
proved the fit. In addition we have expressed the magnetic flux in terms of the coil
voltage where V0 represents a constant flux offset and Vp denotes the periodicity of the
qubit frequency as a function of the voltage.

The dressed frequency is then given by

ωdressedq =
ωq + ωr

2
±
√(

ωq − ωr
2

)2

+ g2
ωq
ωr
. (110)

In order to avoid over fitting we fixed some of the parameters in advance. Namely, we set
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Figure 46: The data of the big coil sweep together with a fit for the dressed qubit fre-
quencies. The blue curve and the yellow data points correspond to the qubit of sample
A, whereas the red curve and the green data points correspond to the qubit of Sample B.
The density plots show the qubit spectroscopy measurements in phase to determine the
frequencies of the qubits as a function of the coil voltages.

EC , g and ωr to the values which we determined by fitting one of the avoided crossings
(Tab. 8). This leaves use with the fitting parameters V0, Vp, EJ and λ. The data for the
sweep of the big coil together with the fitted qubit frequencies is shown in Fig. 46. The
lower bound of the qubit frequencies indicates that the SQUID loops are asymmetric and
we can actually compare the positions of the avoided crossings with the data shown in
Fig. 45, which are in good agreement.

Now that we know the parameters for coils we can calculate the so-called coil matrix,
which allows us to tune the qubit frequencies to arbitrary, independent values within the
available range. For that we use the relation between the flux and the applied voltage for
each sample and each coil obtained in the previous step. For example the flux on qubit
A for a voltage applied on the big coil (coil 1) is given by

ΦA =
π

V
(A1)
p

V1 +
πV0

V
(A1)
p

, (111)

Where the constant term gives a constant flux offset Φ0A. This allows us now to caculate
the flux dependence on the voltage of both coils by considering the vector equation(

ΦA

ΦB

)
= M

(
V1

V2

)
+

(
Φ0A

Φ0B

)
, (112)

where
Mij =

π

V
(ij)
p

, (113)

for i = A,B and j = 1, 2. Now we can calculate the fluxes that we want to apply to
the qubits by using the dressed frequency functions to solve for the flux corresponding to
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Sample A Sample B
χ/2π [MHz] 1.8 2.2
κ/2π [MHz] 21 17
ωr/2π [GHz] 7.225 7.227

Table 11: The dispersive shift χ as well as the two additional fitting parameters.

the chosen qubit frequency and therefore we can get the voltage values by substituting
everything into the equation (

V1

V2

)
= M−1

(
ΦA − Φ0A

ΦB − Φ0B

)
(114)

Thus, we have full control of sweeping our qubits frequencies independently by setting
the correct coil voltages.

7.2.5 Dispersive shift and photon number

Another important quantity to characterize is the dispersive shift χ of the resonator, as
this allows us to estimate the input power needed to excite on average one photon in the
resonator in its steady state. To get the dispersive shift, we first measure the resonator
spectrum for the qubit being in the |g〉 and in the mixed state (by strongly driving the
qubit).

The two measurements are then subtracted from each other and fitted to the theoret-
ical expected change of the phase, given by

f(ω) = arg

[
(ωr − ω) + i

2
κ

(ωr − ω)− i
2
κ

]
− arg

[
(ωr − χ− ω) + i

2
κ

(ωr − χ− ω)− i
2
κ

]
. (115)

As fitting parameters we used χ, κ and ωr giving us another estimate for the resonator
frequency and the decay rate. The values are presented in Tab. 11 and the dispersive shift
is of the order of MHz. The other two parameters are slightly different in comparison to
the values obtained from the avoided crossing (Tab. 8), showing that we still have some
uncertainty about the actual values.

After getting an estimate for the dispersive shift we can now estimate the input power
needed to populate the resonator with one photon on average. As the photon number
in the resonator shifts the qubit frequency, we can estimate the power for one photon
by performing qubit spectroscopy while sweeping the power of the resonator probe. The
measurement of sample A is shown in Fig. 47, where the red points indicate the fitted
qubit frequency. The power is obtained by fitting the qubit frequency to

ωq(p) = ω0
q + 2χ

p

p0

, (116)

where p0 denotes the one photon power and ω0
q is the bare qubit frequency. Fitting this

with ω0
q and p0 as fit parameters we obtain p0 ≈ −20.1 dBm for both samples.
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Figure 47: The AC-Stark shift of the qubit frequency due to the increasing power of the
resonator probe for sample A, the red points correspond to the fitted qubit frequency.

7.3 Photon shaping

7.3.1 Polariton photon shaping

After the characterization of the two samples, we focused on Sample A, due to its better
characteristics and stability with respect to coil voltage sweeps. In the next step we wanted
to realize photon shaping to verify that we can shape and measure single photons within
the new setup configuration. As it turned out we did not have enough power available
at the input of the charge line to drive the second-order transition. We have therefore
decided to try a modified version, using a first-order transition. Later we figured out that
a wirebond connecting the launcher of the gate line to the PCB was broken causing the
problems with the drive power. Still we continued our attempts to realize photon shaping
using a first-order transition.

In order to do this we tuned the qubit and the resonator into resonance, which allows
us to use the polariton states for our photon shaping procedure. We then prepare the
qubit in the |f〉 state and apply the drive between the |f0〉 and the |−, 1〉 states. The latter
decays fast into the ground state by emitting a photon. A schematic of the procedure is
given in Fig. 48.

The preparation of the |f0〉 state can be done by using a two photon transition from
|g〉 to |f〉. To determine the corresponding transition frequency ωgf/2 we perform qubit
spectroscopy with relatively high power to see the gf/2 transition. Now we can sweep
the power of the transition pulse to realize Rabi oscillations, which allows us to determine
the drive power corresponding to the full swap of the excitation.

After the system is prepared in the f state we can use again a spectroscopy measure-
ment to find the frequency required to drive the system from |f0〉 to |1,−〉. Also here
we use Rabi oscillations to determine the correct power for a full swap of the excitation.
The last thing we have to consider is how to measure the single photon. If we want to
measure the amplitude of the photon voltage we cannot prepare our system in the initial
state |f0〉, but instead in a superposition state (|g0〉 + |f0〉)/

√
2. This is due to the fact

that the mean voltage V ∼ 〈a + a†〉 of a Fock state is zero. As a consequence of this we
need to measure the averaged emitted power if we want to observe a full photon.
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Figure 48: Schematic of the photon shaping method using one of the polariton states.

In Fig. 49a) a sweep of the |f0〉 → |1,−〉 drive amplitude is shown. Here we did not
only measure the photon but also probe the resonator to resolve the qubit state after the
emission of the photon. The first slice of the sweep as well as the slice indicated by the
white dashed line are given in Fig. 49b). It is clearly visible that there is no photon if the
drive amplitude is chosen to be 0, while there is a photon if we go to higher drive ampli-
tudes. In addition we can see the change of the qubit state by looking at the resonator
probe, where the different amplitudes correspond to the difference in the dispersive shift
of the resonator due to the qubit state. The drive chosen for this experiments is of a
simple Gaussian shape and the data is digitally filtered using a broadband Chebyshev
filter in combination with a 4 point square filter.

After we successfully realized a single peaked photon we also wanted to generate a
double-peaked single photon. This can be achieved by using two drive pulses, where the
first one only transfers approximately half of the population from the |f0〉 state to the
|−, 1〉 state. Subsequently, a second, stronger and longer pulse is used to transfer all of the
residual population, allowing to obtain a single photon with a two-peaked temporal shape.
For these measurements we recorded the power as a function of time, which allows us to
observe the photon also when we start with the initial state |f0〉. A measurement of a
such a double-peaked single photon is given in Fig. 50. Here we can also see one problem
of this shaping method. Due to the fact that we only use a first-order transition the
|f0〉 state also naturally decays into the polariton state, leading to a competing photon-
emission channel. In the measurement this is clearly visible as an exponentially decaying
background signal indicated in Fig. 50 by a dashed line. Such a double-peaked photon
would allow for time bin entanglement, which can also be used to encode a qubit state.

7.3.2 Second order photon shaping

In the last part of this work we tried to realize photon shaping using the second order
transition within the new setup. We chose to work with sample A, as the detuning of the
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Figure 49: The plot in a) shows the change of the measurement time trace as the drive
pulse amplitude is varied. The single photon and the resonator probe signal are measured
in amplitude. In b) the first slice with zero drive amplitude (red) together with the slice
indicated in a) by the white dashed line (blue) is given. One can clearly see the photon
as well as the change of the qubit state indicated by the resonator probe.
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Figure 50: A double-peaked single photon measured in units of power per time. The red
dotted line indicates the background signal due to the natural decay of the |f0〉 state.
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Figure 51: A single photon shaped using the second-order transition.

qubit is lower, leading to lower drive frequencies. Additionally in the final experiments
involving both samples this will be the emitting one, as the photon can only travel from
sample A to sample B, but not in reverse. For the process we use an IQ-mixer to prepare
the qubit in the |f〉 state. This is done by using the right sideband for the transition pulse
from |g〉 to |e〉 and the left sideband for the pulse from |e〉 to |f〉, where the transition
frequencies are ωge = 8.639 GHz and ωef = 8.218 GHz. A second IQ-mixer is then used
to generate the drive pulse for the |f0〉 to |g1〉 transition, which is measured to be at
ωf0g1 = 9.627 GHz and therefore in quite good agreement with the theoretically expected
value of ωge + ωef − ωr = 9.630 GHz.

For the drive pulse we chose a slightly different drive than for the simulations given
by

Ω(t) = Ω0 sin2

(
πt

T

)
eiφ(t), (117)

which has similar characteristics but does not require an arbitrary cutoff.
We can tune the pulse amplitude Ω0, the pulse duration T and the phase φ(t). The

latter one needs to be adjusted to compensate for the AC-Stark shift dependent on the
drive amplitude. The parameters T and Ω0 need to be calibrated such that the photon
shape is symmetric. The phase due to the AC-Stark shift can be approximated to be
proportional to the square of the drive amplitude |Ω(t)|2 and we can sweep the propor-
tionality factor as well as vary the detuning of the drive frequency to stabilize the phase
of the single photon [43].

During the experiment we encountered problems with stabilizing the phase of the
single photon, which might be due to the fact, that the photon is reflected at the second
sample before we can measure it. As the frequency of the photon is quite close to the
resonance frequency of the second resonator this could lead to an additionally acquired
phase.

Nevertheless we could shape and measure single photons using the new setup. An
example of a measured photon is given in Fig. 51.
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8 Discussion and conclusion

8.1 Results

Throughout this work we have designed and built a solid state setup which allows to
exchange a single photon between two distant samples connected by a coaxial cable. We
realized an experimental setup of a two node quantum network which allows to measure
quantum state transfer using single shaped photons.

After a brief introduction into superconducting qubits and circuit QED, we have given
a description of the photon shaping method used in our experiments. We presented a
microwave induced second-order coupling, which is fully controlled by the amplitude and
the phase of an applied microwave drive and therefore does not need any other tuneable
parameter. That is one advantage of our scheme compared to others realized for CQED
systems [40,42].

The setup was developed under the constraints of having a system that allows to
exchange a single photon but does not couple the two samples directly. This was achieved
by using a circulator in between the two samples, which also enables us to measure both
samples through one detection line in reflection. Before installing the new setup inside
the dilution refrigerator it was tested using dipstick measurements in liquid helium.

We have shown that it is theoretically possible to reach a high state transfer fidelity,
using simulations of the system including the shaping method and the two sample setup as
it was installed into the dilution refrigerator. Here we also took care about the constraints
on our drive pulses and presented analytic solutions of a simplified system used to choose a
reasonable shape of the drive pulse for the full master equation simulations. By optimizing
the AC-Stark shift correction we could finally reach around 90 % population transfer,
where the main limitation seems to be given by the sample parameters.

In the first experiments measured within the new setup we have shown that we have
full control over the individual samples. We presented how the two samples can be
characterized using slightly modified methods compared to the standard characterization
measurements. In addition we modified the qubit design to get better coherence times,
where we also estimated an upper bound for T1 using an equivalent microwave circuit for
our qubit-resonator system.

Finally we showed that it is possible to shape single photons using the microwave
induced coupling, first by using a first-order transition and one of the polariton states
and subsequently with the second order-method transition as presented in the theory
part.

This shows, that we have a working setup for realizing quantum state transfer using
single shaped photons by using a microwave induced second order coupling between the
resonator and the qubit.

8.2 Outlook

To be able to efficiently realize quantum state transfer we still need to work on the sample
design and fabrication to get two nicely working, identical samples with good coherence
times. Having this, we could realize quantum state transfer between two distant nodes
of a quantum network for the first time in a solid state setup, by shaping and absorbing
single photons.
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In addition we would like to look at the time-bin entanglement of a double peaked,
single photon, which would allow to encode a qubit in time bins [50]. In contrast to
encoding the qubit states according to |g〉 → |0〉 and |e〉 → |1〉 this method allows to
detect if the photon was lost during the transfer as the qubit is encoded only in the arrival
time, which means that there is always a photon present if the transfer was successful.
In addition this type of entanglement allows also for a larger Hilbert space as we can use
more than two time-bins.

Finally a setup as presented in this thesis could be used to realize entanglement distri-
bution [51] and would enable for teleportation experiments over larger distances as well as
for example loophole-free Bell-tests. Also it could server as a basis for developing quantum
repeaters which would allow for quantum state transfer over even larger distances [52].

It would also be interesting to investigate the discussed photon shaping schemes in
other types of qubits, which would allow for higher anharmonicities. As the simulations
with higher anhamonicity showed, this would enable for higher state transfer efficiency.
One interesting candidate would be the Fluxonium qubit [53], which is insensitive to offset
charges like the transmon but allows for larger anharmonicity.

This shows that there is still a lot of interesting experiments that can be realized using
such a setup and it will be interesting to go on investigating such a system and realize
the next steps towards a quantum network.
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A Asymmetric drive pulse

Besides the symmetric drive pulse we also wanted to look at an asymmetric drive, where
we can tune the asymmetry in order to see if this allows for a more efficient state transfer.

To derive the conditions for the asymmetric drive, we used the formalism of quantum
trajectories, which turns out to be more convenient than solving the equations given
above. The emitting part of our system can be described by an initial state

|ψ(t)〉 = α(t) |f0〉+ β(t) |g1〉 , (118)

where |g1〉 can decay at a rate κ into |g0〉 by emitting a photon. After emitting the photon
the system is trapped in the |g0〉 state, as the drive in the system is off resonant from any
transition involving that state. Therefore the evolution of the state vector is given by the
stochastic Schroedinger equation

d

dt
|ψ(t)〉 = −iψ

[
H(t)− iκ

2
|g1〉 〈g1|

]
|ψ(t)〉 , (119)

where the emission of the photon enters as a dissipative term, resulting in a non-unitary
evolution. To get the probability amplitude for emitting a photon in [t, t+ dt] we look at
the time derivative of the probability of the system not being decayed into |g0〉, which is
given by 〈ψ(t)|ψ(t)〉, leading to

d

dt
〈ψ(t)|ψ(t)〉 =

(
d

dt
|ψ(t)〉

)†
|ψ(t)〉+ 〈ψ(t)|

(
d

dt
|ψ(t)〉

)
= −κ |β(t)|2 . (120)

Thus, the probability amplitude is given by 〈g1|ψ(t)〉
√
κdt. This allows us to write down

the state of the system in combination with the propagating field which is given by

|Ψ(t)〉 = |ψ(t)〉 ⊗ |0〉+ |g0〉 ⊗ √κ
∫ t

0

β(τ)a†out(τ) |0〉 dτ, (121)

where a†out(t) creates a photon in the propagating field, which is emitted in the time
interval [t, t + dt]. In the end we want to emit a single photon with a given shape f(t),
where the final state after the process is given by

|Ψf〉 = |ψ(tf )〉 ⊗ |0〉+ |g0〉 ⊗ √κ
∫ tf

0

f(τ)a†out(τ) |0〉 dτ. (122)

By comparing this to Eq. (121) we get the condition

√
κβ(t) = f(t), (123)

giving a direct relation between the shape of the photon and the probability amplitude
of the |g1〉 state.

In a last step we want to express this condition now in terms of the properly normalized
state vector

|ψn(t)〉 =
|ψ(t)〉√
〈ψ(t)|ψ(t)〉

. (124)
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From Eq. (120) we know that

d

dt
〈ψ(t)|ψ(t)〉 = −|f(t)|2, (125)

allowing us to reformulate the condition, giving

√
κ 〈g1|ψn(t)〉 =

f(t)√
1−

∫ t
0
|f(τ)|2dτ

. (126)

Thus we can choose a photon shape f(t) and determine the coefficients α(t), β(t) and
the drive Ω(t).

For the state

|ψn(t)〉 = cos
θ(t)

2
|f0〉+ sin

θ(t)

2
|g1〉 (127)

and the interaction Hamiltonian

H(t) = i
Ω(t)

2
(|g1〉 〈f0| − |f0〉 〈g1|) , (128)

we can derive the condition for the drive depending on the coefficients of the normalized
state, leading to

Ω(t) = θ̇ + κ sin
θ(t)

2
cos

θ(t)

2
. (129)

As discussed earlier, we need a symmetric and fast decaying shape of the photon, in
order to achieve efficient quantum state transmission. It turns out that these criteria are
satisfied by the following function

|f(t)| =
√
k√

2 cosh kt
, (130)

where k ≤ κ/2. For the case of k = κ/2, |f(t)| is proportional to the shape of the photon
of the symmetric drive pulse. Now we can use Eq. (126) to determine the coefficients of
the wave function, leading to

sin
θ(t)

2
=

√
k

κ

e
kt
2√

cosh kt
, (131)

cos
θ(t)

2
=

√
cosh kt− k

κ
ekt

√
cosh kt

. (132)

By looking at the time derivative of one of these coefficients we get

θ̇ = k

√
k

κ

e
−kt

2

cosh kt
√

cosh kt− k
κ
ekt

(133)

and according to Eq. (129) the drive pulse is given by

Ω(t) = k
γ(t) + γ(t)−1

cosh kt
, (134)
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Figure 52: Time evolution of the coefficients of |Ψ(t)〉 for κ/2π = 40MHz and k = 0.3κ
for an asymmetric drive pulse proportional to gi(t)

where

γ(t) = e
kt
2

√
κ

k
cosh kt− ekt. (135)

Now we can derive the expressions for the wavefunction coefficients

α(t) = cos
θ(t)

2

√
〈ψ(t)|ψ(t)〉 =

1√
2
e−

kt
2

√
cosh kt− k

κ
ekt

cosh kt
, (136)

β(t) =
f(t)√
κ

=
1√
2

√
k
κ

cosh kt
, (137)

which give us the time resolved evolution of the state and in addition allows us to compare
the results with the conditions derived from [23]. Comparing Eq. (85) and Eq. (128) we
can express the coupling as

g̃1(t) =
Ω(t)

2
= k

γ(t) + γ(t)−1

2 cosh kt
. (138)

Now we can easily convince ourselves, that these coefficients solve Eq. (87) and (89),
showing that the derivation is consistent with the conditions for the drive.

The time evolution of the coefficients together with the couplings for k = 0.3κ is given
in Fig. 52. One can see that the photon is longer and that we now need to apply different
drive pulses to the two qubits due to the asymmetry and the condition g1(t) = g2(−t).
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