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Abstract

Within the last decade circuit quantum electrodynamics (circuit QED) [1] has proven to be an
excellent platform to study the coherent interaction between an artificial atom and a light field. Here
an artificial atom, or more precisely an effective two level system, is realized using superconducting
circuitry while the cavity is realized as a microwave resonator.

Recently, an effective two level system realized using a semiconductor double quantum dot (DQD)
has been coupled to a microwave resonator. In this hybrid system, interactions between the dipole
moment of (single) electrons in a DQD and the electromagnetic field in a microwave resonator have
been observed ([2], [3]).

Using the same architecture, we initially discuss experiments performed with a resonator sample in
order to investigate design parameters influencing its quality factor. With the aim of enabling high
bandwidth correlation measurements, we then present the design and implementation of parallel
digital filters in a digital signal processing platform.

We finally report on experiments to use the microwave resonator as a tool to explore fundamental
processes occurring in a DQD driven out-of-equilibrium. In particular, we perform exploratory at-
tempts to probe the microwave radiation emitted from a voltage-biased DQD by means of first and
second order correlation function measurements.
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CHAPTER 1

Introduction

The revolutionary idea of energy quanta introduced by Max Planck about a century ago begun a
profound change in our understanding of the fundamental phenomena occurring in nature. It allowed
to explain observations which had held inconsistencies with classical physics, such as the blackbody
radiation or the photoelectric effect. The theory of quantum electrodynamics (QED) developed by
Feynman, Schwinger and Tomonaga is the most successful theory about light, matter, and the
interaction of light and matter. One of the most elementary forms in which light and matter interact
is that when a single atom interacts with a single photon. Such a process has been a major focus of
research for several decades, opening the field now known as cavity QED, where an atom (or ion)
is coupled to an optical cavity. In recent years, a solid state realization of an artificial atom and a
cavity opened the field now known as circuit QED, in which the artificial atom and the cavity are
realized using superconducting circuits in the microwave domain.

Besides fundamental studies, these fields hold potential as eventual platforms for quantum com-
puting applications. To this end, the (artificial) atom is used as a fundamental computing block, i.e.
a quantum bit (qubit), and the microwave cavity is used to mediate qubit interactions.

The rapid development experienced in the field of circuit QED has drawn attention into hybrid
systems: systems where the artificial atom in the circuit QED setup is realized in different ways.
Such hybrid systems hold potential to combine their different advantages, and open the possibility
of technology and know-how transfer between different research fields. An example of such systems,
and focus of this project, is that of semiconductor (gate defined) quantum dots coupled to super-
conducting resonators. In this work we intended to use the circuit QED setup as a tool to explore
fundamental phenomena occurring in a DQD. When the DQD is driven out of equilibrium, i.e. when
it is voltage-biased, excess energy is released by emission of phonons and/or photons. The main idea
is to use the microwave resonator as a selective probe to collect and analyse the emitted microwave
radiation, which is not accessible in traditional semiconductor quantum dot architectures.

One of the most established tools to characterize electric fields is the measurement of correlation
functions. Correlation functions evaluate the degree of temporal coherence of light, i.e. the ability
of light to interfere with itself. In turn, temporal coherence properties can be used to infer details
about physical properties of the light source. We focused on measuring the first and second order
correlation functions of the radiation originating from the DQD. To this end, we incorporated a
quantum limited parametric amplifier [4] to our measurement setup and used Field Programmable
Gate Array (FPGA) electronics.



CHAPTER 2

Review

In this chapter we will review the basic concepts of cavity quantum electrodynamics (cavity QED) and
discuss how it can be implemented using superconducting microwave electronics and semiconductor
heterostructures.

2.1. Cavity QED
Let us consider a cavity formed by two highly reflective mirrors which define a quantized mode of
the electric field (see Fig. 2.1). Due to the high reflectivity of the mirrors, photons stay inside the
cavity for a long time. Inside the cavity there is an atom which can interact with the photons present
in the cavity. After an average time 1/κ characterized by the cavity decay rate κ, photons leave the
cavity through the mirrors and can be detected on either end. The cavity can be characterized by its
resonance frequency ωr/2π and its decay rate κ, or equivalently its quality factor Q = ωr/κ. The
atom inside the cavity interacts with the electromagnetic field via dipole interaction, coupling its
electronic excitations to the electric field. To model the system, the atom inside the cavity is often
considered as a two level system with a ground |g〉 and an excited state |e〉 whose energy difference
is given by ~ωa. In general, any system with an anharmonic energy spectrum, i.e. one where the
energy levels are not equally spaced, can be considered as a two level system. The reason is that
experimentally an individual transition can be isolated.

κg

γ

Figure 2.1.: Schematic of the cavity QED setup. Two mirrors define a quantized electric field mode which
leaves the cavity at a rate κ. A two level system inside the cavity couples via dipole interaction
with the field and exchanges excitations at a rate g. Interactions between the two level system
and other degrees of freedom occur at a rate γ.
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When the cavity and the atom are in resonance, they can exchange energy quanta at a rate g which
is called the coupling constant. However, the atom can also couple to other uncontrolled degrees
of freedom, which results in an energy loss at a rate γ. This system is described by a Hamiltonian
known as the Jaynes-Cummings Hamiltonian [5].

HJC = ~ωr
(
a†a+ 1

2

)
+ ~ωa

2 σz + ~g
(
σ+a+ σ−a†

)
(2.1)

where the Hilbert space is spanned by a basis which keeps the total number of excitations constant:
{|g, n〉 , |e, n− 1〉}. The first term in equation 2.1 describes the energy of a harmonic oscillator (in
this case the electric field) in terms of a (a†) i.e. annihilation (creation) operators. The second
term describes the energy of a two level system, where σz is the Pauli z-operator given by σz =
|g〉 〈g| − |e〉 〈e|. The third term describes the interaction between the cavity and the atom at a rate
g, where σ− = |g〉 〈e| and σ+ = |e〉 〈g| are the lowering and raising operators. The terms σ+a
(σ−a†) describe the process of photon absorption (emission). This interaction neglects terms where
the total number of excitations in the system is not constant, a simplification known as the rotating
wave approximation.

When the interaction rate g is larger than the rates κ and γ, the system is said to be in the
strong coupling regime. In this regime, the dynamics of the system strongly depend on the detuning
∆ = ωr − ωa between the atom and the cavity. Two cases are of particular interest, namely small
and large detuning.

Dispersive Limit When the detuning is large such that |∆| � g no energy exchange between the
atom and the cavity takes place, however a dispersive interaction remains. Since g/∆ is small, the
Jaynes-Cummings Hamiltonian in equation 2.1 can be expanded using a Taylor series in g/∆ [6].

Hdisp = ~
(
ωr + g2

∆σz

)(
a†a+ 1

2

)
+ ~ωa

2 σz (2.2)

The first term in equation 2.2 again describes the electric field in the cavity as a harmonic
oscillator. However, its resonance frequency now depends on the state of the atom ω

′
r = ωr±g2/∆.

This dispersive frequency shift of g2/∆ can be used to infer the atom state by measuring the cavity
frequency [7]. Equation 2.2 can be rewritten as:

Hdisp = ~ωr
(
a†a+ 1

2

)
+ ~

2

(
ωa + 2g2

∆ a†a+ g2

∆

)
(2.3)

Equation 2.3 shows that the transition frequency of the atom is modified by the photon number
in the cavity a†a, an effect known as the ac-Stark shift. The term g2/∆ in the effective transition
frequency is known as the Lamb shift.

Vacuum Rabi Splitting All terms in the Jaynes Cummings Hamiltonian (equation 2.1) are con-
servative, i.e. keep the total number of excitations constant. This symmetry can be observed in the
basis {|g, n〉 , |e, n− 1〉} when we calculate the matrix elements

〈e, n− 1|HJC |e, n− 1〉 = (n− 1) ~ωr + ~ωa
〈g, n|HJC |g, n〉 = n~ωr

〈e, n− 1|HJC |g, n〉 = 〈g, n|HJC |e, n− 1〉 = ~g
√
n

(2.4)
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And write them in matrix form

(
(n− 1) ~ωr + ~ωa ~g

√
n

~g
√
n n~ωr

)
(2.5)

We now observe the symmetry of the Hamiltonian that arises from the interaction terms
(〈e, n− 1|HJC |g, n〉) and (〈g, n|HJC |e, n− 1〉) which conserve the total number of excitations.
We can diagonalize this matrix leading to

E± = (2n− 1) ~ωr + ~ωa
2 ±

√
~2
(
ωr − ωa

2

)2
+ ~2g2n (2.6)

For the resonant case, i.e. when the detuning is close to zero (ωr = ωa), E± = n~ωr ± ~g
√
n.

Due to strong coupling, the energies split by a factor 2
√
n~g in an effect known as vacuum Rabi

mode splitting. In this situation, atom and cavity constantly exchange excitations which can be
observed in time as vacuum Rabi oscillations. The eigenstates of the system become symmetric and
anti-symmetric superposition of atom and photon states (equation 2.7)

|±, n〉 = 1√
2

(|g, n〉 ± |e, n− 1〉) (2.7)

2.2. Quantum dots in circuit QED

An implementation of a cavity QED system by means of superconducting electronic circuits was pro-
posed in [8] and demonstrated in [1], opening a field called circuit quantum electrodynamics (circuit
QED). In this realization, the cavity is realized by a superconducting coplanar waveguide resonator
and the ’atom’ is implemented as two superconducting islands, a so-called Josephson Junction where
the collective behaviour of electrons exhibits the properties of a two level system, a charge qubit
in this case. Another possibility to realize a two level system are solid state quantum dots (QDs).
QDs are formed by confining electrons in all three spatial dimensions on a small island coupled only
weakly to the surrounding environment. This report deals with an hybrid system where gate defined
lateral semiconductor QDs are coupled to a resonator. Lateral QDs [9] are formed on a semiconduc-
tor heterostructure where electrons are confined at the interface between two semiconductors such
as gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs), see Fig. 2.2a.
Since the bandgap of AlGaAs is larger than that of GaAs, a step in the conduction band occurs

at the interface (see Fig. 2.2b). As it is energetically more favourable, weakly bound electrons in the
n-doped region travel into the GaAs region but remain close to the interface plane due to the charge
screening, i.e. electric field built up by the holes left behind [9]. The conduction band bends because
the Fermi energy has to be constant across the whole structure. Electrons are free to move on the
interface plane but are confined in the direction normal to it, forming a so-called two dimensional
electron gas (2DEG). Due to confinement, electronic states are assumed to be quantized in the
direction normal to the 2DEG plane. However the quantization energy is assumed to be large, such
that electrons can remain in their ground state [9]. QDs are defined by depleting the 2DEG in certain
regions applying negative potentials through metallic gates on top of the structure, as shown in Fig.
2.3.
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(a) (b)

Figure 2.2.: (a) Schematic of a GaAs/AlGaAs heterostructure with a 2DEG confined 90 nm below the surface
(adapted from [10]). (b) Conduction band diagram for a GaAs/AlGaAs heterostructure such as
in (a).

Figure 2.3.: SEM image of the metallic gates that define the confinement potentials for a DQD.

QDs are usually coupled to reservoirs such that electron transport occurs by tunnelling of electrons
into the QD and out. If the 2DEG is depleted in such a way that two QDs are formed next to each
other, a double quantum dot (DQD) can be formed.

DS

δ

|1,0> |0,1>

(a)

DS

|ψ > = (1/√2)(|1,0> ± |0,1>)±

_|ψ >

|ψ >+

2t

(b)

Figure 2.4.: (a) Schematic of individual levels in a DQD with an energy detuning δ. (b) The interdot tunnel
coupling t hybridizes the states ψ± describing an effective two level system.

To model a DQD as an effective two level system let us start by considering both dots initially
uncoupled. A Hamiltonian that describes the configuration is given in the basis of charge states [9]
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where |1, 0〉 (|0, 1〉) denote the state of an electron occupying the left (right) dot (see Fig. 2.4a).

H = δ

2σz (2.8)

where σz is again the Pauli z-operator, this time given by σz = |0, 1〉 〈0, 1| − |1, 0〉 〈1, 0|. The
energy detuning between both states is given by hδ, where δ = ωδ/2π. Figure 2.4a shows a schematic
of the two ground state energy levels the DQD either in the state |1, 0〉 or |0, 1〉. When the two
dots are tunnel coupled, an interaction term must be added to the Hamiltonian accounting for the
tunnelling of an electron from one dot to another at a rate t/h, called inter-dot tunnel coupling.

H = δ

2σz + tσx (2.9)

Where σx is the Pauli x-operator given by σx = |0, 1〉 〈1, 0| − |1, 0〉 〈0, 1|. The inter-dot tunnel
coupling mixes charge states and hence leads to a an hybridization of the electron states in the
left and right dot. When δ becomes small, the eigenstates of the system become symmetric and
anti-symmetric superposition of the initially uncoupled states, as given in equation 2.10. At zero
detuning the energies of these states would be degenerate and hence split by a factor of 2t. The
new eigen-energies of the system are given by equation 2.11.

ψ± = 1√
2

(|0, 1〉 ± |1, 0〉) (2.10)

E± = ±1
2

√
δ2 + (2t)2 (2.11)

As depicted in Fig. 2.4b, the hybridized states ψ± describe an effective two level system with
transition frequency ~ωq =

√
δ2 + (2t)2, which can in turn be coupled to a cavity. The resulting

interaction is formally equivalent to a dipole coupling between the resonator and the DQD and is
formally analogous to cavity QED. Please refer to [11] for a formal treatment of a DQD coupled
to a resonator. Although coupling of DQD to cavities has been realized, up to date we are not
aware of any documented observation of strong coupling in such architecture. Strongly coupling
semiconductor QDs to a superconducting resonator would eventually allow to integrate spin degrees
of freedom (which are known for having considerably larger coherence times) into a circuit QED
architecture.



CHAPTER 3

Measurement Setup

3.1. Sample

The experiments covered in this report were performed using the device depicted in Fig. 3.1. It
is based on a selectively doped semiconductor heterostructure which is grown by molecular beam
epitaxy (MBE) [12]. As mentioned in section 2.2, a 2DEG is formed roughly 90 nm below the surface
at the interface of n-doped AlGaAs on top of GaAs.

Figure 3.1.: Optical photograph of the sample design. Labels are: resonator (R), ground plane (GND), ohmic
contacts (O), metallic top-gates (G), inductor (I). Metallic top-gates are shown in gold. The
2DEG is located in dark grey regions.

On top of the semiconductor heterostructure wafer a microwave cavity is added. It is fabricated
as a coplanar waveguide (CPW) resonator in a photo-lithographic process using aluminium, which
is superconducting below Tc,Al= 1.2 K. Please note that AlGaAs is etched away below the region
where aluminium is deposited, such that there is no 2DEG below the resonator. In the sample used
for the measurements presented in this report, the external quality factor was Qext = 2060 which
corresponds to a decay rate of κ/2π=3.35 MHz. The resonance frequency νr=6.852 GHz is mainly
determined by the length of the resonator which is about 8 mm.

On top of the remaining GaAs area, metallic gates are defined by a combination of photo-
lithography and electron beam lithography (EBL), such that on the left hand side of the resonator
at an anti-node of the electric field, a DQD can be formed (area enclosed in a green rectangle in
Fig. 3.1). Figure 3.2 shows the sample gate design and indicates the following naming convention:
left side gate (LSG), left plunger gate (LPG), central gate (VC), right plunger gate (RPG), right
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Figure 3.2.: SEM image of the sample showing its
gate design.

Figure 3.3.: Low pass frequency Aivon filter.

side gate (RSG), source drain barrier (SDB), quantum point contact (QPC), source (S), drain (D).
Arrows in Fig. 3.2 indicate paths where current flows. Coupling between the DQD and the resonator
is achieved by directly connecting LPG to the center conductor of the CPW. In order to DC bias
this gate, an inductor at the center of the resonator is added, as shown in Fig. 3.1.

3.2. Cryogenics

In order to observe quantum effects the thermal occupation of all relevant degrees of freedom needs
to be below one quantum of energy. As discussed in chapter 6, various energy scales come into play
regarding quantum dots. For the microwave resonator, the energy scale is given by that of a single
microwave photon hνr putting a limit to the thermal energy kBT � hνr. This condition can be
satisfied in a dilution refrigerator [13] which can reach temperatures down to ≈ 20 mK. The dilution
refrigerator used in our experiments employs a pulse tube cooler with a helium working medium to
pre-cool the first two stages to 70 K and 4 K. Cooling to 20 mK on the lowest stage is achieved by
extracting heat through the evaporation of 3He in a 3He 4He mixture.

To reduce the heat load to the lowest temperature stage, we use stainless steel cables which have
a lower conductivity (≈ 0.1 W mK−1) in comparison to regular copper cables (≈ 20 W mK−1).
Additionally, attenuators are added at different temperature stages in order to thermalize the outer
and inner conductor of the cables to the respective temperatures (see Fig. 3.4). Attenuators also re-
duce thermal radiation coming from room temperature equipment, helping the physical temperature
(lattice vibrations) and the electromagnetic field temperature (photon excitations) to remain low.
Another measure to reduce the thermal radiation entering the sample are circulators added between
the sample output and the amplifiers. Circulators act as a one way valve for microwave radiation,
allowing it to propagate only in one direction. In this way the noise emitted by the amplifiers towards
the sample is filtered and deposited in 50 Ω terminations (see Fig. 3.4).

On the DC lines side, a customized low pass Aivon filter has been added. This filter was modified
(Fig. 3.3) by Peter Märki from the Nanopysics Group in order to capacitively connect it to the
ground of the cryostat, allowing for good thermalization. The addition of this modified filter brought
a significant improvement in the measured electronic temperature of the sample, reducing it from
130 mK to 58 mK.
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Figure 3.4.: Left: Schematics of the experimental setup. Signal generation and signal acquisition takes place at
room temperature. Three RF generators are shown, one is used as to generate the resonator signal
input, while the other two are used to operate and calibrate a parametric amplifier. The room
temperature DC part of the setup consists of several DC sources and meters required to operate
the gates of the sample and measure currents. The JPD block consists of a setup indicated in
Fig. 3.5. The aivon filter is depicted in Fig. 3.3. Five temperature stages are found inside the
cryostat. Right: Photo of the open cryostat indicating different temperature stages. Figure layout
adapted from [14].
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3.3. Signal generation, amplification and acquisition
Our experiments involve a variety of electrical signals which are generated by room temperature
equipment and can be divided into the following groups: synchronization and trigger signals, con-
tinuous microwave signals, and DC signals.
To perform precise measurements all devices need to be commonly synchronized. This is achieved

by phase locking each device to a common 10 MHz reference provided by a Rubidium clock (SRS
FS745). This clock is stabilized against drifts in the clock frequency and provides a reference signal
with ultra-low phase noise. Typically many repetitions of a measurement are performed to acquire
enough information. These repetitions are controlled by a free running external trigger usually set
to a value of 25 µs.
Continuous microwave signals are generated by Rhode and Schwarz microwave sources, see Fig.

3.4. One source (RF) is used to apply coherent tones to the resonator. Another source (LO) is used
as a local oscillator for demodulation of the resonator output signal to an intermediate frequency
(IF). Two further sources are used to pump and calibrate a parametric amplifier.

Amplification Measurements of signals coming out of the resonator are enabled by the use of a
parametric amplifier (paramp) and cryogenic low noise amplifiers (LNA) installed respectively at the
lowest and at the 4 K stage of the cryostat. The noise level is quantified by the noise temperature
which is the equivalent temperature of a black body radiator in front of a noiseless amplifier producing
the same amount of noise as our system. Frii’s law for the noise temperature shows that the system
noise is dominated by the first amplifier in the detection chain

Tsys = Tamp + Trest
Tamp

(3.1)

During the course of the project, we introduced a paramp into our setup as the first amplifier in
the detection chain. The device, shown in Fig. 3.5, is called a Josephson Parametric Dimer (JPD) [4].
It works in reflection and consists of two non-linear coupled resonators. The non-linearity arises from
superconducting quantum interference devices (SQUIDS) realized by means of Josephson Junctions
whose inductance can be tuned by means of an applied magnetic field. For parametric amplification
to occur, the JPD needs to be pumped by a high power RF signal. The gain and bandwidth of the
JPD are tunable, and the effective noise photon number N0 after amplification lies between 0.5
and 10 photons ([4], [15], [16], [17]). In contrast, LNAs implemented using high electron mobility
transistors (HEMT) feature effective noise photon numbers between 30 and 200 ([18], [19], [20],
[21]). As described in section 7.2, due to the quantum character of the JPD operation it is possible
to measure an estimate for the effective noise photon numbers in our setup. This number was found
to be around 5 for the JPD, and around 100 for our HEMT amplifier. The deviation of N0 from the
vacuum for the JPD is due to cable and insertion losses in front of it.
At room temperature, the signal is further amplified by ≈ 60 dB (ZFL-500LN+, Mini-Circuits)

to a level where it becomes detectable by digital electronics. The amplified high frequency signal is
filtered by an analogue low pass filter (VLFX-225, Mini-Circuits) and converted down to an IF of
typically 25 MHz. For down conversion we use an IQ mixer (IQ4509MXP, Marki) driven by a local
oscillator which is phase locked to the input microwave signal. The resulting IF signal is again low
pass filtered (SLP-50+, Mini-Circuits), digitized by an Acqiris Data Acquisition Board (AP240) and
finally passed onto a Xilinx Xtreme DSP board where data processing, averaging and recording of
the measurement outcome takes place.
The Xilinx Xtreme DSP board has a sampling period of 10 ns on two channels but can be

programmed to perform arbitrary operations on the data before averaging, which is the key feature in
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Figure 3.5.: Optical false colour image of a JPD and schematic lumped element circuit representation. The
device operates in reflection. A circulator establishes the signal flow, coupling the input signal
to the paramp via a directional coupler and coupling the reflected amplified signal to the output
line. The directional coupler also allows to couple a pump signal to the paramp input with -
20dB of attenuation. Since the pump signal power is usually strong, some power might get
reflected together with the amplified signal. A pump cancellation signal is sent via another port
of the directional coupler in order to destructively interfere with any reflected pump signal. Figure
adopted from [4].

our signal processing schemes. The reason is that we perform non-linear operations on the measured
data, and these do not commute with averaging.



CHAPTER 4

Coplanar Waveguide Resonators and Wire Bonds

During a considerable part of the project our samples were not working as expected. Namely, our
resonators had a very low quality factor. This chapter tries to summarize some efforts we made to
try to model possible origins for the observed low quality factors in our resonators. In chapter 2 we
considered cavities as harmonic oscillators. We start by describing the implementation of the cavity
as a superconducting transmission line resonator.

4.1. Coplanar waveguide resonators

The coplanar waveguide (CPW) ([22], [23]) is a type of transmission line [24] supporting quasi-TEM
modes [25]. It can be thought as the planar counterpart of a co-axial cable, having the ground plane
on the same plane as the center trace, as shown in Fig. 4.1.

(a) (b)

W

h

Lℓ Cℓ

l = λ0 / 2

n=0

n=1

n=2 ε s

S S

Figure 4.1.: (a) Schematic representation of a CPW, (b) first three resonant modes of a CPW. Image adopted
from [26].

We can also think of a CPW as two coupled slot lines, whose geometry is defined by the width w of
the center conductor, the gap s, and the height h of the substrate (Fig. 4.1). The relative permittivity
εs of the substrate is also a design parameter. The thickness t of the conductive film is usually
much smaller than all other dimensions, and hence commonly assumed as flat. The characteristic
impedance of a loss-less transmission line in terms of its capacitance Cl and inductance Ll per unit
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length can be expressed as [24]

Z0 =
√
Ll
Cl

(4.1)

and its phase velocity can be expressed as the following

vph = 1√
LlCl

= c
√
εeff

(4.2)

where c is the speed of light in free space and εeff is the effective permittivity of the substrate.
At non-zero frequencies the electric and magnetic field have longitudinal (i.e. in the direction of
propagation) components, and hence the electromagnetic mode propagating in a CPW is referred
as a quasi transverse electromagnetic (TEM) [24], [25]. Since the characteristic impedance of non
TEM modes is not uniquely defined, there is no unique analytical expression for the characteristic
impedance of a CPW. However, Cl can be estimated by means of conformal mapping techniques
[27] which map the CPW structure into an effective parallel plate capacitor from which an effective
permittivity εeff can be calculated. Having an expression for Cl, from equation 4.2 an expression
for Ll can be obtained. In this way, expressions for Cl and Ll read [27].

Cl = 4ε0εeff
K(k0)
K(k′

0)
(4.3)

Ll = εeff
c2Cl

= µ0
4
K(k′

0)
K(k0) (4.4)

Where K is a complete elliptic integral with modulus k0 = w/w + 2s and k′
0 =

√
1− k2

0. Note
that the inductance only depends on the geometry of the CPW, while the capacitance includes
a dependance on εeff . Combining equations 4.1, 4.3, and 4.4 an expression for the characteristic
impedance of a CPW can be obtained.

Z0 = 1
4

√
µ0

ε0εeff

K(k′
0)

K(k0) (4.5)

The effective relative permittivity depends on the geometry as well as on the permittivity of the
substrate and the medium above the CPW:

εeff = εm + εm − εs
2

K(k1)
K(k′

1)
K(k′

0)
K(k0) (4.6)

where k1 = sinh(πw/4hs)/ sinh(π(w+2s)/4hs) and k
′
1 =

√
1− k2

1. In the limit of large substrate
thickness hs →∞, k1 tends to k0

lim
hs→∞

εeff = εm + εm − εs
2 = εm + εs

2 (4.7)

The medium surrounding our CPWs is usually vacuum, and hence εm = 1. An intuitive interpre-
tation of equation 4.7 is that the energy of the electric field gets equally distributed in vacuum and
in the substrate, thus the effective permittivity is just the mean value of both. In this way one can
tune the CPW dimensions to obtain a desired intrinsic impedance. To be compatible with the rest
of the measurement setup, our CPWs are designed to have Z0 ≈ 50 Ω
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4.2. Wire bonds and their influence

As shown in 4.2, CPWs support two propagating modes: an even mode and an odd (also called
’slot-line’) mode. The desired mode profile of a CPW is symmetric [23], with both ground planes on
either side of the center trace held to the same voltage. However, asymmetries and discontinuities
in the structure can lead to the excitation of parasitic slot-line modes [28], which are in general
undesired [29].

(b)
V V

(a) (c)

ℓ wℓg
h

E

H

Figure 4.2.: (a) Even (quasi-TEM) mode and (b) odd (slot-line) mode of the CPW. Top: Excitation of the
modes. Middle: Schematic of the transversal electric field. Bottom: Schematic of the transversal
magnetic field. (c) schematic of an airbridge. Image adopted from [26].

Intuitively, slot line modes may get excited whenever there is potential difference between both
ground planes (see Fig. 4.2). In order to suppress them, crossover connections can be made be-
tween the ground planes forcing their potential to be the same. Free standing crossovers, known as
airbridges, have been a conventional solution in microwave CPW technology, and fabrication pro-
cesses have been developed to include them on superconducting microwave circuits. Two important
questions then arise, namely, what influence such crossover connections have on the performance of
a CPW, and where to place them. In regard to their influence, airbridges have been proved to be
an effective solution to suppress parasitic modes, but they may also present a source of loss. There
have been recent attempts to characterize the losses introduced by airbridges in superconducting
microwave resonators [30].
Due to the additional micro-fabrication work required to include airbridges on superconducting

CPWs, connections between the different ground planes are alternatively made using wire bonds. In
our lab, some tests of the influence of wire bonds on superconducting CPWs have been made [31],
showing that they also help to attenuate parasitic modes.
During a considerable part of this project, our resonators had a very low quality factor, mak-

ing them unsuitable to perform any experiments. Since we used wire bonds on our resonators, we
intended to test whether the placement of wire bonds had a negative influence on our resonator
samples. To this end, we made tests of our resonator design fabricated on a Niobium (conduc-
tor)/Sapphire (substrate) sample. Having a bonding plan, we measured the scattering parameters
of our resonator at a temperature of 4.2 K for each step of bonding, and extracted quantities of
interest such as the Q factor.
Figure 4.3 shows the bonding plan we followed to test the effect of wire bonds on our resonator

design. For each bonding step we measured the scattering parameters using a 4-port vector network
analyzer (VNA) (Agilent Technologies N5230C PNA-L) for different excitation powers going from
-70 dBm to 0 dBm in steps of 5 dBm.
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Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 1: No bonds

Step 9: SEM

Figure 4.3.: Schematic of the bonding plan used for our bonding tests.

We tried to place wire bonds in such a way that symmetries were recovered. Considering that
the path difference between the two slots of a CPW may lead to potential differences between the
ground planes, we tried to place wire bonds wherever the structure bent or had discontinuities. Wire
bond across the center inductor as well as across the mesa have the purpose of interconnecting the
split ground plane. As we will show later, a guideline for this type of bonds is to place them as close
as possible to the discontinuity, i.e. to the center trace, such that they present a low inductance
path for the current. We used a dipstick setup for the experiment, which consists of a stick to which
the sample is attached to and which is dipped in liquid helium allowing to reach a temperature of
4.2 K. On top of the dipstick are SMA connectors which are connected to the VNA. In order be
able to get an estimate of the internal and external quality factors of our resonators, we calibrated
the cables from the VNA ports down to the input ports the sample.

Figure 4.4.: Transmission spectra for each bonding step at P=-5 dBm. An offset of 100 dB has been added
between the traces for clarity.

Figure 4.4 shows the power transmission spectra measured after each step of bonding. Near
7 Ghz we observe a transmission resonance, as expected for the first resonance mode of our sample
design. The second resonance mode is also observed around 15 GHz. All peaks in between these two
resonances are associated with parasitic slot-line modes in our resonator. We note how these parasitic
resonances qualitatively get suppressed as we add wire bonds according to Fig. 4.3. We fit the first
resonant mode of these traces to the theoretical scattering matrices [24] and extract the internal,
external and loaded quality factors of our resonator and plot them as a function of the bonding step
(Fig. 4.5). We observe an increase in the internal quality factor of our resonator, specially after steps
3 and 4 of bonding. Referring back to Fig. 4.3 we note that these steps correspond to bonds which
interconnect the split ground plane in our sample. This is an indication that such discontinuities
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Figure 4.6.: Internal and external decay rates after each
bonding step.

Figure 4.7.: Resonance frequency of the first
resonant mode after each bonding
step.

lead to strong internal losses and suggest that interconnections should be carefully made in order to
restore the symmetry.

Figure 4.5.: Internal, external, and loaded quality factors after each bonding step.

In Fig. 4.6 we plot the external and internal decay rates κ of our resonator. Please note that the
external decay rates κ1(2) are given by the coupling capacitances to the resonator, which by design
should be equal. However, we observe that they only become symmetric after step 6 of bonding. As
expected from Fig. 4.5 the internal decay rate decreases during steps 3 and 4. In Fig. 4.7 we plot
the resonance frequency of the first mode after each bonding step. The shift in resonance frequency
after step 2 and 3 indicates a change in the propagation constant of the CPW, namely Cl and Ll.

The goal of our bonding tests was mainly to verify whether presence or absence of wire bonding
on our resonator design had a strong influence on the quality factor. We note the loaded quality
factor in Fig. 4.5 stays roughly constant even if no wire bonds are added. This suggests that wire
bonding problems are not likely a reason for the very low quality factors that we measured in our
real samples. We also observe that, bonds interconnecting the split ground planes in our design are
the most important ones, in terms of resonator quality factor. From Fig. 4.4 we also note that wire
bonds qualitatively suppress parasitic modes. However, these measurements have several drawbacks
and can only be regarded as a qualitative measure. First of all, with a wire diameter of 25 µm and
a typical length of 1 mm, wirebonds have an inductance of the order of 1 nH and an impedance of
40 Ω at 6 GHz, making them an ineffective shunt. Furthermore, wire bond results do not produce
uniform and reproducible results [26]. On the other hand, the dipstick measurement scheme used for
our experiment has some drawbacks. For instance, since wire bonds are made of a mix of Aluminium
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and Silicon, they do not reach the superconducting state in a dipstick due to its critical temperature
Tc =1.2 K which is well below that of liquid helium. The possibility of a different behaviour at lower
temperatures can not be totally excluded.

With this in mind, we suggest the introduction of airbridges for future sample designs. From the
measurements presented in this section, an improvement in the quality factor of the resonator as
well as a closer match to designed parameters such as external decay rates can be expected.

4.3. A short note on airbridge design
The term impedance miss-match refers to a difference in the characteristic impedance of a trans-
mission line. At the interface where impedance miss-match occurs, two processes take place: part of
the incident signal power is reflected and part is transmitted. Defining Z0 and ZL as two different
characteristic impedances, the reflection coefficient is given by equation 4.8.

Γ = ZL − Z0
ZL + Z0

(4.8)

The transmission coefficient is defined as T = 1 − Γ. Referring to Fig. 4.2, we can think of
an airbridge as adding a shunt capacitance between the center conductor and the ground plane of
a CPW. Therefore, an airbridge introduces an impedance miss-match and reflections occur. If we
consider the airbridge as a lumped element shunt capacitance, the impedance of the transmission
line gets modified by the additional capacitance as

Z
′
0 = 1

(Cairbridge + Cl) vph
(4.9)

The reflection coefficient at this point in the CPW will be

Γ = Z
′
0 − Z0

Z
′
0 + Z0

= − 1
1 + 2 Cl

Cairbridge

(4.10)

where the minus sign indicates a π radians phase shift. Using equation 4.2, we rewrite equation
4.10 as

Γ = − 1
1 + 2 1

Z0vphCairbridge

= − 1
1 + 2

√
εeff

cZ0Cairbridge

(4.11)

where c is the speed of light. If we consider the capacitance of the airbridge as a parallel plate
capacitor, equation 4.11 becomes

Γ = − 1
1 + 2

√
εeff

cZ0ε0εr
h
A

(4.12)

where h is the airbridge height and A is the airbridge area A = wl as in Fig. 4.2. From equation
4.12 we observe that the height of the airbridge should be larger compared to its width and length in
order to reduce reflections. A typical value for h is on the order of 1 or 2 µm. To reduce the airbridge
inductance, the width can be increased and the length can be reduced. Whether the additional
shunt capacitance should be large or small, depends on the purpose of the airbridge. If the purpose
of adding an airbridge is to suppress parasitic modes, the capacitance and inductance should be small.
If we want to connect split ground planes, the shunt capacitance might be large and the inductance
small. On the other hand, there are important points to consider when fabricating airbridges. Please
refer to chapter 2 of [26] for notes on this topic.



4.4 Capacitance simulations 19

4.4. Capacitance simulations

As we will show in chapter 6, the interaction rate g between our DQD and the resonator is given by
[11].

g0 = ω0∆α
(

2Z0e
2

h

) 1
2

(4.13)

where ∆α = αLPG,LD − αLPG,RD is called the differential lever arm, in our case of LPG (since
as we saw in section 3.1, our DQD is coupled to the resonator via LPG). αLPG,L(R)D is called the
lever arm of LPG on the left(right) dot, and is given by the ratio of the capacitance between LPG
and the left(right) dot to the total capacitance, also called self capacitance, of the left(right) dot.

αLPG,L(R)D =
CLPG,L(R)D

C00
(4.14)

We hence note that g0 is proportional to the differential lever arm. In principle we would then
want strong capacitive coupling between LPG to the left dot but weak to the right dot. One way to
modify these capacitive couplings is by design of the sample geometry. With the aim of increasing
the differential lever arm of the sample, a couple modifications had been introduced to the DC gates
in the vicinity of the DQD. We intended to quantify the effect of such geometrical modifications on
∆α. For this, we numerically simulated the capacitance matrix of our DQD using the finite element
method (FEM) simulator Maxwell 3D.

(a) (b)

Figure 4.8.: (a) SEM image of our sample without and (b) with additional metallic features.

the LPG samples the signal in the resonator at an anti-node of the electric field and couples it
to the DQD. To increase the lever arm, we want this signal to couple more to the left dot than to
the right dot. In Fig. 4.8 we observe metallic plates extending the area of LSG and the right ground
plane. One may in principle think that the coupling between the left dot and the resonator could
be enhanced, if the capacitance between LSG and LPG is increased. The reason would be that the
AC signal in the LPG would couple to the LSG, and in this way act more on the left dot than on
the right dot. In a similar way, one may think that by increasing the coupling between the LPG
and the right ground plane, the coupling between the LPG and everything on its right side would
be reduced. The above mentioned effects would then lead to an increase in the differential lever
arm. The sample design shown in Fig. 4.8b is motivated by these considerations. Figure 4.9 shows
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Table 4.1.: Capacitances in [fF] between the LPG and different gates in our sample model with and without
metallic plates (MP) (see Fig. 4.9).

SDB VC GroundLeft GroundRight LSG QPC RPG
With MP 5.07×10−2 0.17 3.47 4.18 1.2 5.12×10−2 7.16×10−2

No MP 5.72×10−2 0.32 3.62 3.49 0.41 5.84×10−2 0.11
RSG 2DEG1 2DEG2 2DEG3 2DEG4 LD RD

With MP 4.68×10−2 0.29 9.43×10−2 9.48×10−2 0.29 1.84×10−2 2.99×10−3

No MP 5.38×10−2 0.41 0.12 0.12 0.39 1.96×10−2 3.41×10−3

Table 4.2.: Estimated resonator-DQD coupling g0/2π (equation 4.13) based on capacitances from table 4.1.
Resonance frequency is assumed to be 6.8 GHz and Z0 = 50 Ω.

Including metallic plates 59 MHz
No metallic plates 60 MHz

Including metallic plates and contribution from LSG 79 MHz
No metallic plates and contribution from LSG 80 MHz

a 100 µm side cubic section of the region around our DQD. We included in this model all relevant
gates and simulated the depletion of the 2DEG by adding a thin metallic film (15 nm thick) 90 nm
below the surface. To simulate a DQD, we further isolated 2 circular regions of 80 nm radius in the
2DEG, and placed them at the spot where the DQD is expected to be formed. We then proceed to
calculate the capacitance matrix of the structure with and without the features discussed above.

(a) (b) (c)

Figure 4.9.: CAD model of our sample. (a) 3D view showing a simulated depletion of the 2DEG 90 nm
below the surface. (b) Top view showing sample gates and ground planes to the left and right
of the resonator plunger gate. (c) Zoom of top view indicating the double dot and the naming
convention for the depleted 2DEG, LG and RG stand for left and right ground respectively.

The motivation for adding the metallic plates was to achieve a greater differential lever arm and
thereby a larger value for g/2π. As seen in table 4.1, while the coupling from the resonator gate
(LPG) to the left side gate (LSG) is effectively increased, the influence on the differential lever arm
is negligible even if we calculate an effective capacitance between the resonator and the dots as the
sum of the capacitances between the LPG and the LSG to the dots (see table 4.2). This is due
to the fact that the capacitance from the different gates to the dots does not get altered by the
presence of the metallic plates.

We further tried to consider possible modifications to the gate design of our sample in order to
increase the differential lever arm. One possibility, as considered in previous work [10], is to use
asymmetric plunger gates. Here we intended to get a quick estimate of how much increase could
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Figure 4.10.: Schematic of asymmetric plunger
gate design. The LPG is extended
on top of the left dot to increase its
capacitive coupling.

Rℓ Lℓ

Cℓ Gℓ

Figure 4.11.: Distributed element circuit model of
a transmission line.

in principle be achieved with such a geometry. We modified the sample design to obtain maximum
surface overlap between the LPG and the left dot (see Fig. 4.10) and again calculated the capacitance
matrix of the structure. We calculate a factor of 2 increase in g0, which although desirable, would
still not allow to reach the strong coupling regime. Our simulation assumes that a DQD potential
can be formed without applying any potential to the LPG. Please note that somewhat similar designs
have been tested finding an increase in g0 but a difficulty to tune the inter-dot tunnel coupling, due
to the close location of LPG to the central barrier [10].

4.5. DC gate lines and their high frequency response
As shown in Fig. 3.1, the gate lines of our sample extend nearby the resonator ground plane.
Wirebonds connecting the PCB and the gate lines are placed on the square pads at the end of each
gate line. As depicted in Fig. 4.12, the gate line going closest to the resonator ground plane resembles
a slot line waveguide, which has a length comparable to the resonator length. In general we want
excitations being generated at the DQD to couple only to the resonator, and we want the DQD
to be isolated from external excitations. One question of interest is then what the high frequency
response of gate lines looks like, since they may offer a path for high frequency excitations to go
into and out of the DQD. Ideally, the gate lines should show a high impedance at high frequency,
such that the signal coming from the DQD does not escape through them, and high frequency noise
from the measurement set up is filtered out.

Figure 4.12.: Schematic of the gate lines in our sample design. The red highlighted gate going closest to the
resonator ground plane resembles a slot-line transimission line.

We intended to simulate the high frequency response of our gate lines using a 3D FEM simulator
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(HFSS, Ansoft) to calculate the scattering parameters of the structure. In an ideal case, the red-
highlighted gate line in Fig. 4.12 going closest to the ground plane forms slot-line waveguide. The
discontinuities in the structure, such as bendings and size changes, make the ideal waveguide a
very bad one. We expect an impedance mismatch at the end of the gate line, where wirebonds are
placed to connect to the PCB. This leads to reflections and a resonance at high frequency, close
to 8 GHz. The addition of further gate lines close to the red-highlighted one, effectively change the
intrinsic impedance (via changes in the capacitance and inductance per unit length), and hence the
propagation constant of the slot-line like waveguide.

Having high frequency resonances in the gate lines, even if they are weak ones, is highly undesired.
We thus suggest possible improvements for the sample design in order increase the impedance at
high frequency of the gate lines. Gate lines should be shorter, this would move possible resonances
to higher frequencies than the frequency range in which we are interested (6 to 8 GHz). Evaluating
the possibility to reduce the number of gates would also be worth. Finally, it may be good to
consider the addition of micro-strip filters in order to filter out high frequency noise coming from the
measurement set up. Such filters should be added to each gate line and placed as close as possible
to the DQD. To motivate the use of micro-strip filters, we give a quick overview of how such filters
can be designed and what responses can be obtained.

Microwave filter design started around the years of the second world war. Various methods for
filter design exist, the most common of them being the so-called insertion loss method. The design
usually begins with filter prototypes normalized in impedance and frequency, which are then trans-
formed to the desired impedance and frequency. Filter design is usually made for lumped element
circuits and works well at low frequencies, but is difficult to implement at high frequencies. Two
mathematical tools allow us to modify the designs to use transmission line sections, namely the
Richards Transformation and Kuroda’s Identities.

To introduce the Richards transformation let us start by remembering the input impedance of
a transmission line. The distributed element transmission line model represents a transmission line
as an infinite series of two-port elementary components, each representing an infinitesimally short
segment of the transmission line. The primary line constants are given by a resistance Rl, inductance
Ll, capacitance Cl and conductance Gl per unit length, as shown in Fig. 4.11. The voltage and
current in an infinitesimal section of line can be expressed as (equation 4.15)

∂V (x)
∂x

= −(Rl + jwLl)I(x)

∂I(x)
∂x

= −(Gl + jwCl)V (x)
(4.15)

Taking the second spatial derivative of equation 4.15 and solving for the voltage and current yield
the so-called Telegrapher’s Equations.

∂2V (x)
∂2x

= γ2V (x)

∂2I(x)
∂2x

= γ2I(x)
(4.16)

Where we have defined the propagation constant γ =
√

(Rl + jwLl)(Gl + jwCl). These are
wave equations which are solved by any linear combination of space-time. Plane waves with equal
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propagation speed in the forward and reverse directions are direct solutions.

V (x) = V + exp−γx +V − expγx

I(x) = I+ exp−γx +I− expγx = 1
Z0

(
V + exp−γx−V − expγx

) (4.17)

Where Z0 is the characteristic impedance of the line defined as the ratio of the amplitude of
a single voltage wave to its current wave, i.e. V ±/I±. Note that for a loss-less transmission line
(R,G = 0), equation 4.18 becomes equation 4.1.

Z0 =
√

(Rl + jwLl)
(Gl + jwCl)

(4.18)

We then define the input impedance as the impedance observed at a distance l from the load ZL

Zin = V (l)
I(l) = Z0

1 + Γ exp−2γl

1− Γ exp−2γl (4.19)

Where γ is the propagation constant and Γ is the voltage reflection coefficient Γ = ZL−Z0/ZL+
Z0 as in equation 4.8. This expression can be rewritten as

Zin = Z0
ZL + Z0 tanh(γl)
Z0 + ZL tanh(γl) (4.20)

For a loss-less transmission line, γ = jβ and equation 4.20 becomes

Zin = Z0
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl) (4.21)

Where β = 2π/λ is the wavenumber. We observe that for an open or short circuited line, Zin,oc =
−jZ0 cot(βl) and Zin,sc = jZ0 tan(βl). The Richards transformation was introduced by Richard
[32] with the goal of synthesizing LC elements using short and open circuited transmission lines.
The transformation maps the ω plane to the Ω plane with a period of ωl/vp = 2π

Ω = tan(βl) = tan
(
ωl

vp

)
(4.22)

Replacing ω with Ω, the reactance of an inductor becomes

jXL = jΩL = jL tan(βl) (4.23)

and the susceptance of a capacitor becomes

jXC = jΩC = jC tan(βl) (4.24)

According to equation 4.21, equations 4.23 and 4.24 show that an inductor can be replaced by a
short circuited segment of transmission line (stub) of length βl and characteristic impedance L, while
a capacitor can be replaced by an open circuited stub of length βl and characteristic impedance
1/C. As already mentioned, filter prototypes are normalized. This means that the cutoff frequency
ωc = 1. To obtain the same cutoff frequency in the Ω plane, i.e. Ω = 1 = tan(βl), the stub length
must be l = λ/8 where λ is the wavelength of the line at ωc. This also means the response of the
filter will be periodic every 4ωc and will differ from the prototype for frequencies away from ωc.
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Figure 4.13.: Model schematic of a microstrip low
pass filter.

Figure 4.14.: Transmission response of the de-
signed microstrip low pass filter
shown in Fig. 4.13.

Kuroda’s identities make filter implementation more practical by adding redundant transmission
line sections of length λ/8. They allow to physically separate transmission line stubs, transform series
stubs into parallel stubs or vice-versa, and to obtain realizable characteristic impedances. Please refer
to chapter 8.5 of [24] for a longer treatment of microwave filter design.

Filters are usually designed based on polynomials such as Butterworth and Chebyschev. While
the first is a good choice for maximally flat pass-band response, the latter provides a steeper cutoff
but one obtains equal-ripple response in the pass-band. The use of the Richards transformation is
usually good for so-called stepped impedance filter design, which consists of interleaved sections
of high and low impedance. However, the dimensions of the calculated stubs are usually large. To
circumvent the problem of stub dimensions, we follow the approach shown in Fig. 4.13 where we have
connected two open circuited stubs with a λ/4 section of line. The design corresponds to a second
order low-pass filter from a normalized Chebyschev prototype, however the characteristic impedance
of the stubs is complicated to calculate given their L-shape. It is therefore easier to simulate their
response starting from an initial estimate. We convert low pass prototype element values (chapter
8.5 in [24]) to normalized impedance values and estimate the length of a λ/4 section of microstrip
Cu line (εr = 1) to be around 5mm. With these initial estimates we tune the stub dimensions (width
and length) in a simulation and extract the transmission response. For a filter length of 5 mm and
width of 100 µm, we obtain a low-pass behaviour as shown in Fig. 4.14. The response shows the
3 dB ripple expected from the chosen Chebyschev normalized coefficients and is periodic in 4ωc.



CHAPTER 5

Parallel FIR Filters

5.1. FPGA measurement setup

The full detection setup introduced in chapter 3 consist of a variety of devices including hardware
and software components. For a conceptual treatment it can be simplified as shown in Fig. 5.1. The
output signal is amplified, demodulated to an IF with an local oscillator by means of an IQ-mixer,
analogue low pass filtered and subsequently digitized and digitally demodulated. The process of
digitization means that conceptually we sample an input signal x (t) every ts seconds, where ts is
called the sampling period. We thus obtain the sequence xn = x (tn) where tn = nts with n an
integer number. Operations on this data sequence can then be performed.

I[tn]

iQ[tn]ν    = ν  /4IF S

ĥmĥa

300K4K~20mK
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â
νLO
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I
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Figure 5.1.: Simplified measurement setup consisting of amplification, demodulation and low-pass filtering.
Figure adapted from [33].

The input to the detection chain is given by the electric field E(t) at the first amplifier input.
Since the electric field can only take real values, its spectrum is hermitian symmetric [34] meaning
E(ω) = E∗(−ω). A powerful tool used to analyse our signals is the measurement of correlations.
However, before talking about correlation measurements, lets agree on some definitions of how to
talk about correlations.
What we measure is ultimately a quantum signal, which in turn is modelled by probabilities. We

can thus think of a single measurement as a single sample function x (t) of a random process X (t).
The correlation between any two complex random processes X and Y is defined as (equation 5.1)

RXY (t1, t2) = E [X∗ (t1)Y (t2)] (5.1)
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Where E [·] denotes the statistical average, i.e. the expected value. The correlation of process
X with itself is called the autocorrelation. Roughly speaking, if a random process is wide-sense
stationary, the (auto)correlation does not depend on absolute time, but only on time differences
τ = t2 − t1.

RXX (t, t+ τ) = E [X∗ (t)X (t+ τ)] = RXX (τ) (5.2)
In real experiments, we can never measure the true correlation functions of a random process

because we never have all of its sample functions at our disposal. Furthermore, we usually have
available only part of one sample function of the random process. On the other side, detectors
generally perform an integration over time either implicitly or explicitly. The only recourse left is
then to determine time averages based on finite time portions of single sample functions. The time
average A of any quantity is defined as

A [·] = lim
T→∞

1
2T

∫ T

−T
[·] dt (5.3)

Denoting x (t) as one sample function of a random process X (t), time averages of interest are
the mean value x̄ = A [x (t)] and the time autocorrelation function <xx (τ) = A [x (t)x (t+ τ)].
According to equation 5.3, these quantities simply produce a number (for a fixed value of τ).
Nevertheless, when all sample functions of X (t) are considered, x̄ and <xx (τ) become random
variables. By taking their expectation value we obtain

E [x̄] = X̄

E [<xx (τ)] = RXX (τ)
(5.4)

Suppose that by some theorem x̄ and <xx (τ) could be made to have zero variances, then we
could write equation 5.4 as

x̄ = X̄

<xx (τ) = RXX (τ)
(5.5)

In other words, equation 5.5 tells us that the time averages x̄ and <xx (τ) equal the statistical
averages X̄ and RXX (τ) respectively. The ergodic theorem allows the validity of equations 5.5.
More generally it allows all time averages to equal the corresponding statistical averages. Ergodicity
is a very restrictive form of stationarity and it is often difficult to prove. Nevertheless, in practice
we are basically forced to work with only one sample function of a random process and derive
time mean value, time correlation functions, etc. By assuming ergodicity, we can infer the statistical
characteristics of the process. If the above mentioned concepts result somewhat confusing, I strongly
suggest you to refer to chapters 7 and 8 of [35].
In this way, all measurements we perform in the lab basically assume ergodicity. We can for

instance measure the power spectral density (PSD) SXX (ω) of a random process X using the so-
called Wiener-Khinchin relations which state that SXX (ω) and RXX (τ) form a fourier transform
pair [35].

SXX (ω) =
∫ ∞
−∞

RXX (τ) e−iωτdτ

RXX (τ) = 1
2π

∫ ∞
−∞

SXX (ω) eiωτdω

SXX (ω)↔ RXX (τ)

(5.6)



5.1 FPGA measurement setup 27

In practice we measure correlations in the frequency domain by fourier transforming the digitized
signals. For further details about the actual implementation of such a measurement in hardware, I
strongly suggest to refer to [14] where the implementation of a FPGA-based correlator application
using FFTs is described.
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Figure 5.2.: Power spectral density (psd) of a signal (purple), noise (green and orange according to their
frequency origin) and DC-offset (red) after various states of the signal processing: (a) signal
of interest, (b) added noise during amplification, (c) analog down conversion to intermediate
frequency, (d) digitizing single down converted quadrature, (e) digital down conversion, (g) FIR
filter. Image adapted from [33].

Fig. 5.2 shows a schematic of our signal processing setup in the frequency domain 5.1. We start
with an in principle band-limited signal at a frequency νr (usually the resonance frequency of the
resonator). νLO denotes the frequency of a local oscillator. Upon amplification (Fig. 5.2b) noise is
added and we denote it as green or orange according to their frequency origin (to the right or to the
left of νLO, which after the next step become positive and negative frequency components). The
signal is then IQ-mixed and thereby demodulated to an intermediate frequency (Fig. 5.2c), usually set
to be one quarter of the sampling frequency νs = 1/ts. The reason for this is that in hardware, digital
demodulation is made by multiplying the input sequence with a sequence e−i2πνIF tsn where n is an
integer number. For νIF = νs/4, this sequence collapses to 1,−i,−1, i, 1, . . .. The multiplication
of that sequence with the digitized signal xn can be performed on the FPGA using only a two-bit
counter, a sign flip, and signal routing. During IQ-mixing only the I-component is taken in order to
avoid having to deal with imperfections of IQ-mixers such as different DC offsets, phase between I
and Q outputs not being exactly π/2, amplitude differences, etc. The signal is then digitized. Since
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we only take I-component (it is real and symmetric), the positive and negative frequency components
can not be distinguished. This means that half of the negative frequency components will appear on
the positive side and vice-versa. The bumps at the edge of the frequency axis in Fig. 5.2d are aliases
of non-filtered components beyond the nyquist frequency fs/2. Finally digital down conversion and
eventually digital filtering is applied (Fig. 5.2e).

We use digital filters to filter out: mirror frequency components, DC-offsets, additional noise
outside the desired detection band, and to obtain maximum signal to noise ratio (SNR) by means of
so-called matched filters. Furthermore, the measurement of time resolved correlation functions might
even require the use of digital filters. Currently we have two hardware platforms at our disposal for
signal processing purposes. One is a Virtex-4 FPGA supporting 100MHz bandwidth and another is
a Virtex-6 FPGA featuring 1GHz bandwith. While applications for measuring different observables
with the Virtex-4 have been well developed in our lab during the past years, development on the
Virtex-6 FPGA is still an ongoing task. However, programming the Virtex-6 FPGA is not trivial. The
main reason is that in order to support the 1GHz bandwidth, we need to deal with (usually) 8 parallel
samples due to the clocking characteristics of the internal Virtex-6 and the analog to digital (ADC)
converter. This parallelism introduces a large programming complexity. Please refer to [36] for further
details regarding development efforts on the Virtex-6 FPGA. An important desired feature for the
Virtex-6 platform is the support of arbitrary finite impulse response (FIR) filters. During the course
of the project I engaged in the development of this feature. The rest of this chapter summarizes the
strategies I took to enable the use of parallel FIR filters in the Virtex-6 platform.

Debugging PSD measurements During the course of the project we eventually observed addi-
tional signal features appearing in our measured PSDs which differed from the behaviour expected
in Fig. 5.2. It may then be worth mentioning a couple points in regard to our measurement setup,
in case you observe unexpected signals in a PSD measurement.

1. By sweeping the local oscillator frequency (νLO), the intermediate frequency νIF = νr−νLO is
effectively changed. If the unexpected signals you observe move as you sweep νLO, they come
from somewhere before the IQ-mixing. If they do not move, they must come from somewhere
after the IQ-mixing.

2. The direction in which the unexpected signals move in the PSD with relation to the direction
in which νLO is swept, allows to tell their real frequency. If they move in opposite directions,
you can directly read their frequency from the PSD, remembering that everything is centered
around νr with a bandwidth νs. If they move in the same direction, their real frequency lies
somewhere on the opposite side of the spectrum (i.e. If they appear on the positive(negative)
side, in reality they are somewhere on the negative(positive) side). Their real detuning from
νr would be obtained by adding νIF to the observed value and multiplying by -1.

5.2. Polyphase decomposition
To get a feeling of a parallel filter, it is useful to look at its response in the Z transform domain.
A general FIR filtering operation is a linear, time invariant network whose output is given by the
weighted sum of the most recent input values (equation 5.7). hk is the value of the filter’s impulse
response at the k − th instant, N is the filter length (also called number of taps) and 0 ≤ k < N .

yn =
N−1∑
k=0

hkxn−k (5.7)
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Equation 5.7 is also a convolution between the filter and the input signal. In terms of its Z
transform, a filter can be expressed as

H(z) =
∑
n

h[n]z−n (5.8)

Where h[n] are the filter coefficients. Equation 5.8 can be decomposed into its even and odd
components.

H(z) =
∑

h[2n]z−2n + z−1∑h[2n+ 1]z−2n = H0 + z−1H1 (5.9)

Equation 5.9 decomposes a general filter H into two filters H0 and H1 each one of length N/2.
This process is called poly-phase decomposition, and can in general be applied for M components

H(z) =
∑

h[nM ]z−nM + z−1∑h[nM + 1]z−nM + . . .+ z−(M−1)∑h[nM +M − 1]z−nM

=
M−1∑
m=0

z−mHM
m

(5.10)

Remembering that in the Z domain, the filtering operation expressed in equation 5.7 is a multi-
plication Y = XH, using the poly-phase representation we can then express a parallel FIR filtering
operation in terms of L poly-phase components, where L is the filter’s block length, i.e. the number
of parallel samples.

L−1∑
i=0

Y L
i z
−i =

L−1∑
j=0

XL
j z
−j

(L−1∑
k=0

HL
k z
−k
)

(5.11)

To get a feeling of this, lets apply a poly-phase decomposition to a 2-parallel FIR filtering operation

Y = Y0 + z−1Y1 =
(
X0 + z−1X1

) (
H0 + z−1H1

)
= X0H0 + z−1 (X1H0 +X0H1) + z−2X1H1

(5.12)

Hence, the even and odd output sequences are given by

Y0 = X0H0 + z−2X1H1

Y1 = X1H0 +X0H1
(5.13)

Equation 5.13 can be schematically represented by Fig. 5.3. For a filter of lengthN , we observe that
each term in equation 5.13 has N/2 multiplications, i.e. a 2-parallel filter requires 2N multiplications.
In general, a L-parallel FIR filter requires LN multiplications of length N/L and L(N−1) additions.

Our signal processing platform is based on a Xilinx Virtex6 FPGA and a DSPextreme analogue
to digital converter. We are interested in implementing filters of length N = 40 which process 8
parallel samples every clock cycle. A straight forward implementation of an 8-parallel 40-tap filter
would hence require LN = 320 multiplications. In the Xilinx Virtex6 hardware, multiplications are
implemented by means of so-called DSP48E1 slices. As explained in [36] and [37], for our digital
signal processing application we are interested in filtering the in-phase and quadrature components
for two channels. To fit this requirements, a total of 1280 multipliers would be required. However,
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Figure 5.3.: 2-parallel filtering operation. Figure 5.4.: 2by2 FFA.

the number of available DSP48E1 slices in our FPGA is 768. Since the current implementation of
a correlator by means of a parallel FFT [36] already uses nearly 90% of these hardware resources,
a straight forward implementation of even a single 8-parallel 40-tap FIR filter exceeds the device
capabilities.

The so-called moving average or boxcar filters are a type of FIR filters of particular interest
because all their coefficients are equal. From equation 5.7 we observe that when all weights hk
are the same, the output yn becomes simply a scaled sum. Boxcar filters are thus relatively simple
and cost-effective to implement in hardware, and during a semester project a variable-length version
for our Virtex-6 platform was implemented [37]. However, these filters present a couple drawbacks,
namely: their frequency response is not flexible, and they are not well suited for measuring time
resolved intensity correlations since the result is strongly affected by the square-window nature of
their time response [37].

5.3. Parallel fast FIR algorithm

To overcome our hardware limitations, we start by trying to simplify the filtering structures by means
of the so-called fast parallel FIR algorithm (FFA) [38]. If B is the number of bits of our input samples,
the number of bits at the output of a multiplication gets doubled while for an addition it increases
only by one. Therefore, the hardware cost of a multiplication is much larger than that of an addition.
The general idea is to try to reduce the number of multiplications while paying an increase in the
number of additions.

We start by noting that equation 5.12 can be written in a different form:

Y = Y0 + z−1Y1 =
(
X0 + z−1X1

) (
H0 + z−1H1

)
= X0H0 + z−1 ((X0 +X1) (H0 +H1)−X0H0 −X1H1) + z−2X1H1

Y0 = X0H0 + z−2X1H1

Y1 = ((X0 +X1) (H0 +H1)−X0H0 −X1H1)

(5.14)

Fig. 5.4 is a schematic representation of equation 5.14. The block marked with a D stands for a
delay of 1 clock cycle. Do not get confused by the delay z−2 in equation 5.14, it is implemented as
a delay of 1 clock cycle since it delays the odd phases (x2k+1). As an example, consider a 4-tap FIR
filter H = h0 +z−1h1 +z−2h2 +z−3h3. The 2by2 FFA decomposes the original filter 4-tap filter into
three 2-tap filters: H0 = h0 + z−1h2, H1 = h1 + z−1h3 and H0 +H1 = (h0 + h1) + z−1 (h2 + h3).
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Although looking at equation 5.14 it may seem that now more multiplications are required, we note
that the additional terms in Y1 only need to be computed once. As shown in Fig. 5.4 this structure
requires 3 (N/2) multipliers and 3 (N/2− 1) additions which in comparison to the traditional 2-
parallel filter structure (see Fig. 5.3) represent almost 25% of hardware savings, i.e. number of
multiplications. Using this approach, a parallel filter can be implemented using approximately 2L−1
filtering operations of length N/L.
In principle, structures of larger block length L can be also simplified. However, the algebraic

complexity gets exponentially large [38]. One approach to reduce the design complexity is to cascade
the FFA algorithm. In this way, for instance, a 4-parallel FFA can be obtained by cascading two 2-
parallel FFAs [39]. In general, the number of multipliers for such a design strategy can be estimated
as (equation5.15) [39], where r is the number of FFAs used , Li is the block size of the FFA at step
i and Mi is the number of filters that result from the application of the i− th FFA.

M = N∏r
i=1 Li

r∏
i=1

Mi (5.15)

As described in appendix A we have synthesized an 8-parallel fast FIR filter by cascading three
2by2 FFAs. Since each application of a 2by2 FFA results in three filtering operations, we end up with
27 individual filters of length N/8. Fig. 5.5 shows a schematic diagram of our 8by8 fast parallel FIR
filter design. We denote all operations before (after) the individual filters as pre(post)-processing.
Enclosed in dashed rectangles are the post-processing blocks for each 2by2 (red), 4by4 (orange),
and 8by8 (green) filters. Observe how the 8-parallel filter consists of three 4-parallel filters, each
4-parallel filter consists of three 2-parallel filters, and each 2-parallel filter consists of three individual
filters. Please note that all individual filtering operations are denoted as H0, H0 + H1 and H1.
This is only to indicate the nature of each 2 parallel filter, since the actual coefficients are given by
the inputs. For instance, the three filtering operations for the 2by2 filter with inputs x8k + x8k+2,
x8k + x8k+2 + x8k+4 + x8k+6 and x8k+2 + x8k+6 are H0 +H2, H0 +H2 +H4 +H6 and H2 +H6.
Please also remember that the blocks marked with a D stand for a delay of 1 clock cycle.
Fig. 5.6 shows a diagram of our 8by8 fast parallel FIR filter design implementation. Additionally

to the pre- and post-processing blocks, we have added a controlling block to each parallel structure.
This allows us to configure, i.e. write, the correct coefficients of each individual filter.
In comparison to 8N multipliers required in a traditional parallel FIR implementation, our design

introduces hardware savings of around 58%. It is worth noting that a trade-off between the number
of multipliers and adders must be kept. An exaggerated increase in the number of adders can at
some point introduce design drawbacks, such as latency [38]. However, even with these hardware
savings, together with the parallel FFT the design still exceeds the available resources.
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Figure 5.5.: 8-parallel filtering structure.
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Figure 5.6.: Schematic diagram of our 8-parallel filtering structure. Additionally to pre- and post-processing
blocks, a control block allows us to configure the 27 individual filters with their right coefficients.

5.4. Distributed arithmetic

The multiply intensive nature of equation 5.7 can be appreciated by observing that 1 output response
requires the accumulation of N terms. Distributed Arithmetic (DA) intends to replace the task of
summing product terms by table look-up procedures that are easily implemented in hardware logic
blocks.
The number format used in our signal processing application is two’s complement - a standard

practice for fixed-point microprocessors in order to bound number growth multiplication. The input
signal xk in equation 5.7 may be written in this format as following:

xk = −xk0 +
B−1∑
b=1

xkb2−b (5.16)

Where xkb is a binary variable and can only assume values of 0 and 1. A sign value of -1 is
indicated by xk0. Plugging equation 5.16 into equation 5.7, we obtain:

yn =
N−1∑
k=0

hk

(
−xk0 +

B−1∑
b=1

xkb2−b
)

= −
N−1∑
k=0

xk0 · hk +
N−1∑
k=0

B−1∑
b=1

hk · xkb2−b (5.17)
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Figure 5.7.: Dalut addressing. In one clock cycle, the
contents are addressed by taking bit b of
all input samples. The filtering operation
thus requires B clock cycles.

Figure 5.8.: Dalut contents for each address number as
they are pre-stored in memory.

Equation 5.17 can in turn be expressed in matrix form

yn =


 x00 . . . x0(B−1)

... . . . ...
x(N−1)0 . . . x(N−1)(B−1)


ᵀ h0

...
hN−1





−1
...

2−(B−1)

 (5.18)

yn = (XTH)C (5.19)

Where X is the filter’s input samples as matrix, and H the vector of coefficients of the filter. Since
elements in matrix X can only take binary values, i.e. 0 or 1, we observe that all possible values
that equation 5.19 takes, can be pre-stored in memory. In practice, one can construct a so-called
distributed arithmetic look-up table (Dalut) that can be addressed by the same scaled bit of all input
samples and can access all possible values for the product XTH. Fig. 5.7 shows schematically how
the look up table is addressed and Fig. 5.8 shows what the contents for each address are.
In this way, we have replaced all multiplications by storing pre-computed values in memory. This

means that each of our 27 individual filters designed in appendix A is implemented using DA. The
drawback of this approach is that the number of clock cycles required to produce 1 output sample
is equal to the number of bits B of the input samples. This can be overcome by creating B look-up
tables, so that all bits are processed in parallel. In practice, we have implemented DA by means of
the FIR compilers readily available from Xilinx. There is a very important point to be mentioned:
looking at Fig. 5.5 we note that the inputs to the individual filters are in general sums of the 8-
parallel input samples. This means that their bit lengths are different, and hence the latency of all
DA implementations is not the same. In other words, some of the 27 individual filters will take B
clock cycles to produce one output sample, while others will take B+ i clock samples, where i is an
integer. The latency of all individual filters must be the same, otherwise the parallel structure will
produce wrong results. We hence added configurable delays at the output of each individual filter,
such that the overall latency before any post-processing was the same.

5.5. Simulations and measurements

To check the validity of our designs and implementations, we first simulated the output of our 8-
parallel filter in Simulink by using quasi white noise source blocks. We computed the filter response
by storing its input and output sequence, and comparing the spectrum of the theoretical filtered
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input with the spectrum if the simulated output. Furthermore, we implemented our design in the
Virtex-6 platform and tested the response by recording PSD measurements of filtered and unfiltered
artificial white noise (Tektronix AWG-520). We then estimate the filter response by dividing the
filtered noise spectrum with the unfiltered noise spectrum. For testing purposes we picked up a
symmetric and asymmetric filter. Fig. 5.9 shows the simulated and measured responses for a 10-tap
boxcar filter (symmetric) and Fig. 5.10 for a 40-tap asymmetric filter. The filter coefficients were
taken from the existent filter set designed for the Virtex-4 platform. In this way we have also verified
the flexibility of our approach.
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Figure 5.9.: (a) Simulated output of a 10-tap boxcar filter (blue) and calculated (green). (b)
Chebyschev+Lorentzian+4-tap boxcar filter.

(a) (b)

Figure 5.10.: (a) Measured (blue) and theoretical (red) filter response output of a 10-tap boxcar filter, and
(b) an asymmetric Chebyschev+Lorentzian+4-tap boxcar filter.



CHAPTER 6

DC Experiments with a Double Quantum Dot

In this chapter we will start by covering a few relevant basics in regard with DC experiments with
quantum dots. Please refer to review articles ([40], [41]) and books ([42], [9]) for a wider coverage
of the theoretical aspects of electronic transport in quantum dots.

6.1. Transport in the linear regime

Single quantum dots A simple way to model a quantum dot is to think of it as a metallic island
[9] tunnel-coupled to source (S) and drain (D) contacts/leads, see Fig. 6.1. The tunnel barriers
are modelled as a combination of tunable resistive and capacitive components. Additionally, the
electrostatic potential on the dot can be tuned with help of a gate voltage (VPG).

The first measurement one may think of is to apply a small source-drain voltage (VSD) and
measure the current flowing through the sample as a function of VPG. As shown in Fig. 6.1(b), a
set of peaks in the current is observed. These peaks are called conductance resonances and their
spacing is caused by the so-called Coulomb blockade effect, which appears as a manifestation of the
repulsive interaction of electrons in the dot. Fitting a Lorentzian function to one of the resonances
allows to estimate the electronic temperature of the reservoirs [9]. Two requirements have to be
fulfilled in order to observe such behaviour. Thinking of the dot again as a metallic island with a
self-capacitance CΣ, the energy required to increase the number of electrons in the dot by one is
EC = e2/CΣ, also called charging energy [9]. The first condition which arises is that the charging
energy needs to be larger than the thermal energy of the electrons, otherwise electrons could enter
the dot via thermal excitation.

EC = e2/CΣ >> kBTe (6.1)

Modelling CΣ as the capacitance of a thin metallic plate with a radius around 80 nm, at cryogenic
temperatures (T=10 mK to 100 mK) equation 6.1 holds. The tunneling resistance needs to be
larger than the resistance quantum in order to resolve individual electrons tunneling through it
RT >> h/e2. If instead of measuring the current at a fixed VSD we now measure it for several
values of VSD as a function of VPG, so-called Coulomb diamonds appear as shown in Fig. 6.1(c).
Figures 6.1(d-g) sketch the energy levels of the dot (µN ) with respect to the leads for different
positions in the Coulomb diamond diagram (Fig. 6.1(c)). Please note that we do not consider the
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temperature broadening of the Fermi distribution. Applying a bias VSD creates a difference in the
fermi energies of the leads (µS , µS). VPG acts on the energy levels of the dot by moving them up
and down. Typically we observe three cases: an energy level in the dot µN aligned with the fermi
energy of both leads µS , µS (Fig. 6.1(d)), µ not aligned with any of the leads (Fig. 6.1(e)), and µN
aligned only with one of the leads (Fig. 6.1 (f) and (g)).

S

VL
VPG

VR

QD D

(a)

(b)

(c)

VPG

VSD

I

VPG

(d)

(e)

(f)

(g)

PG

EC

EC

(d)

(e) (f)

(g)

N
DS

D
N S

N

BW

=

e

N+1

N-1
DS

DS

DS

DS

Figure 6.1.: (a) Electric circuit representation of a single quantum dot as a metallic island connected to
reservoirs. (b) Schematic of Coulomb resonances as a function of plunger gate voltage (VP G).
(c) Schematic of Coulomb diamonds typical for a charge stability diagram of a single quantum
dot. (d-g) Schematic of different energy level configurations: (d) an energy level in the dot aligned
with the fermi energy of both leads, (e) not aligned with any of the leads and (f-g) aligned only
with one of the leads. Figure adapted from [43].

The extent of the diamonds in source-drain voltage is a direct measure of the EC . The voltage
difference between two Coulomb resonances (∆VPG) can be converted into an energy using the
so-called lever-arm of a plunger gate αPG. You may think of the lever-arm as a translation factor
from applied gate voltage to a change in the static potential energy in the dot.

αPG = |VSD|
|∆VPG|

(6.2)

An additional energy scale not mentioned so far is the single particle level spacing γ. In order to
resolve charge transport through excited states, the thermal energy of the electrons (kBTe) has to
be smaller than the single particle level spacing. Whether the charging energy or the single particle
level spacing is dominant depends on the size of the quantum dots. A crossover from charging energy
to single-particle level spacing can be estimated to be at a radius of approximately 10 nm [9] for
circular dots in GaAs. Single-particle levels are observed in transport measurements as additional
steps in the current outside the Coulomb diamonds. For the experiments and sample characteristics
in this project charging energy was the dominant energy scale.
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Double quantum dots We now intend to intuitively describe some features of linear electron
transport (i.e. VSD = 0) when we couple two metallic islands together, i.e. we form a double
quantum dot (DQD). We initially couple both dots with a resistive barrier (Fig. 6.4(a)). Each dot is
again tunnel coupled to either the source (S) or drain (D) contact and its electrostatic potential can
again be tuned with a corresponding plunger gate (VLPG, VRPG). The measurement now consists
of sweeping VLPG and VRPG while recording the current ISD through the DQD. We observe the
charge stability diagram in Fig. 6.4(a). It consists of vertical and horizontal lines. Along the horizontal
(vertical) lines a quantum dot energy level in the right (left) dot (RD (LD)) is resonant with its
corresponding drain (source) lead. The crossing of the two lines highlighted by red circles indicate
points where an energy level in LD is aligned with an energy level in RD and hence resonant electron
transport, also referred as elastic tunneling, through the double quantum dot occurs. These points
are called triple-points. Within each rectangle the number of charge carriers is fixed and is indicated
by the number (M,N). We have so far ignored any cross-couplings in our model. In reality, all
elements in the model are coupled to each other forming a matrix. The magnitude of the couplings
depends on many parameters such as the sample geometry. Due to the cross-couplings all gates
may effectively act as a plunger gate on each dot. As result, the horizontal and vertical lines in the
charge stability diagram become tilted and our measurement looks like in Fig. 6.4(b). The slope in
the charge stability diagram is a measure of the cross-coupling strength. In general, coupling between
LD and RD is not only resistive but also capacitive. As a result a new energy scale, the interdot
charging energy (ε) appears. If an electron is loaded into LD when the energy levels in LD and RD
are resonant both with each other and the leads, ε has to be overcome in order to also load an
electron into RD. The different effects lead to a splitting in the triple-points and thereby a charge
stability diagram which consists of tilted hexagon structures as shown in Fig. 6.4(c). Finally, Fig.
6.4(d) shows a detailed view around a line connecting two triple points, a so-called interdot charge
transfer line. Along this line, energy levels in LD and RD are resonant with each other but not with
the leads. Only at the triple points energy levels in LD and RD are resonant with the fermi energies
of the leads, and resonant transport occurs. Going from one end of the interdot charge transfer line
to the other adds one electron to each dot. Similar to Fig. 6.4(a), along one set of parallel lines
(blue and purple Fig. 6.4(d)) the left(right) dot is resonant with its neighbouring lead. Due to energy
conservation, along these lines higher order tunneling processes referred to as cotunneling [9] can
take place in order to observe electron transport.
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Figure 6.2.: Charge stability diagram in the few
electron regime measuring DC cur-
rent through the DQD.

Figure 6.3.: SEM image of the sample gate de-
sign. White arrows indicate directions
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In the case of a non-zero bias (VSD 6= 0), also referred to as non-linear transport regime, a bias
window is opened in which current can flow through the DQD. As result, the triple points expand
into so-called finite bias triangles and current is measured within them. Please refer to [40] for a
further presentation on the origin of these processes.
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Figure 6.4.: (a-c) Different double quantum dot models with their corresponding charge stability diagrams as
a function of plunger gate voltages VLP G and VRP G, as explained in the text. Red points label
configurations where elastic electron transport takes place. (M,N) label stable charge configu-
rations. (d) Close view of the charge stability diagram close to an interdot charge transfer line.
Figure adapted from [43].

Fig. 6.2 shows a typical measurement of a charge stability diagram. Cotunneling lines and triple
points are observable measuring DC current. Although our sample design includes a quantum point
contact (QPC), see Fig. 6.3 which allows for charge detection measurements [44], for the measure-
ments presented in this report we did not make use of it. The reason is that we only got a working
sample at the very end of the project and charge detection did not work as expected with it. Some
gates, namely LSG and QPC did also behave strangely. Nevertheless, we were able to form a double
dot potential landscape and perform a variety of interesting experiments presented in this report.
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6.2. Transport in the non-linear regime
The term non-linear transport regime refers to the case when a finite source drain bias is applied
(VSD 6= 0). A bias window opens in which electron transport is possible for different quantum state
configurations [40]. As result, triple points extend to triangular shaped regions in the charge stability
diagram and direct current is measured within them. Such a transport measurement can be used to
estimate the lever arms of a plunger gate on left and right dot. An approximate of the lever arms
αLL(RR) of the left(right) plunger gate on the left(right) dot can be calculated to be

αLL(RR) = |eVSD|∣∣∣δVLPG(RPG)

∣∣∣ (6.3)

where δVPG is related to the projected dimension of a finite bias triangle on the VLPG axis of
the charge stability diagram. Please refer to [40] for a complete calculation. Fig. 6.5a shows DC
measurement of finite bias triangles. From this measurements we extracted a lever-arm αLL ≈
αRR =0.105 meV/mV following the method presented in [45]. Fig. 6.5b shows a closer view to the
center triangle (enclosed in a white star) in Fig. 6.5a. White arrows indicate excited states which
contributes to the measured conductance. The spacing between the states indicated with a cyan
arrow, allows to estimate the confinement energy and thereby the dot size.
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Figure 6.5.: (a) Finite bias triangles in a DC measurement. (b) Closer look to triangle in (a). White arrows
indicate excited states. The cyan arrow indicates the spacing between the states, allowing to
estimate the confinement energy and thereby the dot size.

Considering the QD as a 2D thin metallic disc, the confinement energy can be estimated from
the 2D density of states. The k-space volume per k state is (2π/L)n, where n is the number of
dimensions. Therefore (L/2π)n is the number of states per k-space volume. The number density of
states (number of states per real space volume) is thus given by:

nv = Nv

Vr
=
( 1

2π

)n
Vk (6.4)

Where Vr(k) is the real(k-space) volume. Vk can be estimated from the dispersion relation

k (E) =

√
2m∗E
~2 (6.5)
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where m∗ is the effective mass. The density of states is defined as ∂nv/∂E. For 2D (n = 2),
Vk = πk2, hence by pluging equation 6.5 into equation 6.4 and differentiating by E we obtain the
2D density of states

D2D (E) = ∂nV
∂E

=

(
1

2π

)n
πk2 (E)
∂E

= m∗

π~2 (6.6)

This shows that the 2D density of state is constant. Multiplying equation 6.6 by Vr = πr2 gives
an estimate of the number of states per energy interval. Hence the energy interval per state, i.e.
confinement energy is given by equation 6.7

Econf = energy interval

state
= Vr
D2D (E)

Econf = ~2

m∗r2

(6.7)

From Fig. 6.5b we can estimate the confinement energy Econf = 0.171 meV and by using equation
6.7 get an estimate for the size of the dot r ≈ 57 nm.

Econf = ~2

m∗r2 =
√

(αLL∆VLPG)2 + (αRR∆VRPG)2 (6.8)



CHAPTER 7

RF Experiments with a Double Quantum Dot

7.1. Microwave readout

In section 2.2 we introduced the concept of electron tunneling between both dots leading to a
hybridization of their electronic states (Fig. 2.4b), thereby forming something analogue to an effective
two level system. We can also think of tunneling of an electron between both dots as a process in
which the electron density effectively changes, which in turn can be associated to a change in
polarizability. When an electron tunnels into one dot, the electron density changes and thereby the
potential landscape confining the dot. Hence, the shape of the ground state electronic wave function
in the respective dot changes [9]. This leads to a change in polarization and therefore in the AC
susceptibility χ which depends on the tunnel coupling t and is maximal for zero detuning δ [46].
We may then interpret measurements performed in chapter 6 as measurements of the low frequency
polarizability of the DQD.

At high frequency we can associate susceptibility changes with a change in the effective impedance
(admittance) of the DQD. In a first approximation, a resistive component accounting for tunneling
and a capacitive component defined as the change in charge with respect to a change in gate
voltage can be considered. The effective capacitance includes a geometric contribution and a so-
called quantum capacitance CQ which is a function of the curvature in the band structure. The
effective admittance can be probed by coupling a resonant circuit to the system. The additional
admittance from the DQD changes the effective resonator admittance and thereby its resonance
frequency [47]. This microwave readout is valid in the dispersive regime discussed in section 2.1.

Fig. 7.1 shows a lumped element representation of the DQD coupled to a resonator. As described
in chapter 3, the resonator (red box) is coupled capacitively to input and output lines. A DQD
coupled to it (green box) induces a dispersive shift and also dissipation (e.g. losses due to inelastic
tunneling) in the resonator. These effects can be observed by driving the resonator with a coherent
microwave tone at its resonance frequency νr recording the transmitted amplitude and phase [48]. In
a first approximation, changes in phase relate to dispersive effects (frequency shifts) while changes
in amplitude relate to dissipative effects. Fig. 7.3 shows the transmitted amplitude and phase in
VLPG, VRPG space of a microwave tone driven at νr for VSD = 0. Fig. 7.2 shows an SEM image of
the DQD region where the ΓL(R) are the tunneling rates to the left(right) lead and t is the interdot
tunnel rate. What we observe in Fig. 7.3 is basically the relation between the tunneling rates in the
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Figure 7.1.: Lumped element representation of
the resonator-DQD system. The
DQD is represented by a dynamic ad-
mittance YQD (ω).

Figure 7.2.: SEM image of the sample gate de-
sign. ΓL(R) indicate the tunneling
rate to the left(right) lead. t indicates
the interdot tunneling rate.

DQD and the frequency of the microwave excitation in the resonator. When the tunneling rates are
faster(slower) than the microwave excitation, the DQD response is capacitive(inductive) leading to
negative(positive) frequency shifts [48].
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Figure 7.3.: Charge stability diagrams measured at high frequency. (a) Transmitted amplitude of a microwave
tone at the resonator eigenfrequency νr and (b) phase.

As mentioned in section 2.2, the interaction between the DQD qubit and the resonator exhibits a
behaviour analogous to the cavity QED setup and which can be modelled by the Jaynes-Cummings
hamiltonian (equation 2.1). Fig. 7.4 shows the two lowest eigenenergies of the coupled (resonator +
DQD qubit) system (black solid lines) as a function of the interdot detuning δ for the case (a) when
2t < hνr and (b,c) 2t > hνr. The energies are offset such that E=0 corresponds to the vacuum. As
mentioned in section 2.1, when the DQD qubit and the resonator exhibit strong coherent coupling
(g > κ, γ), the resonator eigenfrequency νr (green dashed line) and the bare transition frequency of
the DQD qubit νq (red dotted line) exchange coherent interactions at a rate g/2π, and the coupled
system shows anti-crossings at the points where νr = νq (see black solid lines).
However, when the system is not strongly coupled, what remains at νr = νq is a resonant

interaction [49] that can be observed with a resolved spectral measurement as a function of δ [2].
Making a cut along a detuning axis (white arrow in Fig. 7.5a) would show phase shifts as a function
of δ from which dispersive resonance shifts could be implied. However, such a measurement does
not allow to unambiguously distinguish dispersive and dissipative effects [3]. In order to do so, a
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Figure 7.4.: Schematic of the two lowest eigenenergies of the coupled system (black line) for 2t < hνr.
Horizontal green dashed line indicates the bare resonator frequency νr. Red dotted line indicate
the DQD transition frequency νq. Insets I, III: Schematic of the charge states on each dot detuned
by energy δ >> t. Inset II: Schematic of the hybridized charge states in the double quantum dot,
split by 2t at δ = 0. (b) Transition frequency of the DQD for 2t > hνr. (c) Resonator frequency
for 2t > hνr. Figure adapted from [43].

resolved spectral measurement, i.e. full frequency-dependent spectra at all values of δ, needs to be
acquired ([2], [3]). Fig. 7.5a indicates the detuning axis along which resolved spectra (the magnitude
of a transmitted microwave tone as a function of frequency) are measured (Fig. 7.5b).
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Figure 7.5.: (a) Detuning δ axis and (b) frequency dependent spectra acquired at various values of δ.

By fitting each spectrum to a Lorentzian function the resonance frequency νr and linewidth κ/2π
of the resonator response can be calculated. Fig. 7.6 shows the resonance frequency shift ∆ν and
linewidth of the resonator as a function of δ.



7.1 Microwave readout 45

(a) (b)

Figure 7.6.: (a) Resonance frequency shift ∆ν and (b) linewidth κ/2π as a function of detuning δ.

So far we have only considered the unitary evolution of the Hamiltonian taking into account only
interactions between a photon in the resonator and the DQD qubit. However, the Jaynes-Cummings
Hamiltonian (equation 2.1) does not account for additional degrees of freedom, such as energy losses
for the qubit or the cavity decay rate. To account for such dynamics, two theoretical concepts are
helpful: the input-output formalism and the equations of motion in the Heisenberg picture.

Fig. 7.7 shows a resonator with an electric field mode a coupled to input and output transmission
lines with a coupling given decay rates κ1, κ2, and a total decay rate κ1 +κ2. The behaviour of this
system is described by the input-output formalism [50]. In this formalism each transmission line is
described by an input mode (a1,in, a2,in) and an output mode (a1,out, a2,out). These modes interact
with the field mode a in the resonator according to the following boundary conditions

κ1

κ2

a2,out

a2,in

a1,in

a1,out

a

Figure 7.7.: Input-output theory applied to two-port circuit QED. Port modes a1 and a2 are decomposed into
input a1,in, a2,in and output modes a1,out, a2,out.

a1,out(t) =
√
κ1a(t)− a1,in

a2,out(t) =
√
κ2a(t)− a2,in

(7.1)

Where a (t) describes the field in the resonator. In the experiments performed during this project,
we always measured the ouput at one port. Assuming port 2 as the port whose output we measure,
equal decay rates κ1 = κ2 = κ, and remembering that on this side circulators are placed (see chapter
3) allows us to assume a2,in ≈ 0.

aout(t) =
√
κ/2a(t) (7.2)
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The equations of motion tell us how the mode in the resonator a (remember that a is formally
an annihilation operator) evolves in time. Using the same approximations they read [51]

ȧ(t) = ∂a(t)
∂t

= − i
~

[a(t), H]− κ

2a(t) +
√
κain(t)

˙σ−(t) = ∂σ−(t)
∂t

= − i
~
[
σ−(t), H

]
− γ

2σ
−(t)

(7.3)

Where γ = γ1/2 + γφ stands for the DQD decoherence rate, γ1 the relaxation rate and γφ the
dephasing rate. σ− stands for the Pauli lowering operator. The first term on the equation for a
describes the unitary evolution of the resonator, which is independent of κ. The second term is a
damping term, which leads to a decay of the resonator field. The last term is an external driving
force. Equation 7.3 is equivalent to the equation of motion for a driven and damped oscillator. To
solve it, it is useful to work in Fourier space, thus we define the time Fourier transforms of a and
σ−

a(ω) = 1√
2π

∫
a(t)eiωtdt

σ−(ω) = 1√
2π

∫
σ−(t)eiωtdt

(7.4)

Thus in Fourier space equation 7.3 reads (see also [51])

−iωa(ω) = −iωra(ω)− igσ−(ω)− κ

2a(ω) +
√
κain(ω)

−iωσ−(ω) = −iωqσ−(ω)− iga(ω)− γ

2σ
−(ω)

(7.5)

Defining ∆ωr = ωr − ω and ∆ωq = ωq − ω we can rewrite equation 7.5

0 = −
(
i∆ωr + κ

2

)
a(ω)− igσ−(ω) +

√
κain(ω)

0 = −
(
i∆ωq + γ

2

)
σ−(ω)− iga(ω)

(7.6)

While the input-output approach results in a Heisenberg equation of motion for the field operator,
the system dynamics can alternatively be expressed in terms of a density matrix ρ resulting an a
master equation [51]. Equations 7.6 can be solved for a and σ− analytically using a symbolic
mathematical software such as Mathematica. Alternatively, using equations 7.2 and 7.6 we can
define the transmission through the resonator as

T (ω) = aout(ω)
ain(ω) (7.7)

Equation 7.7 is an analytical expression for the measurement in Fig. 7.5b (remembering that what
we measure is |T (ω)|). Note that

√
κain(ω) relates to the average occupation in the resonator and

therefore depends on the input power. Furthermore, the relaxation and dephasing rates (γ1 and γφ)
mix along the detuning δ [11]

γ1 = γ1 sin2(θ) + γφ cos2(θ)
γφ = γφ sin2(θ) + γ1 cos2(θ)

(7.8)
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Where θ = arctan (2t/δ). Thus, we can alternatively write equation 7.8 as

γ1 = γ1

(
2t/h
νq

)2

+ γφ

(
δ/h

νq

)2

γφ = γφ

(
2t/h
νq

)2

+ γ1

(
δ/h

νq

)2 (7.9)

We now observe that the solution to equation 7.6 can be used to simulate the measurement in Fig.
7.5b and thereby fit the measurement in Fig. 7.6 obtaining estimates for parameters of interest such
as the interdot tunnel coupling t, dephasing γφ or relaxation γ1. In practice we fix γ1/2π =100 Mhz
assuming it to be a reasonable value for charge qubits [52]. The resonator resonance frequency
ωr = 2πνr and linewidth κ/2π, or equivalently its quality factor, are parameters which can be
obtained by measuring its spectrum while the DQD is Coulomb blockaded. As shown in Fig. 7.6a,
for the sample used in the experiments presented in this report, we estimated a dephasing rate
γφ/2π =200 MHz which represents an improvement of roughly 20 times in relation to previous
samples [3]. This is a significant improvement which could enable experiments which previously
were quite challenging or even impossible, such as qubit spectroscopy [53]. During the course of the
project several improvements took place: a RF filter was added to the DC gate lines inputs and the
sample was fabricated on a new wafer. It is therefore not yet clear which of the changes had the
most influence on the improved qubit dephasing.

Microwave readout in the non-linear transport regime The same dispersive readout measure-
ments made at zero bias (Fig. 7.3) can be made when VSD 6= 0. The strategy is identical: driving
the resonator at its resonance frequency νr, measure the transmitted amplitude and phase. The
observed shifts in amplitude and phase are the result of the dispersive interaction between the res-
onator excitation and the DQD. Fig. 7.8 shows a dispersive readout measurement for the finite bias
triangles shown in Fig. 6.5b. The white arrows indicate the an excited state.
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Figure 7.8.: Charge stability diagrams measured at high frequency for VSD 6= 0. (a) Transmitted amplitude
of a microwave tone at the resonator eigenfrequency νr and (b) phase.

Fig. 7.9 schematically shows the case when the DQD is biased. The idea is that VSD 6= 0 leads
to inelastic tunneling processes which eventually can lead to photon emission. We intend to use the
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resonator as a sensitive tool to probe this emission. Given its limited linewidth κ, frequencies away
from νr do not couple into the resonator making it act as a filter for the radiation emitted by the
DQD.

D

S

hω0

hω1

hω2

Figure 7.9.: Schematic of a biased DQD coupled to a resonator. Red arrows indicate a radiative transition
when an electron tunnels from one dot to the other emitting a photon with frequencies in a
bandwidth κ around νq = νr. Yellow arrows account for transitions when an electron tunnels
from(to) the leads emitting a photon (with a frequency outside the resonator bandwidth), a
phonon or both.

In the next sections we will deal with emission experiments. The experiments presented here were
performed at resonance, i.e. δ = 0. The reason is that due to conservation of energy, strong emission
is expected close to resonance; elastic processes into and out of the DQD dominate when δ = 0
[54] and the effective coupling g = g0 (2t/νq) vanishes for large δ ([11], [46]). To check this, we
tuned the DQD to a gate configuration in which 2t/h ≈ νr using the same strategy as for the
measurement in Fig. 7.6. Fig. 7.10a shows a dispersive readout at zero bias of the phase shifts
around the interdot transfer line in Fig. 7.8. The white arrow indicates the detuning axis along
which a spectral measurement similar to that in Fig. 7.5b is taken. Fig. 7.10b shows the resonance
frequency shift ∆ν together with estimated qubit parameters.
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Figure 7.10.: (a) Phase shifts of a transmitted microwave tone at frequency νr around the finite bias triangle
region (Fig. 6.5b). Frequency shift ∆ν as a function of detuning δ for a spectral measurement
at each point along the detuning line (white arrow in (a)).
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7.2. First order correlation function

In section 5.1 we described the setup used to measure observables such as mean amplitude, power and
correlations. In this section we describe the main theoretical aspects involved in the measurement of
first order correlation functions, which by the Wiener-Khinchin theorem (equation 5.6) are equivalent
to power spectral densities. We follow a close description to that in [55] and [56]. Fig. 7.11 shows
a schematic of our signal processing setup in a simplified way.
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Figure 7.11.: Simplified measurement setup consisting of amplification, demodulation and low-pass filtering.
Fig. adapted from [33].

The field in the resonator can be decomposed into two propagating plane waves travelling in
the forward and backward direction E(t) = E+(t) + E−(t) which correspond to the positive and
negative frequency components of its spectrum. Since E(t) can only take real values, its spectrum
is hermitian symmetric E(ω) = E(−ω)∗.

E(t) = E+(t) + E−(t) = E+(t) +
(
E+(t)

)∗
(7.10)

Assuming that the electric field is quasi-monochromatic with a center frequency ω0 = 2πν0 and
limited in bandwidth B << ν0, we can rewrite E+(t) in terms of a complex valued function S(t)
with center frequency 0 and bandwitdth B called the complex envelope of E(t) [34].

E+(t) = S(t)e−iω0t (7.11)

Equation 7.10 can then be written as

E(t) = S∗(t)eiω0t + S(t)e−iω0t (7.12)

Our measurement setup extracts precisely S(t). In a conceptual way we can think of the process
as follows (equation 7.13): after amplification (1) the electric field becomes √gE(t) where g is the
power gain of the amplifier. Upon demodulation (2) the signal is multiplied by eiω0t and is finally
low pass filtered (3).

E(t) 1→ √gE(t) 2→ √gE(t)eiω0t

√
gE(t)eiω0t = √gS∗(t)ei2ω0t +√gS(t) 3→ √gS(t)

(7.13)

Associating an operator s to the complex envelope function, it has been shown [55] that s† = s∗

and
[
s†, s

]
= 0, meaning that it is a classical operator. We thus observe that the complex envelope

is formally equivalent to the annihilation operator

E(t) ∝ a+ a† ∝ s+ s∗ (7.14)
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Let us consider an output mode of the resonator ak. After amplification we obtain ak,a =√
geiφaak + noise, where eiφa accounts for a phase shift because the signal has to travel to

and through the amplifier. Since photons are bosons, the creation(annihilation) operators between
any two modes should obey the boson commutation relations given by [51].

[ai, aj ] =
[
a†i , a

†
j

]
= 0[

ai, a
†
j

]
= δij

(7.15)

In order to fulfill
[
ak,a, a

†
k,a

]
= 1, a noise mode needs to be associated with the amplifier [57].

ak,a = √geiφaak +
√
g − 1h†k,a (7.16)

Where h†k,a is the noise mode added by the amplifier. As explained in section 5.1 and depicted
in Fig. 7.11 we use a heterodyne detection scheme measuring only one signal component after IQ-
mixing. Therefore, the mixing process also adds noise because the positive and negative frequency
components can not be distinguished after this step (see Fig. 5.2).

sk = 1√
2

(
ak,ae

iφm + h†k,m

)
=
√
g

2e
i(φk,a+φk,m)ak +

√
g − 1

2 eiφk,mh†k,a +
√

1
2h
†
k,m (7.17)

Where the
√

1/2 factor accounts for the rms value and the subindex m for noise and phase added
during the mixing process. Making the following substitutions

φ = φk,a + φk,m

g
′ =

√
g

2

h =
√
g − 1
g

eiφahk,a +
√

1
g
eiφhm

(7.18)

We obtain equation 7.19 where h is an effective noise mode, g′ is the effective gain, and φ the
effective phase shift after passing the amplifier and mixer.

s = sk =
√
g′eiφ

(
ak + h†

)
(7.19)

It is worth remembering that ak is given by the input-output formalism (equation 7.1). According
to equation 5.2, the first order correlation for two modes i, j is given by

G1(τ) = 〈E∗(t)E(t+ τ)〉 = 〈E∗E(τ)〉

G1
ij(τ) =

〈
a†iaj(τ)

〉 (7.20)

For simplicity and because it is what we actually measured during the project, let us assume i = j,
i.e. the autocorrelation. Since the quantity we measure is s the autocorrelation measurement is:
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Γ1(τ) =
〈
s†ksk(τ)

〉
= g

′
〈(
ak + h†

)† (
ak(τ) + h†(τ)

)〉
= g

′ 〈(
a†k + h

) (
ak(τ) + h†(τ)

)〉
= g

′ 〈
a†kak(τ) + hh†(τ) + a†kh

†(τ) + hak(τ)
〉 (7.21)

Remembering that the expectation value of the noise 〈h(τ)〉 = 0 and assuming that the field and
noise modes are uncorrelated we obtain

Γ1(τ) = g
′ 〈
a†kak(τ) + hh†(τ)

〉
(7.22)

Assuming the noise to be white [34], the first order correlations of noise read

H1
ij(t+ τ) =

〈
h†i (t)hj(t+ τ)

〉
= Nijδ(τ) (7.23)

Where Nijδ(τ) is an effective noise photon number. Equation 7.22 can then be rewritten as

Γ1(τ) = g
′
G1 + g

′ 〈
hh†(τ)

〉
︸ ︷︷ ︸

H1=(N+1)δ(τ)

(7.24)

The general assumption is that when the resonator is left in the ground state, ak is in the vacuum
and hence all moments are zero

〈(
a†
)n

(a)m
〉

= 0 and thereby a reference measurement accounts
for how much noise is added by the amplifiers and mixer.

Γ1
ss(τ) ≈ g′

H1 (7.25)

The autocorrelation function can therefore be estimated as the difference between two measure-
ments: one with the source turned on and one with the source turned off.

G1(τ) = 1
g′

(
Γ1(τ)− Γ1

ss(τ)
)

(7.26)

Using this measurement scheme, correlations up to second order have been measured ([14], [58],
[21]). According to Fig. 7.9, our reference measurement simply consists of a measurement where
VSD = 0. Fig. 7.12a shows a PSD measurement when the source is on Son(blue) and off Soff
(purple). As observed, the difference is typically small and we therefore usually average over many
on/off repetitions. The features of these measurement are identical to those shown conceptually in
Fig. 5.2. Fig. 7.12b shows the difference S∆ = Son−Soff (blue) and an analytical fit (purple) where
the axis has been normalized from the measured units (mV per Hz) to photons per Hz per second.
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(a) (b)

Figure 7.12.: (a) Power spectral density measurement when the source is on (blue) Son and off (purple) Soff .
(b) PSD difference S∆ = Son − Soff with axis scaled using the vacuum assumption (equation
7.27).

The analytical fit in Fig. 7.12b is made to a multiplication of two Lorentzian functions. This is
to account for the fact that the gain of our paramp exhibits a non-linear gain at around a selected
frequency and bandwidth. From such a fit we can estimate the peak PSD, i.e. peak photon flux. With
this measurement scheme, we measured S∆ along the detuning axis (white arrow in Fig. 7.13a).
Fig. 7.13b shows the peak S∆ as a function of detuning δ.
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Figure 7.13.: (a) Cut along the detuning axis in the top finite bias triangle. (b) Peak PSD (S∆) as a function
of detuning.

To gain an insight into the features in Fig. 7.13b it is useful to plot it together with the measured
DC current (purple dots in Fig. 7.14). Fig. 7.14 shows a background which follows with the current,
plus two additional signal peaks. The background being linear with the current probably originates
from inelastic processes whose frequency is within the resonator linewidth. The left most peak is
associated with the configuration where the photon flux into the resonator is maximum, and the
right most peak can be associated to the excited state shown in Fig. 7.13a. We also observe that
the peak photon flux is quite small ≈ 0.05 photons per Hz per sec. Since we tuned the DQD to a
configuration where its transition frequency was close to the interdot tunel coupling, the origin of the
large peak close to zero detuning likely originates from inelastic processes when the DQD transition
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frequency (red arrow in figure 7.4) matches the resonator eigenfrequency. We observe then how the
resonator basically behaves as a sensitive probe for the radiation emitted by the DQD.

Figure 7.14.: Maximum PSD (blue) and measured DC current (purple) as a function of detuning δ.

Defining the average power coming out of the resonator P = ~ωrn̄out, where n̄out = n̄κ is the
average number of photons leaving the resonator per Hz and per second. Being κ the linewidth of the
resonator, we obtain at the current of approx 110 pA (where the maximum S∆ occurs) n̄out ≈ 0.1675
photons per µsec, which corresponds to approximately 2.2 × 10−4 photons per electron. This very
low conversion efficiency has also been observed in a very similar experiment using a DQD formed
on a InAs nanowire [59].

Approximate calibration of the measurement setup Scaling our PSD measurements as in Fig.
7.12b was only possible thanks to the use of a parametric amplifier. As mentioned in section 3.3
the device was developed in our lab by Christopher Eichler ([60],[4]). The quantum limited nature
of the amplification obtained with such a device allowed us to make an rough calibration of our
measurement setup. Following the description presented in appendix A6 of [60] we assume that
when the resonator is left in the ground state, the input of the paramp is in the vacuum state plus
some thermal occupation due to attenuation in the cables from the resonator output to the paramp
input. In this way, measuring a PSD when the paramp is on and a PSD reference measurement when
the paramp is turned off (i.e. only the cold HEMT amplifier is left in the amplification chain) the
PSD difference at the point of maximum gain is given by equation 7.27

S∆ = Son − Soff = (1 + 2ε) (gain− 1) vacuum noise (7.27)

We therefore observe that the ratio (1 + 2ε) (gain− 1) /S∆ = vacuum noise−1 gives us a scaling
factor to convert from the measurement units to photons. Fig. 7.15a shows the paramp spectrum
from which an amplitude gain can be extracted by fitting to a Lorentzian function. Fig. 7.15b
shows a PSD measurement for the paramp pump on (blue) and off (purple). By subtracting both
measurements (Fig. 7.16a) S∆ = Son − Soff can be estimated and using equation 7.27 we obtain
a scaling factor which allows us to calibrate our measurement setup as shown in Fig. 7.16b. Note
that the noise offset N0 of our HEMT amplifier close to the resonator frequency lies around 100
while the paramp lies around 4. The deviation from the vacuum level is associated with attenuation
in the cables and microwave components as well as noise added by the parametric amplifier and the
HEMT [60].
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(a) (b)

Figure 7.15.: (a) Paramp spectrum response. (b) Measured PSD relative to the resonator frequency for the
parametric amplifier pump turned on (blue) and turned off (purple).

(a) (b)

Figure 7.16.: (a) PSD difference S∆ = Son − Soff for a measurement for the paramp pump turned on and
off (Fig. 7.15b). (b) Measured power spectral density S∆ relative to the resonator frequency
for the parametric amplifier pump turned on (blue) and for the pump turned off (purple) scaled
according to equation 7.27.

7.3. Second order correlation function

Having observed peaked emission for a particular detuning, as a last measurement we intended to
probe other correlation of great interest for the radiation at the emission peak. The field intensity
autocorrelation

G2(t, t+ τ) = 〈I(t)I(t+ τ)〉

=
〈
a†(t)a(t)a†(t+ τ)a(t+ τ)

〉
=
〈
a†(t)a†(t+ τ)a(t)a(t+ τ)

〉 (7.28)

In the context of stellar interferometry, the first experiments to measure this function were per-
formed by Hanbury Brown and Twiss (HBT) in 1956 [61]. For classical light sources, it can be
shown that G2(0) > G2 (τ) whereas for non-classical light G2(0) < G2(τ). An interpretation of
these observations for classical light is that detecting two photons simultaneously is more probable
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than one after another. Photons tend to arrive in bunches and the effect is called photon bunching.
For non-classical light the opposite holds: photons tend to arrive one after another, called photon an-
tibunching. Using microwaves, measurements of this function have been performed in our lab using
the same offset substraction strategy described in section 7.2 measuring the field intensity s†s ∝ a†a
instead of the field amplitude s ∝ a ([14], [58]). These experiments are performed conceptually in
the following way. A qubit is prepared in an excited state and its transition frequency is tuned to
match the resonator frequency. The qubit excitation decays into the resonator in form of a photon
which leaves the cavity after a time 1/κ and is acquired by the measurement setup. A reference
measurement corresponds to the case when the resonator is left in the ground state (i.e. the qubit
is left in the ground state). This process is repeated several times to obtain an average result. As
you may observe, there must be a delicate control of the timing during the experiments, i.e. qubit
preparation and signal acquisition are triggered in a controlled way [14]. As shown in equation 7.24,
correlations are in principle measurable without the need of reference substraction. The problem is
that the effective noise photon numbers are typically larger than the signals we are interested in, and
therefore the quantities of interest are typically hidden in a large noise background. Furthermore,
the noise background may fluctuate in time (fluctuations in the amplifiers, cables, etc.).
Here we used a different approach introduced in ([60], [19], [18]). We now intuitively and briefly

introduce the strategy. The quantity we access in our experiments is the complex envelope function
s = I+iQ = a+h†. One can fill a 2 dimensional histogram by recording samples of s and storing them
in the complex plane. It has been shown in ([60], [18]) that these histograms formally correspond
to a probability distribution. We are interested in the correlations of s, and since correlations are
moments, they can be calculated based on their probability distribution. As shown in [18], the
moments of s at τ = 0 are given by equation 7.29〈(

s†
)n

(s)m
〉
ρa

=
∫
s

(s∗)n (s)mD[ρa](s) (7.29)

Where D[ρ] (s) is the probability distribution of s for a state a characterized by the density matrix
ρa. Once more, assuming that the signal and the noise are uncorrelated ρ = ρa + ρh the moments
can be decomposed into products [60]

〈(
s†
)n

(s)m
〉
ρa

=
m,n∑
i,j=0

(
m
j

)(
n
i

)〈〈(
a†
)i

(a)j
〉〈

(h)n−i
(
h†
)m−j〉〉

(7.30)

Assuming that when the resonator is left in the ground state a is in the vacuum, and hence all
moments are zero

〈(
a†
)n

(a)m
〉

= 0, a reference measurement gives access to the noise moments〈(
s†
)n

(s)m
〉
ρn

=
〈

(h)n
(
h†
)m〉

(7.31)

We now observe from equation 7.30 that having a measurement
〈(
s†
)n

(s)m
〉
and a reference〈

(h)n
(
h†
)m〉

a set of equations for the moments we are interested in
〈(
a†
)i

(a)j
〉

is obtained. It
is further shown in appendix A1 of [60] that in terms of cumulants equation 7.30 reads〈〈(

a†
)n

(a)m
〉〉

=
〈〈(

s†
)n

(s)m
〉〉
−
〈〈

(h)n
(
h†
)m〉〉

(7.32)

Using existing data analysis tools we performed histogram measurements of the radiation emitted
from the biased DQD at the configuration where maximum emission was observed (Fig. 7.14). The
experiment consists of measuring a pair of histograms (one when VSD 6= 0 and one when VSD = 0)
many times, calculating the moments for each histogram pair (intuitively as in equation 7.32) and
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finally averaging the moments. Fig. 7.17 shows the average histogram of the complex envelope s for
the case when the source (DQD biased) is turned on (a), off (b) and the difference on-off ((a)-(b)).

(a) (b) (c)

Figure 7.17.: (a) Histogram of complex envelope s when the source is turned on, i.e. DQD is biased, (b)
turned off and (c) difference.

Fig. 7.18a shows the marginal distribution of the histogram in Fig. 7.17c. Fig. 7.18b shows the
average absolute value of the moments

∣∣∣〈(a†)n (a)m
〉∣∣∣ up to n,m = 2.

(a) (b)

Figure 7.18.: (a) Marginal distribution of the histogram with substracted background (Fig. 7.17c). (b) Abso-
lute value of the field moments

∣∣〈(a†)n (a)m〉∣∣ up to order n,m = 2.

Fig. 7.19 shows the calculated value of the first and second order correlation functions at τ = 0
for each measured histogram. The estimated mean and standard deviation are µg1 = 0.0501, σg1 =
0.0212 and µg2 = 9.936× 10−6, σg2 = 0.11.
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(a) (b)

Figure 7.19.: (a) First and (b) second order correlation function at τ = 0 for each measured histogram.

Fig. 7.20a shows the measured current as a function of time during the period over which the
histograms were measured. Note the high stability of the DQD configuration over this period of time.
Using the Jacknife statistical re-sampling technique we calculated the mean and standard deviation
of the mean for g1 and g2 (i.e. mean and standard deviation of the mean for data in figures 7.19a and
7.19b). Fig. 7.20b shows the real (red) and imaginary (blue) part of the mean g1 and g2 normalized
according to

(
ã†
)n
ãm =

〈(
a†
)n
am
〉

〈a†a〉
n+m

2
(7.33)
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Figure 7.20.: (a) Measured current as a function of time during the period over which histograms were
measured. (b) Real (red) and imaginary (blue) part of the mean g1 and g2 normalized according
to equation 7.33. Vertical lines are an estimate of the error in the calculated mean.

In Fig. 7.18b and 7.20b we observe vanishing off-diagonal moments and the higher order mo-
ments exponentially going to zero. This behaviour corresponds to that expected for a single photon
source [60], [19], [18]. In order to check these estimates, we intended to make the same histogram
measurement but instead of using the DQD as a radiation source, using a weak coherent signal with
an average power similar to the average maximum power emitted by the DQD. The first thing we
found out was that the phase of the acquired signal was not stable at all over time, showing random
jumps over 2π radians. After checking the experimental setup, we found out that there was an
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incorrect timing configuration. As shown in Fig. 7.11, after IQ-mixing the signal is centered around
an intermediate frequency νIF and digitized every 10 ns. For the case of histogram measurements,
we use a trigger which indicates when a sample is picked and stored in a histogram. The point here
is that this trigger needs to be commensurate with the intermediate frequency νIF . We were using
a trigger of 20 MHz to sample a signal at 25 MHz, as result the acquired complex envelope showed
random phase shifts. Furthermore, the clock used as a trigger has small delays which may result in
π/2 phase shifts depending on the trigger arrival time at the FPGA. As explained in Fig. 5.2, due
to the way digital downconversion is made, if the histogram trigger arrives delayed with respect to
the internal clock of the FPGA, the sample stored in the histogram will be shifted by π/2 radians.
Changing the triggering device and adjusting its rate to 12.5 MHz allowed us to avoid random phase
variations, however phase shifts of roughly 40 degrees over a period of 3 hours were still observed.
Fig. 7.21 shows an average histogram with substracted reference (a) for a weak microwave tone as
well as its marginal distribution (b). Fig. 7.22a shows the measured power spectral density S∆ for
the weak microwave tone in Fig. 7.21a. The absolute value of the normalized moments is shown in
Fig. 7.22b. Coherent states of light are those that most closely resemble a classical description of the
electromagnetic field. For such a signal with mean amplitude α, a = α and a† = α∗. Hence the mo-
ments scale as

〈(
a†
)n

(a)m
〉

= αn+m. Therefore, the normalized moments (equation 7.33) should
be 1. As observed in Fig. 7.22b all moments tend to go to 1, however the moment n+m = 4 shows
a deviation from this value. As investigated theoretically in [55], the statistical error of the moments
increases with increasing order. The number of measurements required to extract a moment of order
M with a given precision scales with (1 +N0)M , where N0 is the effective noise photon number
(see Fig. 7.16b). Therefore, the measurement time necessary to determine higher order moments
with a fixed precision scales exponentially with increasing order [60].

(a) (b)

Figure 7.21.: Histogram measurements for a weak coherent signal. (a) Average histogram with substracted
background. (b) Marginal distribution of the histogram in (a).

With the modified trigger settings we tried to repeat the histogram measurement using again
DQD as photon source. Figures 7.23 and 7.24 show qualitatively somewhat similar results as for the
first measurement (Fig. 7.20), although some residual bunching is observed (Fig. 7.24b) as

(
a†
)2
a2

deviates from zero.
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(a) (b)

Figure 7.22.: (a) Power spectral density measured for a weak coherent signal. (b) Absolute value of the
normalized field moments for a weak coherent signal up to order n,m = 2 (equation 7.33).

(a) (b)

Figure 7.23.: Histogram measurement with modified trigger settings. (a) Average histogram with substracted
background. (b) Marginal distribution of the histogram in (a).
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Figure 7.24.: Histogram measurement with modified trigger settings. (a) Measured current as a function of
time during the period over which histograms were measured. (b) Real (red) and imaginary
(blue) part of the mean g1 and g2 normalized according to equation 7.33. Vertical lines are an
estimate of the error in the calculated mean.
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Second order moments give an insight in the nature of the light being probed. The behaviour we
observe, of vanishing off-diagonal moments and the higher order moments exponentially going to
zero corresponds to that expected for single photons. As presented in section 7.2, we tuned the DQD
in a configuration such that the DQD transition frequency was approximately equal to the interdot
tunnel 2t/h coupling. Our measurements suggest that the inelastic tunneling processes taking place
under this conditions when the DQD is biased lead to a peak photon emission when the transition
frequency of the DQD matches the resonator frequency. As shown in chapter 6, the DQD is in a
Couloumb blockade regime, i.e. a regime where conceptually electrons tunnel one by one through it.
Our observations suggest that in this regime, inelastic processes corresponding to the DQD transition
frequency (red arrows in Fig. 7.4) lead to emission of single photons. This results should nevertheless
be considered as preliminary, and are subject of further verification.



CHAPTER 8

Conclusion and Prospects

The initial goal of this project was the realization of measurements of correlation functions of the
electric field to investigate radiation emitted from a DQD. However, during the most part of the
project we did not have a working sample. Either our resonators had a very low quality factor, or DC
gate lines did not allow to form a nice double dot potential. We therefore tried to investigate whether
possible origins for the low quality factors by means of simulations and dip stick measurements as
described in chapter 4. We found that neither wire bond placement or features in the gate design
of our samples were likely to have had a strong influence on the quality factor of the resonator.
However, results in chapter 4 allowed us to get a better understanding of the effects of wire bonds
on the resonator characteristics and motivate the future use of airbridges. Based on simulations we
also suggested possible improvements in the sample design.
Digital filters make a fundamental part of our signal processing scheme. While the Virtex-4 FPGA

platform has been very well developed over the last years, work on a high bandwidth (currently a
Virtex-6 platform) is still an ongoing task. The difficulty in programming applications for the Virtex-6
FPGA lies in the fact that the signal processing needs to be done in a parallel fashion. As described in
chapter 5, during this project I engaged in the firmware development of the Virtex-6 FPGA platform
by designing and implementing a configurable parallel filter. The developed firmware now enables
the measurement of autocorrelations with a high bandwidth (1 GHz).
During the course the project several improvements to our measurement setup were made. The

addition of a low pass filter to the DC wiring of the sample allowed to reduce the electronic tem-
perature down to ≈ 60 mK. A parametric amplifier was introduced into the measurement setup,
increasing our signal to noise ratio and thereby reducing the measurement time of experiments such
as those presented in section 7.3 from days to hours.
Towards the end of the project we obtained a working sample on which the experiments presented

in chapters 6 and 7 were made. We characterized the DQD both at low and high frequency. In
sections 7.2 and 7.3 we intended to probe the emission from the biased DQD. A power spectral
density measurement as a function of detuning between the electronic charge states in the DQD
revealed peaked emission at particular values of detuning. The observed that maximum photon
emission did not match the configuration of maximum current flowing through the DQD. As shown
in figure 7.14, peaks in current are observed both near zero detuning as well as around an excited state
in the DQD. The observed emission peak appears before the maximum in current, while a second
peak associated to an excited state in the DQD appears to the right of its local current maximum.
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The observed behaviour is not yet understood and is subject of current investigation. Furthermore, all
measurements in chapters 6 and 7 were performed using the same DQD configuration (i.e. interdot
tunnel coupling and couplings to the leads). It may well be possible that different behaviour arises
for different tunnel couplings. This is also subject of current experiments.

Observing a peak in emission from the DQD, towards the very end we intended to get an insight
on the nature of the emitted radiation. In section 7.3 we presented some measurements of the second
order correlation function by means of histogram measurements developed in [60]. We observed cor-
relations which correspond to those of single photons. In a first attempt to verify these observations,
we tried to compare them with a weak coherent signal whose behaviour is in principle known. As
shown in section 7.3 we found a fundamental problem in our measurement timing settings which
lead to the observation of random phase shifts in the measured signal. With commensurate timing
settings, the behaviour we observed for a weak coherent signal looks qualitatively different than that
of the radiation originating from the DQD. We did not have time to further verify and check these
measurements; it is therefore a task subject of future experiments. Nevertheless, considering the
very low photon emission rate of the DQD, it may not be too surprising if future experiments verify
the apparent observation of individual photons.
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APPENDIX A

Design of a 8-parallel fast FIR filter

For compatibility with the existent FIR filters used for the Virtex-4 platform we decided to work with
filters of length N = 40. Our general filter is thus given by

H =
39∑
n=0

hnz
−n (A.1)

By cascading a 2-parallel FFA 3 times, we have designed an 8-parallel FIR filter which requires a
number M = 9N/4 of multipliers. We begin with a parallel FIR filter of block length L = 8 and
express the filtering operation in the form of equation 5.11.

Y =
7∑
i=0

Y L
i z
−i =

 7∑
j=0

XL
j z
−j

( 7∑
k=0

HL
k z
−k
)

(A.2)

Where each Hk is obtained by decomposing equation A.1 it into L = 8 phases. Each phase is
thus given by

Hk =
4∑

n=0
h8n+kz

−n ; k ∈ {0, . . . , 7} (A.3)

Applying the 2by2 FFA algorithm (equation 5.14) to the filtering operation in equation A.2 yields

Y = Y
′

0 + z−1Y
′

1 =
(
X

′
0 + z−1X

′
1

) (
H

′
0 + z−1H

′
1

)
= X

′
0H

′
0 + z−1

((
X

′
0 +X

′
1

) (
H

′
0 +H

′
1

)
−X ′

0H
′
0 −X

′
1H

′
1

)
+ z−2X

′
1H

′
1

Y
′

0 = X
′
0H

′
0 + z−2X

′
1H

′
1

Y
′

1 =
((
X

′
0 +X

′
1

) (
H

′
0 +H

′
1

)
−X ′

0H
′
0 −X

′
1H

′
1

)
(A.4)

This has the same structure as figure 5.4. However, the application of the FFA algorithm has
decomposed a 8-parallel filter into three 4-parallel filters, namely H ′

0, H
′
1, and H

′
0 + H

′
1. We have
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basically grouped the even(odd) terms of X and H according to

[·]
′

0 =
L/2−1∑
i=0

z2i [·]2i

[·]
′

1 =
L/2−1∑
i=0

z2i [·]2i+1

(A.5)

Observing that each term in equation A.4 (i.e. X ′
0H

′
0, X

′
1H

′
1, and

(
X

′
0 +X

′
1

) (
H

′
0 +H

′
1

)
) is a

filtering operation, we can apply the 2by2 FFA algorithm to each of them. In this way, each of these
4-parallel filter gets decomposed into three 2-parallel filters. Starting with X ′

0H
′
0 we obtain

X
′
0H

′
0 = Y 0

0 + z−2Y 0
1 =

(
X0

0 + z−2X0
1

) (
H0

0 + z−2H0
1

)
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0H
0
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X0
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1

) (
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0 +H0
1

)
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0
0 −X0
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0
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0
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0
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Y 0
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((
X0

0 +X0
1

) (
H0

0 +H0
1

)
−X0

0H
0
0 −X0

1H
0
1

)
(A.6)

Where we have again grouped the even(odd) terms of [·]
′

0 into [·]00 and [·]01 respectively. Each
term in equation A.6 is a 2-parallel filtering operation. The superscript 0 is simply an identifier to
differentiate these terms from further applications of the FFA algorithm. We then apply the FFA a
third time to synthesize each 2-parallel filter from equation A.6.

1) X0
0H

0
0 =

(
X0 + z−4X4

) (
H0 + z−4H4

)
= X0H0 + z−4 ((X0 +X4) (H0 +H4)−X0H0 −X4H4) + z−8X4H4
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b

(A.7)
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Going back to equation A.4, we now apply the same process to X ′
1H
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1
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And by applying the 2by2 FFA algorithm to each of the terms in equation A.8 we obtain another
set of three 2-parallel fast FIR filters.
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(A.9)

Finally we apply the same process to
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And again synthesize three 2-parallel fast FIR filters
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(A.11)

In this way we have synthesized an 8-parallel FIR filter by cascading three 2by2 FFAs. Since each
application of a 2by2 FFA gives us 3 filtering operations, we end up with 27 individual filtering
operations of length N/L = 5.
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