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Abstract

Superconducting qubits are one of the most promising implementa-
tions of a quantum information processor. Though this particular ap-
proach has the advantage of fast operation times it is still limited by
coherence times, which until recently were about 1µs. A great improve-
ment in lifetimes was observer by putting a superconducting qubit into a
high-Q 3D cavity [1] with T1 and T2 up to 60 µs and 20 µs respectively.
In this thesis we develop our own 3D cavity with Qint = 2 · 106. We
characterize 4 qubits in a cavity with Qint = 2 · 105 and observe T1 and
T2 up to 14.7 and 9.1 µs respectively. We drive both single and two tone
blue sideband transitions and analyze them for implementing a controlled
NOT scheme on a two qubits sample. Fixed coupling is observed between
the qubits and is used to implement a controlled-Z gate with 67% process
fidelity.
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1 Introduction

1.1 The idea of quantum information processing

In 1937 the mathematician Alan Turing published a paper on what is today
known as the Turing machine [2]. This abstract theory stated what is now
known as the Church-Turing thesis, namely that any information processing
achievable on a physical system can also be efficiently accomplished with the
Turing machine. The importance of the Turing machine for the modern com-
munity is crystallized in the fact that the personal computer, which is essential
in the daily lives of most people in the western world, is based on the Turing
machine. Physicists, however, had great difficulties in using classical computers
to simulate quantum systems. This lead Richard Feynman [3] to suggest in the
1980’s that in order to simulate a quantum mechanical system a computer based
on the laws of quantum mechanics is needed. The Church Turing thesis was
put to the test a few years later by David Deutsch [4]. Since the Church-Turing
machine is based on the laws of computer science, Deutsch claimed that a more
general theory, one based on the laws of physics instead of computer science,
could be developed. With such a theory any physical system could be simulated.

Let us now compare the classical computer to the quantum one. Classically
all operations are based on discrete binary logic where bits are either 0 or 1.
In todays computers these bits are represented by transistors. A quantum me-
chanical bit or qubit can be in a superposition of 0 and 1 i.e. it is 0 with a
non-zero probability x and 1 with probability 1-x. This feature distinguishes
the quantum computer from the classical one. There are indeed various physical
implementations of qubits, however, a spin subspace of a spin 1/2 particle is the
canonical example of such a system.

Although still not proven, there are strong indicators that the quantum
computer violates the Church-Turing thesis and by doing so break down funda-
mental barriers of classical computer science. To name two of those indicators
we first mention Shors’ factorizing algorithm. In 1994 Peter Shor published a
paper [5] where he had developed an algorithm for a quantum computer that
could factorize a number to its prime integers in a polynomial time, a task be-
lieved to be only possible in an exponential time with a classical computer. The
significance of Shor’s algorithm is emphasized by the fact that the common way
of encrypting information is based on factorizing a large number. Secondly we
mention Grovers’ algorithm [6] which searches through an unstructured space
faster than a classical computer.

Both algorithms have been implemented. At IBM nuclear magnetic reso-
nance (NMR) of a molecule was used in 2001 as a 7 qubit quantum computer
to factorize 15 into 3 and 5 using Shor’s algorithm [7]. Even though NMR
meets the criteria for a quantum bit [8] very well on todays standard it requires
complicated control sequences of multi-qubit systems due to their permanent
coupling [9]. Other implementations for quantum information processing are
e.g. quantum dots [10], NV centers [11] and photons [12] which due to their
noise resistance and low-loss fibers are often used in quantum communication
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schemes [13]. The most advanced implementation to date is based on trapped
ions where up to 14 qubits have been entangled [14]. The qubit implementa-
tion in the work presented here is however with superconducting circuits. Even
though it has not gained coherent control over the same number of qubits it has
great potential for scaling thanks to advanced fabrication techniques.

1.2 Implementation in circuit QED

Ever since Nakamura observed coherent dynamics of a superconducting circuit
[15] the field of superconducting qubits has become a popular research topic.
Significant progress was made by Blais [16] and Wallraff [17] who coupled a
coplanar waveguide to a charge qubit and observed single photon interaction.
This sparked off the field of circuit quantum electrodynamics(circuit QED).
Milestones such as high fidelity qubit readout [18], observation of vacuum Rabi
oscillations [19] [20] and sideband transitions [21] with a single qubit-resonator
samples was already accomplished in 2007. Since then both two [22] and three
qubit states have been observed [23] and used for logical 3 qubit operations [24]
in superconducting circuits.

The strength of this particular implementations is the possibility of fast
qubit operation, i.e. a few nanoseconds, and potential for scalability. Since
superconducting qubits are macroscopic they do not easily have long lifetimes
[25]. Even though it has gone from a few nanoseconds to about a microsecond in
less than a decade it remains as one of the main hurdles in the development of the
superconducting quantum computer. In 2011 Paik et.al.[1] observed a significant
improvement in lifetimes by coupling a qubit to a 3D cavity resonator. They
measured an energy relaxation time of up to 60 µs and a dephasing time of up
to 20 µs. Various control techniques such as gate lines, flux lines and flux coils
[26, 17] are used for qubit control in 2D circuit QED. These techniques have
not been implemented in 3D cavities and thus present a draw back from on-chip
samples. By adapting these techniques and gaining the same qubit control for
3D cavities its long coherence times can be exploited for unprecedented fidelities
in quantum information processing in circuit QED. This is the inspiration for
the experiments in this thesis.

The thesis is divided into two main chapters, Theory and Experiment. A
running theme through both of them is to discuss first the cavity itself, then we
talk about single qubits and its characterization and finally discuss two qubit
effects and operations.
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2 Theory

The work presented here is well supported by theory. The cavities are well
understood from electrodynamics and electrical engineering, the qubits from
the Josephson effect and the resonator-qubit interaction from quantum optics.

We begin by discussing the theory of electric fields and resonances in 3D
cavities and resonator transmission in an electrical circuit. We then talk about
the quantization of an LC circuit. From there we proceed to show how an artifi-
cial atom is implemented in such a circuit by introducing a Josephson junction
and how a 2 level subspace of the artificial atom can be defined as a qubit.
We then explain the abstract theory of a qubit in a two dimensional Hilbert
space and introduce the spin 1/2 notation and the Bloch sphere commonly used
in the field of quantum information. After having discussed the qubit and the
resonator separately we introduce a system where a qubit is coupled to a res-
onator and describe it with the Jaynes-Cummings model(JC model) from the
field of quantum optics. In order to understand the qubit manipulation system
we next add electromagnetic drive field and combine it with JC model. There-
after we describe sideband transitions on the joint qubit-resonator system and
then conclude the chapter by discussing two qubit gates.

2.1 3D Cavity resonator

2.1.1 Solving Maxwell’s equations for a 3D cavity resonator

A cavity resonator can be understood from Maxwell’s equations in a tree di-
mensional rectangular geometry. By setting the boundary conditions for the
electric and magnetic field to E⊥ = 0 and B‖ = 0 respectively, corresponding to
a perfect conductor, we solve the equations(⊥ stands for the component perpen-
dicular to the surface and ‖ for the parallel one). The solution obtained from
ref. [27] is derived from an electromagnetic wave traveling along a rectangular

a) 110 b) 320

Figure 1: Ez distributions in a cavity resonator for a) the first mode (1,1,0) and
b) the sixth mode (3,2,0).
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waveguide and the direction of propagation is defined as z
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Here a, b and d are the dimensions along the x, y and z axes respectively and
n, m and p (all positive integers) are the mode corresponding indicies. The
prefactor h depends on the frequency, ν = ω/2π, as h2 ∝ ω2.

The resonance frequencies are given by
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From Equation 2.1 we can see that only one mode index can be zero in order
to have a non zero electric field and the cavity. Equation 2.2 tells us that by
assuming d < a, b the first mode is the (n,m,p)=(1,1,0) mode. For all cases
where p = 0 we have only a Ez component of the electric field i.e.
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(2.3)

The (n,m,0) modes can be visualized as the number of antinodes along a given
axis. In Figure 1 a and b one can see a plot of the (1,1,0) and the (3,2,0)
modes in the x-y plane for a box with the dimensions a=32mm, b=15.5mm and
d=5mm. The electric field distribution is independent of z.

2.1.2 Quality factors

A useful analogy of the cavity described above is a Fabri-Perot resonator where
a photon is reflected between two parallel mirrors, see Figure 2 a. The photon
will eventually decay. Either trough the mirrors are if they are not perfectly
reflecting or by interacting via interaction inside the cavity. We thus assign a
decay rate κ to the cavity. A quality factor, Q, can be thought of as the average
number of oscillations between the two mirrors before a photon decays.

In circuit theory we look at the cavity as an LC oscillator where ideally the
photon resonates forever, see Figure 2 b. In reality however it will eventually
dissipate via the conductance G, which is the inverse of the resistance R, G =
1/R. A quality factor for a cavity is thus defined as [29, 30]

Qint =
2πνrC

Gint
, (2.4)
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where C is the circuit capacitance and Gint represents the loss in the cavity. In
realistic system the cavity is a part of a bigger circuit. Losses outside the cavity,
Gext, give therefore rise to a finite

Qext =
2πνrC

Gext
. (2.5)

We define the quality factor of the total circuit, called the loaded Q, as

QL =
1

1
Qint

+ 1
Qext

. (2.6)

When measuring the quality factors of a cavity we must therefore look at it as
a part of a circuit. The transmission loss through the cavity in the vicinity of a
resonance peak follows a Lorentzian shape

S(ν) =
Smax

1 + ( ν−νrδνr
)2
, (2.7)

where νr is the resonance frequency δνr is half the bandwidth at -3dB and Smax

is the transmission signal at the resonance frequency S(νr), see Figure 3.
QL can be determined from such a transmission spectroscopy, QL = νr

2δνr
.

If we have symmetric coupling we can determine Qint from the insertion loss
β which is expressed in dB. It must be converted into the units of S(ν) i.e.

S(νr) = 10
β
10 for Watts or S(νr) = 10

β
20 for amplitude. One can then calculate

Qint =
QL

1− S(νr)
. (2.8)

Having determined Qint and QL one can calculate Qext from Equation 2.6.
Figure 3 b shows the sum of the Lorentzian resonance peaks up to 20 GHz for the
dimensions which we use (a=32mm, b=15.5mm and d=5mm). All resonances,
νr, where p 6= 0 are above 20 GHz.

κm
irr

or L C G

ba

ext int

Figure 2: a) In a Fabri Perot resonator photons oscillate between two mirrors.
The loss of photons out of the cavity at the rate κ gives rise to a finite quality
factor (adapted from [28]). b) An analogous setup in electric circuits is a lumped
element resonator. It is capacitively coupled to the environment, providing a
photon input/decay channel. This we call loading of the circuit.
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a) b) (1,1,0)

(2,1,0)

(3,1,0)

(1,2,0)

Figure 3: a)The shape of a Lorentzian peak. The resonance frequency νr and δνr
are used to calculate the loaded Q. The insertion loss α is used to calculate both
the internal and the external Q. b) The transmission spectrum of all resonance
up to 20 GHz for the dimensions a, b, c = 32, 15.5, 5mm.

2.1.3 Quantizing an LC circuit

A cavity resonator can be represented as an LC electric circuit where a capacitor
with the capacitance C and an inductor with the self-inductance L are connected
in series [31]. Assuming zero resistance this system is a harmonic oscillator with
the angular frequency ω = 1√

LC
and a Hamiltonian

H =
φ2

2L
+
q2

2C
, (2.9)

where q is the charge on the capacitor and φ is the induced magnetic flux in
the inductor. This Hamiltonian can be quantized and rewritten in terms of the
ladder operators â† and â

Ĥ =
φ̂2

2L
+
q̂2

2C
= ~ω(â†â+

1

2
) (2.10)

with the commutation relation [φ̂, q̂] = i~.

2.2 Superconducting qubits

2.2.1 Josephson junction

By introducing a non-linear element into the harmonic LC circuit it becomes
anharmonic. In such a system two levels with a unique energy separation can
represent our qubit. We thus introduce a Josephson junction to replace the
inductor. The junction is a thin layer of a non-conducting material between two
superconductors, through which cooper pairs can tunnel [31, 32]. The voltage
and current through the junction is given as

I = Ic sin(δ) and V =
φ0

2π

∂δ

∂t
(2.11)
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I S2S1

I

a b

EJ
EJ

CJ

CJ
=^

Figure 4: a) A Josephson junction comprises two superconducting leads (S1,S2)
separated by a thin insulating barrier (I) through which Cooper pairs can tun-
nel. b) Josephson junction in a circuit diagram. The symbol for a Josephson
junction in circuit diagrams is an x. The inherent capacitance between the two
leads, parallel to the junction is represented by a box drawn around the x.(Taken
from [28])

where Ic is the critical current through the junction, δ is the phase difference
between the cooper pairs on each side of the junction and φ0 = h

2e is the flux

quantum. By using the law of inductance V = −L∂I∂t we can extract the non-
linear inductance of the Josephson junction

L =
φ0

2πIc cos(δ)
. (2.12)

The Josephson junction introduces a non-linear inductance in our circuit. This
results in an anharmonic energy level spectrum which can be compared to that
of an atom. By isolating two levels we can define a qubit.

2.2.2 Cooper pair box

The information in the circuit corresponding to 0 or 1 in binary language is
stored in the variables φ̂ or q̂. For φ it corresponds to which direction the flux
flows through the circuit and for q on which side of the capacitor the charge
sits. In addition one can use the phase which is related to the flux asφ = φ0δ

2π .
The qubit used in our experiments is a charge qubit called transmon. In

order to understand its function it is helpful to take a look at its predecessor,
the Cooper pair box(CPB).

Figure 5 shows a circuit diagram of a Cooper pair box. The part of the
circuit enclosed by the dotted line is a superconducting island. The state of the
qubit is then defined by the number of excess Cooper pairs on the island.

The qubit energy can be divided into two parts; inductive energy, E1, in
Josephson junction and capacitive energy E2. The inductive energy in the

junction is defined as E1(t) = −EJ cos( 2πφ(t)
φ0

), where EJ = φ0IC
2π is called the

Josephson energy. The capacitive energies combine to give E2 = EC(n − ng)2

where EC = (2e)2

2CΣ
is called the charging energy and CΣ is the total capacitance

of the island to the rest of the circuit. Here n is the integer number of excess
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EJ EC

Cr

Island Cg
Vg

Figure 5: Cooper pair Box. A superconducting island is capacitively coupled to
all the near by metallic structures. Cooper pairs tunnel to and from the island
through a Josephson junction. The number of Cooper pairs in the island can
be controlled by tuning the gate voltage Vg.

pairs on the island and ng is a continuous variable called the gate charge and is
tuned by the voltage over the gate capacitor. The Hamiltonian is thus

H = EC(n− ng)2 − EJcos(δ). (2.13)

The CPB is designed such that EJ ' EC .
A quantized version of the Hamiltonian 2.13 can write in the basis of the

canonical variables n→ n̂, or δ → δ̂. By choosing the charge basis we get [33]

Ĥ = EC
∑
n

(n̂− ng)2 |n〉 〈n| − EJ
2

∑
n

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|), (2.14)

with the relations [δ̂, n̂] = i and e±iδ̂ |n〉 = |n± 1〉.

2.2.3 Transmon qubit

The energy levels El of the Hamiltonian in Equation 2.14 can be calculated
numerically without any approximations [28]. Figure 6 shows calculated energy
levels for 3 different values of EJ/EC. Figure 6 a and b represent the CPB regime
where the dependence of El on ng leaves the CPB vulnerable to charge noise.
In the limit EJ � EC The energy dispersion of level l can be approximated as
[34]

εl = El(1/2)− El(0) ∝ e
√
EJ/EC (2.15)

demonstrating that by increasing the ratio EJ/EC on can reduce the dispersion.
Figure 2.14 shows that by increasing the ratio from 1 to 50 the charge noise
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Figure 6: Numerical solution of the charge qubit Hamiltonian in Equation 2.14.
By increasing EJ/EC we can decrease the qubits sensitivity to charge noise. The
energy levels are given in units of El/Ege(l = g, e, f, h), where Ege is evaluated
at ng = 0.5. (Figures taken from [28])

sensitivity is significantly reduced. This alteration comes at a price however as
the anharmonicity, α = E12 − E01 where Enm = Em − En, is comparatively
lower. Though the value α ≈ −EC relative to the first excitation energy E01 it
behaves as

α

E01
≈ −

√
8EJ

EC
(2.16)

and is thus reduced as EJ/EC is increased. This results in a lower limit on
pulse lengths used for qubit operations. A charge qubit with EJ � EC is called
a transmon.

2.3 Qubit theory - The Bloch sphere

Having now discussed how an artificial atom can be implemented with a super-
conducting circuit we proceed by defining a qubit as a two level subspace of
such an atom. This will lead us into the generic behavior of qubits.

We can write the Hamiltonian in Equation 2.14 in its eigen basis as

Ĥ = ~
∑
i

ωi |i〉 〈i| . (2.17)

By restricting ourselves to the lowest two eigenstates we effectively realize a two
level system or equivalently a qubit. The basis states of the qubit, |g〉 and |e〉,
can be represented as

|g〉 =

(
1

0

)
|e〉 =

(
0

1

)
. (2.18)
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and the Hamiltonian can be written as

Ĥ = ~ωgeσ̂z (2.19)

where σ̂z is the Pauli z operator and ωge/2π is the excitation frequency of the
qubit.

The generic state of a qubit can be represented as a 2x2 matrix called a
density matrix ρ, which has the following criteria: A matrix with trace 1, Her-
mitian and positive-semidefinite. A more visual representation of a qubit state
is as a vector originating at the center of a unit sphere. This sphere is called
the Bloch sphere and the vector a Bloch vector [35]. As seen in Figure 7 the
variable θ represents the longitudinal angle and φ the azimuthal angle. The

ψ

x

z

y

e

eg

g

g

e+i

+
φ

θ

√ 2

√ 2

Figure 7: A spin 1/2 particle is represented as a vector on the Bloch sphere. At
the equator we have the equal superposition states |+〉 , |−〉 and |	〉 , |�〉 which
correspond to (|g〉 ± |e〉)/

√
2) and |g〉 ± i |e〉 /

√
2).

relation between the density matrix ρ and the Bloch vector ~r = (rx, ry, rz) is
given as

ρ =
1

2
(1+ ~r · ~σ), (2.20)

where ~σ = (σ̂x, σ̂y, σ̂z) are the Pauli matrices and 1 is the identity.
When the Pauli matrices, σ̂x, σ̂y, σ̂z, are exponentiated eσ̂x,y,z they define

operations, Rx, Ry, Rz which rotate the state about the respective axis on the
bloch sphere

Rx =

(
cos(θ/2) −i sin(θ/2)
i sin(θ/2) cos(θ/2)

)
Ry =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)

Rz =

(
eiθ/2 0

0 eiθ/2

)
.

(2.21)

A Pauli matrix in a Hamiltonian represents a rotation about the same axis as
its corresponding R matrix. Expanding to a system of two qubits, A and B, is

10



represented as 4x4 density matrix ρ2q ∈ Ca ⊗ Cb = C2. In the 2 qubit case,
however, the visualization of the state analogous to the Bloch sphere is not
possible in the same way.

Qubit states can be divided into pure states and mixed states. A pure state
contains all its information and can be written in the basis in Equation 2.18 as

|ψ〉 = α |g〉+ β |e〉 , |α|+ |β| = 1 (2.22)

where α, β ∈ C and |ψ〉 in a 2-dimensional complex vector space. The density
matrix of a pure state can be written as

ρ = |ψ〉 〈ψ| =
(
α2 αβ
α∗β∗ β2

)
. (2.23)

In the Bloch picture a pure state resides on the surface of the sphere. Equation
2.19 can then be rewritten onto the form

Ĥ = cos

(
θ

2

)
|g〉+ eiφ sin

(
θ

2

)
|e〉 (2.24)

where we have omitted an irrelevant total global phase.
Mixed states have lost some of their information out into the environment

and can thus not be represented as normalized vectors complex as in equation
2.22. A a Bloch vector, a mixed state lies inside the sphere and has a length
|~r| < 1. The state where |~r| = 0 is called the maximally mixed state.

2.4 The generalized Jaynes-Cummings model

Having discussed a resonator and a qubit separately we now look at a system
with a dipole coupling between a transmon and a resonator.

The generalized Jaynes-Cummings model is used to describe the transmon-
resonator interaction [36, 34]. The Hamiltonian is

Ĥ = ~
∑
l

ωl |l〉 〈l|+ ~ωrâ†â+

(
~
∑
l

gl,l+1 |l〉 〈l + 1| â† +H.c.

)
(2.25)

where the joint transmon-resonator eigenstates are denoted as |ln〉 where l =
g, e, f... are the transmon states (notation: g + 1 = e, e + 1 = f etc.) and
n = 〈â†â〉 = 0, 1, 2... is the number of photons in the resonator. The first term
in Equation 2.25 represents the transmon energy, the second one the resonator
energy and the third takes into account the coupling of the dipole moment of
the qubit, d, to the electric field, E, in the cavity ~g01 = dErms[16]. Effectively,
this coupling is however calculated as [34]

~gl,l+1 = 2eβV 0
rms 〈l| n̂c |l + 1〉 (2.26)

where β is the ratio Cg/CΣ (CΣ is the total capacitance of the Cooper pair
island) n̂c is the charge number operator and V 0

rms is the root-mean-square
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voltage of the resonator in its ground state. Here we assume the cavity and qubit
decay rates κ and γ are much lower than the coupling rate g01, i.e. g01 � γ, κ.
This is called the strong coupling regime.

The qubit-resonator detuning is denoted as ∆l = ωl,l+1 − ωr where ωl,l+1 =
ωl+1−ωl is the qubit transition frequency and ωr the resonator frequency. The
case when |∆0| � g01 and |∆0 + α| � g01 is called the dispersive regime [34].
In this regime and by restricting ourselves to the ground and first excited state
of the transmon we get an effective Hamiltonian [34]

Ĥeff =
~ω′ge

2
σ̂z + (~ω′r + ~χσ̂z)â†â (2.27)

where the primes represent renormalized frequencies ω′r = ωr − χ12/2 and
ω′01 = ω01 + χ01. Here

χ = χge −
χef
2

and in general χl,l+1 =
g2
l,l+1

ωl,l+1 − ωr
(2.28)

represent the resonator frequency shift due to the qubit state, for |g〉 it gets
higher and for |e〉 it gets lower. From equation 2.28 one can interpret a shifts of
the resonator frequency depending on the qubit state. That effect can be used
to detect the state of the qubit. The Hamiltonian can also be rearranged to

Ĥeff =

(~ω′ge
2

+ ~χâ†â
)
σ̂z + ~ω′râ†â. (2.29)

Now we can see that also the qubit frequency is shifted by 2χ by each photon
in the resonator. This is the dispersive ac-Stark shift.

2.5 Qubit manipulations

In order to manipulate the state of a qubit it must be subjected to an electric
field in close vicinity to its transition frequency. In the dispersive limit this
means the presence of an off-resonant photon in the resonator which has not
been taken into consideration so far. It is however important to understand the
effect of the drive amplitude and frequency on the qubit. In Ref. [16] we find
the dispersive Jaynes-Cummings Hamiltonian 2.27 for a CPB combined with
the off-resonant driving field at a frequency ωd, phase φ and an amplitude ε(t)

Ĥd(t) = ~ε(t)(â†e−iωdt + âeiωdt) (2.30)

yields the Hamiltonian

Ĥ =
~
2

[ωge + 2
g2

∆
(â†â+

1

2
)−ωd]σ̂z + ~

gε(t)

∆
σ̂x + ~(ωr −ωd)â†â+ ~ε(t)(â† + â).

(2.31)
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The amplitude, phase and frequency of the external driving field is tunable in an
experimental setup. We can thus choose a rotating reference frame by varying
ωd. Driving at

ωd = ωge + (2n+ 1)
g2

∆
(2.32)

equation 2.31 becomes

Ĥ = ~
gε(t)

∆
σ̂x + ~(ωr − ωge + (2n+ 1)

g2

∆
)â†â+ ~ε(t)(â† + â). (2.33)

such that we rotate the Bloch vector around the x axis of the bloch sphere at

the Rabi rate Ω = gε(t)
∆ if the phase of pulse is φ = mπ(m is an integer). The

azimuthal angle of the rotation axis can in general be tuned by the phase of the
qubit drive.

2.6 Sideband transitions

The transitions on the joint system of a qubit and a resonator |g0〉 ↔ |e1〉 and
|g1〉 ↔ |e0〉 are called blue and red sidebands respectively. They can be used to
mediate interaction between multiple qubits in a controlled manner. A single
photon sideband transition is forbidden in our circuit QED system [37] but a two
photon transition is allowed. As depicted in Figure 8 the sideband transitions are
then mediated via a quasi state which is detuned from the dispersively coupled
|ln〉 states. Let us now focus on the blue sideband. We can drive the transition
using two different tones ωd1 and ωd2 or a single tone where ωd1 = ωd2 = ωd.
They must be chosen such that

ωd1 + ωd2 = ωge + ωr (2.34)

in the two tone case or 2ωd = ωge +ωr with a single tone. Because this is a two
photon transition the probability of it occurring is much lower than the single

ωblue

ωr

ω01

ωredωred/2

ωblue/2

|e,1

|e,0

|g,0

|g,1

|g,2

Figure 8: Operations on the joint qubit-resonator system is possible with two
photons on the sidebands. In the case of a single tone, as shown here, the
transition gets mediated via a quasi level midway between the qubit and the
resonator levels.
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photon on resonance transition only on a qubit. A single tone blue sideband on
a resonator-transmon system has the Rabi rate

ΩBSB =
gΩ2

4(ωge − ωd)2

(
1− ωge − ωd

ωef − ωd

)
(2.35)

where Ω is the Rabi rate when driving the qubit on resonance with the same
amplitude. Here we have have added a correction term from the derivation in
Ref. [37] for a Cooper pair box which accounts for the lower anharmonicity of
the transmon qubit2.

2.7 CNOT and controlled-Z gates

It has been shown [35] that a single qubit and a two qubit logic gate, called a
controlled NOT (CNOT) gate, can be used to implement an arbitrary unitary
operation on multiple qubits forming a universal set of logic gates. Its func-
tion is to flip a target qubit, T, depending on a control qubit, C. In the basis
|gg〉 , |ge〉 , |eg〉 , |ee〉 (notation: e.g. |gg〉 = |g〉C⊗|g〉T) we can represent the gate
as

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.36)

Closely related to the CNOT gate is the controlled-Z gate. It applies a π
phase on the target qubit depending on the control qubit. By using the same
basis as before we can represent the controlled-Z gate as

UCZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (2.37)

One can obtain a CNOT gate by applying a Hadamard gate, H =

(
1 1
1 −1

)
,

on the target qubit on both sides of a controlled-Z gate

UCNOT = (1⊗H)UCZ(1⊗H). (2.38)

3 Experiments

The experiments we performed consist of three parts; developing a high Q 3D
cavity, characterization of a single qubit in a 3D cavity and characterization and
operations on two qubits in a 3D cavity. First we will however introduce the
setup and some of the technical sides of the experiment.

2adaptation from [37] via internal communication and private notes of Peter Leek.
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3.1 Setup

A circuit diagram of the main experimental setup is shown in Figure 9 and we
will discuss it in three sections. First we talk about how to cool our sample
down in a dilution refrigerator, then we will talk about the electrical cabling
inside the fridge and finally a short discussion about the microwave equipment
outside the generator.
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Figure 9: A circuit diagram of the measurement setup which has been installed
for 3D circuit QED experiments. We use a cryogenic dilution refrigerator which
a base temperature of 40 mK. The setup has two slots denoted line 1 and line
2. Line 1 is designed for low photon numbers as is desired in qubit experiments.
Line 2 is designed for high photon numbers which gives a stronger signal in
cavity transmission experiments. Out side the fridge at 300 K we have various
microwave equipment which is described in 3.1.3. The Figure is adapted from
[28].
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3.1.1 Dilution refrigerator

Our qubits are based on superconducting circuits and must thus cool below the
critical temperature of the material, which in our case is Al with Tc = 1.2 K.
Furthermore we require the qubit to be cooled to its ground state such that
~ωge � kBT . The method used to get to the mK temperatures is a closed
pumping cycle is described below. This cycle however requires an environment
at temperatures around 1.5 K or below. The two methods used to create such
an environment divides dilution refrigerators into two categories, either with or
without cryogenic liquids. Cryogenic dilution refrigerators are the traditional
design and use a liquid helium bath and evaporative cooling to create a thermal
reservoir at 1.5 K. A more modern technology is used in cryogen-free dilution
refrigerators where helium is pumped through membrane in a closed cycle cre-
ating a cooling effect [38]. This design has the convenience of not having to
maintain a liquid helium bath with frequent refills.

To cool our sample to temperatures around 40 mK we use a cryogenic dilu-
tion refrigerator. The process is based on the circulation of a He3/He4 mixture.
It has two phases below the He triple point, a He3 rich phase and a He4 rich
phase. As the He3 is pumped through He4, the phase separation is distorted. In
order to regain equilibrium thermal energy is extracted from the environment
creating a cooling effect.

Figure 10: The pumping cycle of He3/He4 mixture in a dilution refrigerator.
When He3 is pumped through He4 the phase separation is distorted. To counter
this distortion energy is taken from the environment which gets colder. (Picture
taken from Oxford Instruments website).
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The cycle is shown in Figure 10 were the dilution process takes place in the
mixing chamber. He3 is pumped from there into the still where it evaporates.
The still has a big circumference and is slightly heated to facilitate the process.
The evaporated He3 is pumped out of the fridge. At room temperature, on the
other side of the pump, the He3 is pressed through cold traps and into the fridge
to a condenser. There it precooled in the 1K pot and the returning He3 cool it
via heat exchangers back to a condensed state.

3.1.2 Cabling

Our setup has two experimental slots, lines 1 and 2, as seen in Figure 9. Con-
necting a cavity at 40 mK inside a dilution refrigerator to microwave equipment
at room temperature requires specific cabling techniques.

The cavity is connected to semi-rigid UT-85 cables that feed the microwave
signal in and out through the top of the fridge, see Figure 11 a. We use coaxial
cables made of copper from base to the 100 mK stage, stainless steel from 100
mK to 1.5 K and cables made of a copper inner conductor with a stainless
steel outer conductor from 1.5 K to 300 K. Here one must choose between
the high thermal conductance of copper and the high electrical conductance of
stainless steel. We connectorize the cables with SMA connectors. This must be
done carefully in order to minimize reflection. Losses in the cable transmission
increase with frequency. The transmitted power though line 2 is shown in Figure
11 b where the input line is connected to the output line with a through at room
temperature.

The cables provide a connection to equipment at room temperature. Cooling
measures must be taken to cool both the inner and outer conductor as well as
minimize thermal noise. We put attenuators at every temperature stages to
thermally connect the inner and the outer conductor of the cable. A copper
bulk and solder braids are then used to thermally anchor the attenuator to the

Figure 11: a) A stripped semi-rigid UT-85 cable as used inside the dilution
refrigerator. b)The loss in the cables through line 2 of the setup when a cavity
is replaced by a through, see Figure 9. The two dips at 4 and 9 GHz suggest
resonance due to impedance mismatch in one of the cables or in the through.
c) Solder brades wraped around an attenuator and fastened by a copper block.
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stage (see Figure 11 c) allowing heat to dissipate before reaching the cavity.
On line 2 we put only -18dB(6x3dB) attenuation as it is intended for high

photon number experiments. That is sufficient for cavity experiments(without
a qubit). Line 1, however, is used for qubit experiments and requires -50 dBm
attenuation on the input line to dampen thermal noise in addition to thermal-
izing the cable. Due to this high input attenuation amplification is needed at
the output line. A HEMT amplifier is located at the 1.5 K stage amplifying the
signal by about 30 to 40dB [28]. In addition to amplifying the output signal it
also thermally anchors the cable. The output line has circulators at the mixing
chamber and 100 mK stage to attenuate radiation coming from the amplifier
and thermalize the cable.

3.1.3 Microwave equipment

Outside of the fridge we have the various electrical components needed for the
experiment. We use microwave generators, Agilent technologies E8257D, Ro-
hde&Schwarz SMF 100A synchronized by a Rubidium clock SRS model FS725
Rubidium frequency standard to measure and manipulate our sample. The mi-
crowave pulses are gated with an arbitrary wave generator (AWG) Tekrionix
AWG5014 either by on/off marker triggering of the generators or by frequency
mixing on an upconversion board as described in Ref. [39]. One can in both
cases control the amplitude of the pulse but only in the frequency mixing gives
phase control. The output signal from the fridge is both amplified with low noise
amplifiers (LNA) and filtered with a band pass filter (BPF) and a low-pass filter
(LPF) on a downconversion board. We then digitize the data using an Aquiris
data acquisition card. Both the downconversion board and the upconversion
board were made by Marek Pechal.

3.2 Sample fabrication: 3D cavity and qubit

The inspiration for this thesis is the improvement in lifetimes observed in high-Q
3D cavities [1]. Before making our own cavity we did simulations of a realistic
design. The simulations gave information about the electric field inside the cav-
ity, its resonance frequency and the design of the coupling pins. We proceeded
to making our design out of various alloys and metals. Having not reached the
same Q factors as in Ref. [1] in our usual setup we put our cavity in another
setup which has the obvious difference of a magnetic shield. In that setup we
achieved an internal Q factor of two million.

3.2.1 3D cavity simulations

We used Comsol Multiphysics 4.2 to simulate the Ez distribution in the cavity
with dimensions 32 x 15.5 x 5mm3. This model includes a sapphire chip, which
is the qubit substrate and coaxial coupling pins. The pins require finer meshing
because to they have small features compared to the rest of the cavity and
the excitation of the field is there. The excitation frequency at the pins can
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be swept. In Figure 12 we see the Ez distribution at the (1,1,0) resonance
frequency. The field concentrated at the middle of the x-y plane of the cavity
but independent of the z coordinate. In addition simulated the transmission
from one coaxial coupling port to the other. With the chosen dimensions we get
a transmission spectrum around the first mode at 10.799 GHz. We fit the peak
with a Lorentzian function (Eqn. 2.7) as seen in Figure 13 a. This frequency
is well suited for dispersive coupling to qubits at 4-9 GHz. By simulating with
very high conductivity in the walls of the cavity, ≈ 1030 S, we assume no internal
losses i.e. Qint = ∞. From this simulated transmission we can then calculate
the expected Qext = QL from the equations given in section 2.1.2. Changing
the the pin lengths we can vary Qext as shown in Figure 13 b.

Figure 12: The simulated cavity. We see a color coded Ez distribution in tree
planes at the (1,1,0) resonance frequency. This design includes a sapphire chip
perpendicular to the y axis and coupling ports to couple microwave signals in
and out of the cavity.

The resonance frequency of the (1,1,0) mode according to Equation 2.2 is
10.742 GHz in comparison to 10.799 GHz from the fit in Figure 13 a. In Figure
13 b we have added measured values (Red dotts) for -0.3 mm and 0.2 mm from
warm measurements on the first mode. This corresponds relatively well to the
simulation.

3.2.2 Physical realization with various materials and shielding

We had a cavity made with inner dimensions of 32 x 15.5 x 5 mm3 as in the
simulation and 47 x 20 x 15 mm3 outer dimensions (see Figure 14 a). The
pins used couple to the cavity are made out of copper with a gold coating.
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Figure 13: a) The simulated transmission of the cavity at the (1,1,0) mode. b)
Qext of the (1,1,0) mode depends strongly on the pin length as shown. The
length is measured relative to the wall on the cavity. Negative pin length means
that the pin does not extend out of the pin hole.

Their length is adjusted by filing them down, there by tuning Qext. We want
Qext ≥ Qint in reference to the expected value of Qint in order for the measured
QL to be more sensitive to Qint than Qext (see Eqn. 2.6). I our case we expect
an internal Q of about one million. This is corresponds to filing the pins to a
length of about -0.2 mm relative to the cavity wall.

a b

Figure 14: a) The 3D cavity design with coupling pins mounted. The left half
has a slit for stable insertion of a chip with a qubit. b) The measured spectrum
of the cavity at room temperature. The free spectral range is about 3-4 GHz
for the first 3 modes.

We measured Qint for various Al alloys, Cu and Cu coated with a 0.5 µ
thick layer of pure aluminum both at room temperature and at 40 mK. The
various Al alloys vary mainly in the amount of Si and Mg in them. Al ac-hard
and Al warm-hard vary by hardening temperatures. The results can be seen
in Table 1. When measuring at room temperature we can calibrate the vector
network analyzer (VNA) for losses in the cables connecting to the cavity. When
measuring at 40 mK we correct for losses in the fridge cables by measuring it
separately warm, see Figure 11, and subtracting it in the data processing.

At room temperature (R.T.) we observe, as expected, a higher Qint of Cu
than of Al because it has higher electric conductivity. At 40 mK the Cu cavity
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reaches Qint = 15000 while the Al cavities enter a superconducting phase and
reach up to about Qint = 100000. The transmission spectrum is measured with

Alloy Cu Al/Cu Al6061 Al ac-hard Al Plan Al warm-hard

νr@ R.T. [GHz] 10.716 10.765 10.860 10.692 10.889 10.850

Qint@ R.T. 4597 3451 3435 1903 2450 2419

Qint@ 40 mK 15378 71895 94819 109614 71162 54220

Table 1: The table shows νr, the resonance frequency of the (1,1,0) cavities
mode measured at room temperature and Qint both at room temperature and
40 mK with no magnetic shielding.

a VNA at room temperature. Fitting the 1. mode with a Lorentzian we retrieve
the frequencies in Table 1. The fit also gives us QL and the insertion loss Il
such that we can calculate Qint from Equation 2.8. The Q factors at 40 mK are
measured in the same way but the loss in the fridge cables must be accounted
for in order to get the correct insertion loss.

Higher Q factors have been observed [1]. We thus put a Al6061 cavity in
another fridge which has magnetic shielding. This gave QL of one million from
the transmission spectroscopy shown in Figure 15. Assuming the same Qext

as measured at room temperatures we get a Qint of two million. Figure 16 a
shows a linear dependence between the spectroscopy power and the peak height
as expected for a harmonic oscillator and no other decay channels affect the
transmission. The power applied at the cavity input port is estimated roughly
from the generator output power and the expected attenuation in the cables.
The power of a resonant photon in the cavity can be estimated by the photon
energy ~ωr and the cavity decay rate κ, Pphoton = ~ωrκ. By applying a power
Pin at the input port at the frequency ωr/2π on can estimate the number of
resonant as n = Pin/Pphoton. We also see in Figure 16 b that the internal Q
does not depend on the applied power.

3.2.3 The qubit

One of the differences between a transmission line resonator and a 3D cavity
resonator is that the mode volume is much larger in the 3D case. This means
that the electric field strength per unit energy, E, is lower than in the 2D case.
In order to maintain the same coupling strength, ~g = Ed, a bigger dipole
moment, d, of the qubit is needed.

The qubit fabrication was done by Dr. Johannes Fink using electron-beam
lithography and evaporative deposition onto a sapphire substrate. They con-
sisted of two 250 x 500 µm2 aluminum islands, see Figure 17. The islands are
100 - 200 µm apart but connected with a 1 µm wide wire with a Josephson
junction in the middle.
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Qint=2 106

Figure 15: Transmission spectroscopy of first cavity mode in a dilution refriger-
ator with magnetic shielding. The internal Q calculated from this measurement
is two million, indicating the importance of magnetic shielding.

a b

Figure 16: a)The peak of the Lorentzian scales linearly with the applied power
at its input port. b) We observe that Qint is independent of the applied power.

3.3 Measurement techniques and single qubit characteri-
zation

We characterized 4 qubits and labeled them: qubit 1, qubit 2, qubit 3A and
qubit 3B. This section describes the characterization experiments performed on
the qubits and the resonator. We begin by discussing the transmission trough
a cavity with a qubit around the lowest resonance frequency (1,1,0) at various
powers. Then we describe how the state of the qubit can be read out from
the transmission signal and how to perform both continuous and pulsed qubit
spectroscopy using low readout powers. We then talk about qubit readout
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b c

Figure 17: a)A picture of the qubit taken with an optical microscope. The
Josephson junction is in the middle of the wire between the two islands. b) Two
qubits on separate chips mounted in a 3D cavity. c) A 3D cavity mounted in a
dilution refrigerator.

with high powers. From there we proceed to discuss Rabi, Energy relaxation
time, and Ramsey experiments used to calibrate qubit manipulation pulses and
measure the lifetimes and frequency of the qubit. Thereafter we discuss both
single and two tone blue sideband transitions on the joint qubit-resonator system
before introducing state tomography and performing it on a single qubit. Finally
we state and discuss the parameters of our qubits.

3.3.1 Resonator spectroscopy

With a qubit inside a cavity, mounted and cooled down in a fridge we measure
the transmission through the cavity. According to the Hamiltonian in Eqn. 2.27
the resonator frequency shifts in the presence of a qubit even if it is in the ground
state. Figure 18 a shows the resonator transmission spectrum as a function of
the input power when the qubit is not excited. With the system in its ground
state we see a peak at 9.058 GHz. As the power is increased the transmission
spectrum ceases to follow a Lorentzian shape. At high powers a peak reappears
at the bare resonator frequency at 9 GHz, see Figure 18 b. This resembles a
classical cavity where the photon numbers are large enough to mask the qubit
induced non-linearity of the circuit [40, 41, 42]. The shape is not perfectly
Lorentzian so it is unreliable to get a reasonable QL with this measurement. A
fit can still be made to get a rough estimate. Generally the measured Q of the
bare cavity is lowered when a qubit in put into the cavity. The cavity used in
Figure 18 is made out of Al6061. Without the qubit the internal Q factor is
Qint = 94819 at 40 mK but has been lowered to Qint = 21595 with a qubit in
the cavity.

3.3.2 Qubit readout and spectroscopy

To illustrate the qubit readout we measured the resonator response around the
cavity resonance both for the qubit in the ground state, see Figure 19 a and in
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Figure 18: a) Resonator transmission spectrum. At low powers we observe a
shift of the resonance frequency as predicted by the Jaynes-Cummmings hamil-
tonian. At high powers a peak appears at the bare reonator frequency.

a b

Figure 19: Transmission spectroscopy around the first mode (1,1,0) of the cavity
for varying power. The qubit is in the ground state in a) and in the first excited
state in b). The qubit state can be determined by the frequency shift at low
powers or by the transmitted power at the bare resonance frequency when high
power is applied.

the excited state, see Figure 19 b1. At low powers(∼ 40 dBm) we see a qubit
state dependence of the resonance frequency as described in Equation 2.27. At
high powers the transmitted signal at the bare resonance frequency is qubit state
dependent. This can be used to readout the qubit state as described in Ref. [40]
with a higher signal-to-noise ratio than in the low power regime. Having now
described the qubit-state dependent cavity responses we proceed to explain the
measurement methods.

To find the qubit frequency we apply a tone, called the RF, at the ground
state resonance frequency in the low power regime and sweeping another spec-
troscopy tone with high power. When the spectroscopy tone coincides with the

1Note that for Figure 19 b we had calibrated our pulses to excite the qubit.
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qubit excitation frequency the qubit will be driven from the ground state. We
choose the low power regime to initially determine the qubit transition frequency
because the required readout power easier to estimate than in the high power
case. Because the shift of the resonator frequency at low powers is qubit state
dependent the transmitted RF signal will decrease. Figure 20 shows this type
of spectrum.

The multiple resonances in Figure 20 a are due to the ac Stark shift[43], also
called number splitting [44], i.e. the lowering of the qubit transition frequency
for each number of photon in the resonator, see equation 2.29. The frequency
between adjacent resonances is 2χ. By lowering the readout power one observes
the that the lower frequencies resonances, which correspond to higher photon
numbers, diminish. The single resonance in Figure 20 a is from a time resolved
measurement i.e. if we separate the spectroscopy tone and the RF tone in time
into two subsequent pulses (see Figure 21 b) the resonator will be empty when
the qubit transition is driven.

Having found the qubit transition frequency we proceed to the high power
readout(HPR). The qubit state is first prepared and the read out with a pulse at
the bare resonance frequency and various powers. Before the pulses have been
calibrated (see Section 3.3.3 and 3.3.5) the state is prepared in the ground state
by applying no pulse at all or by applying a pulse at an arbitrary amplitude and
length at the qubit transition frequency such that the qubit is partially excited.
The three traces in Figure 21 b are the resonator responses integrated over the
first 50 µs after preparing the g, e and f states of the qubit. Here the preparation
pulses have been calibrated for controlled population of the g, e and f states. By
choosing the readout power which has a the greatest state dependent response
difference we can achieve high signal-to-noise enabling single shot readout of the
qubit state.

A feature of the HPR is that the readout pulse highly populates the cavity.
For many experiments one must wait until all the photons have decayed and
the cavity is empty before triggering another pulse sequence. In cases when the
pulse sequences are much shorter than the time needed to empty the cavity the

a

b
b

Figure 20: The qubit frequency is found by spectroscopy such that the qubit
excitation changes the resonance of the cavity.
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HPR induces an overhead. In the samples used in this thesis the pulse sequences
were up to ∼ 60 µs long but the trigger interval required to empty the cavity
was 2 ms.
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Figure 21: a) A pulsed measurement sequence. By pulsing the measurement
we can prepare the qubit state without the effect of resonant photons in the
cavity. b) The resonator response at the bare resonator frequency νB when the
RF power is swept. The three traces represent represent different qubit state
preparations before measuring; g is blue, e is red and f is yellow. This can be
used for readout with a high signal-to-noise ratio.

3.3.3 Rabi oscillations

The measurement techniques discussed so far consist of a continuous measure-
ment signal or pulses with arbitrary length and amplitude. For qubit manipu-
lations it is however desirable to have precisely controlled pulse sequences. The
pulse sequence for a Rabi experiment is shown in Figure 22.

T

t
Qubit drive Measure

a T

t
Qubit drive Measure

b

π
ge efge

Figure 22: Pulse sequence for Rabi oscillation between the (a) |g〉 and |e〉 states
and the (b) |e〉 and |f〉 states.

Referring to the Bloch vector rotation in Section 2.3 we want to calibrate
for a π pulse. This is done with a Rabi experiment. Applying a pulse at qubit
transition frequency we start to rotate the state around a horizontal axis on the
Bloch sphere and the total rotation is determined by the integral of the Rabi rate
Ω over the duration of the pulse. As Ω depends on the drive pulse amplitude we
can determine a π pulse in two ways: By having a fixed amplitude and varying
the pulse length or vice versa. We can monitor the vertical component of the
state by projective measurements. By exciting the qubit first to the e-state
one can do a Rabi experiment on the e-f transition. In Figure 23 we see Rabi
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oscillations between the (a) |g〉 and |e〉 states and the (b) |e〉 and |f〉 states
where the pulse length is varied and the amplitude is fixed. A fit to the data
yields a π pulse of 19.7 ns for the g-e transition and 29.7 ns for the e-f transition.

a b

Figure 23: Rabi oscillation between a) the |g〉 and |e〉 states and b) the |e〉
and |f〉 states. At a fixed driving power the Bloch vector is rotated about a
horizontal axis and we see its z component oscillate.

3.3.4 Energy relaxation time measurements

a bT

t
Measureπ

T

t
Measureπ

ef
π
gege

Figure 24: Pulse sequence for an energy relaxation time, T1, measurement on
(a) the |e〉 state and (b) the |f〉 state.

The energy relaxation time determines the rate at which the qubit decays
from its excited state. By exciting the qubit with a π pulse and varying the
waiting time T before reading out the state (see Figure 24) we observe an
exponential decay as seen in Figure 25. To excite qubit to the |f〉 state it is first

excited to the |e〉 state in the scheme in Figure 24 b. By fitting p = exp
(
−T
T1

)
to the data we extract an energy relaxation time T1 = 14.7 µs for the |e〉 state
and T1 = 11.3 µs for the |f〉 state.

3.3.5 Ramsey oscillations

The qubit transition frequency can be determined with more precision using
Ramsey oscillation than spectroscopy. Form equation 2.32 we see that the de-
tuning of the drive frequency νd = ωd/2π from the qubit transition frequency
νge = ωge/2π leads to a rotation around the z axis of the Bloch sphere at a
frequency νδ = |νd − νge|. We apply a slightly detuned π/2 pulse, wait for a
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a b

Figure 25: T1 measurement. By exciting the qubit and varying the waiting
time before measuring the state we can determine the energy relaxation time of
the qubit

a bT

t
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t
Measure2π 2π

ef ef
π
ge

Figure 26: Pulse sequence for a Ramsey experiment on (a) the g-e transition
and (b) the e-f transition. Two π/2 pulses, separated by a varying time T, are
applied slightly off-resonant from the qubit transition frequency.

time T and do another π/2 pulse around the same axis, see Figure 26. Dur-
ing the time T the qubit acquires a phase φq = Tνδ such that by varying T
we observe oscillations at a frequency νδ between the two states involved in
the experiment, either |g〉 and |e〉 or |e〉 and |f〉. νδ is then used to determine
νge = νdrive ± νδ(+ or- depends on the detuning we choose). A measurement
of the Ramsey oscillations is shown in Figure 27. The oscillations are damped
due to qubit dephasing such that the population of the higher state is given as

p =
1

2
(1 + cos(νδT)exp(

−T

T2
)), (3.1)

where T2 is the qubit dephasing time. The maximum dephasing time is T2 =
2T1. From fits to the data in Figure 27 a we obtain νδ = 0.48 MHz and T2 = 9.1
µs and from Figure 27 b νδ = 3.23 MHz and T2 = 2.6 µs

3.3.6 Blue sideband transitions

Blue sidebands transitions (BSB) are observed with spectroscopy, see Figure 28.
We see from Figure 28 that the BSB frequency is lowered as the drive power is
increased. This effect is an ac-Stark shift from the strong drive tone which we
will note as χd and was observed by Wallraff et al. [21]. Experiments which
vary the drive power thus become more involved as the BSB frequency shifts.
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a b

Figure 27: Ramsey oscillation. The frequency of the oscillations is the detuning
of the drive from the qubit transition frequency. The amplitude decay gives the
dephasing time T2.

As in the single qubit transitions we perform a Rabi experiment on the BSB.
Figure 28 shows blue sideband Rabi oscillations. As the pulses get longer the
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Figure 28: a) Blue sideband spectroscopy at various drive powers. The reso-
nance shifts to lower frequencies with higher drive power due to an ac-Stark
shift. b) Rabi oscillations be driven on BSB transition. The damping of the
oscillations is because of the decay of the photon in the cavity.

oscillations are dampened. This is because of the photon decay in the resonator
leading to a saturation in the excited state. We can however not quantify the
|e〉 state population in a reasonable manner because the resonator photon also
affects the readout signal.

We calculate the BSB Rabi rate for qubit 3A with Equation 2.35. The
qubit is detuned from the resonator by ∆ = 2.5 GHz, with anharmonicity
α = −372 MHz and coupling constant g = 192 MHz. We drive it at powers
which correspond to a Rabi frequency Ω = 12.665 MHz. These parameters give
a BSB Rabi rate ΩBSB = 1.13 MHz. We also drive the transition at the ac-Stark
shifted resonance and measure a BSB Rabi rate ΩBSB = 1.42 MHz.

Ramsey oscillations are not as ease to perform on the BSB transition as
in the single photon case. Driving the π/2 pulses in the Ramsey experiment
on-resonance we are in a shifted rotating frame corresponding to the ac-Stark
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shift. During the waiting period T, the system is no longer in the shifted frame
creating an undetermined detuning. To determine the transition frequency more
precisely we do Rabi oscillations for various frequencies. The resonant BSB
frequency is then the one with the lowest Rabi frequency. Figure 29 a shows
Rabi oscillations for various drive frequencies. In Figure 29 b we plot the Rabi
rates versus the drive frequency yielding a resonance at 7.757 GHz.
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Figure 29: a) A 2D plot of a BSB Rabi oscillations at varying drive frequencies.
b) BSB Rabi frequencies at varying drive frequencies. The Rabi frequencies
increase with the detuning from the resonance of the transition such that the
minimum yield the resonant drive frequency.

We have so far only discussed single tone sideband transitions where the
two photons in the transition have the same frequency. It is also possible to do
two tone blue sideband transition where the photons have different frequencies
which add up to the required energy. Figure 30 shows a two tone spectroscopy.
We observe a resonance at the where the two tones add up to 14.6757 GHz.

Figure 30: Two tone BSB spectroscopy. The resonance forms a line parallel
to and about 1.7 MHz lower than the red line which represent the calculated
resonance from Eqn. 2.34.

This resonance is about 1.7 MHz lower than the calculated value according
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using Equation 2.34 which is drawn as a red line. The ac-Stark shift was not
measured for in this case such that its effects are unknown.

3.3.7 State tomography

All measurements performed are projective i.e. the state is projected onto an
axis on the bloch sphere. Not all the information about the state is retrieved
in that way by a single measurement. To fully know the state of the qubit
we must construct its density matrix. This is done with state tomography.
Taking 4 different but identically prepared versions the state and applying the
identity and the three Pauli operators on it before measuring one can recon-
struct the Bloch vector and then use equation 2.20 to retrieve the density ma-
trix. This is implemented as follows: The qubit state is prepared four times.
After each preparation a different rotation corresponding to one of the opera-
tors 1, σ̂x, σ̂y, σ̂z is applied and the state is measured. A total of 4 measure-
ments. For 2 qubit state tomography the measurement operator is the defined as
M̂ =

∑
i,j

βi,j σ̂jA⊗σ̂iB .One must project the prepared state onto all combinations

of the four operators used in the single qubit case, a total of 16 measurements.
When a density matrix ρ has been measured one is often interested in com-

paring it with the theoretical matrix σ corresponding to the same preparation.
This can be done with a measure called fidelity

F 1(ρ, σ) = tr(
√
ρ1/2σρ1/2). (3.2)

We also use another definition which does not require one to find the square
root of a matrix.

F 2(ρ, σ) = tr(ρ · σ). (3.3)

Figure 31 shows state tomography where the state |+〉 = 1√
2
(|g〉+ |e〉) has been

prepared with a fidelity F 1 = 0.987.

Re Im

Figure 31: The reconstruction of the |+〉 〈+| density matrix using state tomog-
raphy with a fidelity of F 1 = 0.987.
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3.3.8 Results

We characterized 4 qubits, two of which were on the same chip and were used
for two qubit experiments. The qubits have about ten times longer lifetimes
than in the typical charge qubits in a 2D architecture [25]. We note that T1ef
is remarkably long and even longer than T1ge in some cases. This is surprising
because the |f〉 state has more decay channels than the |e〉 and remains to be
investigated.

The values of EJ , EC and g are determined by inputting them as parameters
the Hamiltonian in Equation 2.25 and numerically calculating the energy levels.
We then tune EJ , EC and g such that the calculated energy levels match the
measured ones. For accurate values we use the first four levels of the qubit.

Qubit 1 Qubit 2 Qubit 3A Qubit 3B
EJ GHz 10.567 13.2821 18.1362 28.9427
EC MHz 312.75 303.0 329.8 309.05
g MHz 202.7 187.0 192.0 213.8
νge GHz 4.779 5.341 6.552 8.086
T1ge µs 9.7 9.2 14.7 7.0
T2ge µs 2.2 8.3 9.1 4.9
νef GHz 4.411 4.989 6.180 7.776
T1ef µs 18.4 n.m. 8.2 11.3
T2ef µs 1.6 0.9 2.0 2.7

Table 2: Parameters we obtained from the characterization of the 4 qubits.
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3.4 Two qubit experiment

Qubits 3A and 3B (Here after denoted as qubits A and B) were fabricated on
the same chip with 6mm separation. The spectrum of this two qubit sample
is show in Figure 32. We used it to do two qubit experiments starting with a
state tomography. Because our qubits are significantly larger than in the 2D

ResBSB-Bge-BBSB-Aef-Bge-Aef-A

6.5 7.0 7.5 8.0 8.5 9.0

Frequency @GHzD

Figure 32: The spectrum of a 2 qubit sample in a 3D cavity. Red dots are for
Qubit A transitions, brown for qubit B and the resonator frequencies for the
qubit states |gg〉 , |eg〉 , |ge〉 and the bare cavity are blue.

case we consider their mutual coupling and use it to implement a controlled-Z
gate. Then we look at the BSB in this sample and in an attempt to implement
a CNOT gate.

3.4.1 Two qubit state-and process tomography

Analogous to the one qubit case, we can manipulate on the two qubit state and
measure it with state tomography as described in Section 3.3.7. In Figure 33 we
see the measured density matrix when the state |ge〉 was prepared with fidelity
of F2 = 98%.

Re Im

Figure 33: Two qubit state tomography was used to reconstruction of the density
matrix of the |ge〉 state with fidelity F2 = 0.98.

Just as state tomography is used to recover a quantum state we can expand-
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ing the procedure to an operation E . In process tomography the effect of an
operation E(ρ) =

∑
i

EiρE
†
i is recovered [35]. Here Ei is a (non-unique) set of

operators. To be able to recover E from measurements we linearly decompose
the operators Ei into a basis of fixed operators Ẽi,

Ei =
∑
m

eimẼm. (3.4)

We can then write the operation as

E(ρ) =
∑
n,m

ẼmρẼ
†
nχnm, (3.5)

where χnm =
∑
i eime

∗
in are the entries of a positive Hermitian matrix called

the χ matrix .
Experimentally we get the χ matrix by staying in the computational basis

|gg〉 , |eg〉 , |ge〉 , |ee〉 and setting Ei ∈ {1, σx, σy, σz}. As in the single qubit state
tomography we prepare all combinations |g〉 , |e〉 , 1√

2
(|g〉+ |e〉), 1√

2
(|g〉+ i |e〉) of

the two qubits and perform the operation E each time. The resulting state is
then determined with state tomography.

3.4.2 Qubit-qubit coupling

a b

Figure 34: Ramsey oscillations on qubit b. a) Qubit A is in the ground state.
b) Qubit A is in the excited state. Exciting qubit A lowers qubit B by 322kHz.

We first look at two qubit interaction via the qubit-qubit interaction. We
performe a Ramsey experiment on qubit B while red detuned. In Figure 34 we
see Ramsey oscillations on qubit B with qubit A in the ground state. Figure 34
b shows Ramsey oscillations on qubit B with qubit A in the excited state. The
oscillations are slower when the qubit A is in the excited state than when it is
in the ground state. This was done on both qubits and revealed that the qubits
transition frequency was on one qubit lowered by δqq = 322 kHz when the other
one is excited.

From the qubit-qubit analysis above we note that a relative phase between
the qubits after a time T is φ = 2πTδqq. By using the fixed coupling to gain
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a phase φ = π we can implement a controlled-Z gate by waiting 1.553 µs. We
perform process tomography by preparing the various states as described above,
wait for 1.553 µs and then perform state tomography. We obtain a χ matrix as
shown in Figure 35 and a process fidelity of F2 = 67%.

Re Im

Figure 35: The real part, a), and imaginary part, b), of the controlled-Z χ
matrix. The controlled-Z gate implemented here used the fixed qubit-qubit
coupling.

The presence of fixed coupling is naturally problematic when not wanted. A
CNOT(or controlled-Z) gate one can turn on and off is therefore desirable.

3.4.3 Controlled-NOT gate

An implementation of a CNOT gate was proposed by Saito [45] using blue
sideband pulses. The scheme is shown in Figure 36.

We will first describe the controlled-Z gate, UCZ , which induces a π phase
on the |eg〉 state as shown in Table 3 (notation: |TC〉 or |TCn〉 where |T 〉 is
the target qubit, |C〉 is the control qubit and |n〉 is the photon number). If
the control qubit |C〉 is in the excited state no BSB transition is driven and no
phase accumulates on the target qubit |T 〉. If |C〉 is in the ground state and we
set our drive to the frequency

ωd =
ωr − 2χC + ωgeC

2
. (3.6)

Here where ωr is the resonator frequency with the qubit in the ground state,
2χC is the dispersive shift of the resonator due to the control qubit and ωgeC is
the transition frequency of the control qubit. The BSB transition |gg0〉 → |ge1〉
is now driven on-resonance and accumulate no phase in the |ge1〉 state. If the
target qubit is excited the resonator will shifted by 2χT . If we drive at the
BSB transition |eg0〉 → |ee1〉 in the same rotating frame as when |T 〉 is in the
ground state we accumulate a phases, φ while in the |ee1〉 state for a time T
φ = TχT (the 2 is not there because it is a two photon process). By adjusting the
time T we can get a π phase on the |ee1〉 state while accumulating no phase on
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Figure 36: a) An energy level diagram for the two qubit system in the 0 and
1 photon state of the resonator. The solid lines are the undressed states, the
coursely dashed levaes are the dispersively shifted levels and the fine dashed
levels invlude the ac-Stark shift δ of the drive. The arrows are color coded
to match the pulse sequence. b) A pulse diagram for the implementation of a
CNOT gate. It consists of a blue sideband based controlled-Z gate UCZ (blue),
a Hadamard gate on the target qubit YT(red) and two π pulses on the control
qubit YC(green).

the other states |ge1〉, |ge0〉 and |ee0〉. To complete the controlled-Z gate apply
a second BSB pulse to bring the n=1 states back to the n=0 states. As stated
in Section 2.7, applying Hadamard gates on the target qubit of a controlled-Z
gate, as shown in Figure 36 b (red), gives us a CNOT gate. The outermost pi
pulses on the control qubit, see (Figure 36 b (green), add up to 2π and only
affects the scheme such that the target qubit is flipped when the control qubit
is in the excited state.

In this idealized outline of the CNOT scheme the length of the pulses is
assumed to be negligible in comparison to T. We have also not taken into account
the phase effect the ac-Stark shift from the drive δ nor the implementation of
driving an offset BSB transition. In Ref. [45] it is suggested to apply a phase
φδ = πTδ on the second BSB pulse to correct for the phase effect of the ac-
Stark shift. We however do not have phase control on our BSB pulses such that
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φδ = 0. The non-zero pulse lengths and off-resonant BSB transition we will
discuss in the following sections.

|gg〉 → |gg〉
|eg〉 → − |eg〉
|ge〉 → |ge〉
|ee〉 → |ee〉

Table 3: The effect of UCZ on the states in the computational basis.

3.4.4 Optimizing the blue sideband

In order to minimize the state preparation time we want to maximize the power
used on the sidebands. Due to the close proximity of qubit B’s νge transition
to both sidebands we tested the effect of the BSB drives on qubit B, The test
schems are depicted in Figure 37. The second π pulse on qubit A has to do with
more efficient qubit readout.

By doing a π pulse we excite the qubit such that the following pulse at the
BSB frequency does not drive the transition. We will still refer to it as the BSB
pulse. The influence of this tone on qubit B is thus only that of an off-resonant
but strong drive. Subsequent to the BSB pulse we perform a Ramsey experiment
on qubit B. The BSB drive powers were varied and the pulse lengths were chosen
such that at least a π rotation would have been driven on the sidebands if the
qubit was in the ground state.

In Figure 38 a we see Ramsey oscillations which are not drastically affected
by a 500ns BSB A pulse at 4.3 dBm output power of the microwave generator.

π
ge

t
Ramsey Measure

BSB A test

BSB B test

BSB 

qubit A

qubit B

π
ge

π
ge t

Ramsey MeasureBSB 

qubit A

qubit B

Figure 37: The figure shows the pulse sequences used to test how qubit B
is affected by the strong BSB drive tones. The π pulse in the begining of the
sequneces prevents the BSB transition from being driven. The effect is measured
by performing a Ramsey experiment on qubit B
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Figure 38: Ramsey oscillations on qubit B after a BSB pulse on qubit A at
a) 4.3 dBm , b) 8.3dBm. Spectroscopy on the BSB on qubit A varying the
spectroscopy drive power.

In Figure 38 b output power has been increased to 8.3 dBm and we observe a
diminished ampliude of the Ramsey oscillations. If we however look at Figure
38 c we see that the minimum power needed to drive BSB A is around 9 dBm.
We thus conclude that we can not use BSB A.

The test for BSB on qubit B requires a 100 ns pulse length. We find the
maximal power to be 10 dBm without diminishing the amplitude of Ramsey
oscillations, see Figure 39 a), b) and c). We however choose to drive at 14 dBm
to get a higher Rabi frequency.

Proceeding with the BSB on qubit B we note that the BSB resonance fre-
quency is lowered by χA when qubit A is in the excited state. This is the
dispersive shift of the resonator as described in previously in Section 3.4.3.

We performed Rabi experiments on BSB B at 14 dBm for various frequencies,
both with qubit A in the excited and the ground state, see Figure 40 a. By fitting
the date with parabolas for both states of qubit A we find the BSB frequencies
to be 8.5467 GHz when qubit A is excited and 8.5495 GHz when it is in the
ground state i.e. a difference of 2.8 MHz. The Rabi frequencies were 5.43 MHz
and 5.48 MHz for the excited and the ground state respectively. In order to
drive the BSB transition regardless of the state of qubit A we set the frequency
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Figure 39: Ramsey oscillations on qubit B following a strong tone at the BSB
frequency of qubit B at a) 10 dBm, b) 14 dBm, c) 16 dBm.

a
b

Figure 40: a) Rabi frequency of the BSB transition of qubit B varying the BSB
drive frequency. The purple dots(measured) and the red line (fit) represent
the BSB Rabi frequency when qubit A is in the ground state and the blue
dots(measured) and black line(fit) represent the BSB frequency when the qubit
is in theescited state. We drive the BSB transition at the intersection of the
black and the red lines where the Rabi frequency is the same for both states of
the qubit. b) On-resonance Ramsey oscillations on the BSB is used to measure
the ac-Stark shift caused by the drive.

to the intersection of the two parabolas in Figure 40, at νd = 8.54808 GHz,
where the Rabi rate is the same for both cases. This however means that the
detuning from resonant transitions is roughly 1/3 of the Rabi frequency. In the
Bloch sphere picture such a detuning compared to the Rabi rate results in a
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rotation of the Bloch vector about an axis with an 18 degree angle from the
horizontal plane. Considering the projection of the Bloch vector onto the z axis
of the Bloch sphere we see that the population of the |e1〉 state can maximally
reach 90%. Having found the BSB resonances with Rabi experiments we can
measure the ac-Stak shift δ from the drive. When performing an on-resonance
Ramsey experiment at the BSB resonance we note that the shift is not present
during the time between the π/2 pulses. This effectively gives us a detuning
which amounts to the ac-Stark shift from the drive. The Ramsey oscillations
from such an experiment is shown in Figure 40 b. The frequency is twice the
detuning in this case because it is a two photon process. We measured the Stark
shift of the BSB B transition when driven at 14 dBm to be 9.2MHz. When we
take that shift into account the measured BSB frequency matches the theoretical
frequency ωge+ωr

2(2π) = 8.5586 GHz.

3.4.5 Phase evolution

By driving at νd = 8.54808 GHz we wanted to see if we could still, despite not
having phase control and a high Rabi rate on the BSB, implement a controlled-Z
gate based on the Saito scheme. To investigate that we performed four phase
Ramsey schemes, shown in Figure 41, where were we map the phase evolution
of our qubits. A phase Ramsey consists of two π/2 pulses separated by time τ
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Figure 41: The pulse patterns used to map the phase evolution of the qubits
when two BSB π pulses, separated by a varying time T, are applied on qubit B.
Patterns 1 and 2 phase map qubit B and patterns 3 and 4 phase map qubit A.

as in the usual Ramsey experiment. The difference is that in a phase Ramsey
experiment τ is constant but the phase of the second π/2 pulse is varied. In our
case we want to do a phase Ramsey on both qubits, A and B, while implementing
the BSB pulses in the Saito scheme in between the π/2 pulses. The time T,
between the BSB pulses, plus the pulse lengths themselves must be within the
time τ . We can vary T to see how the phase on qubit evolves. The pahse
mapping on each qubit is performed with the alternative one both in the ground
state and the excited state. This we did for T=0-40 ns and three periods of the
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phase for each pattern, see Figure 42. We can see loss of contrast in the phase
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Figure 42: Phase Ramsey oscillations for 0, 16 and 36 ns are shown. We see the
contrast diminish and the cavity transmission signal get higher for T = 16 ns.
The contrast improves again for T = 36 ns.

Ramsey oscillations for times at 16 ns. This is due to the phase acquired from
the ac-Stark shift of the drive such that the second BSB pulse rotates the Bloch
vector about itself.

What we ideally need is to find a time T such that the phase Ramsey os-
cillations on qubit B, i.e. from patterns 1 and 2, are π out of phase and that
the phase Ramsey oscillations on qubit A, from patterns 3 and 4, are mutually
in phase and with either 1 or 2. We plot the phases of the fits to the various
patterns in Figure 43 to see the its dependance on T.

The phases from pattern 2 and 3 behave as expected. Because we excite
qubit B in pattern 2 the BSB transition cannot be driven and the cause no
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Figure 43: The phases from patterns 1, 2, 3 and 4 for T= 0-40 ns. The behaviour
is as expected for patterns 2 and 3 i.e. static and linear. In the case of patterns
1 and 4 we cannot account for the non-linearity. Both patterns 1 and 4 drive
the BSB with qubit A excited.

additional phase is accumulation. In pattern 3 we let the phase accumulate for
varying time, T, leading to a linear phase dependence. For patterns 1 and 4 we
have no clear relation between the time T and the phase. We notice now that in
patterns 2 and 3 the sideband transition is either not driven or driven with qubit
A in the ground state. In patterns 1 and 4 the excited or a superposition state
of qubit A affects the BSB transition. This suggests that the BSB transition is
not being driven coherently in the case qubit A is not in the ground state.
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4 Conclusions

We successfully developed a 3D cavity resonator with a quality factor of 2 mil-
lion in a dilution refrigerator at 20mK with magnetic shielding. The various
alloys tested without a magnetic shield only reached a Q-factor of about 100000
indicating strongly its necessity for higher Q-factors. A full geometry modeling
of the cavity predicted a value of the fundamental resonance frequency which
was within the reproducibility accuracy of the measured cavities. It also pre-
dicted cavity transmission dependance on the length of the cavity coupling pins
close to teh measured values. In addition we note that the measured and the
simulated frequencies of the first mode differ from the text book rectangular
cavity frequency of the same dimensions only by 50 MHz.

We characterized 4 qubits with T1 and T2 of up to 14 µs and 9.7 µs for
the first excited state respectively. Surprisingly we observed a 18 µs T1 for a
second excited state and a T2 of 2.7 µs. We performed both single tone and two
tone BSB transitions. For the single tone case we observed an ac-Stark shift of
the BSB transition towards lower frequencies. By driving Rabi oscillations at
various drive frequencies frequency the resonant frequency could be determined
from the lowest Rabi rate. The Stark shift could then be measured with an on-
resonance Ramsey experiment. With two qubits in the resonator we observed
direct coupling between the two qubits of 322 kHz and used it to implement
a cphase gate with 67% process fidelity. We made an effort to implement a
CNOT gate using one blue sideband. The scheme could not be realized due to
both restrictions on the BSB phase control and BSB Rabi rate limitations of
the sample. We however probed the phase evolution of the qubits under the
operation of the CNOT protocal without phase correction to see if a slightly
alternative implementation could still be successfull. We found that the shifted
BSB transition did not behave as we expected such that the CNOT gate was
not nicely implemented.

The next step for implementing the CNOT gate would be to have phase
control on the BSB transition. In our two qubit sample one sideband transition
rate reaches an upper limit due to the vicinity of the qubit frequency to the
resonator. A qubit with a lower excitation frequency would thus enable faster
BSB transition. The implementation of local qubit control and qubit tunability
would allow qubit manipulation with vacuum Rabi oscillations and open up a
wider range of experiments achievable in 3D cavities. Further experiments and
technical implementations, such as shielding and cable termalization, can be
done to reduce noise in the cavities and prolong lifetimes. Developing cavities
with lifetimes of hundreds millions or more are known from particle physics.
Such cavities could be tested as possible memories for quantum information.
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