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Abstract

It is essential to have a universal set of well scalable, high-fidelity quantum gates to successfully
perform quantum algorithms and especially to reach the error threshold for quantum error
correction codes. In this thesis, I work towards the automated tune up of a flux pulse based
controlled-phase gate in a superconducting circuit architecture [Strauch2003, DiCarlo2009]. To
optimize the gate fidelity, we develop a procedure to correct for distortions affecting the flux
pulses focusing on the scalability aspect and the use in the surface error correction code. In
particular, I elaborate a method to shape flux pulses based on a combination of finite impulse
response (FIR) filters and infinite impulse response (IIR) filters which invert distortions on a
nanosecond timescale and on a slower timescale up to microseconds, respectively. The latter are
used to efficiently reduce memory effects in the flux line that originate from the use of a bias-T
and adversely affect subsequent gates [Kelly2014].
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Chapter 1

Introduction

Already decades ago, in the early 80s, Richard Feynman asked the question: ”What kind of
computer are we going to use to simulate physics?” [Feynman1982]. For the simulation of quantum
systems, the computational demands on a classical computer grow exponentially with the system
size. As a consequence, the idea of using quantum mechanical systems to encode information and
perform calculations arose. Since then, the new field called Quantum Computing emerged. In
addition, fundamentally new ideas were developed, how to parallelize classical calculations using
the quantumness of the information processing unit, e.g., Shor’s factoring algorithm [Shor1994].
The concept of quantum information processing gained even more importance, as it was realized,
that classical computers start to touch the limits of physical miniaturization, also referred to as
the break down of Moore’s law [Moore1965].
However, it is still an open question, if quantum computers can by physically implemented in a way,
that they can beat classical computers, i.e., that they prove quantum supremacy [Preskill2012]. A
physical realization of a quantum information carrier should be well isolated from its environment,
to prevent loss and decoherence, while still couple strongly to some control fields, which allow the
qubit to be manipulated in a coherent way and be coupled to other qubits in a scalable way. Some
of the most promising implementations currently under development are trapped ions [Cirac1995],
nitrogen vacancy centers [Dutt2007] and superconducting electronic circuits [Clarke2008].

1.1 Quantum Computing

In quantum information theory, the natural choice for the basic entity that carries quantum
information is a quantum mechanical two-level system, a quantum bit or qubit, in close analogy
to the bit in classical computation. A classical bit represents a single binary digit, that can
assume the values 0 and 1, whereas a qubit has the basis states |0〉 and |1〉 and is represented by
a wavefunction |ψ〉 = a |0〉+ b |1〉, where a and b can be any pair of complex numbers satisfying
the normalization condition |a|2 + |b|2 = 1. An example for such a quantum system with a two
dimensional Hilbert space C

2 is a spin 1/2 system, e.g., the spin degree of freedom of a single
electron.
Quantum algorithms are usually described as quantum circuits (for an example see Fig. 1.1), a
set of quantum gates applied to the qubits in a specific order. A set of gates, that generates all
possible quantum gates, is called a set of universal quantum gates. I.e., any quantum algorithm
can be executed, if a set of universal quantum gates is physically accessible.
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1.1.1 Error correction

A qubit must couple to some control field to be manipulated. In addition to coupling to the
vacuum, all interaction with its noisy environment introduces loss and dephasing. Unlike classical
computers, a quantum memory can not simply be refreshed by reading it out and overwriting it
again, as it is standard for dynamic random-access memory (DRAM) [Laplante1999]. Due to
the complementarity of quantum measurements, the readout of a qubit can never extract its
full information. To overcome this difficulty, a diversity of so-called quantum error correction
(QEC) codes were developed, e.g. the Shor code [Shor1995]. The basic idea of such QEC codes
is to build a logical qubit out of multiple physical qubits in a clever way, such that parity
measurements on a set of these physical qubits give information about errors, but do not destroy
the quantum information. In other words, the error syndrome measurements are chosen such that
the logical qubit states are eigenstates of the measurement operators, also called stabilizers, and
get projected back into the logical subspace by the error syndrome measurement. Depending on
the complexity of the QEC code, it can handle a different error probability. Both the quality of
the qubit operations, called gate fidelity, and the time of an error correction cycle are critical and
defining for the so-called error correction threshold. This threshold, which states the minimal
requirements on the physical implementation of qubits and gates, depends also strongly on
the type of the QEC code. One class of error correction codes are the topological quantum
codes [Kitaev1996, Bombin2013]. These QEC codes rely only on local interconnectivity, as for
example the surface code which is based on a two-dimensional grid of qubits with nearest neighbor
interaction [Raussendorf2007, Terhal2013]. Together with its relative high error robustness the
surface code is a good candidate to be implemented in a superconducting quantum computer
architecture [Fowler2012].

1.1.2 Multi-Qubit Operations

For any kind of quantum computation and error correction code, the ability to do multi-qubit
operations is crucial. Only when generating a special kind of quantum states, so-called entangled
states, the full capability of quantum computing is unveiled. More formally spoken, every set of
universal quantum gates contains at least one two-qubit gate [Nielsen2000].

Two-Qubit gates

The simplest generators of multi-qubit gates are two-qubit gates, as for example the controlled-
NOT or the controlled-phase gate (see also Fig. 1.1). Controlled gates work like their classical
analogue. A unitary operation on a target qubit is executed only if another qubit, the control
qubit, is in a specific state, usually the excited state. If the control qubit is in a superposition
state, then the controlled gate will entangle the target qubit with the control qubit.

In our research group, we are specialized on superconducting transmon qubits first described
in [Koch2007]. Ref. [Majer2007] proposed how to couple these kind of qubits together via a cavity
bus. Since then, different ways to perform two-qubit gates have been shown, e.g. gates based on
sideband transitions [Wallraff2007, Leek2009], cross-resonance gates [Chow2011, Sheldon2016]
and fast flux gates [DiCarlo2009, DiCarlo2010, Barends2014]. An advantage of all-microwave
gates is, that the qubits always stay at their optimal bias point with minimal dephasing. On the
downside, these gates are in general more than an order of magnitude slower than flux gates.
Regarding QEC, gate fidelity and short gate times are essential to surpass the error correction
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threshold. This is why we chose the latter approach.

|ψ1〉 •
|ψ2〉 Z

Fig. 1.1: Quantum circuit of a C-Phase gate on the initial two-qubit state |ψ1〉 ⊗ |ψ2〉.

1.2 Motivation

In this respect, the goal of this thesis is to work towards high fidelity, scalable two-qubit gates
extending the approach described in [Strauch2003, DiCarlo2009, DiCarlo2010]. As part of the
surface code project with the final goal to run the surface-49 code [Versluis2017, Horsman2012],
we develop gates, that can be applied repeatedly without the need of individual gate calibration,
i.e., that are scalable. For the two-qubit gate we are planning to implement, we need to provide
fast current pulses with an arbitrary waveform generator (AWG) with low noise and minimal
distortion. To reduce the 1/f noise characteristic for AWGs, we use a high-pass filter which
introduces distortions on a timescale two orders of magnitude slower than the gate time. For any
real time quantum operation, as for example a QEC cycle, the gate sequence is not predetermined.
Hence, for the cancellation of the slow distortions caused by the high-pass filter, we rely on real
time inverse filtering. For this purpose, we elaborate a predistortion filter scheme together with
our partner Zurich Instruments which allows for real time filtering of the flux pulses.

3
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Chapter 2

Circuit Quantum Electrodynamics:

Two-qubit flux gates

In this chapter, I briefly elaborate the theoretical background of circuit quantum electrodynamics
(cQED) used in the experiments. I will focus on the transmon qubit dispersively coupled to
a readout resonator and a cavity bus, summarizing the references [Baur2012b, Steffen2013a,
Koch2007, Majer2007].

2.1 cQED basics

In circuit quantum electrodynamics the classical equations of motion can be deduced from
the classical Kirchhoff rules. When writing down these equations in terms of flux and charge
variables, a Hamiltonian can be found describing the system classically. The quantum mechanical
description is obtained by imposing canonical quantization conditions on the flux and charge
variables [Yurke1984, Devoret1997, Devoret2004]. This procedure allows to find the Schroedinger
equations for any superconducting circuit.

2.1.1 The Transmon Qubit

Superconducting circuits composed of inductances and capacitances are all linear and have
harmonic modes as solutions. The essential ingredient to build non-linear, dissipation free,
atom-like structures is the Josephson junction [Devoret2004]. Proposed in 2007 by [Koch2007],
the transmon qubit proved to be very successful. It consists of a superconducting island connected
to a reservoir of Cooper pairs by a capacitively shunted SQUID loop (two parallel Josephson
junctions) behaving like an anharmonic oscillator. The SQUID allows for tunability of the
Josephson energy EJ = Emax

J | cos(πΦ/Φ0)|, where Emax
J is the maximal Josephson energy, Φ is

the external flux through the SQUID loop and Φ0 = h/2e is the superconducting flux quantum
with Planck constant h and Cooper pair charge 2e. The charging energy EC = e2/2CΣ is defined
by the total capacitance CΣ between the superconducting island and reservoir. The transmon’s
recipe for success is the exponential suppression of charge noise for large EJ/EC due to its
flattened charge dispersion relation while sill having sufficient anharmonicity which only decreases
polynomially with growing EJ/EC . The anharmonicity α is defined as α = E12 − E01 ≈ −EC

where Eij is the transition energy from state |i〉 to |j〉. On one hand, the insensitivity to charge
noise allows for long coherence times while on the other hand the finite anharmonicity is necessary
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to selectively address the two energetically lowest eigenstates |0〉 and |1〉, the logical qubit states.
Tuning of the Josephson energy by en external magnetic flux allows for dynamic changes of the
qubit frequency given by [Koch2007]

~ωq = E01 =
√

8Emax
J EC | cos(πΦ/Φ0)| − EC . (2.1)

The maximum frequency is usually called ’sweet spot’, since the qubit parked at this frequency
is first-order insensitive to flux noise and thus has better coherence times. In this two level
approximation, the qubit can be described by the Hamiltonian

Ĥq =
~ωq

2
σ̂z, σ̂z =

(
1 0
0 −1

)
, |0〉 =

(
0
1

)
, |1〉 =

(
1
0

)
, (2.2)

where σ̂z is the Pauli-Z operator.

Applying a coherent microwave field across the Josephson junctions close to resonance with
the qubit, adds a transverse term of the form [Steffen2013a]

Ĥdrive =
∆

2
σ̂z +

Ω(t)

2
(cos(φ)σ̂x + sin(φ)σ̂y) (2.3)

to the Hamiltonian, where φ is the phase of the drive field detuned by ∆ = ωq − ωd w.r.t the
qubit and Ω(t) ∝ E(t) is the Rabi frequency proportional to the drive amplitude E(t). σ̂x and σ̂y

are the Pauli-X and -Y operators, respectively:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
. (2.4)

This allows to apply arbitrary single qubit rotations around any axis lying in the x-y plane by
choosing a resonant drive ∆ = 0 with appropriate phase φ.

2.1.2 Qubit Readout in the Dispersive Regime

Coupling the island of the transmon qubit capacitively to a coplanar waveguide resonator, lets
the qubit interact with the harmonic modes of the resonator in the strong coupling regime.
The quantum mechanical system is described to a good approximation by the generalized
Jaynes-Cummings Hamiltonian [Koch2007]

ĤJC = ~ωrâ
†â+ ~

∑

j

ωj |j〉 〈j|+ ~

∑

i

(
gi,i+1 |i〉 〈i+ 1| â† + h.c.

)
, (2.5)

taking also higher transmon states |j〉 with energy ~ωj into account. The resonator, described by
its annihilation and creation operators â and â† with frequency ωr/2π, couples to the transmon
levels |j〉 and |j + k〉 with coupling strength gj,j+k, where k = ±1. Transitions with k > 1 are
highly suppressed for large EJ/EC [Koch2007].

The dispersive limit is the parameter regime, where the detuning ∆ = ωq − ωr between the
qubit and the resonator is much larger than the coupling energy, i.e., g01/|∆| ≪ 1. Expanding the
Jaynes-Cummings Hamiltonian in this limit and only considering the computational transmon
levels leads to an effective Hamiltonian [Koch2007]

Ĥeff =
~ω′

q

2
σ̂z +

(
~ω′

r + ~χσ̂z
)
â†â, (2.6)

5
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with the dispersive shift χ. Both the qubit and resonator frequencies are renormalized, as is
indicated by the primes. This Hamiltonian can be understood as qubit state dependent resonator
frequency shift, i.e., the resonator shifts by 2χ depending on the qubit state. This effect is used
to measure the qubit state in a quantum non-demolition measurement (QND) by probing the
resonator transmission [Blais2004].

2.1.3 Dispersive Coupling of Two Qubits via Cavity Bus

As emphasized in the introduction, one of the basic blocks for quantum information processing
are two-qubit gates. The required qubit-qubit interaction can be achieved, by coupling the two
qubits dispersively to a common cavity. This resonator allows for coherent exchange of virtual
photons [Blais2004, Blais2007, Majer2007]. The interaction Hamiltonian has the form

Ĥ2q,int = ~J(σ̂+1 σ̂
−
2 + σ̂−1 σ̂

+
2 ), J =

g1g2
2

(
1

∆1
+

1

∆2

)
(2.7)

with the interaction energy J in terms of the qubit-bus resonator coupling gi := g01
(i) and

detuning from the resonator ∆i of qubit i [Blais2007]. The qubit excitation and de-excitation
operators σ̂+ and σ̂− are given by σ̂± = 1

2 (σ̂
x ± iσ̂y). Notably, this ’quantum bus’ mediated

coupling allows for non-local interactions between distant qubits [Majer2007]. When the qubits
are detuned w.r.t to each other with J ≪ |ωq, 1− ωq, 2|, the interaction is effectively turned off
because in this regime the coupling term is non-energy conserving [Blais2007, Baur2012b]. This
allows to turn the interaction dynamically on and off by tuning the individual qubit frequencies.

2.2 Qubit Relaxation and Dephasing

Qubits lose their information due to decay into vacuum and coupling to the noisy environ-
ment. Several physical processes lead to decay of the excited qubit state |1〉 → |0〉, so-called
amplitude damping. This loss occurring at a rate Γ1 leads to a finite qubit relaxation time
T1 = 1/Γ1 [Steffen2013a]. Different decay channels are discussed by Koch et al. in [Koch2007],
such as Purcell enhanced spontaneous emission, dielectric losses, relaxation due to quasiparticle
tunneling and coupling to the flux line. The latter contribution is the one to be considered with
respect to flux gates. Inductive coupling of the SQUID loop and the entire transmon circuit to
the flux line is estimated in reference [Koch2007] to give an upper bound to the energy relaxation
time T1 > 20ms, which is not limiting. On the other hand, capacitive coupling, as discussed by
Baur in [Baur2012b] is more relevant as the lower bound to T1 for this channel calculated with
their transmon parameters is T1 > 50 µs, i.e., as soon as the qubit’s T1 times reach the 50 µs
mark, the capacitive coupling has to be considered.
A second type of information loss of pure quantum nature is the so-called decoherence or dephas-
ing quantifying the loss of relative phase information between the |0〉 and |1〉 states. I.e., when
writing the qubit state in terms of Bloch angles θ and φ, |ψ〉 = cos(θ/2) |0〉 + eiφ sin(θ/2) |1〉,
the pure dephasing time Tφ is the time scale on which the angle φ gets randomized. Since also
amplitude damping leads to a loss of phase information, it is convenient to define the combined
dephasing time

1

T2
=

1

2T1
+

1

Tφ
(2.8)

which is directly accessible in a Ramsey type measurement. Decoherence originates in fluctuations
of the qubit frequency. Different sources of noise causing frequency drifts are discussed by

6
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Koch et al. in [Koch2007], such as charge noise, flux noise, critical current noise, EC noise and
dephasing due to quasiparticle tunneling. Again, a critical contribution is the flux noise which
comes predominantly from room temperature electronics. Typically the noise power spectrum
S(ω) of electronic noise has a 1/f = 2π/ω frequency dependence (see also Appendix A). The
coherence time T2 limited by 1/f flux noise is given by [Koch2007]

T2 ≈
1

A

∣∣∣∣
∂ωq

∂Φ

∣∣∣∣
−1

=
Φ0

A

2

πωmax
q

1√
tan(πΦΦ0

) sin(πΦΦ0
)

S(ω) =
2πA2

ω
, (2.9)

where A is the flux noise amplitude at 1Hz and can be calculated form the noise spectra of the
electronic devices such as voltage sources and AWGs.

2.3 Two-Qubit Controlled-Phase Gate

Two qubits that are dispersively coupled via cavity bus exchange their excitation |01〉 ⇄ |10〉
coherently at a coupling rate J when being on resonance. On the other hand, the interaction is
turned off, if they are far detuned (see section 2.1.3). When tuning the two far off-resonant qubits
gradually into resonance, the non-computational level |20〉 anti-crosses the computational |11〉
state before reaching the anti-crossing between the |01〉 and the |10〉 states due to the negative
anharmonicity of the transmons (see Fig. 2.1). This fact can be used, to design a qubit-qubit
interaction affecting only the |11〉 state resulting in a conditional operation. The resonator
mediated coupling between these two states is even enhanced by a factor of

√
2 with respect to

the coupling J between the excited qubit states |01〉 and |10〉 [Koch2007].

Our approach to turn this interaction into a conditional two-qubit gate is based on the
scheme first proposed in Ref. [Strauch2003] for flux qubits and later adapted for dispersively
coupled transmon qubits [DiCarlo2009, DiCarlo2010]. The two qubits are parked at frequencies

ωpark
a > ωpark

b such that ∆q = ωpark
a − ωpark

b > α, i.e. the qubit frequency separation is larger
then the anharmonicity. This allows to tune the |1a1b〉 state into resonance with the non-
computational |2a0b〉 state without crossing any other levels (see Fig. 2.1). Interaction with
this non-computational state accumulates a conditional phase for the |11〉 state. The resonance
condition for this interaction is ωa(θCZ)− α = ωb. At this point with flux angle θCZ = πΦa/Φ0,
the eigenstates of the Hamiltonian are

|±〉 = 1√
2
(|20〉 ± |11〉) , (2.10)

with frequencies ω± = ω11 ± ζ(θCZ) = ω11 ±
√
2J , where ω11 = ωa + ωb, J is the cavity bus

mediated coupling and ζ(θ) is the bending of the |11〉 branch due to the avoided-crossing (compare
Fig. 2.1).

There exist different schemes to perform gates at this point. In the non-adiabatic scheme,
the initial two-qubit state written as a superposition of the four basis states |00〉 , |01〉 , |10〉 and
|11〉 is pulsed instantaneously to the interaction point θCZ. Only the |11〉 component experiences
the interaction with the non-computational |20〉 state. This part of the wavefunction can be
rewritten as |11〉 = 1/

√
2(|+〉− |−〉) in terms of the eigenfunctions of the interaction Hamiltonian.

It evolves as

|ψ(t)〉 = 1√
2
e−iω+t

(
|+〉 − e−iδt |−〉

)
, (2.11)

7
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where δ = ω− − ω+ = 2ζ(θCZ) = 2
√
2J , i.e., the population oscillates between the |11〉 and the

|20〉 states. After the time τ = 2π/δ = 2π/(2
√
2J), all the population will be back in the initial

state while having collected the conditional phase φc = −iπ and the dynamical phase

φd = −i
(
ω11(θ)− ωpark

a − ωpark
b

)
τ. (2.12)

In the adiabatic scheme, the system is tuned to the interaction point adiabatically with respect to
the |11〉 ↔ |20〉 avoided crossing, such that the non-computational state |20〉 is never populated.
This way, the conditional phase acquired is expressed as φc = −

∫
ζ (θ(t)) dt, allowing for arbitrary

phase gates [DiCarlo2009]. On the downside, adiabatic operation requires longer gate times.
An optimal analytic flux pulse shape for fast adiabatic gates was proposed in [Martinis2014a]
minimizing the gate time of the adiabatic gate.

In both cases, tuning qubit qa to this interaction for a specific time, evolves the simplified
two-level system in general under the unitary transformation [DiCarlo2009]

Û =




1 0 0 0
0 eiφ01 0 0
0 0 eiφ10 0
0 0 0 eiφ11


 (2.13)

where φ10 and φ01 are the dynamically acquired phases of qubits qa and qb, respectively and
φ11 = φ10 + φ01 + φc contains the conditional phase. In a rotating frame rotating at the qubit
Larmor frequency, the dynamical phases can be expressed as φab =

∫
δωab(t)dt with frequency

deviation δωab(t) = ωpark
ab − ωab(t) caused by the flux pulse. Despite pulsing only qubit qa, φ01 is

also non-zero due to finite flux cross-talk. The dynamical phases can be measured an corrected
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Fig. 2.1: (a) Simulated level structure of two coupled transmons qa and qb (ωa = 2π × 5.4GHz, ωb =
2π × 5.0GHz, α = 2π × 200MHz) as a function of the flux angle θ = πΦa/Φ0 of qubit qa.
(b) Zoom-in to the relevant anti-crossing between the computational state |11〉 and the non-
computational state |20〉 with spacing 2

√
2J/2π. The dotted line marks the interaction angle

for a C-Phase gate. ζ quantifies the frequency shift of the lower branch due to the avoided
crossing with the |20〉 level.
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by zero-time virtual-Z gates [McKay2017] leading to the unitary transformation

ÛCZ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 (2.14)

in the computational basis. The two-qubit C-Phase gate (also CZ gate) can be used in combination
with two Hadamard gates H to build a controlled-NOT gate (CNOT):

•
=

•
H Z H

H =
1√
2

(
1 1
1 −1

)
. (2.15)

On-Off Ratio

In a design for a conservative two-qubit gate time t2qb = 90ns with anharmonicity α = 240MHz
for all qubits and coupling resonator detuning ∆a ≈ 2π × 1.9GHz and ∆b = 2π × 1.5GHz for
qubit qa and qb, respectively, the qubit-resonator coupling is calculated to be around ga ≈ 78MHz
and gb ≈ 90MHz. This leads to a residual interaction at the parking positions [DiCarlo2009]

ζpark ≈ −2g2ag
2
b

(
1

∆a∆2
b

+
1

∆2
a∆b

)
≈ 40 kHz. (2.16)

This is already 1% of the designed qubit-qubit coupling J/2π = 4MHz. For faster gate times,
i.e. larger J and thus larger g’s, this trade-off between cross-talk and gate speed gets problematic.
Then the residual interaction can not be neglected anymore and the identity gate gets non-trivial.

2.3.1 Gate Fidelity and Adiabaticity

To surpass the error correction threshold, it is a vital to reach gate fidelities above 99% even for
very robust QEC codes [Versluis2017]. A cause of infidelity of the non-adiabatic C-Phase gate
as described above, is leakage due to imperfect flux pulse shapes into the |20〉, i.e., incomplete
recovery of the population that was transferred into this non-computational state during the
gate. In theory this non-adiabatic gate scheme is modeled with a perfect square pulse, which
is very hard to accomplish, since it contains infinite frequency components. Simulations in
Ref. [Ghosh2013] based on realistic parameters (300MHz anharmonicity qubits) show that it
is possible to get 99.99% fidelity CZ-gates with a simple pulse profile that contains only low
frequency parts. The pulse shape that they use for their calculations is an error function-shaped
pulse, i.e., a square pulse filtered by a Gaussian filter with width σ. For fixed σ this pulse is also
parametrized by only two parameters, pulse height and length, like the square pulse. This work
shows, that it is not required to operate purely non-adiabatic to reach high fidelity gates.
Ref. [Martinis2014a] follows a different approach optimizing the adiabatic gate scheme. During
the longer adiabatic flux pulse, the qubit leaves its sweet spot and is sensitive to 1/f flux noise.
Consequently, in this paper they engineer a pulse shape that minimizes the pulse duration under
the constraint to stay adiabatic. Using optimal windowing theory, they propose a near optimum
solution, expressed as Fourier expansion, whose coefficients can be optimized in situ at the
experiment. This pulse shapes were first implemented in reference [Barends2014] achieving a
CZ gate fidelity of 99.4% in tg = 43ns.
Independent of the choice of the analytic pulse shape, any gate optimization that requires to

9



CHAPTER 2. CQED: 2-QUBIT GATES

measure the gate fidelity is potentially time consuming. Especially for the characterization of
the fast dynamics of the flux pulse, many free parameters are available in form of a FIR filter
(see next chapter) that can be optimized. For this reason, it is preferable to extract all available
information on the pulse distortions in the signal chain and calculate predistortion filters inversely
compensating for distortions.

10
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Chapter 3

Flux Pulse Predistortion

In this chapter, I first give a brief introduction to linear digital filters. Along the way, a procedure
of how to obtain optimal predistortion filters is developed. These filters compensate in advance
for distortions which the flux pulse suffers from due to imperfect signal generation and frequency
dependent attenuation in the signal chain. Due to the linearity of the filters, they can be applied
independent of the optimal analytic flux pulse shape. I.e., they can be applied for both the
non-adiabatic pulse scheme proposed in Ref. [Strauch2003, Ghosh2013] and the fast adiabatic
gate in Ref. [Martinis2014a]. They correct for signal distortions specific to the setup which
can be characterized to some degree by measuring the transfer function of the signal chain.
Complementary, the optimization of a few free parameters describing the analytic form of the
pulse is done separately by measuring the gate fidelity directly on the sample [Kelly2014].

In particular, we aim to implement infinite impulse response (IIR) filters better suited to
correct for effects on a slow timescale. These filter fit our needs very well, since they can be imple-
mented as real time filters on the signal generator and offer a means of compensation for high-pass
filters. In particular, when using a bias-T in the signal chain that reduces electronic 1/f noise
from the arbitrary waveform generator (AWG), the transient response of a flux pulse shows
exponentially decaying tails on the order of a few microseconds [Johnson2011PhD, Kelly2014].
This is much longer than the gate time tg ≈ 100 ns itself and has influences on consequent flux
gates (gate bleed-through). Thus, for a scalable C-Phase gate it is essential to have precise
control of the magnetic flux especially after the gate. In this regard, we show that the signal
distortions caused by a bias-T can be efficiently inverted with an IIR filter.

Finally, the filter extraction procedure is shown at a data set measured on the warm setup.
This proves the capability to inversely compensate distortions on different time scales.

3.1 Estimated Precision Requirement

During a C-Phase gate a flux pulse with pulse length tg is applied to the control qubit. If the
flux pulse has not yet decayed fully before applying a subsequent gate, the qubit acquires an
additional phase ∆φ = ∆ωqtg = 2π∆ftg due to residual detuning ∆f caused by the previous
flux pulse. Expressing ∆φ in terms of the residual flux pulse offset voltage ∆V leads to

∆φ

2π
=
∂f

∂Φ

∂Φ

∂V
∆V tg. (3.1)
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With the experimental value for ∂V/∂Φ ≈ 5V/Φ0, a gate time tg = 100 ns and the maximum
qubit frequency fmax = 6GHz we get

∆φ/2π ≈ 102∆V/1V. (3.2)

Hence, for maximum phase error of 1%, the voltage needs to be precisely controlled on the
∆V = 0.1mV level. For the AWG this requires a precision of ∆V/Vpp ≈ 2× 10−5 and thus
at least 16-bit waveform resolution. In addition, our filters must also be able to compensate
distortions on the same order.

3.2 Inverse Filtering: An Excursion to Digital Signal Processing

Inverse filtering is a problem, often encountered in signal processing, as for example in image
restoration [Katsaggelos2012] and sound engineering [Havelock2008] where is also called pulse
preconditioning by predistortion filters. Here I introduce the signal processing background used
to calculate an inverse filter.

3.2.1 Impulse Response

For a linear time-invariant system (LTI system) the impulse response h(t) encodes all information
to model the response y(t) to an arbitrary input signal x(t). The impulse response is the system
response to a Dirac delta impulse δ(t). Due to linearity, the response to an arbitrary input signal
x(t) is uniquely determined by convolution with the impulse response function

x(t) = δ(t) ∗ x(t) → y(t) = h(t) ∗ x(t), (3.3)

where ∗ denotes convolution: (x1 ∗ x2)(t) :=
∫∞
−∞ x1(τ)x2(t − τ) dτ . This can be seen by

decomposing x(t) into an infinite sum of delta impulses x(t) = δ(t) ∗ x(t). Convolution in the
time domain corresponds to multiplication in Fourier space:

ŷ(f) = ĥ(f) x̂(f), (3.4)

where x̂(f) = F [x(t)](f) =
∫∞
−∞ x(t)e−i2πft dt denotes the Fourier transform from time domain

with time variable t to frequency domain in frequency variable f . In other words, an LTI system
with impulse response h(t) acts as linear filter with frequency response ĥ(f), also called transfer
function.

x(t) y(t)h(t)

Fig. 3.1: The system response of a LTI system is determined by the impulse response.

Measuring the Impulse Response

In general it is no trivial task to measure the impulse response since it is not possible to generate
a ideal Dirac delta impulse which would contain an infinite amount of energy to probe the system
at all frequencies. Different methods exist to approximate the impulse response, such as sweeping
a sine signal, applying white noise or an MLS signal (maximum length sequence, pseudo-random
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noise) etc. [Havelock2008, Stan2002]. A simple, almost direct method is the measurement of a
step response yu(t) = h(t) ∗ u(t) where u(t) denotes the unit step function. According to

d

dt
yu(t) =

d

dt
(h ∗ u)(t) =

∫ ∞

−∞
h(τ)

d

dt
u(t− τ) dt = h(t) ∗ δ(t) = h(t) (3.5)

the impulse response is obtained by derivation of the step response as, e.g., also used in
Ref. [Johnson2011PhD]. In contrast to an impulse function, a step function is in general better
reproduced on an AWG as it has finite bandwidth (the power spectral density of a step function
falls off like |û(f)| ∝ 1/f). Hence the AWG can reproduce it better than an ideal delta pulse
with flat frequency response which would require to put a high amount of energy in the very
short pulse. In the context of our application, however, it is not simply possible, to measure the
step response of the whole signal chain including the connector to the sample and the frequency
response of the sample itself. With an fast oscilloscope, we are only able to measure the cabling
down to the sample connector on the warm setup. In a later approach, we also measure the
response directly on the qubit in the cold setup as described in section 4.4.

3.2.2 FIR filters

Digital finite impulse response (FIR) filters are linear, non-recursive filters. I.e., they act on a
time-discrete sequence using only current and past input samples [Lyons1996]. An FIR filter
with the N filter coefficients h[n], n = 0, 1, ..., N − 1 acts on the digital data set x[n] such that
the output sequence is y[n] = h[n] ∗ x[n], where the ∗ hereby indicates discrete convolution.

y[n] = h[n] ∗ x[n] =
N−1∑

k=0

h[k]x[n− k]. (3.6)

Often the data set x[n] = x(nTs) is sampled from a continuous time signal x(t) with sampling
frequency fs = 1/Ts as in the case where x[n] is the trace of an oscilloscope with sampling rate
fs. The impulse response of an FIR filter corresponds to the filter coefficients h[n], hence the
name finite impulse response filter as the number of filter coefficients N , also called filter taps,
is finite. Commonly used filters like moving average filters, Gaussian filters, etc. are usually
realized as FIR filters [Lyons1996, Smith1997]. In Fig. 3.2 a simple example of the application of
an FIR filter (5-tap moving average) to a step function x[n] is depicted. The effect of the FIR
filter vanishes after at most N samples, i.e., after the time NTs (compare Fig. 3.2 (b)), again
indicating the finiteness of FIR filters.

As we want to use our filters for the preconditioning of pulses played on demand in real
time, it is important to keep the numbers of filter taps on a reasonable small order, such
that NTs ∼ Tp, where Tp is the pulse length. Thus we can apply the FIR filter offline and
replay predistorted patterns with the waveform generator. Applying FIR filters on the fly
is computationally demanding since it involves many multiplications and introduces a long
delay ∼ NTs [Lyons1996].
For distortions on a much longer time scale, e.g., on the order of the repetition period of
subsequent pulses Tr like the high-pass effect of a bias-T, FIR filters are not suitable for real
time assembled waveforms. However, we still need to apply filters compensating for these effects.
This can be done using another class of filters, so-called IIR filters (discussed below in section
3.2.4). These filters are much better suited for real time filtering of slow distortions with an
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Fig. 3.2: Example of an FIR 5-tap filter (moving average, h[n] = 0.2, n = 1, ..., 5). (a) input signal x[n].
(b) filtered sequence y[n] = h[n] ∗ x[n].

analytic description. In combination with IIR filters the required number FIR filter taps can be
kept small, such that the FIR filter can be applied offline correcting fast ripples and only the IIR
filters are implemented in real time compensating for slow decaying distortions.

3.2.3 Inversion of FIR Filters

For the pulse pre-conditioning, or pulse shaping, we want to invert the effect of the system
transfer function, i.e., the impulse response. This is no trivial task, since the impulse response
function h(t) for physical systems typically acts as a low-pass filter. Hence, an inverse impulse
response filter hinv(t) defined by h(t)∗hinv(t) = δ(t) is a high-pass filter. This can be seen directly
in the Fourier domain, where

ĥ(f)ĥinv(f) = δ̂(f) = 1 =⇒ ĥinv(f) =
1

ĥ(f)
. (3.7)

This is problematic because the inversion of the filter kernel dramatically amplifies high fre-
quency noise present in the measured impulse response. For f ≫ fc, where fc specifies the
cutoff frequency of the transfer function ĥ(f), typically ĥ(f) ≪ 1 such that for noisy data
ĥinv(f) = 1/(ĥ(f) + n̂(f)) is dominated by the noise n(t) for high frequencies.

L2 Total Variance Regularization

Amplified high frequency noise is a problem generally present in deconvolution of measurement
data. To overcome this issue, mainly in the realm of image processing, various deconvolu-
tion algorithms were developed, e.g. Wiener deconvolution [Dhawan1985], Richardson-Lucy
deconvolution [Lucy1974, Richardson1972] and the nonlinear total variation based noise removal
algorithm in [Rudin1992]. From a mathematical viewpoint, deconvolution of noisy data is an
ill-posed problem:

y = h ∗ x+ n ⇐⇒ y = Hx+ n, (3.8)

where x is the unknown variable and the measured signal y effected by the noise n. In our
case, the convolution kernel is also a measured quantity suffering from noise. Alternatively, the
convolution can also be written as vector matrix multiplication with the convolution matrix H
and the signals written as column vectors x, y and n. As described above, straight forward
inversion of H results in very bad approximations for the deconvolved signal x, since the matrix
H has very small eigenvalues amplifying the noise n dramatically when being inverted. To solve

14



CHAPTER 3. FLUX PULSE PREDISTORTION

such ill-posed problems, typically a regularization method is applied (e.g. Tikhonov regularization
[Tikhonov1963]):

x̃ = argmin
x

{‖Hx− y‖22 + αR(x)}, (3.9)

where R(x) is called regularizer and ‖x‖22 denotes the L2 norm. The regularizer R(x) introduces a
penalty on solutions with large R(x), i.e., it gives preference to solutions with desirable properties
defined through R(x)1. The parameter α defines the weight of the regularization term. We use a
total variation method, adapted from the total variation deconvolution described in [Rudin1992]
with the L2 total variation regularizer R(x) = ‖Dx‖22 =

∑N−1
n=1 (xn − xn−1)

2. D can be written
as N − 1×N matrix:

Dx =




1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . .
...

0 · · · 1 −1







x0
x1
...

xN−1


 =




x0 − x1
x1 − x2

...
xN−1 − xN−2


 . (3.10)

With the L2 norm, the solution can be calculated very efficiently with a linear least squares
solver when rewriting the problem as

x̃ = argmin
x

{‖Hx− y‖22 + αR(x)} (3.11)

= argmin
x

{‖Hx− y‖22 + α‖Dx‖22} (3.12)

= argmin
x

{∥∥∥∥
(
Hx− y√
αDx

)∥∥∥∥
2

2

}
(3.13)

= argmin
x

{‖(H,
√
αD)Tx− (y, 0)T ‖22}. (3.14)

The total variation regularizer R(x) introduces a penalty on abrupt variations in x, hence it
reduces noise in x. The larger the chosen regularization parameter α, the smoother is the
solution x.

Applied to the problem of calculating the inverse FIR filter, we define xn = x(nTs) of length
N to be the input sequence to the AWG, and yk = y(kTosc) with length M to be the signal
measured on an oscilloscope with sampling rate fosc = 1/Tosc. Further, let H = HimpHres be
the impulse response matrix. Himp is a M ×M matrix performing the convolution with the
measured impulse response and Hres is a N ×M resampling matrix, resampling from the AWG
sampling rate to the oscilloscope sampling rate. Solving the regularized matrix equation Eq. 3.14
for x with yδ = (0, 0, ..., 0, 1, 0, ..., 0) with a linear least squares solver, yields the inverted impulse
response

hinv = argmin
x

{‖(HimpHres,
√
αD)Tx− (yδ, 0)

T ‖22}. (3.15)

This solution hinv corresponds directly to the wanted inverse FIR filter.

3.2.4 IIR filters

Infinite impulse response filters are another class of linear digital filters that can have, as the
name states, infinite response to an impulse. IIR filters can be seen as FIR filters with additional

1For the Tikhonov regularization, often R(x) = ‖x‖22 is chosen, leading to solutions x̃ with a small norm.
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feedback coefficients. Formally, the n-th output of an input sequence x[i] is calculated as

y[n] =

N∑

i=0

b[i]x[n− i] +

M∑

i=1

a[i]y[n− i] (3.16)

where N is the feedforward filter order, b[i] the feedforward filter coefficients (FIR part) and
M is the feedback filter order with the feedback filter coefficients a[i] (purely IIR part). In
Fig. 3.3 an example of a simple first-order IIR filter applied to a step function (a) is shown.
Despite the filter having only two coefficients (a[1] = 0.6, b[0] = 0.4), its effect lasts very long
(limited only due to finite resolution of the numbers y[n]). This class of filters is well suited
to model an analog filter, as shown in the following sections. Especially, the slowly decaying
exponential distortions, caused by high-pass filters as for example the bias-T, reflections and the
skin effect [Barends2014, Kelly2014] can be corrected with IIR filters, which makes them even
more interesting for our purpose. In the following, I will go through some mathematical tools to
characterize IIR filters.

z-Transform

In electronics the Laplace transform is an important tool to investigate the spectral properties of
continuous signals and solve differential equations:

H(s) = L[h(t)](s) :=
∫ ∞

0
h(t)e−st dt, s ∈ C. (3.17)

This is very similar to the Fourier transform, however expanding the class of functions that can
be transformed. Its time discrete version is the z-Transform. It is defined as

H(z) = Z[h(n)](z) =
∞∑

n=−∞

h[n]z−n (3.18)

where z ∈ C is a complex variable. In the z-domain we can express the discrete time transfer
function H(z) of an IIR filter by

H(z) =
Y (z)

X(z)
=

∑N
n=0 b[n]z

−n

1−
∑M

n=1 a[n]z
−n

(3.19)

(derivation e.g in [Lyons1996]). In the special case z = eiω, ω ∈ R, the transfer function corre-
sponds to the discrete time Fourier transform of the impulse response. I.e., the unit circle in the
complex z-plane corresponds to the the frequency response of the IIR filter |H(ω)| = |H(z = eiω)|.
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Fig. 3.3: Example of a first-order IIR filter with filter coefficients a[1] = 0.6, b[0] = 0.4.
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IIR Filter Design: Bilinear Transform

There exist different design techniques for IIR filters adapted for various applications (e.g. impulse
invariance methods described in [Lyons1996]). A straightforward method to get a discrete filter
approximating a continuous Laplace transfer function HL(s) is the bilinear transform [Lyons1996].
Substituting s in HL(s) for

s 7→ s(z)
2

Ts

(
1− z−1

1 + z−1

)
(3.20)

yields the transfer function in the z-domain H(z) = HL(s(z)). The bilinear transform suffers of
so-called frequency warping, i.e., non-linear frequency shifts of features in the spectrum close to
the Nyquist frequency (half the sampling frequency) [Lyons1996]. However, as we only want to
correct for slow distortions, this will not affect us.

Stability

A critical characteristic of IIR filters is their stability. A filter is called stable, if its response to
any finite signal stays finite, too. When analyzing IIR filters in the z-domain, the stability of the
filter can immediately be inferred by rewriting the transfer function H(z) in Eq. 3.19 as

H(z) =
(z − z0)(z − z1)...(z − zN )

(z − p0)(z − p1)...(z − pM )
(3.21)

=
∑

k

Ak

z − pk
, (3.22)

where zk are the zeros and pk the poles of H(z). If all the poles lie inside the unit circle, the filter is
stable (poles outside the unit circle have an exponentially growing impulse response) [Lyons1996].
Hence, the inverse of an IIR filter Hinv(z) = 1/H(z) is stable, if all zeros of H(z) are inside the
unit circle (|zk| < 1). This is not necessarily guaranteed and has to be taken care of.
The form 3.22 is obtained by partial fraction expansion showing that any IIR filter can by
expressed as a sum of single-pole filters with individual gain Ak.

IIR Fitting

For any analog RLC 4-port circuit the complex transmission Vout(s)/Vin(s) in the Laplace domain
can be written down straightforwardly using Kirchhoff’s current and voltage law and the complex
impedances of a resistor, an inductance and a capacitor being ZR = R, ZL = sL and ZC = 1/sC,
respectively. A digital approximation in form of an IIR filter is obtained by performing the
bilinear transform. Any transfer function of the form 3.19 can be rewritten as a sum of first order
or so-called single-pole filters (see Eq. 3.22) [Lyons1996]. Such a single-pole filter corresponds to
a pole in the complex transfer function representing a capacitive or inductive element. Pure RC
and RL poles are on the real axis. In the time domain, the step response of one of these poles
have the general exponential form

f(t) = (A+Be−t/τ )u(t), (3.23)

that can be fitted to measurement data (u(t) is the Heaviside function). This fitting model is
well suited in a sense, that its corresponding IIR filter is invertible. The Laplace transform of
this step response function is

F (s) =
A

s
+

Bτ

1 + sτ
. (3.24)
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The impulse response h(t) = d
dtf(t) is easily obtained in the Laplace domain by

H(s) = L[h(t)](s) = L
[
d

dt
f(t)

]
(s) = sF (s) = s

(
A

s
+

Bτ

1 + sτ

)
. (3.25)

Inverting this impulse response function, we get

Hinv(s) =
1

H(s)
=

1 + sτ

A+ sτ(A+B)
. (3.26)

By bilinear transform the coefficients of the IIR filter correcting for the effect described by
Eq. 3.23 can be extracted. This IIR filter is a first-order filter with three coefficients a1, b0 and b1
with the transfer function

Hmodel(z) =
b0 + b1z

−1

1− a1z−1
. (3.27)

Expressed with the parameters from model 3.23, the filter coefficients are given by a1 =
(Aτ +2Bτ −ATs)/λ, b0 = (2τ + Ts)/λ and b1 = (−2τ + Ts)/λ, where λ = 2Aτ +2Bτ +ATs and
Ts is the sampling period. This result implies, that the behavior of simple RC and LC circuits
can be modeled and inverted by a first order IIR filter. Multiple poles can be separated well, if
their characteristic decay times τ are different, then the exponentials can be fitted independently
to extract the corresponding inverse IIR filter coefficients.

3.3 Digitally Inverting a Bias-T

A bias-T is a commercially available microwave component for combining a low frequency signal
applied to the DC port with a high frequency signal on the RF port (for the port assignment
see the circuit diagram in Fig. 3.4). Signals applied to the DC port, usually a bias voltage, are
low pass filtered whereas the RF port acts as RC high-pass filter, allowing only high frequency
signals to pass. We use a bias-T in our setup to set the flux bias voltage for our transmon qubits
and use the RF port to apply fast flux pulses generated on an AWG. In addition, the high-pass
properties of the RF input port filters the low frequency part of the electronic 1/f noise from
the AWG. This has direct influence on the dephasing time of the qubits (see section 2.2).

Rload

VRF

L C

Vbias

RF

DC OUT

Bias-T

Vout

Fig. 3.4: Simplified circuit of a bias-T. The RF port is capacitively coupled to the OUT port. The DC
port is used to feed-in a bias voltage. Rload represents the flux line in our setup with 50Ω
impedance, Vbias stands for the DC voltage source and VRF for the voltage from the AWG.
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3.3.1 First Order High-Pass Filter: A Simplified Bias-T

A filter is characterized by its frequency response. While a low-pass filter lets DC and oscillating
signals up to a characteristic cutoff frequency fc pass, an ideal high-pass filter blocks those
components and only lets signals with frequency higher than fc pass (sometimes also called
sinc or brick-wall filter). In practice the frequency response of filters are never rectangular
shaped but rather smooth curves and usually the 3dB point is stated as the cutoff frequency (see
Fig. 3.5 for the example of a realistic high-pass filter). When neglecting the DC port of a bias-T,
i.e., assuming infinite internal impedance of the DC voltage source, the capacitance together
with the load act as analog RC first-order high-pass filter on signals applied to the RF input
port. Its transfer function is plotted in Fig. 3.5 assuming realistic parameters. The effect of such
a simplified bias-T on a pulse train is depicted in Fig. 3.6. The transfer function of this filter,
sometimes also referred to as DC-block, is

H(s) =
Vout(s)

Vin(s)
=
Vout(s)

VRF (s)
=

sRloadC

1 + sRloadC
(3.28)

in the Laplace domain, where VRF is the input voltage and Vout is the output voltage (voltage
seen by the load). For such a filter the cutoff frequency fc is given by fc = 1/(2πτRC), where
τRC = RloadC is the time scale of charging the capacitor. The impulse response of this filter is
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0.050

0.100

0.500

1

f [MHz]

|H
[f
]|

Fig. 3.5: Frequency response of a RC high-pass filter with R = Rload = 50Ω, C = 2nF. The red dotted
line marks the filters cutoff frequency fc = 1.59MHz.

the inverse Laplace transform of H(s):

h(t) = L[H(s)](t) = δ(t)− 1

τRC
e−t/τRCu(t), (3.29)

where δ(t) is the Dirac delta function and u(t) is the unit step function (Heaviside function).
For LTI systems, we get the system response to an arbitrary pulse by convolving with the
impulse response. E.g., for a rectangular pulse train the transient response looks as as depicted
in Fig. 3.6 (b). To invert the effect of this simplified bias-T, the transfer function H(s) in Eq. 3.28
is rewritten into the form 3.25 with parameters A = 0, B = 1 and τ = RloadC. I.e., our IIR
inversion model is directly applicable to this bias-T simplification and the predistortion IIR filter
coefficients can calculated according to Eq. 3.27. The effect of the inverse IIR filter and the
system response to the pre-conditioned pulse pattern are shown in Fig. 3.7.
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Fig. 3.6: (a) A pulse train consisting of three consecutive 50 ns square pulses. (b) Simulated system
response of the high-pass filter to the pulse train.
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Fig. 3.7: (a) Predistorted pulse train with the inverse IIR filter. (b) Simulated system response to the
inverse filtered pulse train.

3.3.2 The Out-Of-Range Problem

The capacitor in the bias-T charges when a flux pulse is applied, and would immediately start
to discharge as soon as the rectangular flux pulse has finished, inducing a opposite current
through the flux line (compare also Fig. 3.6(b)). As we want to omit this effect, the charge on
the capacitor needs to be held by an constant voltage offset. This corresponds to the offset after
the shaped pulse train in Fig. 3.7 (a), which plots the AWG output voltage to be applied when
correcting for the bias-T distortion. Obviously, after a few pulses, the AWG output range will be
exceeded. More quantitatively, the additive offset after a pulse is Voffset = VpulseTpulse/τ , where
Vpulse is the amplitude and Tpulse the length of the flux pulse. I.e., for a pulse amplitude of half
of the maximal output voltage of the AWG, the maximal total length of all flux pulses without
discharging the capacitor of the bias-T is 2τ . Connecting the RF and OUT port of the bias-T
with a high-impedance resistor for a slow discharge changes the behavior of the high-pass filter
such that it does not attenuate the low-frequency noise sufficiently anymore (see Appendix B.2).
A possible solution to this issue could be weak interleaved compensation pulses. Whenever the
qubit is idle, it could be pulsed with small opposite pulse amplitude to slowly discharge the
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capacitor and bring back the offset voltage to zero. In the context of the surface code, where
the flux pulses are applied in a regular pattern, the DC bias could also be shifted such that one
needs to apply a constant offset with the AWG chosen to exactly compensate the charge on the
capacitor accumulated during the pulse scheme Vcomp = VpulseTtot/Tcycle where Ttot is the total
pulse time during one cycle and Tcycle is the period of a error correction cycle.

3.4 Inverse Filter Calibration Procedure

In this section, I describe the procedure how the IIR and FIR filter coefficients on the warm
setup are determined. I aim for a work flow, that allows to extract the filter coefficients from a
single flux line measurement. Hereby, the characterization of the signal line is done with a long
square pulse that approximates a step function. I use a square pulse with pulse length Tp = 4 µs
generated on an Zurich Instruments UHF-LI (sampling rate fS = 1.8GHz). This pulse length
is chosen as trade-off between long pulse duration to capture all dynamics and short pulse length
for high repetition rate to do averaging on the oscilloscope. The transient response is measured
for testing purpose directly after the AWG on an LeCroy SDA 13000 oscilloscope with 10GS/s
and 1GHz bandwidth in the 100mV/div setting (connected to the AWG with a BNC cable),
see measurement trace in Fig. 3.8 (a).

Remark regarding the scope: The oscilloscope has limited vertical accuracy (in the data
sheet specified is a DC gain accuracy of ±1.5% of the full scale, no AC gain accuracy given).
In general, oscilloscopes with such a wide bandwidth are typically build to be used for testing
telecommunication hardware, where AC accuracy is not critical. Consequently, we do not fully
trust the measurement with this device. However, we still use it to extract our predistortion
filters on the warm setup, since we do not have any other device to measure such fast transient
signals from DC to approximately 1GHz. With our original goal in mind to compensate for the
effects of the whole signal chain, we aim to remeasure the step response later directly on the
qubits allowing for another iteration of filter extraction.

3.4.1 Iterative IIR Fitting

To find the IIR filter coefficients according to a fit of the model described in section 3.2.4
f(t) = (A+Be−t/τ )u(t), we start fitting this function for large τ ∼ 1 µs to the tail of the step
response (compare figures 3.8 and 3.9). When having extracted the three IIR filter coefficients
(a1, b0, b1) from the fitting parameters A,B, τ , the measured data is numerically corrected by
applying the corresponding inverse IIR filter to the measured data. This digital filtering modifies
the time trace significantly and is justified under the assumption that the system behaves linear
in good approximation.

Alternatively, the filter could be applied to the square pulse and a new measurement could
be taken. However, this would be very time consuming, as the measurements are not automated
so it is favorable to extract all needed filters from one physical measurement.

The fitting routine with subsequent numerical application of the inverse filter is repeated
several times, each time decreasing the characteristic decay time τ of the IIR filter. The crucial
point is the selection of the data range and starting values for the individual fits, such that they
converge towards reasonable parameter values (see Fig. 3.8 (b) where the ranges for the first
four fits are indicated). This iterative IIR filter fitting procedure returns a set of around ten IIR
first-order filters. For the data set used for the example plots below, in total 13 IIR filters were
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extracted. The first four fits and their corresponding fitted parameters and IIR filter coefficients
are shown in Fig. 3.9, table 3.1 and 3.2, respectively. The full tables including all 13 fits are
shown in appendix C.
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Fig. 3.8: (a) Step response: measurement of a 4 µs square pulse. (b) Zoom to the top of the pulse with
indicated fitting ranges of the first four fits (compare also Fig. 3.9 fits #1 to #4).

Fit # A[mV] B[mV] τ [ns]

1 375.885 −3.832 34 3557.55
2 375.880 −2.432 06 484.388
3 375.878 −2.951 19 103.034
4 375.878 3.047 91 38.756

Table 3.1: Table of the fitting parameters for first four fits with longest decay times (see also Fig. 3.9).

The very slow response corresponding to the first fit is suspected to be a feature of the
oscilloscope since it depends on the settings of the scope. However, as already mentioned above,
we are able to measure the step response directly on the qubits with limited temporal resolution
up to approximately 10 ns. I.e., we are able to characterize especially such slow features at
the cold setup including the whole signal chain what allows us to recalculate the filters (see
section 4.4).

Fit # a1 b0 b1

1 0.999 845 0.994 542 −0.994 387
2 0.998 861 0.993 596 −0.992 457
3 0.994 664 0.992 231 −0.986 895
4 0.985 652 1.008 12 −0.993 768

Table 3.2: Table of the IIR first-order filter tabs extracted from the first four fits.

22



CHAPTER 3. FLUX PULSE PREDISTORTION

2.8 3.0 3.2 3.4 3.6

377.2

377.3

377.4

377.5

377.6

t[μs]

am
p
l.
[m
V
]

fit #1

1.0 1.5 2.0 2.5 3.0 3.5

375.9

376.0

376.1

376.2

376.3

t[μs]

am
p
l.
[m
V
]

fit #2

0.5 1.0 1.5 2.0 2.5 3.0 3.5

375.8

375.9

376.0

376.1

376.2

376.3

376.4

t[μs]

am
p
l.
[m
V
]

fit #3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

375.2

375.4

375.6

375.8

t[μs]
am
p
l.
[m
V
]

fit #4

Fig. 3.9: Plots of the first four IIR fits.

3.4.2 FIR fitting

The numerically IIR corrected data is taken to calculate FIR filter coefficients to correct for
imperfections on a short timescale (. 50 ns). Hereby, a segment of the data around the step,
including fast ripples and overshoots, is taken to calculate the impulse response numerically by
discrete differences (see Fig. 3.10). It is very important, that the IIR filters are sufficiently good,
such that the impulse response decays back to zero very fast (inside the chosen segment) and
only a small number of FIR taps is needed. From this numerically determined impulse response
the FIR filter coefficients are calculated according to the procedure described in section 3.2.3.
Good results are obtained for a regularization parameter α = 1.0. Finally the leading and tailing
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Fig. 3.10: (a) IIR corrected data taken for FIR extraction (512 data points). (b) Impulse response (of
IIR corrected data) calculated by numerical differentiation of a step response (data in (a)).
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zeros in the FIR filter kernel are dropped, yielding a 164-tap FIR filter in this example (see
Fig. 3.11 (a)) with the power spectral density plotted in Fig. 3.11 (b). At the sampling rate of
1.8GS/s this FIR filter length corresponds to 91 ns. Due to the regularization the FIR filter
kernel is low-pass filtered. I want to emphasize, that it is essential to get good IIR filters first
and correct the data to get an FIR filter with a reasonable number of FIR tabs.
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Fig. 3.11: (a) FIR filter coefficients for regularization parameter α = 1. (b) Power spectral density of
the FIR filter coefficients.

Results for different regularization parameters α are plotted in the appendix (see Fig. C.4).
These plots also visualize the low-pass filtering effect of the total variation regularization depending
on α. After having applied all the corrections, a predistorted pulse was remeasured. For optimal
results one more IIR fit was performed (see Fig. 3.12) and added to the list of IIR filters, yielding
a total of 14 IIR filters.
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Fig. 3.12: Additional 14th IIR fit for optimal pulse shape (τ = 15.44 ns, filter coefficients a1 = 0.964 508,
b0 = 1.004 44 and b1 = −0.968 951).
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3.5 Pulse Shaping

Having extracted all the IIR filters and the FIR filter kernel, an arbitrary pulse can be predistorted
with these linear filters. Up to now, this is done offline on a computer. See Fig. 3.13 for the
example of shaping an 50 ns Gaussian smoothed square pulse.
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Fig. 3.13: (a) Intended pulse shape (50 ns square pulse smoothed with a σ = 1ns Gaussian filter kernel)
with rise time tr ≈ 2.6 ns (10-to-90 rise time). (b) Pulse pattern predistorted with inverse IIR
and FIR filters.

3.5.1 Demo Results

To test the performance of the predistortion filters, we compiled a square pulse pattern with
50 ns pulse width filtered with a Gaussian filter kernel of width σ = 1ns corresponding to a
10-to-90 rise time tr = 2.56 ns (see also Fig. 3.13). For this pulse, measurements were done with
and without predistortion filters and plotted in Fig. 3.14 together with the intended Gaussian
smoothed square pulse in orange (pulse profile fitted). The shaped pulse reproduces a Gaussian
smoothed pulse much better. Outside the region around the rising and falling edge (ca. 5 ns
window), the maximal deviation is below 0.5mV which is roughly 0.1% of the pulse height. The
relative large deviation at the pulse edges comes due to non-Gaussian filtering effects of the FIR
predistortion filter, that changes the shape of rising and falling edge slightly. In contrary to the
unshaped pulse, the shaped one does not suffer of over- and undershoots, nor of wiggles on top
of the pulse (see Fig. 3.14 (b)).

It is tempting to reduce the regularization parameter α for better correction of fast oscillations
and reduced non-Gaussian filtering due to the finite bandwidth of the FIR filter. However, this
increases the amplitude of fast oscillations in the FIR filter which can not be reproduced well on
the AWG and could possibly lead to non-linear behavior. I.e., to our knowledge, we reached the
boarder of what is possible to correct with the limited bandwidth and resolution of the AWG.
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Fig. 3.14: Comparison of unshaped and shaped pulse. Upper plots: (a) Measurement of an unshaped
50 ns square pulse (1 ns Gaussian filtered) in orange; intended Gaussian smoothed square
pulse in blue (parameters fitted). (b) Measurement of the same pulse with prior applied
predistortion filters (shaped pulse); measured data (orange) and Gaussian smoothed square
pulse (parameters fitted) in blue overlay almost perfectly. The insets are zooms to the top
of the pulse edge. Lower plots (c) and (d): corresponding deviation of the measured pulse
shape (orange line in upper plot) from the optimal pulse shape (blue line in upper plot). The
predistorted pulse approximates the intended pulse shape much better as seen in (d).

3.6 Conclusions

In this chapter, we developed a procedure to extract both inverse FIR and IIR filters from a
step response measurement. The regularization scheme used to invert the FIR filter proves to be
robust against noise on the measured data and improves previously used methods [Bozyigit2010b,
Baur2012b, Johnson2011PhD]. The IIR filters, well suited to be applied in real time on an AWG
successfully correct distortions on a slow timescale. We demonstrated that we can produce very
flat square pulses (within 0.1% of the pulse amplitude after less than 5 ns) using our predistortion
filters. Additionally, we showed how to calculate an IIR filter, that corrects for the distortions
caused by a bias-T and cleared the way to use it in our setup to suppress 1/f noise increasing
the coherence times of the qubits.
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Chapter 4

Experimental Part

After having prepared theoretical background and developed a procedure to efficiently calculate
inverse filters, in this chapter, we finally get our hands on the experiment working towards a
high-fidelity two-qubit gate.

4.1 Measurement Setup

Our current sample M85BM2 consists of eight qubits arranged in a linear chain, meaning that the
connectivity of the eight qubits is a 1D chain with coupling resonators between nearest neighbors
(brown lines in Fig. 4.2). The designed maximum frequencies are chosen, such that all the qubits
can be parked with 400MHz distance to their neighbors (see qubit parking scheme in Fig. 4.1).
Our samples are fabricated on 500 µm thick sapphire wafers coated with a 150 nm Niobium film
on top. In a first step the resonator, gate line and flux line structures are written onto the chip
in a photolithograpic process. Then, in a second step, the Josephson junctions are fabricated
out of aluminum and aluminum oxide by electron-beam lithography. The qubits are designed
with a cross-shaped charge island, also called Xmon [Barends2013], which allows for coupling
to two bus resonators in addition to the readout resonator and the drive line (see also Fig. 4.2).
Our experiments are conducted at the base temperature of a BlueFors dilution refrigerator
at 12mK. This has mainly two reasons. In the first place, only below 1.2K aluminum gets
superconductively and, secondly, the thermal energy needs to be much lower than the energy scale

f [GHz]

Qubit
1 2 3 4 5 6 7 8

6.4

5.2

5.6

6.0

Fig. 4.1: Scheme of the parking frequencies planned for the 8-qubit sample. The red arrows indicate
the qubits to be used for the C-Phase gates. Qubits 3, 7 and 8 are designed to have maximum
frequency 5.6GHz, all others 6.4GHz.
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Fig. 4.2: False color micrograph of our eight qubit sample M85BM2. The eight Xmon qubits are colored
in red. In yellow is the readout line, with all eight qubits coupled to (via readout resonators in
blue and and Purcell filter in green). Neighboring qubits are coupled through a bus resonator
(brown), each qubit has an individual drive line (purple) and qubits 2 to 7 have a flux line
(blue).

we use for our qubits to reduce thermal excitation to a minimum amount. Further, the qubits
decay always to their ground state due to energy relaxation and are thus passively initialized in
the |0〉 state.

Each qubit has two control lines: the drive line and the flux line (see Fig. 4.3). Each drive
line is controlled by two AWG channels sending the two quadratures for single qubit pulses,
that are upconverted to the RF frequency in an IQ mixer. The RF frequencies are delivered
by microwave generators (Rohde & Schwarz SGS100A). All the drive lines are attenuated
and thermalized by three 20dB attenuators at the 4K, the 100mK and the 12mK stages of the
refrigerator to reduce thermal noise.
The currents through the flux lines are driven by Stanford Research Systems (SRS) SIM928
DC voltage sources, that are galvanically isolated and have low noise. The flux line of qubit 6
used to drive the two-qubit gates is connected to an Tektronix AWG5014c via a bias-T (Mini
Circuits ZFBT-4R2GW+) and an additional 20dB attenuator (see Fig. 4.3). Inside the fridge,
the flux lines are attenuated with a 20dB attenuator thermalized at the 4K plate to reduce
thermal noise and filtered with a Mini Circuits VLFX780 low-pass filter at base temperature.
The home made Eccosorb filter is used to block infrared photons that pass the low-pass filter.
The readout line is based on a homodyne detection scheme. The complex quadratures of
the readout pulses are generated on a Zurich Instruments UHFQC and upconverted with
an IQ mixer. The signal then passes the readout line on the sample and is amplified with
a broad-band, near-quantum noise limited traveling-wave parametric amplifier [Macklin2015]
at base temperature, a high electron mobility transistor (HEMT) amplifier at 4K and room
temperature amplifiers. It gets down-converted with an IQ mixer and then digitized on the
same UHFQC as used for the pulse generation. This device can do real time data processing, as
digital down-conversion, integrated readout and averaging (see also [Remm2017] for a detailed
description of the readout scheme). All the instruments are controlled by the Python based
open-source software PycQED initiated by QuTech, Delft University of Technology which is
built on top of the QCoDeS data acquisition framework.
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Fig. 4.3: Schematic of the experimental setup with room temperature electronics used to control the
qubits, fridge wiring and sample. Flux lines (FL) and drive lines (DL) used to drive gates on
Qb6 (left) and Qb7 (right). The colors correspond to the ones used in Fig. 4.2. RR: readout
resonator, PF: Purcell filter.

4.1.1 Inverse Filter Calibration on the Warm Setup

The step response of the warm flux lines for two qubits (Qb4 and Qb6) was measured when the
cryostat was opened to mount the sample (no bias-T’s installed yet). The signal was generated
on the same AWG channel later used for the experiments and the response was measured with
our LeCroy SDA13000 oscilloscope connected the the SMP connector where the sample holder
will be plugged in. On both data sets the IIR and FIR fitting routines were run to extract the
inverse filters (for flux line FL6 fits see Appendix C). Additionally, the functionality to use these
filters for offline predistortion (also the IIR filters planned to run on the AWG in the future) was
implemented in PycQED.
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4.2 Sample Characterization

To tune up the full functionality of the quantum processor and for a future iteration of design
improvement, all sample parameters such as readout frequency, maximum qubit frequency,
dispersive shift, flux offset and coherence times need to be characterized. Automated routines for
single qubit gate calibration were developed in [Balasiu2017]. Here, I focus on the characterization
of the bus resonators.

4.2.1 Parking Qubits

The qubit pair best suited to test two-qubit gates on the sample M85BM2 are qubits Qb6 and
Qb7 with maximum frequencies f6max = 5.92GHz and f7max = 5.44GHz. The optimal flux bias
points were chosen manually, such that the qubits were parked at their maximum frequency
with ∆ = f6max − f7max = 480MHz. Having both qubits parked at their sweet spot is preferable
for high coherence times T2 (T 6

2 ∼ 8 µs and T 7
2 ∼ 5 µs at their maximum frequency). The qubit

anharmonicities α6 = 234MHz and α7 = 238MHz are measured with high-power spectroscopy
on the |0〉 → |2〉 two photon transition.

4.2.2 Bus Resonator Spectroscopy

The bus resonator frequencies were measured spectroscopically by driving the drive lines with
high power. Due to small but finite capacitive coupling between drive line and bus resonator
the latter can be populated with a high power drive. Photons in the bus resonator induce an
AC Stark shift of the qubit frequency, which is measured as a slight change in the frequency of the
readout resonator (compare section 2.1.2). Due to the small coupling, the peak appears only at
very high drive power (see Fig. 4.4(a)). Since the experiment is equivalent to qubit spectroscopy,
the existing fitting routine to extract the qubit frequency can be used (see Fig. 4.4(b)). All
measured bus resonator frequencies are listed in table 4.1. The bus frequencies are chosen in an
alternating pattern, i.e., matching pairs between neighbors can be identified as the common bus
resonator. For qubits Qb6 and Qb7 the matching frequency is f6,7bus = 7.850GHz.
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Fig. 4.4: (a) Qubit spectroscopy on Qb6 at one of the bus resonator frequencies for different drive power.
Only for very high power the resonator appears. (b) Automated qubit spectroscopy fit used to
fit the bus resonator (drive power P = 0dBm).
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Qubit # fq[GHz] bus 1 [GHz] bus 2 [GHz]

2 6.255 7.687 7.859
3 5.216 7.687 7.860
5 6.451 7.680 7.849
6 5.917 7.680 7.850
7 5.441 7.670 7.850

Table 4.1: Table of the qubit frequencies fq and the bus resonator frequencies measured on each qubit.

4.2.3 Spectroscopic J-Coupling Measurement

In order to measure the coupling strength between two qubits, we performed spectroscopy on
the avoided crossing. While sweeping the flux bias, pulsed spectroscopy was measured on one
of the qubits. I.e., while sweeping the drive frequency on the qubit drive line, the transmission
of the readout line was measured at the frequency of corresponding readout resonator. Unlike
for continuous tone spectroscopy, in pulsed spectroscopy the drive tone is turned off during the
readout [Balasiu2017] with the advantage, that no AC shift is present due to photons in the
readout resonator.
The flux bias range was chosen, such that the frequency of one of the qubits was tuned through
the parking frequency of its neighboring qubit, i.e., through the avoided-crossing. In this range,
the flux dependency of the qubit transition frequencies can be linearly approximated with
ωi(Φ)/2π = fi(Φ) ∼ fi,0(1 + ci(Vbias − Vbias,0). The energy levels through the anti-crossing are
given by the eigenvalues of the simplified Hamiltonian

Ĥ = ~

(
ωi(Φ) J
J ωi+1(Φ)

)
. (4.1)

To extract the bus mediated coupling J , these eigenvalues are fitted to the peaks of the measured
transmission spectra (see Fig. 4.5 solid lines). Using equation 2.7 the coupling between qubit and
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Fig. 4.5: Pulsed spectroscopy of the avoided crossing between quits Qb6 & Qb7 in (a) and between
qubits Qb2 & Qb3 in (b). The red and orange circles are the peaks assigned to upper and
lower branch, respectively. The solid lines are fits according to the model 4.1. The fitted bus
mediated coupling rates are J6,7/2π = 2.31(3)MHz and J2,3/2π = 2.05(3)MHz. In (a) Qb6
was tuned to cross Qb7, while spectroscopy on Qb6 was performed. (b) shows combined data
from spectroscopic measurements on both Qb2 and Qb3 while tuning the frequency of Qb2.
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bus resonator can be estimated at the interaction point under the approximation g = g6 ∼ g7
(symmetric design):

g/2π =
√
∆J/2π ∼ 75MHz (4.2)

evaluated for qubits Qb6 and Qb7. The smaller coupling between qubits Qb2 and Qb3 can be
explained by the larger detuning from the bus resonator. However, for both pairs the measured
values for J is approximately 20% lower than designed due to too small coupling gi. This gives
us already a lower bound for the C-Phase gate time tg = 2π/(2

√
2J) ∼ 153 ns.

4.2.4 Flux Pulses: Connecting the AWG

As a next step towards performing two qubit gates, a channel of the Tektronix AWG5014 was
connected to the flux line. As discussed in section 2.2, the coherence times depend strongly on
the flux noise. I.e., the room temperature cabling has to be chosen in a clever way, not to worsen
the dephasing time of the qubit significantly by the additional electronic 1/f noise from the
AWG. We tested the influence of the additional electronic noise on the coherence times of the
qubit in different configurations.
Typically, we operate our qubits at sweet spot, where they are first-order insensitive to flux
noise (compare Eq. 2.9). However, for the characterization of the coherence times we want to be
susceptible to noise. Thus, to determine the flux noise dependence on the cabling configuration,
all measurements were performed at sweet spot and also approximately 200MHz below sweet
spot. Regarding two qubit gates, it is also important to have an estimate of the dephasing during
the flux pulse when the qubit leaves its sweet spot.
For the characterization of the phase stability, T ∗

2 and T1 were measured as e.g. described in
Ref. [Baur2012b]. T ∗

2 is the decay time of a Ramsey signal and gives a lower bound for T2. All
coherence times measured in different cabling configurations are listed in table 4.2. Either the
coil, mounted below the chip or the flux line is used to set the flux bias.
Summarizing these results, we can conclude, that the naive way of connecting the AWG to the
flux line making use of the ’add input’ option for the DC bias decreases T ∗

2 by approximately
factor 10. I.e., according to formula 2.9 the 1/f noise amplitude is approximately 10 times
higher compared to the situation when biasing directly with the SRS DC source. This is in good
accordance with the measured noise spectra of the DC voltage source and the AWG channel (see
Fig. A.2 and A.4 in the appendix).
Connecting an additional 20dB attenuator and biasing through a bias-T turn out to be the
optimal solution to suppress low frequency noise from the AWG, such that the dephasing time
is not critically affected (cabling in Fig. 4.3). In this configuration the measured T ∗

2 was only
lowered by a factor of 0.7 , hence an increase of the electronic noise amplitude of approximately
factor 1.4. To compensate for the bias-T an additional IIR filter, that was determined in an
offline measurement of the bias-T was added to the IIR filter list (fit in Fig. B.1 (b) in the
appendix).
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Flux line config. parking fq [GHz] T ∗
2 [µs] T1 [µs] Vcoil [mV] VFL6 [mV]

All shorted SS 5.927 8.8(4) 6.7 -140 shorted

All shorted 200BS 5.725 2.62(6) 7.1 132 shorted

FL6 connected to SRS
(no voltage divider)

SS 5.927 8.3(3) 6.6 -140 0

FL6 connected to SRS
(no voltage divider)

200BS 5.724 2.46(10) 6.0 132 0

FL6 connected to AWG SS 5.927 5.59(27) 6.9 -140 0

FL6 connected to AWG 200BS 5.744 0.319(12) 6.9 132 0

FL6 connected to AWG,
biased with FL6

SS 5.927 8.7(3) 7.0 shorted 780

FL6 connected to AWG,
biased with FL6

200BS 5.739 0.310(13) 7.0 shorted -870

FL6 connected to AWG,
biased with FL6, 0.1V
ampl.

SS 5.927 7.77(23) 7.0 shorted 780

FL6 connected to AWG,
biased with FL6, 0.1V
ampl.

200BS 5.728 0.64(3) 6.3 shorted -870

All FL’s connected, bi-
ased with FL6 through
AWG

SS 5.927 9.3(4) 6.7 shorted 780

All FL’s connected, bi-
ased with FL6 through
AWG

200BS 5.739 0.300(17) 6.7 shorted -870

All FL’s connected,
FL6 bias through AWG,
20dB attenuation

200BS 5.721 1.52(4) 5.9 shorted -8700

All FL’s connected, FL6
bias with bias-T

200BS 5.719 0.412(5) 6.9 shorted -770

All FL’s connected, FL6
bias with bias-T, 20dB
attenuation

200BS 5.741 1.754(22) 7.5 shorted -7700

Table 4.2: Dephasing times measured in different flux line configurations. Legend: SS: sweet spot; 200BS:
qubit parked 200MHz below sweet spot; 0.1V ampl.: AWG output range set to 0.1Vpp; fq:
qubit frequency; Vcoil: coil voltage; VFL6: flux line 6 voltage
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4.3 Flux Pulse Calibration

Having the AWG connected to the flux line, we are now able to apply flux pulses to the qubit.
In semi-rigid cables with teflon as dielectric material, the signal speed is approximately 20 cm/ns.
Thus, for optimal timing of the flux pulses relative to drive and readout pulses, we need to
calibrate the timing of the flux pulse channel to compensate for differences in cable length.
Further we want to relate the pulse amplitude to the induced flux and frequency offset.

4.3.1 Timing

To measure the relative timing of flux pulses and drive pulses (e.g. a π/2-pulse), a Ramsey like
phase measurement was programmed. A (π/2)X -pulse brings the qubit into a superposition
of ground and excited state |ψ〉 = (|0〉+ |1〉)/

√
2, and the second π/2-pulse, delayed by 200 ns

brings the qubit to its final state that is read out (RO pulse, compare also Fig. 4.6 (a) for the
pulse scheme). Sweeping the phase θ of the second π/2-pulse results in a final qubit state with
oscillating excited state population P|1〉 = cos(θ). Interleaving the two pulses with a short 20 ns
flux pulse, introduces a phase shift θ → θ + φ as long as the flux pulse is in between the two
π/2-pulses. This phase shift φ can be fitted. The calibration measurement is therefore performed
as a 2D sweep, where in one dimension the phase θ of the second π/2-pulse and in the second
dimension the relative delay of the flux pulse is swept. It is important to sweep the delay in
multiples of the AWG sampling period to omit quantization artifacts.
As long as the flux pulse is outside of the 200 ns window framed by the two π/2-pulses, no
phase shift is expected (φ = 0). All fitted phase shifts (black dots in Fig. 4.6) are once more
fitted with a smooth window function (sum of two erf functions) to extract the time of rising
and falling edges, which give information about the timing relative to the drive pulses. This
calibration measurement and its analysis were implemented in PycQED in a method of the qubit
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Fig. 4.6: Timing calibration: (a) pulse scheme of the two dimensional calibration measurement (phase
θ and delay τ are being swept; Qb6: qubit 6, FP: flux pulse, RO: readout pulse). (b) Raw
measurement data. In (c) the fitted phase shifts φ are plotted (black dots) and in red is the
fitted error function model to extract the relative pulse delay of 53.9 ns
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object (calibrate flux pulse timing) such that the determined channel delay is automatically
updated and compensated in future experiments.

4.3.2 Amplitude

For the calibration of the flux pulse amplitude, a very similar measurement was conducted where
instead of the flux pulse delay its amplitude was swept (see also pulse scheme in Fig. 4.7 (a)).
The timing was chosen, such that the flux pulse with length Tp = 50ns was in between the two
π/2-pulses. The phase shift φ can directly be related to the qubit frequency shift ∆f = φ/(2πTp)
(see Fig. 4.7 (b)). On the other hand, the flux pulse amplitude A is related to the magnetic flux
Φ/Φ0 = A/c, where the parameter c quantifies the volt per flux quantum periodicity. Substituting
the magnetic flux in the qubit frequency Eq. 2.1 with A allows to fit this equation when sweeping
the flux pulse amplitude A and determine the volt per flux quantity c = 0.512(16)V/Φ0 (not
using an additional 20dB attenuator at room temperature; including this additional attenuation
increases the ratio by a factor of 10, i.e., c20dB = 5.12V/Φ0). This calibration is very important,
since it gives the relation between flux pulse amplitude A and qubit frequency fq = fmax

q −∆f(A)
and will be used to predict the pulse amplitude for the C-Phase gate.
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Fig. 4.7: Frequency calibration. (a) shows the pulse scheme analogous to Fig. 4.6 (a), but sweeping
the flux pulse amplitude A (Qb6: qubit 6, FP: flux pulse, RO: readout pulse). (b) Fitted
phase shifts (black dots) and fit of Eq. 2.1 to extract the volt per flux quantum periodicity
c = 0.512(16)V/Φ0.

4.4 Flux Pulse Scope

Ideally, we want to measure the step response in terms of qubit frequency, such that all the
characteristics of the cold signal chain including SMP connectors to the sample and inductive
coupling to the SQUID loop are determined. A very precise measurement of the qubit frequency
can be done in a Ramsey type measurement analogous to section 4.3.2. However, the temporal
resolution is limited by the length of the two π/2-pulses and the period in between, where the
phase of the qubit evolves dependent on the qubit frequency. Another approach with much higher
resolution in the time domain is the π-pulse based scope mode, where the frequency of a π-pulse
is swept [Johnson2011PhD, Baur2012b]. Alternative schemes are described in [Ciorciaro2017]
and [Jerger2017]. However, both of them are also limited in temporal resolution.
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4.4.1 The π-Pulse Scope

When sweeping the drive frequency of a π-pulse with a Gaussian spectral profile, the measured
excited state population along the drive frequency axis fits very well to a Gaussian function.
This is not clear a priori, because off-resonant driving could change the line shape. However, as
we expect the line to be symmetric, it is sufficient to extract the center of the line with any fit to
monitor the qubit frequency at a specific time τ . Now when sweeping also the delay τ relative to
the flux pulse, as depicted in Fig. 4.8 (a), a two dimensional image of the flux pulse is generated
(see Fig. 4.8 (b)). To extract an approximate form of the pulse shape, each frequency slice is fitted
with a Gaussian model to extract the peak frequency. The fitted qubit frequency, respectively its
detuning with respect to the parking frequency can then be converted to a flux pulse voltage
using the frequency calibration from section 4.3.2. For comparison, the same experiment was
also done, without using any inverse filters (see Fig. 4.9 (a)). Then the distortion caused by the
bias-T visually dominates the behavior for large τ .
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Fig. 4.8: Flux pulse scope: (a) pulse scheme of the scope mode: drive frequency ωd and delay τ relative
to the flux pulse of a π-pulse are swept. In (b) the excited state population of the qubit Qb6 is
shown with the fitted qubit frequency (red line).
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Fig. 4.9: Flux pulse scope. (a) Flux scope measurement and fitted frequencies (red line) without any
filters applied. The visually dominating distortion comes from the bias-T. (b) Zoom in the the
edge in Fig. 4.8 (b).
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A zoom into the edge of the square pulse shows the limits of this method (Fig. 4.9 (b)). For
optimal resolution, the π-pulse was chosen as short as possible (Gaussian pulse width σ = 5ns).
However, it still introduces e temporal blur of approximately 10 ns, that prevents fitting an FIR
filter and hence doing the full characterization of the transfer function with the described method
on the cold setup.

4.4.2 IIR Filters Revisited

With this new information on the response of the signal chain, we can further improve our
set of filters by fitting additional IIR filters to the data in Fig. 4.8 (b) and Fig. 4.9 (b) (fits in
Fig. 4.10 (a) and (b), respectively). With six additional IIR filters, we were able to reduce the
overshoot at the step significantly and flatten the top of a 2 µs pulse to a total drift below 0.2%
of the pulse height with space for even further improvement down to the resolution of the AWG
(see Fig. 4.11).
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Fig. 4.10: Additional IIR fits done with the data measured in the flux scope mode analogous to the IIR
fitting procedure in section 3.4.1. (a) Data taken from flux scope measurement in Fig. 4.8 (b).
(b) Data taken from 4.9 (b).
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Fig. 4.11: Flux pulse scope image of a pulse using the additional IIR filters from Fig. 4.10. The top of
the pulse is very flat (a) while the overshoot is significantly reduced (b).
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4.5 C-Phase Gate Calibration

In the non-adiabatic case, we only need to optimize two parameters, the pulse amplitude A
and the pulse length Tp. To do so, we must be able to measure some objective function, i.e., a
quantity that characterizes the quality of our C-Phase gate. In a first step, the population
retrieved in the |11〉 state is measured in form of a Chevron pattern.

4.5.1 Retrieved Population: Chevron Pattern

The Chevron pattern arises when two interacting levels coherently exchange population. In
our case, when we start in the |11〉 state, its population oscillates between the |11〉 and the
|20〉 state when being on resonance. The oscillation frequency between these two levels is

Ω/2π =
√
(2
√
2J)2 +∆2/2π [Steffen2013a], i.e., it increases with the detuning ∆ between the

two interacting levels. Thus, the Chevron pattern allows us to measure J and the retrieved
|11〉 state population after an arbitrary interaction time Tp. The pulse sequence is illustrated
in Fig. 4.12 (a). The system is initialized in the |11〉 state with a π-pulse on each qubit. The
flux pulse brings the |11〉 level close to resonance with the |20〉 level and lets them interact for
time Tp. Then the state of qubit Qb7 is read out. Its excited state population P|1〉 represents the
population of the |11〉 state. By fitting, an exponential decaying cosine to the horizontal slices
of Chevron pattern, the coupling energy J = 2.362(8)MHz was determined in good accordance
with the spectroscopically measured value. This confirms also, that the C-Phase gate will take
approximately 150 ns. At this flux pulse amplitude A = 0.7725V with ∆ = 0 the signal decays
on a time scale τ = 1.7(2) µs, giving an upper bound to the fidelity of the C-Phase gate due to
finite dephasing time T2.
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Fig. 4.12: Chevron Pattern. (a) Pulse scheme of the Chevron pattern measurement, the π-pulses initialize
the system in the |11〉 state and the flux pulse with amplitude A turns the interaction on for
the time Tp; qubit Qb7 is read out (RO: readout pulse). (b) 2D plot of the measured qubit
population on qubit 7. The qubit state is calibrated using dedicated calibration points (not
shown in the plot).
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4.5.2 Conditional Phase Measurement

For the full characterization of the C-Phase gate, we also need to measure the conditionally
acquired phase. This can be done in a very similar measurement, where the system is prepared in
a superposition state (|10〉+ |11〉) /

√
2. Dependent on the conditional phase acquired on the |11〉

state, a final (π/2)θ-pulse on qubit 7 brings the qubit into a phase dependent superposition of |0〉
and |1〉. Sweeping the phase of the second π/2 pulse, allows to fit a cosine model and extract the
phase. This is essentially the same as interleaving a Ramsey type phase measurement with the
conditional phase gate. The fitted phase still includes the single qubit dynamic phases. Hence, in
a reference experiment without preparing qubit 6 in the excited state, the pure dynamical phase
is measured. Subtracting this dynamical from the fitted phase yields the conditional phase. This
time-consuming 3D measurement mainly serves to give an idea how the phase landscape looks
like. For the optimization of the flux pulse parameters with a convenient algorithm, only a few
points in this landscape actually have to be measured. However, from this plot it can be inferred,
that the conditional phase close optimal pulse length Tp ∼ 150 ns is first order insensitive to the
pulse length. This decouples the conditional phase in some sense from the retrieved amplitude,
which is first order insensitive to the flux pulse amplitude at that parameter spot allowing for
orthogonal optimization of both parameters.
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Fig. 4.13: Conditional phase measurement. (a) Pulse scheme: Qb7 is prepared in a superposition
state, whereas Qb6 is either prepared in the excited or in the ground state for the reference
measurements. For the full measurement, flux pulse amplitude A, length Tp and the angle of
the second π/2-pulse on Qb7 are swept. (b) Calculated relative phase in dependence of flux
pulse amplitude and length plotted with a periodic color map. Note the center amplitude
A = 765mV differs from previous measurements, due to slight changes in the parking positions.

4.5.3 Gate Calibration: Nelder Mead Optimization

Finally, we can stick the population and the phase measurement together and run an optimization
algorithm. The retrieved population can even be extracted as the amplitude of the oscillations in
the phase fits, speeding up the algorithm. The cost function, also called objective function, is pro-
grammed, such that it is minimal for maximum retrieved population and conditional phase being
exactly φc = π + 2πk for some k. For the optimization, the Nelder-Mead algorithm [Nelder1965],
a so-called downhill simplex method, is well suited since it is very robust against noise.
For the qubit pair Qb6 and Qb7, the optimal flux pulse parameters A = 765.0mA and Tp = 148 ns
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were found (see Fig. 4.14), which is very close to the spectroscopically predicted value. However,
the phase measurements are very sensitive to qubit frequency drifts, since Qb6 is far away from
sweet spot and hence susceptible to magnetic flux noise during the C-Phase gate. Hence, for
feasibility it crucial to have very stable qubits with drifts ∆f ≪ J on the timescale of calibration
and measurements.
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Fig. 4.14: Illustration of the Nelder-Mead algorithm optimizing the phase (a) and the amplitude (b)
shown in the background. The white triangle depicts the initial point from where the algorithm
starts to converge toward the optimal value (white circle: A = 765.0mA and Tp = 148 ns).
The order of the measured points in the parameter parameter space is indicated with the
transition from black to red. The light blue simplices are used to estimate the gradient.
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Chapter 5

Conclusions and Outlook

In this thesis, we developed different tools to characterize the flux line and extract filters for flux
pulses, such as the flux pulse scope, the regularized FIR fitting procedure and the fitting and the
inversion of the exponential IIR model. These tools were used in a procedure to calibrate IIR
and FIR predistortion filters for scalable fast two-qubit flux gates. The IIR filters are planned to
be implemented in real time on the ZI HDAWG, however, this is yet under development.
To apply flux pulses to a qubit, we connected an AWG channel to the corresponding flux line
using a bias-T to set the DC bias and filter out 1/f noise from the AWG. The noise from the
AWG and its effect on the coherence times was characterized. We found that T ∗

2 is only affected
slightly by the additional noise from the AWG channel (0.7 times shorter than without the AWG
connected when being measured 200MHz below sweet spot). The pulse distortions caused by
the bias-T were successfully removed with an inverse IIR filter.
Working towards the tune-up and optimization of a C-Phase gate, we measured the Chevron
pattern and the conditional phase after a flux pulse and ran the Nelder-Mead optimization
algorithm to optimize the pulse parameters. To complete the C-Phase gate, the dynamic
phase of the individual qubits still have to be corrected using zero-time virtual Z-gates. Further
optimization and characterization of the gate with Bell state tomography, process tomography and
interleaved randomized benchmarking are currently in preparation. Fast fidelity measurements
allow even further optimization of a few parameters describing the analytic pulse shape, e.g. the
’fast-adiabatic pulse’ [Martinis2014a]. If the gate performance can be measured fast enough also
the short time response (FIR filter) could be optimized pixel wise, e.g., with an evolutionary
algorithm.
In regard of future applications, a automated tune-up still has to be programmed in a way
that is feasible for large scale quantum processors. At the same time, all IIR filters should be
measured with the flux pulse scope and applied as real time filters on the Zurich Instruments
HDAWG. Furthermore, for high-fidelity gates it is crucial to improve the qubit stability. Also
when reducing the gate time by larger coupling rage J , the on-off ratio gets critical requiring a
non-trivial identity gate. This problem could potentially be solved with tunable resonators, that
can be tuned far off-resonant between two gates.
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Appendix A

Noise

As mentioned in section 2.2, different sources of noise can significantly influence the dephasing
times of the qubits. Here, a short introduction to noise sources is given and a method to measure
the output noise of electronic devices is presented.

A.1 Thermal Noise and Electronic 1/f Noise

Thermal noise, also Johnson-Nyquist noise [Johnson1928], is electronic noise generated by thermal
charge fluctuations with a flat spectrum. This type of frequency independent noise is also called
white noise. In contrast, noise with a power spectral density P (f) ∝ 1/f is called 1/f or pink
noise [Bell1980]. Typically electronic devices as AWGs suffer from such 1/f noise [OMalley2016]
(see also Fig. A.2 AWG5014 4Vpp measurement). To achieve lowest possible noise on our qubits
for optimal coherence times and gate fidelities, ideally the AWG output is high-pass filtered in a
manner, that the 1/f noise is pushed below the thermal noise floor (flat spectrum above 1MHz
in Fig.A.3).

A.2 Noise Measurements on a ZI HF2LI

The Zurich Instruments HF2LI lock-in amplifier is an all-digital device, that operates
at a maximal sampling rate of 210MSa/s and has an analog bandwidth of 50MHz with a
14 bit resolution. Internally, it uses digital oscillators with freely selectable frequencies up to
50MHz to down-convert the digitized input signals. It is specified to have very low internal
noise (below 5 nV/

√
Hz above 1 kHz) making it well suited for noise characterization of electronic

devices.
Noise spectra can be measured on the HF2LI with three different modes: Scope mode (FFT),
Spectrum Analyzer mode and Sweeper mode. With appropriate settings, the noise spectra
measured in these different modes coincide (see Fig.A.1). However, the Sweeper mode is most
suited for simple noise characterization measurements, since the Scope and the Spectrum Analyzer
mode have a number of disadvantages (limited resolution for low frequencies, only linear sweep
points, residual effects of the internal filters, etc.).
In the Sweeper noise measurement, the digitized input signal is down-converted with the oscillator
frequency fosc, essentially shifting the noise at fosc to 0Hz. Then, a digital low-pass filter is
applied and the root mean square voltage VRMS of the signal amplitude is calculated. Finally,
the noise power spectral density PSD = VRMS/

√
BNEPBW is determined from the RMS voltage
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by dividing through the square root of the noise equivalent power bandwidth BNEPBW of the
low-pass filter. The HF2LI software allows to chose logarithmically spaced frequency points
and automatically adapted bandwidth of the low-pass filter to speed up the measurement.
Furthermore, it is very important to note, that the input coupling mode has significant effect
on the measurement. In the AC coupling setting, the input signal is filtered by a capacitive
high-pass filter with a cut-off frequency of 1 kHz. I.e., all measurements below 1 kHz must be
measured in the DC mode while noise measurements above 1 kHz should be measured in the AC
coupling mode for minimal self-noise of the device (compare Fig. A.1 (b)). Here, all plotted noise
spectra are combined datasets, that are measured in DC mode below 1 kHz and in AC mode
above 1 kHz. The reference traces (self-noise of the HF2LI) are measured on a terminated input
(50Ω termination).
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Fig. A.1: (a) Comparison of the HF2LI noise measurement modes: Scope, Spectrum Analyzer and
Sweeper mode. In all modes the noise of an Tektronix AWG5014 and for comparison the
noise of a 50Ω terminated input channel (self noise) was measured. (b) Comparison of the
AWG5014 in AC and DC modes. In the AC mode, the noise below 1 kHz is attenuated by the
high-pass filter, in return, the HF2LI has lower self noise for frequencies above 1 kHz.
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A.2.1 AWG Noise Measurements

Here, noise measurements of the Tektronix AWG5014 and the Zurich Instruments UHFAWG
in different output modes are presented. They are performed in the Sweeper mode with the same
settings for all measurements (see Fig. A.3). From the measured data, it can be concluded, that
the UHFAWG performs very similar to the AWG5014 in direct mode (no output amplifier after
the DAC). However, the output amplifier of the AWG5014 adds a significant amount of noise.
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Fig. A.2: AWG noise spectra of a Tektronix AWG5014 and a ZI UHFAWG in different output settings
measured on the HF2LI.
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A.2.2 SRS SIM928 DC Source Noise Measurement

We also measured the noise performance of our SRS SIM928 DC voltage sources used to drive
the bias currents through the flux lines. Interestingly, they have unexpected high-frequency
noise above 1MHz. This shows the importance of proper low-pass filtering of the flux lines. For
comparison, the measurement was repeated with an Mini Circuits BLP-1.9+ low-pass filter
connected. A small fraction of the noise feature still makes it through the filter, i.e., for optimal
usage a filter with even lower cut-off frequency is necessary.
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Fig. A.4: Output noise characterization of an SRS SIM928 voltage source. The device has unexpected
high-frequency noise above 1MHz, that can be filtered out by with a low-pass filter.
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Appendix B

Bias-T

In our setup, we want to make use of a bias-T to reduce low-frequency noise on the flux line
coming from the AWG while still being able to apply a DC bias as described in section 3.3. To
choose a suitable bias-T, the step response of different bias-Ts were measured. Further, we show
that the high-pass filter approximation used in section 3.3.1 is justified for the specific bias-T
model we use and discuss the usage of an additional resistor to discharge the bias-T over time in
the context of section 3.3.2.

B.1 Bias-T Step Responses

To verify our simplified model, we measured the step response of three different bias-T models
(Mini Circuits ZFBT-4R2GW+, the Mini Circuits ZX85-12G+ and Anritsu K251; see B.1
(a)). Indeed, the only one that shows an non-oscillating exponential decay is the ZFBT-4R2GW+.
This is also the bias-T model we installed in our setup since it satisfies the simplified high-pass
model. The wiggles seen in the step response of the other bias-Ts can be understood as oscillations
of an LC oscillator formed by the inductance and the capacitance in the bias-T. This is also
verified in a simulation showing the same oscillations when including the inductance and the
internal resistance of the DC source in the model. Depending on the system parameters, the
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Fig. B.1: (a) Bias-T step responses for three different models. Depending on the internal capacitance and
inductance, the bias-T shows oscillations (K251) or an exponential decay (ZFBT-4R2GW+).
The measurements were taken with open DC port. (b) Step response of the ZFBT-4R2GW+
bias-T (black line) with exponential IIR model fit (red dashed line) and numerically inverse
filtered data (green line).
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oscillations are either well visible (K251) or overdamped (ZFBT-4R2GW+). The step response
of the ZFBT-4R2GW+ bias-T is used to fit the IIR filter model described in section 3.3.1 and
extract the predistortion filter coefficients (see B.1 (b)).

B.2 Discharge Resistor

As a possible solution for the out-of-range issue, we simulated the system with a parallel resistor
added to the capacitor in the bias-T (circuit model in Fig. B.2). Applying the predistortion filter

Rload

VRF

CRdis

Fig. B.2: Circuit of bias-T with discharge resistor Rdis.

that inverts the system response to a pulse sequence reveals, that the offset voltage decays on a
timescale τ2 = RdisC (compare Fig. B.3 (a)). Optimal conditions for the pulse shaping would
require (i) τRC ∼ Tp, where Tp ∼ 50 ns it the pulse width and (ii) τ2 ≪ Trep, where Trep ∼ 500 ns
is the repetition time of the gates. Condition (i) results in C ∼ 1 nF for fixed Rload = 50Ω.
Hence condition (ii) requires Rdis ≪ Trep/C ∼ 500Ω. However, keeping in mind that we want
to eliminate the 1/f noise with the bias-T as high-pass filter, we see that the modified system
transfer function flattens out below the frequency f2 = 1/(2πτ2) (see Fig. B.3 (b)) and does not
efficiently block low frequency noise.
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Fig. B.3: (a) Predistorted pulse train for optimal pulse shape at the load, according to circuit in Fig. B.2
with Rdis = 500Ω (τ2 = 1 µs). (a) Frequency response of modified circuit. Dashed red line:
cutoff frequency fc = 1.6MHz; dashed green line: f2 = 0.16MHz.
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Appendix C

Filter Fitting Data

C.1 IIR Fitting Data

C.1.1 Demo Results

Fit # A[mV] B[mV] τ [ns]

1 375.885 −3.832 34 3557.55
2 375.880 −2.432 06 484.388
3 375.878 −2.951 19 103.034
4 375.878 3.047 91 38.756
5 375.878 −0.309 75 38.5517
6 375.877 12.0045 9.675 11
7 375.878 −3.2689 8.914 96
8 375.877 17.6204 4.141 95
9 375.877 −7.576 13 4.3454

10 375.877 5.814 87 3.832 94
11 375.876 −2.218 21 4.467 24
12 375.877 0.472 652 6.920 11
13 375.877 −0.139 566 6.916 07

Table C.1: Full table of the IIR filter fitting parameter of all 13 fits of the demo dataset.
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Fig. C.1: Plots of all IIR fits of the demo dataset.
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Fit # a1 b0 b1

1 0.999 845 0.994 542 −0.994 387
2 0.998 861 0.993 596 −0.992 457
3 0.994 664 0.992 231 −0.986 895
4 0.985 652 1.008 12 −0.993 768
5 0.985 704 0.999 182 −0.984 887
6 0.942 393 1.032 04 −0.974 434
7 0.940 071 0.991 637 −0.931 708
8 0.868 525 1.045 95 −0.914 476
9 0.882 067 0.981 407 −0.863 474
10 0.862 874 1.014 64 −0.877 51
11 0.883 565 0.994 475 −0.878 04
12 0.922 723 1.001 21 −0.923 934
13 0.922 801 0.999 643 −0.922 444

Table C.2: Table of the IIR first-order filter coefficients extracted from the fits of the demo dataset.
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C.1.2 Flux line 6
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Fig. C.2: Fitting ranges of first four IIR fits for flux line 6.
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Fig. C.3: Plots of all IIR fits for flux line 6.
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Fit # A[mV] B[mV] τ [ns]

1 92.7017 1.140 06 681.852
2 92.7009 −0.328 385 454.185
3 92.7009 0.981 595 142.865
4 92.7008 −0.207 01 121.565
5 92.7002 7.965 49 21.3799
6 92.7014 −10.1549 16.3237
7 92.7021 5.304 27 19.995
8 92.7024 −4.402 38 18.2589

Table C.3: Table of the fitting parameters for flux line 6.

Fit # a1 b0 b1

1 0.998 763 1.012 42 −1.011 18
2 0.998 173 0.996 474 −0.994 647
3 0.994 122 1.010 67 −1.004 79
4 0.993 184 0.997 779 −0.990 963
5 0.958 249 1.092 04 −1.050 29
6 0.955 024 0.903 491 −0.858 515
7 0.956 749 1.059 38 −1.016 13
8 0.957 358 0.955 63 −0.912 989

Table C.4: Table of the IIR first-order filter coefficients extracted from the fits for flux line 6.
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C.2 FIR fitting data

C.2.1 Demo Result
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Fig. C.4: (a), (c), (e), (g), (i) are zooms to the peak of the FIR filters and (b), (d), (f), (h) and (j) power
spectra of the FIR filters for the regularization parameters α = 0.2, 0.4, 0.6, 0.8, 1.0 from top to
bottom (demo dataset). Increasing the regularization parameter α results in low-pass filtering
the FIR filter kernel as expected.
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C.2.2 Flux Line 6
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Fig. C.5: Flux line 6 data set: (a) IIR corrected data taken for FIR extraction. (b) Impulse response (of
IIR corrected data) calculated by numerical differentiation of a step response (data in (a)).
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Fig. C.6: Flux line 6 data set: (a) FIR filter coefficients for regularization parameter α = 0.3. (b) Power
spectrum of the FIR filter coefficients.
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