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Abstract
The fundamental element of a quantum computation is a single quantum operation of quan-
tum bits or qubits. At this point most of the interesting quantum information experiments
are done with superconducting transmon type qubits coupled to microwave cavities acting as
quantum information bus. In this architecture the qubit states are manipulated with short
DC and microwave pulses. While accurate single-qubit operations are routine there is room
for improvements regarding multi-qubit quantum logic gates. The present thesis gives an
overview of calibration routines of two-qubit gates and compares the different representa-
tions of quantum processes relevant for experimentalists. The described tools enabled two
qubit operation fidelities above 81 % and several suggestions will be made on how to further
improve the calibration routines in order to resolve the remaining fidelity.
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1 Introduction
This chapter will give a short overview of background and methods for the discussion follow-
ing. Before providing an summery of the theoretical and experimental approach to quantum
information experiments, that have been pursued in the present thesis, I will provide a short
motivation for the field. I will also provide a summary of history of the relevant achievements
of the last few decades, which have enabled the late rapid development of the field we have
witnessed in last 10 years.
In Chapter 2 I will cover the experimental methods for characterising and calibrating the flux
pulses used for two-qubit gates. The description of the state and process tomography which
allows the full characterization of a quantum process, is provided in Chapter 3. Appendix A
provides the reference for the notation used throughout the thesis and Appendix B covers
the details of presented data sets.

1.1 Motivation

By today the increasing computational capabilities are widely exploited in all fields of science,
medicine, technology and entertainment. Some of the computational problems however have
remained out of reach because they appear to be particularly hard. In information theory a
problem is considered more difficult than another, if the amount of needed resources to solve
the problem, like time or memory capacity, grows faster with the size of the problem. Some
of the problems which are hard for classical computers have turned out to scale consider-
ably better for computing machines able to make use of quatum phenomena, like quantum
superposition, entanglement and tunnelling. The effort of building a quantum computer is
not justified for small problems, if the a classical computer can solve it even if inefficiently.
But there are cases where the problem only becomes interesting for a size, where amount
of needed resources for classical computers reaches cosmic scales. For example only a full
description of 300 qubits in a pure state requires 2300 ≈ 2× 1090 complex numbers which is
larger than a number of atoms in observable universe – if size matters, then Hilbert space
matters a lot.
Probably the best known example of problems that scale better in quantum implementations
is the integer number factorization problem, which is the core element of modern crypto-
graphic methods like the widely used RSA [Nielsen 00, App. A]. The problem turns out to
be solvable with polynomial complexity using Shors algorithm [Nielsen 00, Ch. 5]. Actually
there is a wide class of problems hard to solve in classical systems called NP-complete, which
includes many important optimisation problems also shown to be easier to solve on a quan-
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tum computer [Santoro 06]. Maybe the most important application for science would be the
ability to simulate other quantum systems like the Heisenberg spin chain, which is attempted
in our lab [Las Heras 14]. The quantum simulations are hard for classical computers due to
the already mentioned scaling of the state space. In addition to the direct applications, the
effort put into the development of quantum systems for information technology helps to un-
derstand the quantum aspects of the nature in general and thus is of value in fundamental
science.
A quantum computer able to carry out an arbitrary quantum algorithm is called universal.
To succeed in building it, one needs to implement a universal set of quantum gates. It
can be shown that it is enough, to have a single multi-qubit operation capable of creating
entanglement, a non-classical manifestation of multi-qubit correlation, in addition to a full
control of a single qubit [Nielsen 00, Ch. 4]. Having ability to make longer sequences of
quantum gates enables investigation of more interesting and important quantum algorithms.
Due to errors piling up, the fidelity of any single gates is increasingly important in case of
long algorithms.
The goal of the present thesis is to improve the fidelity of our two-qubit gates. This requires
improved toolset and its documentation of our standard methods for characterising, calibrat-
ing and describing the operations. In order to scale up the implementation towards more
complex set-ups, the calibration methods have to be as automatized, modular and robust
as possible to run without human supervision. The possible improvements can be seen only
when having the full information of the achieved quantum operation. For this a set of mea-
surements is needed, referred to as quantum process tomography. It would be impossible to
draw useful conclusions from the gained information without proper way of visualizing it and
therefore we will discuss different representations of the quantum process. Thus the different
aspects of the present thesis are strongly connected and are all essential for achieving the
goal we set.

1.2 Short overview of the development of the field

The first applications of laws of quantum physics for information technology were pro-
posed by Stephen Wiesner in the early 60s [Nielsen 00, Ch. 1]. In addition to principles
of quantum cryptography and superdense coding he proposed non-forgeable quantum cur-
rency [Wiesner 83].
Photonics was the first field to give access to physical implementation of quantum computing
concepts [Nielsen 00, Ch. 7.4]. This was because photons interact weakly to the environment,
availability of strong sources of photons in non-classical states and straightforward mapping
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of polarisation states from Poincaré’s sphere to the Bloch sphere describing the qubit state.
One of the important achievements of photonics regarding quantum information was the ob-
servation of space-time separated qubit entanglement [Aspect 82]. The weak photon-photon
interaction however has prevented the up-scaling of optical implementations.
Another early implementation of a qubit was a spin state of a nucleus in an external magnetic
field [Nielsen 00, Ch. 7.7]. The tools of nuclear magnetic resonance were well developed due
to a variety of other applications and the qubit-qubit interaction are naturally provided by
electron intermediated spin couplings in a single molecule. This enabled first implementations
of quantum algorithms [Chuang 98]. The big drawbacks of NMR quantum computing are the
decrease of qubit coherence with the size of the molecule (number of qubits) [Gershenfeld 97],
the thermal population in room temperature experiments and the lack of control over qubit-
qubit coupling strength. Thus the approach is probably not scalable [Warren 97] nor suitable
for generic quantum computation [Menicucci 02].
In addition to the mentioned optical photonics and NMR quantum computation several other
physical implementations have been developed all featuring different conveniences as well as
challenges. Among trapped ions [Haffner 08], semiconductor quantum dots [Hanson 08] and
NV-centers of diamonds [Childress 13], supperconducting circuits have went through a rapid
development in the last ten years and have proven to be one of the most promising ap-
proaches [Clarke 08]. They can be considered to consist of artificial atoms in microwave
cavities which can be implemented on a single chip. The properties of the superconduct-
ing qubits, which are analogues of atoms in the well studied field of cavity quantum elec-
trodymics (QED) [Cohen-Tannoudji 89, Loudon 00], can be designed in a wide range of
parameters enabling a whole new subfield of circuit QED [Blais 07].
The qubits are implemented as LC oscillators with some non-linearity. Depending on the
design parameters the state quantization carries a different physical meaning which leads to
classification into charge, flux and phase qubits. The charge qubit, which is also referred
to as Cooper pair box (CPB) was first studied in 1987 by Büttiker [Büttiker 87] and its
different breeds have remained the most used ones in the modern experiments. The coher-
ent controll of the qubit state was first achieaved in 1999 [Nakamura 99] followed by strong
coupling to a coplanar microwave resonator in 2004 [Wallraff 04]. After this qubit-qubit cou-
pling [Steffen 06], multi-qubit state tomography [Filipp 09], error-correction [Reed 12], deter-
ministic teleportation of a quantum state [Steffen 13a] and a 5-qubit GHZ state [Barends 14]
has been demonstrated. The limiting factors remain to be signal detection fidelity and qubit
lifetime.
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1.3 Realization of the qubit

The transmon qubit used in the present experiments, consists of two capacitively coupled
superconducting islands connected by Josephson junctions. The junction consists of an oxide
layer between two superconducting leads acting as a tunnel barrier for Cooper pairs. In
charge representations the Hamiltonian is [Bouchiat 98]

Ĥ(ng) =
∞∑

N=−∞

[
4EC (N −Ng)2 |N〉 〈N | − EJ

2 (|N〉 〈N + 1|+ |N + 1〉 〈N |)
]

(1.1)

where N stands for the difference in the number of the cooper pairs on two islands, Ng is
the external DC bias in units of cooper pair charges, EC = (2e)2/2CΣ is the Coulomb energy
corresponding to the total capacitance CΣ between the islands and EJ is the Josephson energy
of the junction. The first part of the Hamiltonian provides the harmonic potential and the
kinetic term in the Hamiltonian mixes the Cooper pair number states.
Having two junctions in a loop instead of one forms a SQUID (Superconducting QUantum
Interference Device) which allows us to use a magnetic field to tune EJ(Φ) [Tinkham 96,
Ch. 6.4.1]. The Hamiltonian 1.1 can be exactly solved in phase representation [Cottet 02,
Koch 07] and eigenenergies are given in terms of the Mathieu characteristic functionMA(r, q)
as1

Eik = ECi
MA

[
k + 1

2 + (−1)k
(
|mod(1 + 2Ngi

, 2)− 1| − 1
2

)
,−2 |cos θi|

EJmaxi

ECi

]
(1.2)

with θ = Φ/Φ0 being the external magnetic field in units of the flux quantum Φ0 = ~/(2e)
and k and i being the index of the energy level and qubit. The first two transition energies
are shown in Figure 1. The interpretation is provided with the help of Hamiltonian 1.1. In
the case where EJ and EC are in same order of magnitude, the device is called Cooper Pair
Box (CPB). Its eigenstates more or less correspond to the number of Cooper pairs in the
exited state but due to the kinetic part of Hamiltonian 1.1 the states couple and show an
anti-crossing. It is also clear, that EJ is the coupling strength of the charge states lifting the
degeneracy and introducing the splitting. In the case of transmon qubits (transmission-line
shunted plasma oscillation qubit), it holds that EJ � EC and N̂ stops from being a good
quantum number, as the Cooper pair number states will always be hybridized.
In general there are two knobs for tuning the transition frequency of the qubit: the charge
bias and external magnetic field. In the case of transmon qubits the sensitivity to gate charge

1The expression in the first argument sorts the solutions and the exact form might depend on
the conventions used. The form given here was used with the Wolfram Mathematica 9 function
MathieuCharacteristicA. See the discussion in [Koch 07, App. B].
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Figure 1: The first two transistion energies of a Cooper Pair Box (CPB) where
EC = EJ and a transmon qubit with EJ = 100EC . In case of the CPB energy
varies as function of both, the dimensionless DC biasNg and dimensionless external
magnetic field θ. In case of the transmon qubit the charge sensitivity is strongly
decreased. The CPB box is first order insensitive to Ng only in the "sweet spots"
where Ng mod 1/2 = 0.

is suppressed. This reduces the qubit dephasing rate 1/T2, which is limited by charge noise
in the usual case of the CPB. In addition the large capacitor plains act as an antenna with
increased dipole moment for coupling the qubit with other circuit elements. The remaining
flux sensitivity is used to tune qubits into resonance with each other for two-qubit gates
which will be described in more detail later.
To achieve single-qubit operations the transitions from the ground state g to the first exited
state e are driven with short microwave pulses [Baur 12, Ch. 5]. The only downside of the
transmon type of qubit is the reduced anharmonicity. This means, that the transition fre-
quencies to the first exited state νg→e and from the first to the second exited state νe→f become
similar. This in turn sets a limit on how short the pulses can be, such that they could address
a single transition. This problem is somewhat suppressed using special pulse envelopes with
a method called derivative removal by adiabatic gate (DRAG) [Motzoi 09, Gambetta 11] or
more complex Weak AnHarmonicity With Average Hamiltonian (Wah-Wah) [Schutjens 13,
Vesterinen 14].
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1.4 Two-qubit operations

If the qubit i with frequency ωi has a detuning ∆i = ωi − ωr from the resonator which is
large compared to the coupling rate gi, energy conservation prevents population exchange
between the qubit and the resonator. In this so called dispersive regime the Jaynes-Cummings
Hamiltonian, describing the two qubits in the cavity, has the form [Blais 07]

H2q ≈ ~ωra†a+ ~
∑
i=1,2

ω̃i
2 σ

z
i + ~

g1g2 (∆1 + ∆2)
2∆1∆2

(
σ+

1 σ
−
2 + σ−1 σ

+
2

)
(1.3)

up to second order in small parameters gi/∆i. The first term of the Hamiltonian represents
the energy of photons in the resonator where a† and a are corresponding creation and annihi-
lation operators. The second term gives the energy of the qubit state with ω̃i = ωi+χi being
the Lamb shifted qubit frequency [Fragner 08] and χi being the magnitude of the correspond-
ing dispersive shift2. Here we are most interested in the last term of Hamiltonian 1.3, which is
the exchange term with σ+

i = |e〉〈g| and σ−i = |g〉〈e| being the rising and lowering operators
of qubit i. Such interaction is also called J-coupling [Nielsen 00, Ch. 7.7.2] with qubit-qubit
coupling strength J = g1g2 (1/∆1 + 1/∆2) /2. Although the resonator is not exchanging any
populations with the qubits it provides a channel for photons of virtual state. Thus the
resonator acts as a quantum bus coupling together distant qubits [Blais 04, Majer 07].
The |gg〉 and |ee〉 states are always eigenstates of the full Hamiltonian given by Equation 1.3,
but the states in the one-excitation manifold are mixed by the J-coupling to symmetric and
antisymmetric eigenstates [Filipp 11]

|ψs〉 = sin(θm) |eg〉+ cos(θm) |ge〉 , (1.4a)
|ψa〉 = cos(θm) |eg〉 − sin(θm) |ge〉 , (1.4b)

with θm being the mixing angle given by

cos(2θm) = −δq/
√

4J2 + δ2
q (1.5a)

or

sin(2θm) = 2J/
√

4J2 + δ2
q (1.5b)

which depend on the qubit-qubit detuning δq = δ1 − δ2. By tuning the qubits from the
interaction position δq = 0 to the parking position limit δq � J , effectively the interqubit in-

2For discussion regarding g and χ for transmon qubits refer to [Koch 07, Ch. 3] and [Filipp 11, Ch. 3].
AC Stark shift terms of the form a†aχσz have been dropped as we are interested in the case where the
resonator photon number is low [Blais 07, Sec. III].
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teraction is switched off3 and the eigenstates |ψs〉 and |ψa〉 asymptotically go to |ge〉 and |eg〉.
In the rotating reference frame (RRF) of the qubits the exchange term of Hamiltonian given
by Equation 1.3 provides a time evolution

Ugg(t) = e−it/~Hint = e−itJ(σ
+
1 σ

−
2 +σ−

1 σ
+
2 ) =

=


1 0 0 0
0 cos(Jt) −i sin(Jt) 0
0 −i sin(Jt) cos(Jt) 0
0 0 0 1

 .
(1.6)

For the waiting time ti-swap = −π/(2J) this interaction gives us the i-swap gate.
Having arbitrary single-qubit operations and the i-swap gate we already have a universal
set of quantum gates [Brylinski 02, Bremner 02] but to implement a c-not (c for controlled)
one needs two i-swap gates [Schuch 03]. By using an evolution through non-computational
states it is possible to directly implement a c-phase gate [Strauch 03] which can be turned
into the c-not with single qubit operations.
The non-computational state most easy to access, is the f -level of one of the qubits. The
relevant interaction Hamiltonian reads

Ĥeg = ~Jeg [|fg〉〈ee|+ h.c.] (1.7)

with h.c. standing for the hermitian conjugate of the first term and sub-indexes k and l

in Ĥkl and Jkl standing for qubit states without the extra excitation they exchange in the
interaction (in this notation J used before corresponds to Jgg). This gives a time evolution
of

Ueg(t) = e−it/~Heg = e−itJ
√

2(|fg〉〈ee|+h.c.), (1.8)

P † Ueg(t)P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 cos(Jegt)

 (1.9)

with P projecting from the two 3-level systems, referred to as qutrits, down to the two-qubit
space. Note, that the evolution in the subspace is not trace preserving for arbitrary t as the
population is oscillating to a state outside of the logical qubit computational bases. However

3Another way to see this is by staying in the rotating reference frame of individual qubits and when qubits
are far detuned the rapidly oscillating coupling term will average out which is interpreted as a consequence
of energy conservation [Blais 07].
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for the waiting time of tc-phase = π/(Jeg) the Jeg coupling gives us a c-phase gate. If one
wraps the UJeg with single qubit Y(π2 ) gates the resulting propagator is

Y(π2 )P † Ueg(t)P Y(π2 )† =


1 0 0 0
0 1 0 0
0 0 cos(Jt/

√
2)2 sin(Jt/

√
2)2

0 0 sin(Jt/
√

2)2 cos(Jt/
√

2)2

 . (1.10)

which gives c-not operations for tc-not = ti-swap = π/(Jeg).
It is also possible to do the two-qubit operations by driving sidebands [Wallraff 07], but such
schemes are slower than flux pulse based schemes.

1.5 Numeric simulations

As some measurements take a lot of time, it is useful to study the ideas with numeric
simulations. Here and later in this thesis theoretical data presented is derived from the two
qutrit J-coupling Hamiltonian of the form

Hsim = Hbare +Hint. (1.11)

For the interaction term

Ĥint/~ = J
[(
|0〉〈1|A +

√
2|1〉〈2|A

)
⊗
(
|1〉〈0|B +

√
2|2〉〈1|B

)
+ h.c.

]
(1.12)

we assume the qubit detuning ∆ to be much larger than the qubit anharmonicity, which
allowed the relation Jeg =

√
2Jgg [Baur 12, Ch. 6]. The resonator term has been completely

dropped as we assume the resonator to be in the ground state. The term Hbare describes the
system made out of bare qubits and is the part, which is tuned by external field as

Hbare =
∑
i,k

|k〉〈k|i~ω̃ik =

=
∑
i,k

|k〉〈k|i (Eik(θi)− Eig(θi)) .
(1.13)

Here i ∈ {A,B} is the index of the qubit and k ∈ {g, e, f} is the index of the qubit state.
The dispersively shifted qubit frequency ω̃ can be taken to correspond to Ek −Eg defined in
equation 1.2 as the parameters for the latter are taken from the spectroscopy, which already
takes χi into account. Both χ and g are taken to be constant in the studied range which does
introduce a small quantitative error, but it simplifies the symbolic form of the simulations
considerably4.

4See also comments on Equation 1.3.
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Relevant qubit transition frequencies of Hsim are shown in Figure 2 as a function of qubit A
dimensionless magnetic flux or flux angle θA. The parameter for numeric evaluation here and
later are shown in Table 1. Qubits A and B correspond on the actual chip shown in Figure 4
to qubit A = 2 and qubit B = 1. Throughout the thesis the experiments and simulations
are shown for the same qubits.
It is worth pointing out, that even at the parking frequencies of the qubits the qubit-qubit
J-coupling is not completely switched off and the transition energies are little shifted from
the ω̃i5. To avoid the qubit state from evolving in the parking position, where we intend
to do nothing, we stay in the RRF with frequency ν of the so called dressed state of the
qubit6. For the two qubit operations qubit A will be shortly tuned into resonance with B

as indicated in Figure 2 with vertical lines. The separation of θi-swap and θc-phase, which is
due to qubit anharmonicities, allows to implement time evolution 1.6 or 1.10 independently.
At the anticrossing the bare qubit states have the time evolution in relation to uncoupled
bare states. During the gate the later is used for the RRF because if the coupling would not
be present, the gate should not alter the qubit state. The corresponding propagators in the
RRF of the dressed and bare states are defined as

Ubare = Usim (Z(tω̃A)⊗ Z(tω̃B)) (1.14a)
Udressed = Usim (Z(tωA)⊗ Z(tωB)) (1.14b)

where Usim = P † exp(−it/~Hsim)P is a function of t and θ as isHsim defined in Equation 1.11.
Later on, both RRFs will be used and the difference has to kept in mind.
To prevent the leaf-counts of symbolic expressions from growing too high, a second-order
polynomial approximation is used instead of exact Mathieu functions around qubit parking

5Actually even what was called the bare qubit state is finitely hybridized with the resonator.
6This point is also discussed in depth [Ghosh 13, Ch. III-c].

Qb A Qb B
EC/h 0.303 GHz 0.297 GHz

from [Steffen 13a]
νmaximum 7.373 GHz 6.273 GHz
νparking 6.5898 GHz 5.8874 GHz

measured recentlyJ00/2π 14.9 Mhz

Table 1: Parameters used in the simulation. First group of parameters are taken
from [Steffen 13a] which also describes the sample used in the experiments for the
thesis. Second group of parameters is directly observed.
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Figure 2: Energy dependence of two qubit states on the flux bias of qubit A. The
flux bias used for c-phase, i-swap and qubit parking are marked with a vertical
lines. When the energies of two states are tuned to resonance, they are shifted by
Jkl/π due to qubit-qubit coupling. The splitting is smaller for the second order
process at the anti-crossing of |02〉 and |20〉.

flux angle. This is both easier to evaluate symbolically and is more precise than the cosine
approximation often used. The comparison is shown in Figure 3. One could also just use
the frequency ω̃ as the parameter instead of θ, but the relative qubit anharmonicity is not
constant over θ and we use the polynomials to describe the dynamics with higher states more
accurately.

1.6 Experiment setup

The experiments in this thesis were carried out with the sample for the quantum state
teleportation experiment [Steffen 13a] and is shown in Figure 4. It has four transmon qubits
capacitively coupled to coplanar transmission line resonators at the anti nodes of the standing
wave of the chosen mode.
The ends of two of the resonators are coupled to input and output ports for transmission
measurements. As the qubits are strongly coupled to the resonators they induce state de-
pendent resonator frequency shifts even when far detuned from the resonator7. The readout
method is called dispersive readout [Wallraff 04]. As the transmitted signal has a strength on
the order of less than 10 photons (to avoid qubit driving), it is first amplified using a quantum
limited Josephson Parametric Dimer (JPD) [Eichler 14] and then with other cold and warm
amplifiers before down-conversion and digital homodyne measurement using custom firmware

7Shown using the dispersive regime of the generalised Jaynes-Cummings model [Blais 04].
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Figure 3: Transition frequencies ν from ground to first exited and from first exited
to second exited are shown as a function of dimensionless flux angle θ. The exact
values are shown with solid lines and second order polynomial approximations are
denoted with dashed lines. The series expansions is done at the qubit parking
positions indicated with dots.

on FPGA [Lang 13]. In case of averaged readout, the signal is averaged 2× 103 to 100× 103

times depending on the nature of the measurement. The integrated difference of calibration
and measurement time traces maps the two-qubit population into a single number here re-
ferred to as M-value. The scaled and normalized mapping is described by a measurement
operator

M =


0 0 0 0
0 meg 0 0
0 0 mge 0
0 0 0 1

 (1.15)

where positive real numbers meg and mge in the range [0, 1] are related to qubit state depen-
dent changes in resonator transmission [Filipp 09]. The analysis and measurement operator
are discussed in more detail in Section 3.1.
In addition to the qubits and resonators there are voltage bias and flux lines for each qubit
on the sample. As we use transmon qubits, we don’t need to DC bias the qubits, but the
lines are used to drive the qubit transitions with microwave (MW) pulses from 4 to 9 GHz
depending on the qubit parking position. The parking position is set with 3 off-chip coils
providing the ability to park relevant qubits independently at the specified frequency. The
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Figure 4: Rendered image of the sample used for the experiments described in
this thesis. There are four qubits with voltage bias lines (green) and magnetic flux
lines (blue). Qubits are connected with three resonators, out of which R1 and R3
are connected to input and output ports (red). Sample fabrication, characteristics
and image courtesy [Steffen 13a].

qubit flux lines are used to detune the qubits from their parking position to achieve two-qubit
gates using nanosecond scale DC pulses described in more detail later.
To carry out algorithms composed of qubit manipulation pulses, when the typical lifetime of
the qubit is few µs, the operations have to be fast. A typical single qubit pulse has a waist
width of 3 ns. To produce arbitrary MW waveforms in this time scale, a 1.2 GS/s arbitrary
waveform generator (AWG) is used. The patterns are compiled for both signal quadratures
on the measurement PC with intermediate frequency νIF = 150 MHz and loaded into the
AWG. The output of a channel pair is then directed to an IQ-mixer to be upconverted for
qubit (qb) manipulation with local oscillator frequency νLO = νqb + νIF from phase locked
MW generator. Having not only the amplitude, but also the phase modulation allows us to
drive the qubit around both x and y axes of the Bloch sphere [Baur 12, Ch. 5]. The rotations
around z axes, the phasegate can be done by change in computational bases (phase of AWG
pulses can be arbitrary) or with fast flux pulses, which would detune the qubit for short
period from its computational bases RRF. The flux pulses are also produced with the same
AWG-s and thus limited to 0.8 ns time resolution.
Care has to be taken to suppress different kinds of environment noise. Around the sample
holder are magnetic fields shields. To prevent thermal excitation of MW range qubits is
cooled down by 3He/ 4He dilution refrigerator with usual base plate temperature of 20 to
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30 mK. Not only the mechanical components have to be cold, but also the signals reaching
the sample. This is done by attenuating the incoming signals at each temperature stage. At
each stage this suppresses the temperature radiation from the previous stage with the cost
of adding the temperature field of the thermalized attenuator itself.
More detailed description of the setup of circuit QED experiments is provided in [Steffen 13b,
Ch. 4] and [Baur 12, Ch. 4].
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2 Shape optimization of flux pulses
Different experiments with long sequences of multi-qubit operations have already been carried
out [Córcoles 13, Barends 14]. In the case where the gate is used multiple times in a long
sequence it is increasingly important to achieve highest possible gate fidelity.
Our goal is to achieve such calibrated operation blocks, which could be concatenated into a
long algorithm after independent calibration of single blocks. This means the gate should in
no way depend on the history as otherwise calibration of all combinations might be needed,
which would remove the scaling advantage the quantum algorithms possess. Here I describe
the calibration methods implemented as automatic routines in the QubitCalib software suite
developed in our lab [Menke 13, Landig 13, Heinsoo 13]. Some effects we discuss could be
avoided with different sample design (like the screening current described in Section 2.2) or
better control hardware (flux pulse ringing in Section 2.3), but some are fundamental to this
kind of system.
The following discussion focuses on the calibration of the i-swap gate needed for planned
quantum simulation experiments [Las Heras 14], but the flux pulse model built throughout
the discussion holds for other two qubit operation blocks including the two-qubit identity
gate, which also needs calibration as it too suffers from the residual coupling discussed in
Section 2.5. Similar calibration methods for c-phase gate are discussed in [Baur 12] and
in [Heinsoo 13].

2.1 Interaction length and amplitude

As described in Section 1.4 there are two knobs to be tuned to achieve i-swap operations with
dynamics of our system: the amplitude of the flux pulse, which would tune the qubit A from
νA to νi-swap, the resonance with qubit B, and the length of the flux pulse which corresponds
to the exact J-coupling strength of the states. The most straight forward way to evaluate
the correctness of the parameters is to measure the expected exchange of population between
two qubits on resonance.
To measure the exchange of qubit population we first take qubit A to the exited state using
a π rotation around the X axes of the Bloch sphere by a short on-resonance MW pulse.
Then we apply a square flux pulse through the local flux line of qubit A. If the flux pulse is
close to the i-swap operation, qubit B should now be exited. One more π-pulse is applied
on qubit A to increase the visibility in the dispersive readout8. The used pulse scheme is

8The |gg〉 and |ee〉 states are easier to separate than |ge〉 and |eg〉. The two-qubit measurement scheme is
discussed in more detail in Section 3.1.
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illustrated in Figure 5b. If the interaction length was too long or too short, or the exchange
of population was not complete due to wrong amplitude of the flux pulse, the |gg〉 state is
found instead of |ee〉 and we get a 2D landscape shown in Figure 5a. Note that the outcome
would be the same, if the π-pulses would be done on the other qubit due to the symmetry of
the gate.
The optimal flux pulse length and amplitude are given by the maximum of this landscape.
The population exchange is periodic and thus there are many maximums but the one corre-
sponding to the shortest i-swap gate in our case of negative J , is the first one. The optimal
gate parameters can be extracted from the data set by fitting a sine to each time-line. Then
the maximum of the frequency vs. qubit detuning relation is found by fitting a parabola
as shown in Figure 5c. The extremum of the parabola corresponds to the optimal gate
configuration.
To confirm that parameters given by the method really give the i-swap we have simulated
the corresponding landscape and compared it with the fidelity landscape. The Chevron
landscape is simple to evaluate by applying (σx ⊗ σ0)Ubare(σx ⊗ σ0) to the ground state |gg〉
and calculating the expected value of the measurement operator 1.15 〈M〉 for the output
state. The average gate fidelity is defined as

Fi-swap =

∣∣∣Tr
[
U †i-swapUbare

]∣∣∣2 + Tr
[
U †bareUbare

]
20 (2.1)

which does not require Usim to be unitary [Pedersen 08]. The fidelity landscape and com-
parison of its maxima with simulated Chevron pattern for the parameters near i-swap gate
is shown in Figure 2. From the good agreement of these landscapes we conclude, that the
Chevron pattern is a good guide in finding the optimal gate parameters.
The fluxpulse parameters obtained from data shown in Figure 5c are precise enough, but such
a measurement takes 1.5 hours. One could take less averages but the method is first order
insensitive near the optimal configuration and the data extracted from far from resonance
suffers from systematic errors due to other nearby avoided crossings.
Instead of measuring a large set of configurations we can use the gradient-free numeric opti-
mization algorithm Nelder-Mead9. In our case we need to optimize the values of two param-
eters and the objective function corresponds to 〈M〉. The algorithm starts by measuring the
values for 3 start configurations forming a triangle on a 2D plain. Then the configuration
giving the worst value for the objective function is determined and three new configurations
are measured:

• the center of gravity of the triangle,
9It has already been used in similar situations before in [Magesan 12] and [Kelly 14].
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Figure 5: Chevron pattern measurement experiment for calibrating the i-
swapgate. In Sub-figure 5b flux pulses and both quadratures of the MW pulses
at the intermediate frequency before the up-conversion are shown. In Sub-figure
5c parabola fit to frequencies of each Chevron pattern slice of constant flux pulse
amplitude is shown.
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Figure 6: Comparison of i-swap gate fidelity and Chevron pattern as function
of detuning from resonance δν and length of the interaction t. The optimal values
are marked with solid grid lines. Contour corresponding to fidelity 0.8 and 0.95
are marked with dashed lines.

• the point which is the reflection of the worst value by the axes formed from other two
and

• another point farther away in the same direction.
Then the new triangle is formed from the best two of the initial configuration and the
best one out of the new configurations. Note that the triangle can expand, contract or shift
depending on the gradient of the landscape. The cycle is repeated until the difference between
three configurations gets below the desired value. In our case we reach easily the limit set
by our AWG resolution with around 15-25 iterations. The used Tektronix AWG 5014 has
time resolutions of 0.84 ns for 14-bit analogue output and the full range was used for best
effective resolution. Due to filtering the amplitude resolution also improves the effective time
resolution by approximately factor of two. The formed landscape and history of convergence
are illustrated in Figure 7. This closed loop optimization routine was implemented using the
multi-qubit operation support of the experiment control software QubitCalib [Heinsoo 13].
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Figure 7: Nelder-Mead optimisation of flux pulse length and amplitude on the
Chevron pattern landscape. The convergence of the method is seen from the fact
that the next measurement configurations converge into a single point in the full
data map 7a and into single lines in the time lines 7c.
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2.2 Flux screening

If subsequent measurements with the device can be considered independent of each other
then the result does not depend on the measurement repetition rate. It had been noticed
before, that if in case of experiments with flux pulses the repetition rate was shorter than
100 µs compared to the usual 12.5 µs, the qubits seemed to have some additional detuning
which depended on the repetition rate.
To characterize the flux induced detuning in the subsequent measurement we did sequence
of Ramsey type of measurements after a flux pulse. A single Ramsey type of measurement
consists of two π

2 -pulses with a fixed delay in between. The first one takes the qubit from a
ground state |g〉 into a superposition state (|g〉 + |e〉)/

√
2. If the qubit is detuned from the

rotating reference frame (RRF) the super position state evolves around the Z axes of the
Bloch sphere similar to Larmor precession of spins in a magnetic field. In the end of the delay
time the qubit has collected a phase φ and is described by a state vector (|g〉+ e−iφ |e〉)/

√
2.

The second π
2 -pulse would take the qubit to an exited state |e〉 only if the qubit was not

detuned10. In order to measure the phase shift, the phase ψ of the second π
2 -pulse is varied

and the qubit is read out to be in exited state |e〉 in case the phases of second Ramsey
pulse and qubit precession are equal ψ = φ. Ramsey type of measurements in the context of
single-qubit IF calibration are discussed in [Baur 12, Menke 13].
By doing this measurement at several different waiting times after flux pulse, the time line of
the detuning of the qubit can be studied. To see effects on a time scale a lot longer than our
usual experiments the so called over-trigger scheme was used, where many AWG waveforms
the with Ramsey scheme followed by a single waveform containing the flux pulse. Usually
we assume, that the experiment trigger period is long enough to consider experiments to be
independent.
The measured time line of the residual detuning from the flux pulse is shown in Figure 8.
The result indicates an exponential decay with characteristic time scale of 21 µs and thus the
effect of the flux-pulse can still be seen after 200 µs. It has been discussed before [Baur 12,
Oppliger 12] that it could be due to a decaying screening current induced by the fast flux
pulse.
We managed to suppress the effect with a simple compensation scheme shown in Figure 9a.
Instead of one, we use two square flux pulses with equal length and amplitude, but with
opposite sign. The second pulse induces the equal counter current and thus eliminates the
seen exponentially decaying detuning. The time line measured after such screening compen-

10It could have also gathered a phase shift of multiple of 2π, but this corresponds to having the Ramsey
delay too long and we assume this not being the case.
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Figure 8: Time line of the qubit detuning after the flux pulse in case of three
different pulse amplitudes: negative, positive and no flux pulse. The solid lines on
the left plot are fitted exponents with decay times of 21 µs. The right plot shows
the details of the data. The standard deviation of data points is in the order of
fast data fluctuations as expected, but is not shown for clarity.

sated flux pulse is shown in Figure 2. Now it is feasible to have several flux pulses in a single
experiment. In addition we can now decrease the length of the measurement iteration 8 times
from 100 µs up to 12.5 µs and use the same time to take more averages leading to an increased
measurement fidelity.
It is clear from the data shown in Figures 8, that the detuning does not decay to below
measurable level, but goes to some constant offset. This effect is there even in the case the
single qubit drive frequency had been calibrated just before the experiment. As we see the
same offset in the experiment segment without the flux pulse the characteristic time scale of
the effect has to be a lot longer than what we propose to be the decay of screening current.
In addition to some environment induced instability of the qubit, for example variations in
external magnetic field, it has been proposed in [Oppliger 12], that the flux pulses could heat
the relevant area on the sample which in turn affects the qubit frequency via spin ordering
in the superconductor [Sendelbach 08]. In either case it needs further study in the future.
In order to avoid the screening current in the first place the ground planes could be moved
further away from the qubit11.

11It is not discussed, but seems to be done for example in [Vesterinen 14, Saira 13].

22



int. len.

-120 -110 -100 -90 -80 -70

time HnsL

fl
u
x
am
p

(a) Flux pulse shape which compensates the
screening current using a mirrored shape.

0.1 0.2 0.3 0.4 0.5
89

90

91

92

93

94

95

96

delay HmsL

D
et
u
n
in
g
Hk
H
zL

(b) Over-trigger ringing measurement with
screening current compensation.

Figure 9: Data in Figure 9b shows, that the flux pulse shape shown in Figure 9a
does compensate the 21 µs decay seen in Figure 8. The difference in the constant
offset was probably due to recalibration of the IF between these two experiments.
Apart from that the experiments were identical. The Interaction length of the flux
pulse is marked in Plot 9a. The origin of the time axes is the same in bot plots,
but note the difference in units.

2.3 Flux pulse ringing

It is important to have no remaining detuning after each individual flux pulse to be able to
consider successive flux pulse based gates independent. When the long time scale effect shown
in the previous section has been compensated we can focus on the qubit frequency response
closer to the flux pulse. For this we use a method similar to over-trigger Ramsey described
in previous section, but now the Ramsey measurement is done in the same waveform as the
flux pulse - it is iso-trigger. Again the distance between the Ramsey scheme and flux pulse
is varied. The qubit detuning time lines for three different flux pulse amplitudes are shown
in Figure 10. Such a method for studding the flux pulse detuning after a flux pulse was also
described in [Barends 14, Supp.] and similar observations, although obtained a different way,
have been discussed in [Johnson 11].
As can also be seen from Figure 10 it takes around 50 ns for the detuning to reach a level
less than 1 MHz. Then the detuning is order of magnitude smaller from the spectral width
of the applied MW pulses. Detunings less than 1 MHz will not decrease the fidelity of single-
qubit operations too much and only contributes to the single qubit phase errors. As will
be described in Section 2.4, single-qubit phase gates are anyway need on both sides of the

23



0.0 0.1 0.2 0.3 0.4
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Delay HΜsL

D
et
u
n
in
g
HM
H
zL

All data

0.0 0.1 0.2 0.3 0.4

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Delay HΜsL

D
et
u
n
in
g
HM
H
zL

Details

Flux amp 1.6 Flux amp -1.6 Flux amp 0

Figure 10: Three time lines of qubit detuning recorded in an iso-trigger flux
pulse ringing measurement show fast decay, small undershoot and a constant offset.
Note that the flux pulse scheme includes a spacer-after of 75 ns and the time axes
is relative to this point.

flux pulse. The way they will be calibrated will also compensate for the small phase errors
collected during the detuning from the steady state. It is important, that detuning is not
accumulated over several operation blocks as would the uncompensated screening current.
Thus an additional waiting time to the 75 ns spacer already shown in the pulse scheme in
Figure 10, is not needed.
The origin of the undershoot and the slow decay of the detuning has several possible sources.
When generated, the flux pulses are inverse filtered to compensate the response of AWG and
cabling [Bozyigit 10]. It is not possible to measure the response for inverted filter in the
actual measurement setup. Dipstick measurements indicate that the response does depend
on the temperature of the cables [Baur 12, Ch. 4] and this might introduce the imperfection.
It has been proposed, that the ringing comes from a standing wave in some later stage of the
cabling [Barends 14, Supp.] (for example between sample holder connector mount and sample
connections) and can be compensated by adding a exponential term into the measured warm
cabling response. In [Ghosh 13] it is discussed, that adiabatic flux pulses loose significantly
less population into other nearby non-computational states and it would also decrease the
requirement on the precision of the inverted filter. On the other hand during adiabatic tuning
of qubit frequency, the qubit might cross other decay channels. The finding of the sweet spot
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between these two effects and other possible solutions are yet to be tried.
In addition to the side effects just described, the detuning does not decay to below the
measurement precision, but to a constant offset. Possible reasons for this are described in
end of Section 2.2.

2.4 Dynamic phases

In an experiment the rotating reference frame (RRF) has to be well defined, to have a chance
of controlling the phases of the qubit states. The frequency of the reference frame corresponds
to the qubit transition frequency to the first exited state. In our case, we fix the LO and fine
tune the IF using a Ramsey type of measurement [Menke 13, Baur 12]. The RRF phase is
the sum of LO and IF phases. Phase of IF is fixed by reused control-software generated AWG
waveforms. Single-qubit experiments are easy in the sense, that LO phase can be arbitrary
in each experiment segment. This is because all MW control-pulses of the single qubit have
phases defined by the same LO which defines the temporary computational bases and the
used dispersive readout is phase insensitive (measures only σz component).
In case of two-qubit gates the flux pulses are done at some fixed point after the start of the
experiment and it takes the qubit state from two different RRFs into a single one. Now the
relative phase of qubits can not be random over experiments. To have fixed LO phase in the
beginning of the experiment segment it is chosen to be commensurate with the experiment
repetition rate12. To keep the relative phase of the qubits fixed the LO-s and the experiment
trigger are phase-locked. To choose the relative phase of the qubits in the beginning of the
qubit-qubit interaction (the end of the finite rise time of the flux pulse) we do a single qubit
phase gate. This is done by tuning a height of the buffer on the rising edge of the flux pulse.
Similarly the qubit has to be taken back to its original RRF in the end of the interaction
with a buffer on the falling edge. The buffers also suppress side effects of rapid flux pulse
amplitude changes induced by AWG non-linearity. The phases the qubit collects in the other
RRF are called dynamic phases.
In the experiment there are several cases were the LO phases shift13. In this case a simple
dynamic phase calibration procedure is done which in case of the i-swap operation is easy to
interpret. First one of the qubits is prepared in the superposition state with a π

2 -pulse. Then
a well calibrated i-swap gate would swap the state into the second qubit adding a phase shift
of 90°. The π

2 -pulse with phase shift of 90° on the now populated qubit should set it into
12We mostly use a trigger rate of 25 µs.
13For example the trigger generator phase shifts in relation to reference signal after a change of settings or

a restart.
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the exited state. If the corresponding buffer amplitude is varied the maximum population
marks the optimal configuration. Due to the similarity to the experiment described in the
previous section, the scheme is referred to as cross-qubit Ramsey type of experiment. The
pulse scheme is shown in Figure 11.
Note that we also have to vary the corresponding buffer in the screening current compensation
pulse to keep the total area under the pulse constant. As the qubit frequency dependence on
the magnetic field shown in Figure 3 is linear for the small detuning from the parking position,
the buffer after the flux pulse effectively compensates itself. For larger flux pulse amplitude
the second order dependence has enough effect however and the method still works. This is
demonstrated by the good fit of cos(x2 +x0) onto the experimental data shown in Figure 12.
Note also, that as seen from Figure 11, the second buffer calibration is sensitive to the setting
of the first one due to the screening current compensations scheme and for this reason the
order of the buffer calibration is important.

2.5 Conditional phase

The first part of buffer calibration, where the buffer-before is calibrated to compensate the
dynamic phase of the non-fluxed qubit B, should give a same result independently weather
qubit B is initially exited or not. When we did such a experiment we did see a phase shift
which corresponds to a conditional qubit detunig in order of 1 MHz14. From quantum process
tomography experiments described later, we know that the effect is due to the residual
qubit-qubit coupling. Even when tuned far from the resonance the coupling dispersivly
shifts the qubits and the magnitude of the shift depends on the qubit states due to the qubit
anharmonicity.
A similar problem is solved in nuclear magnetic resonance (NMR) quantum computation
using dynamic decoupling [Nielsen 00, Ch. 7.7.3]. Although it is possible to implement it
with only linear overhead in the number of qubits [Leung 00] it is still unfeasible with our T1

and T2 times. Instead we make use of the additional buffer in our flux pulse to implementing
a conditional arbitrary phase (carb-phase) gate.
The c-phase gate briefly discussed in Section 1.4 works by collecting a geometric phase
during the closed evolution cycle through a non computational |fg〉 state. In the case of
on-resonance oscillation the collected geometric phase is exactly 180°. In the off-resonance
amplitude and period of the population are smaller and the collected geometric phase differs
from the on-resonant case. By choosing a correct length and amplitude of the additional flux

14This has nothing to do with the anomaly described in Section 2.3 as then neither of the qubits was
initially exited.
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Figure 11: Pulse scheme for calibrating the dynamic phase compensations using
two buffers. LO modulated MW drive waveform for qubits A and B are shown
together with the flux pulse shape for detuning qubit A. On the left (right) plot
the buffer before (after) is varied and the resulting phase error is turned into
measurable qubit population by the π

2 -pulses. As we use the inverted flux pulse
shape to compensate for the induced screening current the corresponding buffer in
the inverted pulse also varies.

pulse buffer we could compensate an arbitrary conditional phase while also recovering all of
the population into two qubit subspace. The new flux pulse shape with multiple buffers is
shown in Figure 13.
To compose a similar fidelity landscape to the one shown in Figure 6 we assume, that the
optimal flux pulse interaction amplitude and length are chosen as described in Section 2.1
corresponding to

Ui-swapsim = Ubare(t→ ti-swap, θ → θi-swap). (2.2)

where the Ubare is the propagtion operator of simulated Hammiltonian in RRF of bare qubits
defined in Equation 1.14. In this RRF the single qubit states collect phases corresponding
to definition of the i-swap gate. In addition the choice of RRF makes |ee〉 state collect the
conditional phase we are going going to compensate with the new buffer.
The evolution after the i-swap operation we look in the RRF of the dressed states to avoid
any other phases, but the geometric. The carb-phase buffer with a amplitude θ and length
t is given simply by Udressed(t, θ) defined in Equation 1.14. To make the simulations with
different buffer lengths comparable the we add the evolution of the system in its parking
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Figure 12: Measured qubit population in the dynamic phase calibration exper-
iment. The maximum qubit population is seen in the case of flux pulse buffer
configuration corresponding to the i-swap gate. The buffer amplitude marked
with gray dashed line will be used. It is also clear, that the response is linear in
buffer amplitude in the case of the first buffer and second order sensitive in the
case of the second buffer as the functions cos(x+x0) and cos(x2 +x0) fit the data
well for the buffer before (left plot) and after (right plot) respectively.

position till the end of the simulation and define it by

U1sim = Udressed(t′ → tmax − t, θ → θparking). (2.3)

To see the relevat dynamics it is enough, if the length of the simulation tmax = 225 ns. Now
we can write down the total process of conditional phase compensation (CComp) as

UCComp = Ucarb-phase(φzz)U1sim(t)Udressed(t, θ)Ui-swapsim (2.4)

where φzz is the conditional phase additional to the one collected by U1sim and Ui-swapsim.
Using this result, the fidelity to ideal i-swap operation can be evaluated again by usage of
Equation 2.1.
From Figure 14 it is clear, that in our system the fidelity improvement by the added buffer
is significant. Note how the shortest high fidelity conditional phase compensation buffer for
the φzz = 110° has to be quite close to the complete c-phase gate. In case of −50° one
gets a total gate fidelity above 80% also in case of doing nothing, but a buffer is needed to
achieve higher fidelity. In the experiment the optimal configuration for the conditional phase
compensation buffer can be found with a similar method to the one described in Section 2.1
and is currently under development.
There are other ways to suppress it, but they all have some important pay-offs. By choosing
parking frequencies farther from the resonator or decreasing the qubit coupling to resonator
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Figure 13: Final flux pulse shape with different regions shaded according to the
corresponding usage.

by sample design we would decrease the J at the resonance more, than it would decrease the
residual coupling in addition to decreasing the speed of dispersive readout. If we just used
bigger qubit parking frequency difference it would improve the on-off ration of the coupling,
but we would loose in the relative accuracy of the AWG both in amplitude and time (relative
RRF frequency would increase) where we already are at the limit.
Compensating the conditional phase is vital to realise the algorithmic approach described in
the introduction of the present chapter. So far this problem has been hidden by decomposing
the two-qubit operations into c-phase or equivalently c-not gates. When the c-phase gate
is fine tuned to give correct conditional phase, one actually calibrates the flux pulse into
carb-phase operation which together with residual conditional detuning gives the desired
c-phase operation. When screening current compensation is not used, the plain c-phase
gate has a typical length of 20 ns and even with some buffers the waiting time is too short to
really notice the difference of carb-phase and exact c-phase gate. Also when the i-swap
was not used, the parking position off qubit A could be farther from the avoided crossings
and thus the on-off ration of c-phase gate could be improved without loosing relative AWG
resolution.
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Figure 14: i-swap fidelity landscapes for the cphase-buffer parameters for two
different conditional phase values. For comparison the i-swap and c-phase gate
lengths and corresponding qubit detunings together with qubit A parking positions
are marked with solid lines. Note, that the detuning axes are non-linear, as the
actual control parameter is the flux pulse amplitude which is plotted linearly.

2.6 Discussion and outlook

As mentioned in the introduction of this chapter also the two-qubit identity process 1 suffers
from this problem. For example this is why in the Quantum von Neumann Architecture
discussed in [Ghosh 13] simultaneous excitation of coupled qubits is forbidden while doing
single qubit operations. Unlike in the case they discuss, in our current designs we have
no memory resonators and the approach is not applicable. Instead of staying in the single
excitation manifold one could calibrate the 1 operation like any other by finding the optimal
flux pulse for a compensation carb-phase gate.
As seen from Figure 13 the resulting pulse scheme is already rather complicated. In a realistic
setup the assumption that different features of the pulse shape can be calibrated indepen-
dently might not hold. One could insert all of the calibration parameters (or use a more gen-
eral flux pulse model) into a single closed-loop optimization scheme like ORBIT [Kelly 14],
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where again the Nelder-Mead model free optimization method is used. However they are able
to implement randomised benchmarking (RB) due to having order of magnitude better T1

and T2 than we do at the moment and use the RB fidelity as an objective function. Instead
of this, one could develop more direct error syndrome measurements or use Monte-Carlo
process certification [Steffen 12].
If the relevant experimental side-effects could be estimated quantitatively with good precision,
one could employ algorithms like GRAPE [Khaneja 05] to optimise the pulse shape for a
given Hamiltonian for maximal gate fidelity, shortest possible length and possibly maximal
error-resilience [Egger 14a, Egger 14b]. However the only side-effect we can predict from
a relatively simple Hamiltonian is the conditional phase we just discussed and the method
would probably not improve the i-swap gate. On the other hand it is possible to implement
more complicated gates with complex qubit control and the optimal pulse control would help
to adjust the pulse shape for the dynamics of the system.
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3 Process tomography
Tools of quantum process tomography are intended for partial or full characterisation of a
quantum black box, of an unknown quantum gate. It can be used as a method to diagnose the
errors or to quantify the goodness of the implemented gate. In turn it relies on the ability to
carry out quantum state tomography, a full characterisation of quantum state, in addition
to the ability of precisely preparing input states.
For detailed discussion on state tomography refer to [James 01], which also includes discus-
sion on maximum likelihood, or to [Liu 05] for an extensive theoretical overview of state
tomography of superconducting qubits. The full process tomography was first described
in [Chuang 97] and later revisited in [Leung 03]. Recent publications cover partial process
tomography [Wu 13] and optimization in case of additional assumptions [Baldwin 14].
Here I will discuss several different representations of a quantum process, which were useful
for the study of relevant errors. All of the methods below were programmed in the Wolfram
Language in a reusable manner for the future study of a larger set of quantum operations.
Here I only present data for the i-swap and two-qubit identity (1) gate. Note, that the 1
process is not trivial, due to the small coupling of |ee〉 and |fg〉 levels at our parking position
introducing a conditional phase shift discussed in Section 2.5.
The examples of experimental data will be limited to three data sets featuring nearly best 1
and i-swap gates we can do and, for demonstration, a 1 gate which does not include condi-
tional phase compensation. The data sets will be referred to as good-1, good-i-swap and
bad-1 accordingly. Detailed numerical comparison of the data sets is provided in Appendix B
and experiment configurations are given in Table 1.

3.1 Two-qubit readout and state tomography

In order to show the reconstruction of an unknown two-qubit state, few details about our
readout scheme need to be discussed. The general principle of the dispersive readout was
outlined in Section 1.6. Here I will describe the relevant details about the way the full
information of the qubit state is gathered from the measured homodyne signals.
Each experiment sequence includes segments consisting of the measurement calibration time
traces. For these, the qubits are prepared in the σz eigenstates Z±⊗Z± = {|gg〉 , |ge〉 , |eg〉 , |ee〉}.
The homodyne measurement records the time dependence of both quadratures of the trans-
mitted signal. If the phase of the measurement tone was chosen such, that in the case of the
|gg〉 state the Q-quadrature is carrying most of the signal, the normalised transmitted signal
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strength in the quadrature is [Filipp 09]

α±± = −κ
{

(κ/2)2 + (∆rm ± χ1 ± χ2)
}

(3.1)

with ± corresponding to the prepared eigenstates Z±, ∆rm = ωr−ωm is the readout frequency
ωm detuning from the resonators bare frequency ωr and χi denotes the dispersive shift of the
qubit i. In the experiments throughout the thesis the readout frequency was chosen to be
ωm = χ1 + χ2 such that the maximum transmition corresponds to the ground state |gg〉.
From the calibration traces we extract scaled and normalised α′±± by

α′±± = 1/N
∫ T

tm
[〈M(t)〉±± − 〈M(t)〉++] dt (3.2)

where 〈M(t)〉 is the ensemble average of the signal for a given time t in the experiment and N
we chose such that the exited state response α′−− = 1. This gives an effective measurement
operator

M =


0 0 0 0
0 α′−+ 0 0
0 0 α′+− 0
0 0 0 1

 =


0 0 0 0
0 meg 0 0
0 0 mge 0
0 0 0 1

 (3.3)

where at the last equality the notation is changed back to the one used in Section 1.6. Note,
that we can assume the M to be diagonal as we can consider the dispersive readout to be a
non-demolition measurement [Blais 04].
A general n-qubit state (might be a mixed state) with global phase degree of freedom, is
described by 4n− 1 real parameters. Thus to fully characterize a quantum state the number
of real parameters corresponds to the number of linearly independent measurement basis
needed. Although we have the measurement calibration traces, which should normalise the
measurement signal, they have the preparation pulses just before the readout and are mea-
sured in an experiment segment without any other pulses. The state tomography might be
done in a segment with flux pulses or at some earlier time before the measurement compared
to the measurement calibration. To take this into account we always did in total nsTom = 16
measurements. This over-completeness enforces the correct normalization providing the in-
formation about the states pureness. It is easy to see in the single-qubit case, where three
linearly independent measurements only give the direction of the Pauli state-vector in the
Bloch sphere15. Without the additional fourth measurement (or relying on the calibration of
the sensitivity of the measurement apparatus) it is not possible to tell if the vector is pointing

15See Appendix A.
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onto pure states represented by the surface of the Bloch sphere or whether the measured state
corresponds to a mixed state inside the sphere.
As the measurement operator measures only the σz component, one needs to prepend the
readout with a unitary transformation Uk to rotate the other components of the state vector
to the measurement axes. If the rotation axes (eigenvalues) of Uk span the full studied
subspace, this gives the information

〈M〉k = Tr
[
U †kMUkρq

]
(3.4)

about all of the degrees of freedom for the reconstruction of an unknown state ρq. The goal of
state tomography is to turn the 16 measured values 〈M〉k into some common representation
of the state. The task is described with a linear equation

〈M〉k = Aklrl (3.5)

where indexes k, l ∈ [1 . . . 16]. If rl are the coefficients of the Pauli state-vector defined with
a base

Pij = {σ0, σx, σy, σz}i ⊗ {σ0, σx, σy, σz}j (3.6)

with i, j ∈ [1 . . . 4], the linear map Akl will be defined as

Akl = Tr
[
U †kMUkPl

]
. (3.7)

Equation 3.5 is now solved for rl by inverting the Akl and the input state ρq is reconstructed
by the superposition of the basis states

ρq =
∑
l

rlPl. (3.8)

Note, that it is easy to use any other representation by choosing a different basis for rl. One
can also do more measurements than there are coefficients r. In this case dim 〈M〉k 6= dimPl,
thus Akl is not a square matrix and therefore the pseudo-inverse A+

kl is to be used instead of
the matrix inverse A−1

kl . By doing the extra linearly dependent measurements one effectively
averages over possible errors induced from imperfect measurement rotations Uk by least
squares fit thus helping against systematic errors.

3.2 Optimizing the readout parameters

In the readout scheme within the quantum state tomography are two tunable parameters:
measurement tone frequency ωm and its phase. These parameters we fixed up to this point.
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The later can be kept arbitrary, as we record the signal in both quadratures in the homodyne
measurement. Instead of changing the phase of the readout tone, the recorded time traces
can be rotated by an angle θ on the IQ plane before the projection onto the Q-quadrature
axes.
Due to the scaling and normalisation of the effective measurement operator, both the readout
frequency and the phase will only change the values ofmeg,mge ∈ [0, 1]. Tuning of the readout
has an effect on the matrix Akl defining the quantum state tomography. In order to find an
optimal value for the described free parameters, one first needs a measure to quantify the
usefulness of the choice. Here we discuss condition number κ(Akl).
The condition number of a matrix A is defined as κ = ‖A‖ · ‖A−1‖ where different matrix
norms ‖�‖ can be used. The interpretation is especially simple in the case of the 2 -norm
which corresponds to the maximal singular value. Then [Cheney 12]

κ2 -norm = max[singA]
min[singA] , (3.9)

where singA gives the list of singular vales of the matrix A describing the linear map. As
singular values describe the scaling of eigenvalues by the transformation, the κ2 -norm ∈ [1,∞]
describes the ratio of largest and smallest scaling coefficients. If κ2 -norm = 1, all of the
eigenvalues are evenly scaled. If κ2 -norm >> 1, some eigenvalues are scaled considerably more
and in case κ2 -norm = ∞, the transformation map A is singular, meaning the measurement
results do not uniquely define the quantum state ρq.
It is obvious, that a readout phase and frequency giving very large κ(A) would be a bad
choice. Corresponding to the scaling interpretation of singular values, κ(A) = 1 corresponds
to equal scaling of eigenvalues from the space of measurement results to the space of qubit
state parameters and even distribution of errors, which is wished.
Shown in Figure 15a is 1/κ2 -norm as a function of meg and mge. It is clear, that 1/κ goes
to 0 (meaning singular map Akl) only when |meg| + |mge| = 1. Unintuitively meg = mge or
even meg = mge = 1 does not prohibit inversion of Akl. Thus it is enough to distinguish a
single two-qubit state from the rest in order to reconstruct the quantum states from the set
of quantum state tomography measurements. The dots in Figure 15a represent a typical set
of experimentally accessible configurations, where the readout frequency corresponds to the
resonator frequency for the two-qubit state |gg〉 and only the quadrature projection angle θ
is varied. The condition number as as function of the phase angle is also shown as 1D-slice
in Figure 15b.
As all of the points, independent of θ, correspond to equally reasonable condition number, it
is better to avoid a θ value, for which κ is very sensitive. These correspond to angles where
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(a) Inverse of the condition number κ2 -norm as a function of the scaled measurement operator M
diagonal elements meg and mge. The red areas represent singularity of the linear set of equations
for state tomography. The set of black points mark the configurations of a single experiment data,
but a different phase θ.
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(b) Condition number of state tomography map A as a function of readout phase angle θ.

Figure 15: Study of optimal condition number.
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the relative difference of the projected quadrature values are small and thus small variations
in the measured quadrature values cause significant readout errors.
By projecting the two quadrature signal a into scalar value some information is lost. It is pos-
sible, to make use of all measured information, making the analysis more robust and sensitive.
By making use of the acquired phase information it is possible to separate |gg〉 , |eg〉 , |ge〉
and |ee〉 in a single measurement. This has been done for example in [Steffen 13a]. This
requires a more careful choice of readout tone frequency, a more complicated approach in
data analysis and reformulation of state tomography. For the goals of the current thesis,
the described analysis scheme gives clear answers and the readout improvement and error
analysis is left as a task for the future.

3.3 Input-output map & error syndromes

In order to reconstruct the unknown quantum process, output states have to be measured for
several input states. Here I present straight forward representations of the quantum process
useful for debugging and as will be shown later, for finding efficient error syndromes.
The measurement value for rotated measurement operators Mk and prepared states ρl can
be estimated by

〈M〉kl = Tr
[
MkUidealρlU

†
ideal

]
(3.10)

and here we refer to such representation of the process as input-output-map (io-map). The
examples for Uideal = U1 and Uideal = Ui-swap are shown in Figure 16. For the examples given
here, the diagonal components of theM operator are fixed to realistic values ofmeg = 0.6 and
mge = 0.8, but in the case of each experiment they are recalibrated. Different measurement
axes are achieved by single-qubit pulses, which rotate the measured state component to the
measurement axes Z+. Here + denotes the σz eigenstate corresponding to positive eigenvalue
(ground state) corresponds to 〈M〉 > 0 and negative to 〈M〉 = 0 and the other way around
for Z−. Thus measurement of Z+ gives a maximum separation for the ground state for the
values of meg and mge. The examples given in Figure 16 contain measurements with both +
and − readout rotations. Although they contain the same information in a perfect system,
one of them gives better contrast due to the M not being invariant under qubit state flip σz.
Having better contrast less averaging copies are needed and this saves measurement time.
On the preparation side + (−) denotes that eigenstate corresponding to the preparation of
a state with a positive (negative) eigenvalue of the corresponding Pauli operator.
The io-map representation is helpful when debugging the early stage of the experiment.
When one compares the data to simulations, it is easy to recognize specific problems in
any preparation or measurement rotations as they lead to a difference of a whole column
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(a) io-map of the 1 process
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(b) io-map of the i-swap process

Figure 16: Example of theoretical input-output maps. Labels on horisontal axes
mark different preperation states and on vertical axes are the measured compo-
nents (see main text). Colours represent the expected measurement operator M
values.
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or row comparing to the simulation. The pour contrast of Z component readout elements
of the matrix could be caused by a too small number of averages, qubit decay (time scale
of T1) or by some instability in the measurement setup. Single and two-qubit (correlated)
phase errors, correspond to a partial or full swap of elements with X and Y preparation and
measurement. When phase-sensitive measurements of X and Y components are both dim
when a superposition was prepared, it marks qubit dephasing (time scale of T2). Comparison
of the different columns shows if the error corresponds to a single qubit, to both qubits
independently, or if only the states of the two-excitation manifold show an error. For example
it would reveal, which out of the three flux pulse buffers described in Section 2.4 and 2.5
is miscalibrated. As in the io-map representation all relevant errors are easy to distinguish
and it is composed of measurement data without more complicated algebra, it is helpful for
debugging the experiments.
By substituting Ubare in place of Uideal in Equation 3.10, the flux pulse length and amplitude
errors can be simulated. With a help of modern mathematics software like Wolfram Math-
ematica it is easy to systematically study the derivatives of elements of the io-map. Partial
derivatives by flux pulse amplitude θ and length t

∂〈M〉kl
∂θ

∣∣∣∣∣θi-swap
ti-swap

and ∂〈M〉kl
∂t

∣∣∣∣∣θi-swap
ti-swap

(3.11)

respectively at optimal configuration are shown in Figure 17. It reveals, that some elements
are more sensitive to miscalibration. It also confirms, that as discussed before in Section 2.1
the Chevron pattern measurement, corresponding to preparation Z+Z− and readout Z−Z+,
is first-order insensitive to both of the errors. A similar method can be used to learn about
the sensitivity to errors of other parameters like buffer amplitudes.
Comparison of partial derivatives reveals preparation and readout combinations most sen-
sitive to one kind of errors and insensitive to the other. For example the measurement of
Y−Z+ and preparation of X+Z− gives a θ error syndrome insensitive to errors in t, qubit A
phase errors before and after the two-qubit operations or the two-qubit correlated phase error
denoted with (θ|X+Z−|Y−Z+). Thus the syndrome enables a first-order sensitive flux pulse
amplitude fine tuning, when already close to the optimal configuration. A similar t error
syndrome (t|Y+Z−|Y−Z+) corresponds to the same measurement, but to the preparation of
Y+Z−. The corresponding landscapes of the expectation value 〈M〉 as function of t and θ are
shown in Figure 18. For these syndromes the optimal 〈M〉 corresponds to meg = 0.6 which
we fixed for the study. Both of the syndromes are nearly linear around the optimal i-swap
configuration. Some other method can be used to get the initial guess value inside the fidelity
contour of 80 % where the syndrome measurement at few configurations reveals the optimal
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(a) ∂
∂θ 〈M〉 at (θi-swap,ti-swap)
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(b) ∂
∂t〈M〉 at (θi-swap,ti-swap)

Figure 17: Derivatives of theoretical io-map for the i-swap gate implementation.
Axes labels are same as in Figure 16. Colours represent the derivative of 〈M〉 with
respect to flux pulse amplitude θ and length t.
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gate parameters.
At this point described syndrome measurements are not needed in the experiment, as the
method described in Section 2.1 efficiently converges to the limit set by the AWG time
and amplitude resolution. The next-generation chips on the other hand will probably have
smaller coupling strengths g making also J smaller. This makes the gate slower increasing
the effective AWG resolution. Similarly smaller J allows qubit parking closer to two qubit
operation bias points thus increasing the effective AWG amplitude resolution. In this case it
is possible, that a first-order insensitive objective function, like the Chevron patter, becomes
inefficient and the described or other error syndromes found by the io-map representation
will help to achieve high-fidelity multi-qubit gates.

3.4 Pauli transfer matrix

Closely related to io-map is the standard representation referred to as Pauli transfer ma-
trix [Chow 12]. Quantum state tomography fully describes the output states and if the input
states span the whole two-qubit state space, it is possible to map the input state components
to output state components. In case of the Pauli transfer matrix the qubit state basis is fixed
to Pauli matrices σi ∈ {1, σx, σy, σz} and the map R fixes the input-output relation

pout = R pin (3.12)

of Pauli state vectors. The two-qubit Pauli state vector for the input state ρk is

pinkl = Tr[ρk(σi ⊗ σj)l] , (3.13)

where i, j ∈ [1 . . . 4] and k, l ∈ [1 . . . 16]. Similar definitions hold for pout or the coefficients r
directly from the quantum state tomography (Equation 3.5) can be used. This makes it
straight forward to compose Pauli transfer matrix from the data already available. Solving
the input-output relation given in Equation 3.12 gives

Rkl =
16∑
n

pinnk p
out
nl (3.14)

where the order of indexes in matrix product was changed instead of transposing pin. Exam-
ples of Pauli transfer matrix of ideal and measured 1 and i-swap gates are shown in Figure 19.
Average gate fidelities are 83.7 % for data set good-1 and 81.6 % for data set good-i-swap.
Unlike in the case of io-map or process matrix described in the next section, the Pauli
transfer matrix has a fixed basis. In addition the matrix components are always real due to
the choice of the basis and therefore there is no need to separately plot the imaginary parts.
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(b) Length error syndrome landscape.

Figure 18: Two simulated error syndromes - measurements sensitive to only one
type of the flux pulse error. Colours represent the measurement value as function of
the detuning from resonance δν and the length of the interaction t. The optimal ν
and t values are marked with the solid grid lines. Optimal measurement value is
represented with white. Contours corresponding to the fidelity values 0.8 and 0.95
are marked with dashed lines. Both of the syndromes are first-order sensitive.

If the studied operation is of the Clifford group16, the non-zero matrix elements are all ±1.
On the other hand arbitrary phase errors, dephasing and decay are harder to distinguish
than in case of io-map. The Pauli transfer matrix was presented and discussed in more detail
in [Chow 12].

3.5 Process matrix representation

The best known description of a process in an open quantum system, is so called χ or process
matrix representation [Nielsen 00, Ch. 8] which describes the completely positive linear map

16Normaliser of the Pauli group - all operations which do not take states out of set of eigenstates of the
Pauli operators [Córcoles 13].
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(b) i-swap process

Figure 19: Pauli transfer map matrices of ideal gates and experimental data
sets good-1 and good-i-swap. The tick labels mark the Pauli vector components
for the basis {1, σx, σy, σz} = {I,X,Y,Z}.
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ε(ρ) =
∑
k,l

χklEk ρE
†
l (3.15)

of input state ρ in a fixed basis of operators Ek. If χ is the unit matrix the representation
is equivalent to Kraus operator sum representation [Kraus 83]. The goal of quantum process
tomography is to reconstruct χ by preparing a set of input states ρn and fully characterising
output states %n = ε(ρn) by quantum state tomography. The only necessary assumption
about the experiment requires that the state preparation shares no significant entanglement
with the state manipulator nor with the measurement device [Chuang 97]. In our case this
requirement is fulfilled by having low enough thermal excitation probability and pulsed mea-
surement17.
The task is again described by a set of linear equation

λnm =
∑
kl

βklnmχkl (3.16)

where
λnm = Tr

[
%nb
†
m

]
(3.17)

describes the measurement results in some orthogonal18 density matrix basis {bm} and a 4D
tensor

βklnm = Tr
[
EmρkE

†
nb
†
l

]
(3.18)

maps the experiment data to the chosen operator basis taking the density matrix basis into
account. In case of two qubit process tomography the indices are k, l, n,m ∈ [1 . . . 16].
The Equation 3.16 can be solved by inverting β using some standard software like Wolfram
Mathematica. For a detailed discussion of the formalism see [Chuang 97].
If the density matrix basis bm is chosen to be the set of expected output states %n =
UidealρnU

†
ideal, the matrix λnm provides some information for debugging. An over-complete

set of preparation states ρ may be used to suppress the systematic errors as also discussed
in Section 3.1.
The optimal choice for operator basis Em varies depending on application. It is common to
show processes in the basis of Pauli operators which in case of the two qubits is given by

Em = (σ̃i ⊗ σ̃j)m (3.19)
17The transmition measurement tone is switched on only for a short time compared to measurement

repetition rate and any possible residual photons would decay.
18See derivation in [Nielsen 00, p. 391] or [Chuang 97].
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where σ̃i = σ̃j = {σ0, σx,−iσy, σz} with σy multiplied by −i to make E real for real coef-
ficients. Such representation of experimental data set good-i-swap and theoretical i-swap
gate is shown in Figure 20.
The averaged process fidelity of a processes described by χexp related to the ideal process χideal
is given by [Steffen 13b]

F = Tr[χexpχideal] (3.20)

and all process fidelities in the thesis are given by this relation.

3.6 Phase degree of freedom

The process matrix representation is useful for finding errors related to the operator ba-
sis {Em}. In the Sections 2.4 and 2.5 different gate phase component calibrations were
described. As the single and two qubit phase gates correspond to the action of 1⊗σz, σz⊗1
and σz ⊗ σz, all elements of σ̃, the phase errors effect single matrix elements. In contrast the
decay and dephasing of the qubits are expressed by many matrix elements and are not easy
to recognize in general.
In case of 1 process with global phase left free, there are 3 relevant phases: two single qubit
phases φA,B of states |01〉 and |10〉 and correlated or conditional phase ψ of state |11〉. The
phase degree of freedom can be simulated by

UfreePhase = 1Z(φA)Z1(φB)ZZ(ψ) = (3.21)

=


1 0 0 0
0 e−iφA 0 0
0 0 e−iφB 0
0 0 0 e−i(φA+φB+ψ)

 . (3.22)

By expanding the UfreePhase in basis of σ̃ by

UfreePhase =
∑
k

akσ̃k (3.23)

the χkl = aka
∗
l is recovered.

By maximising the fidelity F = Tr[χfreePhaseχexp] as a function of phases φA,B and ψ using
numeric optimization tools, we have a method for quantifying phase errors independently
from the Ramsey-type of measurement described in Sections 2.4 and 2.5. Note, that unlike
the methods described before, this one can be used for any gate by generalising UfreePhase.
As an example the process matrix of 1 gate in σ̃ basis are shown in Figure 21. For demonstra-
tion, the shown gate did not make use of conditional phase compensation buffer described in
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Figure 20: Process matrix representation of i-swap process. The top plots
show the real (left) and imaginary (right) components of the ideal operations
for comparison to the experimental data shown on lower plots. The tick labels
mark the operator basis elements σ̃ = {σ0, σx,−iσy, σz} =

{
I,X, Ỹ,Z

}
. The same

experiment data set good-i-swap in the Pauli transfer matrix representation was
shown in Figure 19.
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Section 2.5 and therefore had a correlated phase error. The phases obtained by fidelity fitting
show dynamic phase shifts of φa = −7°, φb = 0° and ψ = −89°. The small single-qubit phase
φa is probably due to qubit instability. The fidelity of the shown process is only 60 % related
to ideal identity gate and 89 % in relation to phase fitted identity also shown in Figure 21.
This emphasises once more the importance of conditional phase calibration.

3.7 Choi matrix and qubit decay

If the operator basis E of process matrix is chosen

Ek = Ck = |i〉〈j| ε(|i〉〈j|) = |i〉〈j|Uideal |i〉〈j|U
†
ideal, (3.24)

it will directly map computational basis states of the input density matrix to elements of
the output density matrix. Such process matrix representation is referred to as Choi ma-
trix [Choi 75, Leung 03]. In case of two qubits indexes i, j ∈ {gg, ge, eg, ee} and k ∈ [1 . . . 16].
When phase errors were easy to recognize in σ̃ operator basis, the decay, dephasing, depo-
larisation and other similar errors, which influence the density matrices in a straight forward
way, are easy to see in the C operator basis. For definitions of mentioned loss channels see
Appendix A or [Nielsen 00, p. 397]. In order to simulate the quantum channel with several
characteristic errors we first concatenate the Kraus operator sum representations by

ε1(ε2(ρ)) = ε1ε2(ρ) = (3.25)

=
∑
i

∑
j

EiẼjρẼ
†
jE
†
i = (3.26)

=
∑
i,j

Ei,jρE
†
i,j. (3.27)

In addition to the qubit decay channel εdecay and dephasing channel εdephase, the depolar-
ising channel εdepol was studied, as depolarisation would correspond to random qubit con-
trol errors. Once again software assistance is necessary, as the concatenated error channel
εdecayεdephaseεdepol(·) consists of 141 unique operator elements in case of two qubits. The
comparison of Choi matrices of the measured 1 gate and the process which we expect solely
from decay and dephasing of the qubits, are shown in Figure 22. The Choi plot of simulated
decay channel uses fluxed qubit A and target qubit B lifetimes T1 = {1.8 µs, 2.6 µs} and
T2 = {1.8 µs, 3.4 µs} respectively. They were obtained from the last calibration routine19

before the process tomography.
The fidelity of the estimated decay channel for the given qubit lifetimes in relation to the
ideal identity gate is 87.6 % in comparison to 83.7 % for the dataset shown. From Figure 22 it

19For details on single-qubit calibration routines, including T1 ant T2 measurements, see [Baur 12, Ch. 5].
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Figure 21: Process matrix representation of 1 process without conditional phase
compensation buffer. The top plots show the real (left) and imaginary (right)
components of theoretical UfreePhase closest to the experiment data set bad-1 shown
on lower plots. For corresponding process fidelities and phase shifts of theoretical
process see main text. The tick labels are the same as in Figure 20.
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Figure 22: Theoretical decay process (top) in Choi matrix representation real and
imaginary parts (left and right) in comparison to the experimental data good-1
(bottom). Sub-matrices corresponding to different computational input states are
coloured differently to improve readability. The same experiment data set in the
Pauli transfer matrix representation was shown in Figure 19.
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can also be seen, that decay alone does not completely describe the process. For the specific
data set few percent further improvement seems possible from studding the phase errors in
process tomography, but this would not explain the whole fidelity loss.
It was already discussed in Section 2.3, that there are problems with medium time scale qubit
fluctuations, which are too fast for calibration measurements, and two slow to be studied in
conventional measurements. This needs further study. Due to this, or due to some other
reason there are systematic state preparation and measurement (SPaM) errors. In order to
suppress them, over-complete state and process tomography could be tried. Qubit dephasing
and decay time are steadily improving and importance of exact control and error diagnostic
are of increasing value. The process matrix has proven to be another useful tool in quantum
mechanics toolbox.
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Summary
Modular multi-qubit gate design was pursued, which enables concatenation of once calibrated
gates. This required study of the time dynamics of the qubit detuning with various delayed
Ramsey type of measurements. We found, that flux pulse induced screening current can be
compensated with an amplitude-inverted copy of the first pulse. This enables us to consider
the next operation independent from the previous 75 ns after the flux pulse.
For the daily recalibration automatic routines were implemented. To quickly find the optimal
flux pulse amplitude and length a Nelder-Mead derivative-free optimization method is used.
Then the dynamic phase the fluxed qubit collects when taken from one rotating reference
frame to another in the beginning and end of the gate, is compensated using two buffers.
The amplitudes are found by a buffer amplitude sweep and fit of a simple theoretical model.
In addition a method was developed to compensate the conditional phase the qubits collect
due to the finite qubit-qubit coupling even at the parking position by using an additional
buffer, which implements a carb-phase gate. This is done even for a finite-length two-qubit
identity gate to improve its fidelity.
To study the details of the implemented gates several different representations of quantum
processes were investigated and implemented for future reuse. The input-output-map was
developed to provide useful information for experimentalists. It also provides a method to find
significant non-trivial error syndromes. In addition the Pauli transfer matrix and processes
matrix in Pauli operator and Choi basis were implemented, compared and documented.
Finally the implemented two-qubit process tomography gave a fidelity of the i-swap and
identity processes over 81 %. As the theoretical qubit lifetime limited fidelity is around 86 %
there is still room for improvement. Several suggestions were made throughout the discussion.
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A Notation
Qubit states are easily visualised in the Bloch sphere representation, as shown in Figure 23.
It is analogous to the Poincaré sphere from polarisation optics or to the state space of a
spin 1

2 particle. In this representation, the qubit state correspond to a point in or on the
sphere corresponding to mixed or pure states accordingly.

Figure 23: Bloch sphere with axes labels standing for the eigenstates of the Pauli
operators corresponding to the positive and negative eigenvalues.

In the Bloch sphere the coordinates of the state with a density matrix ρ are spanned by the
Pauli operators σi by

ρ = 1
4 (p01 + p1σx + p2σy + p3σz) (A.1)

where vector pi is referred to as Pauli state vector. This is analogues to the Stokes vector in
polarisation optics.
The initial states of experiments and simulations is taken to be the ground state of both
qubits

|gg〉 =


1
0
0


A

⊗


1
0
0


B

. (A.2)

which is manipulated using generalized Pauli operators for three level systems corresponding
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to the MW pulses done in the experiment:

σ3l
0 =


1 0 0
0 1 0
0 0 1

 ;σ3l
x =


0 1 0
1 0 0
0 0 1

 ;σ3l
y =


0 −i 0
i 0 0
0 0 1

 ;σ3l
z =


1 0 0
0 −1 0
0 0 1

 . (A.3)

Note, that the label eigenstate corresponds to the positive eigenvalue of σz as a ground state,
which is one of the degenerate eigenstates of σ3l

z . If it is clear from the dimensions, which
one is used I will drop the 3l tag. Corresponding φ rotation operators are

1(φ) = e(−iφ/2σ0);X(φ) = e(−iφ/2σx);Y(φ) = e(−iφ/2σy);Z(φ) = e(−iφ/2σz). (A.4)

Similarly two-qubit rotation operators can be built. For example

1Z(φ) = e(−iφ/2(σ0⊗σz));ZZ(φ) = e(−iφ/2(σz⊗σz)). (A.5)

The two-qubit gates used throughout the thesis are

Uswap =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (A.6a)

Ui-swap =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 , (A.6b)

Uc-phase =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (A.6c)

Ucarb-phase =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iφ

 , (A.6d)

Udyn(φA, φB) =


1 0 0 0
0 e−iφA 0 0
0 0 e−iφB 0
0 0 0 1

 . (A.6e)
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The qubit decay, dephasing and depolarisation processes are described by following operator
sum elements [Nielsen 00, p. 397]

Edecay =

1 0

0
√

1− γ

 ,
0 √

γ

0 0

 ; (A.7a)

Edephase =

1 0

0
√

1− γ

 ,
0 0

0 √
γ

 ; (A.7b)

Edepol =

√

1− 3p
4 σ0,

√
p

4σx,
√
p

4σy,
√
p

4σz

 . (A.7c)
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B Data set details
For comparison with future experiments the details about presented data sets are provided in
Table 2. Qubit decay time T1 and dephasing time T2 for both of the qubits were measured in
separate measurement as a part of standard calibration routines. The full process tomography
provides the process fidelity and it was compared to the fidelity, which would correspond to
the experiment data, if the single and two qubit phase errors had been intended and to the
theoretically obtained maximal fidelity for given qubit lifetimes. For information, on how
these fidelities were obtained, see Sections 3.5, 3.6 and 3.7 correspondingly.

Data set reference bad-1 good-1 good-i-swap
Data set id 140605-1111 140621-1204 140627-2263

T1 of Qb A, B (µs) 1.8, 2.8 1.9, 2.6 1.8, 2.5
T2 of Qb A, B (µs) 1.7, 4.0 1.8, 3.4 1.7, 3.9

Gate length (ns) 218.7 198.0 245.5
Fidelity of experiment data 41.3 % 83.7 % 81.6 %
Fidelity without phase error 89.2 % 83.8 % 82.0 %

Lifetime limit for fidelity 88.0 % 87.6 % 86.2 %

Table 2: Detailed information about the three data sets discussed in the thesis.

Note, that for dataset bad-1 the estimated phase-errorless fidelity is larger than the limit
set by qubit lifetime. This apparent contradiction is probably due to the method being too
optimistic as it could compensate a part of dephasing to be a phase error.
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