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Abstract

Mesoscopic semiconductor structures are remarkable devices to investigate the fundamen-
tals of quantum physics. Major advances in fabrication technology allow us to fabricate
nanostructures and study the dynamics of single electrons in such devices. Recently, Frey
et al. realized dipole coupling of a semiconductor double quantum dot to a superconduct-
ing transmission line resonator. Such a system permits to study cavity QED in an all-solid
state device, fabricated on a common chip, and adds a new architecture to the already
highly successful and prospering field of circuit QED. Although coupling strengths on the
order of a few tens of MHz were shown, such a system still suffers from high dephasing
rates. This thesis reports on studies of a single electron double quantum dot that is dipole
coupled to a superconducting transmission line resonator. Decoherence is studied when
reducing the number of electrons within the quantum dot. In the limit of a single elec-
tron double quantum dot, one electron remains that is delocalized between both dots and
dipole coupled to a resonator. It is found by comparison between experimental data and
numerical simulations that dephasing rates remain large and range from approximately
400 MHz to 5.8 GHz. An increase in the single-particle level spacing did not have a
major effect on dephasing in such a system. We conclude that the coupling to excited
states in a double quantum dot is not dominating for qubit dephasing. Other decoherence
mechanisms are discussed.
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1 Introduction

The theory of computation has traditionally been studied almost entirely in the abstract,
as a topic in pure mathematics. This is to miss the point of it. Computers are physical
objects, and computations are physical processes. What computers can or cannot compute
18 determined by the laws of physics alone, and not by pure mathematics.

David Deutsch

In classical computation, the bit is the fundamental unit for computation and computa-
tion is based on the laws of classical physics. Quantum computation is based on a similar
concept, the quantum bit (qubit). Analogous to the classical bit, a qubit is a physical
system that has two distinct states. However, on the contrary to classical computation,
quantum computers obey the laws of quantum mechanics. While classical bits remain
either in one state or the other of two possible configuration, a qubit can be in a superpo-
sition of both states at any time such as [¥> = «|0> + 3|1> where o and § are complex
quantities and |¥> denotes the quantum state. An introduction to quantum computa-
tion and qubits can be found in [I]. The possibility of a qubit to be in a superposition
of two states at any given time makes it special in terms of parallel computations. In
such a computer, that is based on the laws of quantum mechanics instead of classical
physics, certain computational task could be carried out more efficiently by using special
quantum properties of the system such as entanglement and superposition (cf. e.g. prime
factorization on a quantum computer [2]).

Realizing a computer based on qubits remains extremely challenging. A key feature is
classical and quantum noise that leads to decoherence. The ratio between coherence time
7 t0 T,p, the time for elementary unitary transformations, may serve as a characteristic
for different physical implementations of quantum bits [3]. An estimation of this quan-
tity gives insights into the merits of different physical realizations. Quantum gates have
been shown e.g. with high fidelities in trapped ion systems. Here, a two-qubit gate with
fidelities reaching 97%, in the example of a geometric phase gate, could be realized [4].
A complementary approach are artificial atoms that can be realized in an all-solid design
on a common chip. Two promising candidates are superconducting qubits [5] and lateral
quantum dots [6], fabricated on a chip with techniques borrowed from integrated circuit
technology. This approach shows several benefits in terms of scalability and fast operation
times whereby long-range qubit interactions can be mediated by a quantum bus, e.g. a
superconducting coplanar waveguide that is used to couple different qubits. While such
an architecture has been studied widely for superconducting qubits [5} [7, 8], the coupling
of quantum dots to transmission line resonators remains a relatively new field. Such a
hybrid all-solid quantum device may serve as a building block in a quantum network that
couples different qubits respectively different qubit architectures via a common quantum
bus [9]. Here, different architectures can be exploited in terms of their individual merits.
In such a quantum network, trapped ions may serve as a quantum storage, benefiting from
superior coherence and relaxation times, while quantum dots might serve as computation
clusters, possessing fast two-qubit operations using exchange coupling between nearest-
neighbor systems and showing excellent controllability of quantum states. For instance,
fast two-qubit operations in the order of 180 ps were shown [10} [11] in quantum dot ar-
chitectures. Additionally, quantum dots have the benefit to control quantum mechanical
properties and to manipulate quantum states by externally applied currents or voltages



which allows for a high control over the dot. In addition to widely used superconducting
qubits, electrons are not paired in quantum dots which allows easier access to the spin
degree of freedom.

A semiconductor double quantum dot (DQD) that is coupled to a superconducting copla-
nar waveguide (CPW) resonator was lately investigated [11, 12 13]. In such an archi-
tecture, the double quantum dot serves as a qubit while the CPW resonator is used for
read-out. Coupling the double dot to a resonator, the physical properties of the dot can
be explored via the microwave resonator and vice versa [14, [I5], with the benefit of cou-
pling the double dot to a remote qubit via the transmission line. Such a design allows to
acquire information on the charge state without requiring a separate mesoscopic detector
on chip [16]. In a typical setup, a quantum point contact (QPC, cf. also [I7]) or direct
current (DC) transport measurements are used to readout the dot state. In addition to
a DC measurement, no current is required to flow through the quantum dot such that

this novel approach serves as a noninvasive readout technique for spin and charge states
[14], [16].

So far, the dot was studied in the many [12] electron regime when coupled to a resonator.
This has the possible drawback that additional electrons in the quantum dot and/or
close-lying excited states in a many electron regime might have a negative influence on
decoherence of the qubit state. Futhermore, many electron quantum dots complicate pos-
sible qubit states through a hybridization of different charge states in the individual dots
and many-body quantum effects. This work reports on a double quantum dot that can be
analyzed by DC, QPC and microwave measurements in the many, few and single electron
regime. This allows to investigate the properties of a double quantum dot, benefiting
from different read-out techniques in a single electron regime. The applied dot design
is first analyzed with respect to possible benefits as well as drawbacks on the way to a
single electron device. Here, both dots are completely emptied, but a single electron is left
delocalized between dots. Benefiting from a better understanding of the sample character-
istics, the double dot qubit is studied in the single electron regime. A Markovian master
equation approach allows for a numerical simulation of the coupled qubit-resonator system
and enables to extract characteristic parameters such as coupling strength and decoher-
ence rate. Comparing those characteristics in the single electron with the many electron
regime within the same sample, both regimes are analyzed in terms of decoherence. This
might give additional insights on the questions whether close-lying excited states in the
many electron regime serve as an additional decoherence channel.



2  Quantum dots in a circuit QED architecture: A hybrid system

Lateral quantum dots are mesoscopic devices in a solid-state structure in which electrons
are confined in a potential well. Such a structure can comprise a single electron in a
confining potential up to several hundreds or thousands of electrons. This thesis reports
on gate defined lateral quantum dots [I§]. For a review on self-assembled quantum dots,
please refer to [19]. Lateral quantum dots are formed on a semiconductor heterostructure,
in which electrons are confined at the interface between two semiconductors such as GaAs
and AlGaAs (cf. Fig. la). Electrons are free to move in the interface plane but are
confined normal to the interface. In the quantum limit of a 2DEG, electronic states
are quantized in the third dimension, yet the quantization energy is large such that the
electrons are thought to be in their ground state when operated at mK temperatures.
Such a two-dimensional electron gas (2DEG) is of great importance in many experiments
in nanophysics. Please refer to [20] for more information on semiconductor nanostructures
and 2DEGs in particular.

Starting from a 2DEG in which electrons are tightly confined normal to the surface, a
quantum dot can be formed by confining electrons in the remaining two dimensions. This
may be achieved by depleting electrons in certain regions of the 2DEG with techniques
such as local oxidation [2I] or appropriately biased metallic top-gates i.e. Schottky gates.
In the following studies, the confining potential was created by metallic top-gates only.
Biasing those gates negatively, depletion regions form below and electrons become confined
in the remaining two dimensions, in the heterostructure interface. Depending on dot size
and applied gate voltage, the zero dimensional quantum dot is weakly tunnel coupled to
source and drain reservoirs while electrons occupy discrete energy levels within the dot.
Single electrons can tunnel from source to unoccupied energy states when sufficient in
energy whereby the width of the well and the tunnel rate can be controlled with the applied
voltage to top-gates. In such a device, the dynamics of single electrons in a quantum
dot respectively the transport of a single electron from source to drain via dot levels
can be experimentally analyzed. Especially tunneling of single electrons is at the heart
of quantum mechanics and of great interest in man-made mesoscopic structures. Fig. la
shows a schematic of a GaAs/AlGaAs heterostructure that comprises a 2DEG 90 nm below
the surface. Such a configuration is identical to the heterostructure used in all following
experiments. For a reference on the physical properties and designs of semiconductor
heterostructures, please refer to [22]. A scanning electron microscope (SEM) picture that
shows the shape of the gates defining a DQD, similar to the sample used in this study,
is given in Fig. 1b. Metallic top-gates are visible that form two tunnel coupled potential
wells when depleting parts of the 2DEG around the gate. Note that the biased gates not
only form the double well, but also give the static potential within the dot. Two plunger
gates enable to additionally change the static potential and thereby the energy levels
within the dot which allows to independently vary the dot potential while maintaining
the overall dot characteristics such as interdot tunneling rates and coupling to the leads
in a first approximation, as a finite cross-coupling might be evident.

In the following hybrid architecture, a DQD, that is two tunnel coupled quantum dots, is
dipole coupled to a cavity such as a transmission line resonator. This approach is similar to
the well established and successful field of circuit QED with superconducting quantum bits
[23] except for replacing superconducting qubits with quantum dots. In both architectures,
the qubit can be controlled and readout via a CPW resonator whereas quantum dot qubits
have additionally the benefit to access the spin degree of freedom.
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Figure 1: a) GaAs/AlGaAs heterostructure with a 2DEG confined 90 nm below the surface,
adopted from [24], b) SEM picture of the metallic gate shapes that define the DQD. This design

is identical to the sample used for all experiments, described in the following. Picture by courtesy
of Dr. Julien Basset, ETH Zurich

2.1 Sample geometry

For a full characterization of the double dot, a readout of the charge state is intended
to be possible via the transmission line in a microwave regime as well as through direct
current measurements or by using a QPC as an embedded charge detector, first employed
in measurements by Field et al. [I7]. Manipulation and readout should be feasible both
in the many and single electron regime. The employed structure of the double dot will
allow for a high tunability, changing from a single dot to a double dot configuration. This
section intends to discuss the realized sample design. Different designs approaches were
investigated in earlier projects [12), 14} (15, 24], which lead to the final sample geometry
that was used in this work.

The sample employed in this thesis is special as it allows for probing the dynamics of single
electrons in a double quantum dot structure in direct current (DC) measurement as well
as probing the electronic state using a quantum point contact (QPC). Complementary,
the DQD can be investigated via its capacitive coupling to a superconducting microwave
transmission line resonator (Chapter 4). Fig. 2a shows an optical photograph of the
GaAs/AlGaAs heterostructure with resonator and DQD. This design is similar to the one
used in the following experiments which remained under investigation at the current point
of time and no photograph was available.

Regions of the chip in dark gray color show the GaAs/AlGaAs heterostructure with a
2DEG at 90 nm below the surface in a design identical to Fig. la. The position of
the DQD (red circle in Fig. 2b) was chosen such that it is situated at an antinode of
the fundamental mode and capacitively coupled to the resonator by an extension of the
center conductor, shown in Fig. 2b. Titanium-gold top-gates (Ti(3nm)Au(25nm) for small
structure in Fig. 1b and Ti(3nm)Au(55nm) for golden structure in Fig. 2a) are shown and
biased via contacts labeled C in the picture. Ohmic contacts, indicated by M, allow to
access the 2DEG directly and to measure a direct current through the double quantum
dot or QPC detector. An enlarged picture of the top-gates that form the DQD is shown
in Fig. 1b for a small and in Fig. 4 for a wider region. Top-gates are defined in an
electron beam lithographic process. Resonator‘s (R) center conductor and ground plane
were defined by photo-lithography. Here, 3 nm titanium and 200 nm aluminum were
deposited on top of the heterostructure. Center conductor and ground plane are shown
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Figure 2: a) Optical photograph of a similar sample design, showing resonator , ohmic
contacts (M), metallic top-gates (C), inductor (I), b) enlarged view of the extended resonator
center conductor that forms the resonator gate (RG) on the DQD (red circle). Metallic top-
gates are shown in gold. The dark gray area shows regions of two dimensional electron gas. The
2DEG is etched away at the resonator position (white and light gray shaded region). Adopted

from [24]

by the white areas in Fig. 2, separated by a gap (light-gray area) of 7.1 pm. In this
area, the 2DEG was wet-etched to avoid for an additional dissipative channel of resonator
excitations into the 2DEG. An inductor, shown in the inset in Fig. 2, allows to bias the
center conductor, which is capacitively coupled via an extension to one of the two dots.
Biasing the center conductor sets a constant offset on top of the oscillating potential that
is given by the resonator field. Thus, an external voltage applied to the center conductor,
which is connected to one of the plunger gates, changes the static potential in the coupled
dot as capacitively coupled to the dot. The transmission line resonator is accessed through
a capacitive coupling to input respectively output transmission lines by means of finger
capacitors (cf. [25] for a review on coplanar waveguide resonators). The total resonator
length is 8205 pum by excluding the input/output capacitors with a total width of the
center conductor of 10 um, chosen by design.

2.2 Resonator design

A superconducting transmission line resonator is used to realize the resonator which is
coupled to the DQD. The initial idea is comparable to a coaxial line with center con-
ductor and ground plane, whereas in this design such an architecture was realized in two
dimensions only. Additionally to a 2D coaxial line, the center conductor was cut at both
ends such that the electromagnetic wave is reflected at an open end thereby forms the
resonator. The resonator is coupled capacitively to input and output transmission lines.
In the current design, finger capacitors (cf. eg. [7, [15]) are used, indicated by two green
boxes in Fig. 2a. Please refer to [25] for a more comprehensive review on transmission line
resonator. A description of relevant length scales is given in the previous section. Fig. 3
shows a typical transmission spectrum of the resonator for a configuration at which all
top-gates are set to 0 V, except for LPG which was set to -450 mV. The value for LPG
was chosen such that the 2DEG will be depleted below the gate which forms the resonator
gate connected to the center conductor. This avoids for dissipative processes from the
resonator gate into the 2DEG below (see section 6) and corresponds to a voltage regime
for LPG that is typical for operating the dot in a single electron configuration.
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The squared transmitted amplitude has

0.20 ) : :
v, 6762 GHz a Lorentzian line shape, given by equa-
'n Q=975 tion
2 015 K= 6.94 MHz
E 0.10 A
[0}
R
g T =+
C
© 0.05 + Sv2
=

0006 745 6.750 6755 6760 6.765 6770 6775 6.780 where A describes the amplitude in mV?,

vre [GHz] vy the resonance frequency, yo a constant
offset and dvy the linewidth of the peak.
In such a parameter space, a quality factor
Q = 975 respectively linewidth k = 6.939
MHz was fitted. The Lorentzian shows a
frequency vy = 6.762 GHz, amplitude A
= 0.2 mV? and offset yy = -0.00126 mV?
derived from a line fit, shown by the red curve in Fig 3. The resonance frequency for the
fundamental mode 1y is described by vy = ¢/21, /é.ss respectively equivalently 21 = g [25]
where €.¢¢ gives an effective permittivity of the transmission line resonator, c is the speed
of light in vacuum, 1 the resonator length and )y the wavelength in the fundamental mode.
An input power of -7 dBm was applied which corresponds to a mean photon number of
25.7, approximating a total attenuation of -106 dB down to the resonator and considering
k = 6.939 MHz in this measurement. It was experimentally verified that no non-linearities
in the resonator transmission occurred at the chosen input power. All ohmic contacts were
grounded in this measurement and all the following microwave measurements thereby
grounding the 2DEG. It is found however that the characteristic resonator parameters
such as transmission amplitude, resonance frequency and linewidth strongly depend on
the gate configuration, which is discussed more detailed in section 6 Influences of 2DEG
on resonator characteristics. The extracted parameters can thus serve only as a first
estimate and a unique characterization of the resonator is not possible.

Figure 3: Squared resonator transmission am-
plitude and fit for all top-gates at 0 V, except
for LPG = -450 mV (see text) and Appendix B
[A1]

2.3 Double quantum dot design for single electrons

A scanning electron microscope image of the employed DQD geometry is given in Figure
4. Note that the image shows a SEM photograph of a double dot that is similar in its
design to the geometry used. No SEM image has been available yet for the currently used
sample which is still being measured at this point. The sample was designed in some
earlier work not by the author [24].

Eight top gates are used to form the lateral quantum dot, labeled by their abbreviation
in Fig. 4. The quantum dot is formed by means of side gates (LSG, RSG). Source drain
barrier (SDB) and the center gate (CG), separate the structure such that a double dot
forms. Furthermore, SDB and CG have the benefit to control the coupling between the
individual dots. The static potential of an individual dot can be additionally tuned via
left plunger gate (LPG) for the left dot respectively right plunger gate (RPG) for the right
dot. The CPW resonator is capacitively coupled via LPG to the left dot which is achieved
by directly coupling an extension of the center conductor to LPG, as shown in Fig. 2b.
If the length of the extension is short compared to the wavelength, the extension can be
assumed to be on the same potential as the center conductor at the respective position
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for all times, thus coupling a resonator excitation to the left quantum dot. An oscillating
field at the antinode, below which the dot is positioned, results in voltage oscillations at
the center conductor and equivalently at its extension which translates via a capacitive
coupling to a variation of the static potential in the left dot in a classical description. The
coupling between resonator and DQD is explained in section 4 Dipole coupling of a single
electron to a microwave field. The center conductor can be independently biased with a
voltage source by means of an inductor shown in Fig. 2a. Besides the periodic voltage
modulation on LPG, given by the oscillating field in the resonator, a constant voltage
offset can thereby be added to LPG via biasing the center conductor, which translates to
a changed static potential in the left dot.

EHT = 5.00 kv Signal A = InLens Date :7 Jun 2012
| | WD = 29mm Photo No. = 7576 Time :15:44:12

Figure 4: SEM image of the double dot design showing left plunger gate (LPG), center gate
(CG), left side gate (LSG), right plunger gate (RPG), right side gate (RSG), quantum point
contact (QPC), soure drain barrier (SDB) and right drain barrier (RDB). The mesa edge is
indicated by the red dashed line. The picture shows a double quantum dot with similar design
to the sample under investigation. No SEM picture of the currently measured dot is available
at this point.

In addition RSG, and the gate labeled QPC form a quantum point contact that serves as
an on-chip charge detector, first implemented by Field et al. [I7]. The right drain barrier
gate (RDB) is used to change between different DC channels, where appropriate. Also
shown is the MESA edge, above which the 2DEG was etched away. A more detailed view
of the DQD region is also available from Fig. 1b. Not shown are four ohmic contacts to
access the 2DEG. Those are situated at both sides of the gates SDB and QPC to allow
for DC and QPC measurements separately, explained in section 8 Transport and charge
detection for a double quantum dot. Also not shown is the coupling of the resonator to the
resonator gate LPG. An extension of the center conductor translates voltage oscillations
onto LPG and thereby through a capacitive coupling onto energy levels in the left quantum
dot. Note that the right dot is not directly coupled to the resonator, but a finite cross-
coupling of resonator gate (LPG) to right dot can not be avoided in such a mesoscopic
structure.
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3 Transport and charge detection for a double quantum dot

This section discusses electron transport in a DQD architecture in the linear and non-
linear regime. The description of the transport phenomena follows [20], 26]. Experimental
data for direct current and QPC measurements are presented and discussed for the few
and many electron regime. Here and in the following, all experiments were carried out at
a base temperature of about 10 mK in a dilution refrigerator. The electronic temperature
T, is higher and was estimated to be approximately 130 mK from thermal broadening.
The exact value for T, was not yet determined in the experiment. Transport measure-
ments were carried out either measuring the direct current (DC) throught the double dot
respectively QPC or by calculating the numerical derivative dI/dV pg where dV pg is the
change in voltage at plunger gate PG. Alternatively, the transconductance through the
QPC was measured. In such a measurement, an AC modulation with constant ampli-
tude was added to the voltage applied at the plunger gate and the change in the current
at the charge detector is measured, i.e. dlgp/dVpg. This has the benefit to incerase
the detection sensitivity. Such measurements were carried out using a Stanford Research
Systems SR830 DSP lock-in system. A small modulation of 10 uV was applied to the
source-drain bias respectively 150 uV to the voltage applied at LPG for transconductance
measurements with a modulation frequency of 75 Hz respectively 37 Hz, unless outlined
differently.

3.1 Relevant energy scales and capacitance model

In a classical description, the DQD is modeled by a circuit of various resistors and ca-
pacitors [26] without considering quantum behavior. However, in a quantum description
energy states become quantized in a strongly confining potential and further excited states
enter the model additional to electron tunneling processes. The coupling to the leads can
be taken into account by a small perturbation in this description. A schematic of a DQD
circuit modeled in terms of resistors and capacitors is shown in Fig. 5 for the linear trans-
port regime where no bias between source and drain is applied, i.e. the chemical potential
of source and drain are equal. The description follows [18] [26]

In Fig. 5a, the individual dots are capacitively coupled only to their respective gates
PG1 for Dotl and PG2 for Dot2. Each dot is independently coupled to source or drain,
modeled by a resistor and capacitor in parallel to account for the tunnel barrier. The
interdot coupling in this model is purely resistive. In this notation, (N,M) indicates N
electrons in the left dot and M electrons in the right dot. Energetic electrons with energy
sufficient to overcome the resistive barrier and Coulomb repulsion, resulting from electron-
electron interaction to electrons within the dot, can enter from source respectively drain
into the dot and occupy empty states. The static dot potential can be tuned independently
for Dotl by voltage Vpgi and for Dot2 by Vpge. Whenever an unoccupied state is in
resonance with electrons of sufficiently large energy, a new electron can occupy a dot
state and the occupation number changes e.g. from (N,M) to (N41,M) for one additional
electron in the left dot. Additionally, the dots are only resistively coupled such that the
number of electrons in the left dot has no effect on the potential energy in the right dot
and vice versa. However, an electrons might overcome the resistive barrier between both
dots and Coulomb repulsion and changes the occupation number from e.g. (N, M) to (N-1,
M+1).
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Fig. 5b on the contrary models a cross-coupling respectively cross-capacitance between
the plunger gates PG1 (PG2) and Dot2 (Dotl). Changing the applied voltage at PG1
not only tunes the static potential in Dot1, but also has a effect on the potential in Dot2.
Conductance resonances, showing the coupling between dot and lead, become tilted.

In a more realistic description, a capacitive in addition to the resistive coupling between
Dotl and Dot2 is taken into account (cf. Fig. 5c¢). The number of electrons in Dotl
influence additionally the static potential in Dot2 and vice versa. That is, the electrostatic
field of electrons in one dot changes the potential in the neighboring well. The static
potential in left and right dot are degenerate along the green line that connects two
triple points (red), whereas the mean potential changes along the line from resonant with
source and drain at one triple point to off-resonant along the line and on-resonant again
at the second triple point for a different charge configuration (cf. also Fig. 6). This
region in LPG-RPG subspace is commonly referred to as interdot charge transfer line or
charge degeneracy line (green line in Fig. 5¢c). A derivation of the DQD electrostatics is
given in [I8, 26]. Energy states within a quantum dot are due to an interplay of various
effects:

a) PG1 PG2 b) PG1 G2 C) PG1 PG2

L L
- T X T AT
s -[I]- pot1  —AAM= Dotz —I]]— D s —I]]- pot1  —AAA= Dotz —[I]- D s —I]]- Dotl —m— Dot2 -[I]' D

VPGZA VPGZ‘ VPGZA
(n,m+1) |(n+1,m+1) w m
(n,m) (n+1,m) m m

S S5

S
> > >
Vv PG1 VPGl VPGl

Figure 5: DQD modeled as a circuit of resistors and capacitors with corresponding charge
stability diagrams, assuming resistive coupling between both dots (a), resistively coupled dots
and cross-coupling to capacitively coupled plunger gates (b), resistive and capacitive interdot
coupling (c) (see text). Figure similar to [27].

Coulomb interaction energy: The Coulomb interaction energy between electrons can
be estimated from the electrostatic island energy, following [I§]. Modelling a single quan-
tum dot as metallic disk with self-capacitance C, Egecrro(N) = eng, where e is the
electric charge and N the number of electrons. The energy necessary to add one addi-
tional electron, assuming that N electrons occupy the dot, is E.(N + 1) = Egeetro(IN +
1) = Eetectro(N) = %(N—I— 1/2) ~ EQTN The difference AE, = E.(N+1)—FE.(N) =¢€?/C'is
tradionally used, often named charging energy. An estimate following [I8] gives a typical
charging energy of AE. ~ 1.7 meV, assuming the self-capacitance of a disk C' = 8eegr
with radius » = 100 nm, a size typical for quantum dots, and a dielectric constant e = 13
typical for GaAs. However, in the case of two coupled quantum dots, the charging energy
changes. Following [26], AEc, , = ’ with Cy9) the sum of all capacitances

e 1
ﬁ<1—czn/0102)
attached to Dotl (Dot2) and C,, accounts for the capacitive coupling between both dots.
Additionally, an electrostatic coupling energy AFE,, = i(m) enters that accounts

Cm
for the capacitive coupling between both dots.
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Confinement energy: Following [18], an approximation of the confinement respectively
quantization energy in a single quantum dot is given by E..,f(N) = %N 2 with m*
the effective electron mass, r the dot radius and N the number of electrons. From this
expression, the energy necessary to add one additional electron is €(N + 1) = Eopnf(N +

1) = Econf(N) = %(ZN + 1) and therefore the spacing between adjacent levels A =
e(N+1)—¢N)= thiQ, what is often termed single-particle level spacing. An estimate
for GaAs gives A =~ 110 peV for a dot of radius » = 100 nm. Energetic states of
quantization energy form excited states in a quantum dot whereby the spacing between

adjacent excited states respectively ground and first excited state scales like 1/r%.

3.2 Transport in the linear regime

Diagrams that are shown in Fig. 5 are called charge stability diagrams and state the
number of electrons (N,M) as a function of the plunger gate voltages Vpg1 and Vpgse. In
regions indicated by (N,M), transport is blocked as a result of Coulomb repulsion from
electrons already occupying states in the dot, thus no additional electrons can enter the
quantum dot. The description of blocked transport is known also as Coulomb blockade
[28]. However, when decreasing the static potential in the dots by adjusting the applied
voltage Vpa1 or Vpae, energy levels eventually become degenerate with a lead and addi-
tional electrons can enter the dot elastically. At the edges of the honeycomb lattice, where
three charge states are degenerate (red points in Fig. 5), electrons can tunnel through the
entire double dot from source to drain and a current is observable in the case of applied
bias between both reservoirs. Please refer to [26] for more information.

Fig. 6 gives a detailed view on this

regime where the electrochemical po-

= (1,1) tential of Dotl pi(Ni, N3) is the en-
K ’ ergy needed to add electron N; to Dotl

when already N electrons occupy Dot2.
In a quantum description, p1(Ny, Na) is
the sum of a classical electrochemical
potential and the quantization energy
u(t1) E,. Note that linear transport through
the dot is only possible at the triple
points where all energy levels are degen-

erate. However, co-tunneling processes

are possible at regions where a dot state

> is resonant with its neighboring lead but
Pet the energy state of the remaining dot is
off-resonant [26]. DC transport is possi-
ble in such a region, which corresponds
to higher order processes in quantum

“V

Figure 6: Quantum dot states at or close to the in-
terdot charge degeneracy line. Direct current flow

is possible at triple points where three charge states ) ’ i
are degenerate, co-tunneling processes are shown mechanics when calculating the transi-

for a dot configuration where the charge state of 100 .matrix clements. In.general, tunnel
one dot is degenerate with the lead while the re- barriers need to be sufficiently transpar-

maining stays off-resonant, Adopted from [26] ent to ensure electron transport but at
the same time opaque to allow for dis-

crete electrons tunneling only [26]. The setup allows to detect currents as small as 5 fA
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in direct current measurements. Complementary, a QPC can be used to image charge
states.

The current through a quantum point contact, positioned close to the double quantum
dot, is sensitive to changes in the number of electrons in the individual dots. When oper-
ating such a device at the transition between quantized conductance pleateaus, the QPC
conductance responds sensitively to changes in the electrostatic potential in its vicinity
[18]. A change in occupation number of a dot comes along with a change of electrostatic
potential at the QPC. Measured between conductance plateaus, the QPC thus serves as an
instrument to image charge states of individual dots. Please refer to [29] for a more com-
prehensive description on quantum point contacts. Fig. 7 shows a direct current (Fig. 7a)
measurement as well as a measurement of the transconductance through a quantum point
contact (Fig. 7b) in the few electron regime. Note that the dot is completely emptied from
electrons in the Coulomb blockade region at the bottom-left corner where no additional
conductance resonances are visible (cf. Fig. 7b). It is important here to note that no
direct current was observable for the last electron whereas the QPC measurement stays
sensitive in this regime. A QPC serves as an essential tool when forming a single electron
double quantum dot and especially to verify the dot regime in terms of electron number
in our measurements.
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Figure 7: Charge stability diagram in close proximity of the last electron configuration: a)
Direct current measurement in LPG-RPG subspace. The plot shows a false-color image of the
measured current flow from source to drain, b) QPC measurement in LPG-RPG subspace. The
plot shows a false-color image of the transconductance dlgp/dVpg whereas dVpa indicates
a small voltage oscillation of amplitude 100 uV applied to the left plunger gate, using standard
Lock-In techniques. Refer to Appendix B [A2] for a full set of parameters.

A small bias of 25 uV was applied between source and drain for a directional electron
transport through the DQD. It was checked that non-linear transport phenomena such as
finite-bias triangles at triple points, which are an indication for a finite bias regime [26],
were not observed. Additionally, a bias of 300 uV" was applied between both sides of the
QPC. Please refer to Appendix B [A2] for a list of applied top-gate voltages.

A careful analysis of the transport properties in the few electron regime, based on the
measurement shown in Fig. 7, illustrates that by emptying the dot a possibly resulting
small tunnel or co-tunnel current can not be resolved in DC measurement for the Coulomb
blockade region with one electron in each dot only. The measured current vanishes when
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biasing the left and right plunger gate sufficiently negative which is necessary to empty
both dots. This suggests that the plunger gates not only change the static potential in the
dots, but also have an effect on the tunnel barriers, either between the dots or from dot to
lead. However, a full charge stability diagram is visible in a QPC measurement, even when
tunneling rates are so small that no direct current is observable. The DQD is completely
emptied in the region shown bottom-left in Fig. 7, no additional conductance resonances
are measured. The region up-right in Fig. 7 shows a strongly tunnel coupled DQD. The
conductance at triple points is seen to be rounded, caused by tunnel broadening between
the individual dots [26]. In such a region, the two separated dots behave increasingly
as a single large dot what can be observed by the strong DC current in this region (cf.
Fig. 7a). Note that the tunnel coupling from dot to lead can be controlled additionally
via the respective side gate voltage or the voltage applied to the source drain barrier
SDB. Similarly, the interdot coupling can be controlled by changing the voltage applied
to the center gate CG respectively to SDB. Thus, by increasing tunneling rates it might
be possible to observe direct current through the dot in principle at the corners of the
(1,1) Coulomb-Blockade region. However, it was not yet possible in the experiment to
tune the DQD to a region in parameter space where a finite DC current was measured
what suggests strong effects of both plunger gates on tunnel barriers.
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Figure 8: a) Direct current measurement in LPG-RPG subspace. The plot shows a false-color
image of the measured current flow from source to drain, b) QPC measurement in LPG-RPG
subspace. The plot shows a false-color image of the transconductance dlgp/dVype whereas
dV 1 pg indicates a small voltage oscillation of amplitude 100 uV applied to the left plunger gate
using standard Lock-In techniques. Refer to Appendix B [A3] for a full set of all parameters.

On the contrary to the single electron regime, a strong DC current can be measured over
many Coulomb blockade hexagons in the many electron regime, whereby both plunger
gates are set less negative in voltage. Fig. 8 shows a DC and transconductance measure-
ment for the DQD in the many electron regime. Please refer to Appendix B [A3] for
all applied gate voltages. Direct current is most pronounced at triple points where three
charge states are degenerate and a direct transport of electrons from source to drain is
possible. However, co-tunneling lines are slightly visible at the edges of the honeycomb
lattice that surround a Coulomb blockade region.

Such measurements give information not only on the dot regime but also allow to estimate
the interdot tunnel coupling which becomes important when coupling the DQD to a
resonator. Following DiCarlo et al. [30], the interdot tunneling t can be investigated from
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the width of the charge degeneracy line (blue line in charge detection, Fig. 8b).

3.3 Transport in the non-linear regime

In the non-linear transport regime, a finite bias is applied between source and drain such
that a bias window opens in which electron transport is possible for different quantum
state configurations [26]. Triple points, at which direct current is measured, extend to
triangular shaped regions in LPG-RPG subspace. For spectra with sufficiently separated
energy states, even excited states can contribute to the conductance. Such a transport
measurement, can be used to estimate the lever arms of a plunger gate on left and right
dot i.e. the translation factor from applied gate voltage to a change in the static potential
energy in the dot. Lever arms o pg(rpq) for the left (right) dot translate the applied bias
by equation [20]

arpcrre)OVirarra) = eV (2)

where V denotes the applied source-drain bias, e the electron charge and 6Vpai(pgo) is the
projective view of the triangle dimensions on the applied plunger voltage for PG1 (PG2)
(cf. Fig. 9). Note that this equation is only approximative and takes no cross-coupling
between gates into account. Please refer to [31] for a full description with included cross-
coupling.
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Figure 9: Finite bias triangles: Triple points (large black (white) circles show electron (hole)
transport) evolve to triangles (light blue) where resonant DC transport is possible along the
boundary. A finite current can be measured within triangles (light blue) due to co-tunneling
and further inelastic tunneling processes. Figure similar to [26]

Following [26], the extraction of lever arms is best described by Fig. 9 and employed to
a set of experimental data in the few electron regime in Fig. 10a. The data corresponds
to a finite bias measurement with a potential difference of 400 uV between source and
drain. It was experimentally checked that triangles are most pronounced for this bias
setting, although the shown triangles might serve only as an estimate due to uncertainties
given by tunnel and temperature broadened coupling to leads and incompletely developed
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triangles, that were extracted from our measurement. A mean lever arm of aypg = 0.11
eV/V resp. arpc = 0.12 eV/V was calculated for the left and right dot from the left and
right triangle. Note that, although both triangles shall be equal in size by theory, a clear
discrepancy between both triangles can be seen what additionally adds to an estimated
overall uncertainty of £+ 0.04 eV/V. An accurate estimation of the lever arm is essential for
an exact energy calibration which remains an open question for the few electron regime.
Alternative methods such as RF-Spectroscopy (cf. e.g. [32, B3]) might lead to higher
accuracy. Such an experiment is planned for the future and not yet included in this
work.
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Figure 10: Experimentally measured finite bias triangles in transconductance (a) and direct
source-drain current (b) for a few electron DQD. A possible choice of triangles is shown by the
yellow lines, while black arrows show a projection of the triangle size on the axes for LPG and
RPG. By its projection, finite bias triangles allow to determine energy scales in the system.

3.4 Evidence of a single electron double quantum dot in charge detection

From a DC respectively transconductance measurement, there is evidence to conclude
on the number of electrons within a double quantum dot. Fig. 11 compares a QPC
transconductance measurement for a many (Fig. 11a) and few (Fig. 11b) electron regime.
A summary of various steps to build up the dot is given in Appendix A, while a set
of all gate voltages applied is stated in Appendix B [A2, A3] for both configurations.
The two configurations are different in terms of charging energy AFE,, lever arm « and
conductances:

Charging Energy: A comparison of charging energies in both charge stability diagrams
shows an increase in the few electron regime. Based on an estimate following van der
Wiel et al. [26], an approximative charging energy of E._ ;.5 =~ 2.9 meV and E._,jgn =
3.4 meV for left respectively right dot was calculated in the few electron regime while
Ee_iefi(righty ~ 1.0 meV in the many electron regime. The charging energy of left (right)
dot vary due to different sizes, given by fabrication and applied gate voltages. This can
be understood from the relevant energy scales (cf. section 3.2). A few electron quantum
dot is usually smaller in size r which results in a higher charging energy AE.. From the
charging energies, an approximative dot size of .y = 60 nm (r,;,5; = 51 nm) in the single
and r = 174 nm in the many electron regime can be estimated. Note that the estimate was
done for a single quantum dot only, i.e. not the tunnel coupled system but nevertheless
serves as an approximation.
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Figure 11: QPC Transconductance measurement: a) Many electron regime, b) few electron
regime. There are significant differences in the charge stability diagrams with respect to lever
arm «, charging energy E. and conductance resonance (see text). Please refer to Appendix B
[A3] (a) and [A2] (b) for a full set of parameters

Lever arm: The lever arm for plunger gates acting on the individual dots is expected
to decrease for a few electron quantum dot, given the fact that a quantum dot with less
electrons is assumed to be smaller in size. This leads to a decreased capacitive coupling
between gate and dot and thereby a smaller lever arm, in comparison to the many electron
regime. Indeed, a lever arm .y = 0.11 €V/V for the left and ayign = 0.12 eV/V for
the right quantum dot was experimentally measured in the few electron regime. This was
supplemented by oepr = 0.23 €V /V respectively a,;gne = 0.23 eV/V in the many electron
quantum dot.

Conductance: No conductance resonances are visible in a region where the dot is com-
pletely emptied (cf. Fig. 11b, lower-left). Energetic levels are higher in energy than the
source and drain potential such that no electrons can enter the dot. The static potential
is further increased for more negative plunger gate voltages Vipg(rpg) and no electrons
enter. The dot and thereby the quantum point contact stays unaffected and no resonances
are visible in this regime.

No direct current: No direct current through the dot respectively no differential con-
ductances are measurable in the single electron regime (cf. Fig. 7a and 8a) while only the
QPC transconductance measurement stays sensitive. This is understood from the volt-
age applied to the plunger gates. Emptying the dot requires strongly negatively biased
plunger gates. In the current sample, plunger gates not only influence the static potential
in the dot but also affect tunnel rates to the lead as well as interdot tunneling. A strongly
negative plunger gate reduces electron transport through the dot accordingly to a point at
which the direct current and differential conductance measurement is not sensitive. The
QPC however stays unaffected, as the detector is sensitive to changes in the number of
electrons within the dot.
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4 Dipole coupling of a single electron to a microwave field

A direct coupling of a quantum dot to a microwave resonator has the potential advantage
to measure charge and spin states without the necessity for an additional mesoscopic
detector such as a QPC, and thereby better decoupling the qubit from its environment
and e.g. from measurement back-action such as radiation generated by the QPC (cf.

g. [34]). Although a QPC is included in the current sample design, the device can be
decoupled by setting the respective gate forming the QPC to zero volt respectively the
applied bias voltage. Complementary, the resonator serves as a non-invasive tool to read
the quantum dot [I6]. This section intends to discuss a DQD in terms of a qubit and its
coupling to a resonator.

4.1 Double quantum dot as a charge qubit

A single electron DQD can be modeled as a charge qubit in which an electron occupies the
ground state of either the left or the right dot [16] [I8]. Starting with both dots initially
not tunnel coupled to each other, the Hamiltonian that describes the configuration is
given in the basis of charge states |0,1> (|1,0>) by

~

Hy = %hdcfz (3)

where o, is defined by by ¢, = |0, 1><0,1| — |1,0><1,0| and |0,1> (|1,0>) denotes the
state of an electron occupying the right (left) dot. The energy difference between both
states is given by hd. Fig. 12a shows a schematic of the two ground state energy levels and
the dot either in state |1,0> or . The chemical potential of the left source (S) and
right drain (D) are labeled. In this configuration, both dots are separated by a sufficiently
large potential such that electrons do not tunnel between either side of the DQD. In a
second step, electrons are allowed to tunnel through the central barrier (Fig 11b). This
can be described by an additional term that describes the interaction between both dots
[16]:

H; = htd, (4)

and adds to the Hamiltonian given in (3) to an overall Hamiltonian which describes a
tunnel coupled DQD with ¢, = |1,0><0,1| + |0, 1><1,0|. This interaction Hamiltonian
accounts for a transition between both dots with tunnel coupling t. Additionally, the
interdot tunnel coupling mixes charge states, which leads to a superposition of the electron
states left and right dot. The interdot coupling hybridizes states close to zero detuning
which is observable by a tunnel splitting, schematically shown in Fig. 13b.

The new eigenstates are given by a symmetric and antisymmetric superposition |4 > of
the uncoupled states with eigenenergies Ey = +1hy/6% + (2¢)2. Those two states |¥,>
form the basis of a new Hilbert space that can be used to describe the ground and excited
state of a qubit. The transition frequency between both states is given by Q = /2 + (2t)?
with a minimal transition frequency of 2t for zero detuning d. A schematic of bare and
hybridized states is shown in Fig. 12.
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Figure 12: Ground state energy levels of a DQD: a) Individual quantum dot states if not tunnel
coupled, b) quantum dots are tunnel coupled and charge states become delocalized between both
dots. A bonding (lower dashed red line) and antibonding state (upper dashed red line) form as
new eigenstates of the coupled system.
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Figure 13: Uncoupled quantum dot energy states (a) and hybridized states (b) as a function of
the detuning § between energy levels of the left and right dot

4.2 Quantum capacitance, tunnel resistivity and DQD admittance

The tunnel process of an electron between both dots and the involved motion of the
electron allows to introduce the concept of a change in polarizability. By a tunnel process
of an electron into one dot, the electron density changes, which goes along with a change
in the potential confining the dot. The potential becomes steeper and the quantization
energy rises which changes the width and center of mass of the ground state wave function
in the respective dot [20]. This leads to a change in polarization and therefore to a change
in AC susceptibility X'. The susceptibility depends on the strength of tunneling t and is
maximal for zero detuning [I0]. A schematic is given in Fig. 14.

A similar description is given by an effec-
tive capacitance, defined by the derivative
of induced charge with respect to gate volt-
age. The effective capacitance comprises a
geometric capacitance C e, and the quan-
tum capacitance Cg, that is due to an an-
ticrossing at the degeneracy point [35].The
0 & quantum capacitance for a charge qubit is a
function of the band curvature which leads
Figure 14: The change in the AC susceptibility to different capacitances for the respective
Re(X) is maximal for zero detuning. Adopted qubit ground and excited state. Following
from [10] [16], Cg can be described by

Re(x)]
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0’E
3 (5)

C’C}t = —(ek)

where k is a conversion factor between applied gate voltage V, and change in level detuning
Ad, i.e. Ad =-exAV, and E; define bonding (antibonding) state [16], 35]. Cg is maximal
at extrema in curvature i.e. for § equal zero. A schematic is shown in Fig. 15.

The quantum capacitance Cg can be
probed by coupling a resonant circuit to

the double dot. The additional capacitance
changes the effective resonator capacitance

and therefore the resonator resonance fre-
quency [16]. By means of Cg, a qubit can

be modeled as a nonlinear quantum system

> Wwith a capacitance that depends on the re-
0 6 spective qubit state [5]. A description in
terms of quantum capacitance is valid only

Figure 15: Quantum capacitance of a DQD for in tl}e dispe'rgive regime, where cavity and
two different states. Adopted from [I6] qubit transition frequency are largely de-
tuned i.e. g2/A < 1 where g describes the

coupling of qubit to resonator and A the
detuning between resonator and qubit transition frequency. For a full description, the
tunnel resistivity enters additionally [36]. A lumped element representation of the cir-
cuit that describes the coupled qubit resonator system is given in Fig. 16 (cf. [14] 25]).
The resonator is coupled capacitively (Cy) to input and output lines. Ry, gives an addi-
tional resistive load. The LCR~Circuit that describes the transmission line resonator close
to resonance is highlighted by the red box. Additional information for coplanar waveg-
uide resonators can be accessed via [25]. A qubit that is coupled to a resonator gives
an additional contribution due to its tunnel resistivity Ry and effective capacitance
Cerr = Cgeom + Cg. A lumped element circuit for the DQD is denoted by the green box
in Fig. 16. A coupled double quantum dot induces a dispersive frequency shift (changed
Cg) and possibly dissipation in the resonator (losses e.g. due to non-resonant tunneling)
which can be probed by a microwave tone.
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Figure 16: Coupled resonator-DQD system represented as electric circuit. A state dependent
effective capacitance Ccry of the DQD (green) changes the resonator (red) resonance frequency
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However, experimental data together with theoretical concepts suggest that besides capac-
itive effects, inductive behavior enters the reactance and therefore influences the admit-
tance X of a mesoscopic system differently, in addition to purely resistive effects described
by the real part of the complex impedance Z. The admittance is defined as X = 1/Z in
this context. This can be described quite intuitively following Frey et al. [I4]. As the
tunneling rate between dots or dot and lead decreases, the electron can not follow the
drive field anymore when the dwell time exceeds the field period. A current defined by
the tunneling electron lacks behind the field respectively the applied voltage. The overall
response of current to voltage shows more and more inductive behavior. This will be
visible measuring the resulting frequency shift of the resonator, as capacitive reactance
and inductive reactance show opposite sign and therefore influence the resonance shift
in the resonator in opposite direction. Such a system can be modeled in terms of the
dynamic admittance g (w), that describes the tunnel coupled quantum dots [14].

A lumped element description is shown in

Fig. 17, following Frey et al. [14]. Here,

@V Vin the DQD is modeled in terms of its dy-

r namic admittance g%P(w). The dot is con-

nected in parallel to an LRC-circuit that

serves as a model for the coupled trans-

mission line resonator whereas excitations

|_ R in the resonator translate via V,, on the

Crb dot. The resonator is driven at its res-

| onance frequency v,. However, the reso-

nance frequency of the coupled quantum-

- dot resonator system shows a frequency

shift in comparison to the bare resonator

Figure 17:  Lumped element diagram of frequency that depends on the complex ad-

Resonator-DQD system. The dot is represented mittance. This fact can be used to read

by its dynamic admittance g?”(w) coupled to a out the qubit state or the DQD characteris-

resonator (LCR-circuit), adopted from [14] tics in a transmission measurement. Prob-

ing the resonator at its bare resonance fre-

quency v, the amplitude of the transmitted signal decreases when the resonator frequency

shifts. This model was proposed by Frey et al. [14] for the tunnel process between dot
and lead in and remains to be investigated for the interdot tunneling.

In a Coulomb blockade region, the energy of the dot is dominated by the charging energy
E. which is two orders of magnitude higher than the photon energy in the transmission
line at resonance, given a charging energy of around 1 meV respectively 240 GHz which is
typical for lateral defined semiconductor quantum dots. The cavity is unaffected by the
presence of a DQD respectively by a change in the dynamic admittance g¥?(w). However,
near a charge transition line, i.e. for the interdot detuning ¢ approaching zero, energy
scales are of similar size which leads to an observable frequency shift when the admit-
tance of the DQD is influenced by excitations in the resonator. This can be understood
as a change of the electron wavefunction, resulting from resonator excitations, which is
equivalent to a change in the polarization of the DQD. Additionally, dissipative processes
might contribute, given by the real part of the complex impedance, although those are
not yet completely understood. Frey et al. speculate that charge relaxation processes
have a major effect in high-frequency resistance measurements [14]. Presented work by
Gabelli et al. [37] shows a similar effect in a quantum RC circuit.
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4.3 Quantum mechanical treatment

A quantum mechanical treatment of a coherently coupled resonator-DQD system in the
following closely follows ideas developed by Childress, Sorensen and Lukin [38]. The
coupling between both systems relies on a capacitive interaction between a quantized
resonator excitation and the electron charge within the DQD. Deviating from [3§], a
finite cross-coupling was introduced to account for the experimentally observed situation.
In such a description, mesoscopic systems separated in space might be coherently coupled
for quantum information processing, provided that strong coupling between resonator
excitations and charge qubit exists. The basic idea is outlined in Fig. 18.
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Figure 18: Schematic of a quantum dot capacitively coupled to a transmission line resonator and
tunnel coupled to its neighboring quantum dot, side view (a) and top view (b). Concept and
figure similar to [38]. Deviating from this publication, the cross capacitance C; was introduced
to account for the experimentally relevant situation.

The DQD is described in terms of a single electron which occupies a charge state either
in the left |Dotl> or right |Dot2>, for both dots initially not tunnel coupled. When
a finite coupling is switched on, the electron wavefunction becomes displaced between
both dots and bare charge states |Dotl> and |Dot2> hybridize, described previously
section 4.1. Additionally to this system, a transmission line resonator is capacitively
coupled with strength C. to the right quantum dot and with capacitance C; to the left
dot. Quantized excitations in the resonator change the static potential in the right and
left dot to a different extend as a reason of a different capacitive couplings. The electron
charge interacts with resonator photons via such a process. Changing the static potential
predominantly in one of the coupled dots changes the electron wavefunction and therefore
the effective dipole moment. In the following, it is shown that such an interaction is
equivalent to a dipole coupling between resonator and DQD and formally analogous to
cavity quantum electrodynamics with atoms [38].

In the limit of a dot that is much smaller in size than the wavelength of the radiation,
which is well fulfilled in the case of microwave radiation where the wavelength (mm)
is orders of magnitude larger than the dot size (nm), the interaction strength can be
described in terms of the electrostatic potential energy of the coupled system [3§]. In
this derivation, it is assumed that the resonator is predominantly coupled to the right dot
whereas a cross coupling to the left dot is neglected for simplicity.
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Hiny = eVe|Dot2 >< Dot2)| (6)

where |Dot2><Dot2| describes the coupling to the right dot, e is the electronic charge,
V the voltage of a field excitation at the position of the right dot i.e. the potential of the
center conductor at the dot position, ¢ = C./(C. + Cy1) with C. the capacitive coupling
of the right dot to resonator and Cy the capacitance of the right dot to ground. In the
case of a finite cross coupling, ¢ needs to be reduces to ¢ = C./(C.+ Cq1) — C;/(C; + Cyg)
as only a difference in coupling strength changes the polarization. Note that an identical
capacitive coupling gives a common oscillation in energy in both dots, when coupled to
resonator excitations, and thereby does not change the dipole moment. The constant
offset in both dots changes the overall energy while only the difference in induced energy
shifts accounts for the dipole coupling. A strong dipole coupling can thus be achieved
by increasing the capacitive coupling to the right dot and minimizing the cross coupling
between resonator and left dot. Rewriting the interaction Hamiltonian in terms of DQD
eigenstates

|+ >= sin(P)|Dotl > +cos(P)|Dot2 > (7)
|— >= cos(®)|Dotl > —sin(P)|Dot2 > (8)

In this description tan(®) = —2t/(Q2 + §) and Q = /(2t)2 + 02. 2 describes the qubit
transition frequency i.e. the energy splitting between bonding and antibonding state of the
tunnel coupled DQD, t is the matrix element that models the tunnel coupling between
both dots and ¢ is the detuning between the respective dot charge states. Rewriting
equation (6) in terms of raising and lowering operators of the qubit state o™ = |+ >< —|
and 0~ = |- >< +| and introducing quantized resonator excitations,

N hv
- V=2 (a Al
1% ; 1C, (an, +al) (9)

where v,, describes the frequency of mode n, a,, a! are creation and annihilation operators
from a canonical quantization of the resonator field obeying the bosonic commutation
relation [ @, @l = 0mn and [ a4, ail'] = 0. Following [38], the full Hamiltonian that

describes the coupled resonator-DQD system reads in this notation

~ hQ
H="70.+ > hvalan + h(gld. + grd,)(al + dn) (10)
where | + > and | — > are eigenstates of &, with eigenvalues +1, 6, = 67 + 6~ and

coupling constant g:

= g(6/2Q) v/ wa/wo (11)
9" = g(t/Q) v/ wn/wn (12)

22062
h

g = woC (13)
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Z¢ is the characteristic resonator impedance. Neglecting non-energy conserving terms
respectively rewriting the full Hamiltonian in the rotating wave approximation (RWA),
the Hamiltonian reads for the fundamental mode v,,—y [3§]

H= ?a} + hupa'a + hgé(def_ +ac™) (14)
where 14 is the fundamental mode frequency and a' and & are creation and annihila-
tion operators for an excitation in the fundamental mode i.e. of a photon into and from
the resonator. This Jaynes-Cummings type Hamiltonian describes a dipole coupling be-
tween resonator and double quantum dot and shows a direct analogy between the coupled
resonator-DQD system and atomic cavity QED [38] for a two-level system with eigenen-
ergies

Ei = hyyn + \/(hl/g — hQ)? + (2hgé)2(n +1) (15)

in a subspace with basis |+,n> and |—,n + 1>. For a full description of the coupled
system in use, a resonator drive as well as decoherence respectively relaxation needs to
be taken into account. The resonator drive can be described by a coherent field that is
coupled capacitively through input lines to the resonator. This drive field adds additional
photons to the resonator, modeled by a Hamiltonian of the form (cf. e.g. [39])

with photon creation operator a' . ¢(t) refers to a time dependent change in the drive
amplitude of the form €(t) = ee™P! and wp is the drive frequency. Similar to a coherent
drive, losses of the resonator field need to be taken into account. An intuitive picture is
given by a resonator mode that is coupled to the environment via an effective coupling
constant. The coupling of a free field Hamiltonian to the i-th environmental modes is
given by [40]

A

Hies —ioss = — Z h%(abje’i(wo’“i)t + albeio—wilt) (17)

where the sum includes all environmental modes i and j; is a coupling constant that
depends on the respective mode. a (af) and b; (b!) are annihilation (creation) operators
for a photon in the resonator respectively environmental mode. The full Hamiltonian
with coherent drive and resonator losses reads

A hQ) t
H=—-0.+ hvoa'a + hgﬁ(éﬁ&‘ +ac™) + h(e*(t)a + €(t)a)
s ) . (18)
. E hE(ab;re—z(wo—wi)t + a’[biez(wo—wi)t>

In a resonant case, an anticrossing would be observable at the degeneracy point where
qubit transition frequency and resonator frequency are degenerate. Please refer to [41] for

28



more details on the Jaynes-Cummings Hamiltonian at resonance. However, equation (18)
only holds in an ideal model without qubit dephasing and relaxation. In a more realistic
model, qubit relaxation and decoherence need to be taken into account. Such a system
can be modeled by a Markovian master equation with additional operators to account for
such processes.

Fig. 19a shows a schematic of an anticrossing while Fig. 19b gives an example for the
steady-state solution of a master equation approach that includes relaxation and dephas-
ing for a similar case. A software for numerical simulation, developed in the group of
Alexandre Blais at University of Sherbrooke, Canada is used to extract coupling strength
as well as tunneling and dephasing rates following Frey et al. [12].
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Figure 19: a) Eigenenergies of the coupled resonator-qubit system (black). Avoided level crossing
at the degeneracy point where resonator (green) and DQD transition frequency (red) meet,
adopted from [12]. The figure corresponds to a Jaynes-Cummings Hamiltonian without qubit
dephasing and relaxation. b) Resonator frequency shift simulated numerically from a master
equation approach based on a Jaynes-Cummings Hamiltonian. The model includes additionally
qubit relaxation and dephasing (see text).

Depending on the qubit transition frequency with respect to the resonator resonance
frequency, the resonator shifts either to lower (Vgupit > Vresonator) Or higher frequencies
(Vqubit < Vresonator), compared to the bare resonator frequency. An intuitive explana-
tion for the strong coupling regime can be derived from an effective Hamiltonian that
is approximated in the dispersive regime where qubit transition frequency and resonator
frequency are far off-resonant, i.e. A > 1. The approximative Hamiltonian reads for the
Hamiltonian in Eq. (14)

~ G? G?
Heg =m0 = ax o) A

where G = ¢g t/Q2 and A = Q — 1vy. Please refer to e.g. [0, [42] for a derivation. Here, A
accounts for a positive or negative frequency shift of the resonator, depending on the qubit
and resonator frequency. This serves as an additional read-out channel for the qubit state
by probing the state-dependent frequency shift of the resonator with resonance frequency
Vot G? /472 A. Assuming the DQD always in its ground state, justified by large relaxation
rates in similar systems of the order of v, /27 = 100 MHz [12] [43] [44] [45], a changing sign
in the resonator shift translates to a positive respectively negative detuning. Due to
large qubit dephasing and energy relaxation rates, an anticrossing is not visible at the
degeneracy points (cf. Fig. 19b).

1
ata + §h(Q + )o. (19)
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5 Double quantum dot charge qubit in a circuit QED architecture

Different theories of coupling a DQD to a microwave resonator, developed by Childress
et al. [38] and discussed in section 4.2 in terms of probing the dot admittance and in 4.3
for a quantum mechanical treatment, suggest a shift in resonance frequency whenever the
qubit transition frequency is close to the resonator frequency. It has been shown with
great success, that the dipole coupling of a transmission line resonator is an impressive
tool to probe the state of gate defined quantum dots [10], 12} 13|, 16]. This section reports
on studies of a DQD by means of its interaction with a microwave resonator.

5.1 Detection scheme

Resonator and DQD are probed in a heterodyne detection scheme. Please refer to Ap-
pendix C for a schematic of all components. A coherent microwave tone is applied to the
resonator and the transmitted signal is measured in terms of its field quadratures I and
Q, where Ae?® =1 + iQ, after down-conversion with a local-oscillator field. Amplitude A
and phase ¢ of the transmitted signal is studied. The reader is referred to e.g. Wallraff et
al. [7] for more information on the heterodyne detection scheme.

To probe for the previously discussed
classical (admittance) and quantum
mechanical model, the resonator re-

dlcp/ Vg [a.0]
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= istic points (1) and (2), depicted in
4% o\ - . |"  Fig. 20. Both models suggest that the
440 W\ S 1°  resonator resonance frequency is dif-
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-475 ; _ \ ) B, ment, shown in Fig. 20, is intended
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only. Although the measurement tech-

Figure 20: QPC transconductance measurement in niques are different between DC and
the vicinity of the (1,1) Coulomb blockade region. Microwave readout, the transconduc-
Two characteristic measurement positions (1) and (2) tance map nevertheless serves as a ref-
are indicated, please refer to Appendix B [A5] for a €Tence for microwave studies. A full
set of all gate voltages transmission spectrum for the funda-

mental mode of the resonator allows
to extract amplitude, resonance frequency and linewidth by a Lorentzian line shape fit,
identical to the procedure presented in section 2.2. For such a measurement, it is assumed
that the transmission spectrum remains Lorentzian at each point in LPG-RPG subspace
(cf. Fig. 21a). A change (e.g.) in the admittance of the dot, comparing point (1) and (2),
should be visible in terms of a frequency shift and possibly a reduction in amplitude for
dissipative processes. Note that the measured points (1) and (2) are different. Within the
Coulomb blockade region (point (2)), the energy difference between neighbouring charge
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states is dominated by the charging energy, which is orders of magnitude higher than the
energy of a photon in the transmission line resonator. The electron wavefunction remains
unaffected and no significant change in the dipole moment is induced by the resonator.
However, close to an interdot charge transfer line (point (1)), energy scales are comparable
and the dynamics of an electron within the double dot can be probed via the resonator.
In a full quantum mechanical description (cf. section 4.3), these two points are different
when considering the detuning between qubit transition and resonator frequency. Off-
resonant, a possible state-dependent frequency shift G?/472A (cf. Eq. (19)) would only
be observable for sufficiently small detuning. Nevertheless, the qubit transition frequency
changes along a line from (1) to (2) and both points show a different detuning from the
bare resonator frequency, which will be observed in the following. The qubit is assumed
to be in its ground state at all times due to large relaxation rates, typical for charge qubits
[12, 4]

Fig. 21 gives exemplarily the squared transmission amplitude (a) and phase (b) at the
two characteristic points (1) and (2). Resonance frequencies of 6.7622 GHz (blue) and
6.7619 GHz (red) are fitted what corresponds to a shift of 300 kHz in this example. The
amplitude decreased at the same time by 336 uV? and the quality factor is 58.5 less for
the resonator measured at point (1). The resonator shows a quality factor of 905.8 (2)
respectively 847.3 (1) for the gate-voltages chosen. An increasing linewidth suggests a
dissipative process at which the resonator is sensitive to a non-vanishing real-part of the
complex impedance, when the dynamic admittance of the DQD is probed.
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Figure 21: Squared transmission amplitude and phase at two characteristic points in the charge
stability diagram, refer to Appendix B [A6] for all voltages.

Measuring the full transition spectrum at each point in LPG-RPG subspace for a series
of various DQD configurations is however time-consuming. Alternatively, the resonator
is probed at a fixed resonator frequency for each plunger gate configuration (LPG,RPG).
First, a reference frequency is extracted from a measurement of the full transmission
spectrum for a point (LPG,RPG) deep within the Coulomb blockade region. In a second
step, the resonator transmission is analyzed for each point on the map at fixed frequency,
assuming that the probe signal is close to resonance within different Coulomb blockade
regions and becomes off-resonant close to or at the interdot charge transfer line, depicted
by the dark blue color in Fig. 20. An off-resonant signal will be observable by a drop in
transmission amplitude, compared to the on-resonant case. Complementary, the trans-
mission phase can be measured at fixed frequency while a unique phase shift in both
regions translates into positive or negative frequency shift.
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5.2 Interdot charge transfer line

The model suggested in section 4.3 predicts two characteristic regimes when probing
the resonator in the vicinity of an interdot charge transfer line, including dephasing and
relaxation processes. The minimal qubit transition frequency 2t is either higher or lower
in comparison to the uncoupled resonator frequency v,.. In the case of a higher transition
energy (Fig. 22), the resonator frequency shift is only negative, whereas in the case of a
lower frequency, the shift is expected to be negative at the edges of an interdot charge
transfer line and positive along the line (Fig. 23b, 19a). A frequency shift translates into
a change in transmission phase, such that a negative (positive) frequency shift results in a
negative (positive) phase shift. Fig. 22 and Fig. 23 show data sets for transmission phase,
measured at a fixed resonator frequency v, = 6.762 GHz in LPG-RPG subspace in the
vicinity of a charge transfer line. Refer to Appendix B [A7, AS8] for a set of parameters.
Also shown is schematically the expected frequency shift along the line indicated § in
Fig. 22a (Fig. 23a), cf. also Fig. 19. The minimal qubit transition frequency was tuned
by the voltage applied to the center gate V., which translates to a different tunnel barrier
width and height and thus a different dispersion relation of the qubit.
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Figure 22: 2t > v,: Transmission phase from experiment a) and schematic along 0 b). Decreasing
resonator frequency in the case of minimum qubit transition frequency larger than resonator
frequency. Refer to Appendix B [A7] for a set of all parameters
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Figure 23: 2t < v,: Transmission phase from experiment a) and schematic along 6 b). Decreasing
as well as increasing resonator frequency in the case of minimum qubit transition frequency larger
than resonator frequency. Refer to Appendix B [A8] for a set of all parameters

In a similar manner, the transmission amplitude can be measured for fixed resonator fre-
quency. Fig. 24 presents the transmission amplitude for a parameter set that corresponds
to the phase signal shown in Fig. 22 (a) and 23 (b). A drop in the signal is observed,
indicated by the dark blue color. The resonator resonance is probed at fixed frequency,
which was chosen on-resonant in a Coulomb blockade region. Close to and at the in-
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Figure 24: Transmission amplitude for fixed resonator frequency. Refer to Appendix B [A7]

terdot charge transfer line, the resonator frequency shifts and the probe signal becomes
off-resonant and the transmission amplitude decreases. Dissipation might further decrease
the transmission amplitude. Depending on the resonator quality factor and parameter
regime, the sensitivity in measuring amplitude or phase might vary. It was experimentally
observed that a signal in amplitude was measured while no signal in phase occurred and
vice versa (not shown).

5.3 Necessity for single electron charge qubits

Recently published data by Frey et al. [12] for many electron quantum dots reports
on decoherence rates in the order of 1 to 3 GHz, while a coupling strength of 50 MHz is
achieved. Decoherence rates, orders of magnitude higher than the dipole coupling, remain
a fundamental issue on the way towards strong coupling.

Fig. 25 summarizes some of the
main results of [I12]. Shown is the

transmission phase in LPG-RPG l -

subspace, (a) and (b), as well as
the change in resonance frequency
along the black dashed line. Frey
et al. motivate the absence of an
anticrossing, respectively of vacuum
Rabi mode splitting, by a qubit de-
coherence rate that is significantly
larger than the coupling strength.
The measured frequency shift (c)
closely follows the predicted behav-
ior, assuming the minimal qubit
transition frequency 2t (cf. sec-
tion 4.1) lower than the resonator
frequency respectively larger (d).
A numerical simulation of the fre-
quency shift, assuming a Jaynes-
Cummings Hamiltonian (Eq. (18))
as well as qubit and resonator re-
laxation and qubit dephasing, pre-
dicts the observed frequency shift.
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Figure 25: Transmission phase (a) and (b) for two dif-
ferent interdot tunnel rates 2t < v, (a) and 2t > v, (b).
The resonator frequency along the black dashed line is
shown in (c¢) and (d), corresponding to the configura-
No avoided level crossing
observable. Data and plots from Frey et al. [12]

tion in (a) respectively (b).
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A comparison can be drawn e.g. to Fig. 19b which simulates a qubit with minimal tran-
sition frequency 2t = 6 GHz, qubit dephasing rate v,/2m = 4 GHz, qubit relaxation rate
~v1 /27 = 100 MHz and coupling strength g/2m = 25 MHz. The resonator frequency was
set to 6.762 GHz in this simulation. Please refer to section 5.5 for a systematic study of
the previously introduced model (Eq. (18)) and further numerical simulations.

Excited charge states, resulting from discrete quantization energies, might constitute an
additional decoherence channel. The spacing in energy between those states, known as
the single particle level spacing, can be estimated to be A = h?/m*r?, following [1§] and
a derivation given in section 3.1. The spacing between ground and excited charge states
thereby scales like 1/r? with r the dot size. Few and single electron dots are smaller in
size compared to many electron dots and thereby excited states are energetically more
separated. Thus, a promising approach to study and to reduce dephasing rates is to
analyze single electron quantum dots for which this additional decoherence channel, due
to nearby excited states, is reduced. Additionally, single electron quantum dots have the
benefit that the system can be modeled without considering many-particle effects, such
that the previously derived Hamiltonian (Eq. (18)) holds and describes a single electron
that occupies either the left or the right dot at zero interdot tunnel coupling.

5.4 Towards the last electron

This section discusses steps and difficulties towards the observation of a dipole coupling
between a single electron and a resonator. Measurements in the single electron regime
are presented and compared to the many electron DQD.

5.4.1 Effects of plunger gates on interdot tunnel rate

Separate plunger gates are employed in the used sample design currently to change the
static dot potential, whereas the dot itself is primarily formed by side and center gates.
However, a finite cross-coupling of gates can not be avoided in mesoscopic structures.
This effect became first evident in the charge stability diagrams in terms of a finite slope
of co-tunneling lines corresponding to a resonance condition between one dot and its
neighboring reservoirs, depicted in Fig. 5¢ and 7a respectively for experimental data.
More significant in terms of charge qubits is an effective change of the tunnel barrier with
a change in plunger gate voltage, that was shown to be pronounced in the given sample.
Such a dependence was first observed in DC measurements (cf. 2.4.2) and is measurable
in the microwave regime likewise. A plot of transmitted amplitude (Fig. 26a) and phase
(Fig. 26b) at fixed resonance frequency shows this effect. The data maps the measured
transmission signal in LPG-RPG subspace. A change in plunger gate voltage leads to
a transition from negative (dark blue color in Fig. 26b) to positive phase shift (white
color in Fig. 26b) whereby the minimal qubit transition frequency changes from above to
below the resonator frequency. This is explained by a change in tunnel rate and shows
the dependence of the interdot tunel rate on plunger gate voltages in our sample.

The dependence of the voltage applied to plunger gates on the interdot tunnel barrier
was a crucial point to consider when operating the DQD in the single electron regime.
In such a regime a single electron remains that is shared between both dots. Emptying
the dot requires increasingly negative plunger gate voltages to tune the static potential
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Figure 26: Transmission amplitude (a) and phase (b) at fixed resonator frequency in the vicinity
of a charge degeneracy line. Please refer to Appendix B [A9] for a set of all parameters. A change
in the transmission phase from positive (white) to negative (dark blue) within the same interdot
charge transfer line signifies a strong effect of plunger gates on the interdot tunnel barrier.

appropriately, which decreases the interdot tunnel-coupling to a regime where the res-
onator is not necessarily sensitive to the qubit transition frequency. A careful selection
of voltages applied to side and center gates was important when a single electron DQD is
formed.

5.4.2 Resonator characteristics (v, Q, A) and its dependence on top-gate voltages

A change in amplitude and phase is observable in LPG-RPG subspace which goes along
with static resonances that are independent of the voltage applied to the right plunger gate
over large voltage ranges, shown in Fig. 27. This change in amplitude and phase, on top of
possible DQD resonances, complicates the detection and systematic studies and formed a
major difficulty on the way to a single electron DQD, especially as the transition occurred
in a region where a single-electron resonance was expected. The resonator dependence on
top-gate voltages is more systematically discussed in section 6.
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Figure 27: Transmission amplitude (a) and phase (b) in LPG-RPG subspace. A change from
light blue to dark blue shows an abrupt change in the measured amplitude and phase of the
transmitted microwave signal that is independent of the charge state of the DQD. Additional
resonances are visible in the vicinity of this transition region. Refer to Appendix B [A10] for a
set of all parameters

One strategy to overcome these difficulties is to operate the dot in a regime, where few-
electron resonances are expected to be far from this transition region, respectively by
tuning resonances away from this region. This can be achieved by an appropriate interplay
of side and plunger gates. More negative side gates allow for less negative plunger gates
and vice versa to resemble a similar dot configuration.
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5.4.3 Single electron double quantum dot

Facing the difficulties mentioned in the previous subsection, a better understanding of
the dot characteristics allowed to tune the system into a regime in which the interdot

tunneling of a single remaining electron in the DQD can be observed in a microwave
measurement.

Formation of a single electron DQD: A series of steps necessary for the formation
of a DQD is given in Appendix A for the currently used sample design. However, special
care has to be taken to avoid the difficulties discussed previously. For one point, it
was observed that the plunger gates have a significant effect on the interdot tunnel rate
whereby it is expected that strongly negative plunger gate voltages decrease the tunnel
rate to an extent at which the resonator becomes insensitive to those processes. To
overcome this, we attempted to operate the DQD in a single electron regime but tried to
avoid for increasingly negative voltages applied to plunger gates. This can be achieved by
setting the side gates more negative. Side gates not only form the dot, but also contribute
to the static potential within the dot. In combination with side gates, plunger gates now
need to be less negative in voltage to reach the single electron limit. In a second step, the
double quantum dot was further tuned into a region at which a direct current through
the dots was measurable almost up to the last electron which indicates that all tunneling
currents through the dot are strong. This was achieved mainly by changing the center
gates V. (CG) and SDB and thereby increasing the interdot tunnel rate (cf. Fig. 4).
Once a resonance is visible in the microwave measurement, the signal to noise ratio was
further optimized by a combination of varying side and center gate voltages, based on the
observed phase signal, i.e. the direction of the phase shift.
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Figure 28: QPC transconductance charge stability diagram in the few electron regime. The
number of electrons in the dots is indicated. Here, (0,1) stands for no electron in the left and
one electron in the right dot. Refer to Appendix B [A11] and [A12] for a set of all parameters

Starting from a direct current measurement, the DQD was first formed and tuned into
the single electron regime as depicted above. A QPC transconductance measurement is
plotted exemplary in Fig. 28a and in 28b for the interdot charge transfer line (blue) from
(0,1) to (1,0) whereas (0,1) indicates no electron in the left and one electron in the right
dot. From this measurement, it can be seen that the DQD charge qubit predominantly
forms close to the (1,1) Coulomb blockade region. For an increasing number of electrons,
i.e. less negative plunger gate voltages, the two individual dots become strongly coupled
and show the response of a single large quantum dot. The theoretically expected hexagonal
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shape disappears, seen in the upper right corner in Fig. 28a. Additionally, a pronounced
rounding of the conductance (red line) close to the interdot charge transfer line from (1,2)
to (2,1) respectively from (0,1) to (1,0), also shown in Fig. 28b, indicates a strong interdot
tunnel coupling. The rounding is related to a tunnel broadening of the co-tunneling lines

26, 18].

The corresponding microwave measurement shows a resonance at the expected position
of the interdot charge transfer line from (0,1) to (1,0). Assuming that no charge rear-
rangement has occurred, a direct comparison between DC and microwave studies proofs
that the observed resonance in Fig. 29 indeed corresponds to a single remaining electron
in the double quantum dot, dipole coupled to the resonator (cf. Fig 28). The resonance
is clearly visible in amplitude (Fig. 29a) and less pronounced in phase (Fig. 29b). Note
that no further resonances are visible in the vicinity of the (1,1) Coulomb blockade region
by comparing Fig. 28 and 29. This again shows the effect of plunger gates on the interdot
tunnel rate. Changing the plunger gate voltage by a few millivolts changes the tunnel
rate and thereby the qubit transition frequency into a regime at which the resonator is
not sensitive anymore, i.e. the detuning between resonator and qubit transition frequency
increases significantly. It was checked, that by adjusting side and center gate, the remain-
ing resonances individually become visible while the initial resonance, shown in Fig. 29,
disappears. The number of visible resonances depends on the exact gate configurations
and is only to be shown here as an example. A different gate configuration might allow for
different resonances visible at the same time in the vicinity of the (1,1) Coulomb blockade
region.
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Figure 29: Resonator response in the few electron regime from a microwave measurement. A
resonance at the position of the interdot charge transfer line from (1,0) to (0,1) is visible in
amplitude (a) and phase (b), highlighted by the red-dashed line. The resonator is not sensitive
to other charge degeneracy lines. Set of parameters in Appendix B [A13]

We proceed by further analyzing the interdot charge transfer line depicted above. In
agreement with the previously discussed model, a positive or negative frequency shift in
the resonator is expected to be observable whenever the qubit transition frequency is close
to the resonator frequency. For such a measurement, a resonator transmission spectrum
was probed for the fundamental mode at each point along the red dashed line indicated
in Fig. 30a and 30b for different voltage applied to the center gate V. (cf. also Fig. 4)
and therefore for different interdot tunnel rates. A set of transmission phases, measured
at fixed resonator frequency, is shown in Fig. 30a and 30b, with the resonator resonance
frequency and linewidth shown in Fig. 30c and 30d for three different center gate voltages.
Note that a transition from a negative frequency shift (green) to a positive frequency shift
(blue) occurs when applying more negative voltage to the center gate V.. This is in good
agreement with the model previously discussed and shows a change in the minimum
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transition frequency 2t from above (green) to below (blue) the resonator frequency as a
result of decreasing tunnel rate. This data looks similar to work by Frey et al. [12], despite
carrying out experiments in a single electron DQD. In fact, no indications for a strong
coupling regime respectively reduced dephasing rates, compared to previously published
work, are visible. However, a conclusion on dephasing rates between the single and many
electron regime should be drawn within the same sample. This is because contributions
of various decoherence sources (cf. chapter 5.7) might change when considering different
sample designs and semiconductor heterostructures.
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Figure 30: a) and b): Transmission phase for two different interdot tunnel rates, given a different
voltage applied to the center gate V. in a single electron DQD, ¢) and d): Resonator frequency
shift and linewidth, measured along the red dashed line in a) and b), are extracted from a
Lorentzian line fit similar to the procedure described in section 2.2. Please refer to Appendix B
for a full set of parameters: [A8] (a), [A14] (b), [A15] (c) & (d)

Based on these data, it is instructive to further study decoherence and to compare the
qubit characteristics with previously published work on DQD charge qubits. We therefore
model our system in terms of a Jaynes-Cummings Hamiltonian (equation 14, following
[12]) and introduce dephasing and relaxation. The resonator frequency and linewidth
are obtained from a numerical simulation, based on a Lindblad master equation with the
previously described Hamiltonian. A program to simulate those data was provided by the
group of Alexandre Blais, University of Sherbrooke [46]. In the following, the proposed
model is analyzed in terms of coupling strength, qubit dephasing and relaxation as well
as interdot tunnel rates. Comparing those results with the obtained experimental data,
conclusions on qubit parameters are drawn.
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5.5 Numerical simulation: Pre-analysis for model

Simulating a quantum systems, based on a Jaynes-Cummings type Hamiltonian with
qubit relaxation and dephasing, is fruitful to understand the physics of a qubit coupled
to an environment and to explain the characteristic features that were observed in the
experiment. In the following, resonator resonance frequency and linewidth are numerically
simulated for changing characteristics such as coupling strength g, interdot tunneling t,
qubit dephasing rate 7,, qubit relaxtion rate i, drive amplitude €, qubit temperature
T, resonator thermal population ny, and Hamiltonian size i.e. number of photons in the
simulation n,,. An understanding of the coupled resonator-qubit characteristics, based on
those parameters, is essential to further analyze experimental data in the single and many
electron regime. All data sets shown in this section are based on a numerical simulation,
following a Markovian master equation approach in a Lindblad form, following [47]:

0p/0t = —i[H, p] + kDlalp + 11 D[6_1p + 75 D[6:]p/2 (20)

H describes the previous model in equation (14) with qubit relaxation 7; and dephasing
rate 7, and photon decay rate k. D[O]p = (20501 —O'0Op — pOTO) in this context. The
reader is refereed to e.g. [48] for details of a master equation with Lindblad operators.
The employed software SQUACK - Sherbrooke QUantum pACKage - was kindly provided
by Prof. Dr. Alexandre Blais [5] and Dr. Maxime Boissonneault [47].

5.5.1 Coupling strength g

The coupling between a DQD charge qubit and resonator depends on the capacitive
differences in the coupling of the resonator to the individual dots, and scales as g =
wocr/2Zpe? /h with ¢ = | C./(Ce+Caq1) —C; /(C;+Cy2) | where Cg;) describe the capacitive
coupling to the individual dots (cf. Fig. 18 and section 4.3), Ce()+Caia2) the total capaci-
tance of the respective dot, wy/2m the resonator resonance frequency and Zg is the charac-
teristic resonator impedance. Equivalently, the coupling strength can be reformulated in
terms of lever arms to account for the capacitive coupling between dot and resonator gate.
In the following, the influence of the coupling strength g is studied for two cases, minimum
qubit transition frequency below (Fig. 31 and 32) and above (Fig. 33 and 34) the resonator
frequency. In such a simulation, all parameters, except for the coupling strength, were
held constant (cf. inset Figures 31 to 34). Following equation (15), the resonance fre-
quency of the coupled system is given by v = von & /(vo — Q)2 + (47gt/Q)%(n + 1). In
the off-resonant approximation, a resonator frequency shift G?/(vy — Q) (cf. Eq. (19)) is
predicted. A resonance shift thus scales with the square of the coupling strength, whereas
the magnitude of the shift is inversely proportional to the detuning between qubit and
resonator. At constant detuning, i.e. constant § for all cases, the frequency shift is ex-
pected to increase quadratically, as seen along a line parallel to the y-axes in Fig. 31 and
33, both for positive (Fig. 31) and negative frequency shifts (Fig. 31 and 33). Note that
this predicted behavior is affected by dephasing and relaxation, not included in equation
(15) and (19). Nevertheless, the overall tendency for an increasing frequency shift with
increasing coupling strength is evident. Worth noting is that the position of the minima,
as well as the overall shape, remain unaffected. The coupling strength therefore mainly
scales the overall resonance frequency shift, a feature similarly observed for the resonator
linewidth in Fig. 32 and 34.
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Figure 31: Case 1: Evolution of resonator resonance frequency as a function of coupling g. In
this configuration 2t < v, with v, = 6.762 GHz. An offset of 10 MHz was included for clarity
to subsequent curves. Large scale (a) and subset (b).
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Figure 32: Case 1: Evolution of resonator linewidth as a function of coupling g. In this configu-
ration 2t < v, with v, = 6.762 GHz. An offset of 1 MHz was included for clarity to subsequent
curves. Large scale (a) and subset (b).
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Figure 33: Case 2: Evolution of resonator resonance frequency as a function of coupling g. In
this configuration 2t > v, with v, = 6.762 GHz. An offset of 10 MHz was included for clarity
to subsequent curves. Large scale (a) and subset (b).
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Figure 34: Case 2: Evolution of resonator linewidth as a function of coupling g. In this configu-
ration 2t > v, with v, = 6.762 GHz. An offset of 1 MHz was included for clarity to subsequent
curves. Large scale (a) and subset (b).
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5.5.2 Interdot tunneling t

Studying the interdot tunnel rate is essential as this parameter can be controlled within
the experiment by the width of the depletion region between both dots i.e. with applied
gate voltage V.. Similar to the coupling strength g, t is found to scale the overall frequency
shift and linewidth (cf. G = ¢ t/Q for the dispersive case, equation (19)). Additionally,
Fig. 19a suggests that the position of the minima changes as a function of the dot detuning
0, in the case of minimum transition frequency below the resonator frequency. Depending
on the tunnel rate, qubit and resonator frequency are degenerate for different §. This
predicts an increasing separation of the minima with decreasing tunneling. Additionally,
relaxation and dephasing have to be considered for a full explanation of the simulation
data.

To further study the effect of qubit dephasing, the simulation was repeated for different
decoherence rates v4/2m = 500 MHz (Fig. 35), 7,/2m = 1 GHz (Fig. 36), 7,/27 = 2
GHz (Fig. 37) and ~,/27 = 4 GHz (Fig. 38). A major effect of increasing v, seems
to be the reduction of the observed features of positive and negative frequency shift,
while maintaining the overall shape and position of minima (2t < 1,). This is more
systematically studied in section 5.5.3 Qubit dephasing rate 7,. Note that there is a
change in the trend for linewidth when compared for different dephasing rates, most
pronounced by a comparison of Fig. 35b and Fig. 38b: A double peak structure might be
explained from Fig. 19a. At points where qubit transition and resonator frequency are
degenerate, the resonator might excite the qubit, whereby qubit excitations not necessarily
decay back into the resonator but additionally into the host crystal. In such a region,
resonator losses are increased, shown by an increasing linewidth at those two positions,
most pronounced in Fig. 35b. However, for increasing dephasing rates, those features
successively wash out what can be seen in Fig. 38b.
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Figure 35: Resonator frequency shift (a) and linewidth (b) as a function of the energetic detuning
d for different interdot tunneling t. A qubit dephasing rate v4/2m = 500 MHz was simulated.
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Figure 38: Resonator frequency shift (a) and linewidth (b) as a function of the energetic detuning
d for different interdot tunneling t. A qubit dephasing rate v4/27 = 4 GHz was simulated. An
offset of 100 kHz to subsequent curves was added for clarity.

5.5.3 Qubit dephasing rate v,

Again, both characteristic cases of a minimal qubit transition frequency smaller (Fig. 39)
and larger (Fig. 40) than the bare resonator frequency are studied. In the case of (2t <
V), higher dephasing rates smear out the double peak observed in frequency shift and
linewidth for a shift to larger frequency respectively . The double peak, most pronounced
at the qubit to resonator frequency degeneracy point successively disappears for increasing
qubit dephasing 4. Note that 74 > g in all simulations such that the coupled system is not
in the strong coupling limit and avoided crossing not visible. A transition occurs, given
the set of parameters in the inset, between 0.5 and 1 GHz for Fig. 39a and between 2.0
and 2.5 GHz for a measurement of the resonator linewidth (Fig. 39b) and the double peak
successively vanishes. Additionally, the overall change in frequency and linewidth reduces
with higher dephasing rates, also observed in the case of a larger interdot tunneling (2t >
vy, cf. Fig. 40). Note that the expression for qubit dephasing 7, and relaxation 7, mixes
along 9, and lead to an overall inhomogeneous qubit decoherence rate ~,

Yo = 11800 + y4c08%0 (21)

with mixing angle § = arctan(2t/J). 74 and v, are the bare dephasing respectively re-
laxation rates. In the simulation, 4 and v, are given for large detuning ¢ and state
the bare amplitudes, while the overall dephasing by means of equation (22) is considered
along 9. We assume pure dephasing for § = 0. Note that the model uses a white noise
approximation and the noise in tunneling t and detuning 0 to be independent [49].
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Figure 39: Case 1: Evolution of resonator resonance frequency (a) and linewidth (b) as a
function of dephasing. In this configuration 2t < v, with v, = 6.762 GHz. An offset of 100 kHz
to subsequent curves was included for clarity. Compare also Appendix D for inhomogeneous
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5.5.4 Qubit relaxation rate v,

Petta et al. [44] report on charge relaxation times of 10 ns, i.e. a qubit relaxation rate v,
of 100 MHz, limited by the spontaneous emission of a phonon [44]. The effect of charge
relaxation on frequency shift and linewidth are shown in Fig. 41 and Fig. 42 for different
interdot tunneling t. Increasing relaxation leads to a signal reduction, both in amplitude
and phase, although the overall shape is maintained up to several hundred MHz. Similar

to dephasing v,, the pure rate is indicated in the inset.
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Figure 41: Resonator frequency shift (a),(c) and linewidth (b),(d) for two different tunnel rates
t as a function of relaxation rate. 2t < v, (a) and (b) resp. 2t > v, (c) and (d). An offset of
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5.5.5 Drive amplitude € and qubit temperature T

The model includes a drive of the resonator by an external coherent field (cf. Eq. (16)
for the drive in the Hamiltonian). The drive amplitude e accounts for the strength of
the drive and thus is proportional to the output power at a microwave generator. In
the experiment, -14 dBm were applied. This corresponds to approximately 4.75 photons,
taking -106 dBm for all attenuators down to the resonator, a resonator frequency of 6.76
GHz and k = 7.48 MHz into account. We checked in the experiment that the data is
independent of the drive field for the power applied and less. We also checked in the
numerical simulation that the frequency shift remains unaffected for drive amplitudes
between € = 0.001 and 10 (cf. Fig. 43a). However, there is a change in the linewidth from
e = 1 to e = 10. Close to zero interdot detuning J, the linewidth decreases for e = 10, a
feature that was never observed in the experiment.
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a) 2t = 5700 MHz %0} b) =10
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Figure 42: Resonator frequency (a) and linewidth (b) for different drive amplitude e. Up to € =
1, no sensitive effects are visible. A constant offset of 200 kHz (a) respectively 5 MHz (b) was
added for clarity

Fig. 42 shows the temperature dependence of the qubit from 0.1 mK to 10 K. The char-
acteristics stay mainly unaffected up to 100 mK from where on degradation of the signal
takes place while the overall shape stays maintained.
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Figure 43: Resonator frequency (a) and linewidth (b) for different qubit temperature T. A
constant offset of 100 kHz was added for clarity. Remaining parameters stated in the inset
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5.6 Numerical simulation: Comparison to experimental data

In the following, experimental results on the resonator resonance frequency and linewidth
in the vicinity of an interdot charge transfer line are compared with a numerical master
equation simulation, based on the previously discussed results. Comparing single and
many electron regime, conclusions on qubit dephasing rates are drawn.

5.6.1 Single electron DQD

A study of the resonator frequency and linewidth for different detuning ¢ close to the
interdot charge degeneracy point, allows to compare experimental results with data ob-
tained from numerical simulations and thereby to extract characteristics of the coupled
system such as interdot tunneling t and qubit dephasing rate 7,. All measurements were
carried out at 10 mK in a dilution refrigerator with microwave input power -14 dBm
which corresponds to approximately 4.75 photons in the resonator, taking an attenuation
of -106 dB into account. It was checked that the measurement results were independent of
the applied microwave power or lower values. The integration time was set to (20%16384)
us for each data point.

Similar to the measurements described

previously, the resonator was probed _ (deg]
for different qubit detuning ¢, i.e.
along the red dashed line in Fig. 44.
The measurement was repeated for
different interdot tunnel coupling, i.e.
for different voltages applied to the
center gate V.. For consistency, the
position of the red dashed line was
chosen in each case to cut the charge Y YT Y TR Y TR YT
transfer line at AV.pg = 1 mV, mea- LPG [V]

sured from the bottom left edge, as de-
picted in Fig. 44 by the yellow line.
This position was chosen in favor of
the center point to avoid for close-lying
resonances that are independent of the
DQD charge state (cf. section 6). For
each point along ¢, a full transmission spectrum was recorded. The squared transmission
amplitude was fitted by a Lorentzian function. A fit of the spectrum, similar to the pro-
cedure described in 2.2 Resonator Design, allowed to extract parameters of the resonator.
Fig. 45 shows data sets for resonator frequency and linewidth, measured along ¢ for dif-
ferent interdot tunnel rates respectively V. (CG). Given by the red lines are results from
numerical simulations, which reasonably well fit to the experimental data. A lever arm of
a = 0.08 eV/V was used for energy calibration, which best reproduces simulated results
and agrees with previous and independent measurements of aypg = 0.12 + 0.04 eV/V
(cf. 3.3 Transport in non-linear regime). The data was centered around 6 = 0 MHz,
implying that the maximum of frequency shift and linewidth is observed at zero interdot
detuning. A slope was subtracted from each curve. This slope is assumed to result from
the resonator dependence on the applied top-gate voltage, i.e. the size of the depletion

Figure 44: The system was characterized by mea-
suring a transmission spectrum along the red dashed
line, exemplarily shown for V. = -301 mV (cf. Ap-
pendix B [A8] for all parameters)
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region below the resonator gate, which is discussed in more detail in section 6 Influences
of 2DEG on resonator characteristics.

Each data set was simulated separately. For each, the parameters interdot tunneling
t, accounting for different V. and pure dephasing rate 4 were adjusted to best fit the
experimental data. We independently extracted a coupling strength of g/2m = 25 MHz
from a DC measurement of lever arms and from numerical simulations that give reasonable
agreement with experimental results. A set of all parameters used for the numerical
simulation is listed in Table 1 for different center gate voltages V..

’ Center gate voltage (V;) ‘ Qubit min. trans. frequency (2t) ‘ Qubit dephasing rate (v4/27) ‘

-292.0 mV 13.0 GHz 0.4 GHz
-294.0 mV 10.4 GHz 0.7 GHz
-296.0 mV 9.0 GHz 1.0 GHy
-297.0 mV 7.5 GHz 1.25 GHz
-297.5 mV 6.85 GHz 2.0 GHz
-298.0 mV 6.7 GHz 2.85 GHz
-298.5 mV 5.7 GHz 3.1 GHz
-299.0 mV 5.4 GHz 3.4 GHz
-300.0 mV 5.25 GHz 3.5 GHz
-301.0 mV 5.0 GHz 3.75 GHz
-302.0 mV 4.75 GHz 4.75 GHz
-304.0 mV 4.15 GHz 5.1 GHz
-306.0 mV 3.2 GHz 5.8 GHz

Table 1: Simulation parameters, corresponding numerical simulations are shown in Fig. 46.
Further parameter: g/27 = 25 MHz, /27 = 100 MHz, n, = 0.01, n,, € [0, 5], e = 0.1 MHz,
T = 10 mK, refer to Appendix B [A15] for a set of all gate voltages

Fig. 45 shows dephasing rates as
a function of the minimal qubit
transition frequency 2t which 7000 1

were obtained from the simula- 6000
tion. Error bars were included {

to indicate a range for 74 which — 5000 1
reasonably reproduces the data % 4000

by eye. Note that the param- = 399 IIII I

eters were extracted to achieve 2000 1

a good agreement with experi- .

mental data, estimating a cou- 1000 i I
pling strength g/2m = 25 MHz 0 I ‘
and qubit relaxation 71/27r =100 4000 6000 8000 10000 12000

MHz, typical for charge qubits
[12] and might vary for different
parameters. This becomes evi-
dent from the analysis in section i
5.6 that showed similarities be- [ for inhomogeneous rates.

tween different parameters cho-

sen. However, there seems to be a tendency in the simulated data for dephasing rates to
increase with decreasing interdot tunneling. This behavior is not yet understood.

2t [MHz]

Figure 45: Dephasing as a function of the tunnel rate for
different V., as stated in Table 1. Compare also Appendix
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5.6.2 Many electron DQD

It is interesting to compare the single with the many electron regime. Both measurements
are done in the same sample which possibly allows to check for effects of close-spaced
excited states on dephasing rates. We repeat the measurements described in the previous
section in the many electron regime. Contrary to the single electron regime, the center
of a charge degeneracy line was chosen to measure for zero detuning § (cf. Fig. 44),
while the resonator was probed with approximately 4.75 photons and integration time
(20*16384) us, identical to the single electron regime. Fig. 48 summarizes results for
sets of different interdot tunnel rates respectively center gate voltages V.. Red lines
show data obtained from a numerical simulation that reproduces the data reasonably
well. A coupling strength of g/27 = 50 MHz was estimated from the simulation data by
minimizing the normalized square deviation between experimental and simulated data for
V. = -523 mV and different g. A larger coupling strength, in comparison to the single
electron dot, is reasonable, suggesting a double quantum dot larger in size. Identical to
the single electron dot, tunnel rates and dephasing were varied for the simulated results
to agree with experimental data reasonable well (Table 2).

’ Center gate voltage (V) ‘ Qubit min. trans. frequency (2t) ‘ Qubit dephasing rate (v4/27) ‘

-518 mV 12.5 GHz 2.0 GHz
-521 mV 10.5 GHz 2.8 GHz
-523 mV 9.75 GHz 4.75 GHz
-525 mV 7.65 GHz 4.0 GHz
-526 mV 6.4 GHz 5.5 GHz
-527 mV 5.85 GHz 6.5 GHz
-528 mV 5.25 GHz 9.0 GHz
-529 mV 4.3 GHz 10.0 GHz
-530 mV 4.3 GHz 10.0 GHz
-531 mV 3.2 GHz 11.5 GHz
-538 mV 0.75 GHz 17.0 GHz

Table 2: Further parameter: g/2r = 50 MHz, 1 /27 = 100 MHz, ny = 0.01, e = 0.1, T = 10
mK, refer to Appendix B [A16] for a set of all gate voltages

Similar to the single electron case, Fig. 47

shows a tendency of 7, to increase with
decreasing tunnel rate. Error bars were in- I
cluded to indicate a range for ~y,4 that still 15000
reasonably well reproduces the data by eye.
The parameters were achieved by ensur-
ing agreement with experimental data (cf.
Fig. 48), estimating a coupling strength of 5000 [} .
g/2m = 50 MHz and a qubit relaxation 3
~v1/2m = 100 MHz, typical for charge qubits
[12] and might strongly vary for different
parameters chosen. A lever arm of o =
0.18 eV/V was applied which is in agree- Figure 47: Dephasing as a function of the tunnel

ment with a lever arm of o = 0.23 & 6 yate for different V. in the many electron regime,
eV/V extracted from DC measurements in g listed in Table 2

the non-linear regime.
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5.6.3 Single versus many electron quantum dot

Fig. 49 summarizes dephasing rates in the single (red) and many (blue) electron regime.
In both cases, decoherence rates increase with decreasing tunnel coupling, whereas higher
dephasing rates are extracted from the simulated data in the case of the many electron
regime. Note however, that a direct comparison is not possible at this stage, as tunnel and
dephasing rates strongly depend on the remaining parameters chosen for the simulation.
Indeed, it is evident from section 5.5, that different parameters in the simulation have
comparable effects. Thus, more information on the simulated parameters is necessary for
a more accurate description of the experimental data. Note that different decoherence
rates not necessarily result from a possibly decreased coupling to excited states in the
single electron dot. Other effects are thinkable, e.g. a different coupling of gate noise as a
result of different lever arms in the single and many electron dot.

I Single electron regime
15000 .
Many electron regime
N [}
10000
: g
S 1 3
5000 ) I L. ¥
EI 3 3
E 3
0 : 1 :
2000 4000 6000 8000 10000 12000 14000

2t [MHz]

Figure 49: Dephasing as a function of the interdot tunnel rate for the single (red) and many
(blue) electron regime. Shown are parameters that are used in numerical simulations, depicted
by the red lines in Fig. 46 and 48.

5.6.4 Conclusion on numerical simulations

Comparing numerical results with experimental data allowed to estimate tunnel rate,
dephasing and coupling strength. However, a pre-analysis showed that various parameters
have comparable effects and a similar agreement might be achievable with experimental
results for a set of different parameters. In fact, the choice of simulation parameters,
other than t and ~4, relied on estimates from direct current measurement in combination
with a comparison between numerical and experimental results (coupling strength g),
typical characteristics of charge qubits (relaxation rate 7;) and estimates on the setup
(e.g. drive amplitude ¢, temperature T). Thus, more accurate information on the system
to further reduce the number of free parameters is necessary. One possibility might be to
extract tunnel and charge relaxation rate from microwave spectroscopy or direct current
measurements, e.g. from a measurement similar to the one suggested in reference [30, [44].
Such a measurement would be possible in the currently employed sample, although it is
uncertain to which accuracy these parameters can be determined. Ongoing measurements
on this sample try to extract tunnel coupling directly from QPC transconductance similar
to [44].
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5.7 Decoherence

Simulations, in reasonable agreement with the experimental results, show decoherence
rates comparable to previously published work by Frey et al. [12], reporting on pure
dephasing rates between 0.9 and 3.3 GHz for charge qubits in GaAs quantum dots. In this
work, we analyzed coherence properties in the single electron regime, which were found
to be comparable to dephasing rates observed in a many electron quantum dot, although
the simulation suggests less dephasing within the same sample. However, coherence times
stay low and remain a major obstacle on the way to strong coupling. There are various
sources of decoherence in GaAs quantum dots, which have been discussed theoretically
and experimentally in the past:

Excited states

Excited states might serve as an additional decoherence channel when electrons couple
and hybridize with higher energy levels. In single electron dots, smaller in size than dots
containing many electrons, energetically higher quantized states are further separated in
energy (cf. section 3.1), which reduces coupling to those. Indeed, the previously discussed
experimental data might give some evidence for this theory, although decoherence rates
still remain large. A measurement of the coherence times in a one-electron GaAs double
quantum dot by Petersson et al. [45] reports on a minimal decoherence rate of 140 MHz
at the charge degeneracy point. Excited states thus might not be the major source of
decoherence. Nevertheless, single electron DQDs have the benefit of a simpler qubit level
structure when a hybridization with excited states is small and many-particle effects can
be neglected.

Phonon decoherence

An electron that moves between charge states in the left and right dot, creates and
annihilates phonons by its motion [50]. A coupling of the electron to those and other
phonon modes, additionally reduces the coherence time. Vorojtsov et al. [50] suggest
a theoretical model in which the coupling to phonons is proportional to the number of
excess electrons in the respective dot, favoring single electron dots. However, phonon
decoherence is reported to be not a major source of dephasing in this model and in
comparison to experimental data. Vorojtsov et al. further suggest that background
charge fluctuations and electromagnetic noise on top-gates might reduce coherence.

Electromagnetic field fluctuations

An additional source of decoherence may be fluctuations in the voltage applied to top-gates
that possibly result from fluctuations within the voltage source or thermal noise. Recently
suggested by Valente et al. [51], a theoretical model on voltage fluctuations estimates
that those contribute only insignificantly. Furthermore, the model states that a strong
intercapacitive coupling between gates enhances decoherence such that it is favorable to
keep top-gates as isolated as possible with respect to each other. Although this mechanism
might not be the dominant decoherence effect, voltage fluctuations on gates can be reduced
in the setup by more stable voltage sources (cf. Appendix C for Microwave setup), cables
that filter low-frequency noise or voltage dividers that allow to operate voltage sources at
higher output voltages, thus reducing fluctuations when scaling down the output signal
in a second step.
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Fluctuating Background Charges

It is assumed that an electrostatic coupling to background charges, fluctuating in time,
significantly contributes to dephasing [52} [53]. This might happen through a hybridization
of quantum dot charge states with fluctuating background charges (FBC) that are due
to random recharging processes of trap centers within the solid close to the quantum dot
and create dynamical electric fields i.e. electrostatic potential fluctuations. A dynamic
change in the electric field, caused by recharging process, might additionally contribute to
dephasing. It was found that an ensemble of randomly distributed FBC centers, respec-
tively its spectral density, resembles low-frequency 1/ f noise in charge qubits [52], 541 [55],
while the spectrum of single two-level charge fluctuators is Lorentzian, i.e. shows a 1/ f?
dependence in its spectrum, resulting random telegraph noise [52]. Indeed, experiments
have shown pronounced charge fluctuations, when directly measuring the conductance
by means of a QPC, and a 1/f respectively 1/f? dependence of the noise spectrum [56].
Various defect centers are proposed for FBC such as defects within the remote impurity
layer forming the dopants, DX centers or defects close to the active region forming the
dot. So far, only DX centers were shown to be non-dominant in terms of charge noise [56].
Additionally, it was suggested by Yurkevich et al. [53] that direct electron-electron inter-
actions via a short-range Coulomb field enhances the effect of FBC dramatically, which
favors a theory that defects close to the active dot region contribute most to charge noise.
Yurkevich further suggests that charge fluctuations are the most dangerous mechanism for
decoherence in charge qubits [53]. It might be fruitful to analyze different wafer-designs
in terms of decoherence properties of charge qubits and to further study the currently
employed wafer architecture in term of charge noise and decoherence mechanisms.

Leakage of charges from electrodes

Additionally to the previously discussed noise source which is inherent to the material,
electrons might directly leak from top-gates into the semiconductor underneath and be-
come trapped near the dot and/or subsequently tunnel from trap centers into the 2DEG
[56]. Leakage can experimentally be reduced by pre-biasing the sample gates during the
cool-down process [56]. Pre-biasing the sample during cool-down, electrons remain frozen
in deep traps (DX centers) when the bias is removed. Given the potential landscape due
to those additional electrons, less negative voltages at top-gates are necessary to form
and operate a quantum dot. As a result leakage of electrons from the gate to 2DEG
is reduced by means of a decreased potential difference in comparison to the case with-
out pre-biasing. A noise reduction was observed experimentally in pre-biased structures
[56, 57]. Note however, that pre-bias cooling was applied for all experiments presented.
During the cool-down, all gates except for the left and right plunger gate, were biased at
V = +300 mV. Nevertheless, high decoherence rates were evident.
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6 Influences of 2DEG on resonator characteristics

Independent of the charge state of the dot, a change in amplitude and phase has been
observed in LPG-RPG subspace which goes along with static resonances that are inde-
pendent of the voltage applied to the right plunger gate, shown in Fig. 50. The following
section discusses this observed dependency, suggest a model to understand the behavior
and propose a way to improve the next sample generation. Note that in this section a DQD
is not necessarily formed whereas difficulties with the gate design are discussed.
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Figure 50: Transmission amplitude (a) and phase (b), full set of parameters in [A10]

In Fig. 50, a change in amplitude and phase seems to depend strongly on the voltage
applied to the left plunger gate, while the change is first independent of voltage applied
to the right plunger gate up to RPG ~ -330 mV. Note that LPG is the resonator gate.
This suggest a dependence of the resonator characteristic on applied top-gate voltage,
which is more systematically analyzed in the following.

6.1 Resonator transmission spectrum

Fig. 51 shows transmission spectra as a function of the voltage applied to the left plunger
gate, while all other top-gates are held at a constant voltage. From such a measurement,
we conclude that the change in transmission amplitude and phase, observed in Fig. 50,
might be related to a change in resonator frequency as a function of the left plunger
gate voltage. Indeed, in Fig. 50, the resonator is probed at a fixed frequency and the
transmitted microwave signal becomes off-resonant what can be observed in a changed
transmission amplitude and phase. Furthermore, the measured transmission spectra show
that the voltage at LPG, for which the transmission signal changes, is not constant but
depends on the voltage applied to the remaining gates. Fig. 52 gives the position in LPG
space at which the transmission signal significantly changes in amplitude and phase as
a function of the voltages applied to all remaining top-gates. Also given is an envelope
which indicates the width over which these changes appear. The data were obtained
by measuring the transmitted signal at fixed resonator frequency. The choice of the
frequency is shown exemplary by the dotted red line in Fig. 53a, whereas Fig. 53b gives the
transmission amplitude along such a line. The resonator transmission changes significantly
within the blue region in Fig. 53b. Note that the values for blue region and red data
points in Fig. 52 were obtained from a measurement similar to Fig. 53b. The red point
corresponds to the mean value (m) within the surge, while the blue region gives start
(s) and end (e) point. However, note that such a study depends on the measurement
frequency and may only serve as an estimation on the position.
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Figure 51: Resonator transmission spectrum as a function of Vypg. Remaining top-gates at
voltage 0 V (a) [A17],-0.2 V (b) [A18],-0.5 V (c) [A19] and -0.8 V (d) [A20]. Depending on the
gate configuration, a transition appears at unequal values for Vi pg (see Fig. 52)
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Figure 53: Transmission spectra as a function of the voltage applied to the left plunger gate (a).
Transmitted amplitude for fixed resonator frequency (b) for a measurement depicted along the
red dashed line in (a). A full set of parameters is available from Appendix B [A21]
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6.2 Resonator regimes

A change in resonator characteristics appears continuous in Fig. 53a. Additionally, the
transmitted signal shows a decreasing amplitude in this transition region. In the following,
the resonator response is studied by a Lorentzian line fit similar to section 2.2. In each
case, the full transmission spectrum for the fundamental mode was measured at different
voltages applied to the left plunger gate, while all remaining top-gates were held at con-
stant potential. A summary of the fitted resonance frequencies as well as the frequency
shift Av is shown in Fig. 54 as a function of the left plunger gate voltage. The spectra
were recorded for all dot gates set to 0 V, except for LPG.
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N . 16
5 D =
9 6.760¢ =
g « : :
s | 14 q:'
I
I

I °s

6.755] !
I 12
I I

6.750 1 1

LPG [mV}

Figure 54: Resonator resonance frequency extracted from a Lorentzian line fit. Each point
corresponds to data obtained from a full transmission spectrum. The voltage for the resonator
gate LPG is changed while all remaining dot gates were held at 0 V. The resonance frequency
(blue) and relative frequency change (red) are shown. Parameters in Appendix B [A21].

The plotted data show schematically three characteristic regimes (I) - (III) that can be
understood from a capacitance model:

Starting from LPG equal to 0 V, the applied
voltage is successively set more negative in re-

gion (I) whereby the potential landscape for a) ‘
electrons in the 2DEG underneath changes. In < S
region (II), electrons below the gate are as-

sumed to become depleted except for localized

charge states that remain below the gate. In re-

gion (III), electrons are completely depleted be-

low the gate and the depletion region is widened <~ o

when applying more negative voltage. The shift b) < R g
in resonance frequency can then be explained e~
by a capacitive effect. For more negative volt-
ages applied to the resonator gate LPG, the ef-
fective 2DEG area underneath changes. The
capacitance C between LPG and 2DEG de- Figure 55: Capacitive change due to a
creases successively as C is assumed to scale change in the effective 2DEG area for re-
with the effective electron gas area, similar to a gion (I) shown in a) and (III) shown in b)
plate capacitor. A change in capacitance how-

ever comes along with a different admittance of the 2DEG, similar to a measurement
described in Fig. 17. The resonator probes the complex admittance of the coupled sys-
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tem and thereby is sensitive to changes in capacitance. A frequency shift might thus be
explained as a dispersive effect. Studying the resonator linewidth dv respectively quality
factor  for the fundamental mode, similarly shows three characteristic regions:

50 5) 1000, ()

4-5_8) - 950-\\}. |
. : wf |
= q0f \ d o s} ! ’Tm g
3 ; goo} | .¢ |

3 7mof

a0 oz T S0 0.0 R R 00

LPG [V] LPG[V]

Figure 56: Resonator linewidth and quality factor extracted from a Lorentzian line fit. Each
point corresponds to data obtained from a full transmission spectrum. The voltage for the
resonator gate LPG is changed while all remaining gates are at 0 V. The resonator linewidth
(a) and quality factor (b) are shown. A full set of parameters is listed in Appendix B [A21]

Region (I) again corresponds to a case in which the voltage applied to the resonator gate
is successively set more negative which changes the potential landscape for the electron
gas underneath and thereby reduces the density of electrons. However, the 2DEG is
not yet depleted below the resonator. A dissipative channel between resonator gate and
2DEG remains. This results in a lower quality factor respectively larger linewidth of the
resonator than initially designed for. In region (II), the electron gas underneath depletes.
In this transition regime, localized islands of charges are assumed to remain below the
resonator gate. The quality factor is further decreased in this region. It is assumed that
resonator excitations shuffle electrons between localized island. The energy necessary for
those processes might be provided throughout the resonator gate what results in a strongly
dissipative process. Region (III), where all electrons are depleted, shows a significantly
higher quality factor compared to (I) and (II). A lossy channel from resonator to 2DEG
is reduced and the quality factor increased.

The assumption of a lossy channel into the

2DEG and thereby dissipative processes

am___m

(U]

from the resonator is likewise in agreement 022p |

with the amplitude obtained from each line 020f ws

fit (cf. Eq. (1)). The transmitted signal is —018F .

significantly lower in region (I) compared E 048 1o '
to (III), which well agrees with the pre- < 0.14 ! 'M
vious explanations. The additional drop 012 : . :

in region (II) is again attributed to local- 010 : :

ized charge islands which serve as an ad- 0082 ~03 202 01 0.0
ditional dissipative channel. The assump- LPG [V]

tion of localized charge islands in and close
to region (II) might also be the reason for
resonances that were observed close to the
kink in Fig. 50 shown previously. Local-
ized islands in mesoscopic structure might

Figure 57: Resonator amplitude at resonance.
The voltage for resonator gate LPG is changed
while all remaining gates remain at 0 V
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provide quantized charge states with transition frequencies at or close to the resonator
frequency. The resonator therefore might excite electrons in those puddles (region II).
For more negative LPG, those islands are emptied and additional resonances disappear
(region III). On the contrary, puddles do not exist in region (I) in which the 2DEG is not
yet depleted. This explains why resonances are predominantly seen in region (II). Note
that the voltage applied to remaining gates have no effects on those resonances. This
means that one predominantly probes the localization of charge states below LPG.

A measurement similar to the one described in Fig. 53b validates that those resonances
are reproducible which additionally provides some evidence for this assumption:

Figure 58 shows a set of three mea-

surement curves that were obtained

for identical parameters but at differ- 360} '\{:5,,\

ent times. The red and blue curve were 5 / N~ ¥ ";.

obtained within few minutes while the = 340¢ \;* ERIRE,
green curve was measured one day af- 2 a0l ;t‘t o ’ﬁz Nt R
ter. The position of the frequency g Y

change in LPG space is well repro- < 200l ?'

duced as well as the wiggles close-by

(red arrows), which correspond to ad- 280,
ditional resonances. The estimated

spacing of 3 mV between resonances
translates to an energy difference of
380 peV assuming a lever arm of 0.12
eV/V. The lever arm was estimated
under the assumption that one com-
pletely depletes the 2DEG below LPG
by changing AV} pe over 350 mV. Assuming an electron density of 5¥10* cm ™2, a Fermi
wavelength of Ap = 35 nm is calculated [58] and thereby a Fermi energy Ep = 45 meV.
The lever arm « was estimated from the relation aAVrpe = Ef.

-330 -320 -310

LPG [mV]

—-340 -300

Figure 58: Transmitted amplitude for fixed resonator
frequency for a measurement depicted along the red
dashed line in Fig. 53a. Parameters cf. Appendix B
[A21]

Data presented so far explains qualitatively the change in resonator characteristics as
a result of different bias applied to the resonator gate LPG, while all remaining gates
are on zero voltage. However, the data discussed so far can not explain all observed
phenomena. Indeed, the question of a varying position of the depletion region in LPG
space (cf. Fig. 28) remains and will be addressed in the following.

A set of resonator characteristics, obtained for different gate settings, is given in Fig. 59
for resonance frequency and amplitude and in Fig. 60 for resonator linewidth and quality
factor. Similar to before, the full resonator transmission was probed for the fundamental
mode for different voltages applied to the resonator gate LPG. All remaining gates were
held at constant and identical potential. This voltage is exemplary given for the left side
gate LSG while it has to be understood as being identical for all remaining gates except
for LPG. Refer to Appendix B for a full set of all parameters.
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Figure 59: Resonator resonance frequency v,s (a) and transmitted amplitude at resonance A
(b) from a Lorentzian line fit. Each point corresponds to data obtained from a full transmission
spectrum. The voltage for the resonator gate LPG is changed while all remaining gates were
held at constant voltage in each curve. The gate voltage for all remaining top-gates is indicated
exemplary for LSG (other gate voltages identical). An offset of n*1 MHz (a) to the resonator
frequency was added at the nth curve for clarity. Further parameters in Appendix B [A22]
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Figure 60: Resonator linewidth 2*§r (a) and quality factor Q (b) obtained from a Lorentzian

line fit. Each point corresponds to data obtained from a full transmission spectrum. The voltage
for the resonator gate LPG is changed while all remaining gates were held at constant in each
curve. The gate voltage for all remaining top-gates is indicated exemplary for LSG (other gate

voltages id

entical). Further parameters in Appendix B [A22]
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The observed phenomena, exemplary described for the quality factor Q in the following,
can be attributed to three different regions:

Region A:
1100 A | B | c VLSG < VLPG
.cm‘.:w’"‘" 1 oSG +200 mV
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Figure 61: Characterstic regions outlined for the resonator quality fac-

tor. Refer to Fig. 54b for an enlarged view

6.3 Capacitance model

Resonator characteristics of the different regions can be qualitatively understood from a
capacitance model at which the resonator probes the admittance of the 2DEG:

S

Figure 62: Capacitance model, region A

In region A, the top left and right part of the
2DEG become separated from the lower parts.
This happens when the voltage applied to top-
gates becomes more negative than an estimated
value of -350 mV. Gates V; and V, create a de-
pletion region underneath when exceeding -350
mV such that the upper two parts become iso-
lated, i.e. the upper 2DEG becomes floating and
thereby polarizable. Electrons accumulate close
to the resonator gate and more negative voltage
needs to be applied to reach the depletion thresh-
old voltage. This explains the linear shift of the

depletion region in gate voltage applied to LPG (V3) observed in Fig. 52.
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Figure 63: Capacitance model, region B

In region B, the voltage applied to V; and Vj is
not sufficient to deplete electrons beneath. Cor-
respondingly there is no depletion region below
those gates such that the upper parts of the
2DEG are not decoupled from the lower grounded
2DEG, electrons can not accumulate close to the
resonator gate V3 i.e. the 2DEG is not polariz-
able in such a configuration. However, starting
from a voltage of -300 mV applied to LPG (V3),
the 2DEG starts depleting underneath. The de-
pletion threshold voltage on the contrary is now
independent from the voltages applied to the re-
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maining top-gates, i.e. independent from Vs, and V3. The position in LPG-space at which
the quality factor changes remains the same, seen for LSG = +200 mV to LSG = -300
mV. Furthermore, the voltage applied to V; and V; is less negative than the voltage ap-
plied to LPG (V3). This creates an electric field between both gates that pushes electrons
additionally away from the resonator gate LPG. This explains the higher quality factor
in comparison to other regions.

Characteristic for region C are top-gate volt-
ages that are less negative than the threshold
voltage necessary to deplete electrons below.

=S 'E,ecmc _ > All 2DEG regions are grounded via ohmic con-
& o flow «QQ;;*"‘ tacts. However, the voltage applied to V; and
/ Vs is less negative than V3. A resulting elec-

\ ‘ s >/¢ tric field E pushes electrons in the 2DEG away
AP from the resonator gate. This explains a higher

quality factor in this region. The effect becomes
less pronounced for decreasing difference in gate
voltages V() - V3 which is in agreement with
considerations on an electric field. There is a
strong effect on the quality factor for Vi >
Vo). The quality factor becomes comparable to quality factors observed in other re-
gions when V3 approaches V(1) what becomes evident at around -300 mV.

Figure 64: Capacitance model, region C

What remains is to cross-check the hypothesis of a decoupled and floating 2DEG region
from the grounded electron gas reservoir:

6.4 Consistency check: Floating 2DEG

In the following, the two dimensional electron gas is successively depleted below differ-
ent top-gate combinations to check against the hypothesis of a decoupled and floating
2DEG. Please refer to Fig. 4 for the geometry and position of all top-gates used in the
following.

Step 1: Source Drain Barrier (SDB)

In a first step, the transmission amplitude is probed as a function of the voltage applied to
the resonator gate LPG. The measurement is carried out for fixed frequency whereby the
frequency was chosen to have a good signal at mean when sweeping LPG. This is similar to
the case discussed previously in Fig 53a in which the red dotted line indicates the chosen
resonance frequency. During this measurement, SDB was set more and more negative in
steps of 50 mV. SDB and LPG have no effects in terms of decoupling 2DEG areas from
ground (cf. Fig. 4). The area stays well connected and no effect on the transmission
amplitude becomes apparent in Fig. 65. This observation is consistent with the previous
interpretation.

Step 2: Center Gate (V.)

Next, the transmission amplitude was probed for different voltages applied stepwise to
the center gate. Identical to step 1, the transmission amplitude is recorded as a function
of Vppg for different V.. From the previous discussion, it is expected that at ~ -350
mV applied equally to center and resonator gate, the upper right region of the 2DEG
becomes decoupled from the grounded reservoir and thereby floating (cf. Fig. 4). Fig. 66
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Figure 65: Transmission amplitude as a function of Vpg at fixed frequency: False color image

of the transmission amplitude for different Vgpp (a) and plotted transmission amplitude for

different Vspp (b). Note an offset of +50i with i € [1,12], set for clarity. Appendix B [A23]

summarizes the results, however, no frequency shift is observable. Thus, V. alone does not
explain the shifted depletion region in LPG subspace which is assumed to be caused by
a polarizable 2DEG, when floating. Still, this is in agreement with our theory. Although
2DEG at the right of the resonator gate is floating, the electron gas at the left stays well
grounded.
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Figure 66: Transmission amplitude as a function of Vpg at fixed frequency: False color image of
the transmission amplitude for different V. (a) and plotted transmission amplitude for different
V. (b). A constant offset was added for clarity. Appendix B [A24]

Step 3: Center Gate voltage equal to Left Side Gate voltage

In the following, the upper left and upper right part of the 2DEG are progressively
decoupled from the grounded reservoir by equally setting left side gate (LSG) and center
gate (V.) more negative. At the same time, the transmitted amplitude is probed as a
function of the voltage applied to the resonator gate (LSG). It turns out that below V, =
Visa =~ -320 mV, a linear shift of the depletion threshold in LPG-space becomes visible
(cf. Fig. 67). This voltage appears to be typical and of the same range at which the
resonator properties change abrupt by depleting electrons below LPG for all remaining
gates set to 0 V (cf. Fig. 52). This behavior is understood because the depletion voltage
is determined by the density of electrons which is assumed to be constant over the entire
sample. Starting from this voltage, the upper part of the 2DEG becomes floating. Our
model of a floating 2DEG in this region stays valid.

Step 4: Right Plunger Gate (Right Side Gate) equal to Left Side Gate voltage
In a last step, the upper 2DEG is isolated by successively setting the right plunger gate
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Figure 67: Transmission amplitude as a function of Vpg at fixed frequency: False color image
of the transmission amplitude for different V. = Vg (a) and plotted transmission amplitude
for different V. = Vrsg (b). A constant offset was added for clarity. Appendix B [A25]

(RPG) in combination with the left side gate (LSG) more negative, thereby probing the
transmission amplitude as a function of LPG. A linear shift of the depletion region below
LSG, that indicates a transition to floating, appears at around Vgpg = Vpsg = -600 mV.
More negative voltage is necessary in comparison to step 3 as a channel between LSG and
RPG remains that need to be closed first (cf. Fig. 4). The channel width is much narrower
in step 3 compared to the case when decoupling the 2DEG by means of the gates V., =
Visa. This assumption is validated by isolating the 2DEG in terms of the right and left
side gate, i.e. by setting successively Vzse = Vse more negative. Here, an even broader
channel to the grounded 2DEG parts remain, compared to the case discussed before. A
linear shift of the depletion region appears at around Vgpg = Visg = -800 mV. A set
of transmission amplitudes for fixed frequency is shown in Fig. 45 for the first (a) and
second (b) discussed configuration.
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Figure 68: Transmission amplitude as a function of Vpg at fixed frequency: Plotted transmis-
sion amplitude for different Vrpg = Vise (a) Vrsg = Visa (b). A constant offset was added
for clarity. Full set of parameters available from Appendix B [A26, A27]

Conclusion:

Data presented and discussed in step 1 to step 4 are all consistent with the model of
a floating 2DEG. The high-quality resonator is a sensitive tool for probing changes in
the 2DEG such as a transition from grounded to floating and single electron processes,
e.g. resonances due to localized charge states in islands close to the resonator gate. Al-
though, initially not intended for experiments on a coupled resonator-DQD system, these
studies nevertheless show that a transmission line resonator might be used as a sensitive
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measuring device for dynamic processes in electron gases and for mesoscopic structures by
probing the complex admittance. This may have the potential for new characterization
methods in semiconductor nanostructure devices.

6.5 Implications for the next generation of samples

In the case of the currently used sample for microwave studies of a DQD charge qubit, the
depletion of electrons below the resonator and the interplay of different gates on forming
a floating 2DEG were important details to be considered. Those effects were not intended
and avoidable by adjusting the design of the top-gates. It is necessary to avoid isolated
pockets of 2DEG for any gate configurations such that the electron gas remains grounded
everywhere except at the double quantum dot position. Furthermore, it is advantageous to
decrease the area of electron gas below the resonator to avoid for an additional dissipative
and decoherence channel. Ideally, the resonator characteristics shall be independent of
top-gate configurations and only depend on the design parameters.

7 Conclusion and perspectives

Previous work by Loss and DiVincenzo proposed to use double quantum dots as quantum
bits (DiVincenzo, Science 2005 [59]) and to implement a set of one and two qubit gates
based on the spin states of two coupled single electron quantum dots (Loss and DiVin-
cenzo, PRA 1998 [6], Burkard, Loss and DiVincenzo, PRB 1999 [60]). In an alternative
scheme, charge states might be favorable in terms of coupling a double quantum dot
(DQD) to a resonator and thereby probing the transition dipole moment. In this project,
we studied a single electron double quantum dot charge qubit that is dipole coupled to a
coplanar waveguide resonator which is a further step towards using semiconductor quan-
tum dots for quantum information processing. Our system is a hybrid quantum device.
A special aspect of the suggested system is the possibility to manipulate and probe the
double quantum dot in electron transport as well as via a dipole coupling to a microwave
resonator. A high controllability of charge states with applied top-gate voltages extends
to various read-out concepts in this design approach. Additionally, the double quantum
dot can be operated in the many, few or single electron regime at wish whereas the res-
onator stays sensitive for the dot characteristics in all these regimes. A major major goal
of this project was to better understand the high dephasing rates of 0.9 GHz and 3.0 GHz
that were reported in previously published experiments by Frey et al. [I2]. In this previ-
ous work, the DQD was probed in the many electron regime at which some hundreds of
electrons were estimated to be in each dot. However, in the many electron regime, closely
spaced excited states are suspected to be a source of decoherence.

In the single electron regime, dephasing rates were found to range approximately from 400
MHz to 6 GHz in this work. These dephasing rates were obtained by comparing the exper-
imental data with numerical simulations of the coupled system. The qubit relaxation was
fixed at 100 MHz, maintaining a coupling of strength 25 MHz and a resonator linewidth
of 7.4 MHz. A comparison to the many electron regime in the same sample showed higher
relaxation rates in the many electron case, ranging from approximately 2.0 GHz to 17.0
GHz whereas a larger coupling strength of 50 MHz was estimated from a comparison be-
tween experimental data and numerical simulation. This comparison between numerical
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and experimental data might validate our assumption of decoherence resulting from a
coupling to excited states, although other mechanisms may contribute when comparing a
single to a many electron dot. However, those results have to be considered with care as
an estimate is only possible by a comparison between experimental data and simulation,
leaving uncertainties in parameters that could not yet be obtained in experiments. This
raises the questions on a selection of different measurement techniques that are best suited
to extract as many parameters from the experiment as possible. By reducing the num-
ber of free parameters when numerically simulating the coupled resonator-qubit system,
more accurate results on dephasing and its dependence on the tunneling rate in the single
and many electron regime might be possible. This already sets an outlook for further
measurements and improved measurement schemes.

Studies of the currently used sample design furthermore suggest improvements for the
next sample generation. From measurements, it was evident that the resonator charac-
teristics were sensitively dependent on applied top-gate voltages. Indeed, the resonator
gate was seen to probe the state of the 2DEG beneath, such that differences in the 2DEG,
independent of dot charge states, affected the resonator characteristics. For instance, large
parts of 2DEG were situated underneath the resonator gate. This not only serves as an
additional relaxation channel for resonator excitations, but also changes the resonator
characteristics depending on a depletion of electrons under the resonator gate.

In conclusion, it was not yet possible to achieve strong coupling between resonator and
double quantum dot as decoherence rates remained large and stayed comparable to pre-
vious measurements in GaAs [12]. It is essential to better understand the mechanisms
that limit the coherence time in the currently used architecture and GaAs/AlGaAs het-
erostructure. Different sources might contribute such as excited states, phonon decoher-
ence [50], electromagnetic field fluctuations on gates [51], fluctuating background charges
[53] or leakage of charges from top-gates into the heterostructure [56], whereas fluctuat-
ing background charges are thought to dominate [53]. Although this thesis suggests that
a hybridization to excited states is no major source of decoherence, various sources for
decoherence remain. Recently published results by Toida et al. [I3] on a lateral GaAs
double quantum dot dipole coupled to a transmission line resonator however indicate sig-
nificantly less dephasing. Thus, the material GaAs might not be the limiting factor which
suggests to further study the architecture and heterostructure design. A first step for fu-
ture experiments might be to optimize the setup in order to minimize voltage fluctuations
on gates. Secondly it might be fruitful to analyze the current design approach in terms of
decoherence and to further increase the coupling strength between resonator and qubit.
In a third step, one might think about further studying GaAs/AlGaAs heterostructures to
better understand decoherence mechanisms which limit current experiments. Altogether,
there is no fundamental reason known up to date which prevents strong coupling and
significantly less dephasing in such a system.

The approach to couple a double quantum dot qubit to a resonator is most promising in
terms of quantum information processing devices. Despite a high controllability of charge
states, quantum dots allow to experiment with single electrons and thereby give access to
the spin degree of freedom. In the strong coupling regime, double quantum dots might
serve as a versatile device in quantum networks respectively distributed quantum systems
which are coupled through microwave transmission lines.
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8 Appendix A: Formation of double quantum dot

1. Determine Vggq: Successively set RSG more negative and determine Vgzgo at
which the right side gate forms the right dot tunnel barrier via recording a pinchoft-
curve. Note that RDB has to be biased such that the remaining channel between
RDB and LSG is closed. Choose a voltage more negative than the voltage at which
the pinch-off occurs. Note that RSG has to be set increasingly more negative than
the pinch-off value when a single-electron double quantum dot is formed which allows
for less negative voltages applied to plunger gates when completely emptying the dot.

2. Determine Vpc: Choose the voltage applied to the quantum point contact such
that one measures at the first conductance resonance at a position where the slope
is steepest.

3. Determine Vgpp: Successively set the gate voltage for SDB more negative and
determine at which voltage one pinches off the current between SDB and RSG.
Choose the voltage applied to SDB more negative such that one pinches-off the
current from a later DQD to the right lead. Later, tunnel processes should be
possible here in the following, only.

4. Determine V.. Determine the voltage at which one pinches-off the current through
the center barrier by setting the voltage at the center gate more negative while
maintaining all previously applied voltage. The voltage for V. should be chosen
more negative than the threshold at which a pinch-off occurs. Later, only tunnel
process should be allowed here.

5. Determine Vg5 Determines the coupling to the left lead. Determine a threshold
at which one pinches-off the channel between SDB and LSG. Therefore, set the
voltage applied to V. back to 0 V and successively increase the voltage for LSG. Set
the left side gate more negative than the pinch-off threshold. Only tunnel processes
should be allowed between dot and left lead. Set Vysg to a value such that the
coupling to the left lead is similar to a coupling to the right lead for a symetrically
coupled DQD to its leads. Note that RSG has to be set significantly more negative
than the pinch-off value when a single-electron double quantum dot is formed which
allows for less negative voltages applied to plunger gates when completely emptying
the dot.

6. Choose LPG-RPG subspace to operate the dot in.

7. Form the double quantum dot: Set all gate voltages to the values determined
in steps 1 - 6. No current flow should be possible when the voltages were chosen sig-
nificantly more negative than the pinch-off threshold. Now, slightly set the voltage
applied to SDB less negative while recording maps in LPG-RPG subspace. Vgpp
should be chosen such that a direct current is visible at triple points respectively
co-tunneling is visible in the charge stability diagram. SDB is chosen here in favour
of LSG and RSG to achieve a enhance the coupling of the dot to its leads symmet-
rically for both leads. At the same time, the interdot coupling between both dots is
increased.

8. Check Vgpc : The voltage applied to QPC needs to be adjusted for maximal
sensitivity once the double quantum dot was formed.
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9 Appendix B: Parameter space

(LPG,RPG): V. = -306 (-417.75, -426.31) -> (-419.75, -460.31)
Ve = -538 (LPG,RPG): (-0.71, -12) -> (-2.21, -10.3)
V. = -531, (LPG,RPG): (-2.95, -13.83) -> (-4.45, -12.33)
V. = -530, (LPG,RPG): (-3.32, -14.2) -> (-4.82, -12.7)
Ve = -529, (LPG,RPG): (-3.4, -14.7) -> (-5.4, -12.7)

V. = -528, (LPG,RPG): (-3.6, -14.7) -> (-5.6, -12.7)

| Gate voltage in [mV] Other |
Al LSG = 0, RSG = 0, V. = 0, SDB = 0, RPG = 0, QPC = -920, RDB = -2000, LPG = -450, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
A2 LSG = -635, RSG = -450, V. = -390, SDB = -400, QPC = -750, RDB = -2000, Bias CD = 0.3, SD Bias = 0.025
A3 LSG = -456, RSG = -340, V. = -516, SDB = -725, QPC = -1120, RDB = -2000, Bias CD = 0.3, SD Bias = 0.025
A4 LSG = -, RSG = -, V¢ = -, SDB = , QPC = -, RDB = -, Bias CD = , SD Bias =
A5 LSG = -648, RSG = -463, V. = -301, SDB = -400, QPC = -710, RDB = -2000, Bias CD = 0.3 , SD Bias = 0.025
A6 LSG = -648, RSG = -463, V, = -297, SDB = -400, QPC = -750, RDB = -2000, Bias CD = 0 , SD Bias = 0 pwr -14 dBm, avg. 8192
(LPG,RPG): (-417.75, -426.31) -> (-419.75, -460.31)
A7 LSG = -648, RSG = -463, V. = -297, SDB = -400, QPC = -750, RDB = -2000, Bias CD 0, Bias SD 0 pwr -7 dBm, avg 8192,
v = 6.76238 GHz
A8 LSG = -648, RSG = -463, V. = -301, SDB = -400, QPC = -750, RDB = -2000, Bias CD 0, Bias SD 0 pwr -7 dBm, avg 8192
vy = 6.76199 GHz
A9 LSG = -633, RSG — -448, V, = -320, SDB = -400, QPC = -750, RDB = -2000, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
Ve = 6.7629
A10 LSG = -577, RSG = -415.5, V. = -365, SDB = -550, QPC = -920, RDB = -2000, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
vy = 6.75737
All LSG = -648, RSG = -463, V. = -301, SDB = -400, QPC = -710, RDB = -2000, Bias CD = 0.3 , SD Bias = 0.025 Lock-In: dIdVPG 0.2
didV 10
A12 | 15c = 648, RSG = -463, V. — -301, SDB = -400, QPC = -710, RDB = -2000, Bias CD = 0.3 , SD Bias = 0.025 Lock-In: dIdVPG 0.2
didV 10
Al13 LSG = -648, RSG = -463, V. = -301, SDB = -400, QPC = -750, RDB = -2000, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
vy = 6.76199
Al4 LSG = -648, RSG = -463, V. = -301, SDB = -380, QPC = -750, RDB = -2000, Bias CD 0, Bias SD 0 pwr -14 dBm, avg 16384
vy = 6.76251 GHz
Al5 LSG = -648, RSG = -463, SDB = -380, QPC = -750, RDB = -2000, Bias CD 0, Bias SD 0 pwr -14 dBm, avg. 8192
(LPG,RPG): V. = -306 (-417.75, -426.31) -> (-419.75, -460.31)
Ve = -306 (LPG,RPG): (-419, -462) -> (-421, -460)
V. = -304, (LPG,RPG): (-419.82, -463.13) -> (-421.82, -461.13)
Ve = -302, (LPG,RPG): (-420.82, -464.24) -> (-422.82, -462.24)
Ve = -301, (LPG,RPG): (-421.14, -464.58) -> (-423.14, -462.58)
Ve = -300, (LPG,RPG): (-421.62, -465.24) -> (-423.62, -463.24)
Ve = -299, (LPG,RPG): (-420.64, -466.57) -> (-424.64, -462.57)
V. = -298.5, (LPG,RPG): (-422.3, -464.35) -> (-424.3, -462.35)
Ve = -208, (LPG,RPG): (-421.9, -466.2) -> (-423.9, -464.2)
Ve = -297.5, (LPG,RPG): (-418.04, -462.22) -> (-420.04, -460.22)
Ve = -297, (LPG,RPG): (-417.75, -426.31) -> (-419.75, -460.31)
Ve = -206, (LPG,RPQ): (-422, -467.2) -> (-422, -465.2)
Ve = -204, (LPG,RPG): (-424, -466.37) -> (-426, -464.37)
V. = -292, (LPG,RPG): (-424.5, -467.2) -> (-426.5, -465.2)
A16 LSG = -490, RSG = -332, SDB = -725, QPC = -1120, RDB = -2000, Bias CD 0, Bias SD 0 pwr -11 dBm, avg. 8192
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V. = -527, (LPG,RPG): (-4.52, -15.19) -> (-6.02, -13.69)
V. = -526, (LPG,RPG): (-4.73, -15.41) -> (-6.23, -13.91)
V. = -525, (LPG,RPG): (-5.02, -15.67) -> (-6.52, -14.17)
V. = -523, (LPG,RPG): (-5.3, -15.79) -> (-6.8, -14.29)

V. = -518, (LPG,RPG): (-6.913, -17.25) -> (-8.475, -15.73)

Al7 LSG = 0, RSG = 0, V. = 0, SDB = 0, RPG = 0, QPC = -920, RDB = -2000, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
A18 | wLsc =200, RSG = -200, V. = 200, SDB = -200, RPG = -200, QPC = -920, RDB = -2000, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
A19 | 1sc = -500, RSG = -500, V. = -500, SDB = -500, RPG = -500, QPC = -920, RDB = -2000, Bias CD 0, bias SD 0 | pwr -7 dBm, avg 8192
A20 | rsc = -300, RSG = -800, V, = -800, SDB = -800, RPG = -800, QPC = -920, RDB = -2000, Bias CD 0, bias SD 0 | pwr -7 dBm, avg 8192
A21 LSG = 0, RSG =0, V. = 0, SDB = 0, RPG = 0, QPC = 0, RDB = 0, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
A22 LSG = RSG = V, = SDB = RPG = x mV, QPC = -920, RDB = -2000, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
A23 LSG = RSG = V., = RPG = LPG = QPC = RDB = 0, SDB = x mV, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
A24 LSG = RSG = SDB = RPG = QPC = LPG = RDB = 0, V. = x mV, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
A25 RSG = SDB = RPG = LPG = QPC = RDB = 0, LSG = V. = x mV, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
A26 V. = RSG = SDB = LPG = QPC = RDB = 0, LSG = RPG = x mV, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192
A27 V. = LPG = SDB = RPG = QPC = RDB = 0, LSG = RSG = x mV, Bias CD 0, bias SD 0 pwr -7 dBm, avg 8192

Table 3: Set of applied parameters in experimental measurements
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11 Appendix D: Decoherence from numerical simulations
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Figure 69: Decoherence rates calculated from Eq. (21) for 2t = 5750 MHz (a) and 2t = 7750
MHz (b). Further parameters: v, = 6762 MHz, g/2r = 25 MHz, v, /27 = 100 MHz, T = 10
mK, ny, = 0.01, nyy, € [0,5], € = 0.1. Compare also section 5.5.3
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12 Appendix E: Inhomogenous rates for exp. data (single electron DQD)
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Figure 70: Inhomogenous rates for single electron regime based on Tablel: Decoherence (a), re-
laxation (b), combined rate (c). 74 and 7; are bare dephasing and relaxation rates (cf. Eq. (21))
and tanf = 2t/
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Figure 71: Inhomogenous rates for single electron regime based on Table 1 for qubit transition
frequency 2 at resonator frequency v,: Decoherence (a), relaxation (b), combined rate (c) and

coupling strength g (d). 74 and 7, are bare dephasing and relaxation rates (cf. Eq. (21)), tanf
= 2t/6 and go = 25 MHz.
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