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Abstract

Many interesting systems in many-body physics and open quantum systems cannot be
fully simulated using classical computers due to exploding memory requirements. We can
overcome this limitation with analog quantum simulation, where techniques developed
for building quantum computers are used to construct fixed-purpose simulators of
physical systems. By using engineered quantum systems to emulate other quantum
systems, we avoid the memory bottleneck of classical computers and can also realize
simulations before general-purpose quantum computers are available.

In this thesis, I will present the details of my work on analog quantum simulations of
energy transport during photosynthesis. I have extended the previous work in our group
from steady-state to time-resolved measurements which required novel characterization
techniques and which provide abundant information about our sample. I will present
evidence that we observed clear signatures of quantum coherence in our experiments,
validating our approach and preparing a path for more advanced quantum simulations
in the future.
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Chapter 1

Photosynthetic Energy Transport

1.1 Introduction

In order to limit global warming to just 1.5 ◦C by 2100, our only option is to go carbon-
negative, that is, to collect carbon dioxide from the atmosphere and store it within
the Earth, and to do so on an industrial scale [1]. While this currently appears to be a
daunting task, we are fortunate enough to have a finely honed example of carbon capture
to study: photosynthetic organisms. Every year, the plants, bacteria, and algae of Earth
sequester (110 ± 21) × 1012 kg of carbon [2]. As a step in converting carbon dioxide
into sugar, photosynthetic organisms manage to transport light-derived excitations over
large distances, known at photosynthetic ener� transport, and efficiently convert them into
separated electrical charges using organic molecules, known as charge separation, processes
humans are just starting to master. Furthermore, potentially inexpensive future sources
of zero-emission energy such as organic photovoltaics depend on a better understanding
of photosynthetic energy transport and the design guidelines that are contained therein.
For these reasons, it is important to study photosynthetic energy transport mechanisms
and to engineer artificial energy transport.

1.2 Photosynthesis

From a mass-balance perspective, photosynthesis is a simple process converting carbon
dioxide, water, and light into glucose and oxygen1:

6 CO2 + 6 H2O
hν
−−−→ C6H12O6 + 6 O2 (1.1)

However, the mechanisms used by photosynthetic organisms to achieve this simple
reaction are highly involved multi-stage processes which I will attempt to condense into
the following paragraphs.

Photosynthesis begins with the absorption of a photon of sunlight by pigments
known as chromophores. Examples of chromophores used in biology include chlorophyll,

1Note that there are also some organisms that use sulfur as the final electron acceptor rather than oxygen,
consuming hydrogen sulfide (H2S) and evolving sulfur.

2



CHAPTER 1. PHOTOSYNTHETIC ENERGY TRANSPORT 3

bacteriochlorophyll, and carotenoids. After absorption, the excitation is transferred
to a specialized pigment complex known as the reaction center where the excitation is
converted into separated charges that can be used to drive chemical reactions, eventually
resulting in the formation of sugar.

Since the reaction center requires significant additional chemical machinery to com-
plete the task of charge separation, it is biologically expensive to build2. At the same time,
since it is based on a single light-absorbing molecule, its cross section for solar radiation is
small. Simple estimates show that the reaction center can absorb around 10 photons s−1

under ideal conditions, a plodding pace for biological systems where enzymes routinely
reach the diffusion limit of more than 104 s−1 [3, Chp. 5]. To surpass the cross-section
limit, photosynthetic organisms build many additional chromophores, called an antenna
complex, and connect them to the reaction center. This vastly increases the surface area
for absorbing solar radiation. In most cases, the chromophores are not randomly dis-
tributed, but are held in specific orientations by a protein matrix, known collectively as a
pigment-protein complex (PPC). Remarkably, despite the warm and fluctuating environ-
ment of cells at physiological temperatures, photosynthetic organisms achieve a nearly
unit quantum yield for energy transport from the antenna complexes to the reaction
center, meaning that a single charge carrier is formed for each photon absorbed by a
chromophore [3, Chp. 1].

One important pigment-protein complex (PPC) is the Fenna–Matthews–Olson
(FMO) complex from green sulfur bacteria. Green sulfur bacteria are widely studied in
the biophysics community due to their relatively simple photosynthetic system. The
FMO complex is particularly important because it was the first PPC for which an x-ray
structure was determined [4] and among the first to have an extraction protocol [5]. This
complex is trimer of proteins each containing 7–8 bacteriochlorophyll surrounded by a
protein scaffold that holds each of the chromophores in a specific location and orientation.
The pigments in a single subunit of the complex are pictured in Figure 1.1. For a list of
the extensive theoretical and spectroscopic studies of the FMO complex, consult [6].

As the final stage of photosynthesis considered here, the excitation is trapped in
photochemical products by the reaction center. This trapping can be strong (deep trap-
ping), characterized by a unidirectional transfer of energy, or weak (shallow trapping),
characterized by oscillation of the excitation between the reaction center and the antenna
proteins bound to it [3, Chp. 5]. After trapping, the remainder of photosynthesis is
predominantly based on chemical reactions which are outside the scope of this work.

1.3 Photosynthetic Energy Transport

As is clear from the above discussion, a crucial point of photosynthesis is a directed trans-
fer of excitations from dispersed chromophores to the sparse reaction centers. Without
this movement, photosynthesis could not have a high quantum yield, and wasted exci-
tations would generate dangerous products such as singlet oxygen that would damage

2Since additional reaction centers require additional supporting machinery.
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Figure 1.1: Subunit of FMO complex with the bacteriochlorophyll a molecules shown
in blue and green, and the protein matrix that surrounds the chromophores shown in
translucent purple. Approximate scale: 4 pm. The phytyl tails of the bacteriochlorophyll
have been omitted. Image of Protein Data Bank file 3ENI [7] created with PyMOL [8].

the organism [9]. These excitations form electron-hole quasiparticles which propagate
through the antenna complexes and are referred to as (Frenkel3) excitons [12].

While there was initially interest in modeling chlorophyll as a network or crystal on
which excitons propagate quantum mechanically (see e.g. [13]), this interest disappeared
when a semiclassical model known as Förster resonance energy transfer (FRET) [14]
appeared. FRET explains the high efficiency of photosynthetic energy transport (PET) by
modeling the chromophores as weakly interacting dipoles that exchange virtual photons.
This approach works well for intermediate distances, where the overlap of electronic
wavefunctions is small, such as from an antenna complex to the reaction center or from
one antenna complex to another [3, Chp. 5]. In addition, the chromophores of antenna
complexes tend to be arranged such that chromophores closer to the reaction center
are lower in energy than chromophores farther away, providing directional bias in the
transport. Thus, it seemed that PET was an entirely diffusive process, a view that was
supported by the fact that cells are warm and wet environments which should suppress
any quantum coherence on timescales much faster than the energy transfer dynamics
[15].

However, later results questioned this orthodoxy, hinting that quantum coherent
effects may play a role in PET. Structural analysis of PPCs revealed that they had closely

3After Yakov Frenkel, [10, 11]
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spaced chromophores, a situation where FRET breaks down due to overlapping elec-
tronic wavefunctions, known as excitonic coupling, in which the eigenstates become
dressed or superpositions of the individual chromophore wavefunctions. This can lead to
the formation of the bright and dark states from quantum optics, which were observed
in a different PPC, LH2 from purple sulfur bacteria [16]. Beyond this, direct experimen-
tal evidence of quantum transport behavior was discovered in FMO, first at cryogenic
temperatures [17] and then at physiological ones [18].

1.4 Studies of Photosynthetic Energy Transport

Early photosynthesis research focused on determining the chemistry of photosynthesis
and then the stoichiometry of the reaction (Equation 1.1) [19]. Initial spectroscopic
measurements studied the quantum efficiency of photosynthesis, rates of reactions, and
identification of the system components [20]. Spectroscopy was also able to determine
whether the chromophores are strongly or weakly coupled by comparing in vivo and
in vitro spectroscopy [21]. While steady-state or modulated spectroscopy was able to
determine that energy transport was taking place, it was not until the advent of picosecond
spectroscopy, including techniques such as transient absorption, that dynamics of the
energy transfer process could be measured [22, 23]. Further enhancements of timing
resolution, using femtosecond lasers, led to the startling results about the electronic
dynamics previously mentioned [17, 18].

Since those landmark measurements, Panitchayangkoon et al. extended their previ-
ous work, observing oscillation of the exciton population on different chromophores,
something that they asserted was direct evidence for quantum transport in FMO [24],
relying on theoretical results from Abramavicius and Mukamel [25]. Countering this, a
number of results disputed the nature of these observed coherences or their physiological
applicability under incoherent illumination from the sun. Eisfeld and Briggs found,
under approximations, classical coherences matching the observed quantum coherences
implying that a quantum description of FMO may not be necessary to account for the
observed coherences [26]. Wilkins and Dattani provided a sobering theoretical analysis
showing that incoherent transport is predicted to be faster than quantum transport in
FMO and that the importance of quantum transport depends crucially on the rate of
trapping in the reaction center, which had not been included in prior simulations [27].
Pachón et al. found that there are no coherent dynamics under illumination by a thermal
source, even for a non-equilibrium open quantum system [28, 29]. Duan et al. rule out
long-lived electronic coherences in FMO, meaning that noise-assisted transport relying
on purely electronic states does not play a role in photosynthesis [30], which, however,
does not rule out hybrid electronic-vibrational (vibronic) coherences, a mechanism sug-
gested by Huelga and Plenio [31]. Trying to bridge the divide between these two groups,
Romero et al. were careful to distinguish two types of coherences: static coherences due
to strongly coupled portions of the system (called excitonic coupling above) and dynamic
coherences induced by exciting a portion of the Hilbert space rather than an eigenstate of
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the full system, arguing that static coherences might be responsible for high efficiency
even in the case of incoherent transport [32].

The possible discovery of quantum effects in PET immediately renewed interest in
analyzing photosynthetic complexes as quantum networks, resulting in a hypothesis
termed environment-assisted quantum transport (ENAQT) [15]. ENAQT, also known
as noise-assisted transport (NAT), considers PPCs as a network of quantum sites. When
perfectly isolated, any excitation of the system would delocalize over the entire PPC,
preventing it from transferring to the specific site which is coupled to the reaction center.
In the opposite case, inside an extremely noisy bath, any excitation will experience strong
dephasing, localizing it and again preventing it from reaching the reaction center. Thus,
counter to the usual intuition that noise is always detrimental, the NAT hypothesis claims
that there will be an intermediate level of environmental noise which leads to maximum
transportation efficiency.

Since that result, further progress has been made to understanding NAT. Plenio and
Huelga asserted that Markovian noise might assist energy transport within dissipative
quantum networks that include dephasing, such as an FMO monomer with phononic
(vibrational) modes [33]. Mohseni et al. found similar results using a Lindblad master
equation and quantum walk formalism, adding that the phononic modes may also assist
transport efficiency by acting as a dissipative sink for energy, trapping the exciton at
progressively lower energy sites [34]. They disputed the claim by Engel et al. in [17] that
the efficiency of energy transport in FMO was due to a Grover-like search4 for the lowest-
energy chromophore, since the exciton delocalizes only over a few sites. Finally, Rebentrost
et al. also found, using a Lindblad master equation approach, that environment-induced
relaxation was responsible for approximately 90 percent of the energy transfer efficiency
of FMO, with the remainder corresponding to coherent dynamics [36], quantifying the
impact of NAT on photosynthetic organisms.

One particularly difficult issue has been how to explain the experimentally observed
long-lived coherence given the short phase-coherence time that has been independently
measured [15]. One solution proposed by Huelga and Plenio, is the phonon antenna
mechanism, where the exciton induces nuclear motion including a well-defined vibra-
tional mode with a low frequency and a long lifetime [31]. In this model, the phonon
mode is excited into a coherent state which then drives population transfer between
excitonic states with an energy difference comparable to the vibrational mode.

1.4.1 Open Questions

With this sort of disagreement within the field, there are clearly open questions pertaining
to photosynthetic energy transport. Two of the prominent ones are:

• What is the exact nature of the coherences that are observed ( e.g. electronic, vibra-
tional, vibronic)? This determines the importance of the phononic modes and
consequently, NAT.

4 See [35]
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• What quantum e�ects, if any, play a role in the transport dynamics under incoher-
ent illumination? This determines whether NAT offers any improvement under
realistic excitation conditions and hence whether useful “design principles” can be
taken from quantum networks and applied to organic photovoltaics.

Unfortunately, these questions are difficult to treat theoretically and experimentally.
Since the energy scale of electronic coupling between chromophores is similar to the
energy scale of coupling between the chromophores and the phononic modes of the
protein, no perturbative approximation can be made, hampering theoretical studies of
FMO [37]. On the other hand, spectral congestion makes assigning spectroscopic features
to a specific site in the PPC difficult. Biologists can get around this by modifying the PPC,
but this is not always easy or guaranteed to have the same behavior as the original complex
[32]. In the next section, I will discuss one possible solution to study these questions in a
tractable fashion: quantum simulation.

1.5 Analog Quantum Simulation

While quantum computers might one day help develop new catalysts to directly fix CO2
or simulate the full dynamics of pigment-protein complexes, we can apply the technology
being used to build the quantum computers of the future today to evaluate models of
energy transfer in photosynthetic organisms. This technique is known as analog quan-
tum simulation and it is where quantum systems are engineered to directly exhibit the
dynamics of a target system rather than perform universal quantum calculations via long
sequences of gates. Thus, we trade generality for easier implementation: a universal quan-
tum computer can tackle any computable problem, but is currently difficult to make while
an analog quantum simulator solves only one sort of problem but is implementationally
feasible. Here I draw strong parallels to the dawn of classical computing, where the first
useful computers such as ENIAC had to be laboriously re-wired by hand to perform
different types of calculations and only later did general-purpose, stored-program com-
puters such as EDVAC become feasible as the technology and understanding of computer
construction improved.

First proposed by Feynman in 1982 [38], analog quantum simulations have now
been conducted for: spin systems using superconducting circuits [39] as well as trapped
ions [40]; for quantum phase transitions using cold atoms [41], along with many others.
For a recent review, see [42].

Noise-assisted transport is a particularly good target for analog quantum simulation
because it naturally involves a network of quantum sites and noise is not necessarily unde-
sirable as it is for digital quantum computation. Analog quantum simulators designed to
study NAT in the context of photosynthetic energy transport may help in resolving the
open questions facing the biophysics community. Interactions are typically engineered,
meaning that the coherences can be chosen to be electronic, vibrational, or a mix of the
two, and may even be tunable. At the same time, since engineered quantum systems are
typically isolated from their environment and rely on external drives for all dynamics,
we can directly study the effect of incoherent versus coherent drive and have techniques
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to characterize the light involved in transport. Even if photosynthetic energy transport
does not involve any quantum behavior under incoherent excitation, we may still learn
about how to optimally select environmental modes to optimize energy transport from
studying NAT, especially in highly-tunable systems.

1.5.1 Quantum Simulations of NAT

Some of the earliest theoretical studies of NAT in the context of photosynthetic energy
transport proposed to use quantum systems to simulate the dynamics due to the difficulty
of isolating specific effects in biological systems [33]. These were followed by proposals
to study NAT in a superconducting circuit analog of the FMO complex [43] and in
quantum dots [44]. At this point, there were only proposals for how to test NAT in
engineered quantum systems.

Experimental studies of NAT started appearing in 2015, when León-Montiel et al.
investigated NAT using a three-site LRC-oscillator circuit [45]. They modeled dephasing
by adding high-frequency noise to the coupling between two sites on the network, finding
increased transport efficiency with increasing broadband noise amplitude. Biggerstaff
et al. investigated ENAQT using a four-site photonic waveguide system [46]. They
were able to recreate the results expected from ENAQT, but could not simulate different
configurations as the site energies and couplings were determined by the material and
fabrication parameters of the device and were not tunable in situ. Both of these classical
experiments only included white noise and had fixed system parameters outside of the
dephasing rate.

At the same time, several groups studied quantum approaches to studying photosyn-
thetic energy transport. Imada et al. investigated resonance energy transport between
molecular dimers using scanning tunneling spectroscopy, studying incoherent transport
in an artificial quantum system [47]. Harris et al. scaled the photonic approach to a
discrete-time simulation with 26 sites and 88 interaction elements [48]. They incorpo-
rated both static and dynamic disorder and found maximum quantum transport efficiency
at intermediate disorder levels, the expected ENAQT results.

In 2018, Potočnik, Bargerbos, et al., inspired by the proposal of Mostame et al.,
studied NAT using a superconducting circuit sample, moving from classical simulations
or discrete-time quantum simulations to a continuous-time semi-quantum simulation,
where the system is quantum but the noise replicating phonon modes is classical [49].
As with the previous studies, they measured steady-state power transfer efficiency for
broadband noise, finding optimal efficiencies at intermediate dephasing rates. In addition,
they considered shaped noise akin to a phononic mode, finding that this dramatically
improved transfer efficiency. Unlike previous studies, their three-site system had tunable
site frequencies (with coupling tied to detunings) and hence is able to look at transfer in
several different configurations.

Recently, Gorman et al. looked at NAT in a two-site fully quantum system [50].
Using trapped ions, they measured increased population transfer from one site to another
when the vibrational mode was tuned to equal the site energy difference along with
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nontrivial population dynamics due to non-Markovian noise. However, their simulation
does not include any trapping dynamics.

1.6 Current Work

Now that previous studies have validated the use of analog quantum simulators for
studying noise assisted transport, I can extend the work of Potočnik and Bargerbos on
superconducting circuits to time-resolved measurements of NAT. At the most basic level,
this will verify that the simulator correctly exhibits the dynamics that it was designed to,
an obvious milestone on the path to more advanced simulations. At the same time, we
want to engineer static coherences in the system and observe their effect on the transport
dynamics, which should clearly appear in the time domain. In addition, we can measure
additional parameters of the transfer dynamics, such as timing, which cannot readily be
extracted from steady-state measurements. Finally, time-dependent methods allow us
to implement a number of characterization methods to determine system parameters
in a way more familiar to the community or to prove that the system behaves quantum-
mechanically.

1.7 Note to the Reader

This text is primarily intended for an audience familiar with quantum optics and circuit
quantum electrodynamics (cQED) implemented via superconducting transmon qubits,
and so in the interests of brevity, I will not cover these topics in the main text. However, I
have included some material on these topics in the appendices (starting from Appendix A)
and will try to link to them from the main text where they might help someone less familiar
with the material.



Chapter 2

Experimental System and Apparatus

2.1 Target Hamiltonian

For our simulation of NAT to provide useful information about models of photosyn-
thetic energy transport, it must mimic the dynamics of the real system, which is most
clearly evident when the systems have the same Hamiltonian. Pigment-protein complexes
contain many electronic and nuclear degrees of freedom; however, I will focus on the
photosynthetically active electronic modes based in the chromophores and the “phononic”
vibrational modes of the chromophores and proteins that couple to the chromophores
due to their proximity and electrostatic forces. Here I will work in the site basis, where
(electronic) state | j〉 corresponds to chromophore j of the PPC being in the excited state
(|e〉) and all other chromophores being in the ground state (|g〉). This choice is motivated
by the fact that the electronic excitations rarely delocalize over more than a few sites [37]
and holds for low illumination intensities. With this context in mind, following [43], I
can write the Hamiltonian of the PPC as:

Ĥ =
∑
j

~ωj | j〉 〈 j | +
∑
j

∑
k< j

Vjk (| j〉 〈k | + |k〉 〈 j |)
(
ĤS

)
+

∑
j

∑
m

χmj | j〉 〈 j |
(
âm†
j + âm

j

) (
ĤSB

)
+

∑
j

∑
m

~ωm
j

(
âm†
j âm

j + 1/2
) (

ĤB

) (2.1)

where I have grouped the contributions into three terms: one for the electronic degrees of
freedom (called the system), one for the interaction between the electronic and phononic
degrees of freedom (called the system-bath interactions), and one for the phononic degrees
of freedom (called the bath). In all terms, subscript j and k refer to electronic states, while
superscript m refers to phononic modes. The system terms include both the individual
site transition energies (given byωj) and the exchange interactions (with strength Vjk).
The bath is treated as a number of harmonic oscillators at each site, with frequencies

10
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ωm
j and creation (annihilation) operator âm†

j (âm
j ). The system and bath interact with

strength χmj , which can be derived from characteristics of the particular sites1.
To facilitate the comparison with superconducting circuit Hamiltonians, Equation 2.1

can be re-written in terms of Pauli matrices for the electronic terms:

Ĥ =
∑
j

~ωj σ̂
z
j +

∑
j

∑
k< j

Vjk

(
σ̂+j σ̂

−
k + σ̂

+
k σ̂
−
j

)
+

∑
j

∑
m

χmj σ̂
z
j

(
âm†
j + âm

j

)
+

∑
j

∑
m

~ωm
j

(
âm†
j âm

j + 1/2
) (2.2)

where σ±j ≡ 1/2
(
σ̂x
j ± iσ̂y

j

)
are Pauli raising and lowering operators. In this notation,

it is clear that the electron-phonon coupling (system-bath interaction) corresponds to
longitudinal or σ̂z coupling, affecting the transition energies of the electrons. This type
of coupling (as opposed to transveral, σ̂x or σ̂y , coupling) has been difficult to achieve
in the superconducting circuits that we use to build our simulator [51], discussed below.

2.2 Superconducting Simulator Sample

Superconducting circuits are a mature technology that enables us to build and control
ever-increasing numbers of quantum bits, or qubits. The foundation for such qubits is
a superconducting, dissipationless inductor-capacitor (LC) resonator, which produces
a ladder of equally spaced energy levels in the microwave spectrum. To gain control of
the system, we restrict the resonator to two levels by introducing a nonlinear element to
the circuit. This nonlinear element, a superconductor-insulator-superconductor (S-I-S)
junction known as a Josephson junction [52], distorts the harmonic potential into an
anharmonic potential with unequal level spacing. A key property of Josephson-junction
circuits is that at sufficiently low temperatures (≈ 10 mK) most degrees of freedom are
frozen out and the macroscopic system behaves as a quantum two-level object. Significant
technological progress has recently been made in the areas of fabrication, readout, and
control, so superconducting circuit qubits have been chosen as the platform for building
commercial quantum computers by several companies. For additional discussion of the
Josephson effect and superconducting circuits, consult Appendix A and Refs. [53, 54].

2.2.1 Design

The design of the superconducting circuit was performed by Anton Potočnik and Arno
Bargerbos and discussed by them in previous works [49, 55]. Since it is designed to test
NAT, it consists of a network of qubits along with a source of dephasing noise.

1 χm
j
= ~ωm

j
dm
j

, where dm
j

represents the displacement in terms of a generalized oscillator position of
the electronic excited state relative to the ground state
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Figure 2.1: Circuit diagram of biological simulation sample. Qubits shown in red, blue,
and green. Transmission line shown in purple; resonator shown in orange. Flux lines
shown in yellow and pink; coil shown in black. Numbered traces are input or output
lines used to configure, drive, or probe the sample. Adapted from [49].

More precisely, the circuit consists of three qubits, an input waveguide, an output
resonator, along with flux lines and a coil affecting all qubits (see Figure 2.1). Two qubits,
Q1 and Q2, are linked through a capacitor which produces strong transverse coupling,
leading to hybridization that results in eigenstates that are symmetric and antisymmetric
combinations of the individual qubit states. These qubits are also simultaneously capaci-
tively coupled to a transmission line. Since the distance over which the qubits are coupled
is significantly smaller than the wavelength of microwaves that drive them (approximately
2 cm at 6 GHz), both qubits are driven equally, and thus the symmetric mode is strongly
driven (making it a bright mode) while the antisymmetric mode is weakly driven (dark
mode). Qubit 3, Q3, is capacitively coupled to qubit 2 along with the output resonator,
which is itself capacitively coupled to a port.

All qubits used in the sample are formed from two junctions enclosing a small loop,
a configuration known as a SQUID2, which enables the transition frequencies of the
qubits to be adjusted by the magnetic flux through the loop. Flux lines 1 and 2 (FL1 and
FL2) provide local control over the magnetic field near qubits 1 and 2 respectively, while
a large coil adjusts the magnetic flux through through all three qubits.

The transmission line acts as a broadband input-output port for the bright and dark
states, allowing us to rapidly drive these states or superpositions of the states, and acts as
an antenna complex passing excitations to FMO. On the other side of the sample, the
resonator and the waveguide attached to it act as the input-output port for qubit 3. The
resonator functions as a Purcell filter [56], changing the coupling between qubit 3 and

2Superconducting Quantum Interference Device
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the input/output line depending on the detuning between the qubit and the resonator.
Since the input/output line is a semi-infinite 50Ω cable, emission into this port results
in irreversible loss of the excitation, functioning as the reaction center, with the Purcell
filter tuning the rate of the trapping dynamics.

2.2.2 Hamiltonian

Quantizing the circuit shown in Figure 2.1, as I discuss in Appendix A and as laboriously
completed by my predecessors following the instructions of, for example, Devoret, Vool,
or Girvin [57, 54, 58], results in the following Hamiltonian [55, 49]:

Ĥ =
∑
j

~

2
ωj(t)σ̂z

j + ~ωrâ†â

+
∑
j

∑
k< j

Jjk
(
σ̂+j σ̂

−
k + σ̂

+
k σ̂
−
j

)
+

∑
j

gjr

(
â†σ̂−j + âσ̂+j

)
+
Ω1

2
(
σ̂+1 + σ̂

−
1
)
+
Ω2

2
(
σ̂+2 + σ̂

−
2
)

(2.3)

where j sums over qubits 1–3 and r stands for the resonator, â† (â) is the resonator
creation (annihilation) operator. Jjk parameterizes the qubit coupling strength while gjr
quantifies the strength of the qubit resonator couplings. Ω1 (Ω2) are the driving rates
(Rabi rates) of qubits 1 (2) by a microwave field in the transmission line.

While this Hamiltonian has terms corresponding to the system terms of the goal
Hamiltonian (Equation 2.2), i.e. electronic site energies and exchange interactions, there
are no terms corresponding to the system-bath interactions or to the bath itself. This is
due to the lack of longitudinal coupling on the sample, which remains an experimental
challenge for superconducting circuits and which was deemed to be too complicated for
this sample. However, there are ways to emulate the system-bath interactions via classical
control signals, something I will discuss in the next section.

2.2.3 Hacken–Strobl–Reineker Model

Haken, Strobl, and Reineker studied ways of analytically addressing electron-phonon
interactions. Importantly, they found that, by letting the site energies fluctuate with
time, they could recreate the effects of a phonon bath [59, 60, 61]. However, their results
require a number of assumptions. Firstly, they assume that the phononic environments at
the different sites are uncorrelated, something which also holds for the biological system
[62]. Secondly, they assume that site energies fluctuations are Gaussian and Markovian,
corresponding to the infinite temperature limit with a broadband phonon spectrum.
Finally, this model (the HSR model), in which the phonons affect the excitons but not
vice versa ignores the back-action that occurs in quantum-mechanical systems and thus
corresponds to a classical or thermodynamic limit.

Even with those restrictions in mind, this result vastly simplifies our sample con-
struction task. Rather than needing to engineer new types of coupling to recreate the
system-bath interactions, which would likely be fixed or only narrowly tunable, as long as
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we are satisfied with a high-temperature limit, we can create the system-bath interactions
by applying time-varying currents through our flux lines. By comparison, this is a rela-
tively trivial process with modern arbitrary waveform generators (AWGs), and provides
high degrees of flexibility. Not only can we, as originally formulated by the authors, apply
Gaussian, Markovian noise (also referred to as white noise), but we can also shape or tune
the noise spectrum to be more faithful to the FMO system, which has some broadband
vibrational modes, but also narrower modes at specific frequencies [43, 31].

2.2.4 Physical Sample

The sample used for my experiments is depicted in Figure 2.2 where each qubit is in the
same relative physical position as in the circuit diagram. My predecessors implemented
the circuit using coplanar waveguides for the transmission line, resonator, and for the flux
lines. A transmon parameter regime was used for the qubits, reducing their sensitivity
to flux and charge noise while preserving anharmonicity that lets them act as two-level
systems.

12
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Flux line Flux line 
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Resonator 

a b
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S Noise
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Q2

Reaction Center
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Antenna

Extracted

J23

d1 d2

Figure 2.2: False-color micrograph of the sample used in my experiments. Silver or col-
ored regions represent metal while black regions are bare substrate. The long meander-
ing lines are flux lines, resonators, or coplanar waveguides. Within the central region,
there are Josephson junctions and capacitor pads that create capacitive couplings to other
circuit elements. The numbers of the ports correspond to the numbers in Figure 2.1.
Adapted from [49].

The large, colored, crenelated structures visible in the center of the chip are the
capacitive islands of the qubits. Close proximity of the capacitor pads leads to strong
capacitive (dipole-dipole) coupling of the qubits, as is the case for qubits 1 (red) and 2
(blue). Similarly, pads for both of these qubits are near the light purple transmission
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line, leading to capacitive coupling that is used to drive and probe these qubits. Since
the green pad of qubit 3 is farther away, it is not affected by the transmission line, and
is considered isolated. Instead, it has weak coupling to qubit 2 (note the thin peninsula
of gray ground plane between the pads of these two qubits which partially shields the
capacitive coupling) and strongly coupled to the orange output resonator. One end of
the resonator is adjacent to qubit 3 while the other end is formed by an interdigitated
capacitor (the circuit analog of a mirror) interrupting the coplanar waveguide.

The SQUID junctions reside on the thin looping bridges which extend to the left
and right of qubits 1 and 2, or shielded in a cavity in the lower-middle of the sample for
qubit 3. This places the SQUID loops of qubits 1 and 2 near the terminations of the
flux-line waveguides, where currents are converted to magnetic flux. Thus, these flux
lines achieve local control of qubits 1 and 2 while qubit 3 is partially shielded. The coil
(not pictured) can be used to adjust qubit 3 to the correct regime, with the other qubits
corrected using their flux line.

Note that there is an additional, unused capacitor pad in the lower left corner of the
qubit region of the sample (Figure 2.2). This is included to reduce the differences between
different sites on the chip, making the capacitance properties (and hence frequencies)
more homogeneous and easier to predict.

The base of the chip is a highly pure sapphire (Al2O3) substrate on which an ap-
proximately 150 nm layer of niobium has been deposited (for more details on Niobium
film creation, see [63]). Photolithography is followed by reactive ion etching to form the
coplanar waveguides, resonators, and qubit capacitor pads. Since niobium has a critical
temperature, Tc , above 4.2 K for thin films (approximately 9 K), the chip can be probed
at this stage by microwave spectroscopy while in a liquid helium dipstick to check that
the design frequencies for the different structures were achieved by the photolithographic
process. After this verification, the junctions of the SQUID loops are created via shadow
mask deposition of aluminum around a resist bridge created by electron-beam patterning
of a dual-layer resist [53]. Aluminum is preferred for Josephson junctions because of
its highly controllable oxide formation, which is used to form the several nm insulating
barrier in the S-I-S Josephson junction, resulting in predictable junction impedances.

2.2.5 Simulation Standard Configuration

In order to test models of photosynthetic energy transport, we must choose the correct fre-
quencies for each of the qubits. The energy-level diagram of the qubit configuration used
throughout my experiments is shown in Figure 2.3. We place qubits 1 and 2 on resonance
at 6.313 GHz to create hybridized bright and dark states at 6.433 GHz and 6.193 GHz
respectively (2J12/2π = +240 MHz). Furthermore, we tune qubit 3 to the same fre-
quency as the dark state, creating hybrid states |d1〉 and |d2〉 at 6.166 GHz and 6.220 GHz
respectively (2Jd3/2π = 54 MHz). These states couple to the resonator, which is fixed at
6.000 GHz due to its dimensions, via Purcell decay. The system parameters, including
the Rabi and Purcell rates are presented in Table 2.1.

Now that I have detailed both the connectivity of the sample and the energy level
configuration, we can touch on some of the finer points about design decisions. Bright
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Figure 2.3: Energy level diagram of the sample when in standard simulation configura-
tion. Qubits 1 and 2 are tuned in resonance, forming bright and dark states. Qubit 3 is
brought into resonance with the dark state, forming states |d1〉 and |d2〉, which couple
to the resonator via Purcell decay.

Table 2.1: Sample parameters in simulation standard configuration

Parameter Value (MHz)

ω1/2π 6313
ω2/2π 6313
ω3/2π 6193
ωr/2π 6000

2J12/2π 240
2Jd3/2π 54
ΩR 21
γP 8
γb 10
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and dark states are not present in the FMO complex. However, they do appear in other
PPCs, and they have been suggested to increase energy transport efficiency [64, 65, 66, 67,
68], and hence we have decided to use them here. The configuration of the third qubit
follows the suggestion by Huelga and Plenio to maximize energy transport efficiency
in a network of three qubits [31]. Finally, not only does the resonator provide Purcell
tuning of the decay rate into the microwave line, but the strong coupling also leads to
static coherence, which has been suggested to be one mechanism that could boost transfer
efficiency even in the presence of incoherent excitation [32], and which is a feature that
we wish to observe in this round of time-resolved measurements. This configuration
demonstrates two types of energy transfer: incoherent transfer from the bright state to
the dark state induced by noise, and coherent transfer from the dark state to qubit 3 as a
result of the strong coupling between those states.

One additional details is that in our system, the coupling between sites, J12, is positive,
meaning that the bright, symmetric superposition is higher in energy than the dark,
antisymmetric superposition, the opposite of the usual case for electronic wavefunctions,
where the HOMO is usually symmetric while the LUMO is antisymmetric. While this
case may be unusual within biological PPCs, it is not uncommon, with H -aggregates of
organic dyes also having the same hypsochromic shift of the visible state.

2.2.6 Flux Noise

Now that I have presented the energy-level diagram of the system, we can again discuss
the flux noise that will be used in the experiments. As specified by the HSR model, we
will use broadband white noise with a bandwidth that includes the |b〉-|d〉 frequency
difference (white noise with a reduced bandwidth merely dephases the qubits without
leading to transport from the bright to dark state [49]). In addition, we will use shaped
noise that recreates the biologically observed sharp phononic mode, i.e. noise with a
Lorentzian lineshape, a non-Markovian bath that behaves as if it had some memory.
Following evidence in the FMO complex [43], we will place this mode at the |b〉-|d〉
frequency difference.

2.3 Experimental Apparatus

I performed the experiments in the following chapter using a standard setup for measure-
ments of superconducting transmon circuits. This consists of a dilution refrigerator to
cool the sample down to millikelvin temperatures, microwave electronics to apply signals
to the sample and to measure the response, and a system to generate flux noise.

2.3.1 Dilution Refrigerator

In order to bring the sample to a regime where it is superconducting and where the
thermal excitations of the system are suppressed far below the energy scales of the qubit,
I had to cool the sample down to around 15 mK. This was done using a BlueFors LD250
dilution refrigerator (DR), a type of multi-stage cryogen-free refrigerator frequency used
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in cryogenic experiments. The primary cooling stage consists of a two-stage pulse-tube
cooler, a heat engine that uses helium as a working gas to reduce the temperature to
approximately 3 K. As the second stage of the DR, a dilution unit uses mixing and
separation of 3He from superfluid 4He to produce additional cooling power in order to
reach 10 mK [69]. In between these special stages, there are other stages such as the 50 K
stage and the 1 K “still” stage in order to reduce the radiation load on subsequent heat
stages or to perform heat-exchanging functions.

Figure 2.4: Composite photograph revealing different temperature stages of a dilution
refrigerator along with the various stages of shielding. Note that this is a BlueFors
XLD400 which is significantly larger than the LD250 used in our experiments, and is
only shown for demonstration purposes. Photo and editing by Janis Lütolf; used with
permission.

At the very bottom of the dilution refrigerator, on the coldest stage, the sample chip
(sapphire wafer) is placed onto a printed circuit board (PCB) with microwave connectors,
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enclosed inside a mostly light-proof metal enclosure, and then fixed to the base plate
of the fridge. The sample is surrounded with two layers of high-magnetic permeability
metal (µ-metal), which acts as a magnetic shield, reducing the magnetic field around the
sample.

Even though the sample may be cold and well-shielded, in order for it to be useful,
we need ways to control and measure the sample. At room temperature, this might
be easy, but the need to shield the sample from room temperature radiation dictates a
more complicated setup shown in Figure 2.5. Input lines to the transmission line and
resonator have several stages of attenuation to reduce the thermal noise carried from
room temperature to cold stages. For the flux lines, this is slightly modified, since the
attenuators function as voltage dividers and thus limit the amount of current that can be
applied to the flux line. Here, additional low pass filters (cutoff frequency: 780 MHz) are
used to eliminate high-frequency noise which would dephase the qubits. We measure
both the transmission line and the resonator in reflection, which dictates a circulator on
the input line for both of these components.

In order to amplify the extremely weak signals3 from the sample, we use several stages
of amplification. Since the noise of an amplified signal is dominated by the noise of the first
amplifier, we use the best available amplifiers. For the resonator, we use a travelling-wave
parametric amplifier (TWPA) graciously provided by MIT’s Lincoln Laboratory. For
both output lines, the next stage is a high-electron mobility transistor (HEMT) amplifier
(Low Noise Factory LNC4 8A for the resonator and LNC1 12A for the transmission line).
These lines use band-pass filters and circulators to prevent amplified noise from reaching
the sample and to limit the bandwidth of noise that reaches later stages of amplification.

2.3.2 Microwave Generation and Measurement

The generation of microwave signals is split into two categories: continuous-wave (CW)
signals and pulsed signals. All CW tones can be directly generated using commercial
microwave generators. Pulse generation, on the other hand is limited by current elec-
tronics to working at lower frequencies, so a classic heterodyne architecture is used for
up-conversion of signals from intermediate frequency (IF) to radio frequency (RF). We
use Agilent E8257D PSG analog signal generators as the local oscillator (LO) of these
heterodyne circuits or as probe tones and a Rhode&Schwarz SGS100A SGMA RF source
as the pump for our TWPA. Pulses are generated via a Tektronix AWG520 AWG which
has a sample rate of 1 GS s−1 and a vertical resolution of 10-bits.

Signals emerging from the output ports of the fridge pass through a custom-built
amplification and down-conversion circuit, depicted in Figure 2.6, in order to increase
their amplitude and reduce their frequency until they reach the domain where they
can be sampled. The signals are captured by an Abaco FMC110 two-channel, 1 GS s−1,
14-bit analog-to-digital converter (ADC). We collect the data from the ADC using a
Xilinx Virtex-6 FPGA where we perform digital down-conversion (DDC) to get a zero

3A single microwave photon has an energy of just ~ω = 4.0 × 10−24 J at 6 GHz, five orders of magnitude
less than optical photons where ~ω = 3.3 × 10−19 J at 600 nm
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frequency signal which subsequently undergoes significant real-time signal processing in
our custom-designed FPGA applications [70].
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-20 dB R
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Figure 2.6: Schematic diagram of warm amplification, down-conversion, and digitiza-
tion modules for signals returning from fridge.

In addition to these microwave electronics, we have Stanford Research Systems
SIM928 isolated voltage sources to DC bias our flux lines and coil. Experiments are
controlled using a custom LabVIEW application called SweepSpot which was developed
by Simon Storz during his Master’s thesis [71].

2.3.3 Noise Generation

I generated flux noise at the sample following the method outlined by Bargerbos [55].
In brief: we start with an independent random variable, X , with zero mean (µX = 0)
and finite variance (E(X2) = σ2 < ∞), a pratical example of which is the Gaussian or
normal distribution. The covariance function for this distribution is

γX(h) = E(Xt+hXt ) =

{
σ2 if h = 0
0 otherwise

due to the independence of the random variable at different times. Applying the definition
of a spectral density [72] and noting that we satisfy the criterion

∑∞
h=−∞ |γ(h)| < ∞, we



CHAPTER 2. EXPERIMENTAL SYSTEM AND APPARATUS 22

find

f (λ) =
1

2π

∞∑
h=−∞

e−ihλγ(h)

=
1

2π
γ(0)

=
σ2

2π

so the spectrum of this random variable is completely uniform across all frequencies. By
sampling randomly from this distribution, we create a time series, {xt }, that shares these
properties, i.e. a time series of perfect white noise [72].

To create a particular noise spectral density from this, we filter the time series data.
For the white noise, since our AWG does not have infinite bandwidth (which would
imply infinite power), we limit the bandwidth to a value within the sampling rate of the
AWG, given by a Fermi-Dirac spectral density

SFD(ω) =
A

e(ω−ωC)/2πB − 1
(2.4)

where A parameterizes the amplitude,ωC is the cutoff frequency, and B parameterizes
the “steepness” of the decline from full density to no density. For Lorentzian noise, we
use the following spectral density function:

SL(ω) =
A(ω−ωC

πB

)2
+ 1

(2.5)

where A again characterizes the amplitude,ωC is now the center frequency, and B is the
full-width half-maximum (FWHM). We take the square root of the spectral densities (to
go from power to voltage values), Fourier transform, discretize, and then truncated them
at a finite number of points in order to create finite-impulse response (FIR) filter kernels,
kn. To produce the final (filtered) time series, {x ′t }, we convolve the time series with the
FIR filter, i.e.

x ′t =
K∑
n=0

knxt+n

where K is the length of the filter.
When generating broadband noise, we have to take an additional step to correct

for the analog performance of the AWG. We measure the spectrum produced by the
instrument for a uniform noise input file (up to the sampling rate of the AWG). Since
we use a uniform input, the transfer function is trivially given by the measured power
spectral density, S(ω) divided by the specified amplitude A,

h(ω) =
S(ω)

A
.
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In order to correct the signal generation, we multiply the FIR filter kernel for the Fermi-
Dirac white noise by the square root of the inverse transfer function

k ′n = kn
√

h−1(ωn) = kn

√
A

S(ωn)
.

The final voltage time series is then uploaded to a second Tektronix AWG520, which
converts the digital signals to a physical voltage which is connected to flux line 2 of the
sample. The voltage is reduced by attenuators in the line and we can model the final
attenuator as a resistor, dividing the voltage between the flux line and ground. With this
resistance, and knowledge of the impedance of the flux lines, we can compute the current
produced at the sample by a given voltage.

In the experiments that I will present below, we used white noise with a cutoff
frequency of 300 MHz and shaped noise with a Lorentzian lineshape at a frequency
of 246 MHz and a FWHM of 10 MHz. The results of the noise generation procedure
outlined above compared with the expected values are presented in Figure 2.7. Extremely
observant readers might notice significant differences between these figures and the ones
presented in [55]; this is due to the difference of AWG. The Tektronix AWG520 does
not have as high of a peak output voltage as the Tektronix AWG5014 used in previous
experiments (2 V versus 4.5 V), so the amplitude of the noise is reduced. To overcome
this restriction, a low-frequency amplifier with 16 dB of gain was used whenever greater
amplitudes were required. In addition, the white noise spectrum deviates from the
expected values, even after correcting for the analog performance of the AWG. We believe
that this is due to the lower vertical resolution of the AWG520 compared to the AWG5014
(10 bits versus 14 bits).

In the measurements below, I will plot data as a function of flux power rather than
AWG voltage in order to make the data more general; for details on how I performed this
conversion, see section C.2.
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Figure 2.7: Power spectral density, SN , of the generated noise. Le�: white noise, with
a cutoff frequency of 300 MHz. Right: Lorentzian noise with a center frequency of
246 MHz and a FWHM of 10 MHz. Expected noise shown in light gray, generated noise
shown in blue.



Chapter 3

Results and Discussion

3.1 Hamiltonian Characterization Measurements

Before moving on to measurements of the system’s dynamics, it is important that we first
calibrate the parameters of the Hamiltonian, including qubit frequencies and the effect
of the flux noise. This is needed not only for simulations to check the validity of our
results, but to be able to place the system in simulation configuration and ensure that the
noise is functioning as intended.

3.1.1 Mutual Inductance and Maximum Frequency

In order to calculate the frequencies of the various qubits at different flux line or coil
voltages (corresponding to different currents and hence different magnetic fluxes), I
performed measurements to extract the maximum frequencies of the qubits and their
mutual inductances with the flux lines. The usual measurement for these parameters is
the coil sweep, where the electric field response of the system to a continuous microwave
probe tone is measured as both the frequency of the tone and the voltage applied to the
coil (or flux line) is varied. When the frequency of the probe tone corresponds to the
frequency of an eigenstate of the system, the amplitude of the signal will decrease for
reflected signals or increase for transmitted signals. Transmitted signals, where the probe
tone is applied to one port but observed from another, will only appear when there is
sufficient hybridization between qubits visible at each of the ports involved.

A coil sweep that I performed on our sample is presented in Figure 3.1. The general
trend in the plots is that the frequency of the qubits changes in a roughly parabolic shape,
which is expected since the transition frequency of a SQUID should vary proportionally
to |cos (Φ/Φ0)|—which can be approximated as a parabola for small amplitudes—as the
coil voltage and hence magnetic flux (Φ) is swept. Additionally, the changes in qubit
frequency are periodic with respect to coil voltage, again, as expected for SQUIDS due to
the cosine dependence on the external magnetic flux. Qubit 3 can always be seen in the
resonator, since it is directly coupled there, but qubits 1 and 2 can only be seen when they
partially hybridize with qubit 3.

24
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Figure 3.1: Coil sweep of the sample with the probe tone applied to the resonator and
no voltage applied to the flux lines. Le�: transmitted voltage measured in transmission
line. Right: reflected voltage measured in the resonator. In both figures, the background
signal has been subtracted to produce a voltage difference plot. Translucent orange lines
are a manual fit using a simple model presented below.

As can be seen from the orange lines in the figures, we can recreate the behavior of
the system by fitting to a simple model. In this case, I have plotted the eigenvalues of a
simple matrix:

H(Uc,U1,U2) =
©­­­«
ω1 J12 J13 g1r
J12 ω2 J23 g2r
J13 J23 ω3 g3r
g1r g2r g3r ωr

ª®®®¬ (3.1)

as a function of coil voltage, Uc, flux line 1 voltage, U1, and flux line 2 voltage, U2. Note
that in this equation, each variable (except forωr) will be dependent on Uc, U1, and U2,
but these were omitted for brevity. More explicitly, taking the voltage dependence of the
parameters to be:

ωj(Uc,U1,U2) = ωj,0

√��cos
[
π

(
−aj + bjUc + cjU1 + djU2

) ] �� (3.2)

and:

Xjα(Uc,U1,U2) = Xjα,0

√
ωj(Uc,U1,U2)ωα(Uc,U1,U2)

√
ωj,0ωα,0

(3.3)

where X ∈ {J, g}, j ∈ {1, 2, 3}, α ∈ {1, 2, 3, r},ωα,0 represents the maximum frequency
of a qubit or resonator, and Xjα,0 is the no-field coupling between qubit j and circuit
element α. The frequency-dependent coupling term comes from the capacitive coupling
between the qubits (see subsection A.4.1). Since the resonator does not include any
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SQUIDS, the resonator frequency does not depend on the applied magnetic field. aj , bj ,
c j , and dj are parameters that specify each qubit’s effective flux offset and mutual induc-
tance with the different voltage sources. We can relate voltage to flux via the following
matrix: ©­«

ϕ1
ϕ2
ϕ3

ª®¬ = M ©­«
U1
U2
U3

ª®¬ + ©­«
O1
O2
O3

ª®¬
where

M ≡ ©­«
b1 c1 d1
b2 c2 d2
b3 c3 d3

ª®¬ ,
O j = aj , and the b, c, and d coefficients have units of magnetic flux quanta per volt.

A fit of these eigenvalues to a coil sweep can only determine the b and a parameters;
to measure the remaining two types, we must perform voltage sweeps of the flux lines
while keeping the coil at a fixed voltage. By doing this in a systematic way, it is possible to
calibrate the entire mutual inductance matrix. From our measurements, we recovered:

M = ©­«
−0.91 −0.04 0.02
−1.05 0.01 −0.28
0.57 −0.01 −0.021

ª®¬ .
It is clear that the coil (first column) strongly affects all qubits, that flux line 2 strongly
affects qubit 2, but that flux line 1 does not affect the qubits. The reason for this is not
completely known, but we suspect a collapsed airbridge over FL1. We had an issue in
the past with a collapsed airbridge on FL2 that we were able to correct, and applying
currents to FL1 warms up the fridge significantly more than applying the same current to
FL2 does, indicating some fault as the flux lines should be superconducting and largely
dissipationless.

The maximum frequencies and coupling rates of the different circuit elements are
presented below in Table 3.1. Some observers may note that the maximum frequencies are
reduced compared to previous measurements with the same sample [55], having shifted
downwards by between 200 MHz and 450 MHz. We believe this drop in maximum
frequency to be due to aging of the junction that reduces EJ [73, 74].

Knowing the response of the system to the magnetic fields that we could apply, we
could now place the system in standard configuration. The dysfunctional flux line 1
restricted arbitrary configuration of the system, but we were able to reach standard con-
figuration of the system through flexibility in which flux period we used. Unfortunately,
this had to be a functional standard configuration rather than the ideal configuration, i.e.
we were able to position the qubits such that they recreated the correct bright and dark
states, but with slightly reduced coupling, since it was not possible to get qubit 2 to reach
the target frequency of 6.313 GHz. We did not move to frequencies below the resonator
(which has symmetric dynamics) since this places the qubits far away from their flux sweet
spots, making them highly sensitive to flux noise and leading to greater frequency drifts
over time.
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Table 3.1: System frequency and coupling parameters

Parameter Value (Hz)

ω1,0/2π 6.41 × 109

ω2,0/2π 6.29× 109

ω3,0/2π 6.73 × 109

ωr/2π 6.00× 109

J12,0/2π 83.6 × 106

J13,0/2π 8.5 × 106

J23,0/2π 36.7 × 106

g1r,0/2π 1 × 106

g2r,0/2π 0.2 × 106

g3r,0/2π 9 × 106

3.1.2 Rabi Rate

In order to deterministically excite the system into different states, we must characterize the
strength with which we drive our system through the different ports, known as the Rabi
rate. The method that we have used to characterize this is time-resolved: we apply pulses
of different duration or amplitude and observe the response of the state. Steady-state
measurements such as a Mollow triplet measurement can also calibrate Rabi rates, but they
do not provide calibrated qubit rotation pulses which are needed for later measurements.
Since we typically excite the bright state, I will focus on Rabi measurements of the bright
state through the transmission line. An example measurement is plotted in Figure 3.2.
Due to our connectivity, we measure electric field (∝ a + a†), so our signal is maximized
when the qubit is in the superposition state (the equatorial plane of the Bloch sphere).
Thus the first maximum of the blue and yellow traces correspond to rotations of π2 . As
the signal amplitude is increased, the rotation angle increases, until (for the blue trace),
the rotation angle reaches π, meaning that the qubit has been transfered to the excited
state. The excited state has no average electric field, so our measured signal is minimized
for a π pulse. Continuing to increase the amplitude eventually leads to a 3π

2 pulse. At the
same electric field amplitude, shorter pulse lengths reduce the rotation angle by reducing
the interaction time, explaining the slower oscillation of the 4 ns trace compared to the
10 ns one.

In order to minimize the time needed to prepare the system in a given state, we
used short square pulses, which have a broad spectral spread (for more information, see
section C.1). Thus, especially for rotation angles greater than π, we lose signal due to
transitions to higher-lying states ( f , h, etc.), reducing the contrast of the Rabi trace.

Knowing the pulse length to achieve different qubit rotations leads directly to the
Rabi driving rates of these pulses. The Rabi rate, ΩR, corresponds to the following
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Figure 3.2: Rabi measurement of the bright state through the transmission line. The
normalized integrated bright state spectral component (a measure of the electric field
amplitude at the frequency corresponding to the bright state) is plotted versus pulse
amplitude for two pulse lengths, 4 ns and 10 ns. Filled circles are data, solid lines are a fit
to an exponentially damped absolute-value sinusoid.

formula:
ΩR =

θ

2π
1
t

where θ is the rotation angle of the pulse and t is the length of the pulse in seconds.
Thus, for the 10 ns pulse of Figure 3.2 rotating the state by π/2, we get a Rabi rate of
25 MHz. The experiments below predominantly used pulse lengths of 12 ns, correspond-
ing toΩR/2π = 42 MHz for π pulses and 21 MHz for π/2 pulses. For more discussion
on the Rabi measurement procedure, including discussion on the data processing, see
section C.4.

3.2 Environment Characterization Measurements

Now that we have characterized the parameters of the three-qubit system, it is time to
characterize the environment around that system. This includes the radiative Purcell
decay rate of qubit 3 coupled to a resonator that together simulate the trapping rate of
the sites near the reaction center, the intrinsic dephasing rate of the qubits, corresponding
roughly to homogeneous broadening of the chromophore lineshapes, and the dephasing
rate produced by the flux noise which acts as the phononic bath surrounding the qubit
“chromophores” (inhomogeneous broadening).

3.2.1 Purcell Decay Rate

The Purcell effect, as mentioned previously, modifies the emission rate of a system depend-
ing on its electromagnetic environment. For the particular case of a qubit capacitively
connected to an output line through a resonator, we can follow the work of Sete et al.
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and write the Purcell rate as

γP =
κr

2
−

√
2

2

√
−B +

√
B2 + (κr∆3r)

2 (3.4)

where

B ≡ ∆2
3r + 4g3r −

κ2
r

4
,

κr is the resonator loss rate into the transmission line, g3r is the resonator-qubit 3 coupling,
and ∆3r is the resonator-qubit 3 detuning [75].

To measure the Purcell rate, we place the system in a configuration where qubit 3
is isolated from the other qubits by at least 2 GHz and perform spectroscopic sweeps at
different coil voltages. As the magnetic field tunes the frequency of the qubit relative to
the fixed frequency of the resonator, the linewidth changes due to the differing Purcell
rate. We numerically fit a Lorentzian lineshape to the data to extract the linewidth
and center frequency of qubit 3 at these different coil voltages and plot the linewidth
(corresponding to the Purcell rate plus the intrinsic dephasing rate of qubit 3) versus the
detuning, as shown in Figure 3.3. Since our simulation configuration involves having the
qubit state transition frequencies above the resonator frequency, I measured the Purcell
rate for positive detunings (qubit 3 above resonator). The gray dashed lines in Figure 3.3
correspond to Equation 3.4 with a resonator frequency,ωr/2π, of 6.00 GHz, a resonator
loss rate, κ/2π, of 110 MHz, and a resonator-qubit coupling, g3r/2π, of 60 MHz. Using
these values, we find that in the standard configuration, with qubit 3 at a frequency of
6.193 GHz, we have a Purcell decay rate of γP/2π = 8 MHz, in line with the previously
published results [49] and the linewidths of the dark states in the resonator.
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Figure 3.3: Purcell rate of qubit 3, γP/2π, as a function of resonator-qubit 3 detuning,
∆3r/2π. Data with standard error plotted as blue circles with translucent error regions,
Equation 3.4 with ωr/2π = 6.00 GHz, κr/2π = 110 MHz, and g3r/2π = 60 MHz
plotted as the gray dashed line.

3.2.2 Intrinsic Dephasing Rate

The intrinsic dephasing rate of a qubit, which I will call γI, corresponds to the linewidth
of an atomic transition in quantum optics: it is the measured linewidth of the qubit in
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the absence of all added dephasing and thus includes only dephasing due to defects in the
sample with fluctuating electric fields, any high frequency magnetic field fluctuations that
are not removed by the shielding, etc., all outside of experimental control. To measure the
intrinsic dephasing rate, we perform spectroscopy on an isolated qubit as we reduce the
probe-tone power. Since the probe field dephases the qubit, the linewidth will decrease as
the drive power decreases. At some point, the dephasing rate caused by the drive will fall
below the intrinsic dephasing, and the measured linewidth will saturate. I have plotted
this for qubit 3 in Figure 3.4, which saturates at γI,3/2π = 1.8 MHz.
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Figure 3.4: Dephasing rate of qubit 3, γφ,3/2π, as a function of probe tone RMS voltage,
URMS. Data with standard error plotted as blue circles with translucent error regions.
We see a linear dependence on the driving voltage until the dephasing rate saturates at
1.8 MHz, the intrinsic dephasing rate, γI.

3.2.3 T1, T2, and Dephasing Rate

For any quantum system, there several time-domain parameters that are describe how
long the system retains quantum information, for different measures of “quantum infor-
mation”. The most important are the ener� relaxation time, T1, the time that the qubit
takes to decay from the excited state to the ground state, and the phase coherence time, T2,
the time that the qubit remains in a specific superposition state. On the density matrix of
a single qubit in the usual computational basis, these show up as exponential decays of
the excited state diagonal component (population) and of the off-diagonal components
(coherences) respectively. A simple formula connects the two times:

1
T2
=

1
2T1
+

1
Tφ

(3.5)

which is derived in many sources, including [54]. The new term in the above equation,
1/Tφ is known as the pure dephasing rate and the result of any processes that induce
decoherence without causing the qubit to decay, i.e. dephasing. In our experiments, the
pure dephasing rate is the intrinsic dephasing rate plus any dephasing due to applied
noise or drive tones, 1/Tφ = γφ = γI +

∑
γ.
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Relaxation Time

The general procedure to measure T1 is to excite the qubit and then record the probability
to find the qubit in the excited state as a function of time; an exponential fit to this
decay gives the T1 time. In our case, because we capacitively couple our qubits to output
lines rather than using the dispersive shift of a cavity to detect the state, our natural
measurement basis is the electric field of the qubit (similar to nuclear magnetic resonance
[NMR] where they are sensitive to the transverse magnetic field component of the spins)
rather than populations, and so we use a slightly different technique borrowed from
NMR known as inversion recovery in which T1 is extracted from a series of electric field
time traces rather than from a population time trace. For more information on how I
measured T1 times, including a comparison with the “standard” cQED technique, see
section C.5.

For qubits 1 and 2 in isolated configurations without any applied flux noise, we mea-
sured T1 times of (24 ± 1) ns. Once brought into simulation configuration, we measured
the T1 times in Figure 3.5. The bright state starts off with T1 times around 17.5 ns with
no applied flux noise, but as soon as noise is added, there is a decrease to 16 ns to 17 ns
for both white noise and Lorentzian noise. At high flux noise powers, the T1 value of
the white noise collapses as the dephasing rate interferes with qubit excitation. For the
Lorentzian noise this is not an issue.
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Figure 3.5: T1 time of the bright state versus flux noise power for white noise (le�) and
Lorentzian noise (right). Data plotted as solid blue circles; standard error depicted in
translucent regions.

Coherence Time

T2 times are generally measured via a “Ramsey” pulse sequence, in which the probability
of finding the qubit in the excited state is recorded versus delay between two resonant
π/2 pulses (for more details on the measurement procedure, see section C.6). In our case,
we recover T2 by the equivalent of the cQED method for measuring T1: we apply a π/2
pulse and record the electric field as a function of time. The rate of the exponential decay
corresponds to 1/T2.
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When measuring qubits 1 and 2 in isolation, we recover T2 times of (47 ± 1) ns and
(49 ± 1) ns respectively, which agrees well with Equation 3.5 and the isolated T1 times,
assuming a small intrinsic dephasing rate, indicating that we are T1 limited and cannot
extend the phase-coherence time through refocusing, dynamical decoupling, or other
techniques. Measurements of the bright state versus flux noise power are presented in
Figure 3.6. T2 times start at values twice the T1 times, at 32 ns and decay with increasing
noise power, as expected from Equation 3.5 with increasing pure dephasing. For the
white noise, this decay is rapid and saturates at values of around 18 ns for noise powers
greater than 5 pWb2. This is partially due to the configuration of the qubits where qubit
2 is only 25 MHz from its flux “sweet spot”, limiting the possible frequency shifts (and
hence dephasing) due to the flux noise. Lorentzian noise, on the other hand, sees an
almost linear decrease from 28 ns to 18 ns. Both noise types show an initial drop from no
applied noise to the first point at extremely low applied noise powers, likely due to some
constant-intensity 1/ f noise introduced by the AWG electronics which adds additional
dephasing to the qubit.
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Figure 3.6: T2 time of the bright state versus flux noise power for white noise (le�) and
Lorentzian noise (right). Data plotted as solid blue circles; standard error depicted in
translucent regions.

Dephasing Rate

Dephasing rates are calculated rather than measured, inferred from T1 and T2 measure-
ments using Equation 3.5 and assuming negligible intrinsic dephasing rates. Although
qubit 3 had an intrinsic dephasing rate of 1.8 MHz, as I discussed above, the isolated
T1 and T2 times for qubits 1 and 2 correspond to the predicted values with very small
intrinsic dephasing rates, justifying the assumption when calculating dephasing rates.

Bright state dephasing rates for white and Lorentzian noise are presented in Figure 3.7.
Both noise types reach dephasing rates of around 30 MHz, without premature saturation.
Since we see the drop in T2 as the AWG is enabled, this becomes a jump in dephasing rate,
observed in the Lorentzian noise. These dephasing rates are below the values reached
in [49], however, as I previously mentioned, our qubits have aged, placing the standard
qubit configuration closer to the flux sweet spot of some of the qubits, where they have
reduced sensitivity to external flux noise. As with the T2 measurements, the Lorentzian
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noise shows a quasi-linear scaling with noise power, as expected, while the white noise
shows super-linear behavior followed by a gradual increase to the maximum dephasing.
This shows the difference in dephasing potential of the two different types of noise: white
noise strongly dephases the bright state, eventually hampering our ability to even excite
the state while Lorentzian noise provides a more focused dephasing only where it is
beneficial to the energy transfer without hampering excitation of the bright state (note
the lack of collapse in the T1 measurement).
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Figure 3.7: Dephasing rate of the bright state versus flux noise power for white noise (le�)
and Lorentzian noise (right). Data plotted as solid blue circles; standard error depicted
in translucent regions.

Comparison with Linewidths

The above measurements were all performed using time-domain techniques. However,
just as with atomic optics, we should be able to relate the time dynamics to the frequency
domain via a Fourier transform, in this case, mapping T1 times onto linewidths. This
provides an additional check that our understanding and characterization of the system is
correct. Naı̈vely, we might expect the FWHM linewidth, ∆ω/2π to be equal to 1/2πT1,
since the lifetime of the excited state must certainly bound the linewidth of the transition.
However, in this case we have added additional dephasing and so the correct formula is

∆ω/2π =
2Γ2

2π
=

1
πT2

(which can be justified by taking the no pure dephasing limit and rearranging Equa-
tion 3.5).

When using this formula, we find good agreement with our measured linewidths.
Taking isolated qubit 1 as an example, we measured a T2 of (47 ± 1) ns and a FWHM
linewidth of (6.9 ± 0.4)MHz. Plugging the T2 into the above equation, we get∆ω/2π =
(6.8 ± 0.1)MHz. Similar results hold for the other qubits, validating our unorthodox
time-resolved measurement methodology.
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3.3 Interacting Many-Body System Characterization

One of the difficulties that arises when looking at systems of many interacting units is
determining the source of different hybridized peaks measured in spectroscopy. In NMR,
this problem is particularly important because knowledge about the states responsible for
hybridized peaks leads to knowledge about the structure of the molecule. For strongly
interacting quantum systems, similar problems can arise, especially when there is large
disorder in qubit parameters due to fabrication or qubits are multiplexed on a single
input/output line.

3.3.1 Coherent Spectroscopy

The solution to the assignment problem, borrowed from NMR, is known as coherent
spectroscopy (COSY) [76]. COSY is a multi-pulse sequence, depicted below in Figure 3.8.
In this sequence, there are two broadband π/2 pulses separated by a time delay, τ. After
these pulses, the signal is recorded as a function of time, t. Recording the signal for many
different values of τ and then Fourier transforming across both the t and τ dimensions
produces the two-dimensional plot shown in Figure 3.9.

time

Rα
π/2 Rx

π/2
τ t

Figure 3.8: COSY pulse sequence. The phase of first pulse can be static or cycled to
improve SNR (known as phase cycling, see section D.2)

In these plots, the peaks along the main diagonal corresponds to the signal measured
during spectroscopy. Off-diagonal peaks correspond to states that are coupled. The
locations of the peaks can be calculated by propagating the density matrix of the system
through the above pulse sequence; for more information, see section D.1. Pulses are
applied and measured relative to a fixed frequency, meaning that coherences and popula-
tions will appear to oscillate in the reference frame due to their detuning. For a peak to be
on the diagonal, this means that the oscillation frequency during the τ and t times are the
same, indicating a population that remained in this state. An off-diagonal peak means
that the oscillation frequency changed between the two times, indicating population
transfer or coherence between different states.

For our measurement, we excited the system with short, broadband pulses in the
transmission line while applying flux noise to qubit 2 and recorded the electric field in the
resonator. Thus, in Figure 3.9, we see the bright state and both dark states along the main
diagonal (confirmed via the absolute frequencies of the peaks). At the same time, we see
peaks in the upper-left quadrant linking the bright state to the two dark states, which we
expect, since the flux noise couples the bright and dark states. Without flux noise, these
cross-peaks are significantly reduced. Interestingly, we also see a faint cross-peak from
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Figure 3.9: COSY measurement of the simulation configuration. Absolute value of two-
dimensional Fourier transform components plotted versus frequency, ωt/2π and sepa-
ration frequency, ωτ/2π. Qubits were excited using 3 ns square pulses from the trans-
mission line at a frequency of 6.300 GHz and the signal was measured relative to the
same frequency from the resonator. Bright state, |b〉, and dark states, |d1〉 and |d2〉, vis-
ible along the main diagonal. Cross-peaks indicating coupling from the bright state to
the dark states visible in the upper-left quadrant. There is a broad feature at (70 MHz,
120 MHz) corresponding to coupling from the bright state to higher-lying states.
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the bright state to a higher-lying state (which matches with the anharmonicity of our
junctions). Notably absent are cross-peaks between the two dark states and cross-peaks
from the bright state to the dark states in the lower-right quadrant. Instead, we see some
“anti-peaks” or slightly negative features relative to the background. We are not certain of
the reason for the absence of these features, but suspect that they are a result of our signal
processing. For more information on the signal processing, see section D.3.

An important part of producing clean COSY plots was something called phase cy-
cling. When only considering a single pulse sequence, say Rx

π/2 followed by Rx
π/2, strong

zero-frequency components arise which tend to mask the desired signal. However, by
measuring x and y rotations by π/2 and −π/2 and then combining these in the appro-
priate way, the zero-frequency component disappears leaving only the COSY signals. For
further discussion, see section D.2.

Although in this case the coupling of the system was clear from spectroscopic mea-
surements, this technique still allows us to verify that the coupling we expect is indeed
present. Furthermore, this serves as a “proof-of-principle” for measuring complicated
pulse sequences on our sample, paving the way for measurements using contemporary
pulse sequences from the biophysics community. COSY itself is applicable whenever
many qubits are simultaneously excited via direct capacitive coupling and could be useful
in future analog quantum simulations or in larger systems with significant fabrication
disorder.

These measurements also show the limitations of our sample. We would like to be
able to perform the same measurements used by the biophysics community (such as two-
dimensional electronic spectroscopy, a four-wave mixing experiment using three pulses
applied to the sample, discussed further in section C.7). However, during experiments
needing only two pulses, we already had difficulties with the system decaying as the pulses
are being applied. In order to recover the figure above, we had to use the fastest pulses
our AWG could generate (3 ns) and ignore the exact rotation angle. Adding an additional
pulse with an additional time delay promises to make this more difficult.

In our case, the short T1 times are the direct result of the strong, broadband coupling
from the qubits to the input and output ports. Short decay times produce a “brighter”
system, reducing averaging times for steady-state and time-resolved experiments. Unfortu-
nately, in this case, we run into limitations of our electronics and our qubit anharmonicity
and so future experiments may have to use a new sample that trades averaging time for
qubit lifetimes.

3.4 Time-Resolved Photosynthetic Excitation Transport Measure-
ments

With the system fully characterized, we can now move on to time-resolved measurements
of photosynthetic energy transport in the standard simulation configuration. Here the
basic idea of the measurement is to deterministically excite the bright state via a π pulse
and then observe the signal in the resonator as a function of flux noise power and type.
Due to the strong coupling of the dark states |d1〉 and |d2〉 (static coupling), we expect to
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see oscillations of the power emitted into the resonator resulting from oscillations of the
transferred population between the two states.

Since the transmon qubits function as two-level systems, the maximum number
of photons that can be transferred from the bright state to the dark states and then
subsequently emitted is one. This makes amplification, to improve the signal strength, and
filtering, to reduce the number of noise photons that are collected, extremely important.
We perform power measurements by signal processing of the electric field amplitude1

since this is our natural measurement basis. For these reasons, we use a TWPA in the
resonator line and also use a narrow (60 MHz) boxcar filter in the data processing to
maximize our signal-to-noise ratio for these measurements. More discussion about the
TWPA is present in section C.3 and our digital filtering is dicussed in section C.1.

In the absence of flux noise, no signal was measured in the resonator, as is expected
due to the energy difference of the bright state and the dark state. Adding flux noise
dephases qubit 2, bridging this energy gap and resulting in increased power transmitted
to the resonator, plotted in Figure 3.10. For white noise, the transmitted power peaks
and then declines and never reaches a clear peak for the Lorentzian noise. As predicted by
ENAQT, the white noise initially boosts transport and then hinders it due to excessive
dephasing at high powers (the quantum Zeno e�ect). Lorentzian noise results in higher
emitted power than white noise due to its selective dephasing at relevant frequencies, also
in line with our previous results [49]. Although both noise types achieve similar total de-
phasing rates (cf. Figure 3.7), shaped noise that is optimized for the site energy differences
results in dramatically greater transported power, demonstrating the efficiency boost that
photosynthetic systems can extract from a carefully shaped phonon environment.
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Figure 3.10: Approximate dark state emitted photons measured in the resonator as a
function of flux noise type and power. Le�: white noise which achieves maximum trans-
mitted photon number at an intermediate flux noise power. Right: Lorentzian noise
which achieves higher transmitted photon number than white noise and does not show
a maximum within our attainable flux noise range. Note that the vertical axes of the
figures are set to the same scale.

However, the interesting results appear when looking at the power emitted from the
resonator as a function of time. Since timing is important, we first calibrated the delay

1(I + iQ)∗(I + iQ) in terms of the measured complex electric field components I and Q.
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difference between the transmission line and the resonator by applying a pulse to the
transmission line and observing the time delay until it was detected in the resonator2.
Additionally, we measured the pulse duration via direct measurements (including up-
and down-conversion but not the fridge). Then, during transport measurements, the
signal from the transmission line and resonator were collected simultaneously, with the
transmission line serving as a record of when the pulse reached the sample. Using these
three pieces of information: the time the pulse started in the transmission line, the time
delay between the transmission line and the resonator, and the duration of the pulse, we
are able to plot the resonator power in a meaningful time-resolved manner, correcting
for most of the timing differences, or jitter, that can occur.

The results of these measurements are presented below in Figure 3.11. At high
flux noise intensities, both white and Lorentzian noise produce similar smooth, peaked
transfer pulses. However, at very low white noise power, a few periods of oscillation
are superimposed on the pulsed dynamics. For Lorentzian noise, the oscillations at low
intensities are even more pronounced, almost completely replacing the pulse. In both
figures, the gray lines are fits to a function of the following form:

f (t) =


0 t < t0 − trise

sin2
(
π
2
t−(t0−trise)

trise

)
t0 − trise ≤ t < t0

A exp [−(t − t0)/T1]

+B sin [2π(t − t0) f − 2πφ] exp
[
−(t − t0)/Tdecay

] t ≥ t0

(3.6)
where t0 is the time of maximum power for each trace, trise is the time for the pulse to ramp
from zero to the maximum, T1 is the relaxation time, f is frequency, φ is a phase shift, and
Tdecay is the decay time of the oscillations. This phenomenologically models a constant
rate of population transfer under the influence of noise (leading to sin2 oscillations, as
with a Rabi drive) followed by an exponential decay with superimposed exponentially
decaying sinusoid.

For the low power Lorentzian flux noise, we extract a frequency of (55.5 ± 0.8)MHz,
matching the |d1〉-|d2〉 frequency difference of 54 MHz well within the bounds of ex-
perimental uncertainty. A similar fit also holds for Lorentzian noise with a power of
0.022 pWb2. Oscillations with a similar period are visible to the eye in the higher-power
Lorentzian noise traces, but these could not be robustly extracted during fitting. T1 values
in the fitting results correspond to the previously measured T1 times within the fitting
error, at approximately 15 ns to 20 ns. The decay times, Tdecay, would be expected to be
on the order of T2, but are observed to be significantly less, remaining below 20 ns, a
result of our T1-limited sample.

This fitting model also allows us to extract other features from the rich dataset that
time-resolution provides. As one example, we can look at the timing of the population
transfer from bright state to the resonator via the dark states, called trise in the above
model. As is perhaps visible by eye in Figure 3.11, the power maximum shifts towards

2Note that although there is no transfer from the bright state to the dark state in the absence of flux
noise, there is a small amount of direct coupling from the transmission line to the resonator.
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Figure 3.11: Time-resolved resonator power measurements. Le�: white flux noise.
Right: Lorentzian flux noise. Gray lines are nonlinear fits to Equation 3.6. Oscillation
frequency of low-power Lorentzian noise traces matches |d1〉-|d2〉 frequency difference
of 54 MHz.

later times with increasing flux noise power, which is made explicit when I plot trise versus
flux noise power below in Figure 3.12. Here, both Lorentzian and white noise show
similar general behavior: both feature a sharp jump in the rise time at low noise powers
followed by a gradual increase with increasing power. Plotting the rise times instead on a
linear-logarithmic plot, we see that the exponentially increasing flux power results in only
(roughly) linearly increasing rise time. The kink in the Lorentzian noise rise time at noise
powers around 0.1 pWb2 is likely the result of transitioning to the noise amplifier. These
rise times are not on the scale of the Purcell decay (8 MHz or 125 ns), but rather on the
timescale of the resonator-qubit 3 state coupling (approximately 60 MHz or 16 ns). The
increasing rise time at higher flux noise powers indicates that the coupling between the
dark states and the resonator is reduced by dephasing, another area where the two noise
types are distinguishable. White noise produces rise times which are always higher than
the Lorentzian noise, indicating that while the white noise enables energy transport from
the bright state to the dark state, it has significant side effects such as reduced coupling,
which make it less efficient overall for photosynthetic energy transport. Again, specially
tuned phononic modes provide significant advantages to photosynthetic organisms.

Lower rise times may also be important for the durability of the PPCs. One side
product that competes with the reaction center as a sink for the exciton is singlet oxygen,
a highly reactive species that can damage the organism [9]. Thus, it may be beneficial
for the organism to tune for slightly lower transfered power as long as it occurs faster,
leading to greater operational efficiency, since the organism either does not have to use
repair machinery as often or perhaps lives longer.
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Even in these measurements with classical noise that cannot replicate the full dynamics
of a long-lived phonon mode, the advantages of shaped phonon modes for photosynthetic
energy transport are clear. Lorentzian noise at an appropriate frequency results in more
transfered photons and a faster start of photon transfer, than white noise at similar
dephasing rates.
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Figure 3.12: Population rise time versus flux noise power and type. Le�: white flux noise.
Right: Lorentzian flux noise.

3.4.1 Numerical Simulations

As a sanity check for the oscillating time traces that I showed above, I also performed nu-
merical simulations of the white noise case. I used a time-dependent Hamiltonian to add
the symmetric drive to the system for the first 12 ns and then allowed it to evolve, as occurs
in the real measurements. Otherwise, the Hamiltonian was identical to Equation 2.3. Sim-
ulation Hamiltonian parameters were chosen to be comparable to the system parameters
and are given in Table E.1. Loss into the transmission line and resonator were modeled
using the Lindblad formalism (section B.1) with standard collapse operators. The flux
noise was also treated in the Lindblad formalism, but using a σ̂z collapse operator that
shifts the energy levels rather than adding or removing quanta, although the dephasing
rate had to be approximately twice as large as experimentally measured to observer similar
behavior.

The results are plotted below in Figure 3.13. The numerical simulations broadly show
the same behavior as the measurements on the sample, with small-amplitude oscillations
at low flux noise powers (low dephasing rates) which then disappear at higher powers.
While the simulations show a gradual reduction in the oscillation amplitude with increas-
ing dephasing rate, the measurements show a faster decay in amplitude, largely due to
the nonlinear change in dephasing rate with increasing noise power (Figure 3.7). The
oscillations last longer for the numerical simulations, indicating that either some of the
other dephasing channels do not match the rates of the real sample, or some dephasing
channels are missing.

Additionally, the simulations recreate the result where the power increases only after
the pulse finishes, although they do not show a change in the rise time despite the presence
of oscillations. However, the results do help to rule out a conflicting source of the rise
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Figure 3.13: Comparison of white noise time-resolved resonator power measurements
to numerical simulations. Le�: measurement. Right: numerical simulation.

time variation. If the peak location was due to subtraction of oscillations with different
amplitudes from same transfer peak, this could explain why low flux noise powers had
faster rise times, since they also have large oscillations and would shift the power maximum
earlier in time. This is not observed in the simulations, despite observing similar changes
in the oscillation amplitude.

Unfortunately, numerical simulations of the Lorentizan noise are significantly more
computationally difficult, so I cannot present comparisons here, but our collaborators
are already looking into our results above to see if they can recreate them.



Chapter 4

Conclusions

Analog quantum simulations, especially of NAT or biological situations like photosyn-
thetic energy transport, are still in their infancy. We are not yet capable of fabricating
systems to follow Mostame’s suggestion to simulate the full dynamics of FMO nor would
we be ready to extract useful information from such a system if we were to suddenly
have this capability. Rather, we are at the stage where we have to be content with smaller
systems, learning the techniques to measure larger systems and building up a framework
of results in order to clearly define which problems of these larger complexes to tackle.

Here, in this work, I have taken one small step along this journey. I have proven
the applicability of our superconducting analog quantum simulator to studying the
dynamics of noise assisted transport and photosynthetic energy transport. By exploiting
the similarities of our sample to the physics of another well-developed field, NMR, we
have found measurement techniques to characterize standard circuit QED parameters as
well as novel techniques capable of determining couplings in spectrally congested systems
as the full FMO complex certainly is. In analog simulations of photosynthetic energy
transport, we have again demonstrated the principle result of ENAQT, with intermediate
dephasing rates maximizing energy transport and biologically motivated shaped noise
further enhancing transfer. In addition, we found clear evidence of the static coherence
contained in our system and intriguing new results, only visible in the time domain,
hinting at the effects of the static coherence.

We are currently measuring the second-order coherence, g(2), of the radiation emitted
by qubit 3 in order to demonstrate that we have quantum transport in a fully quantum
system. This is another crucial result before moving to larger systems or more accurate
simulations since a quantum system can always behave as a classical one, but a classical sys-
tem does not have access to quantum-mechanical effects. Furthermore, we plan to extend
our two-pulse COSY measurements to three-pulse two-dimensional spectroscopy such
that we can extract the same signals as observed in the biophysics community, removing
communication barriers by presenting data in a familiar manner.

Now that we have a set of new measurement techniques and have extracted nearly
all the information that we can from our sample, it is time to start developing our next
sample. Longitudinal coupling to a truly quantum, low-frequency phononic mode would
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dramatically improve our simulation fidelity and allow us to study new physics such as
unidirectional energy transport due to the asymmetry between spontaneous emission
and stimulated absorption from low-occupation resonators. Such a sample could also
test whether low-frequency vibrational modes are the source of the long-lived quantum
coherences in FMO or even be used to investigate novel analog quantum simulations,
such as electron-phonon coupling during exciton transport in quantum dot films.

Thinking more generally about the future of analog quantum simulation with su-
perconducting qubits, one persistent difficulty is extracting information with sufficient
timing resolution. Mostame’s original proposal predicts that the dynamics of photo-
synthetic energy transport will play out over 25 ns [43], and we observe dynamics over
at most 100 ns. Compared to two-dimensional experiments using ultrafast lasers in the
biophysics community, where 15 fs pulses are used to probe dynamics that last 5 ps with
nearly arbitrary step sizes produced by physical delay stages, we are at a significant disad-
vantage. Readily available microwave equipment often has sample rates around 1 GS s−1

and with pulses at the limit of what our AWGs can produce, we cannot use shaping to
improve timing resolution. While faster equipment is becoming available, this brings
a significant disadvantage: greater noise. The only way to resolve faster dynamics is to
increase the bandwidth of the entire signal processing chain which increases the noise
photons included in the measurement, drastically increasing averaging times. Thus, with
current techniques, we could extend our investigations to measuring the effect of NAT
on efficiency in a sample with more sites and greater coupling, but might not be able to
extract significant information about the dynamics that would be useful in solving the
open questions in photosynthetic energy transport.

However, we have a larger number of advantages over biological measurements when
it comes to answering the open questions from PET. While we do not have the automatic
authenticity of the real samples, there are no limitations stopping us from implementing
the same Hamiltonian. Once we have done this, we have a number of advantages. Our
entire system is artificial, meaning that we can add or remove components to look for
clear cause-and-effect relationships. We also tend to have tunable systems, meaning that
we can go beyond investigation of FMO and other biological complexes with realistic
parameters, but can investigate whether these parameter regimes are optimal or look at
artificial systems to extract guidelines for organic photovoltaics.

Although we are just beginning to scratch the surface of analog quantum simulation,
we have come a remarkable way from Feynman’s prescription of [38]:

Let the computer be build of quantum mechanical elements which obey
quantum mechanical laws.

to practical simulations of real physics and biophysics.
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Appendix A

Derivation of System Hamiltonian

A.1 Harmonic Oscillator

Before addressing electrical circuits, let me begin with the simple case of an ideal case of a
mass oscillating on a spring, an example of a simple harmonic oscillator (see Figure A.1).
In terms of the mass, m, and spring constant, k , the Hamiltonian can be written as:

H =
1

2m
p2 +

k
2

x2 (A.1)

where x (position) and p (momentum) are thedynamical variables. In the classical regime,
these variables obey the Poisson bracket: {x, p} = 1. However, if we shrink the mass-on-
spring system down and cool it down to extremely low temperatures [77], we find that
we have to consider the system in a quantum mechanical sense. Thus, we replace x and
p by their operator forms, x̂ and p̂, which obey the commutation relation [x̂, p̂] = i~.
Lettingω =

√
k/m, we arrive at

Ĥ =
1

2m
p̂2 +

mω
2

x̂2

We can solve this Hamiltonian by working through complicated mathematical derivations,
finding that the eigenstates are Hermite polynomials, or, we can take the so-called “ladder”
operator approach. Define two new operators as follows:

â ≡
√

mω
2~

(
x̂ +

i
mω

p̂
)

â† ≡
√

mω
2~

(
x̂ −

i
mω

p̂
)

With these operators, we find that the eigenstates of the harmonic oscillator are
“number” states, |n〉, characterized by the number of quanta of energy, n, stored in the
oscillator. In this context, â and â† correspond to annihilation and creation operators,
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k

m

Figure A.1: Example of a harmonic oscillator. A mass, m, is suspended from a bar via an
ideal spring with spring constant k .

decrementing or incrementing the energy quanta in the oscillator. The Hamiltonian can
be re-written as:

Ĥ = ~ω
(
â†â +

1
2

)
such that

Ĥ |n〉 = ~ω
(
n +

1
2

)
|n〉 .

Thus, we can see that an ideal harmonic oscillator has an infinite number of equally
separated energy levels (eigenstates) characterized by n, the number of quanta of energy
in the oscillator. For a more thorough discussion of the quantum harmonic oscillator,
consult a text on quantum mechanics, such as [78].

A.2 LC Oscillator

Considering the circuit in Figure A.2 classically, we can write the potential energy of the
capacitor as UC =

1
2CV2 and the potential energy of the inductor as UL =

1
2 LI2, leading

to the Hamiltonian
H =

1
2

CV2 +
1
2

LI2

where V is the voltage across the capacitor and I is the current through the inductor.
Using the definitions of capacitance (Q = CV) and inductance (Φ = LI), where Q is
electrical charge andΦ is magnetic flux, we can re-write the Hamiltonian as:

H =
1

2C
Q2 +

1
2L
Φ

2,

which is equivalent to the Hamiltonian for a macroscopic harmonic oscillator (Equa-
tion A.1).

Moving to the quantum case, where I will follow [54], we must be slightly more
careful about which variables we consider dominant. In this case, I will assume linear
capacitances with possibly nonlinear inductances (to allow for the addition of Josephson
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L C

Figure A.2: Example of an inductor-capacitor (LC) resonator. An inductor, with induc-
tance L, and a capacitor, with capacitance C, are connected in parallel.

junctions later), so I will treat the node flux, φ as the pseudo-position coordinate. The
node flux can be calculated via

φ(t) =
∫ t

V(τ) dτ

where integration begins at a point far in the past when the system was completely
unperturbed. By analogy with the harmonic oscillator case, we have a potential energy
of U = 1

2C Ûφ2 (which can also be seen by using Faraday’s law such that V = Ûφ in the LC
oscillator Hamiltonian) and a kinetic energy of T = 1

2L φ
2. Thus the Lagrangian is

L =
1
2

C Ûφ2 − T =
1
2

C Ûφ2 −
1

2L
φ2

and the conjugate pseudo-momentum is

Q =
∂L
∂ Ûφ
= C Ûφ.

Performing a Legendre transformation,

H = Q Ûφ − L

=
1

2C
Q2 +

1
2L

φ2.

We can finally quantize the circuit, converting φ and Q to operators, φ̂ and Q̂, which obey[
φ̂, Q̂

]
= i~, yielding

Ĥ =
1

2C
Q̂2 +

1
2L

φ̂2. (A.2)

The method to solve this Hamiltonian is the same as the the harmonic oscillator case.
Defining new creation and annihilation operators (â† and â) as

â =
1
√

2~ω

(
1
√

L
φ̂ + i

1
√

C
Q̂

)
â† =

1
√

2~ω

(
1
√

L
φ̂ − i

1
√

C
Q̂

)
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where the frequency of oscillation,ω, isω = 1√
LC

and the impedance of the circuit, Z , is

Z =
√

L
C , we re-write the Hamiltonian as

Ĥ = ~ω
(
â†â +

1
2

)
,

confirming that the system is isomorphic to the harmonic oscillator. Therefore the
quantum LC circuit also has an infinite spectrum of levels that are equally spaced.

While harmonic systems display interesting physics related to number (Fock) states
and coherent states, they are not ideal for quantum simulations or quantum computers,
since they have infinite-dimensional Hilbert spaces. In order to restrict the Hilbert space
(i.e. to create a two level system), we have to make the system aharmonic such that the
energy levels are unevenly spaced. To do this, we will add a Josephson junction, the subject
of the next section.

A.3 Josephson Junction

The basic principle behind a Josephson junction is that coherent tunneling of Cooper pairs
through a “small” barrier can lead to dissipationless current flow (a supercurrent) [52].
This effect is formalized by the Josephson equations which describe the voltage and current
across the superconductor-barrier-superconductor junction:

V(t) =
Φ0

2π
∂ϕ(t)
∂t

(A.3)

I(t) = Ic sin (ϕ(t)) (A.4)

whereΦ0 is the magnetic flux quantum,Φ0 ≡
h

2e , Ic is the critical current of the device,
determined by material and geometric properties of the junction, such as overlap area
and barrier thickness, and ϕ is the Josephson phase, or the phase difference between the
superconducting wavefunctions across the barrier [79, p. 11]. A diagram of a S-B-S
junction is given in Figure A.3. In the case that I will discuss, this barrier is a thin layer of
an insulator, so the junctions are of the superconductor-insulator-superconductor (S-I-S)
type.

BS S

Figure A.3: Basic diagram of a Josephson junction. Two superconducting regions (S)
are separated by a thin barrier region (B). For our qubits, these barriers are a thin layer
of insulator.

In order to make apparent that the Josephson junction acts as a nonlinear inductor,
let us compute the time-derivative of the current relation (Equation A.4):

∂I
∂t
= Ic cos (ϕ)

∂ϕ

∂t
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which can be re-arranged using the Josephson voltage relation (Equation A.3) to give:

V(t) =
Φ0

2π
1

Ic cos (ϕ)
∂I
∂t
.

Comparing this to the definition of inductance (V = L ∂I
∂t ), we find that the Josephson

inductance, LJ is
LJ =

Φ0

2π
1

Ic cos (ϕ)
(A.5)

Now, we need to compute the energy associated with the junction. This can be
computed by integrating the number of Cooper pairs that have tunneled across the
junction along with their voltage from a time long in the past when the junction was
completely unperturbed up to a specified time t as follows:

E =
∫ t

V(τ)I(τ) dτ

=
Φ0Ic

2π

∫ t

sin (ϕ(τ))
∂ϕ

∂τ
dtau

= EJ (1 − cos (ϕ(t)))

assuming that the Josephson phase at this distant point in the past is zero, and where the
Josephson ener�, EJ , is defined as EJ =

Φ0Ic
2π . Ignoring the constant offset, this makes

the Hamiltonian of a Josephson junction

H = −EJ cos (ϕ) (A.6)

which Girvin also derives using a tight-binding approximation [54]. As with the LC
oscillator, the appropriate dynamical variables for use in describing the circuit of a Joseph-
son junction depend on the composition of the circuit. Instead of node flux or charge,
here we have Josephson phase, ϕ, and the number of cooper pairs, n (The two sets can
be related via q = −2en and ϕ = 2π Φ

Φ0
). In the following sections, I will discuss the

different types of qubits that can be formed where charge is the prominent variable, since
these are the predominant type of qubits used in our lab1.

A.3.1 Cooper Pair Box

The simplest type of charge qubit is known as the Cooper-pair box (CPB), first measured
by Bouchiat et al. in 1998 [80]. In this qubit design, depicted in Figure A.4, a Josephson
junction and capacitor are placed in parallel to form a superconducting “island” which
is isolated from a voltage source via a “gate” capacitor. Because this island is isolated
from the voltage source, the number of Cooper pairs on the island is a well-defined
discrete number, meaning that the phase operator must be periodic (i.e. only cos (ϕ) is

1There are also other types of qubits, called phase qubits where the phase (and hence magnetic flux) is
the important variable. For more information, consult [54]
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an operator, not ϕ)). In addition, we will have to worry about the Coulombic repulsion
between different Cooper pairs, leading to the Coulombic charging energy

Û = 4EC(n̂ − ng)2

where EC is the Coulombic charging ener�, EC ≡
e2

2CΣ
, CΣ is the total capacitance,

CΣ = CJ + Cg, and ng is the gate charge due to the external voltage source, ng ≡ −
CgV

2e
[54].

V

Cg

LJ CJ

Figure A.4: Basic diagram of a Cooper-pair box. In this system, a Josephson junction
(depicted as an angled cross) with impedance LJ is shunted with a capacitor CJ , forming
an “island” that is galvanically isolated from a voltage source V by a “gate” capacitor Cg.

Adding the Josephson junction term we previously derived (Equation A.6) leads to a
total Hamiltonian

Ĥ = 4EC(n̂ − ng)2 − EJ cos (ϕ̂) (A.7)

where actually the entire cos (ϕ̂) is taken as the operator due to the compactness of ϕ in
this case. An exact solution can be found in the phase basis by following the methods of
Ref. [81] and using Mathieu functions.

Alternatively, if we assume that the variations of the phase are small, we can expand
the cosine potential (dropping constant terms) and arrive at the following approximation:

Ĥ ≈ 4EC n̂2 −
EJ

2
φ̂2

where I have also assumed that the gate voltage is set to zero. Comparing with the LC
oscillator above (Equation A.2), we find that we have

C =
e2

2EC

L =
Φ2

0
4π2EJ

giving a transition frequency (known as the Josephson plasma frequency) of

~ω =
√

8ECEJ .



APPENDIX A. DERIVATION OF SYSTEM HAMILTONIAN 51

For the small phase approximation to hold, we should check that the zero point fluc-

tuations of the junction are small. According to Girvin, ΦZPF =
√
~Lω

2 , which, after
plugging in the equations above and rearranging, gives

2π
ΦZPF

Φ0
=

(
2

EC

EJ

) 1/4
,

so the zero-point fluctuations are only small when when EJ � EC .

A.3.2 Transmon

One extension of the Cooper pair box, first reported by Koch et al. in 2007 is known as
the transmon [81]. The transmon qubit adds a large shunt capacitance in parallel with the
Josephson junction (often formed by the overlapping pads of the junction itself) which
reduces the charging energy and hence EC/EJ , reducing the susceptibility of the junction
to charge noise (“charge dispersion”). The relative anharmonicity of the junction, defined
as the ratio of the e- f transition energy to the g-e transition energy, scales as 1/

√
EJ/EC

while the charge dispersion scales as exp(EJ/EC) [81], meaning that the dispersion can
be suppressed without eliminating the anharmonicity that allows the qubit to be used
as a two-level system. The transmon is often written as a “boxed” Josephson junction

to signify the large shunt capacitor included with the junction.

A.3.3 Superconducting Quantum Interference Devices

In a Superconducting Quantum Interference Device (SQUID), two Josephson junctions
are placed in parallel, leading to a modulation of the resonant frequency based on the
external flux penetrating the loop, as I will derive below. A basic diagram of a SQUID is
presented in Figure A.5.

EJ1 CJ1 EJ2 CJ2

Φx

Figure A.5: Basic diagram of a SQUID

Focusing just on the portion of the Hamiltonian due to the Josephson junctions, and
thinking in terms of the flux through each junction, we have:

HJ = EJ1 cos
[

2π
Φ0

(
Φ1 +

1
2
Φx

)]
+ EJ2 cos

[
2π
Φ0

(
Φ2 +

1
2
Φx

)]
+

Assuming that the junctions are mostly symmetric, so EJ2 = EJ1 + ε , we can re-write
this as

HJ = EJ1

(
cos

[
2π
Φ0

(
Φ1 +

1
2
Φx

)]
+ cos

[
2π
Φ0

(
Φ2 +

1
2
Φx

)] )
+ε cos

[
2π
Φ0

(
Φ2 +

1
2
Φx

)]
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Since we still have a well-defined number of Cooper pairs on each side of the Josephson
junctions, the Josephson phase of the junctions is compact, so the flux must be quantized,
i.e. Φ2 = −Φ1 + 2πn for n ∈ N. Plugging this in and using standard trigonometric
identities results in the final Hamiltonian:

HJ = (2 + ε) cos
(
π

Φ0
Φx

)
cos

(
2π
Φ0
Φ1

)
+ ε sin

(
π

Φ0
Φx

)
sin

(
2π
Φ0
Φ1

)
.

Defining EJ (Φx) ≡ 2 cos
(
π
Φ0
Φx

)
, and setting the junction asymmetry ε to zero, we get

the SQUID Josephson junction Hamiltonian

HJ = EJ (Φx) cos (ϕ)

where it is now clear why I stated earlier that a SQUID loop functions as a frequency-
tunable Josephson junction.

A.4 System Hamiltonian

A.4.1 Qubit-Qubit Coupling

The qubits of our system are capacitively coupled. To compute the Hamilonian terms
resulting from this coupling, let us consider the circuit shown in Figure A.6.

L1 C1

CC

L2 C2

Figure A.6: Coupled LC oscillators.

Focusing on the capacitive portion of the Lagrangian,

LC =
C1

2
Ûφ2

1 +
C2

2
Ûφ2

2 +
CC

2
(
Ûφ1 − Ûφ2

)2
,

we can compute the conjugate variables

q1 =
∂LC

∂ Ûφ1
= (C1 + CC) Ûφ1 − CC Ûφ2

q2 =
∂LC

∂ Ûφ2
= −CC Ûφ1 + (C2 + CC) Ûφ2.
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Treating this as a matrix and inverting, we get

Ûφ1 =
C2 + CC

C1C2 + CC (C1 + C2)
q1 +

CC

C1C2 + CC (C1 + C2)
q2

Ûφ2 =
CC

C1C2 + CC (C1 + C2)
q1 +

C1 + CC

C1C2 + CC (C1 + C2)
q2.

Performing a Legendre transformation to get the Hamiltonian as usual, i.e.

HC = q1 Ûφ1 + q2 Ûφ2 − LC

and rearranging, we get

HC =
1

2C̃1
q2

1 +
1

C̃C

q1q2 +
1

2C̃2
q2

2

in terms of renormalized capacitances.
Using the usual mapping of charges to annihilation and creation operators,

q1 → i

√
~ω1C̃1

2

(
â†1 − â1

)
q2 → i

√
~ω2C̃2

2

(
â†2 − â2

)
we can rewrite the cross-term as

1
C̃C

q1q2 →
~

2

√
ω1ω2C̃1C̃2

(
â1 − â†1

) (
â†2 − â2

)
,

which, after making the rotating wave approximation, where we drop highly oscilla-
tory terms with respect to a frame rotating at the qubit frequency (or drop non energy-
conserving terms), leads to

~

2

√
ω1ω2C̃1C̃2

(
â1â
†

2 + â†1 â2

)
∝
√
ω1ω2(σ

−
1 σ
+
2 + σ

+
1 σ
−
2 )

which is proportional to the usual σ+aσ−b + σ
+
b
σ−a terms for capacitive qubit coupling.

A.4.2 Qubit-Transmission Line Coupling

If we move beyond lumped-elements, to the regime where elements are no longer negli-
gible in size compared to the microwave radiation, we have to begin considering spatial
dimensions when deriving our Hamiltonian. This is particularly necessary for our copla-
nar waveguide transmission line and λ/4 resonator. Coplanar waveguides are passive
elements which are narrow (approximately 25 µm in width) but have a length that is
comparable to the the wavelength of the microwaves, meaning that we can approximate
them as one-dimensional. They can be modeled by treating them as a series of infinitesi-
mal inductors in parallel with capacitors to ground [82] or as classical transmission lines
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[83]. In either case, they are characterized by their capacitance, c, and their inductance, l,
per unit length. Following Girvin [54], I will start by defining the position-dependent
branch flux:

Φ(x, t) =
∫ t

−∞

V(x, τ) dτ

and noting that the constitutive equation for the current becomes

I(x, t) = −
1
l
∂xΦ(x, t).

The Lagrangian now involves an integral over the spatial coordinate

L =
∫ ` c

2
(∂tΦ(x, t))2 −

1
2l
(∂xΦ(x, t))2 dx =

∫ `

L dx

where I assume that the element has length `. Calculating the conjugate charge as usual
(looking only at the terms inside the integral), we find

q(x, t) = c∂tΦ(x, t)

resulting in the following Hamiltonian

H =
∫ ` 1

2c
q(x, t)2 +

1
2l
(∂xΦ(x, t))2 dx.

Returning to the Lagrangian, if we compute the Euler-Lagrange equation,

∂t
∂L

∂(∂tΦ)
+ ∂x

∂L

∂(∂xΦ)
−
∂L

∂Φ
= 0

we get

∂ttΦ −
1
lc
∂xxΦ = 0

a wave equation with propagation velocity, v = 1√
lc

. For a finite coplanar waveguide, e.g.
a resonator, with specified boundary conditions, we can make an ansatz of oscillating
solutions, allowing us to quantize the circuit and revealing that it is equivalent to a sum
of harmonic oscillator modes [82, 54]. In the limit of large mode separation, we can treat
a resonator as a single-mode oscillator.

For the semi-infinite transmission line, the case is slightly more complicated. Fol-
lowing [84], we must consider the input-output theory [85] of the transmission line,
working in terms of left and right propagating fields and including the physical separation
of elements. For more details on this, including a calculation of the expected power
spectrum visible in the input/output lines, consult [55].



Appendix B

Open Quantum Systems

For open quantum systems, systems that are not isolated and have degrees of freedom
which are uncontrolled, we cannot stick to the picture of unitary evolution used for closed
systems, since this allows no excitation or loss of energy.

B.1 Lindblad Formalism

Instead of the Schrödinger equation acting on wavefunctions

Ĥ |Ψ〉 = E |Ψ〉 ,

for open systems it is easiest to work in an equivalent picture, utilizing what is known as
the density matrix. The density matrix is defined as

ρ = |Ψ〉 〈Ψ|

which can be decomposed in a basis (say
{��ψj

〉}
) as

ρ =
∑
j

pj

��ψj

〉 〈
ψj

��
where pj are classical probabilities of being in state

��ψj

〉
.

In the density matrix formalism, the time evolution of the system is given by the
Liouville—von Neumann equation,

∂ρ

∂t
= −

i
~
[H, ρ] (B.1)

rather than the Schrödinger equation. However, this still has only unitary dynamics. To
account for incoherent excitation and decay events, we must extend this to the Lindblad
equation,

∂ρ

∂t
= −

i
~
[H, ρ] +

∑
i

γi

(
LiρL†i −

1
2

L†i Liρ −
1
2
ρL†i Li

)
, (B.2)
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where the Li are known as Lindblad operators, describing the non-unitary events, and the
γi are the coefficients describing the rates of these events. Equation B.2 can be explicitly
derived in a perturbative manner by assuming weak system–bath coupling and by assum-
ing that the bath correlations rapidly disappear (the so-called no-memory or Markovian
bath approximation) [54].

A particular example of such an operator in the case of our sample comes from the
resonator coupled to the transmission line. The presence of the transmission line modifies
the local electromagnetic environment, allowing the resonator to emit photons at a rate
usually referred to as κ. However, due to thermal photons present in the transmission
line, there is also the possibility of thermally exciting photons in the resonator, with a
quantum asymmetry provided by the vacuum photons always present in the transmission
line. Defining the Lindblad superoperator of an operator Ô as

D[Ô] ≡
(
ÔρÔ† −

1
2

{
Ô†Ô, ρ

})
we get two terms in our Lindblad equation:

κ (nth + 1)D[âr]

κnthD[â†r ]

where âr is the annihilation operator for photons in the resonator, κ is the coupling
between the resonator and the transmision line (resonator loss rate), and nth is the average
thermal photon number of the transmission line. The upper term describes stimulated
emission while the lower term describes stimulated excitation. This can be extended to
include many loss or excitation channels.
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Methods

C.1 Bandwidth of Pulses and Boxcar Filter

Since our pulses and our digital filtering are both square, I will discuss the spectrum of
a square pulse / boxcar filter here. I have drawn the scheme of a boxcar filter or square
pulse as a function of time in Figure C.1. Calling this function g(t), we can compute the
frequency spectrum, ĝ(ω) via a Fourier transformation:

ĝ(ω) =

∫ ∞

−∞

g(t)e−iωt dt

=

∫ a

0
g(t)e−iωt dt

= −
1

iω

(
e−iωa − 1

) (C.1)

the absolute value of which is plotted in Figure C.2. Importantly, the nulls of the fre-
quency response occur when ω = n2π/a for n ∈ Z. The bandwidth of a few relevant
boxcar filter settings are presented in Table C.1.

g(t)
time

0 a

Figure C.1: Time scheme of boxcar filter or square pulse

C.2 Noise Voltage to Flux Power Conversion

The experiments presented above were run by setting particular peak-to-peak voltages
(VPP) on the noise AWG. To convert these to flux powers, we first convert from voltage

57
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Figure C.2: Spectrum of boxcar filter/square pulses of 4 and 16 ns duration.

Table C.1: Boxcar filter length and resulting bandwidth

Boxcar Length Length (ns) Bandwidth (MHz)

2 = 22 4 500
3 = 23 8 250
4 = 24 16 125
5 = 25 32 62.5
6 = 26 64 31.25
7 = 27 128 15.63

spectral density, SU (V2 Hz−1), to flux spectral density Sφ (Wb2 Hz−1) via

Sφ =
(

VPP

Vmax

)2
SU

(
M
Φ0

)2

where Vmax is the maximum VPP that can be set on the AWG, Φ0 is the flux quantum,
and M is a parameter extracted from the coil sweep fits that characterizes the flux per volt
applied to the flux line. For our sample, M was −0.28 Wb V−1, SU was 0.009 V2 Hz−1

for white noise and 0.026 V2 Hz−1 for Lorentzian noise. For the Tektronix AWG520,
Vmax is 2.00 V.

Then, in order to convert from flux power spectral density to flux power, we integrate
the spectra of the two noise types

Φ
2
L =

∫ νmax

0

Sφ,L

1 +
(
ν−ν0,L
bL

)2 dν

and
Φ

2
W =

∫ νmax

0

Sφ,W

1 + exp
(
ν−ν0,W
bW

) dν
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where νmax = 500 MHz, ν0,L = 246 MHz, ν0,W = 325 MHz, bL = 5 MHz, and
bW = 11.378 MHz.

C.3 TWPA

The TWPA produces a frequency-dependent gain profile which must be carefully opti-
mized, by tweaking the drive power and drive frequency, in order to maximize gain while
minimizing distortion due to unequal amplification. In our case, optimal parameters
were a drive power of 15.5 dBm at a frequency of 6.849 000 7 GHz, with the 700 Hz
offset to avoid sampling the probe tone during sweeps. This results in a gain curve plotted
below in Figure C.3. Note the relatively flat region of gain around 6.2 GHz where the
dark states emit.
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Figure C.3: TWPA gain as a function of frequency at a drive power of 15.5 dBm and a
drive frequency of 6.849 000 7 GHz.

C.4 Rabi Measurements

We have two different methods of performing Rabi measurements, which differ only in
the processing that is applied to the resulting data set: time-resolved, which looks at the
signal as a function of time and pulse amplitude; and frequency-resolved, which separates
out contributions from different states, making the Rabi characterization, particularly of
short pulses that excite several transitions, more precise.

C.4.1 Time-Resolved

The time-resolved Rabi measurement revolves around recording time traces of the qubit
response to pulses of changing length or amplitude. In our case, we chose to vary the
amplitude in order to have identical bandwidth for pulses of different rotation angles.
The pulse scheme is depicted below in Figure C.4 and the scheme is depicted in terms
of the Bloch sphere in Figure C.5. The variable amplitude pulse drives Rabi oscillations
between the ground and the excited state, rotating the qubit state about the x axis by
a variable angle, θ. In this technique, we measure electric field amplitude (I1 + iQ1 in
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terms of electric field quadratures), which corresponds to the x-y plane of the Bloch
sphere. This means that the recorded signal is maximum for θ = π/2, has a null at π, and
a minimum at θ = 3π/2.

time

Rx
θ

t
VPP

Figure C.4: Rabi measurement pulse scheme. Pulse amplitude is varied across different
measurement runs; signal is recorded as a function of time.

x̂

ŷ

|g〉 = ẑ

−ẑ = |e〉

Rx
θ

x̂

ŷ

ẑ

Figure C.5: Depiction of the Rabi measurement pulse scheme on the Bloch sphere. The
variable-amplitude pulse serves to rotate the qubit state about the x axis by a variable
angle. Since we measure electric field amplitude, we essentially measure the projection
of the qubit state onto the x − y plane, meaning that we have maximal signal when
θ = (2n + 1)π/2, and minimal signal for θ = 2nπ.

An example of the data we measured as a function of time is plotted in Figure C.6.
The typical Rabi measurement plot can be extracted by integrating the data across time
after the pulse and then plotting it as a function of pulse amplitude.

C.4.2 Frequency-Resolved

Our frequency-resolved Rabi technique uses the same pulse sequence as the time-resolved
above, but adds a Fourier transform across time which separates out different frequency
components. Using the data shown above in Figure C.6, this results in Figure C.7. Se-
lecting a region around one of the states and integrating across frequency results in plots
such as Figure 3.2. This method is particularly useful with short pulses that excite several
parts of the system, as these components can be individually selected, see Figure C.8.
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Figure C.6: Example of time-resolved Rabi measurement. Absolute amplitude of electric
field response in the transmission line plotted as color versus time and pulse amplitude.
The driving pulse occurs during the region bounded by translucent gray lines. Fast oscil-
lations in signal are due to detuning between qubit resonance frequency and frequency
of down-conversion LO.
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Figure C.7: Example of frequency-resolved Rabi measurement. Absolute amplitude of
spectral component in the transmission line plotted as color versus frequency and pulse
amplitude. Instead of fast oscillations, we now see that the qubit was detuned relative
to the downconversion center frequency. The gray lines indicate the region that is inte-
grated to produce plots like Figure 3.2.
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Figure C.8: Example of multi-state frequency-resolved Rabi measurement. Absolute
amplitude of spectral component in the transmission line plotted as color versus fre-
quency and pulse amplitude. These components would be impossible to separate in a
time-resolved measurement.

C.5 T1 Measurements

For T1 measurements, we can either use a method borrowed from NMR and tailored to
our measurement basis (based on our connectivity) or the “standard” cQED method.

C.5.1 Inversion Recovery

The inversion recovery technique involves a two pulse sequence shown in Figure C.9. The
signal is measured in terms of electric field amplitude after the second pulse, but is collected
for different values of the interpulse delay, τ, rather than different pulse amplitudes as
in the Rabi measurement above. I have depicted the results of the pulse scheme for zero
τ on the Bloch sphere in Figure C.10. For no time delay, the qubit state ends up along
−y. Conversely, at long time delays, the qubit decays from the excited state back to the
ground state, so the second π/2 pulse has the effect of rotating the qubit to y. Therefore,
as τ is increased, the signal starts off inverted and gradually recovers back to a positive
value.

An example inversion recovery T1 measurement is plotted in Figure C.11. Again, as
with the Rabi measurements, we can look at either time-resolved (t) or frequency-resolved
(ωt ) plots. In order to extract T1 values, we either select a signal trace at a specific t (and
hence as a function of τ) or integrate around a specific frequency range, as shown in
Figure C.12. Note that the inversion of signal is clearly visible in the time trace, but that
the Fourier trace improves the signal-to-noise ratio of the data. Fitting an exponential rise
of the form A[1 − exp(−τ/T1)] gives the T1 time. Both methods produce similar T1 times.
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Figure C.9: Inversion recovery pulse scheme.

x̂

ŷ

|g〉 = ẑ
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Figure C.10: Zero delay inversion-recoveryT1 pulse scheme depicted on the Bloch sphere.
The “inversion” comes from the fact that the qubit state ends up along the −y axis, and
changes sign as the delay increases due to T1 decay from the excited state back to the
ground state.
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Figure C.11: Example of inversion recovery T1 measurement. Le�: real component of
electric field amplitude signal recorded as a function of time and pulse delay. Note the
spacing between the first pulse and the second pulse increasing from bottom to top as the
first pulse is shifted earlier in time. Right: real component of the Fourier transformation
of the post-pulse electric field amplitude as a function of time.
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Figure C.12: Example of inversion recovery T1 time traces. Le�: real component of the
electric field amplitude signal recorded at a specific time and plotted as a function of pulse
delay. Note the slightly negative signal which decays to a positive signal at long delay
times, the inversion recovery. Right: Integrated absolute spectral component at qubit
frequency as a function of delay time. Here there is no longer inversion, but the filtering
and integration that the Fourier transform provides reduces the SNR of the data.

C.5.2 Power

Instead of using inversion recovery, it is also possible for us to measure the T1 time in the
“standard” fashion. We apply a π pulse to the qubit and then look at the electric field power
by post-processing our data (taking the absolute-value squared of the complex electric
field signal, (I1 + iQ1)

∗(I1 + iQ1)). However since this method overcomes the difference
in measurement basis via signal processing and we have a large signal bandwidth, the
power measurements have significantly lower signal-to-noise ratios that mean we have to
average much longer. This makes the inversion recovery technique faster than the power
measurement.

C.6 T2 Measurements

In our measurement basis, T2 measurements are more like T1 measurements in standard
cQED: we apply a π/2 pulse and observe the decay in the electric field amplitude as a
function of time. The pulse scheme is provided in Figure C.13 and also depicted on
the Bloch sphere in Figure C.14. As with the previous measurements, we can make the
technique more selective by Fourier transforming and integrating over the appropriate
frequency range. We did not even investigate standard cQED measurements such as a
Ramsey measurement since our qubits do not live long enough to make these techniques
worthwhile and the measurement method above is extremely fast in our measurement
basis.
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Figure C.13: Amplitude T2 measurement pulse scheme.
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Figure C.14: Bloch sphere representation of the amplitude T2 pulse sequence. π/2 pulse
rotates the qubit into the measurement basis.

C.7 2D Spectroscopy

What is termed two-dimensional electronic spectroscopy (2DES) by the biophysics commu-
nity is a four-wave mixing experiment involving three pulses, as shown in Figure C.15.
After collecting data as a function of t, τ, and T , the data is usually Fourier transformed
across the t and τ axes, resulting in a COSY-like plot at each T point, which traces how
energy flows through the system in real time.
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τ T
t

Figure C.15: Two dimensional pulse scheme.



Appendix D

COSY

D.1 Theory

Before I can discuss analytical modeling of the COSY pulse sequence, we need to find a
method to propagate the density matrix throught time that is computationally easier than
the Liouville-von Neumann equation. Starting with a wavefunction,Ψ and assuming
that its time evolution is a unitary operation, we can write

Ψ(t) = Û (t)Ψ(0).

Applying the Schrödinger equation gives

i~
∂

∂t
Ψ(t) = ĤΨ(t).

Combining with these two equations gives

i~Û ′(t)Ψ(0) = ĤÛ (t)Ψ(0)

which can be solved by setting

Û (t) = e−iĤt/~.

Returning to the definition of the density matrix,

ρ(t) = |Ψ(t)〉 〈Ψ(t)|

we can apply the evolution operator Û from above to find that

ρ(t) = Û (t) |Ψ(0)〉 〈Ψ(0)| Û†(t)

or, in other words,
ρ(t) = Û (t)ρ(0)Û†(t).

Since this can be implemented in terms of matrices and matrix multiplication, this is
easier to compute than the integration implied by the Liouville-von Neumann equation.
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Now we have the toolbox to analytically compute the density matrix of the system
during the COSY pulse sequence. To recap the sequence: we start in the ground state,
apply a π/2 or−π/2 rotation around the x or y axis, allow the system to evolve for a time
τ, apply another π/2 rotation, and then measure at the emitted electric field at a time t.
Looking at a simple case of two qubits symmetrically coupled to a transmission line that
are also transversely coupled to each other (as is the case of our qubits 1 and 2), we find
that the initial state is

|Ψ0〉 = |g〉1 ⊗ |g〉2

resulting in the initial density matrix

ρ0 = |Ψ0〉 〈Ψ0 |

I will assume that the pulses occur instantly (or with a nearly infinite Rabi rate) such
that we can ignore qubit decay during the pulse and treat them as a simple unitary opera-
tion on the density matrix (although this could easily be extended to the case involving
decay). The symmetric electric field drive has a Hamiltonian term

Ĥdrive =
ΩR

2
(
σ̂+1 + σ̂

−
1 + σ̂

+
2 + σ̂

−
1
)

which can be re-written in terms of the σx operator, giving

Ĥdrive =
ΩR

2
(
σ̂x

1 + σ̂
x
2
)

which is more correctly given as

Ĥdrive =
ΩR

2

(
σ̂x

1 ⊗ Î2 + Î1 ⊗ σ̂
x
2

)
.

Incorporating this into a unitary time evolution operator, where I assume thatΩRt = π/2,
I get

ÛX = exp
[
−iπ

(
σ̂x

1 ⊗ Î2 + Î1 ⊗ σ̂
x
2

)
/4~

]
and the post-first-rotation density matrix is

ρ1 = ÛX ρ0Û†X .

Time evolution is slightly more complicated. For simple unitary time evolution of
the qubits (with no dephasing or decay), we can use a typical Hamiltonian,

Ĥ0 =
~ω1

2
σ̂z

1 ⊗ Î2 +
~ω2

2
Î1 ⊗ σ̂

z
2 +

J
2

(
σ̂+1 ⊗ σ̂

−
2 + σ̂

−
1 ⊗ σ̂

+
2
)

which we can apply by exponentiating to form the unitary time evolution operator as
above (e−iĤ0τ/~ρ1eiĤ0τ/~). To include dephasing and decay, we follow the Lindbladian
procedure, i.e. we add the terms 1/

√
T1D[σ̂−1 ⊗ Î2] and 1/

√
T1D[Î1 ⊗ σ̂

−
2 ] to add decay at
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a rate 1/T1 and the terms 1/
√

2TφD[σ̂z
1 ⊗ Î2] and 1/

√
2TφD[Î1 ⊗ σ̂

z
2 ] to add dephasing

at a rate of 1/Tφ . Thus

Ûρ = −
i
~
[H0, ρ] + L(ρ)

where

L(ρ) =
1
√

T1

(
D[σ̂−1 ⊗ Î2] +D[Î1 ⊗ σ̂

−
2 ]

)
+

1√
2Tφ

(
D[σ̂z

1 ⊗ Î2] +D[Î1 ⊗ σ̂
z
2 ]

)
Since the collapse operator terms involve operating from the left and right, we can no

longer trivially exponentiate to find the time propagation operator in this case. However,
by applying the various theorems of [86, Chp. 4], we can vectorize the density matrix
(stacking either the rows or the columns) and create a supermatrix equation (where if ρ
is a n × n density matrix, L is n2 × n2) [87]:

Û®ρ = L ®ρ

which can now be trivially exponentiated such that

®ρ(t) = eLt ®ρ(0)

so
®ρ2 = eLτ ®ρ1.

Now, we have another π/2 rotation pulse, so

ρ3 = ÛX ρ2Û†X

which is followed by the final time evolution for time t, resulting in

®ρ4 = eLt ®ρ3.

Finally, we measure the electric field in the transmission line:

VXX ∝ 〈σ̂
x
1 + σ̂

x
2 〉 = Tr

[
ρ4

(
σ̂x

1 ⊗ Î2 + Î1 ⊗ σ̂
x
2

)]
.

Calculating all of this out results in tremendously large terms (too large for me to
reproduce here in a reasonable amount of time) which all have roughly equal dependence
on the different time scales (t, τ, T1, Tφ) and hence cannot be meaningfully simplified.
Calculating these terms for different initial pulse phases (see next section) and Fourier
transforming gives diagonal peaks at the qubit frequencies and an off-diagonal cross peak,
as I explained in the main text.

Here I have explicitly not written operators as matrices in a particular basis, although

the usual choice is the “computational basis” where |g〉 ≡
(

1
0

)
and |e〉 ≡

(
0
1

)
and the

Pauli matrices are given in their usual form.
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Figure D.1: X X pulse sequence. The initial X ≡ Rx
π/2 pulse rotates the qubit into the

equatorial plane of the Bloch sphere. After allowing for the system to evolve for time τ,
the qubit has precessed some distance around the equator or decayed; here I have labeled
the points of τ evolution in the order that they would be reached. The second X pulse
then rotates the qubit again, meaning that only part of the “precession disk” remains in
the measurement basis, and furthermore, brings a qubit that has decayed to the ground
state back to the equatorial plane.
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Figure D.2: X X pulse sequence
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Figure D.3: Y X pulse sequence.
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Figure D.4: Y X pulse sequence.
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Figure D.5: Final signal

D.2 Phase Cycling

Since we only measure in the equatorial plane of the Bloch sphere, we should now limit
ourselves to only these points. Looking at the results of the X X and X X pulse sequences
(Figure D.1 and Figure D.2), we see that we can combine the equatorial signals and cancel
the remaining ones (due to e.g. decay into the ground state during the τ evolution time)
by subtracting one from another. A similar relation holds for the Y X and Y X pulses
(Figure D.3 and Figure D.4). In order to recover the full τ dynamics, we have to combine
these two pairs, since they each contain only part of the full signal in the equatorial
plane. In order to combine them into a full diagram on the equator with the correct
time-ordering, we should combine them with a phase shift of i. Therefore, the final
phase-cycle corrected signal is

SPC = X X + iY X − (X X + iY X) (D.1)

resulting in an equatorial projection depicted in Figure D.5.

D.3 Data Processing

The details of the data processing for COSY measurements are quite similar to those
discussed previously. We begin by collecting the electric field amplitude as a function of
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time for different time delays and pulse sequences (phase cycling). Next, we combine
the data in the correct phase-cycled manner (Equation D.1), still as a function of time,
producing the characteristic diagonal oscillations as shown in Figure D.6.
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Figure D.6: Phase-cycle corrected electric field amplitude plotted versus time, t, and
pulse separation, τ.

Fourier transforming across both dimensions results in the plot shown previously
(Figure 3.9). To demonstrate how important phase cycling is to the data processing, I
have plotted the equivalent figure without any phase cycling below in Figure D.7.
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Figure D.7: Uncorrected COSY Fourier signal plotted versus separation frequency,
ωτ/2π, and frequency, ωt/2π. Note the strong DC component which hides the di-
agonal and off-diagonal cross-peaks.



Appendix E

Parameters

E.1 Numerical Simulations

Table E.1: Numerical simulation system parameters

Parameter Value (Hz)

ω1/2π 6.313 × 109

ω2/2π 6.313 × 109

ω3/2π 6.193 × 109

ωr/2π 6.00 × 109

J12/2π 120 × 106

J13/2π 8 × 106

J23/2π 37 × 106

g1r/2π 0
g2r/2π 0
g3r/2π 90 × 106

κTL/2π 10 × 106

γ∗,1/2π 0
γ∗,2/2π 0
γ∗,3/2π 0
γr/2π 35 × 106

Edrive/2π 8 × 106

ωdrive/2π 6.433× 109

The thermal photon population, nth, was taken to be zero. Resonator power time
traces were calculated for qubit 2 dephasing rates, γ, of 10 MHz, 20 MHz, 30 MHz,
50 MHz and 70 MHz.
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ETH Zürich, Oct. 6, 2016.

[56] Edward Mills Purcell. “Spontaneous Emission Probabilities at Radio Frequen-
cies”. In:Physical Review 69 (11–12 June 1946), p. 674. doi: 10.1103/PhysRev.
69.674.

[57] Michel H. Devoret. “Quantum Fluctuations in Electrical Circuits”. In:LesHouches
Session LXIII, Quantum Fluctuations. Ed. by S Reynaud, E. Giacobino, and J.
Zinn-Justin. 1997, pp. 351–386. isbn: 9780444825933.

[58] Uri Vool and Michel Devoret. “Introduction to quantum electromagnetic cir-
cuits”. In: International Journal of Circuit Theory and Applications 45 (7 June 5,
2017), pp. 897–934. doi: 10.1002/cta.2359.

[59] H. Haken and G. Strobl. “Exact treatment of coherent and incoherent triplet
exciton migration”. In:The Triplet State. Proceedings of an International Sympo-
sium Held at the American University of Beirut, Lebanon. Ed. by A. B. Zahlan.
1967, pp. 311–314. isbn: 9780521126502.

[60] H. Haken and P. Reineker. “The coupled coherent and incoherent motion of
excitons and its influence on the line shape of optical absorption”. In: Zeitschri�
für Physik 249.3 (June 1, 1972), pp. 253–268. doi: 10.1007/BF01400230.

[61] H. Haken and G. Strobl. “An exactly solvable model for coherent and incoherent
exciton motion”. In: Zeitschri� für Physik A Hadrons and nuclei 262.2 (Apr. 1,
1973), pp. 135–148. doi: 10.1007/BF01399723.
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