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1
Introduction

This thesis is about measuring the state of a superconducting two-level system
(qubit) using another superconducting circuit that acts as a nearly quantum
limited microwave ampli�er. As described in Chapter 4, this goal was achieved
with 85 % �delity, which is high for the chosen readout method. Before de�ning
�delity or the method precisely, however, a brief overview of what is special
about the �eld of superconducting circuits in general and the presented ex-
periments in particular is given in this introductory chapter. In addition this
chapter provides references to other related experiments in the �eld.

Superconducting circuits o�er an exciting opportunity to build experimental
solid state realizations of a wide variety of quantum mechanical models. What
is special about superconducting circuits is that they are macroscopic and still
accurately modeled by a few e�ective particles. This is possible because the ex-
citation spectrum in a superconductor is gapped in the sense that the continuum
of quasi-particle excitations starts from a non-zero energy, unlike in a normal
metal. What remains below the gap energy are the collective excitations which
form a discrete spectrum even for macroscopic samples and can be manipulated
by the choice of sample geometry. At su�ciently low excitation energies the
continuum of quasi-particle excitations can be ignored altogether because of the
large energy detuning to the levels of interest. This is di�erent from atomic
as well as quantum dot systems where the quasi-particle excitations themselves
are used. In that case the system size must be small because the spacing of the
quasi-particle energy levels vanishes as the system becomes larger.

Circuit quantum electrodynamics (cQED) is a particularly interesting ap-
plication of superconducting circuits where qubits are coupled to microwave
resonators, much like atoms are coupled to optical cavities in traditional cav-
ity quantum electrodynamics experiments [Blais04, Wallra�04, Girvin09]. The
qubits in cQED consist of small superconducting islands coupled by capaci-
tances and Josephson junctions in such a way that their excitation spectrum is
anharmonic, often so much so that only the ground and �rst excited state are
relevant, making them e�ective two-level systems. The microwave resonators on
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CHAPTER 1. INTRODUCTION 3

the other hand are co-planar waveguides terminated by impedance mismatches
that act as mirrors for the microwave photons inside the quasi one-dimensional
resonators. In cQED the coupling between the qubit and the resonator can
easily reach the strong coupling regime, i.e. a regime where the coupling rate
at the single excitation level exceeds all decoherence rates. This is interesting
because it allows the systems to dramatically a�ect each other even in the low
energy regime where quantum mechanics is essential for explaining the observed
behavior. Experimentally, this regime is easy to reach in cQED because of the
macroscopic size of the qubits and the one dimensional con�nement of the mi-
crowave photons that lead to large dipole moments and large electric �elds per
photon.

One of the problems currently limiting cQED experiments is that usually
high �delity non-destructive single-shot qubit measurement is not available.
Recently progress towards such measurements was demonstrated in [Vijay11]
and in [Mallet09]. Typically, however, only averaged quantities can be reli-
ably determined after repeating the same experiment many times because of
the poor signal-to-noise ratio in individual measurements, see e.g. [Wallra�05,
Bianchetti09]. Besides the obvious disadvantage of making experiments slower
this has the more dire consequence of making feedback based on measurement
results impossible. This is because quantum mechanically a measurement result
is not in general deterministic even if the input state is always the same. Hence
the averaged measurement result may not contain any useful information at all,
unlike in a classical deterministic process with additional unbiased noise. In
particular, many quantum error correction schemes require feedback based on
high �delity single-shot measurement [Nielsen00, Fowler09].

Dispersive read-out is a common tool used for measuring the qubit in cQED.
This continuous measurement technique entangles the qubit state with the co-
herent amplitude of a measurement signal re�ected from or transmitted through
the resonator. The measurement is in principle quantum non-demolition (QND)
because it is performed in the dispersive limit where the frequency detuning of
the qubit from the resonator is large and the measurement power is low [Blais04].
This means that it projects the qubit state once but does not cause further tran-
sitions between the measurement basis states. In principle the signal to noise
ratio is only limited by the unavoidable vacuum noise in the signal quadratures
and by the measurement time limited by qubit relaxation [Gambetta07]. How-
ever, staying in the dispersive regime limits the signal power to a few photons per
second per hertz, which is an order of magnitude less than the additional noise
added by state of the art commercial microwave ampli�ers. Therefore, there
is room for greatly increasing the rate of information gain from this type of
measurement without causing additional back-action on the qubit or resonator
by simply using a better ampli�er.

In the experiments presented here a superconducting Josephson parametric
ampli�er (paramp) was used as a pre-ampli�er before a commercial high electron
mobility transistor (HEMT) ampli�er. The noise added by the paramp is nearly
quantum limited and, since it also has a high gain, it makes the noise added
by the later ampli�cation stages insigni�cant. With this setup the qubit state
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can in fact be determined in individual dispersive measurements with a time
resolution of tens of nanoseconds as shown recently in [Vijay11] and also in
this thesis. Therefore the setup allows high �delity single-shot qubit readout
even with a fairly short qubit relaxation time as discussed in Chapter 4. With
the time resolution of the measurement being small compared to the qubit
relaxation rate, it is also possible to directly investigate the QND nature of the
measurement as described in Section 4.6.

It should also be mentioned that other single-shot measurement schemes with
similar �delities have been proposed and implemented. The most relevant ones
for cQED are the non-QND high power readout discussed in [Boissonneault10]
and the nearly QND Josephson bifurcation ampli�er (JBA) based readout schemes
[Siddiqi04, Mallet09]. The two are similar in that they both entangle the ini-
tial qubit state with a metastable state of a non-linear resonator but in the
JBA the non-linearity is much stronger and hence the power necessary for bi-
furcation much smaller. Finally, for so called �ux and phase qubits, which
are not commonly used in current cQED experiments, non-QND single-shot
measurement with high �delity has been possible essentially from the start
[Chiorescu03, Martinis02]. However, all of the non-QND schemes leave the mea-
sured system in a classical state with large entropy, which means that restoring
the system back to a known state is slow. Hence these other schemes�with
the exception of that demonstrated in [Mallet09]�are not ideal for feedback
experiments, which are arguably the most important use case for single-shot
measurement.



2
Circuit Quantum Electrodynamics

Circuit quantum electrodynamics is a solid state alternative to the more tra-
ditional �eld of cavity quantum electrodynamics. In cavity quantum electro-
dynamics real atoms are coupled to the electromagnetic �eld modes of optical
cavities via the electric dipole moments of the atoms. The basic idea is that, al-
though the interaction between an atom and an individual photon is extremely
weak due to the small dipole moment of the atom and the small �eld produced
by a single photon, it is possible to observe the distinctly quantum mechanical
e�ects of this coupling by con�ning the photon in a cavity. Roughly speak-
ing, the cavity gives the photon many chances to interact with the atom before
leaking out of the system. For a review of cavity quantum electrodynamics
experiments see [Walther06].

In circuit quantum electrodynamics (cQED) the cavities are replaced by su-
perconducting resonators and the atoms by superconducting qubits as shown in
Figure 2.1 [Blais04, Wallra�04, Girvin09]. Perhaps the most important advan-
tage of this system is the fact that most parameters can be chosen either during
circuit design and fabrication or during the experiment by applying external
magnetic or electric �elds. This allows for example easy access to the strong
coupling regime where the resonator-qubit coupling exceeds all dissipation rates.
A solid state system also o�ers certain practical advantages such as having the
qubit at a �xed position in the resonator and the use of microwave signals, which
are in general easier to produce, easier to accurately guide, and safer than optical
signals. On the other hand, the fundamental disadvantage of solid state systems
is that the qubits and resonators are subject to signi�cant uncontrolled electric
and magnetic �eld �uctuations because they are surrounded by imperfect solid
dielectrics rather than vacuum. On the practical side the smaller frequencies
also mean that, in order to resolve e�ects at the level of a single energy quantum
hν, one must keep the temperature T well below hν/kB . For typical resonance
frequencies ν of the order of 10 GHz this implies that T must be much smaller
than 0.5 K. In order to meet this condition, all experiments for this thesis were
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CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS 6

Figure 2.1: The basic building blocks of cQED experiments: a superconducting
co-planar waveguide resonator (light blue) and a charge qubit (green). The
superconductors are deposited on a dielectric such as sapphire and measured
near 20 mK in vacuum. The pink curves and arrows represent the distribution
of electric �eld produced by the 1st harmonic of the resonator that couples to
the charge qubit in the center. As explained in [Blais04], the system can be
well modeled as the lumped element circuit shown in dark blue and green. Note
that in the experiments here the qubit is placed near the end of the resonator
so that it couples to the fundamental mode. The �gure is from [Blais04].

performed in a dilution refrigerator with a base temperature of approximately
30 mK.

There are several papers and thesis from various groups in the �eld that
discuss and derive detailed properties of cQED experiments [Blais04, Girvin09,
Koch07, Schuster07]. This section therefore only presents the models and re-
sults that are most directly relevant to dispersive qubit measurements and the
experimental setup shown in Figure 4.1. The interested reader is directed to
the referenced material for more details and derivations.

2.1 Transmission Line Resonator

The transmission line resonator shown in Figure 2.1 consists of a coplanar waveg-
uide with constant 50 Ω impedance everywhere except at the ends where the
center pin has gaps. These gaps, referred to as input and output capacitors, act
as mirrors due to the impedance mismatch and de�ne the physical length and
therefore�together with the phase velocity�also the electrical length of the
resonator for any given wavelength. At wavelengths where the electrical length
is an integer or half integer, the re�ections from the capacitors form standing
waves inside the resonator. This is very similar to the standing waves that form
in coaxial cables between (un)intentional impedance mismatches.

Each such mode of electromagnetic radiation in the resonator can be thought
of as a harmonic oscillator with the �eld quadratures of the radiation corre-
sponding to the position and momentum of a mechanical oscillator. As shown
in standard quantum optics text books, it is also possible to use this analogue
to treat each mode quantum mechanically and call the quantized excitations
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photons [Scully97]. In the remainder of this thesis only the fundamental mode
at ωr/2π ≈ 7.17 GHz will be considered since interactions with the qubit at
ω01/2π ≈ 6.13 GHz become weaker with increasing frequency detuning.

Mathematically, the evolution of an isolated resonator mode is described by
a Hamiltonian

Hr = ~ωra†a (2.1)

where a and a† are the lowering and raising operators for the mode and obey[
a, a†

]
= 1. The basis that diagonalizes this Hamiltonian is called the Fock

basis {|n〉 |n ≥ 0}, where the energy quanta n are called photons. The lowering
operator acts on the Fock basis states in the usual way:

a |n〉 =

{
n |n− 1〉 if n > 0

0 if n = 0.

One can also de�ne the quadrature operators

x =
a† + a

2
, y = i

a† − a
2

which obey [x, y] = i/2 and are proportional to the quadratures of the electric (or
magnetic) �eld produced by the mode. These quadratures can also be de�ned
with an arbitrary overall phase φ by replacing a by eiφa in the de�nitions above.

The lowering operator is often called the mode operator because coherent
states

|α〉 = e−|α|
2/2

∞∑
n=0

αn |n〉 /
√
n!

are eigenstates of a and coherent states are the closest analogue to classical
states in the sense that both x and y have equal and minimal uncertainty around
their expectation values. Furthermore, these expectation values are the real and
imaginary parts of 〈a〉 = 〈x〉+ i 〈y〉 = α.

Finally, the coupling of the resonator to the outside world is ideally only due
to the capacitive coupling to the transmission lines connected to the ends of the
resonator. By making the capacitors highly asymmetric�as is the case for the
experiments in this thesis�one of the capacitors can be considered an input
and the other an output capacitor. The much larger output capacitor causes
much stronger coupling to the transmission line modes which ensures that the
photons leaking out of the cavity at rate κ mostly go to the paramp rather than
the attenuators connected to the input. On the input side the low coupling is
not a problem because the input signals are known coherent signals that can
be made essentially arbitrarily strong. Details of the modes in the semi-in�nite
transmission lines and the so called input-output theory that relates them to the
resonator mode are discussed in Chapter 3 on parametric ampli�cation. For a
more complete review of transmission lines, resonators, and input-output theory
see the online appendices of [Clerk10].
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2.2 Transmon

The qubit used in the experiments is called a transmon and it consist of two su-
perconductors connected by a Josephson junction with Josephson energy EJ and
a large parallel capacitance that makes the charging energy EC small compared
to EJ [Koch07]. More precisely, EJ (φext) is the e�ective Josephson energy of a
small SQUID loop formed by a pair of junctions and it can be tuned between
the sum and di�erence of the two individual Josephson energies by adjusting
the magnetic �ux φext threading the SQUID loop. This allows tuning of the
qubit transition frequency from close to zero to a maximum design value set by
the maximum EJ (φext = 0) as seen below. More detailed explanation of all the
features described below can be found in [Koch07], which originally introduced
the transmon.

Ignoring coupling to other systems, this system of two superconductors can
be described by a Hamiltonian of the form

Hq = −4EC (n− ng)− EJ (φext) cos (ϕ) (2.2)

where EC � EJ is the charging energy set by the large capacitance, ng is an
o�set charge determined by surrounding electric �elds, n is the operator for the
number of cooper pairs, and ϕ is the operator for the gauge invariant phase
di�erence across the e�ective junction. The �rst two transition energies found
by solving this Hamiltonian are

ω01 ≈
√

8ECEJ (φext)− EC + δC01 (ng)

ω12 ≈ ω01 + α+ δC12 (ng)

where α ≈ −EC within about 20 % for EJ/EC ? 15 and δCij (ng) is referred to
as charge dispersion for the i→ j transition. What is special about the transmon
compared to its predecessor called Cooper Pair Box (CPB) is that |δCij (ng)|
decreases exponentially as EJ/EC is increased and therefore the transmon can
be made insensitive to low frequency stray electric �elds.1 This is important
since ng typically cannot be controlled accurately in solid state systems and
�uctuations in ω01 set the dephasing time of the qubit. On the other hand
EC also sets the anharmonicity α�and therefore the minimum pulse length
required for addressing only the |0〉 → |1〉 transition�so evidently there is a
compromise to be made. Fortunately, α scales only linearly while |δCij (ng)|
scales exponentially with EC so a good compromise can usually be found.

For cQED another crucial feature of the transmon is its strong electric dipole
moment at microwave frequencies that allows strong coupling to the oscillating
electric �eld of the resonator when placed between the center pin and the ground
plane, as shown in Figure 2.1. This is in spite of the fact that the charge dis-
persion terms�and therefore the DC dipole moment�are exponentially small.
This can be understood from the fact that the eigenfunctions of the Hamiltonian

1In fact the CPB is described by the same Hamiltonian but it is operated in the EC � EJ

regime where only two eigenstate of the number operator n are relevant.
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in Eq. 2.2 are in fact highly sensitive to ng but in such a way that the spacing
of their corresponding eigenvalues stays nearly constant. This means that fast
changes in ng�as produced by high frequency photons in the resonator�indeed
cause transitions between qubit states while adiabatically changing ng does not
lead to dephasing (or transitions).

An important practical consideration for current experiments is that due to
strong interactions with the environment the qubit spontaneously relaxes from
|e〉 to |g〉 on a typical time scale of T1 ∼ 100 ns . . . 10µs. Due to a combination of
the charge insensitivity of the transmon and the short T1 times, the dephasing
time T ?2 that describes how long superpositions of |e〉 and |g〉 stay coherent is
typically limited by the theoretical limit 2T1 [Houck09]. The cause of the short
relaxation time is not well understood but a recent discovery of reproducible
relaxation times of tens of microseconds in an equivalent but three dimensional
setup have shown that the current limitations are at least not intrinsic to the
Josephson junctions themselves [Paik11].

2.3 Jaynes-Cummings Model

The traditional Jaynes-Cummings model describes the coupling of a two-level
system to a single resonator mode. However, due to the small anharmonicity α
of the transmon it is essential to use at least a three level system to quantita-
tively predict the e�ects of the coupling. Hence a generalized Jaynes-Cummings
Hamiltonian will be used here [Koch07]:

H = ~
∑
j

ωj |j〉 〈j|+ ~ωra†a+ ~
∑
i,j

gi,j |i〉 〈j|
(
a+ a†

)
where gi,j = 2βeV 0

rms 〈i |n| j〉 ,

β is a ratio of capacitances set by geometry, and V 0
rms is the root-mean-square

of the voltage produced by a single photon. This Hamiltonian is obtained by
adding Hr and Hq from Eqs. 2.1 and 2.2 together with a dipole interaction
term 2βV 0

rmsn
(
a+ a†

)
that couples the voltage operator of the resonator mode

and the charge operator of the qubit.
For this thesis the relevant parameter regime is the dispersive one where

hybridization of the qubit and resonator states is small. More precisely, in the
dispersive regime the detuning ∆ = ωij − ωr of the qubit transition frequency
ωij = ωj − ωi from the resonator frequency ωr must be large compared to the
magnitude of the interaction term for the transition 0 → 1 and 1 → 2. For
a coherent or Fock state the magnitude of the interaction term is set roughly
by gij

√
〈n〉. Furthermore, since g12 ≈

√
2g01, the requirement for the valid-

ity of the dispersive approximation is often expressed as 〈n〉 � ncrit, where
ncrit ≡ ∆2/4g2

01 [Blais04]. If this is the case, the system is well described by the
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dispersive Hamiltonian

H =
~ω′01

2
σz + ~ (ω′r + χσz) a

†a (2.3)

χ ≡ g2
01

∆
− 1

2

g2
12

∆ + α

where σz ≡ (|1〉 〈1| − |0〉 〈0|) /2 and the interaction has led to Lamb shift type
renormalization of the qubit frequency ω′01 = ω01 + g2

01/∆ and the resonator
frequency ω′r = ωr − g2

12/2 (∆ + α), as well as an interaction term ~χσza†a.
What is special about this regime is that the interaction term commutes with
both the qubit and resonator parts of the Hamiltonian and therefore does not
mix the qubit and resonator states.2 As described later, this has an important
e�ect on the nature of the qubit measurement that can be performed using this
interaction.

2More precisely the interaction term does not mix the already slightly hybridized qubit
and resonator states with the renormalized frequencies. These states are known as dressed
states.



3
Parametric ampli�cation

A parametric oscillator has an externally modulated system parameter, e.g. a
string with periodically varying tension or an LC oscillator with a periodically
varying L (t). Such external parametric pumping can transfer energy into or
out of the system like external forcing of a regular damped harmonic oscillator.
However, while the response of a regular forced oscillator is linear in di�erent
forcing terms, a parametric oscillator responds non-linearly to the combination
of parametric pumping, regular external forcing, and initial oscillations. In
particular, the parametric pumping transfers energy into existing oscillations in
one quadrature of oscillations at half of the pump frequency and can therefore
be used for ampli�cation of this signal quadrature.

When a parametric oscillator is used as an ampli�er, the input signal appears
as an additional external forcing term that the oscillator should be sensitive to
while still absorbing energy from the parametric drive. This is indeed the case in
a certain regime of parametric drive power as will be sketched mathematically in
this section. However, it is also conceptually useful to think of the parametric
drive as acting like an e�ective negative damping force that competes with
the real damping. Once the negative damping becomes stronger than the real
damping, the zero amplitude state of the resonator becomes unstable and the
system bifurcates. In this high parametric drive regime the initial conditions
determine which of the two bistable states the oscillator will reach.1 In this
picture, one can de�ne the time averaged amplitude as an order parameter and
think of the parametric oscillator as undergoing a second order phase transition
as the strength of the parametric drive relative to the damping is increased.
It is then clear from general properties of second order phase transitions that
the system should act like an ampli�er near the bifurcation point since the
susceptibility to external perturbations near a critical point always diverges.

1This is called �spontaneous symmetry breaking� because the system steady state violates
the symmetry of the Hamiltonian. Only two stable steady state solutions emerge because
the parametric drive acts as negative damping only for oscillations in one quadrature, for the
other quadrature it in fact acts like additional positive damping.

11
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Figure 3.1: Paramp based on a non-linear cavity with Kerr constant K. The
lower left component is a circulator that separates the paramp input and output
with roughly −20 dBm leakage in the undesired direction. The component in the
middle is a 20 dBm (→ ηDC = 0.01) directional coupler that adds the pump tone
α to the paramp input and subtracts it from the output for an appropriately
chosen φc. This is helpful for minimizing leakage of the strong pump tone
into the input port as well as for preventing saturation of other ampli�ers in
the detection chain. The upper left component is an isolator that provides an
additional 20 dB of isolation between the input and the strong pump tones. The
(distributed) large attenuators provide thermal isolation and dissipate the pump
power leaving the directional coupler.

Furthermore, the correlation time of the �uctuations also diverges which implies
that the bandwidth in which the oscillator responds to external perturbations
also vanishes near the bifurcation point.

3.1 From Kerr Nonlinearity to Squeezing

The quantum mechanical model of a paramp based on a resonator with a Kerr
non-linearity is shown in Figure 3.1. The parametric oscillator in this model is
the fundamental resonator mode A, which has a resonance frequency ω0 that
can be modulated using the Kerr e�ect and a large amplitude pump tone.2 The
additional components shown in Figure 3.1 are there for technical reasons as
discussed in Appendix A.

Quantum mechanically the Kerr e�ect is described by a four-photon term in
the Hamiltonian Hr for the fundamental resonator mode:

Hr = ~ω0A
†A+

~K
2
A†A†AA (3.1)

2The dependence of the refractive index n = n0 + n2E2 on electric �eld is called the Kerr
e�ect [Scully97]. Note that the E2 dependence implies that the parametric drive indeed occurs
at twice the resonator frequency even though the pump tone is at the resonator frequency.
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where A is the lowering operator of the resonator mode and where the Kerr
constant K < 0 arises naturally in superconducting transmission line resonators
from the non-linear kinetic inductance of the Cooper pairs [Yurke06]. In addi-
tion, the magnitude of the non-linearity can be greatly increased and the reso-
nance frequency ω0 made tunable by incorporating pairs of parallel Josephson
junctions in the center conductor of the resonator and controlling the mag-
netic �ux through these so called SQUID loops. This and very similar type of
parametric ampli�ers were recently used in [Eichler11] and [Vijay11]. Similar
Josephson junction based ampli�ers were also studied already much earlier by
Yurke [Yurke89, Yurke96].

How the Hamiltonian in Eq. 3.1 leads to parametric ampli�cation as well as
the e�ect of internal cavity losses is described in detail in [Yurke06]. Here an
alternative simpler inspection of the steady state behavior of a lossless resonator
is presented to convince the reader of the feasibility of using the system as
a paramp. Furthermore, only the so called degenerate mode of operation is
examined where the signal is exactly at the pump frequency and only one signal
quadrature is ampli�ed. This is not only theoretically simpler than the non-
degenerate mode but also practically the more relevant case for single qubit
measurements.

Consider the case of the resonator mode A being capacitively coupled to a
continuum of transmission line modes. Also assume that the transmission line
modes in steady state are described by

|ψtl (ω)〉 =

{
N
[
D
(
αe−iωt

)
|0〉ω + |δ (ω)〉

]
if ω = ω̃0

N [|0〉ω + |δ (ω)〉] otherwise

where |0〉ω is the ground state of mode ω, D (α′) = exp
(
α′a† − (α′)

?
a
)
displaces

the ground state to a coherent state α′,
´
dω 〈δ (ω) |δ (ω) 〉 � 1, and N ≈ 1 is a

normalization coe�cient. In other words, a sharp mode at the pump frequency
ω̃0 is mostly in a large amplitude coherent state αe−iω̃0t while other modes are
mostly in their ground states, except for small �uctuations |δ (ω)〉.

Let a† (ω) and a (ω) be the raising and lowering operators for the continuum
of transmission line modes. As bosonic operators they obey

[
a (ω) , a† (ω′)

]
=

δ (ω − ω′). Later it will also be convenient to consider the set of displaced mode
operators

δa (ω) = a (ω)− δ (ω − ω̃0)Nαe−iωtI (ω)

where I (ω) is the identity operator on mode ω and will be absorbed into α from
now on. These displaced operators also satisfy

[
δa (ω) , δa† (ω′)

]
= δ (ω − ω′)

and are independent of the pump in the sense that they act only on the �uctu-
ations |δ (ω)〉. More precisely,

ˆ ω+ε

ω

dω′ 〈ψtl (ω′) |δa (ω′)|ψtl (ω′)〉 =

ˆ ω+ε

ω

dω′N2 〈δ (ω′) |a (ω′)| δ (ω′)〉 ∀ω, ε

and similarly for other normally ordered moments involving δa (ω) and δa† (ω).
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The Hamiltonian for the combined system including the interaction between
the resonator mode and the transmission line is

H =Hr +Ha +Hint (3.2)

where Ha =

ˆ
dω~ωa† (ω) a (ω)

and Hint =

ˆ
dω~
√

2πκ
[
A†a (ω) + H.c.

]
.

Note that A is dimensionless but a (ω) has units of
√

Hz
−1

and therefore κ has
units of Hz. The factor of 2π is added so that κ correspond to that used in most
cQED papers, e.g. [Blais04].

The Hamiltonian in Eq. 3.2 together with the speci�ed state of the transmis-
sion line modes leads to driving as well as damping of the resonator mode. Hence
it is reasonable to assume�and is veri�ed later�that the steady state of the
resonator mode is a large amplitude coherent state βe−iω̃0t with additional small
�uctuations around this value described by the operator δA ≡ A − βe−iω̃0tI,
where β ∈ C and I is identity and will be absorbed into β. In terms of δA the
resonator Hamiltonian is

Hr =~ω̃0δA
†δA+

~K
2

(
β2δA†δA†e−2iω̃0t + H.c.

)
+ ~

(
ω0 +

K

2
|β|2

)(
βδA†e−iω̃0t + H.c.

)
+ C0 +O (|β|)

if we set the pump frequency to ω̃0 = ω0 + K |β|2 and lump all constant
terms into C0 ∈ RI. The terms on the last line can be ignored as con-
stant or small and the term on the second line can be thought of as an addi-
tional β dependent classical drive H ′int (β) =

(
~Ω′ (β) δA†e−iω̃0t + H.c.

)
, where

Ω′ (β) ≡
(
ω0 + K

2 |β|
2
)
β. Hence the four photon Kerr term of Eq. 3.1 combined

with a strong coherent drive is seen to �nally result in the standard squeezing
Hamiltonian for the �uctuations:

Hr −H ′int (β) = ~
~ω′01

2
σz + ~ (ω′r + χσz) a

†aω̃0δA
†δA+~

λ

2

(
e2iφδÃ†δÃ†e−2iω̃0t + H.c.

)
where λ ≡ K |β|2 and φ = arg β.

3.2 Input-Output Relations and Gain

The Heisenberg equations of motion for the Hamiltonian in Eq. 3.2 are
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dA

dt
=

1

i~
[A,H]

=
1

i~
[δA,Hr] + i

√
2πκ

ˆ
dωa (ω)

da (ω)

dt
=

1

i~
[a (ω) , H] +

∂

∂t
a (ω)

= −i (ω − ω0) a (ω)− i
√

2πκA.

These equations are solved in the so called input-output theory of Gardiner
and Collett[Gardiner85].3 The idea is to write the above di�erential equations
in integral form and solve for A (t+ ∆t) − A (t) for an interval ∆t, which is
small enough to assume the change in A to be small but also large enough to
make the Markov approximation that κ (ω) is constant in the relevant frequency
band. A particularly thorough discussion of the details of the calculation and
the associated approximations is found in [Cohen-Tannoudji98] in the similar
derivation of the master equation for the reduced density matrix of a resonator
mode. Here the result from [Gardiner85] is used without proof to write down
the equation that governs the damped, driven, and squeezed evolution of the
intra-cavity �eld:

dA

dt
=

1

i~
[A,Hr]−

κ

2
A−
√
κain (t) (3.3)

Here κ describes the rate of photon decay from the resonator and ain (t) is the
�eld incident at the resonator input at time t due to the superposition of all the
bath modes as de�ned by

ain (t) =
1√
2π

ˆ ∞
0

dωe−iω(t−t0)a (ω, to) . (3.4)

Note that ain (t) is fully determined for all time t by initial conditions of the
bath modes at some early time t0. Similarly, one can de�ne an output �eld

aout (t) =
1√
2π

ˆ ∞
0

dωe−iω(t−t1)a (ω, t1) (3.5)

which is fully determined by �nal conditions of the bath modes at some late
time t1. Taking advantage of the time reversal symmetry of the system the two
can also be related to each other by

aout (t) = ain (t) +
√
κδA (t) . (3.6)

Only the deviations of the input and output �elds from the pump �elds are
relevant for ampli�cation. These deviations are described by δain/out (t) and are
de�ned exactly as ain/out (t), except that a (ω) is replaced by δa (ω) everywhere

3See also [Walls94] or the online appendices of [Clerk10] for a helpful review of input-output
theory.
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in Eqs. 3.4, 3.5, and 3.6. Rewriting Eq. 3.3 in terms of δA and δa (ω) then
�nally gives the desired equation of motion for the intra-cavity �uctuations:

dδA

dt
=

1

i~
[δA,Hr −H ′d]−

κ

2
δA−

√
κδain (t)

+

[
−iΩ′ (β) + iω̃0β −

κ

2
β −

√
κ

2π
Nα

]
e−iω̃0t

where the term on the second line corresponding to driving must vanish for the
assumed steady state. This is indeed the case if(

i
K

2
|β|2 +

κ

2

)
β = −

√
κ

2π
Nα.

The remaining terms in the Hamiltonian then describe the squeezed, damped,
and driven dynamics of the �uctuations:

dδA

dt
= −iω̃0δA+ λei(2φ−π/2)δÃ†e−2iω̃0t − κ

2
δA−

√
κδain (t) (3.7)

Solving Eq. 3.7 and the equivalent equation for δA† in steady state gives

δX (φ) =
2
√
κ

2λ− κ
δxin (φ)

δY (φ) = − 2
√
κ

2λ+ κ
δyin (φ)

where δX (φ) ≡ ei(φ−π/4)δA† + e−i(φ−π/4)δA√
2

and δY (φ) ≡ ie
i(φ−π/4)δA† − e−i(φ−π/4)δA√

2

and δxin/out (φ) and δyin/out (φ) are the analogously de�ned quadrature opera-
tors, referenced to the pump phase φ. The solutions show that the resonator re-
sponds more and more strongly to δxin (φ) and less and less strongly to δyin (φ)
as the pump strength λ approaches κ/2. At 2λ = κ the response to δxin (t) di-
verges, which corresponds physically to the bifurcation point where two steady
state solutions begin to emerge.

For ampli�cation the quantity of most direct interest is the output �eld,
rather than the intra-cavity �eld found above. Fortunately, Eq. 3.6 allows the
output �eld to be determined from the intra-cavity �eld δA and the input �eld
δain. The result is:

δxout (φ) =
√
Gδxin (φ)

δyout (φ) =
1√
G
δyin (φ)

where G = [(2λ+ κ) / (2λ− κ)]
2
is the gain in power for the ampli�ed quadra-

ture [Clerk10].
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Figure 3.2: Experimentally measured power gain G versus signal frequency
curve for a pump frequency of 7.1634 GHz (gray vertical line). Note that the
gain bandwidth product is roughly

√
GD = 200 × 50 MHz, which exceeds the

theoretical prediction κp/2 ≈ 600 MHz by more than an order of magnitude.
The dependence on input power is shown in Figure 3.3.

This mode of operation where one signal quadrature is ampli�ed while the
other is squeezed is called degenerate parametric ampli�cation.4 Note that with-
out the addition of additional noise�as is the case in non-degenerate parametric
ampli�cation�the squeezing of the other quadrature is required by the Heisen-
berg uncertainty relation. Mathematically the uncertainty relation is enforced
by the requirement that both the input and output modes obey the bosonic com-
mutation relations [xout (φ) , yout (φ)] = [xin (φ) , yin (φ)] = 1. See [Clerk10] for
a detailed discussion of this and other topics on limits of quantum measurement.

3.3 Gain-Bandwidth Product

So far only the steady state behavior of the paramp has been considered. This
on its own does not say much about the expected performance in qubit mea-
surements where the microwave signal is correlated with the initial qubit state
only for a short time due to qubit relaxation. In order to quantify how quickly
the paramp can respond to changes in the input signal one needs to know the
bandwidth over which signals are ampli�ed. This can be done by Fourier trans-
forming Eq. 3.3, which results in a frequency dependent gain for the di�erent
frequency components. The bandwidth over which the gain is appreciable in this
simple model is D = κ/2

√
G [Clerk10]. The fact that the product of the band-

widthD and the amplitude gain
√
G is �xed by the decay rate κp/2π ≈ 200 MHz

explains why a low quality factor was chosen for the paramp resonator.

4Other common terms for this mode of operation are phase sensitive and phase non-
preserving ampli�cation. The corresponding terms for the opposite case where both quadra-
tures are ampli�ed equally are non-degenerate, phase insensitive, and phase preserving am-
pli�cation.
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In practice, however, the measured gain versus signal frequency curve sub-
stantially deviates from this prediction at many bias points as shown in Figure
3.2. Neither the observed shape, the large bandwidth, nor the fact that the
added noise remains low can be explained by the simple model presented here,
in [Clerk10], or in [Yurke06]. In fact, Yurke already observed a similar gain
curve in 1996 in a Josephson junction based microwave ampli�er and made sim-
ilar remarks about the unexpectedly large gain-bandwidth product [Yurke96].
Finally note that at other bias points�namely when little external magnetic
�eld is applied through the SQUID loops to tune the bare resonance frequency
ω0�the gain curve does have the expected shape with roughly the expected
gain-bandwidth product.

3.4 Dynamic Range

The limited dynamic range of input signal powers that the paramp can amplify
was overlooked so far. It is clear that the range is limited since the system
is already near the bifurcation point and a signal that is too strong will act
as an additional pump tone that pushes the system into the bistable regime.
An example of the saturation of the output power versus input signal power is
shown in Figure 3.3, which shows a reduction of 1 dB in gain at 〈n〉 ≈ 50 and
saturation of the output power at 〈n〉 ≈ 200.5 Here 〈n〉 translates to a power in
absolute units according to 〈n〉×κsource×~ωsignal, which is the power radiated
by a resonator in a coherent state with a decay rate κsource ≈ 2π × 4.5 MHz
and mean photon number 〈n〉 at frequency ωsignal/2π = 7.166 GHz. 〈n〉 is
the relevant scale here since these are the parameters of the resonator that the
measured qubit was coupled to.

5The so called 1 dB compression point is a standard measure for linearity.
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Figure 3.3: Dynamic range of the paramp at ωsignal/2π = 7.166 GHz and the
same pump settings as in Figure 3.2, i.e. G = 23 dB and 50 MHz bandwidth.
(left) Dependence of output power on the input power on a log-log plot. Output
power is in arbitrary units and the input power is expressed as the mean photon
number that relates to the power as Pin = 〈n〉×κsource×~ωsignal with κsource ≈
2π × 4.5 MHz. Blue points are measurements, red line is a �t to the �rst eight
points. (right) Di�erence between the linear �t and the measurements showing
1 dB compression in gain at 〈n〉 ≈ 50.



4
Dispersive Measurement

The interaction term in Eq. 2.3 can be thought of as a qubit state dependent
shift χσz on the resonance frequency ω

′
r, as suggested by the choice of factoring.

The qubit state can therefore be inferred by measuring the transmission through
the resonator at some frequency ωm. Since the interaction term commutes with
the qubit Hamiltonian, the qubit will stay in the measured state inde�nitely in
the absence of additional relaxation mechanisms that make T1 <∞. This is why
the measurement is called quantum non-demolition (QND), which means that
the measurement projects the qubit to a stationary state with respect to the
ideal Hamiltonian and does not cause further qubit transitions [Clerk10]. This
means that in the absence of relaxation, repeating the measurement always
returns the same value as the initial measurement.

This section discusses what kinds of noise a�ect the measurement and what
choices related to measurement pulse shapes and �ltering of the output signal
must be made. The simplest case of a noisy binary signal and phase-insensitive
measurement with in�nite bandwidth has already been discussed in detail in
[Gambetta07]. This section presents some of those results but for practical
application of the results it is necessary to also understand the unavoidable
e�ects of analog �ltering of the signal due to the resonator and the phase-
sensitive �nite bandwidth detection chain. The ensemble averaged e�ects of the
resonator have been calculated and experimentally measured in [Bianchetti09]
for continuous and step pulse measurements. Here the emphasis will be on the
character of the mean amplitude in single shot traces and on the use of a two
step measurement pulse that minimizes the signal rise time. These aspect are
relevant when the signal-to-noise ratio is large enough that qubit decay starts
to dominate the measurement errors before the signal reaches its steady state
amplitude.

The experimental setup used for the measurements is shown in Figure 4.1
and the numerical values of the parameters are listed in Table 4.1. The values
for the qubit-resonator system are typical for current cQED experiments, except

20
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cQED
Value

parameter

ω′r/2π 7.1655 GHz
κ/2π,1/κ 4.5 MHz, 35 ns
ω′01/2π 6.2750 GHz
α/2π 450 MHz

|δC01| /2π 140 kHz
g01/2π 76 MHz
χ/2π 2.2 MHz
ncrit 34
T1 300± 10 ns
T ?2 610± 20 ns

Paramp parameter Value

ωpump/2π 7.1634 GHz
G 23 dB

3 dB bandwidth 50 MHz
1 dB compression

20× κ× ~ωpumppoint
Added noise ∼ 2− 3 photon/s/Hz

Table 4.1: Numerical values of the most important sample parameters. De�ni-
tions are given in the text.

for the low T1. The values for the paramp on the other hand are extraordinary
compared to commercial HEMT ampli�ers which have a large bandwidth but
add at least 20 photons/s/Hz of classical noise into the signal.

4.1 Signal to Noise Ratio

Consider an output mode aout (t) that is in a coherent state |α (t)〉 but α (t) is
unknown. The signal to noise ratio (SNR) then describes how quickly one can
reliably determine α (t) by measuring aout (t). The de�nition is:

SNR (t) =

∣∣∣ 1√
T

´ t+T
t

dt′α (t′)
∣∣∣2〈∣∣∣ 1√

T

´ t+T
t

dt′ [aout (t′)− α (t′)]
∣∣∣2〉 (4.1)

where aout (t) is the measured noisy signal.1 Here the numerator corresponds to
the integral of the coherent part of the signal amplitude while the denominator
is a measure of the variance in the integrated signal due to noise. The �uctu-
ations in the measured values aout (t) are always at least as strong as the so
called vacuum �uctuations required by quantum mechanics but they typically
also include classical non-Heisenberg noise, which is introduced by imperfect
components but is in principle avoidable.2

Because they are both unavoidable and spectrally white, the vacuum �uctu-
ations also provide a useful scale for expressing the total noise present in aout (t).

1In general, one can also apply more complicated �lter functions than the box car �lter
in Eq. 4.1 in order to increase the SNR for speci�c types of noise and speci�c types of time
varying signals.

2The vacuum �uctuations can also be squeezed so that they are small in one quadrature
and large in the other but this is not the case for the signal sources relevant here.
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Figure 4.1: Experimental setup. The qubit (green) is coupled to a transmission
line resonator (blue) at a base temperature of 30 mK. The qubit and resonator
can be excited independently via two input RF lines. In the simpler step pulse
measurements, only the qubit line is connected to an IQ mixer that up-converts a
pulse generated by an arbitrary waveform generator (AWG) while the resonator
input can only be turned on and o�. The resonator output is connected to
a paramp, described separately in Figure 3.1. The attenuators and isolators
are necessary to prevent thermal radiation leaking in via the cables. At room
temperature the signal is down-converted using an IQ mixer and digitized using
an analog-to-digital converter (ADC). The sampled signal is then processed
digitally (DSP) and �nally reduced to a single bit indicating the best guess
for the initial qubit state. Note that in measurements with more complicated
measurement pulses the resonator input is also connected to an up-converting
IQ mixer and an AWG.
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In particular, the 1/
√
T normalization chosen for the integrals in Eq. 4.1 makes

the denominator for a pure coherent state |α (t)〉 exactly one, independent of T .
For example for the vacuum state |0〉:〈

0

∣∣∣∣∣∣
∣∣∣∣∣ 1√
T

ˆ t+T

t

dt′aout (t′)

∣∣∣∣∣
2
∣∣∣∣∣∣ 0
〉

=
1

T

〈
0

∣∣∣∣∣
ˆ t+T

t

dt′
ˆ t+T

t

dt′′δ (t′ − t′′)

∣∣∣∣∣ 0
〉

= 1

The numerator on the other hand grows linearly with T and corresponds to a
power in units of photons. Therefore the noise added by the vacuum �uctuations
is de�ned as 1 photon/s/Hz = 1 photon. This also implies that SNR goes to zero
for T → 0 and vice versa for T → ∞ regardless of the strength α > 0 of the
signal.

It is important to realize that the degradation of SNR due to ampli�ers is
determined largely by the �rst ampli�er since the noise added by later (good)
ampli�ers does not scale with the signal power they receive. Therefore, relative
to the ampli�ed initial noise in the signal, the noise contribution of the second
ampli�er is scaled by 1/G1, where G1 is the power gain of the �rst ampli�er.
Another contribution to SNR comes from the damping of the signal before it
reaches the �rst ampli�er but, in practice, this is usually di�cult to distinguish
from added noise and can instead be thought of as a renormalization of the noise
added by the ampli�ers. However, in some cases it is important to realize that
damping treats classical and vacuum �uctuations di�erently since the former
can be damped while the latter cannot.

4.2 Steady State Response

Let us begin with the case of in�nite T1 and a measurement pulse at frequency
ωm with an amplitude envelope iεm (t) /κ. As stated in Section 2.3, the res-
onator Hamiltonian is

Hr = ~ (ω′r ± χ) a†a

depending on the qubit state. The expectation value α (t) ≡ 〈a (t)〉 of the
intra-cavity �eld then evolves according to Eq. 3.3:

dα (t)

dt
= −i (ω′r ± χ)α (t)− κ

2
α (t)− i εm (t)√

κ
eiωmt.

where εm (t) ∈ C is the envelope of the measurement pulse used to drive the
resonator. In a frame rotating at the measurement frequency ωm this becomes:

dα (t)

dt
= i (∆mr ∓ χ)α (t)− κ

2
α (t)− iεm (t) (4.2)

where ∆mr = ωm − ω′r. This describes the response of a classical damped
harmonic oscillator at frequency −∆mr ± χ to a driving signal iεm (t). The
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expectation value of the output signal is given by the solution to this equation
and Eq. 3.6. Alternatively, one can Fourier transform the above equation and
see that αout (t) = 〈aout (t)〉 consists of εm (t) �ltered by a Lorentzian �lter
centered at ∆′mr = ∆mr ∓ χ with FWHM of κ:

αout (ω) ≡ F [αout (t)] =

√
κεm (ω)

∆′mr − ω + iκ2
. (4.3)

Now consider the response of this system to a step measurement pulse
εm (t) = εmθ (t). After a few resonator decay times 2/κ the resonator reaches
steady state and the SNR is determined by two factors. First, the magnitude
of the signal is determined by the di�erence of the mean steady state values
αg and αe of the transmitted coherent signals corresponding to the ground and
excited states of the qubit. This is set on one hand by the phase di�erence
arg (αe/αg), which depends on ∆′mr/κ, and the amplitude, which�according
to Eq. 3.5�depends on the intra-cavity amplitude and κ. The phase di�erence
is maximized by choosing ωm = ω′r as can be seen by plotting the phase of the
transmitted signal

arg (T ) = arg

(
1

∆′mr − iκ

)
where T is the transmission coe�cient for a Lorentzian �lter. Note that the
amplitude of T is not directly relevant as lower transmission can be compensated
by a stronger drive amplitude εm.

3 Instead the signal amplitude is limited
on one hand by the limited dynamic range of input powers that the paramp
can handle shown in Figure 3.3, and on the other hand by the limited intra-
cavity occupation allowed by the dispersive approximation, which requires that
∆ � gij

√
〈n〉. For the parameters used in these experiments the best results

were obtained for 〈n〉 ∼ 20, which is of similar magnitude as both limits and it
is not clear whether one of them dominates the other.

The second factor in the SNR is the magnitude of the noise determined by
the averaging time T . As described previously, in the limit T → ∞ the SNR
diverges and therefore the qubit could be measured with arbitrary precision for
any |αe − αg| > 0. In practice, however, a limited T1 implies that after some
jump time τJ with statistics e−τJ/T1/T1 the signal no longer re�ects the original
state of the qubit if it was initially in the excited state. In order to maximize
the �delity between the output signal and the initial qubit state it is therefore
necessary to choose a T that balances the derivatives of the contributions to
in�delity coming from states misidenti�ed due to relaxation and those due to
noise around the correct mean value. This intuition is con�rmed by the theo-
retical results in [Gambetta07] that show that for low SNR the timescale of the
optimal linear �lter (i.e. weighted average) is given by T1, while for higher and
higher SNR the �lter gives more and more weight to the early values.

Despite initial optimism in [Blais04] and [Gambetta07], high �delity disper-
sive single-shot measurements have not been demonstrated experimentally due

3Strictly speaking the ratio |αe| / |αg | is still relevant but it is reasonable to require that

max
(∣∣〈n〉e∣∣ , ∣∣∣〈n〉g∣∣∣) satis�es the discussed limits on the intra-cavity �eld.
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to limited T1, limited signal power, and the fact that even the best commercial
cryogenic ampli�ers add at least 10 to 20 photons of noise to the signal. Since
it is optimal to integrate for a time similar to T1 in such low SNR situation,
the steady state approach described in this section as well as the instantaneous
jump model in [Gambetta07] are appropriate.

On the other hand, the noise added by the paramp is comparable to the
vacuum �uctuations so SNR can be high enough that the optimal measurement
time is much shorter than T1. Furthermore, the optimal measurement time
can also be similar or short compared to the resonator rise time 2/κ. For
the parameters shown in Table 4.1 and a measurement power corresponding to
〈n〉 ≈ 20 this is certainly the case as can be seen in the measured signals shown
later in Section 4.5. Therefore a more detailed understanding of the initial
resonator dynamics will be necessary to understand the limiting factors on the
measurement �delity.

4.3 Non-Steady State Resonator Dynamics

The average resonator response to a step pulse is calculated and experimentally
measured in [Bianchetti09] for di�erent detunings and di�erent initial qubit
states. This is su�cient for measuring the ensemble averaged 〈σz〉 but for single-
shot readout it is more useful to understand what the individual traces look
like. When the qubit is prepared in the ground state, the response is indeed
well described by the average response plus uncorrelated noise �ltered to a
certain bandwidth, but for the excited state traces this is not the case. When
an excited state is prepared the deviations from the average are biased in a
step like manner, i.e. the signal deviates systematically one way before some
qubit decay time τJ and the opposite way afterwards. If the SNR is low this is
not signi�cant but with the paramp these jumps can in fact be seen as shown
later.4 This is important because it implies that the information density per
unit time for a single measurement trace is not directly proportional to the SNR
calculated for the ensemble averaged signals. More concretely, the SNR reaches
its maximum on a time scale set by T1 but for high �delity measurements there
is little new information to be gained at times much later than T1 log (F ), where
F ≤ 1 is the measurement �delity de�ned precisely later. This is because the
misidenti�ed traces at later times are due to early qubit decay which hence
become unidenti�able from the ground state response on a time scale of 2/κ.

The response to a step pulse in the ideal case T1 →∞ can be calculated by
solving Eq. 4.2 assuming that the resonator is initially in its ground state. The
solution is

αout (t) =
1− e−κt2 ei∆′

mrt

∆′mr + iκ2
εmθ (t)

and is plotted in Figure 4.2 for a qubit state dependent detuning ∆′mr = ±χ.
Evidently, the steady state for any detuning is reached on a timescale determined

4See Figure 4.5 for a sneak peek.
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Figure 4.2: (top) The real (blue) and imaginary (red) parts of the expectation
value of the output �eld of a resonator driven by a step pulse with a qubit state
dependent detuning of ±χ = ±κ/2 (solid/dashed) from the resonator frequency.
The imaginary parts overlap perfectly for the two cases. (bottom) The same
but with the detuning for the dashed (excited state) response switching sign at
t = 2/κ due to qubit decay.

by 2/κ but in addition the o�-resonant cases show ringing at frequency ∆′mr =
±χ. Furthermore, as also noted in [Bianchetti09], the signal in the resonant case
is in one quadrature for all times while in the o�-resonant cases arg (αout (t))
depends on t and the qubit decay time τJ . Note, however, that for the case
∆′mr = ±χ and for times t < τJ the di�erence of the ground and excited state
responses is still only in one quadrature. Since the transients entangled with
the initial qubit state decay after τJ on a time scale of 2/κ in any case, there is
no advantage to choosing a measurement frequency that corresponds to one of
the shifted resonance frequencies, even when using a phase-sensitive ampli�er
like the degenerate paramp.
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4.4 On-Hold Sequence

Observe that the initial gradients of the quadrature signals in Figure 4.2 are the
same. This feature is evidently common to all detunings since ∆′mr contributes
to d

dtα (t) in Eq. 4.2 only together with a factor of α (t), which initially grows lin-
early with iεm. This means that the qubit dependent part of the signal initially
grows only as εmχt

2, which is especially detrimental for measurements with
high SNR where the measurement �delity is limited by qubit decays occurring
at early times τJ .

This observation suggests that it would be useful to populate the resonator
quickly in order to entangle the qubit state faster with the output �eld. This
can be done by prepending the measurement pulse with a strong square pulse
of amplitude εp and width ton. In the limit where ton max (κ, χ) → 0 and
α (0) ≡ −iεpton remains constant, this is equivalent to changing the initial
conditions of the resonator from the vacuum state to the coherent state |α (0)〉,
independent of ∆′mr. Eq. 4.2 implies that the initial di�erence in the gradients
is then

d

dt
αe (0)− d

dt
αg (0) = −2iχα (0) (4.4)

regardless of the detuning ∆mr.
Eq. 4.4 shows that the signal could grow arbitrarily quickly if arbitrarily

large values of |α (0)| were achievable. This is demonstrated in Figure 4.3.
However, the amplitude of the initial state is restricted for the same reasons that
were previously evoked to argue why the steady state amplitude is restricted.
Nevertheless, even when restricting |α (0)| to the ground/excited state steady
state magnitude given by Ag/e = εm/ (∆′mr + iκ/2), the initial scaling of the
information containing part of the signal is improved from quadratic to linear
with a gradient of 2

∣∣Ag/e∣∣χ = 2εm |χ/ (∆′mr + iκ/2)|. This is maximized by
measuring at the bare resonator frequency where ∆′mr = ±χ.

With the amplitude |α0| �xed, a non-trivial choice of the phase of the initial
state still remains. A reasonable goal is to require that

arg

(
d

dt
αe (0)− d

dt
αg (0)

)
= arg (Ae −Ag) .

This condition ensures that the degenerate paramp is able amplify the quadra-
ture of the signal that is entangled with the qubit state both in the short and
long time limits. In fact, if ∆′mr = ±κ is chosen, it is possible to satisfy the
above condition for all t < τJ as was the case for the initially empty resonator.
This can be seen by choosing ε (t) ∈ R and α (0) = −i |Ag|, which makes the
initial conditions and the equations of motion given by Eq. 4.2 for αe (t) and
−α?g (t) identical. This implies that αe (t) and αg (t) at any time t < τJ di�er
only by the sign of the real part as shown in Figure 4.3. This again con�rms
that there is no fundamental disadvantage to using a phase-sensitive ampli�er.

For more complex experiments that continue after the �rst measurement, it
would also be useful to apply an o�-pulse that displaces the resonator back to
the vacuum state on a time scale faster than 1/κ after the qubit state has been
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Figure 4.3: (top) The the real (blue) and imaginary (red) parts of the di�erence
of ground and excited state responses of a resonator driven by a step pulse
at a detuning −κ/2 until τJ = 2/κ when the detuning switches sign due to
qubit decay. The three cases shown correspond to initial states of α (0) ∈
{0,−i |Ag| ,−5i |Ag|} (solid, thick dashed, thin dashed). (bottom) The pulse
envelope εm (t) ∈ R normalized to the steady state value εm (t→ 0) for α (0) =
|Ag|, κton = 0.1, and the values of κ and χ shown in Table 4.1. Note the
di�erent time scales in the plots.
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reliably determined. However, determining the appropriate pulse amplitude and
phase would require feedback from the measurement signal since the state of
the resonator at times t ? 1/χ depends on the qubit state. Such feedback was
not used in this thesis but could be a simple and practically relevant feedback
experiment in the future.

In practice, the approximation that ton max (κ, χ)→ 0 is not necessarily ac-
curate due to the �nite bandwidth of the electronics that generate the input sig-
nals. In the experiments presented here the measurement signal εm (t) eiωmt/κ
was generated using the left sideband of a mixer that was driven by a local oscil-
lator at ωLO = ωm+ωSB , where ωSB/2π = 120 MHz, and a Tektronix AWG5014
arbitrary waveform generator responsible for the I and Q modulation signals. In
this setup the 1.2 GS/s sampling frequency of the arbitrary waveform generator
sets a fundamental upper bound of 600 MHz on the bandwidth of the generated
signals. This means that the rise time of εp (t) is at least some nanoseconds,
which is not completely negligible compared to 1/κ ∼ 1/2χ ∼ 35 ns. This means
that the resonator state will already become entangled with the qubit state dur-
ing the on-pulse. This is not a fundamental problem for the scheme but it means
that the linear scaling of the signal only kicks in on a time scale determined by
ton. Note, however, that even during the on-pulse the drive εm (t) remains real.
Therefore the aforementioned symmetry for the ∆′mr = ±κ case is not violated
and the signal remains in one quadrature.

Finally, note that the measurement pulses used for the data sets analyzed
in this thesis unfortunately only included a modest on-pulse of approximately
twice the amplitude of the hold-pulse and a length of 4 to 10 ns. Due to time
constraints and technical problems with the subsequent samples it was not pos-
sible to investigate in detail how much the �delity could be improved with a
more aggressive on-pulse, such as that shown in Figure 4.3. Nevertheless, even
this modest on-pulse reduced the number of misidenti�ed traces by roughly a
quarter compared to the usual step measurement pulse. Speci�cally, 1− F was
improved from approximately 0.2 to 0.15, where F is the �delity de�ned below
in Eq. 4.5.

4.5 Filtering

The goal of single shot measurement is to map the measurement trace to a single
bit yes or no answer that should be maximally correlated with the initial state
of the qubit. More precisely, the goal here is de�ned as maximizing �delity

F ≡ 1− P (g̃|e)− P (ẽ|g) (4.5)

where g̃ and ẽ indicate the possible answers given by the measurement, g and
e indicate the true initial states of the qubit, and the prior probabilities are
assumed to be P (g) = P (e) = 1/2. The operational meaning of this de�nition
is that the probability of incorrectly identifying the qubit state given no prior
information of it is (1− F ) /2. Maximizing F is therefore a reasonable goal but
one should realize that it is not in general optimal if some prior knowledge of
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the qubit state is available or the goal is to minimize something other than the
total error probability.

Physically, the process of converting the resonator output signal aout (t)
to a single bit answer consists of analog �ltering, sampling of the analog sig-
nal using an analog-to-digital converter (ADC), digital signal processing, and
�nally assignment of the answer based on whether the processed signal ex-
ceeds some threshold sth. Mathematically, this process can be decomposed as
θ (fd ◦ fa (aout (t))− sth), where fa is a functional that maps the resonator out-
put signal to vector of complex numbers and fd is an arbitrary function that
maps that vector to a scalar, which the step function θ �nally maps to a single
bit. Here fa corresponds to the analog �ltering and the signal digitization and
fd corresponds to the digital signal processing. This decomposition is useful
because fa can be described approximately as a phase-sensitive linear �lter of
bandwidth B that is unavoidable and hard to change. The digital signal pro-
cessing fd on the other hand can be speci�cally optimized for �delity and is
limited in complexity only by computational power.

Filtering of dispersive measurement signals is described in theory in
[Gambetta07]. However, there the signal is assumed to consist of Gaussian
white noise around a mean value that jumps instantaneously at the qubit decay
time τJ , hence ignoring the non-zero rise time of aout (t) due to χ <∞, the non-
zero decay time of transients due to κ < ∞, as well as the unavoidable analog
�ltering due to fa. Therefore the �ltering schemes presented in [Gambetta07]
are not directly applicable except in cases where T1 is very long and SNR only
moderate so that the values output by the proposed �lters are not sensitive to
�uctuations on time scales of max (1/κ, 1/B). Since the setup used for the mea-
surements in this thesis have the opposite parameters, it is necessary to take
these physical limitations into account.

This section begins with a discussion of how the raw data digitized by the
ADC looks like and what preprocessing steps are applied to get the data into
standard form before more complicated digital �ltering. Linear �ltering and ex-
perimental data processed by a numerically optimized �lter are then discussed.
Finally, the formally optimal digital �lter is introduced and applied in a simpli-
�ed form.

4.5.1 Analog Filtering and Digital Preprocessing

The raw digitized signal fa (aout (t)) for a single measurement trace consists of a
vector of complex numbers, where the real and imaginary parts of each number
correspond to the quadratures of the analog �ltered signal sampled every 10 ns.
In principle fa has many contributions as shown in Figure 4.1: the paramp
at 30 mK, circulators for thermal isolation, a cryogenic high electron mobility
transistor (HEMT) ampli�er at 4 K, warm ampli�ers at room temperature, a
frequency down converting IQ mixer, cables and attenuators, and �nally the
ADC. In practice, however, fa is dominated by the paramp since it has a much
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smaller bandwidth than all the other components5 and high gain so that the
SNR is dominated by noise at the paramp output. At the end, the e�ect of
fa can therefore be described approximately as a linear �lter with a passband
shown in Figure 3.2.

As explained in Chapter 3, the paramp needs to be pumped at the signal
frequency. Most of this pump contribution is subtracted from the output signal
using a directional coupler and a strong displacement tone as explained in Ap-
pendix A. Nevertheless, a necessary �rst step in the digital signal processing is
to subtract the DC o�set that remains in fa (aout (t)) even when aout (t) is in
the vacuum state. Following this step the data is rotated in the IQ plane so that
the ampli�ed quadrature is aligned with the Q axis because the original angle
is referenced to the arbitrary phase of the local oscillator used in the frequency
down conversion step. The only non-trivial question here is the time scale on
which these quantities should be determined. Here the same rotation angle was
used for all traces taken over several minutes while the DC o�set was updated
with an exponential low pass �lter with a time constant of the order of mil-
liseconds.6 Finally, the digital preprocessing also corrects a technical problem
in the current setup that caused entire sets of traces to be rotated by exactly
±90 or 180 degrees.7 The combined e�ect of these preprocessing steps is shown
in Figure 4.4 for a �xed time and will be considered part of fa from now on.
Furthermore, taking the imaginary part will also be considered part of fa. A
few individual traces and the mean responses after these steps are shown in
Figure 4.5.

4.5.2 Numerically Optimized Linear Filter

A linear digital �lter fd is de�ned by a set of T coe�cients f̃ =
{
f̃i

}
and the

rule:

fd (s (t)) =

t+T−1∑
t′=t

f̃t′−ts (t′) .

In addition
∑
f̃i = 1 is imposed here for consistent normalization of the �ltered

data.
The most straightforward way to �nd the optimal coe�cients f̃ is to numeri-

cally optimize the resulting �delity for a set of sample data points by varying the
o�set time t, the coe�cients f̃ , and the signal threshold sth. In other words, one
needs to �nd the global maximum of F in Z⊗ RT , where Z corresponds to the

5With the exception of the relatively slow 100 MS/s ADC, which also has approximately
50 MHz bandwidth. It is however relatively easy to switch to a faster ADC if the paramp
bandwidth is further improved in the future.

6This time constant is so long because only a short time interval (∼ 200 ns) of data was
recorded in each trace before the measurement pulse was turned on. Therefore the estimation
of the DC o�set has to be done over many traces.

7This problem is easy to identify by computing φ = arg
(´ tstart

0 dt fa (aout (t))
)
, where

tstart is the measurement start time. Each trace can then be rotated by ±90 or 180 degrees
depending on φ−〈φ〉. This method works because of the imperfect analog pump cancellation.
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Figure 4.4: (left) The x and y quadrature values output by the ADC at a �xed
time for many ground (blue) and excited (red) state traces. (right) The data
after basic preprocessing that rotates all the information into Q and subtracts
the remaining pump o�set after the analog displacement. This step also corrects
for a technical problem that occasionally rotates the entire trace by 90 or 180
degrees.
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Figure 4.5: (top) Two example excited state traces (red) and one ground state
trace (blue). The �lled regions indicate 2σ bands around the mean values (solid
lines) for the ground states (blue), excited states (red), and the excited states
that were still above zero at t = 400 ns. The optimal time to discriminate the
traces is at t = 0 using the threshold indicated in black. (middle) Same but
after applying a numerically optimized linear 3-point digital �lter fd. (bottom)
SNR before (blue) and after (red) applying fd. The lines connecting the points
are guides to the eye.
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Figure 4.6: (left) Deviations of numerically optimized �lters from a constant
box car �lter. (right) The resulting �delities. The highest �delity is 0.842.

o�set time t and RT corresponds to sth and the T − 1 independent elements of
f̃ . Such a task is a common optimization problem and has no e�cient solution
in the general case. In this speci�c case the problem is solvable because F is not
expected to have many deep local minima for a �xed t and t can be restricted
to a few reasonable values. On the other hand, T is restricted to small values
because evaluating F is computationally expensive and it is not smooth, which
makes methods relying on derivatives problematic.

The algorithm chosen here perturbs the coe�cients f̃ randomly and sys-
tematically searches for the best threshold and o�set time t with decreasing
magnitude of perturbations and increasing threshold resolution. Whenever the
�delity is improved the search around the new better values is started from the
beginning. The process is terminated when the �delity has not been improved
for ncutoff attempts. This is grossly ine�cient but relatively robust because
the algorithm does not get stuck in shallow local minima and therefore the end
result is not very sensitive to the initial values. Numerically optimized �lters
for T ≤ 10 and the resulting �delities are shown in Figure 4.6.

Figure 4.6 shows a sudden drop of one �fth in the in�delity 1−F when going
from T = 2 to T = 3 but little improvement beyond that. This implies that
qubit decay dominates as a source of in�delity already at an averaging time of
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30 ns, corresponding to

SNR =

∣∣∣〈fd ◦ fa (aout (t))〉e − 〈fd ◦ fa (aout (t))〉g
∣∣∣2∑

i0∈g,e

〈
|fd ◦ fa (aout (t))− 〈fd ◦ fa (aout (t))〉|2

〉
i0

of approximately 4 as shown in Figure 4.5. The mean responses and standard
deviations shown in Figure 4.5 also support this conclusion. The increasing
variance in the excited state response and the constant variance in the ground
state response can be naturally explained by unbiased vacuum and thermal noise
around both responses and an additional systematic τJ dependent bias for the
excited state responses. This is also con�rmed by inspecting individual traces
that show variations in accordance with the error bars for the ground state
responses but not at all so for the excited state responses. The modest decrease
of the variances achieved by applying the numerically optimized 3-point �lter
fd is explained by the fact that the analog �ltering has already caused noise to
be correlated on a time scale of a few dozen nanoseconds. This is also evident
from the individual traces.

All of the �lters shown in Figure 4.6 show a {1,−1, 1} pattern near the
optimal measurement time for a 1-point �lter, although the exact location of
the pattern moves by one point at T = 6 and then by another at T = 9. The
emergence of this pattern at T = 3 also coincides with a signi�cant decrease in
in�delity as mentioned. This can be understood by looking at the individual
traces in Figure 4.5 and noting that the bandwidth of the signals is much smaller
than the bandwidth of the �uctuations, which for unbiased noise would imply
that a much better signal to noise ratio would be achieved by increasing the
averaging window until it starts to signi�cantly distort the signals. However,
because of the steplike biased noise due to qubit decay, increasing the averaging
time is detrimental for identifying those states that decay within the averag-
ing window. For T > 2 the bandwidth can, however, be reduced not just by
averaging but also by giving positive (negative) weight to positive (negative)
curvature. This is precisely what the pattern {1,−1, 1} does, in addition to
averaging.8

4.5.3 Optimal Filter

Optimal digital �ltering consists of computing the probability of a particular
initial state i0 ∈ {g, e} given the full measurement record Ψ ≡ fa (aout (t)) ∈ RN
and then returning ẽ if P (e|Ψ) > P (g|Ψ) and vice versa. As also explained in
[Gambetta07], these conditional probabilities are given by Bayes theorem:

P (i0|Ψ) =
P (Ψ|i0)∑
i′0
P (Ψ|i′0)

(4.6)

8In fact, such second derivative �lters are commonly used for edge detection in image
processing. The reason is essentially the same: they are e�ective in reducing the bandwidth
of unbiased noise while minimally broadening jumps in the signal because of the small �lter
width.
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where the prior probabilities P (i0) were assumed to be equal in accordance
with the operational meaning of F . The issue with this approach in prac-
tice is that each P (Ψ|i0) is a map from RN to R so even representing�let
alone determining�these functions in the general case becomes exponentially
harder as the number of samples N grows. In [Gambetta07] this problem is
avoided by deriving analytic expressions based on the simplifying assumptions
on fa (aout (t)) mentioned in the beginning of this section (Section 4.5). That al-
lows e�cient representation of P (Ψ|i0) even in the in�nite sampling rate limit
N → ∞ but is not straightforward to generalize for the physically relevant
case where the non-steady state dynamics of the resonator and fa dramatically
change the assumed steplike signal.

Here an alternative approach is taken where N is kept small and P (Ψ|i0)
are estimated from n experimentally measured samples {si} in a process known
as kernel density estimation [Epanechnikov69]:

P (Ψ|i0) =
1

n

n∑
i=1

k

(
Ψ− si
b

)
where k is a normalized kernel function, such as a Gaussian, and b is the smooth-
ing bandwidth. This is similar to measuring the density by binning the mea-
sured values {si} but gives smoother results for the same amount of data. On
the other hand, using the above de�nition as such is not very convenient be-
cause applying it requires storing all the data points. However, since in the end
it only matters whether P (Ψ|g) is larger than P (Ψ|e),9 it is not necessary to
store all the points but rather just an approximation of the N − 1 dimensional
boundary of the region where P (Ψ|e) > P (Ψ|g). This was, however, not done
in this thesis. Instead, each P (Ψ|i0) was evaluated on a grid once and future
evaluations of the functions were performed by linear interpolation between the
grid points. The loss of information caused by this procedure is not signi�cant
for an appropriately chosen grid.10 This approach also has the advantage that
it is easily parallelizable and straightforward to program, which makes it rea-
sonable to implement it in practice in a �eld programmable gate array (FPGA)
that constructs the probability densities in real time during calibration mea-
surements.

Restricting N to small values is reasonable for the current experimental
parameters because with high SNR and low T1 most of the information is con-
tained in the �rst few data points. Furthermore, it is also possible to apply some
simple transformations to fa (aout (t)) before restricting N in order to include
information from early as well as late times. Speci�cally, N = 3 was chosen by
computing Ψ = (s̃1, s̃2, s̃3) by applying the numerically optimized linear 3-point
�lter fd,t to three intervals near the optimal measurement time t0 for the three
point �lter. Speci�cally, s̃i = fd ◦fa (aout (t0 + 3 (i− 1))) was chosen. This can-
not be rigorously justi�ed as optimal but, roughly speaking, this choice ensures

9It is easy to see that comparing P (i0|Ψ) given by Eq. 4.6 to 1/2 is equivalent to this
question.

10Fortunately, many tools such as Wolfram Mathematica provide built-in routines for au-
tomatically choosing the grid and determining the appropriate bandwidth b.
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Figure 4.7: (top) P (Ψ|g) and P (Ψ|e) for N = 1, i.e. linear �ltering. The areas
of the blue and red regions correspond to P (ẽ|g) ≈ 0.15 and P (g̃|e) ≈ 0.02,
respectively. (bottom) The same for N = 2. Unfortunately it is hard to plot
the densities in higher dimensions.

that the traces that stay excited past t ≈ t0 + 5 are always easily identi�ed
from the value of the last point while those excited state traces that decay very
early have some chance of being distinguished from a ground state response if
they show a particularly strong response in the �rst point. For comparison, the
�delities for the cases N = 2 with s̃i = fd ◦ fa (aout (t0 − 2 + 3i)) and N = 1
with s̃1 = fd ◦ fa (aout (t0)) were also computed.

The resulting �delities for these Bayesian �lters and the set of measured
data are 0.830, 0.843, and 0.853 for N equal to 1, 2, and 3, respectively. The
value for N = 3 represents a modest 7 % decrease in in�delity compared to the
best numerically optimized linear �lters shown in Figure 4.6. Pictorially, this
indicates that the N − 1 dimensional surface that divides the regions P (Ψ|e) >
P (Ψ|g) and P (Ψ|e) < P (Ψ|g) is almost �at in the region where the densities
are non-negligible. Therefore the densities {P (Ψ|i0)} can be projected onto a
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line perpendicular to this surface without reducing the �delity much.11 This can
be seen for N = 2 in Figure 4.7 where it is clear that projecting the distributions
onto a roughly diagonal line has little e�ect on the overlap of the distributions.

4.6 QND Nature of the Measurement

Deviations from the ideal QND measurement can be characterized roughly as
incomplete projection of the state onto the measurement basis states, complete
projection but incorrect reporting of the result, and correct projection and re-
porting but subsequently changing the qubit state. The �rst two kinds of errors
manifest themselves in F < 1 but the third type of errors could exist even if
F = 1 in the single short measurements analyzed so far. Therefore it is neces-
sary to look at the statistics of long continuous or short repeated measurements
in order to determine the claimed QND nature of the measurement scheme.

The simplest analysis one can perform is to plot the decay of the ensemble
averaged excited state population over a long time to see whether the relaxation
rate T ′1 or the steady state excited state population is a�ected by continuous
measurement as predicted in [Boissonneault09].12 Figure 4.8 shows examples
of long measurements where so called quantum jumps are clearly visible in
the data. The �gure also shows the mean populations as computed from the
traces �ltered by the full measurement procedure, including the binary decision
θ (s− sth). The mean excited state population is seen to reach a steady state
value of approximately 1.0 % regardless of the initial state of the qubit. For
qubits prepared in the excited state the time scale can be �t with high con�dence
and is found to be T ′1 = 303 ± 2 ns, which is within the error bars of T1 =
300± 10 ns in the absence of measurement. For the traces where a ground state
is prepared the steady state is reached on a faster time scale of Tg.s. = 84±30 ns.
All of these results are in qualitative agreement with [Boissonneault09] that
predicts a small deviation of T ′1 from T1 and a small excited state population for
the case where the pure dephasing rate is negligible compared to the relaxation
rate of the qubit.

4.6.1 Repeated Measurements

In future experiments the measurement pulse cannot be as long as shown in
Figure 4.8 if any qubit in the resonator is to be used in further operations after
the measurement. It is therefore useful to make the measurement pulse as short
as possible without signi�cantly compromising the readout �delity. By applying
such short pulses repeatedly at intervals that allow the resonator to relax to
its ground state, one can also be sure that correlations between consecutive

11Recall that it only matters whether P (Ψ|e) > P (Ψ|g), i.e. the �delity is equivalent to
the trace distance between the two distributions.

12T1 in the absence of measurement can be determined independently by varying the delay
between qubit preparation and measurement.
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Figure 4.8: (top) Typical signal traces from measurements using a step pulse
and the numerically optimized 3-point digital �lter fd. In the lower (upper) half
of the traces the qubit was initially prepared in |g〉 (|e〉). (middle) The same
traces with white indicating that the qubit exceeds the discrimination threshold
between ground and excited state. (bottom) Mean populations calculated from
the above and 10,000 other similar binary traces. The solid lines are exponential
�ts to the data points after t = 200 ns with time constants of T ′1 = 303 ± 2 ns
and Tg.s. = 84 ± 30 ns and a steady state o�set of (1.05 ± 0.02) × 10−2. The
gray vertical line indicates the time at which the extrapolated qubit population
reaches one.
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measurement results are truly due to the qubit state and not due to dynamics
of the resonator or the paramp.

Figure 4.9 shows some examples and mean populations for a set of traces
where measurement pulses of 50 ns were applied every 250 ns. The result for
T1 = 298 ± 4 ns agrees well with the result from the continuous measurements
but the steady state ground state populations of P (ẽt→∞) ≈ 0.04 is four times
higher than that observed in the continuous case. Based only on the ensemble
averaged �rst order moments P (ẽt|i0),13 it is di�cult to say whether the increase
in P (ẽt→∞) comes from truly increased population of the |e〉 state, denoted
P (et), or from misidenti�ed |g〉 states, denoted P (ẽt|gt). One can, however,
inspect higher order moments involving more than one measurement result in
order to separate these contributions. These moments describe the ensemble
averaged correlations between measurements at di�erent times, rather than just
the independently averaged results.

Speci�cally, one can compute the second order moment

P (ẽt+∆t|ẽt) ≡
〈σz(t)σz(t+ ∆t)〉

〈σz(t)〉

where σz(t) ∈ {0, 1} is the measurement result from measurement number t.
This correlator is normalized in such a way that it describes the probability
of measuring ẽ in measurement number t + ∆t given that ẽ was measured in
measurement number t.14 For ∆t → ∞, ẽt and ẽt+∆t are expected to become
uncorrelated and therefore the unconditioned steady state value of P (ẽt+∆t|ẽt)
can be assumed to approach P (ẽt→∞) ≡ 〈σz(t→∞)〉 ≈ 0.04.

The measured values of P (ẽt+∆t|ẽt) shown in Figure 4.10 immediately show
that a signi�cant proportion of the excited state detections ẽt in steady state, i.e.
when P (et)� 1, come from misidenti�ed ground states. The lack of correlation
between these false positives is particularly clearly manifested in the signi�cant
reduction in P (ẽ2|ẽ1) for i0 = g0 compared to that for i0 = e0. This means
that detecting ẽ in a single measurement in a situation where the unconditioned
probability P (gt) is biased towards the ground state does not necessarily imply a
high probability of the qubit actually being in the excited state. This illustrates
the brie�y mentioned fact that optimizing the measurement for F may not be
optimal if P (gt) 6= 0.5.

Quantitatively the data can be analyzed using a model where the measure-
ments are point-like in time and the qubits are either truly excited with proba-
bility P (et) and decay with probability 1− e−Tmeas/T1 between measurements,
or are truly in the ground state and cause uncorrelated false positives with
probability P (ẽt+∆t|gt+∆t). Then for ∆t ≥ 1,

13Here the convention is to label the initially prepared qubit state as i0 ∈ (g0, e0) and refer
to the �rst measurement as t = 1.

14This de�nition treats ẽ and g̃ very di�erently. This is intentional because the correlation
between g̃ measurements is expected to be very strong and hence makes the ẽ correlations
negligible in a symmetrically de�ned correlator.
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Figure 4.9: (top) Example signal traces from repeated pulsed measurements
after preparing |g〉 (blue) or |e〉 (red). The solid black line is the threshold used
to deduce whether the qubit is excited at the optimal measurement time for
each measurement, i.e. at integer multiples of 250 ns. (bottom) The average
qubit population after preparing the qubit in the ground (blue) or excited state
(red). The solid red line is an exponential �t with T1 = 298 ± 4 ns and steady
state o�set of (4.4± 0.4)× 10−2. 12,800 traces were used for the averages.
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Figure 4.10: P (ẽt+∆t|ẽt) after preparing |e〉 (top) or |g〉 (middle). The solid
lines on the bottom are �ts of measured P (ẽ1+∆t|ẽ1) (blue bars) to Eq. 4.7 for
the qubit initially in the ground (blue) or excited (red) state. The �t parameters
P (e1|ẽ1)F1 and P (ẽ1|g1) were determined to be, respectively, 0.32±0.05 (0.94±
0.03) and 0.025± 0.010 (0.045± 0.005) for the blue (red) curve, while Tmeas =
250 ns and T1 = 300 ns were �xed.
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P (ẽt+∆t|ẽt) =P (et+∆t|ẽt)P (ẽt+∆t|et+∆t)

+ P (gt+∆t|ẽt)P (ẽt+∆t|gt+∆t)

≈P (et|ẽt) e−
∆t

T1/Tmeas P (ẽt+∆t|et+∆t)

+
[
P (gt|ẽt) + P (et|ẽt)

(
1− e−

∆t
T1/Tmeas

)]
P (ẽt+∆t|gt+∆t)

where Tmeas = 250 ns is the repetition interval of the measurements and second
order processes corresponding to spontaneous excitation after the �rst mea-
surement have been ignored. This is reasonable when ∆t is small compared
to the lifetime T1,g of the ground state but note that it leads to the wrong
∆t×Tmeas/T1,g →∞ limit since P (et+∆t)→ 0 when re-excitation is ignored.15

Nevertheless, for 1 ≤ ∆t� T1,g/Tmeas the above terms can be rearranged with-
out any further approximations as:

P (ẽt+∆t|ẽt) =P (et|ẽt)Ft+∆te
− ∆t
T1/Tmeas + P (ẽt+∆t|gt+∆t)

where Ft+∆t ≡ 1− P (ẽt+∆t|gt+∆t)− P (g̃t+∆t|et+∆t) is the �delity of the mea-
surement at time t + ∆t.16 Furthermore, it is reasonable to assume that Ft
and P (ẽt|gt) are nearly time independent since they do not depend on P (gt)
and otherwise the measurements should be identical. Hence, with the addi-
tional assumptions that Ft and P (ẽt|gt) are constant on a time scale of ∆t, the
correlator �nally becomes:

P (ẽt+∆t|ẽt) =P (et|ẽt)Fte−
∆t

T1/Tmeas + P (ẽt|gt) . (4.7)

The form of Eq. 4.7 is convenient because T1/Tmeas is a known parameter
and hence the two remaining free parameters P (ẽt|gt) and P (et|ẽt)Ft can be
extracted reliably by �tting P (ẽt+∆t|ẽt) to the experimentally measured points.

As seen from the �t results in Figure 4.10, P (et|ẽt)Ft varies from 0.94 to 0.32
between the non-steady state and steady state situations where P (gt)� 1 and
P (et)� 1, respectively. This trend is expected since 1−P (et|ẽt)Ft corresponds
approximately to the proportion of ẽt detections coming from false positives.
The high proportion of false positives in steady state implies that the true steady
state excited state population P (et →∞) ∼ 0.32 × P (ẽt →∞) ≈ 0.014 does
not dramatically di�er from the continuous measurement case where P (ẽt→∞)
was 0.01 and could be assumed to be close to P (et→∞) due to high SNR.

On the other hand, the values of the second �t parameter P (ẽt|gt) show an
unexpected change from 0.045 to 0.025 between the steady and non-steady state
situations. The values themselves are of the expected order of magnitude but,

15P (et→∞) > P (ẽt→∞) = 0.04 implies that T1/T1,g > 0.04→ T1,g ? 7.5µs.
16Note that F1 = 1−P (ẽ1|g1)−P (g̃1|e1) is not the same as the �delity F de�ned for single

measurements, which in this notation would be F = 1− P (ẽ1|g0)− P (g̃1|e0) and takes into
account qubit decay before the �rst measurement.
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since P (ẽt|gt) is the false positive rate conditioned on the qubit being in the
ground state, there is no reason why it should depend on the qubit preparation.
A more likely explanation is that the approximation T1,g � ∆t × Tmeas is not
completely accurate and the P (gt) dependent e�ects of spontaneous excitation
show up at large values of ∆t. Finally, note that small changes in this o�set
parameter do not dramatically a�ect the best �t value of the much larger other
�t parameter P (et|ẽt)Ft. Therefore the conclusion of the previous paragraph
remains valid regardless of uncertainty in the precise value of P (ẽt|gt).



5
Outlook

In this thesis fast dispersive single-shot readout with a �delity of 0.85 was
demonstrated. The time required to reliably determine the qubit state was only
about 50 ns and, at least for the measured qubit with a short T1, the 0.15 in�-
delity is dominated by spontaneous decay of the qubit rather than measurement
induced transitions. In other words, no unexpected lower bound for the in�-
delity using the dispersive readout was found in these experiments. Therefore,
based on these experiments there is no reason to expect that the in�delity should
not keep decreasing linearly with 1/T1 in the future [Gambetta07]. It should
also be possible to further reduce the measurement time and hence improve the
�delity signi�cantly by taking advantage of the two-step pulse sequence more
aggressively. As explained in Section 4.4, this improves the crucial initial scaling
of the signal from quadratic to linear in time.

Besides improving �delity, it would be interesting to study the QND nature
of the pulsed measurement in a more systematic way. A generalization of the
scheme of repeated measurements described in Section 4.6.1 would involve ap-
plying qubit operations between the measurements. Using such measurements
one could determine not just how the qubit state in the measurement basis is
correlated between measurements but also whether some correlations in other
basis survive. An ideal projective measurement would completely remove these
correlations regardless of imperfections in the detection chain after the resonator
output but this may not be the case for very short pulses. In fact, one can argue
that, if the vacuum noise is a signi�cant source of in�delity, the measurement
will not be perfectly projective since it is not possible to distinguish the mea-
surement outcomes perfectly, even in principle.

Another possible way to completely describe the readout is to �nd the so
called Kraus operators {ξi} that describe the measurement as an operation on
a larger space of density matrices that includes the qubit state as well as a
classical variable |z〉 ∈ {|g̃〉 , |ẽ〉} that stores the measurement result. Since |z〉
is classical by de�nition, the Kraus operators are constrained to always project

45
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the density matrix to the subspace |g̃〉 〈g̃|⊗S (Hq)∪|ẽ〉 〈ẽ|⊗S (Hq), where S (Hq)
is the space of reduced qubit density matrices. Furthermore, the measurement
result should be independent of the initial value of the classical variable |z〉
and |z〉 should not be initially entangled with the qubit state. Therefore the
measurement operation λ (ρq) can be written as

λ (ρq) =
∑
i

ξi (|z〉 〈z| ⊗ ρq) ξ†i

= |g̃〉 〈g̃| ⊗
∑
i

GiρqG
†
i

+ |ẽ〉 〈ẽ| ⊗
∑
i

EiρqE
†
i

where {Gi} or {Ei} are applied to the qubit state depending on the measurement
outcome. A perfect QND measurement corresponds to {Gi} = {|g〉 〈g|} and
{Ei} = {|e〉 〈e|}. These can be rewritten in the Pauli basis as (σ0 ± σz) /2. In
notation resembling usual process matrices:

λ (ρq) = |g̃〉 〈g̃| ⊗
∑
i,j

χG,ijσiρqσ
†
j

+ |ẽ〉 〈ẽ| ⊗
∑
i,j

χE,ijσiρqσ
†
j

where ideally χG/E =
1

2


1 ±1

0
0

±1 0

 .

However, χG and χE di�er from normal process matrices in that only the sum
of their traces is one.

Since both {{Gi} , {Ei}} and χG/E describe the complete evolution of the
reduced qubit density matrix conditioned on the measurement outcome and
since no assumptions about the implementation of the binary measurement were
made, knowing χG/E would completely characterize the measurement. In par-
ticular they could be directly applied to any input state of interest to calculate
how much coherence from ρq remains in λ (ρq) in di�erent basis.

In practice, χG and χE could be measured the same way as in normal process
tomography where qubit rotations are performed before and after the measure-
ment to prepare and measure the qubit in di�erent basis. The only di�erence
would be that as an additional preprocessing step each trace would need to be
sorted according to the measurement result |z〉 and later used only for comput-
ing the corresponding χ matrix. In addition the two matrices would at the end
need to be normalized according to the ratio of ẽ/g̃ counts so that their traces
sum to one. Since the matrices χG/E are small, it should be feasible to simply
store complete traces from each measurement and do all processing o�ine on a
regular computer.
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Finally, with modest improvements of the qubit coherence time it would
become reasonable to attempt proof-of-principle quantum feedback experiments
such as teleportation, where operations are conditioned on the outcome of a
measurement. This could be especially fruitful at the Quantum Devices Lab
at ETH Zürich since related work on teleportation has been already performed
[Baur12]. Furthermore, the existing knowledge on FPGA programming should
be helpful in incorporating real-time digital signal processing in the feedback
loop.
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A
Paramp Calibration

Calibrating the paramp pump power is in practice non-trivial because of the
highly non-linear response of the paramp near the bifurcation point. Further-
more, in order to prevent the strong pump signals from entering the input and
output ports of the paramp it is necessary to apply a second signal, called the
displacement signal, that cancels the pump tone re�ected from the paramp as
indicated in Figure 3.1. Unfortunately, this cancellation and the bias point of
the paramp are not diagonal in the pump and displacement tone basis because
of the combined e�ect of non-zero cross-coupling in the directional coupler, large
magnitudes of the pump and displacement signals, and the non-linearity of the
paramp near the bifurcation point. In other words, it is not possible to �nd
the optimal pump strength �rst and then calibrate the displacement signal so
that the steady state power reaching the HEMT is close to zero. Instead a
more complicated search algorithm that adjust both parameters is required for
e�ciently reaching the calibration that maximizes cancellation but still biases
the paramp as desired.

Another practical problem is simply that for large cancellation, say 40 dB in
power, it is necessary to control the amplitude of the pump and displacement
signals down to 1 % on a linear scale. On the exponential decibel scale this
implies control of the attenuation down to a level of 0.09 dB. Similarly, for 40 dB
cancellation the resolution in the relative phase of the pump and displacement
tones must be 0.01 rad. Furthermore, it would be highly desirable that the
calibration is stable over at least several hours so that the calibration algorithm
does not have to be constantly re-executed. For this reason a single high-quality
microwave source was used from which the pump and displacement signals were
split with a 3-dB splitter. The relative phase and amplitude of the displacement
signal were then adjusted using a �displacer� that consists simply of a mechanical
delay line and a mechanical attenuator controlled by two stepper motors as
shown in Figure A.1. This mechanical approach also has the advantage that
it remains calibrated regardless of crashes or other problems in measurement
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software. On the other hand, this approach has the practical disadvantage that
there is always some degree of hysteresis in the displacement as a function of
the stepper motor positions due to play in the mechanical components.

The complete process of calibrating the paramp can be divided into three
parts after �xing the desired signal frequency ωs:

1. Record gain at ωs and ωs + 2π∆b, where ∆b is of the order of the desired
bandwidth, while sweeping pump power Pp and the B-�eld that controls
the bare resonance frequency ω0 of the paramp.

2. Choose a bias point (B,Pp) with desirable gain and bandwidth.

3. Minimize some objective function h (Pp, Ad, θd) that is maximal at the
desired paramp bias point and when the cancellation is perfect. Here Ad
and θd are the attenuation and phase shift applied to the displacement
tone, respectively.

Currently all of these steps can be performed fully automatically once the sweep
range for step number one has been set. However, in practice step number two
is often performed manually because the desirable gain and bandwidth depend
on the application.

The most challenging part of the process is choosing an appropriate objective
function h and a robust but reasonably fast algorithm for �nding the global
minimum of h even in the presence of hysteresis, noise, and slow drifts. Currently
the objective function is de�ned as

h (Pp, Pd, θd) = −G̃ log (|G−G0|) + C̃ log (Pp,out/Ps)

where G0 is the desired gain, Pp,out is the measured output power at the pump
frequency, Ps is an arbitrary small power used to measure the gain G, and
G̃, C̃ ∈ C are user-de�ned weights. The bandwidth does not appear here since
it is assumed to be related to the gain by the gain-bandwidth product.

The algorithm used to minimize h is inspired by how a human would do
it, which is not extremely fast but very robust. It consists of �rst choosing
an initial value for the acceptable objective function value hth,outer and then
performing the steps described in the following pseudo-code:
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function optimize(thOuter) {

h={measureH()};

i=0;

while(h[-1] > thOuter) {

i++;

param=chooseParamToAdjust();

delta=chooseDelta(param,i);

j=0;

thInner=h[-1];

while(j<3 || h[-1] > thInner || (h[-1]<h[-2]<h[-3])) {

j++;

adjustParam(adjust,delta);

appendTo(h,measureH());

if(h[-1] > h[-2]) delta=-delta;

thInner=increaseThreshold(thInner,h[-j;;-1]);

thOuter=increaseThreshold(thOuter,h);

}

}

}

function measureH() {

/* Returns the current value of the objective function. */

}

function chooseParamToAdjust() {

/* Returns "power" if either "phase" or "attenuation" */

/* were last adjusted. Otherwise, return the parameter */

/* that has been least recently adjusted. */

}

function adjustParam(param, delta) {

/* Adjusts the pump power, attenuation or phase by delta. */

}

chooseDelta(param, i) {

/* Returns the magnitude of delta to use depending on how */

/* long the algorithm has been running. */

}

increaseThreshold(current,h) {

return current+(max(h)-current)/T;

/* where T is some userdefined time-constant, possibly */



APPENDIX A. PARAMP CALIBRATION 55

/* different for the inner and outer thresholds. */

}

The approach described by the pseudo-code is robust in the sense that it gets
closer to the optimum point even in the presence of noise and hysteresis because
it compares the current value to the value at the beginning of the inner loop.
On the other hand, it is also robust in the sense that it does not get stuck in
an inner loop if the initial value was a �uke because it increases the acceptable
threshold slowly depending on how far o� the measured values are from the
threshold. The additional condition in the inner while loop ensures that the
algorithm keeps adjusting the same parameter in the same direction as long
as there is a consistent decrease in the objective function. Also note that in
practice the initial value for hth,outer can be chosen by initially running the
above algorithm without terminating the outer loop for some minimum number
of iterations. Alternatively, a reasonable value may be known from previous
rounds of optimization.

Finally, in the future it might be useful to also perform some measurements
of the dynamic range and the noise number in step number one in order to
choose the (B,Pp) point more wisely in step number two. It would also be
convenient to automate the measurement of gain curves, dynamic range, and
noise number once the optimization algorithm has completed.
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Figure A.1: Mechanical displacer. The delay line provides a phase shift of up to
π/3 rad/GHz with a resolution of approximately 1.5×10−4 rad/GHz, which is much
smaller than �uctuations in phase due to thermal expansion of a 1 meter cable
under a 1 degree temperature change. The attenuator has a range of 10 dB and
resolution of 0.01 dB.


