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Abstract

Waveguide quantum electrodynamics (QED) explores interactions between
atoms and light at the quantum level in one-dimensional open space. In
particular, the experimental platform of superconducting circuits enables
strong interactions between “artificial atoms” and a one-dimensional elec-
tromagnetic continuum of modes. A powerful tool for measuring such
interactions, employed extensively in circuit QED, is the measurement of
intensity correlation functions with linear detection. In this thesis, I have
measured amplitude and intensity correlations of microwave light emitted
by an artificial atom in 1-D open space, probing both its fundamental and
higher transitions. This was done using a quantum signal analyzer devel-
oped at Qudev, consisting of fast FPGA electronics and a nearly quantum-
limited, phase-insensitive linear amplifier. I discuss how noise influences
the measured field correlations, considering both thermal noise that acts
on the artificial atom, and noise that is added during measurement. Un-
derstanding these noise sources in the experiment is key to choosing the
signal-processing steps and experimental methods appropriate for mea-
suring nonclassical light statistics in the waveguide QED platform. The
results herein provide guidance toward the measurement of photon cor-
relations in the waveguide QED platform. This capability would advance
the study of quantum optical phenomena in 1-D open space, such as in-
teraction of itinerant photons via atoms and long-distance entanglement
between multiple atoms.
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Chapter 1

Introduction

1.1 Motivations of waveguide quantum electrody-
namics

The study of light and matter at fundamental levels offers potential for both
technological advance and insight into nature. In particular, engineering in-
teractions of single atoms with individual photons provides the precision to
understand and harness the two media at the most fundamental level. Such
precise study leads to deeper understanding of quantum mechanics and quan-
tum electrodynamics, as well as development of devices which take advantage
of unique interactions only achievable in such systems.

To study a single atom interacting with a single photon at first seemed daunt-
ing. The dipole moment d of a single atom is quite small, owing to the mean
charge-separation of electrons in atoms being small, and the field strength Eo
of a laser at the single-photon level is also very weak, making the interaction
energy d-Ey very small. This small interaction energy meant that no quantum
coherence at the single photon level was observable between a photon and
an atom. The breakthrough was when the field of cavity quantum electrody-
namics (cavity-QED), which studies the interaction of atoms with laser light
trapped in an optical cavity, first achieved strong coupling between laser light
and a single atom; that is, the frequency of interaction between the atom and a
single photon in the field is larger than the coupling of the environment to the
field or the atom respectively, heralded by the observation of vacuum Rabin
splitting in 1992 [39]. By using photons trapped in a cavity, the number of
interactions the atom has with the single photon was strongly enhanced, over-
coming the small interaction energies of propagating light with single atoms.

With the invention of solid-state superconducting “artificial atoms” [32] came
the study of circuit QED; the artificial atoms in this platform interact with co-
herent microwave tones in a microwave transmission line, instead of a laser,
and these systems can be fabricated with industry-standard microwave cir-
cuit fabrication technologies. In 2004, vacuum Rabi splitting of an artificial
atom and the fundamental mode of a microwave superconducting coplanar-
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waveguide resonator, was achieved [43], which heralded the study of “quan-
tum optics on a chip”. The advantages of circuit QED that make it so amenable
for studying coherent interactions between atoms and fields are that the mode
volume the microwave field is extremely small, resulting in electric fields in
the coplanar waveguide resonators E;ms ~ 0.2Vm~!, and the large effective
dipole moment of the artificial atoms, which, unlike real atoms, can be engi-
neered. This platform thus circumvents the small field-atom coupling which,
before cavity QED, limited strong light-matter interaction experiments with
conventional atoms and laser light.

With these accomplishments, the study of quantum optics can extend beyond
cavity QED. Specifically, one would like to explore the interaction of atoms
with itinerant, or propagating, light fields. For instance, the study of how
atoms interact via long- or medium-range photonic exchange and how flying
photons effectively interact when in the presence of atoms are questions which
can be studied with an “open-space” experimental platform. The seemingly
natural choice of studying this via natural atoms and optical light suffers from
poor overlap between a propagating light field and the radiation pattern of an
atom in free space, in addition to the small dipole coupling described. That is,
the field amplitude scales~ r~2 in distance r from the atom, making the study
of long-range photon-mediated interactions of atoms in 3-D space difficult.
This of course was not an issue in a cavity, where the density of optical states
to which the atom could emit are restricted by the boundary conditions of the
cavity.

The circuit QED platform, however, does not suffer from these shortcomings.
As an experimental platform which reduces the dimensionality of both atoms
and the electromagnetic spectrum of open space to effectively one dimension,
circuit QED maintains the strong coupling between “artificial atoms” and 1-
D open space due to the mode geometry, unchanged between the cavity and
“free-space” cases, of the microwave light and the virtually unit overlap be-
tween atomic emission and the itinerant microwave modes of the coplanar
waveguide. Secondly, the geometry of 1-D space means that emitted radi-
ation does not reduce in energy density with distance, as the energy is not
distributed over any solid angle. In some sense, the cavity mode is “0-D”,
in that it is confined by all dimensions for both optical and superconducting
realizations, while the itinerant mode in a coplanar waveguide is “1-D”, as op-
posed to the itinerant optical mode, which allows atomic emissions into 3-D,
unconfined space.

The design features of 1-D quantum optical systems have produced great in-
sights into fundamental questions about interactions of single atoms and single
photons. Initial experiments measured resonance fluorescence of a single arti-
ticial atom, and the near-unit extinction of light by the atom at single-photon
powers [3], followed by time-resolved dynamics [2] and electromagnetically
induced transparency [1]. The second-order correlation function of a single
artificial atom in open 1-D space has also been measured [20], as well as the
implementation of a single-photon router [21].
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The Quantum Device Lab (Qudev) has since extended the waveguide QED
platform by measuring resonance fluorescence of coupled artificial atoms, which,
depending on the number of emission wavelengths they were separated by in
the waveguide, formed sub- and super-radiant states [41]. Substantial the-
oretical work has also investigated field correlations resulting from several
interacting atoms aligned together in a waveguide [25]. These systems could
potentially shed light on the generation of photon-photon interactions and en-
tanglement generation, mediated via atoms in a waveguide [44].

The current goal of the waveguide QED project at Qudev is to measure second-
order correlations of the microwave light emitted by two artificial atoms in 1-D
open space. The technology to perform such measurements in microwave sys-
tems has been pioneered by experiments demonstrating photon-blockade [26]
and Hong-Ou-Mandel interference [27]. Integrating the correlation measure-
ments with the waveguide-based systems would propel the study of many
atoms interacting via a continuum of modes in one-dimensional quantum op-
tics.

1.2 Planar superconducting transmission lines

The primary structure used in superconducting circuit technologies is the
coplanar waveguide (CPW). It is the two-dimensional analog of a coaxial ca-
ble, consisting of a central “signal” line with two ground planes, connected by
air-bridges, surrounding it. As this structure has two electrically distinct con-
ductors, it can support transverse electric- and magnetic-field (TEM) modes
with no cutoff frequency. This is what distinguishes the transmission line from
any general waveguide. This transmission line can be described as a chain of
capacitances and inductances, as shown in figure 1.1. The capacitance ¢ and

inductance [ per unit length Ax define the characteristic impedance Z = %

of the waveguide, as well as the speed of light v = 1/+/Ic. This is seen easily
by the Telegrapher’s equations [35]

al = —cd,V (1.1)

Combining these into one equation for the voltage V, we get the wave equation
for the system

1
Ie
Just as in the coaxial cable, the TEM mode for the CPW has the electric field
between the central line and the surrounding ground plane, with the mag-
netic field encircling the center line. By applying the canonical techniques of
quantizing the Lagrangian for the field, derived from the Telegrapher’s equa-
tions, these structures constitute a bosonic continuum in one dimension for
the microwave field, a fundamental geometry for the study of the interactions
between light and matter at the quantum level. To reach the quantum level,

axxv — attv (1.2)
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Figure 1.1: A depiction of the geometry and lumped-element schematic of a coplanar waveguide.

however, the devices need to be low-loss, as dissipation destroys coherence of
quantum states by continuous measurement by the environment on the sys-
tem. Therefore, the devices are fabricated out of superconducting materials,
typically Nb or Al, which have nominal critical temperatures T, of 9.8K and
1.2 K, respectively.

1.3 The transmon artificial atom

An artificial atom is simply a quantum system with an engineered energy spec-
trum such that transitions are individually addressable. This is not the case for
resonators, because their energy spectrum is harmonic and therefore the en-
ergy is linear in the number of of energy quanta. The invention that eventually
heralded the field of superconducting quantum information processing is the
the nonlinear, virtually dissipationless circuit element, the Josephson tunnel
junction.

1.3.1 The Josephson junction: a nonlinear circuit element

The Josephson junction consists of two superconducting regions separated
by a non-superconducting element. For example, Al — Al,O3 — Al is a S-I-S
(superconductor-insulator-superconductor) type of Josephson junction, com-
monly used for all quantum devices discussed in this thesis. In 1962 [22],
Brian Josephson predicted current-phase relationship for such junctions, now
called the Josephson effect. The Josephson relations

Is = I sin¢ (1.3)
dp  2eV
it (14)

describe how the current across the junction is periodic in the phase-difference
¢ of the superconducting order parameter on either side of the junction [40].The
phase changes with the voltage, scaled by the 2e, the charge of the supercon-
ducting carrier, the Cooper pair, and /. The critical current I. is material- and
temperature-dependent. From these relationships, one can invoke Faraday’s
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law to obtain the inductance

Vv _h ¢
T 2el.cos¢¢
_ %
~ 27l . cos ¢
_ Ly
= cosg

L(¢) =

(1.5)

where ®y = h/2e is the flux quantum and Ljy = % is the Josephson in-
ductance. Thus, the Josephson relations in (1.3) gives an inductor whose
inductance depends on the flux threading the junction, once more by Fara-
day’s law. Though ¢ is the phase of the superconducting wavefunction, the
gauge-invariance of the Schrodinger equation in a vector potential A relates
magnetic flux to wave function phase, and through flux quantization of a su-
perconducting loop, the phase threading the junction is then quantized [40].

Appendix A.1 gives some more detail on this point.

In the following section, I will outline the circuit design of the transmon artifi-
cial atom, a variant of this nonlinear oscillator I'’ve described here, and describe
the spectrum under appropriate approximations.

1.3.2 Design of the transmon

The basic design of the transmon artificial atom [23], shown in figure 1.2, is to
place two Josephson junctions (symbolized by the crossed boxes) in parallel,
forming a superconducting quantum interference device, or SQuID. It can be
shown that this has the same current relationship as a standard Josephson
junction, except with a critical current I.(P)(see appendix A.1) [42] which is
tunable with externally applied magnetic flux ®. This tunability enables us
to adjust the resonant frequency, and therefore the interactions of transmons
with each other and with resonators in situ.

The energy spectrum of the transmon is dominated by the Josephson energy
E;(®) as compared to the charging energy Ec, with

Ej(®) = 21(@) (16)
62
Ec = ey (1.7)

where Cs = Cp + Cj is the total capacitance of the system, including both the
designed capacitance Cp in figure 1.2 and the small capacitance of the junctions
C;. The Hamiltonian can be written in terms of the number of charges on the
charge island N and the phase across the SQuID loop ¢, and this is known as
the Cooper-pair box Hamiltonian [5]:

Hepp = 4Ec (N — Ng)? — Ef(®) cos(¢) (1.8)
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Figure 1.2: Circuit diagram for the transmon artificial atom. Red letters Q and ¢ denote the atomic
canonical operators of the circuit. The junctions have small shunt capacitance C;, and nonlinear
inductance Lj, tunable by an applied magnetic flux ®. This in conjunction with a larger shunt
capacitor Cg forms a nonlinear LC resonator.

This is obtained simply by relating Q* = (2¢(N — Ng))?, where we’ve assumed
there is a gate charge that supplies charges to the island in figure 1.2, and As
described in detail in [23], applying perturbation theory around ® = 0 in the
limit of (Ec/E ])_1 < 1, the Hamiltonian for the transmon can be approxi-
mated as a Duffing oscillator, giving a spectrum

1\ E
Epn ~ —Ej+ /8ECE (m+§) —1—5 (6m2+6m+3> (1.9)

Thus, the anharmonicity &« = E; — Eg ~ —Ec in the limit of large E;/Ec.
The frequency w, = /8EcE;/I is the Josephson plasma frequency; hence
the name “transmon”, meaning transmission-line shunted plasma oscillation
qubit [23].

1.3.3 Coupling the transmon to a waveguide

As discussed in section 1.2, the coplanar waveguide is an attractive method
to realize a 1-D bosonic continuum, enabling strong mode-matching to other
planar structures. That is, the transmon coupled to a coplanar waveguide
enables the study of quantum optics with a continuum of modes with strong
coupling, unlike real atoms interacting with a laser, due to their poor mode-
matching. Indeed, this work builds on those in [3, 41, 20], and others, with
the works mentioned having observed phenomena like near-unit reflection of
light by a single artificial atom, inter-atom-coupling via the waveguide, and
photon anti- and super-bunching respectively.

To accomplish this, the atom is coupled capacitively to the waveguide, as
shown in the circuit schematic in figure 1.3. The two capacitances C¢; and
Cgo form an effective coupling capacitance Cq (see [23]). Via this capacitive
coupling, the artificial atom is coupled via its large dipole moment to the 1-D
bosonic continuum of states present in the waveguide.

The next chapter. details the theoretical description of light-matter interac-
tion waveguide QED, specifically relevant to the experiments presented in the
following chapters.
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z aw (]

g
.

Figure 1.3: Circuit schematic of a transmon with canonical operators Q and ® coupled by capac-
itance Cg1,Cygn to the center line and ground of a waveguide with characteristic impedance Z and
bosonic field a(w)
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Chapter 2

Theory of nonclassical light in
wQED

In this chapter, I discuss the central theory for the interaction of a single trans-
mon with the microwave field in a waveguide, including both two-level and
three-level dynamics. Furthermore, I discuss how to predict measurable quan-
tities like transmittance, amplitude, and photon correlations. Much of the
theory in this section is adapted from Lalumiere et al. [25], simplified to our
experiments.

2.1 Master equation for a qubit in a waveguide

2.1.1 Two-level dynamics

The Hamiltonian contains three primary terms: the energy of the field Hr, the
atom H 4, and their interaction Hj. These are written as [25]

Hr = /Ooodw hw [aﬁ(w)aR(a)) + a{(w)aL(w)} (2.1)
HA = h(,UAO'Z/Z (2-2)
Hy = hg (: 4 E*) oy (2.3)

Conceptually, equation (2.1) describes the creation of left- and right-propagating
photons in a continuum of one-dimensional modes a;, and ag, respectively.
The atom Hamiltonian H, is an abstract two-level system with energy fiwy,
with 0, = |e) (e] — |g) (g, and the interaction term couples the atom transver-
sally, obtained traditionally by considering dipole coupling g of the atom to
the field by the atom’s state-transition operator ox = |e) (g| + |g) (e| and the
tield operator E given by [25]

B = —i/ dw vw [aL(w)e_iwa/v + HR(W)eiwa/v} (24)
0

This is related to the electric field at the location of the atom x4. By solv-
ing Heisenberg’s equation of motion for mode a(w, t) of the waveguide, one
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can re-express the field operator = in terms of the input state and a term de-
pendent on the coupling to the atom. After making the Markov, long-time,
and rotating-wave approximations, absorbing Lamb shifts into the atomic en-
ergies, and ignoring small non-positive terms in the field operator Z (see [25]),
the master equation for the density matrix p of the atom of the form

: I 1
=z [H,p] +T |o—poy — §{U+t7—,p} (2.5)

is obtained, with I' as the decay rate of the atom into the field, and o_ =
g) (e] = o1 is the atomic lowering operator. Though not the original, fur-
ther information of the theory behind this thesis can be obtained in [25]. The
effective Hamiltonian for the atom in equation (2.5) is

H = Hy + hd(t)oy (2.6)

with d(t) corresponding to the field Z driving the system. Assuming the qubit
is driven from the left at power P with frequency wy,

ﬂﬂ:2¢g< i;gm%m> 2.7)

The dynamics of the system are invariant under unitary transformations be-
cause unitary transformations are merely a change of basis, and physical the-
ories must be invariant under basis transformations. Moving into the rotat-
ing frame by transforming the dynamics into the frame of the drive with
U(t) = exp (—iwdb+bt/ 2), where here b denotes the lowering operator for
the transmon, is one such transformation. By transforming the Hamiltonian
into this time-dependent rotating frame basis (see appendix A.2) and making
the rotating wave approximation (thereby discarding fast-rotating terms in the
rotating frame, for they average to zero), the Hamiltonian in the rotating frame
reads

ow Q
_bdw O
2 2

or, in the undriven atomic basis {|g),e)} = {(10)7,(01)T}, where ()T de-
notes the transpose and dw = w4 — wy is the detuning of the transition from
the drive tone. Because we are in the frame of the drive, the drive d(t) is no
longer time-dependent (in the rotating-wave approximation), and so we define

the Rabi rate of the system
r / p
Q=2/z1/—, 2.10
\/; th ( )

which is the amplitude of the applied coherent state constituting the “laser”
drive. Using Fermi’s golden rule, in the approximation that the initial state
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is the qubit excited state |e) and the final state is the ground state |g), the
radiative decay rate of the qubit in the frame of the qubit is

T =4mg’wy (2.11)

The (dimensionless) coupling coefficient g of the atom to the field is given in
terms of transmon parameters is derived in [25]. This can be expressed in
terms of the transmission line impedance Z, the resistance quantum Ry, the
capacitance between the waveguide and transmon Cg, and the total capacitance

of the transmon Cy as
1
=4/ —== =] . 2.12
$TV Re G (SEC> 12

With these relations, one may then substitute equation (2.8) into the master
equation 2.5 to determine the dynamics of the two-level system. The system of
linear equations solving the expectation values of the elements of p are called
the optical Bloch equations [7]. These equations are quite general, describing
quasi-resonant driving of a transmon transition by an externally applied co-
herent field. The uniqueness to wQED comes from the fact that only two 1-D
modes are involved in the interaction Hamiltonian, which is seen in the ratios
of the coupling to the driving field and the total radiative decay rate. The next
section discusses the case for when three levels of the transmon are considered.

2.1.2 Three-level dynamics

To obtain an effective Hamiltonian for the transmon with three levels, we sim-
ply include the third excitation for the solution to the transmon Hamiltonian
as given in 1.3.2, whose eigenstates have frequencies wg, for the |g) — |e)
transition, and w,s = wg, + & for the |e) — |f) transition, where a ~ Ec [23] is
the anharmonicity of the transmon. So the atomic Hamiltonian is of the form

h h

with o1 = |e) (e| — |g) (3| and o' = |f) (f| — |e) (e|. Generally, i =
|In+1) (n+1| — |n) (n|. That is, Hy is a ladder Hamiltonian, where states
|g) and |f) are not coupled directly. One can use the general formalism out-
lined in [25] to extend this from the two-level dynamics to three. Crucially,
the damping rate of the transitions to the field depend on the level of the
transition, modifying equation 2.11 as

Ty =4ng*(n+ 1)@ 41,0 (2.14)

In this notation, wge = W (1,0, and so on. Note that in this thesis, I' = T
refers to the damping of the fundamental mode. The Rabi rate for each level

O, = vn+1, where Qy = 2,/271g?P/h. The effective Hamiltonian for the
driven three-level artificial atom is then, in the rotating frame of the drive

11
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<—L Out ] «<— LIn

Figure 2.1: Input-output theory schematic in wQED. The input field (purple) travels down the
waveguide (blue), interacts with the quantum system (red circle) at location x4, and the output
produced aoyt is a combination of input light and nonclassical light from the quantum system.

frequency wy

h h Q
H = > (wge — wa) ¥+ 5 (@ef = wg) o2 W4 h f 05D (2.15)
Here o\") = (TJ(F”) o = |n+1) (n| + |n) (n + 1] is the transversal population

exchange between transmon level |n + 1) to |n) and T, is expressed in terms
of To as Ty = (n+ 1)[ow(a1)/w1p). In matrix form with [g) — (100),
le) — (010)T, and |f) — (001)T, we then have

0 /2 0
H=h|Q/2 (wge—wyq) /2 V20y/2 (2.16)
0 V20 /2 (wWge + Wef — wyq) /2

2.2 Input-output theory

Input-output theory describes how to predict the statistics of the light of the
output field coupled to atom, given the input field and the Hamiltonian de-
scribing the time-evolution of the waveguide modes a(l®) (w, t). This tool is
used both for transmittance and reflectance, as well as two- and four-time cor-
relations. For simplicity, we consider the input state to be aX (w,t), moving
toward the right, and one output state aX ;; the other combinations of inputs
and outputs for left- and right-moving modes generalize easily. Clearly, if the
light input does not interact with anything, then aX ,(w,t) = aR (w,t). But if
the waveguide is non-empty, then the interaction Hamiltonian H 1 will deter-
mine the Heisenberg equation of motion for the output mode; that is, after
the light has interacted with the quantum system. This is analogous to what
was stated in section 2.1.1 to determine the solution of the field operator Z be-
fore getting the master equation. Figure 2.1 depicts such a scenario, with the
quantum system represented as a red circle with a nonlinear energy spectrum
of some number of energy levels, whose output light is mixed with the input
l1ght shown by the added red hue of the wave packet for aX ; as compared to

al . For the two-level system with Hamiltonian considered in 2.1.1, after mak-
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ing the approximations mentioned and given in detail in [25], the input-output
relations are

- I
Agur(c, 1) = ag (0, 1) + el \@Mt —ta) (2.17)

The time constant t4 = x4/v is the time taken for the signal to reach the
atom on the chip. As we are only focusing on a single transmon, we can set
ta4 = 0. The expression for the output field generalizes straightforwardly with
the three-level atom as

2w
aR (w,t) = aR (w, 1) + ,/Ea@(t i) 22N W G )y (218)
2 2(0(1/0)

Thus, we can relate the measured modes aoyt to the system of interest-namely,
the atom. The next sections discuss more in detail how to relate measurements
to the atomic system parameters.

2.3 Transmission and reflection of the sample

The transmission and reflection coefficients can be measured via spectroscopy
through the waveguide. In the language of input-output theory [25]:

(abt”)

= 7 (2.19)
(o5
<“<()ﬁ'tR)>

r= "0/ (2.20)

()

By the linearity of the expectation value and substituting equation 2.17, we

know
(ab) = (al) + @ (e-).

Thus, using the master equation to describe the population dynamics of the
atom, we can determine the steady-state solution of <0'(0'1)

- > by solving the
linear system of equations formed by the vectorized atomic density matrix,
known as the Optical Bloch equations [42]. In practice, this is done by vector-
izing the Liouvillian £(p) and solving for the null space in Mathematica. Once
we have the steady state solution for the density matrix elements, we recall

(0_) = Tr{po_} to determine (o_).

The master equation (2.5) included only spontaneous emission into the waveg-
uide as the dissipative element. However, we care about other environmental
effects on the atom, namely dephasing and non-radiative decay, whose origins
are an active field of research. One can also include thermal excitation. To
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obtain a fit function for the transmittance and reflectance of the setup, I will
add the dissipators D(A,p) = ApA' — 1{p, ATA} with non-radiative decay
rate I'p; and dephasing I'y as in [42] such that the master equation ¢ = L(p)
for the two-level transmon in the transmission line is

j T
b=Llp) = —% [H,p]+ ToD(0"”, ) + TuD (0, p) + LD, p)  221)

With this master equation, we obtain (¢_) in steady state, and then with input-

(L,R)

out

output theory, we can solve for <a > and substitute into equation (2.20) to

obtain

o 1—idw/ (To/2+Ty)

= (2.22)
Lo +2Tp1 4 (5w/ (To/2+Ty))* + O3/ (To (To/2 +Ty))

where 71 = T'g/(To + I'ny) is the ratio of radiative to total decay rate, including
non-radiative components. The transmission coefficient t = 1 — r due to the
requirement to satisfy Kirchhoff laws [41].

2.4 Field correlations and power spectral density

The previous section detailed how to use input-output theory to determine
expectation values of the output field to determine transmission and reflection
coefficients which are measured in spectroscopy. The challenge and exciting
undertaking extending such studies is the measurement of multi-time field
correlations derived from moments of the field, which allow us to glean more
information about the quantum interactions between the atom and the electro-
magnetic modes.

For any complex-valued signals w and v, the cross-correlation function of the
signals is defined as

(wxv)(T) = /_oo w* (H)o(t+ Tt (2.23)
= (w*(t)o(t+ 1)), (2.24)

where (-) denotes the time-average. For signals of interest, we assume a sta-
tionary and ergodic system, meaning ensemble averages are equivalent to
time-averages (see [30] and references therein), and the particular time ¢ at
which the averaging starts is irrelevant. With these conditions, ensemble av-
erages of finite-time averages are equivalent. The first-order normalized auto-
correlation function for signal s is then defined as

00 = 22

The signature of any nonlinear element, distinguishing atoms from cavities, is
incoherent scattering. That is, when driving the system at frequency w4 , how
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is this energy redistributed in frequency? This contrasts from spectroscopy
first in that incoherently scattered radiation has (a) = 0, but (a'a) > 0, while
this is not the case for coherently scattered radiation. The Wiener-Khinchine
theorem relates the power spectral density (PSD), denoted S(w), to the auto-
correlation function of the signal. Thus, to learn about the power spectrum,
we measure ¢(1)(7). Appendix B.1 details this relationship in more detail.
Therefore, by determining the auto-correlation function of the field mode, we
gain further insight into the structure of the source of the field, namely the
atom via its lowering operator as seen in section 2.2.

2.4.1 Measuring first-order correlations

In practice, we measure discrete time-traces of electric fields obtained by mix-
ing the signal output from the sample, discussed in chapter 3.2, via heterodyne
detection. In this thesis, I will denote continuous signals s as s(¢) and discrete
signals as s [t], following [28]. The quantum-mechanical field a of interest
is complex-valued, however, and therefore non-Hermitian and so knowing
both amplitude and phase of a is impossible by the Heisenberg uncertainty
principle. How we then determine a4 via measured electric fields is outlined
in [28], but I'll outline the reasoning. Mixing is described by a beam split-
ter which outputs the in-phase component of the field I and the out-of-phase
component Q, with one input being the quantum field a = I, +iQ, and the
other being the vacuum or a weak thermal state . The outputs of the beam
splitter are ¢ = (a+ h)/2 and d = (a — h)/2. Then, measuring one of the
quadratures of these outputs gives I = (c+c')/2 and Q = —i(d —d")/2.
These outputs do commute, and so we can measure both to obtain a signal
S = I14iQ = (a+h")/\/2, where both quadratures are now measurable. This
came at the cost of introducing noise to the field, i'. This is minimally vacuum
uncertainty, but could be other noise as well, depending on the physical nature
of the mixing process.

In practice, before mixing we amplify the signals emitted by the sample with a
linear amplifier, as they are much too small for a digitizer to detect. Thus, the
signal we measure is related to the original mode of interest by S = /g(a +
h*), where ¢ = Pout/Pin is the gain of the amplification line. Therefore the
dominant noise source in our signals is the added noise due to the amplifiers
with non-unit gain. See [9] for the original description of a quantum linear
amplifier, or [10] for a recent review.

So to extract correlations of the mode a of interest, we must account for the
noise h' added by mixing and amplification. The cross-correlations of any
discrete waveforms w and v, denoted (w x v) [T], is

(w*v)[t] = Tisw* [t] v [t + TmodT]. (2.26)
t=0

To measure the correlation function of the signal s in practice, we take ensem-
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ble averages (-), and we denote this measured first-order correlation as in [28]:
TW (1] = (s*s) =g <(a +h") % (a+ h+)>
=g ((a*a> + <h+*h*> + <a*h+> + <h+*a>>

— gG(l)[T] + H(l)[r] (2.27)

with the definitions
GW[r] = <a+(t)a(t + r)> (2.28)
HO[x) = g (n(Hh'(t+ 7)) (2.29)

being the unnormalized auto-correlations of the field and noise, respectively.
Thus, we find
gGW[1] =TW[7] — HW[1] (2.30)

So, we can subtract an “off” measurement H1[] to determine the first order
correlations of mode a. A good reference for added noise during amplification
at the quantum level is [9].

2.4.2 The dressed two-level system and the Mollow triplet

The field correlations (a*(t)a(t + 7)) of the light emitted by a two-level system
employs similar methods as the transmission and reflection coefficients in sec-
tion 4.1, but one additional tool is needed: the quantum regression formula [8].
The quantum regression formula reads, for a two-time correlation of mode 4,

V(1) = <a+(t)a(t + T)> = Tgr{ae“ [p(t)a+] } (2.31)

where Tr{-} denotes the trace over the system S. Thus, we need only the input-
)
output relations and the Liouvillian governing the dynamics of the atomic

state populations (the optical Bloch equations) via the master equation (2.5)
to determine ¢V (7), and from there, use the Wiener-Khinchine theorem to
obtain the power spectrum of the driven two-level atom. Here, we consider the
resonantly driven two-level system Hamiltonian in the rotating frame of the
drive, given by (2.8) with dw = 0. The result under such conditions gives the
power spectral density S(éw) of an atom driven strongly and near-resonant,
given by

8I20* (2 (I + dw?) 4+ O?)
(T2 + 46w?) (T2 + 202) (r4 + T2 (562 + 402) + 4 (da? — 92)2)
(2.32)
Note in this equation we have removed the coherent delta function due to the

drive tone. A visualization and plot of the spectrum is given in figure 2.2. At
high Rabi rates, the spectrum splits into three peaks, which gives it the name:

S(bw) =
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Figure 2.2: The dressed states and Mollow triplet. (a) Energy level diagram of the two-level atom
driven by a strong drive (double arrow). The increasing drive power dresses the atomic states with
the optical mode. (b) Power spectral density under strong drive. Q) gives the splitting of the dressed
states, and radiative linewidth T is the full-width at half-maximum of the central peak.

the Mollow triplet, after Mollow’s calculation of it in [31]. The level splitting
shown in figure 2.2 (a) indicates a dressing of the atomic states, but this re-
quires some clarification. The fact is that the atom-field collective quantum
state |Matom) |Mgelq) is splitting its degeneracy. In reality, under resonant drive,
the atom-field Hamiltonian has degenerate eigenstates: H|n+1,g) = H |n,e).
But the coupling Hamiltonian H; = hQ/2(acy + a'o_) splits the atom-field
state into eigenstates |n,+) = (|n,e) + |n,g))/V/2, with energy difference
hQy/n. At very large drive field photon number 7, the difference in the split-
tings of the levels |n,+) and |n+1,+) is small, as vn ~ vVn+1,n > 1.
Thus, the dressed-state “ladder” at high photon number shows a splitting of
the form in figure 2.2 (a). One can take the Hamiltonian in equation (2.8),
calculate the eigenvalues, and understand that at high n, the splitting in the
dressed-atom field states for the drive with n photons is about the same as
that for the dressed states with (n + 1) photons, and so we have an effective
four-level system from what had appeared to be only two when only the atom
degrees of freedom were considered.

2.4.3 Three level dynamics under two-photon drive

Considering the third level of the transmon could also show interesting field
and photon correlation effects. Previous works have explored using the third
level of the transmon and performed two-tone spectroscopy, revealing the
Autler-Townes splitting. This is the effect observed when a three-level quan-
tum system is strongly driven in one transition, and a splitting is observed
at the other transition. By using two-tone spectroscopy, prior works [4, 38]
had measured this splitting which we theoretically see in figure 2.3. Further-
more, prior work [24] has driven a transmon qubit in an open transmission
line at the g-f/2 transition, measuring the three-state dressed states which oc-
cur for transmons with weak anharmonicity. The most efficient way to induce
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transitions is to pump them directly at the frequency of the transition. These
transitions lead to the absorption of a single energy quantum by the system.
However, because the pump frequency is the same as the signal frequency, the
pump radiation and the radiation emitted by the transition will superimpose,
obfuscating the nonclassical statistics of the light emitted by the two-level sys-
tem. To circumvent this, one can pump a second-order transition by driving
at half the energy between the |g) and the |f) state; this is denoted the “two-
photon drive”, because two photons would need to be absorbed to meet the
energy required by this transition. Note that a direct transition is not allowed,
as the dipole coupling only allows changes by a single excitation [24]. The
“two-photon” drive works via a virtual excitation via the |e) state. By pop-
ulating the |f) state with the two-photon drive and monitoring the outgoing
signal around the e-f transition or the g-e transition, we would obtain be able
to measure the light statistics of the transmon without the coherent pump tone
interfering.

As a step towards measuring photon correlations with the two photon drive,
we first examine the field correlations of the system. This is done analogously
to 2.4.2, except we take the three-level Hamiltonian in equation (2.15) and set
Wi = 3 (wge + wef). In matrix form, this gives

0 0y/2 0
H=n[Q9/2 —a/2 200/2 (2.33)
0 V20/2 0

By solving for the three-level optical Bloch equations and applying equa-
tion 2.31 as before, we numerically calculate the spectrum obtained from the
two-photon drive and offer a comparable dressed-state picture as was done
in the two-level resonant case.The two-photon drive of the transmon is shown
in figure 2.3. Part (a) shows the first the levels of the transmon with anhar-
monicity & = w,f — wge < 0 with a drive tone (double arrow) at half the
energy of the g-f transition, wgr/». Relative to wyr/», wef = wqr/ — |a|/2, and
Wge = Wgf/2 + |&|/2. As power of the tone is increased, as with the qubit case
in section 2.4.2, the undriven states are dressed with the strong drive tone,
splitting the two levels which are driven resonantly (here, in second-order).
This results in seven distinct transitions, which are shown in the peaks of the
power spectral density plots in figure 2.3 (b). The detuning is relative to w2
such that dw = (w — wgs/2), normalized to the anharmonicity. The e-f tran-
sition is found at —|a|/2 relative to wyf/, and the g-e transition is found at
|| /2 . The low-power transitions, denoted by the colored vertical lines, match
the dotted colored lines in part (a), showing the frequency shift and splitting
which results from the strong two-photon drive. Note the difference in ampli-
tude of the e-f and g-e transitions as compared to the (g-f)/2 transition. This
illustrates the smaller likelihood of the second order process. Note the coher-
ent pump tone is not shown in these plots, but would be a delta peak at its
drive frequency, wgs/>. A stronger drive power further shifts the e-f transition
down in frequency (top plot), and the g-e transition up in frequency, as well
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Figure 2.3: The dressed states from a two-photon drive. (a) Energy level diagram of the three-level
transmon driven by a strong two-photon drive (double arrow). The increasing drive power dresses the
three states. (b) Power spectral density of each transition. Vertical lines correspond the low-power
transitions denoted in (a).

as broadening the splitting between the two transitions. The former is under-
stood as a Stark shift by the non-resonant coupling of the drive to the |e) state,
and the latter to be analogous to the splitting in the two-level system case.
The power dependence of the two-photon drive is shown in figure 2.4. The
upper plot centers on the wg,, while the lowest shows the PSD at frequencies
around w,, and the center shows the wgr/>. The power () is in units of the
g-e linewidth, T'.

2.5 Photon correlation functions

The second-order (i.e. photon, or intensity-intensity) correlation function is
the de facto quantity to determine the “quantumness” of the light source. The
celebrated photon anti-bunching behavior of single emitters defied any classi-
cally allowed source of light. The second-order correlation function of the field
is given by

G (1) = <a*(t)a+(t + T)a(t)a(t + T)> = Er{a*aeﬁf [ap(t)a*] b (2.34)

with the second equality given by the four-operator extension of the quan-
tum regression formula. Note also the normal ordering of the operators in
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Figure 2.4: Power Spectral Density of a three-level atom under a two-photon drive of varying power.
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the middle expression; this is due to the quantum-mechanical nature of photo-
detection; namely, by photon absorption. The canonical measurement of inten-
sity correlations uses the Hanbury-Brown-Twiss interferometer, which mea-
sured photon number twice, one delayed in time by the other by 7. Thus,
normal ordering describes the fact that, quantum-mechanically, the measure-
ment of a photon in the light field depletes the field by a single photon, while
in the classical case, this remains the same. This is seen mathematically, as the
expected value of this middle expression in equation (2.34) is (n (n — 1)), indi-
cating the detection of n photons, and then (n — 1) photons. Discussion of this
point is motivated from [30] in section [5.10]. The expressions for G® (1) are
obtained analogously as they were for G(!) (), by using the master equation
to obtain the optical Bloch equations, and substituting these relations into the
quantum regression formula.

2.5.1 Distinguishing classical and quantum light sources with
photon correlations

As was briefly mentioned in the previous section, photon correlations are
the clearest indication of whether or not a signal is “quantum”. This can be
thought about well in terms of the underlying statistical distributions gener-
ating different light sources. For a thorough and satisfying delineation about
the different types of second-order correlations, see [30].

A coherent light source is one generated by a laser or a microwave function
generator. It is also the eigenstate of the anihillation operator and can be
written:

) = W2 3 12 2.35)
o = nl ! '

where |n) is the Fock state with n photons. The brackets in equation 2.34 are
taking the expectation value of the operators inside. If we consider G@)(0) for
a coherent state a, and we know a |a) = & and («|a’ = a*, we get

(a|afatan|n) = |a|* = (n)?. (2.36)

Because the probability of measuring Fock state |n)

P(n) = (nla) = ‘“'2/22"" (n )

= e—“|2/2|a|2—|“n|, (2.37)

follows a Poisson distribution, these are called Poissonian photon statistics.
Furthermore, it can be shown that Poissonian distributions have equal mean

and variance, that is (1) = (An)? = (n2) — (n)>. By expressing G (1) in
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terms of the photon number variance

G2 (0) = <a+a+aa> = <a+(aa+ + 1)u>

= (An)? + (n)* — (n) (2.38)

we can gain insight into how G?)(t) differs for different statistical distribu-
tions governing light generation. One can again see from this that G(2)(0) =
(n)z for Poissonian light.

A perhaps more ubiquitous form of light is thermal light, which follows Boltz-
mann statistics in the classical sense. That is,

B e—hwn/kBT B <n>ﬂ
P(n) = ——7—= RNt (2.39)

where Z = Y, exp (hwn/kpT) is the partition function. One can show the
second equality [30], and that this means the variance (An)? = 2 <n)2. Thus,
using equation 2.38, we see that for thermal light G (0) = 2 (1n)?. This means
that for thermal light (and in fact any classically formulated light distribution),
¢'?)(0) > 1. Specifically for thermal and other sources of “chaotic” light [30],
g (r) <2

The quantum nature of light produces statistics entirely disallowed by classical
physics. From our knowledge about the theory, we can see that this comes
about by the fact that, for single photons, the expectation value (n(n — 1)) = 0.
One sees this by carrying out the same calculation for Fock state |1) as was
done for coherent states:

G2(0) = (1]atataa|1) = (0]a*a]0) =0 (2.40)

Thus, single photons as mathematically described can produce g(?(0) < 1; this
is called sub-poissonian light. Intuition for this idea can be seen by considering
the paritcle nature of light. The correlation ¢(?(7) can be thought about as
the relative likelihood that, conditioned on the fact that you've already seen
a photon (mathematically embodied by the two a’s in (a'a’aa)), what is the
likelihood you will see another one time 7 afterwards? For a single-photon
source, this must be less likely (¢?)(7) < 1 for small 7), and is in fact 0 at
T = 0, for a single-photon source by definition cannot emit two photons at the
same time.

Thus, the observation of sub-Poissonian statistics defines the non-classical light
source. By considering interference effects of a single photon source with
traveling resonant light, one can also predict superbunching (¢ (1) > 2) for
quantum systems, though in principle there is no mathematical limit, like the
Cauchy inequality for antibunching, barring a classical light source from ex-
hibiting super-bunching effects as well [30] it certainly does not occur naturally
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like chaotic light statistics do, and reflects constructive interference which are
often most accurately described by quantum-mechanical origins.

Thus, to measure nonclassical light means to measure photon anti-bunching.
Measuring super-bunching also strongly suggests it, and also distinguishes the
light from either coherent or thermal light sources.

2.5.2 Measuring photon correlations with linear detection

The procedure to measure G(?)(7) from discrete, noisy time-traces is similar,
but more involved, than the case for first-order correlations in section 2.4.1.
To extract the field mode correlations G [t] from a signal s [t] = a + i, we
must measure four quantities: I'") [t] and H)[1] as defined in equations (2.27)
and (2.28), and their second-order counterparts

1] = ¢ <s+s *s+s> (2.41)
H®[7] = ¢ <hh+ x hh+> (2.42)

By expressing s in terms of field mode of interest a and the added noise h'
present by amplification and other processes in the measurement line, substi-
tuting into equation (2.34), and assuming that all terms involving odd powers
of the noise operators are 0 (as (i) = 0), we obtain the normalized second
order correlation function g(?[]

@y = G20
¢ = EOIOLE (2.43)
where
ng(z) (7] = (2) (7] — H®) [7]—
ng(l) [0] j2 () 0] —
gG [~ H [1] -
gGW (7] HW [—1] (2.44)

We are thus equipped to extract the photon correlations of the field output
from the wQED system and probe the non-classical properties of artificial
atoms in the waveguide. The next chapter delves into the experimental work
done over the course of this thesis to measure amplitude and intensity (i.e.
photon) correlations for transmons embedded in a coplanar waveguide.
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Chapter 3

Experimental methods

There are several important experimental tools and techniques that are used
to measure correlations of non-classical microwave light: the dilution refriger-
ator, which prepares the thermal and electrical environment for the artificial
atoms, the signal engineering and processing used to measure the correlations,
and the Josephson parametric amplifier used to reduce the added noise due
to amplification as much as possible. This chapter provides an overview of
each and details important to the understanding of the measurements given in
chapter 4.

3.1 The cryogenic setup

The workhorse of circuit QED and many fields requiring low-temperatures is
the dilution refrigerator cryostat. Our dilution refigerator consists of six plates
which are cooled to successively lower temperatures; nominally, they are 300K,
70K, 4K, 1K, 100mK, and 40 mK. Figure 3.1 shows the 4K plate and below
of the cryostat. The cooling mechanism uses a mixture “He and *He, taking
advantage of the superfluidity of *He and the lower boiling point of *He to
perform evaporative cooling on the mixing chamber at the base plate. The
Vericold dilution refrigerator used in this experiment additionally employs
pulse-tube technology such that the gas-handling circuit is closed, thus not
requiring any refilling of “He. The interested reader can find details on the
operation and physical basis of cryogenics in [34]. This type of cryostat brings
temperatures below 40 mK in reach, or about 0.4% and 3.3% of the nominal T
of niobium and aluminum, respectively. At these temperatures, the quantum
nature of the circuits is manifest and measurable. To measure and charac-
terize our superconducting quantum circuits, however, we must electrically
connect them to the room-temperature environment, without compromising
the temperatures achieved using the cryostat. A schematic of the cryogenic
wiring used for the wQED experiment is shown in figure 3.2. Depicted are
the different temperature stage plates on the left, and the microwave coaxial
cables denoted by thick black lines. The 30 yum superconducting coil DC wires
are denoted by the thin twisted pair of dashed lines. The DC wires biasing
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40 mK

Figure 3.1: Image of the cryostat used for measuring the wQED sample. The different temperature
stages are indicated next to the plates shown in the photograph.

the High Electron-Mobility Transistor (HEMT) amplifiers are not shown. To
enable measurement of the sample in transmission and reflection from both
ports of the waveguide, circulators with 20dB isolation are placed at either
side of the chip, which also prevents the formation of standing waves in the
line that could heat the sample and the cryostat. The band-pass filters before
the HEMT amplifiers at 4K prevent any high-power spectral noise outside
the band of interest from compressing the amplifier. To prevent an unwanted
thermal link, all cables which cross a thermal stage are either stainless-steel
or superconducting, while to minimize added noise at the sample, all cables
are copper below the base (40 mK) plate. Stainless steel cables are used for all
input lines despite their poorer electrical properties in order to reduce the heat
load on the cryostat. The output lines have stainless-steel cables in place after
the HEMT amplifiers and either superconducting or steel cables between all
temperature stages. Additionally, DC blocks are placed at all microwave line
inputs at the top flange of the cryostat to ensure coupling into the measure-
ment lines is only AC, preventing voltage differences between grounds, which
could cause unwanted heating of the system.

We must also consider decoherence of the quantum circuits due to thermal
noise and reduce heat load on the cryostat. To reduce the heat load, we short
the thermal link made by microwave lines which go to the sample by ther-
malizing the outer conductor of the coaxial cable at several points between
the top flange and the base plate (not indicated in figure 3.2). To both reduce
Nyquist noise and prevent a thermal link by the inner conductor of the cable,
we thermalize the inner conductor of the cables by placing three 20 dB attenu-
ators in the signal input lines, which are thermalized at the 4K, 100 mK, and
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40mK temperature stages of the setup, indicated by the blue symbol in fig-
ure 3.2. Assuming spectrally white Nyquist noise, the power spectral density
is Snoise(w) = 4kpT /hw photons for any given mode, where w is the frequency
of the mode the photons are occupying (see appendix B.3). Assume we operate
at frequency w/2m = 6 GHz. Then, 300 K Nyquist noise corresponds to 4167
noise photons. At the bottom of the microwave input line, we have attenuated
the 300 K noise by 1 million (60 dB), so this contributes ngry ~ 0.004 photons to
the noise at base temperature. However, the three attenuators, thermalized at
different stages of the line, also add their own noise: 4K attenuated by 40dB,
100mK attenuated by 20dB, and unattenuated 40 mK noise. At base, these
then add 0.005, 0.013, and 0.55 noise photons at 6 GHz, respectively. That is,
this attenuation scheme leaves the dominant noise source the base temperature
noise, by a factor of 500 over the second largest noise source. This attenuation
setup is quite important for minimizing the thermal noise which would inter-
act with the transmons, reducing their quantum coherence.

Aside from thermal noise interfering with the qubit, the added noise of the
amplification chain will determine our signal quality. This is especially impor-
tant for ¢(2)[r] measurements because of the exponential scaling of required
averages to obtain a given accuracy as a function of the correlation order [11].
The HEMT amplifiers at the 4K stage have a nominal noise temperature of
5K, but in our experiments we have measured temperatures as high as 35K.
This discrepancy can be caused by a number of experimental factors, includ-
ing quality of thermalization of the HEMT to the cryostat, or deviations in the
optimal bias voltages yielding the desired drain current Ip of the HEMT as
the HEMT is thermally cycled. Although HEMT operation should be nomi-
nal, the effect of sub-optimal HEMT operation can be reduced by employing
a lower-noise amplifier before the HEMT. Using an ideal quantum-limited,
phase-preserving parametric amplifier, one can achieve added noise of a sin-
gle photon by the amplifier [9]. In practice, we have reduced the added noise
of the total amplification chain to ~ 3 added noise photons, corresponding to
~ 100mK of added noise (see figure 3.8). Note that another way to reduce
added noise in ¢(®[7] measurements, past experiments have used indepen-
dent amplification chains and preformed the cross-correlation of intensities
recorded from the two lines [20]. However, in this experiment, we use a mea-
surement setup similar to [15] to measure ¢(?)[1], measuring from a single line
with a phase-preserving Josephson parametric amplifier as the first amplifier
in the chain (see figure 3.2).

Further cryogenic cabling measures are in place to operate the quantum-limited
Josephson parametric amplifier, denoted by the amplifier symbol with the
“JPD” text inside it, standing for “Josephson Parametric Dimer” [16]. To pro-
tect the transmons from the strong pump tones required to supply the energy
to the JPD which amplifies the signal, two isolators are placed between the
input-output circulator at the sample and the JPD output circulator. Though
this increases the attenuation between the sample and the amplifier, reducing
the signal-to-noise ratio (SNR), the insertion loss of the three circulators, in
total measured to be ~ 1 — 1.5dB is thought to be sufficiently small in com-
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Figure 3.2: Schematic of the cryogenic microwave lines for measuring the wQED sample. Also
shown are the DC coil wires which generate magnetic flux.

parison to the added benefit they offer of isolating the transmons from the
strong pump tone. Appendix C compares the SNR of the output line with the
JPD and the line without, illustrating the benefit of the JPD. Additionally, the
pump tone is canceled interferometrically at the output of the directional cou-
pler after the JPD, which provides another layer of protection for the sample
from the pump tone. For a pump tone of 13dBm at the microwave genera-
tor, the number of pump photons per second at the sample is estimated to
be ¢y pump &~ 0.23 us™! at the pump frequency wpump/27 = 6.38 GHz, given
pump line attenuation to the sample Apump ~ —112dB and 35dB of cancel-
lation. Because wg, # wpump, this population would not interact with the
transmons in the experiment. The JPD is discussed further in section 3.4.

3.2 The quantum signal analyzer

The quantum signal analyzer is a warm electronics signal processing system
which enables the efficient measurement of time-resolved moments of the mi-
crowave field, demonstrably up to second-order. It consists of two primary
technologies: the analog down-conversion board, which converts the GHz-
frequency signals to MHz-frequency, making digital sampling possible, and
the Virtex 4 FPGA, which digitizes the signal and performs correlations of
signals in real-time. The downconversion board performs heterodyne dete-
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Figure 3.3: Schematic of signal processing into and out of the fridge for a single input and output
(note two are used for the experiment). The LO signal is typically detuned from the input signal
by 25MHz. Only a single downconverted quadrature of the amplified signal exiting the cryostat is
digitized.

tection with a frequency mixer, with the intermediate frequency v; being the
difference between the signal frequency in the RF (radio frequency) port of
the mixer and the local oscillator (LO), usually set to follow the RF input tone
in CleanSweep at v 0 = vrr — 25 MHz. A schematic of the signal processing
between the output of the cryostat is shown in figure 3.3. After downconver-
sion to the intermediate frequency vy, the out-of-quadrature component of the
signal (Q) is terminated, and the in-quadrature (I) part of the signal is filtered
by an anti-aliasing low-pass filter with a 50 MHz cutoff frequency, the Nyquist
frequency of the Virtex 4, which samples at f; = 100 MHz. The output is then
digitized by the FPGA, digitally downconverted to DC, and the user can fil-
ter the data with a finite impulse response (FIR) filter and a moving-average
(box-car) filter to further remove unwanted bandwidth. See appendix D for
more information on how filtering affects realistic signals of known character.
One notes that because only one component of the downconverted signal is
saved, signals rotating at higher frequencies vsj; = v + 6 are indistinguishable
from the negative-frequency counterparts véig = v — 6. In other words, the
frequency spectrum in the I quadrature must be symmetric around vj;. This
means that, if we want to measure the spectrum above the LO frequency at
Vsig = Vif + 0, we must ensure that the spectrum around v/ = vjf — 6 contains
no features, as these would appear at our frequency of interest upon taking
a single quadrature of the signal. This is important for instance if one wants
to interpret data obtained whilst sweeping the LO frequency. The quantum
signal analyzer is discussed in further detail in [28].

Note that the schematic in figure 3.3 is simplified; in reality, the VirteX 4 has
two analog-to-digital converter (ADC) inputs, which can then be manipulated
together after digitization. The FPGA enables several “signal math” settings,
in which one can take the amplitude, the intensity, or the auto-correlations

29



3. EXPERIMENTAL METHODS

30

of either amplitude or intensity from one or two ADC channels and, due to
details of the implementation on the FPGA board, the saved data is shifted
by one or more bits relative to to the true measured values, necessitating a
multiplication of the saved data by various powers of two, depending on the
measurement. Specifically, for a signal S with units of Vy_py, the following
quantities relate to the saved CleanSweep signals denoted by Scs:

(Sltl) = 2(Scs 7] 3.1)

(5% [7] S[r]) = 4 (Scs [7] Scs [7]) (3-2)

(57 [0] S [7]) = 16 (Scs [0] Scs [7]) (3.3)
(S7[0]S[0] 5™ [t] S [7]) = 64 (Scs [0] Scs [0] Scs [7] Scs [7]) (3:4)

To read any correlation data, rather than pure amplitude or intensity data, one
can use the ReadCorrelatorData[] function implemented in the
PhotonStateTomography * Mathematica package. Alternatively, the data can
be loaded using ReadInData[] in the DataHandling" package, and imple-
menting a wrapper which normalizes the amplitudes of the signals according
to equations (3.1) - (3.4).

3.3 The waveguide QED sample

To study correlations of nonclassical microwave light emitted by multiple trans-
mons coupled in a transmission line, we studied a simple sample of two trans-
mons coupled on either side of an uninterrupted meandering coplanar waveg-
uide, as shown in figure 3.4. The chip itself is a 500 ym thick sapphire wafer
with 150nm of Nb patterned on top and bottom, which is etched away on
top to create the waveguide center conductor and the areas where the trans-
mons are placed. The transmons are designed to be separated by one wave-
length at 6.5GHz, and three-quarters of a wavelength at 4.875GHz at their
flux-tunable fundamental resonance, corresponding to 18.68 mm of waveguide
length between them given the speed of light v ~ 0.4c = 121.42mmns~! in
the coplanar waveguide. The transmons are fabricated from Aluminum via
electron-beam lithography and shadow evaporation [13]. As indicated in the
inset of figure 3.4 , the transmon capacitor width is 460 ym, and Maxwell sim-
ulations predict an Ec ~ 294MHz. By measuring the first and second res-
onances of the qubit and fitting these to the eigenfunctions of Hcpp in (1.8),
we determined Ec ~ 320 MHz for one qubit of the sample. This further gives
an E; ~ 16.5GHz. The meandering Niobium coplanar waveguide couples
to the transmons capacitively with a separation of 76 ym between the cen-
tral conductor and the transmon capacitor. This gives an expected coupling of
'y ~ 2MHz. At the bends of the waveguide, and at either side of the meander-
ing section, air-bridges connect the ground planes 4.5 ym separated on either
side of the 10 yum-wide center line. Visible in figure 3.4 are the aluminum wire-
bonds which are electrostatically adhered to the chip and the copper printed
circuit board (PCB).

After the sample is wire-bonded to the PCB, it is placed in a copper mount
consisting of a base, a lid which is meant to prevent spurious microwave modes
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Figure 3.4: Optical micrograph of the wQED sample wirebonded to the printed circuit board.
Transmons are false-colored red. Inset: close-up of one of the nominally identical transmons.

in the shield, and a copper cable mount to which one fastens the input cables,
and also which thermalizes the sample to the base plate. The cables have SMP
jacks which connect to the SMP jack launcher soldered onto the PCB via SMP
plug “bullets”. Once the sample is mounted in the setup, the coils are fastened
to the copper base, and the sample is enclosed in two magnetically-shielding
cylinders to prevent spurious magnetic fields from coupling to the device. In
figure 3.1, the magnetic shields are in place around the sample mount, which
is not shown.

3.4 The Josephson parametric dimer

Because of the exponential scaling of the number of averages required to
achieve a given signal-to-noise ratio (SNR) with respect to the order of the
microwave field being measured [11], obtaining a high signal-to-noise ratio
is tantamount to probing the non-classical statistics in efficient time. Other
works [6, 20] have used independent amplification chains, each with a com-
mercial HEMT (High-Mobility Electron Transistor) as the first amplifier. This
method relies on the independent noise properties of the amplifiers, to mea-
sure two-time correlation functions. Nonetheless, the Josephson parametric
amplifiers are in principle quantum-limited in their noise properties, meaning
the minimal added noise is due to the signal being mixed with the vacuum
fluctuations inherent to the field, or half a quantum of noise for each quadra-
ture [9]. This makes them superior amplifiers with which to probe higher or-
der correlations in the microwave domain. Recently, Qudev [15] has used the
Josephson Parametric Dimer (JPD) developed in [16] to measure photon cor-
relations. In this section I detail how the amplifier used in our measurements
is characterized and prepared for optimum use in measuring correlation func-
tions.
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Figure 3.5: Optical micrograph of JPD7 1S 12, the quantum amplifier used to measure the wQED
sample. Visible are the interdigitated capacitors and the SQuID arrays constituting the weakly
nonlinear resonators.

The sample we have used is a Josephson Parametric Dimer, a micrograph of
which is shown in figure 3.5. The JPD consists of two capacitively coupled,
nominally identical lumped-element resonators with a weakly nonlinear in-
ductance formed by a SQuID array. Each resonator has a finger-capacitor to
the surrounding ground plane, and an array of SQuIDs with one meander
that connects the central charge island to the ground plane. The nominally
identical cavities form symmetric and antisymmetric normal modes w, and
w_, the splitting | being proportional to the coupling capacitance between the
resonators. The symmetric and antisymmetric modes thus form the signal and
idler modes of the parametric amplifier. The use of SQuIDs, rather than sim-
ply junction arrays, enables tunability via an externally applied magnetic field
(see the coils in figure 3.2), similar to the case for the transmon. To determine
the resonances of the JPD, a weak probe tone is input, and the phase of the
reflection coefficient Arg[S11] shows in high contrast the two resonances of
the Dimer. One determines the phase by splitting the signal tone, such that
one enters the cryostat and the other, called the phase reference is immediately
downconverted and input into the second ADC of the FPGA, where the signal
phases are the compared [16]. By changing the voltage of the superconduct-
ing coil below the JPD, one can tune the resonances, as shown in figure 3.6
(a). The tunability of the JPD allows us to center the amplification bandwidth
onto the qubit resonance. The coil voltage working points we’ve used are
Vipp = —800mV. Because we aim to have both qubits with resonance fre-
quency wg = wgp = 27 - 6.5GHz, the lower mode must serve as the signal
mode, and the upper as the idler mode, as the higher-frequency mode cannot
achieve our desired frequency.

Once we’ve selected the coil voltage, the two remaining parameters to set the
JPD working point are set by the pump tone, which supplies the energy to
amplify the signal tone. To preserve the phase of the signal after amplification,
we chose to operate the JPD in non-degenerate mode. That is, we pump the JPD
between the two resonances at wpump = Wsignal +J = Widler — J. The pump
scheme is outlined in figure 3.6 (b). This achieves phase-insensitive amplifica-
tion [16]. For most working points in this experiment we’ve used frequencies
of Wpump = 271 - 6.38 GHz. Though the optimal pump power for coil voltage
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Figure 3.6: Methods to find a JPD setpoint. (a) The phase of the reflected signal of the JPD
sample as a function of coil voltage to determine the desired coil voltage for the frequency range of
interest (purple box). (b) Pump scheme for phase-insensitive amplification. The pump frequency is
at the mid-point between the signal (purple) and idler (blue) mode. See text for details.
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Figure 3.7: Characterizing the JPD in non-degenerate mode as a function of pump power. (a) The
JPD gain as a function of the pump power when operated in non-degenerate mode. (b) Selected
traces from (a) are fit to obtain the gain-bandwidth-product. (c) The gain-bandwidth product is
plotted as a function of gain for several pump powers (red text). At high powers, the gain starts to
decrease, while the gain-bandwidth product begins to increase.

V = —800 mV appears to be wpump = 271 - 6.7 GHz, to obtain gains in the range
of 10 — 20dB, a substantial pump power must be applied. This pump power
shifts the JPD resonances away from the pump frequency [16], and therefore
the lower resonance shifts downward. This is clearly seen in figure 3.7 (a)
and (b), where the JPD resonance is seen to be around wgjgna ~ 277 - 6.2 GHz.
At 12 < Ppymp < 15dBm of input pump power, the JPD gives gain between
5 —20dB. Figure 3.7 (c) shows how one crucial amplifier characteristic, the
gain-bandwidth product (GBWP) changes as the gain is increased. The GBWP
is important when weighing the trade-off between gain and bandwidth; for our
purposes, the bandwidth of the amplification chain need only be on the order
of the qubit linewidth I'. Furthermore, we would need a gain high enough
to reduce the effect of added noise by subsequent amplifiers in the detection
chain.

Once the JPD set-point is chosen with the above procedure, the pump tone is
canceled as in [16] (see figure 3.2) by splitting the pump and sending one line
through a variable attenuator and phase shifter at room temperature, and then
recombining via the directional coupler connecting the JPD to the pump line
in the cryostat. The attenuation and phase is tuned manually [17] to minimize
the measured signal output at the pump frequency. With this technique, we
reduced the measured signal at output 2 at the pump frequency by ~ 35dB,
which, in conjunction with the combined 80 dB of isolation of the pump from
the sample by the four circulators and isolators, ensures that the strong pump
tone does not significantly leak into the wQED sample.
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Beyond the gain and the bandwidth of the JPD, it is also important to know
the 1dB compression point and the added noise of the amplification chain.
The dynamic range of Josephson parametric amplifiers has been studied in
detail in [18]. The 1dB compression point P; 4p of a JPD decreases rapidly
when increasing the gain [18]. If the amplifier is compressed, that is, it de-
viates from its linear behavior, its noise characteristics would differ between
measurements of T2 (1) and H(1?) (1), thereby invalidating the noise mo-
ment subtraction scheme outlined in chapter 2. An amplifier with too much
added noise is similarly counterproductive, in that a lower signal to noise ratio
necessitates more averaging to obtain the desired uncertainty in ¢(?)(7) in the
exponential scaling discussed above. Figure 3.8 shows the characterization of
the JPD working point used for experiments measuring photon correlations
outlined in chapter 4.4. The parameters for this set-point are Vy; = =753 mV,
wpump /27 = 6.38GHz, and Ppump = 13.55dBm. This set the gain of the
JPD to ~ 18dB with a bandwidth of 13.6 MHz. The gain was limited from
above to ensure a high P; yg comparable to values in [15], and from below to
achieve minimize added noise. The value of P; 45 was determined by apply-
ing and measuring a tone on the JPD signal resonance and varying the tone’s
power, and comparing this to the measured power of the tone when the JPD
pump was off. Thus, at each power we obtain a gain for the JPD, and the
tone power at which the gain has decreased by 1dB gives the compression
point. In figure 3.8 (b), the dashed horizontal line marks the gain at which the
amplifier has compressed by 1dB. Note that the horizontal axis is calibrated
via fitting the resonance fluorescence of the atom, relating the measured Rabi
rate () to Pgample Via equation (2.10). The vertical line shows the power at
which the curve intersects this dashed line, giving P; 45 = —109dBm ~ 2750
photons us~! for photons in the amplification band. The power from the qubit
with linewidth I' = 2.7MHz ~ 0.1% of P; 4. Parts (c) and (d) of figure 3.8
compare the PSD of the measurement line after applying a drive tone with
the JPD on and with the JPD off. In the plot, one clearly sees an increased
noise level when the JPD is off. Further, part (d) gives the number of noise
photons as 2.89 when using the JPD, as compared to 118 noise photons when
only the HEMT is used. One also notes that the HEMT amplifier at the output
of the JPD is far from ideal operation, with a noise temperature Toise ~ 35K,
about an order of magnitude higher than nominal operation of the HEMT. Al-
though Theise as quoted is the noise of amplification chain, the added noise
before the HEMT is expected to only be fewer than 10 photons, suggesting
that the HEMT adds still ~ 100 noise photons, double the 5K =~ 55 photons it
should nominally add. Thus, the JPD clearly improves the noise temperature
substantially, although the HEMT performance is also sub-optimal.

With careful understanding and calibration of each component in the exper-
imental setup, the cryostat, quantum signal analyzer, and quantum-limited
amplifier enable the efficient measurement of the nonclassical light emitted by
our artificial atoms. The next chapter details the resulting first- and second-
order correlations of the light emitted by a qubit in 1-D open space.
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Figure 3.8: Characterization of the JPD for the experiment detailed in chapter 4.4. (a) The gain
of the JPD was set to ~ 18 dB, with a bandwidth of 13.6 MHz. (b) the 1dB compression point for
the JPD is determined to be 2750 ys_l. (c) Power spectral density of the detection line with and
without the JPD. The coherent signal is substantially amplified above the noise when the JPD is
operating. (d) Comparison of the noise and gain of the output line with and without the JPD on.



Chapter 4

Measurements of nonclassical light
in wQED

The experimental setup given in the last chapter described the cryogenics,
signal processing, and amplification techniques relevant to the experimental
determination of nonclassical correlations of light in wQED. In this chapter, I
detail the measurements made which are relevant to understanding a single
emitter of nonclassical light. First, spectroscopy of a single qubit is discussed,
followed by resonance fluorescence for experiments using two and three trans-
mon levels. Then, intensity correlations of a single qubit are investigated, both
with and without the incorporation of a Josephson Parametric Dimer amplifier.

4.1 Spectroscopy of the waveguide QED sample

The first measurement to make is spectroscopy, measuring purely coherent
response of the system. This allows us to determine a) the resonance frequen-
cies and the coupling of the qubits to the waveguide and b) the tunability
of the transmons with externally applied magnetic field. The magnetic field
is supplied by two superconducting coils mounted below the chip, which is
seen in figure 3.2 and described theoretically in equation (1.8). The resonance
frequency of each transmon is found by a dip in transmittance

VZ,out( f ) 2
Viin(f) ©

Figure 4.1 shows transmittance spectroscopy as a function of voltage in a single
coil (the other held fixed). This shows qualitatively the |cos(P)| behavior of
the two transmons’ g-e transition, detailed in section 1.3.1, with the magnetic
flux through the SQuID ® = M - I; + Peny, coupled via mutual inductance
M to the current in the coil I;. The flux offset ®¢ny is introduced by the
environment, for example due to trapped magnetic flux during the course
of the cool-down. To enhance visibility, the data are plotted in arbitrary units,
and the median frequency trace taken across all coil voltages was divided from
the data, to remove the background spectrum present in measurement line.

t(H)]* = | (4.1)
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The coil voltage was set to V,; = —0.187V, giving the fundamental resonance
wge of one the lower transmon wg, /27 =~ 6.16 GHz, and the higher-frequency
transmon tuned to wge. /271 ~ 7.36 GHz; the higher-frequency transmon is ig-
nored in the following discussion. To characterize the transmon radiative and
non-radiative decay channels, the transmittance around the lower resonance
was measured with varying power. The transmittance at arbitrary power and
detuning, and in the presence of environmental effects including non-radiative
qubit damping I'y; and pure dephasing I'y, is determined by equation (2.19)
(see also equation (2.22)). Here I will provide a bit of intuition for what we
expect. For a resonator, the spectral shape would be a Lorentzian, indepen-
dent of the applied power. But qubits, being nonlinear systems, have scattering
properties which depend on the power, and thus a power sweep elucidates the
nonlinear nature of the qubit. In particular, at low powers the qubit behaves
like a nearly-coherent scatterer, and so we expect almost complete extinction.
At high powers, the qubit |e)-state population is saturated, leaving it unable to
accept further excitations. Thus, transmittance increases toward unity, as seen
in the inset of figure 4.2. These data were normalized by dividing all signals by
the maximum measured signal at the largest power, as the qubit resonance is
no longer visible at high powers owing to the equal population of the |¢) and
le) states. As given in chapter 4.1, spectroscopy enables us to determine the
qubit resonance fy, decay linewidth Iy, and the ratio 7 = I'y/ (I'g + I'nr) of the
radiative to non-radiative decay linewidths. For the resonance in figure 4.2,
we find I'y/27r = 1.8(6) MHz, I'y/2m = 0.5(4) MHz,and = 0.97, indicat-
ing the qubit is coupled most strongly to the waveguide. Note, however, that
thermal excitation due to non-negligible bath temperatures would affect the
transmittance curve similarly as pure dephasing and non-radiative decay. A
finite bath temperature means that there is always some population of the |e)
state. Thus, there will always be some transmittance, as the transmon cannot
completely coherently reflect the signal tone. To distinguish pure dephasing
from thermal excitation, one could drive the e-f transition, and the transmis-
sion dip measured would indicate the population of the |e) state. The three
traces shown were fit simultaneously to |t[> = |1 — r|?, with r given in (2.22),
with all shared parameters except the Rabi rate (), whose with applied power
in equation (2.10) is taken into account. The fitted Rabi rates are quoted in
terms of the radiative linewidth Iy, given theoretically by (2.11) in the legend
of the plot.

The inset of figure 4.2 shows how the transmittance on resonance changes
with applied sample power. Here we can see a minimal transmittance of
t|2:, ~ 0.15. When equation (2.22) includes thermal excitation, this mini-
mum corresponds to a maximum temperature of ~ 130 mK. This minimum
depends on the base temperature achieved in the cryostat, which for this mea-
surement was > 45mK. Although other cool-downs achieve |t2. ~ 0.01, this
data was chosen because it is consistent with the cryogenic temperatures for
the later experiments.
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Figure 4.1: Transmittance of WQED sample as a function of coil voltage. The fundamental transmon
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4.2 Qubit power spectral density

The power spectral density of light emitted by an artificial or natural atom
coupled to open space gives properties of the atom such as the linewidth T’
of the addressed transition and, at strong coherent drive powers, the Rabi
rate () describing coherent oscillations of a single excitation between the field
and the atom, forming the dressed states characterized by the Mollow triplet
in measurement. The power spectral density for a qubit in a waveguide has
been measured in circuit QED [3, 20, 41]. Here I demonstrate our capability
of performing resonance fluorescence measurements using the experimental
setup described in the previous chapter.

After finding the g-e transition of the transmon with spectroscopy to be
wee/27m = 6.1627 GHz, we recorded the auto-correlation of the output sig-

nal with the coherent drive on, G(V)[1], and off, H()[7], at the qubit frequency
wg = Wge, while varying the input power of the drive tone. The power spec-

tral density (PSD) is then obtained by taking the Fourier transform of G(V)|[1],
as described in section 2.4.2 and in more detail in appendix B.1. By fitting
the resulting Mollow triplets observed from the resonance fluorescence in the
PSD to equation 2.32, we are able to map the input power to the power at the
sample. In other words, we measure the attenuation of the input line from
the generator to the sample. This enables us to know precisely how we vary
the drive power at the qubit, and from this, to determine the gain of the am-
plification chain. Figure 4.3 shows the measured Mollow triplets for several
different powers, with the y-axis in photons/s/Hz (equivalently, photons),
with the photon power known after determining the gain and attenuation of
the measurement lines. For clarity, the single-point peak present from the co-
herent tone is removed from the data. Furthermore, the JPD was not used in
this experiment due to its narrow bandwidth.

The analysis of these data is carried out in several steps. First, the attenua-
tion was determined by fitting the data to the resonance fluorescence equa-
tion (2.32) with a free parameter as an overall factor (i.e. fitting to A -S(w —
wy), with A as the scaling factor free parameter), as we don’t yet know the sig-
nal power at the sample. With an input power of P, = —44.5dBm, we found
a Rabi rate of (3/27r = 11.06 MHz, corresponding to the power at the sample
of Peample = —118.5dBm, giving a line attenuation of ~ 77 dB. The triplet was
measured for both input lines from the same output line, which gave compa-
rable attenuations within 1dB of each other, validating the symmetric design
of the input lines. With Pg,pp1e determined, we take the measured elS) [T] sig-
nal at the FPGA (converted from “clean-sweep units” described in section 3.2
to Watts) and obtain the overall gain of the amplification chain § = Poyt/ Pin.
The gain of the output line 1 used in this experiment, shown in figure 3.2, was
g ~ 90dB, which includes the warm amplifier board depicted in figure 3.3.
After we have the power that the atom emits before the ampilfier, we convert
this to photon flux ¢, = P/(hw,), yielding photons in power spectral density.
A summary of how to rescale power into photons/s is given in appendix B.3.
The traces were fit simultaneously, with the scaling of () with input power,
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Figure 4.3: Mollow Triplets obtained by strongly driving the lower-frequency transmon in the wQED
sample. These data both demonstrate the dressed-state behavior of a strongly driven two-level system
and relate the power from the microwave generator to the power seen by the qubit.

given by equation (2.10), included such that only the a single parameter for
the power was necessary for the fit. The triplets measured in figure 4.3 give
I'/2t = 2.04MHz, in agreement within the fit error of the damping rate,
denoted I'y in the transmon transmittance fits outlined in the previous sec-
tion. The Rabi rates indicated in the legend. Comparing the two legends one
sees that, as the input power is quadrupled (approximately by adding 6 dB of
power), the Rabi rate () is doubled, in agreement with equation 2.10.

4.3 Power spectral density for a two-photon drive

We further explored the power spectral density of the transmon while driving
the transition from the ground state to the second excited state via its two-
photon transition, wer /2, as shown in figure 2.3. In this experiment, we placed
the transmon g-e transition at wg, /271 = 5.58 GHz. To find the e-f transition,
I then performed performed two-tone spectroscopy, continuously driving the
g-e transtition and sweeping a probe tone. With this, the e-f transition was
found at w, /27 = 5.2181 GHz, giving an anharmonicity a/27 ~ —365 MHz.
As described in section 2.4.3, the two-photon drive was then set to w; = Wef /2,
chosen at w;/2m = 5.39705GHz ~ (wg, +«/2)/27. This drive was applied
to input 1 of the measurement setup (see figure 3.2) and the power spectral
density of the output signal at frequencies around the g-e and e-f frequency
were recorded without the JPD, once more for bandwidth reasons. These data
are shown in the left column of figure 4.4. To compare to the theory, drive
powers (), g-e linewidth I', and the gain of the amplification chain were deter-
mined as described in section 4.2; that is, by measuring and fitting the Mollow
triplet of the standard resonance fluorescence type. This measurement deter-
mined I'/27t ~ 1.38 MHz, the input line attenuation to be 76 dB, and the gain
to be 85dB. The linewidth is sensibly lower than previous measurements, as
wge is lower than g-e transition in the previous section, thereby decreasing the
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coupling (see equation (2.11)), but the discrepancy is larger than what could
be explained by the difference in resonance. This could be due to a non-flat
density of states in the waveguide. The coupling would be substantially lower,
for example, if there are weak standing waves due to small impedance mis-
matches in the line, whose wavelength is off-resonant from the g-e transition
at this frequency. Similar analysis is described in prior research in wQED [42].
As predicted in section 2.4.3, the splitting of the g-e and e-f transitions is ob-
served with increasing two-photon drive power. With these fitted parameters,
the corresponding theory for the g-e and e-f transition is shown in the right
column of figure 4.4. Note that the color-bar of figure 4.4, which is expressed
in photons at the frequency of the drive, is shared for all plots.

There are some notable differences between the predictions and measurement.
First, the measured power spectral density is lower than predicted, and is it
distributed more evenly between the Autler-Townes doublet peaks than pre-
dicted. Second, the largest scattering amplitudes appear at higher input pow-
ers than predicted. Third, the shift of the peaks appears to be much more
rapid with power. There are some adjustments which could be considered in
the model presented in section 2.4.3. For example, the factor of v/2 in the cou-
pling I'; of the e-f level to the field is only true to first order [23]. Similarly
to the discrepancy in decay rate I' with frequency, a non-constant density of
states in the waveguide would also lead to different couplings as the frequency
changes due to increased drive power [42].

4.4 Photon correlations

The measurement of photon correlations of an artificial atom in 1-D open
space, first done in [20], showed superbunching in transmission and anti-
bunching in reflection. The goal of the wQED experiment in Qudev is to
measure these for two qubits in a waveguide, using our sample as shown
in figure 3.4. Toward this goal, I present intensity correlations of the lower-
frequency qubit in the sample. Unlike [20], and similar to [15], we use a single
output line, with one experiment using a JPD as the first amplifier in the out-
put line, allowing for efficient measurements of ¢(?)(7) from a single output
port, and another using the HEMT as the first amplifier, for comparison.

The experiment is designed to measure ¢(?) (1) for the qubit in both reflection
and transmission, and consequently to observe antibunching in the former
and superbunching in the latter, consistent with [20]. This would validate the
experimental setup to measure the photon statistics for coupled qubits in the
waveguide. Recall from chapter 2 that the four measurements needed to mea-
sure ¢(2)[7] are T [1], H?[1], TW[7], and HMV[7]. These four measurements
were interleaved, before averaging, on the FPGA in the quantum signal ana-
lyzer, to ensure the noise background for each measurement is as similar as
possible, as this is the assumption used to arrive at the subtraction scheme,
equation 2.44. Because of the scaling of the number of averages to achieve
the same margin of error for the second order as compared to the first order
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traces [11], the second order traces are averaged 16 times for every trace of
the first-order measurements. These four measurements are then averaged in
blocks, and each block is repeated overnight.

Although the first order correlations are processed as described in the earlier
sections, the second order correlations have additional noise considerations.
First, we follow previous works [15, 27] which subtract the mean large-t cor-
relations, such that the mean value of ¢(2)[T — co] = 1. Additionally, previous
works account for a thermal background state [15, 27] in the H (1L2) measure-
ments for ¢()[1]. To treat this, the moments of a thermal distribution with
photon flux ¢, are subtracted from the measurements with no applied signal
H(12)_ In other words, for the subtraction scheme outlined in equation (2.44),
the “off” measurements in the original experiment H(12) are the “on” mea-
surements in the subtraction scheme, while the thermal correlations are the
“off” measurements in the subtraction scheme. The thermal correlations are
obtained by generating the time-resolved moments of a thermal field by per-
forming a g(?)[7] measurement on the JPD resonance, as the JPD essentially
produces thermal light, where the pump is off in the H)[t], H®)[t] measure-
ments. Knowing the properties of thermal light statistics, we can write, as
outlined in section 2.5.1:

G (1) = (ab(Baky (t + T)am (Dan(t + 7))

= ()2 P (1) (42)
P (r) = (p) g (1), 43)
(4.4)

where ¢, = (ny,) is the mean power of the thermal field, in photon flux (see
appendix B.3). Because we want to compare our measurements with vacuum,
not a thermal state, we subtract from the H(1?) measurements in the original
experiment the thermal correlations obtained by the JPD, scaled by the free
parameter ¢,, obtaining a new “off measurement H(1?’ [t]. We perform the
subtraction scheme of the original “on” data with H(1?’ [1] as the new “off”
data. This then gives the properly normalized statistics, including the ther-
mal state present in the system. The thermal photon flux ¢, was set as free
parameter, which is determined by finding the smallest value which yields
physically meaningful, positive ¢(?)[] for the trace with the lowest signal-to-
noise ratio, and for our experiments is ¢, = 0.18 us~! at the photon frequency,
about three times as high as those measured for previous work [15]. Inter-
preting this photon flux as a thermal field, one can determine the number
of thermal photons per mode in the detection bandwidth by dividing by the
bandwidth BW ~ 10 MHz. This gives (ny,) ~ .018 photons, corresponding to
a bath temperature of Ty, ~ 73 mK. This is surely hotter than the base tem-
perature of the fridge, but is in agreement with the minimum transmittance
measured in 4.2, which gives a maximum bath temperature of Ty, S 130 mK.
This is sensible, as the base temperature is the minimum temperature that the
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system could be in; the components which connect the sample to the room-
temperature electronics contribute an additional heat load. The data without
this correction are presented in appendix E.

Aside from residual thermal states, one also considers the finite detection
bandwidth and its influence on g¢(?)[t] measurements. In general, this is
computationally expensive, although one work showed that one can take this
detection bandwidth into account via master equation simulations with two
“detector” two-level systems in the master equation with bandwidth and fre-
quency of the detection, as in [12]. However, in the high-noise, low-signal
limit, this is approximated via two convolutions of the g(?)[r] data with the
squared filter kernel, as was performed in [26]. The filter kernel used in the
experiments was a Chebyshev filter with a bandwidth of ~ 10MHz and a
running-average “boxcar” filter. This is the narrowest boxcar filter described
in appendix D. Incorporating this filtering using the small-SNR limit as in [26]
gives comparable results for ¢(?)[1] as in [15], simply “leveling” the signal
height slightly, bringing it toward ¢(®[t] — 1 (see [26]). The reflection pre-
dictions included a superposition of the qubit signal with a 4% reflectance of
the coherent tone by the sample, as we had seen this fraction of the coherent
power reflected in the experiment.

With the general considerations of photon correlation measurements outlined,
I now detail the experiments in order of complexity. I will first discuss a
measurement of ¢(2)[7] using a commercial HEMT as the first amplifier instead
of the JPD. Then, I will present the same experiment in which the JPD is
used, offering a comparison of measurements incorporating the JPD under
otherwise similar experimental conditions.

4.4.1 Measurement without the Josephson Parametric Ampli-
fier

Intensity correlations were measured for the lower-frequency transmon at fre-
quency wg. /27 = 6.2052 GHz, with the second transmon similarly detuned
as in section 4.1. The signal was recorded from output 1 of the measure-
ment setup in figure 3.2, which had gain of ¢ ~ 86dB and a noise power
spectral density of 60 photons of the amplification chain. The applied power
Psample ~ —138dBm was chosen because it was expected to give a Rabi rate

to line-width ratio Q/T ~ 1/2/2, which theoretically displays antibunching in
reflection and superbunching in transmission. The measurements were per-
formed over 40 measurement blocks with 16 million averages per block, re-
sulting in a total of ~ 670 million averages. The data agree well with theory in
power spectral density, as shown in figure 4.5, for both reflection and transmis-
sion. The signal-to-noise ratio is SNR ~~ 0.003, determined by comparing the
noise photons from the HEMT and the PSD amplitude seen in figure 4.5. This
provides a reference for comparison to the SNR when using the JPD, discussed
later.

The intensity correlations shown in figure 4.6 display qualitative agreement
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with theory. As described above, the data take into account ¢, = 0.18 us™! of
thermal photon flux. The theoretical predictions in figure 4.6 (c) and (d) were
calculated as in 2.34; given the master equation and the quantum regression
formula, one can determine the steady-state intensity correlations of the field.
The most notable difference between theory and experiment is the reflection
measurement quickly rises as T — 0. This is speculated to be an effect from
filtering with a low signal-to-noise, as outlined in appendix D. The data be-
fore ~ 100 ns appear to have artifacts similar to measurements in appendix D
with small SNR. Although this appears to be an artifact of filtering, this is not
explained in theory by filter convolutions discussed in the previous section.
These artifacts rather have the temporal shape similar to the Chebyshev fil-
ter, but why this is the case at short times is not well understood, but is also
measured in ¢(?)[1] for coherent states in appendix D. Aside from this, the
data share the same features with the theory, with the transmission measure-
ment obtaining reaching similar values at zero time, both of which are above
2, suggesting superbunching. In reflection, the greatest similarity to data was
achieved when the phase of the reflected tone in the model was set to 0. At this
phase, both the data and the theory have a minimum value near 7 < 100ns,
and a rise as T — 0.

4.4.2 Measurement with the Josephson Parametric Amplifier

In an effort to reduce the necessary averaging while still using a single mea-
surement output line, the ¢(?)[t] measurement is performed with a JPD (de-
scribed in section 3.4)as the first amplifier. In this experiment, the same qubit
is tuned to the JPD frequency which had the desired compression point, gain,
and bandwidth (see section 3.4), such that wg./27m = 6.15775 GHz. This fre-
quency is sufficiently similar to the previous experiment to make them com-
parable, though it is not identical because the prior experiment discussed was
not restricted to the JPD frequency constraints. The four measurements are
averaged on the FPGA in blocks of 8 million, and repeated overnight. These
are then averaged together to yield, for this experiment, 64 million averages.
The noise temperature of the amplification chain with the JPD on, given in
figure 3.8, is 2.89 photons, corresponding to a minimum SNR of SNR ~ 0.08
at the input power comparable to the data in the previous experiment without
the JPD. As discussed in appendix C, this means that with the JPD, one would
need to take ~ 1000 times fewer averages with the JPD, than without, to ob-
tain the same accuracy of ¢(?[t]. Thus, the ¢/?)(T) measurements presented
in the last section would, in principle, need to be repeated 100-fold to obtain
the accuracy of this measurement.

For the ¢(?)[1] measurements described here, the JPD bandwidth limits the
detectable frequencies (see figure3.8), and so the resulting spectrum is the
atom resonance fluorescence (2.32), filtered by the Lorentzian lineshape of
the JPD shown in 3.8 (a). These data are fit to the resonance fluorescence
equation (2.32), multiplied by the fit JPD Lorentzian with bandwidth I'jpp ~
13 MHz (see figure 3.8 (a)), and are shown in figure 4.7, with PSD both in re-
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Figure 4.5: Resonance fluorescence S [f] obtained in the experimental setup for measuring g(z) [T]
without a JPD. The detuning f is relative to the transmon resonance wg,/27. Legends indicate the
input power to the sample and the corresponding fit to Rabi rate (), in units of the linewidth T'.

flection and transmission. The frequency f is relative to the qubit resonance,
which is wg./27m ~ 6.15775 GHz. Similar to figure 4.3, the fits held constant
all parameters except the applied power, which is expressed in terms of Rabi
rate via equation (2.10), normalized by the transmon linewidth, found to be
I'/27t ~ 1.83(2) MHz. This is again smaller than we would expect if it were
due only to the lower resonance frequency than the previous experiment. This
could once more be due to a non-constant density of states in the waveguide,
which couples to the transmon more weakly at this resonance.

The set of Rabi rates explored here are small, and therefore we do not see the
“shoulders” of the triplet forming, However, we do see that as drive power in-
creases, so too does the incoherently scattered light. The data at these low Rabi
rates are comparable for both reflection and transmission. However, the scal-
ing of the Rabi rate with power seems to deviate from theory. The fit suggests
that the scaling with power is smaller than predicted, because the amplitude

47



4. MEASUREMENTS OF NONCLASSICAL LIGHT IN WQED

48

Experiment Theory
AF T T T T v 1 AF r v v v -
. (@) (b)
c 3 E : 3} ]
o
o = ° E
= o a 2
2 g RS
GJ ¢ CLTY 0000g
o 1t ." ..'O.oo".. % ] 1t
° ° [
° ..o"Oo-o‘ \
85 0.1 0.2 0.3 0.4 0.5 8% 0.1 0.2 0.3 0.4 0.5
T [us] Time, T (us)
3.0F
(c)
[ 254 )
S
8 = 2.0¢ .
E & 15}
o o .
% 1.0} '.”..o”‘“oo... 0000
—
= 0.5}
8607 "oz 03 04 05 08607 "0z 03 07 05
T [us] Time, T (us)

Figure 4.6: g<2)(T) for a single qubit with the HEMT as the first amplifier. Comparison of theory
and experiment, in reflection and transmission.

difference between traces in theory is larger than in data. This could suggest
amplifier compression, as the stronger drive tones resonant with the qubit are
incident on the JPD. As the 1dB compression point for the JPD at this set-
point P; 4 = —109 dBm was ~ 20 dB larger than largest coherent drive power
Poohmax = —130dBm applied to the sample, we had expected the amplifier to
be linear. Prior work has measured g(?)[7] with powers at this fraction of the
compression point incident on a JPD [15]. However, it was discovered that the
JPD coil, which in part determines its amplification characteristics, was resis-
tively coupled to the electrical ground of the cryostat. Thus, the stability of the
JPD set-point depended on the stability of the cryostat ground. It is possible
therefore that the 1dB compression point of the amplifier deviated from the
originally set value. Note also that if one relaxes the scaling requirements, the
fit function describes these curves well, suggesting the scaling with power is
what has changed, and not other factors.

Including the first order correlations just discussed, we take the I'®)[7], H?)[1]
data and calculate ¢(®)[7] for the single qubit. The measured ¢®[7] from
measuring a qubit in the wQED sample is shown in figure 4.8. As in [26], the
long-time mean offset of the data due to amplifier noise is subtracted from the
data. Furthermore, as in [27, 15], a residual thermal photon flux ¢, = 0.18 ys_l
is taken into account, which would cause our ¢(?)[1] values to be otherwise
nonphysical.

The g(z) [] data are shown in figure 4.8 (a) and (c) in reflection and transmis-



4.4. Photon correlations

Reflection
0.25 r
[ PSampIe [dBm] QI Fit

_ 0.20 o -148.6 — 0.602
I - 1426 — 1.201
(2]
@ 015¢ -136.5 — 2397
(@]
°
<
2. o.10}
[m]
(7))
o

0.05}

0.00

Transmission
0.25 T
[ PSampIe [dBm] Q/I Fit

_ 0.20 o -148.6 — 0.602
:E = -1426 — 1.201
2 0.15}
C
[e]
°
ey
2 o.10}
[m]
(7p]
o

0.05}

0.00L—

f [MHz]

Figure 4.7: Resonance fluorescence S [f] obtained in the experimental setup for measuring g(?)[7].
The detuning f is relative to the transmon resonance in the experiment. The JPD limits the detection
bandwidth, accounted for in the fitting routine. Legends indicate the input power to the sample and
the corresponding fit to Rabi rate (), in units of the linewidth T

sion, respectively. In reflection, one sees a clear trend of antibunching, with all
traces at ¢(? [0] ~ 0.5. The presence of oscillations in the data increase with
decreasing Rabi rate. This seems to propose a signal-to-noise dependence, as
the scattered power for the most weakly driven measurement is ~ 1/5 that
of the most strongly driven measurement. Comparing to the theory in fig-
ure 4.8 (b), we see a qualitative similarity with the data. There is a bump
above ¢(?) ~ 1 for the most strongly driven measurement, and the two more
weakly driven measurements follow a similar trend as in the theory, although
the weakest data trace has, again, more oscillations. Although the phase of the
signal is unknown, in figure 4.8 (b), it was found that the phase of the reflected
tone which best matched the measurements was 7t. This is inconsistent with
the previous experiment, although this phase could also be dependent on the
qubit frequency, accounting for this discrepancy.

The transmission data in figure 4.8 (c) have fewer oscillations than the reflec-
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Figure 4.8: g(z)(T) for a single qubit. Comparison of theory and experiment, in reflection and
transmission.

tion data, and at low powers superbunching is seen. The magnitude of su-
perbunching predicted in figure 4.8 (d) is not measured, though this is could
again be due to filter effects which obfuscate the short-time-delay signals (see
appendix D); the effects of the FIR filter can be seen at the first peak and trough
of the reflection data, as this is also seen in the coherent ¢(?)[7] measurements
outlined in appendix D.

Why reflection data have much more oscillations than transmission data is an
interesting question, for both measurements scatter the same power, which
means if the SNR were the cause, then similar oscillations would be expected
for both cases. If there is some sort of assymetry in how the noise interacts with
superpoissonian and sub-poissonian light, this would explain the difference.

4.5 Discussion

The experiments experiments presented here span three levels of measurement
complexity in waveguide QED. The single-qubit spectroscopy and resonance
fluorescence experiments in sections 4.1, 4.2 are well-understood and allow
both for characterization of the transmons and for calibration of the input and
output lines of the system. Knowing the power at the sample with the Mollow
triplet measurements, one can then monitor the gain of the amplification chain
and address gain stability and noise performance issues therein. A stable
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gain and low noise temperature are critical to measurements of higher-order
correlation functions, for the level and stability of the added noise is imperative
for the subtraction scheme in equation (2.44). Thus, the resonance fluorescence
presents itself as a valuable diagnostic tool for waveguide QED experiments.

The two-photon drive experiment showed a similar power-dependence on the
g-e and e-f transitions as we predicted, but to obtain strong quantitative agree-
ment would require a reassessment of the model. Further experiments to probe
the ¢ — f/2 transition, which was predicted in section 2.4.3 to show a Mollow
triplet-like energy splitting, would provide more information about the dis-
crepancies between the data and the theory.

The ¢(?)[1] measurements for a single qubit show a qualitative resemblance to
the theoretical predictions, but other effects are perturbing the system which
are not accounted for. Nevertheless, we are able to see superbunching in trans-
mission and antibunching in reflection, which shows the quantum nature of
the single qubit that we are measuring, comparable to prior work [20]. Further
investigation into the cause of the oscillations in our measurements, especially
at low powers, is ongoing. As seen in appendix D, the signal-to-noise ra-
tio seriously influences the physical meaningfulness of the data. Although in
principle, noise that is uncorrelated with the source and has zero mean should
be removed with the subtraction scheme in equation 2.44, even slight amplifier
compression would lead to noise that is correlated with the signal, invalidating
the subtraction scheme used to calculate ¢(?)[1].

The stability of the JPD is also something which must be carefully monitored.
Though care was taken to ensure the Pj4p of the JPD was comparable to pre-
vious successful ¢(?)[T] measurements in [15], the discovered coupling of the
JPD coil may have caused the set-point to shift, reducing its compression point.

Even with a stable amplification setup, we would like to examine the com-
pression points of the amplifiers at each stage in the chain to know precisely
at which powers the amplified noise could change. Although the JPD has
the lowest 1-dB compresson point, an experiment examining the behavior of
g(z) [T] as a function of P/Pj4p for a coherent state of power P with only the
HEMTs in place would provide insight about what input powers to the HEMTs
start to cause a change in the on/off noise characteristics. This same experi-
ment, performed in D, was done with the JPD in place, but a confirming ex-
periment with the JPD would also be valuable, now that we are certain that
the JPD set-point is isolated from other DC lines.

Additionally, transmons in the waveguide geometry are subject to a wider
bandwidth of spectrally flat (white) noise, unlike transmons surrounded by
a cavity with detuned resonance, which filters their electromagnetic environ-
ment. While prior work had shown comparable results [20] in g(?)[7] mea-
surements, one notable difference between our experiments and those in [20]
is that we did not measure extinction below|t|? ~ 0.2 in the presented set
of measurements, which could be indicative of thermal noise populating the
qubit. Investigating the thermal environment and how this could influence the
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excited-state population of the transmon will continue to be explored. This can
be done, for example, by adding additional attenuation at base temperature.
Though it is not clear if this is needed, as in our current setup, the base-
temperature Nyquist noise should be domanant (see section 3.1). Improving
thermalization of the sample (simply by ensuring strong mechanical contact
between objects meant to be of the same temperature) and thermalizing the
HEMT amplifiers, will positively influence the signal quality.

Measuring the zero-time correlation functions by measuring the moments of
the field via histogramming is another potential avenue for observing corre-
lations between multiple transmons at different detunings, or different levels
of the same transmon. This would provide less information than the time-
resolved case, but can be used to cross-reference the time-resolve measure-
ments and possibly estimate ¢, by deconvolving the moments of the thermal
tield in the histogram [14].

On the three-level dynamics front, measuring photon cross-correlations of the
two transitions would also be an interesting pursuit on the path to multi-
transition correlation measurements. Additionally, we have considered that
one can use the e — f fluorescence as a measure of the thermal population of
the transmons, which would provide further information regarding sources
of noise degrading the signal quality of ¢(®)[T] measurements to date. It may
also be worth exploring this as a way to measure the thermal photon flux ¢,.
Further research into cascaded photon correlations which also is amenable to
the theory in [12] would be a promising avenue to explore pumping the atom
with a drive non-resonant to the detection, which would decouple the drive
and measurement frequencies.

4.6 Qutlook

Waveguide QED holds potential for advancements in the investigation of atoms
interacting via a continuum of electromagenetic one-dimensional modes, cap-
tivating the minds of theorists and experimentalists alike. Long-term applica-
tions of waveguide QED include the study of long-range interactions between
atoms mediated by photons, as well as medium-range interactions, where the
time delay between atoms is comparable to the decay time of the atoms [19].
The prospect of routing single photons in a 1-D waveguide has also been stud-
ied [36, 37], with on-chip single-photon sources readily available [33]. Ad-
ditionally, one can explore a non-constant, engineered density of states of a
waveguide with an emitter resonant near a photonic bandgap [29]. Combining
the advanced methods of photon correlation functions with the rich body of
interactions achievable in waveguide QED will bring about new insights into
fundamental quantum optics and open an avenue for characterizing Hamilto-
nians engineerable only by freeing the atoms from their electromagnetic cages.



Appendix A

Theoretical clarifications

A.1 Flux quantization and the SQuID Loop

This section outlines some of the details which lead to flux quantization, and
the phase-flux relationships which emerge in SQuID geometries. This sec-
tion is essentially an abridged description from Richard Feynman’s Lectures on
Physics, Vol. III, chapter 21.

Due to the gauge-invariance of quantum mechanics, the phase ¢ of the wave-
function of a charged particle ¢ = |¢|e’? as the particle moves from point a to
point b along path s in a magnetic field B = V x A is changed by the vector
potential A according to

q b
A@zE/aA-ds.

One then can extend the Schrodinger equation to include this vector potential
and solve for the probability current density, which, for a superconductor, is
indeed the charge current density. By considering the current density inside a
superconducting ring to be J = 0 on account of the Meissner effect, one can
then show the phase of the superconducting wavefunction

V¢ = 2eA.

By taking a line integral around a closed loop inside the superconducting ring,
one finds

h]{w;-ds: %cp,

where ® is the magnetic flux through the loop s, and is thus the flux through
the non-superconducting part of the ring, as there is no flux inside the super-
conductor itself. Thus, we can relate the phase of the superconducting state
to the applied magnetic field. But we can go one step further. Note that the
wavefunction must have the same value at the same point, therefore we have
the requirement that 8, — 6, = 27tn for integer n, and because

Hb—euzhja{V<p-ds
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we see

h
27 = 2@ = Py = (A.1)

requires the magnetic flux be discrete in units of the flux quantum ®.

Let’s extend this to two junctions in a loop, so the current has two paths a
and b with which it can flow from one end of the loop to the other. The total
current through the loop that we measure is It = I; + ;. The phase drop
across the paths a and b is

2e
A(Pa:§0u0‘|‘ﬁ/A'd5a
a

2e
Aq’b—q’bO‘i‘%/bA'dSb

and should be equal, since the total phase drop must be the same. Taking the
difference of the inital phases of each path, we see
2e
Po0— Qa0 =5 | A-dso—
2e

:%q>

If we consider the phase to have offset ¢, then the total current through the
junction then is obtained via the Josephson relations (1.3):

. 2e ) 2e
Lot =1+ 1, = I, (sm(goo - ﬁCID) + sin(¢o + ﬁcb))
= 2I.sin(¢yp) cos(%q))

Now it is difficult to control what ¢y is in practice, but its contribution to the
total current is bounded by sin(¢g) < 1, so we have

2e
Imax = ZIC} cos(ﬁ®)| (A.2)

Thus, the SQuID behaves like a Josephson junction, with a tunable critical
current.

A.2 The rotating frame

The dynamics of a quantum system are invariant under unitary transforma-
tions, which boils down to the claim that physics is invariant under basis
transformations. Quantum mechanically, we can show this by considering the
Schrodinger equation in a basis containing |¢):

Iy = =" H ) (A3)



A.2. The rotating frame

Given an operator A, the propagator is a unitary operator U = e~ A/ We can
define a different state |(t)) = Ut(t) |¢). If |¢(t)) is a valid quantum state, it
too satisfies the Schrédinger equation. The Hamiltonian H which satisfies this
can be solved for as:

H |§) = ihoy |¢)
iho; |§) = ik U (t) |ip)
= U (1)ihdy [) + iU (t) |)
= U'(HH |p) — AU (t) |y)

)
= (Ut (HHUE) — AU (1) |y)
H=U'(t)HU(t) + ikl (t)U(t) (A.4)

So, to transform H into a rotating frome, we need only apply equation A.4,
which provides the transformations omitted in chapter 2 when considering
dynamics in the frame of the drive. Further approximations are made after
entering the rotating frame, however, where fast-rotating terms are ignored
because, at the time-scales measured in experiment, these oscillations average
to zero. For information about the rotating wave approximation, see [25] and
references therein.
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Appendix B

Signal processing

B.1 Power spectral density with discrete signals

The most important relation to know for these experiments exploring correla-
tions and frequency spectra is the Wiener-Khinchine Theorem. The continuous
case states that the power spectral density S (f) is derived from the amplitude
autocorrelation (S* (0) S (7)) by

S(f) =F{(s*(0)S (7))}
> (B.1)

S(f)= [ (57(0)s ()T dr

where F{-} denotes the continuous Fourier transform. Note that the units
of S(f) are [(S*(0)S(7))]-s = [(S*(0)S(7))] /Hz, as expected for a power
spectral density (e.g. V2,./Hz). The Virtex 4, however, delivers only discrete
signals S [t] of length N; = 1024 points, with time spacing AT = 10ns. The
Wiener-Khinchine Theorem in the discrete case is then straightforward:

Sfi] = FUST[0]S[T])] AT
Ns .
] = ;<S* [0]S [g])eszkTJ’AT

(B.2)

— Z S* ]_ 1) AT]> eZHi(k—l)(j—l)/NsAT

where here F [-] denotes the discrete Fourier transform, and we used the nota-
tion 7, = (j— 1) At and f; = N —L_ Thus, to obtain the physically meaningful
power spectral density from a d1g1t1zed signal, one need only take the (unnor-
malized) discrete Fourier transform and multiply by the time bin resolution
At.
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Note that the clock speed of the FPGA determines the sampling rate (here
100 MHz, corresponding to 10 ps). This means that the maximum frequency
one can measure (called the Nyquist frequency) is 50 MHz. Any signals above
the Nyquist frequency are folded into the band below the Nyquist frequency,
an artifact also known also as aliasing. For this reason, we have in place an
anti-aliasing analog low-pass filter at the input of the ADC (see figure 3.3.

B.2 Determining the gain of the amplification chain
The gain of the amplification chain is given by

PFPGA - gpsample (B3)

In reality, the gain g is an effective gain, consisting of attenuators and ampli-
tiers. Nevertheless, this allows us to rescale all measured quantities to quanti-
ties at the sample.

To know the attenuation of the input line, we fit the Mollow triplet formed by
driving the qubit with a strong coherent drive (see chapter 4.2). Determining
the gain then is found by

Prpga = §A Pinputs (B.4)

where A is the attenuation in the input line. Thus, all power spectral density
measurements can be converted to Watts/Hz at the sample, by determining
the gain and attenuation of the output and inputs to the sample. This pro-
vides a measurement of thermal noise in the system, including noise added by
amplifiers, which enables us to evaluate and characterize the noise properties
of the amplifiers, quantum-limited or otherwise.

B.3 Converting to quantum-friendly units

While units like voltages are typical in standard laboratory settings, it is most
understandable and physically relevant to measure power in terms of photon
flux ¢, that is

P signal

D= T

where fiw is the photon energy of the emitter. Note the unit of ¢, is [¢,]| =
s~1 = Hz, and can intuitively be understood as the frequency of photons that
pass by our detection.

There are a few considerations in making this transformation in practice. Let’s
start again where we measure-at the FPGA. After the signal is emitted from
the sample, it undergoes several stages of (unintentional) attenuation and am-
plification. Provided that the amplifiers and attenuators are all linear, we know
that the FPGA signal Sppga and the signal right out of the sample Sgyppe are
proportional to one another:

SFPGA = \/gssampler (B.5)



B.4. Determining noise temperature of the output line

where here ¢ is the total gain of the amplification chain, including the attenu-
ation 7 in the signal output line § = #gideal-

So by compensating for the gain in the amplification chain, we can determine

*
< Ssample Ssample >

P, sample — 7 ’

where the numerator has units of Vy_px, and Z is the impedance of the signal
line. Thus, measuring the power at the sample in terms of number of photons
(ins™1)is
< S :ample S sample >
(Pfy,sample — 27 hew

Finally, substituting our expression of Sg;mple in terms of what we measure via
equation (B.5), we have:

<SI>§PGASFPGA>
¢'Y,samp1e - ZZhwg (B-6)

One should also note that I've left out the time-dependence of the signals
processed here; this is because this technique applies to both pure inten-
sity measurements (SipcaSppa ) [T] and amplitude-correlation measurements
(Stpca [0] Sgpga [T])- Tt really amounts to dimensional analysis, but the inter-
pretation of the two mentioned quantities is of course different.

B.4 Determining noise temperature of the output
line

The previous section discussed how to convert measured signals into “quantum-
friendly” units, namely describing the light in terms of photons. When mea-
suring power spectral density, there is a flat noise floor in the measured am-
plitudes due to thermal Nyquist noise in the lines. For any given frequency
whose power spectrum is from purely thermal origins, the expected number
of photons follows Bose-Einstein statistics:

1

() = o7 1 (B7)
As we know that the power spectral density is measured in photons, knowing
the attenuation and the gain of the amplifier, one may simply read the number
of noise photons constituting the power spectral density noise floor. Thus,
with the gain and the attenuation of the output and input lines respectively,
measuring the power spectral density of the noise gives (ny,), the expected
number of thermal noise photons.
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Appendix C

Signal-to-noise ratio and
attenuation before the first amplifier

Here I outline a calculation which determines how much added attenuation
between the output of the sample and the first amplifier effects the signal-to-
noise ratio, demonstrating the added attenuation to the JPD via extra circula-
tors and cabling do not diminish the advantage the JPD offers over measure-
ments with the HEMT as the first amplifier. Provided the first amplifier has
sufficient gain, the SNR with the amplifier added noise is the dominant con-
tributor of noise to the signal. I will therefore only consider the SNR at the
tirst amplifier.

Consider a single photon emitted from the transmon. This can in principle be
emitted equally in either direction ay, or ag, resulting in an output power Poyt =
Pohoton/2 = hwgeel'/2, Or ngigna = 0.5photons. Without loss of generality,
but to give some reasonable values, let’s assume wge/ 21 = 6 GHz. At the
sample, as described in section 3.1, there are 71p,4ise =~ 0.58 photons at 6 GHz. So
the signal-to-noise ratio (SNR), defined as SNR = Ssignal/ Shoise, €quivalently
the ratio of the number of signal photons to noise photons, is, at the sample
SNRample = 0.86.

The SNR at the amplifier is given by SNRamp = 7signal - Aout/ Mamp, Where Aout
is the attenuation of the output line between the sample and the amplifier, and
Namp is the number of noise photons at the amplifier, plus the added noise by
the amplifier.

For output line 1 in figure 3.2, which would go from the sample to the HEMT
as the first amplifier, the total attenuation is Ayyyy = —5.2dB, with —2dB
from the first output line to the first circulator, a nominal —1 dB of total inser-
tion loss for the circulator and isolator, a nominal —1dB for the UT-85-SSSS
(stainless-steel for both the inner- and outer-conductor) coaxial cable between
the circulator and the isolator, and another —1.2 dB insertion loss in the band-
pass filter. Furthermore, the 40 mK noise is attenuated by the isolator and
bandpass filter by —1.7 dB, and 100 mK noise is added to the output line at the
HEMT input. Assuming the nominal 5K of added noise photons by the HEMT,
the total number of noise photons with these specifications gives nygpvr ~ 57
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noise photons, while the —5.2dB of attenuation gives means the signal at the
HEMT input is only ngignaqemt ~ 0.15 photons, giving SNRygmt =~ 0.003.

The output line which has a JPD as the first amplifier benefits from the fewer
added noise photons by the JPD, but also has additional line attenuation due
to the added circulators, which protect the wQED sample from the strong
pump tone needed to power the JPD. The attenuation between the sample
and the JPD in output line 2 in figure 3.2 is a total of Agux = —7dB. The
attenuation per component is —2 dB from the line between the sample and the
tirst circulator, —0.5 dB from the first circulator, —2 dB from the line connecting
the first to the second circulator, —1.5 dB for the block of three circulators, two
of which are used as isolators, and another —1 dB from the line connecting the
circulators to the directional coupler combined with the insertion loss of the
directional coupler.

This attenuation then results in a signal of nggnajpp & 0.1 photons, about
67% of the line to the HEMT. But, the added noise is merely njpp ~ 2.66
photons, assuming the JPD adds only 1 photon of noise and considering the
thermal noise 7pump ~ 1.66 photons from the pump lines, which have lesser
attenuation than the signal input lines and therefore give a larger number of
noise photons than the figures quoted in section 3.1 for the input line thermal
noise. Then we obtain SNRjpp ~ 0.037 ~ 14 - SNRygmT, reducing the noise
contribution to the total signal substantially.

The ratio of the noise power for the HEMT line and the JPD line then deter-
mines the fraction of how many more repetitions R are needed to obtain the
same accuracy in measuring ¢(?)[t]. This scales as [11]

RHEMT _ (nHEMT)2 1)
Rjpp npD

=463

Thus, if the given ¢'?[1] measurement with the JPD takes an hour, the equiv-
alent measurement with the JPD would take 19 days to obtain the same SNR. If
SNR]PD )2
SNRyemr ) 7
one would find that the same measurement with the HEMT line would take 8
days. Here we see that, despite the added attenuation from the sample to the
JPD, the substantially lower noise temperature at the first amplifier of the line

makes the JPD a remarkably more suitable amplifier for quantum signals.

additionally the different signal power is taken into account by taking (
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Appendix D

Digital filtering of coherent photon
correlations

To understand the signal processing methodologies thoroughly, intensity cor-
relation measurements, as in section 4.4, were performed for coherent light;
that is, the qubit was tuned ~ 500 MHz out of the measurement band. Then the
signal in this experiment I'?) 7] was the coherent tone at frequency weon /27 =
6.172 GHz, and this was done for four different finite-impulse response (FIR)
digital filter settings and four different powers. The JPD was used, with
a set-point with 13dB gain, 19 MHz bandwidth, 1-dB compression point of
9734 ys_l, and noise temperature Thpise = 6.3 photons. As the bandwidth of
the JPD is quite wide, the detection band can be limited by applying different
FIR filters. In order from widest to narrowest, the filters are:

1. A Chebyshev filter with a pass-band~ 20 MHz, denoted “Cheb30” by the
name given in CleanSweep

2. The same Chebyshev filter with an additional moving-average filter
3. A Chebyshev filter with a pass-band~ 10 MHz, denoted “Cheb15”
4. This same “Cheb15” filter, with the added box-car filter

Figure D.1 shows the time-domain weight of the filters which are convolved
with the measured data. They have several distinct features. For both Cheby-
shev filters, applying the boxcar filter reduces the central peak weight and
slightly shifts the first dip of the filter. The narrow-band Chebyshev filter also
naturally has a longer time-scale. The measured noise PSD gives the trans-
fer function that each filter applies to the signal. Figure D.2 shows the white
noise spectrum of the detection band after applying one of the four filters.
Figure D.2 shows that filters without the four-point boxcar filter have a resid-
ual peak at —25MHz. This is due to a DC offset which originates from the
imperfect downconversion and digitizing [28], which is shifted by the digi-
tal downconversion. The boxcar filter is designed to eliminate signals at this
frequency. The different powers of the coherent tones in the measurement
were designed to be ones that are comparable for drive tones we would ap-
ply to a qubit. Assuming I' ~ 2MHz, the powers corresponded to Rabi rates
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Figure D.1: The FIR filters compared, plotted in the time-domain.

of {O} = {2I',T,I'/2,T/4}. The right-hand column of figure D.3 shows the
PSD of each measurement, with each row corresponding to a different power
in descending order. This column gives the sense of the SNR of the coherent
peak relative to the thermal noise photons in the detection band. From high-
est to lowest power, the SNR of these data are ~ {39.89,9.95,2.43,0.61}, not
considering the DC peak as thermal noise.

The ¢ [1] data on the left column of figure D.3 shows how the intensity
correlations are influenced by filtering when comparing the traces in each plot,
and how this influence changes with SNR when comparing traces in different
rows. In the top-left plot, we see that ¢(®)[1] is quite coherent, but there are
features at T < 200ns which deviate from the expected ¢(®[t] of a coherent
tone. Specifically, there is a peak and a dip for all traces in the plot; for the
traces which were filtered by the narrow Chebyshev filter, the peak and dip
appear at T ~ 50ns and T ~ 110ns, respectively. These correspond to the
different time-scales of the filters in figure D.1.

One can see that signal-to-noise ratio (SNR) plays a large role in ¢?[1], as the
high-power signals (seen by the coherent peak height relative to the noise floor
in the noise PSD), converge to the expected value of g(?)[1] = 1, regardless of
filter type. At the lowest powers, unphysical results occur, with ¢()[0] < 0
for the widest-band filter. This emphasizes the importance of reducing added
noise, as any quantum signal would have a small signal when compared to
these high coherent powers, requiring exponentially more repetitions to obtain
a ¢ (1) which is accurate and physically meaningful.

This experiment shows the artifacts the different filters introduce to applied
signals which we understand, with noise levels realistic for experiments. The
top-left plot shows that even at high SNR, these filters alter the measured
¢?[1]. The presence of a DC peak (seen at —25MHz) in the PSD at the top
right is seen in the ¢(®[1] top-left plot by 25 MHz oscillations in the g(?)[t]
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Figure D.2: Noise power spectral density of the outoput signal for each different filter combination.
The boxcar filter removes the peak from DC offsets seen here at —25MHz (see text).

wide trace without the boxcar. The scale of these artifacts are small and even
at high SNR are non-negligible, but in principle they do not explain the dis-
crepancy with theory that we see when measuring ¢(?)[7] of a transmon.

One important note is that the gain of the amplification chain for each different
applied power, at applied power (3/T = 1/2 =~ 10uphotonss~!, the gain
of the amplification chain drops from 95dB to 93dB. This is characteristic
of amplifier compression, despite having characterized a high compression
point of the JPD prior to this measurement. This could be a result of the
observed JPD coil’s coupling to ground, and thus the set-point could have
shifted over the course of these overnight measurements. Still, even at high
powers, where the gain is reduced by several dB, the g(?)[1] still shows quite
coherent characteristics. The next dataset to obtain would be one with only
HEMT amplifiers at the output, as they are simpler to use and hence more
reliable in terms of their set-point characteristics, and have a high comression
point. What this proposed experiment would show is whether the observed
artifacts are due to compression, or not.

Another experiment which would be valuable would be to examine ¢[1] as
a function of the power normalized by the 1 — dB compression point would
directly give information about how compression influences ¢ (7).

As the dataset stands, we see clearly that the normalization scheme approaches
expected values for coherent states, and that we can measure coherent ¢(?)[7]
for high SNR, but effects from the filter are still visible. Future experiments
like the one described here would shed light on the question of the significance
of filtering and compression on the measurable photon statistics. I note that
these filter effects are also present in previous work demonstrating photon
blockade [26], though at the scale presented there, they are not visible.
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Appendix E

Raw intensity correlation
measurements

Here I give the ¢(?)[t] measurements which were presented, but without the
correction for a thermal background flux. These data are the “raw” results,
performing the subtraction scheme on the measured data. After considering
the added thermal field with the scheme described in section 4.4, these data
give ¢?)[1] > 0. Without this taken into account, it is possible to calculate

g(z) [t] < 0 in reflection.
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Figure E.1: g(z)(’t) for a single qubit without correction for a residual thermal photon flux ¢.. Plots
(a) and (b) are with the HEMT as the first amplifier in reflection and transmission, respectively. Plots

(c) and (d) use the JPD as the first amplifier.
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