
OBSERVATION OF
BERRY’S PHASE
IN A
TRANSMON QUBIT

Master’s Thesis in Physics
Presented by Simon Berger
Supervised by Dr. Stefan Filipp
Handed in to Prof. Dr. Andreas Wallraff,
Laboratory for Solid State Physics, ETH Zurich

Zurich, February 15, 2010





And then he lifted up his Throat
And squandered such a Note,
A Universe that overheard
Is stricken by it yet –

Emily Dickinson





Abstract

Quantum computation offers rivetting prospects that are out of reach for classical computa-
tion, but the path leading to a fully-fledged quantum computer is arduous. It presents the
scientific community with copious challenges, notably finding a practicable way to manip-
ulate and store the quantum bits, or qubits. Circuit quantum electrodynamics, the architec-
ture used in this thesis, is a promising approach to superconducting quantum computation.
The qubit is implemented as a superconducting circuit, called transmon, connected to a
transmission line resonator which allows both qubit manipulation and readout.

Quantum algorithms consist of operations performed on the phase of the qubit wavefunc-
tion. The wavefunction can acquire two kinds of phases, dynamic and geometric. While the
dynamic phase is dictated by the Hamiltonian which governs qubit evolution, the geometric
phase can be viewed as a ‘memory’ of the evolution the system has undergone. The aim of
this thesis is to measure a particular kind of geometric phase, termed Berry’s phase. This
is achieved by precise manipulations of the qubit using microwave photons sent into the
resonator.

After a succinct outline of the theoretical framework underlying this thesis—cavity quantum
electrodynamics and the transmon—geometrical phases are introduced. We show how this
concept arises in quantum mechanics and how a qubit can be brought to accumulate such
a phase. The qubit is realised as the two lowest energy levels of the transmon. We then
present a description of the fabrication of the qubit, of the cryogenic setup it is placed in,
and of the microwave equipment used to control it and read it out. The foundations of the
dispersive readout scheme are also explained.

The experimental part of this thesis details the extent of qubit control that is requisite to
measure Berry’s phase, including precisely determining the transition frequency and in-
ducing high-visibility Rabi flopping. We show how we achieved enhanced qubit control
and how this permitted to measure Berry phases which are in good agreement with theo-
retical predictions. In particular, we improved the accuracy of the microwave pulses used
to induce Rabi flopping. The influence of the higher levels of the transmon, which are not
explicitely used during a geometric phase measurement, was also taken into account. Our
results demonstrate the potential use of geometric phases in quantum computation.
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1 Introduction

In 1965, Gordon Moore proposed what has become known as Moore’s law: the computer power
available at constant cost doubles every other year. Technological advances have permitted
the production of smaller and smaller components of computer hardware and Moore’s law has
held true ever since. However, pursuing this approach, we are bound to come up against a
brick wall. When the components of computer hardware are so minute that quantum effects
cannot be disregarded any longer, we can either panic—or embrace the wealth of possibilities
quantum physics offers. Then again, it is sensible to explore alternatives to miniaturisation
before quantum mechanical effects impede the development of computers. This feat, exploring
the realm of quantum computation, was most conspicuously spurred on by Shor’s factoring
algorithm [1] and Grover’s search algorithm [2], both discovered in the 1990s. Although it
is unknown whether quantum computation will save Moore’s law, it is per se worth to be
explored.

Building a quantum computer is a daunting task. However, since the early days of quantum
computation, a number of exploits have been achieved in the variety of implementations of
qubits—ion traps, quantum dots and superconducting qubits, to name but a few [3]. As of
now, it is possible to address a single qubit in a row of eight qubits [4], or to use light to convey
information from one qubit to another [5]. A description of superconducting qubits, followed
by a discussion of some common time domain measurments can be found in Ref. [6].

Ultimately, a quantum computer should be able to perform quantum algorithms or simulate
quantum-mechanical systems. Quantum algorithms rely on operations performed on the
building blocks of quantum computers, the qubits. In the architecture used in this thesis, called
circuit qed [7], the qubit is realised as a superconducting structure called transmon [8]. It is
accessible to the experimenter via a one-dimensional resonator that effectively shields the qubit
from the environment. Microwave signals sent into this resonator allow accurate qubit control.
The dispersive shift of the resonator frequency, which depends on the qubit state, permits to
read out the qubit.

Decoherence is the interaction of an open quantum system with its environment. This process
slows down the development of quantum information processing and would make it infeasible
were it not for error correction (see, for example, Ref. [9]). Qubits can acquire two kinds of
phases: geometric and dynamic [10]. Geometric phases (unlike dynamic phases) are inde-
pendent of energy and time and it has been proposed [11] that they are more robust against
decoherence. The aim of the so-called holonomic quantum computation [12] is to perform
qubit operations relying on geometric phases only. Berry’s phase is a particular kind of geo-
metric phase arising when the state of the qubit is modified slowly (with respect to its intrinsic
timescale) and when, after its evolution, the qubit is returned to its original state [13]. What
makes its observation worthwhile is not only the potential use as a quantum logic gate in circuit

1



1 Introduction

qed, but also the fact that a mesoscopic system, the transmon, assumes the role of an artificially
generated spin-1/2 particle and acquires a phase which is intrinsically of quantal origin.

2



2 Theory on qubits, circuit qed and geometric
phases

2.1 Qubits

A classical bit is the fundamental building block of classical information theory and classical
computation. It assumes either the value 0 or the value 1. The basis of quantum computation
is the quantum bit, or qubit.

Mathematically, the wavefunction |ψ〉 of a qubit is described by a unit vector in the vector space
C equipped with the basis (|0〉, |1〉):

|ψ〉 = α|0〉 + β|1〉, |α|2 + |β|2 = 1. (2.1)

In contrast to the classical bit, a qubit is a linear combination of the basis vectors. Still, when
measuring its state, there are only two possible measurement outcomes: |0〉 and |1〉. The prob-
ability of observing outcome |0〉 (respectively |1〉) is |α|2 (respectively |β|2). The normalisation
of the wavefunction |ψ〉 stems from the fact that the probability of observing the qubit in either
state must add up to 1. Note that the measurement causes the wavefunction to collapse. After
the measurement, the qubit is either |0〉 or |1〉.

Since reading out a qubit invariably gives |0〉 or |1〉, what is, then, the advantage of qubits
over classical bits? One advantage is that superposition states can be used during computation.
Another advantage lies in the way two (or more) qubits are assembled to form a product system.
The joint wavefunction |Ψ〉 of two qubits described by the wavefunctions |ψ〉 and |ψ′〉 is the
tensor product of the single qubit wavefunction:

|Ψ〉 = |ψ〉 ⊗ |ψ′〉 ∈ C ⊗ C � C2.

The tensor product gives rise to intriguing properties that cannot be emulated using two
classical bits, most notably entanglement. A measurement on |ψ〉 will cause the wave function
|Ψ〉 to collapse; not only will the state of |ψ〉 be determined but also the state of |ψ′〉, even before
any information has flowed between the qubits.

Physically, qubits can be implemented in a variety of ways. One can use either a spin-1/2
system represent the basis vectors, the spin-up (spin-down) state corresponding to |1〉 (|0〉) or
employ a many-level-system restricted to two of its levels. The qubit used within this thesis,
the transmon, is of the latter kind. The reader will find some details on this matter and its
implications concerning qubit control in section 2.4.

Bloch sphere.— A useful way to represent a single qubit is the Bloch sphere (named after Swiss
scientist Felix Bloch). It was initially designed for spin analysis in nuclear magnetic resonance.

3
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X
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θ
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Figure 2.1: The wavefunction |ψ〉 of a qubit represented on the Bloch sphere.

We rewrite (2.1) without loss of generality as

|ψ(ϑ,ϕ)〉 = eiγ
(
cos

(
ϑ
2

)
|0〉 + eiϕ sin

(
ϑ
2

)
|1〉

)
,

whereγ, ϑ, ϕ ∈ R. The overall phase factor eiγ is irrelevant because it cannot be measured. (Note
that in case where the qubit has three levels, this phase factor becomes relevant.) Moreover, it
is possible to adjust the phase of |ψ〉 so that the coefficient of |0〉 is real. Consider the operator
r(ϑ,ϕ) · σ, where r(ϑ,ϕ) ∈ R3 is called the Bloch vector,

r(ϑ,ϕ) = (rx, ry, rz) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) (2.2)

and σ are the Pauli matrices,

σ =
(
σx, σy, σz

)
=

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
.

A straightforward computation shows that |ψ(ϑ,ϕ)〉 is an eigenstate of r(ϑ,ϕ)·σwith eigenvalue
1. So there is a natural bijection [3] between a vector r(ϑ,ϕ) to the state |ψ(ϑ,ϕ)〉, provided
0 ≤ ϑ ≤ π and 0 ≤ ϕ < 2π. The collection of vectors r(ϑ,ϕ) is precisely the unit sphere, which,
in this context, is called the Bloch sphere, see Fig. 2.1 These vectors describe the so-called pure
states and can be written as a wavefunction |ψ〉 as in eqn. (2.1). What about the states in the
interior of the Bloch sphere? Their state vector is of the form

r(ϑ,ϕ) = (ρ sinϑ cosϕ, ρ sinϑ sinϕ, ρ cosϑ), (2.3)

for some ρ ∈ [0, 1[. These states are called mixed states. They cannot be described by a
wavefunction |ψ〉. We need density matrices in order to discuss them.
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2.2 Cavity quantum electrodynamics

Density matrices.— The density matrix associated with a pure state |ψ〉 is the 2 × 2-matrix with
complex entries ρ = |ψ〉〈ψ|. Mixed states are also described by such matrices, but there is no
wavefunction |ψ〉 such that ρ = |ψ〉〈ψ|. The density matrices associated with physical (pure
or mixed) qubit states must fulfil two properties. Namely, their trace must be equal to one,
trρ = 1, and they must be positive semi-definite. We may equip the space of density matrices
with the Hilbert-Schmidt inner product (·, ·) [14],

(ρ1, ρ2) = tr(ρ†1ρ2).

Because the set {id2/
√

2, σx/
√

2, σy/
√

2, σz/
√

2}, where id2 is the 2 × 2 identity matrix, forms an
orthonormal set with respect to the Hilbert-Schmidt inner product, any density matrix ρ may
be expanded as

ρ =
1
2

(
tr(id2ρ)id2 + tr(σxρ)σx + tr(σyρ)σy + tr(σzρ)σz

)
. (2.4)

The above can be identified with eqn. 2.3, provided tr(σiρ) = r(ϑ,ϕ)i for i = x, y, z. This is indeed
the case, because expressions like tr(σxρ) are interpreted to be the expectation value 〈σx〉ρ ≡ 〈σx〉

of spin projection operator σx with respect to the state ρ. For this reason, we also write

r = (rx, ry, rz) = (〈σx〉, 〈σy〉, 〈σz〉).

2.2 Cavity quantum electrodynamics

Cavity Quantum Electrodynamics (cavityqed) is a subfield of quantum optics which emerged in
the 1970s. After the so-called weak-coupling-regime age, during which e.g. spontaneous emis-
sion enhancement and inhibited spontaneous emission were observed, the strong-coupling-
regime age came about. In 1992, the first quantum Rabi oscillations were observed and single
atom masers were realised. A brief account of the history of cavity qed can be found in Refs. [15]
or [16]. In cavity qed experiments, an electromagnetic field, optical or microwave, is confined in
a cavity with highly reflecting walls. Atoms are sent through the cavity one by one and interact
with the photons stored in it. In optical cavity qed, the cavity is driven with a laser while the
atoms fall through it. The coupling between the atom and the quantised electromagnetic modes
of the cavity causes detectable changes in the cavity transmission. The spontaneous emission
in transverse directions can also be monitored. In microwave cavity qed, photons are coupled
to transitions in highly excited Rydberg atoms via high-Q superconducting resonators [7].

Currently a variety of physical implementations of qubits are being studied [17], e.g. liquid-state
or solid-state nuclear magnetic resonance, trapped ions, quantum dots and superconducting
circuits. A number of prerequisites for a viable quantum computer were formulated by David
DiVincenzo in his seminal paper [18]. They include for instance the ability to initialise the
qubits in a well-defined state or the possibility to manipulate the qubits at will or a sufficient
shielding of the qubits from the environment. It has been argued that systems involving a few
tens of qubits will first be realised in trapped ion systems, but that superconducting qubits are
a strong contender [19].
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2 Theory on qubits, circuit qed and geometric phases

Jaynes-Cummings Hamiltonian

The interaction between the atom and the cavity can be idealised as interaction between a
two-level-system and a quantum harmonic oscillator. This system is described by the Jaynes-
Cummings-Hamiltonian [7], which was introduced by Jaynes and Cummings [20] in 1963 to
study the coupling of matter to electromagnetic fields. This Hamiltonian reads

H = ~ωr

(
a†a +

1
2

)
+

1
2
~ωaσz + g~(a†σ− + aσ+) + Hκ + Hγ, (2.5)

where σ± = σx ± iσy are the usual ladder operators. The first term of this Hamiltonian is the
contribution from the quantum harmonic oscillator; ωr is the resonator frequency and a†a is
the photon number operator, a†a|n〉 = n|n〉. The second term of H is the contribution from
the spin eigenstate of two-level-system; ωa is the transition frequency of the two-level-system
from ground to excited state and σz measures the spin eigenstate in z-direction. The third
term expresses the coupling of coupling strength g between atom and cavity. The contribu-
tion proportional to a†σ− corresponds to the annihilation of a cavity photon combined with a
downward transition of the atom, whereas the contribution proportional to aσ+ corresponds to
the creation of a cavity photon combined with an upward transition of the atom. The ultimate
and penultimate terms of H express dissipative losses. Hκ is the coupling of the photons to the
environment, its strength is determined by the ratio κ = ωr/Q of the resonator frequency to the
quality factor of the cavity. The quantity κ is called the photon decay rate. Hγ is the coupling of
the two-level-system to modes other than the resonator mode; γ is the decay rate of the excited
state into these channels.

We distinguish between two regimes: the weak coupling regime and the strong coupling
regime. In the strong coupling regime, in which g� max{κ, γ}, the interaction strength between
cavity and two-level-system permits free energy exchange in processes such as vacuum Rabi
oscillations, where the two-level-system repeatedly absorbs and emits a photon. In the context
of circuit qed, vacuum Rabi oscillations were observed in Ref. [21]. In the weak coupling
regime, on the other hand, this energy exchange is impossible.

The Jaynes-Cummings Hamiltonian may be generalised [8] to a multi-level-system by supple-
menting the contributions from the higher level transitions and the higher level atom-cavity
coupling to eqn. (2.5):

H = ~ωr

(
a†a +

1
2

)
+

∑
i

~ωgi|i〉〈i| +
∑

i, j

~gi j|i〉〈 j|(a† + a). (2.6)

The labels i and j run through the energy levels of the atom, i = g, e, f , h etc. The symbol ωgi
denotes the frequency from the ground level to the ith level and gi j denote the coupling strength
of the cavity to the transition from level j to level i. If the coupling strengths to higher levels
are sufficiently small, or if care is taken not to excite higher levels, the corresponding terms can
be discarded, and from (2.6) one recovers (2.5). The coupling strengths become small when the
transitions are driven off-resonantly or in the dispersive limit.
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2.3 Towards the transmon

Dispersive limit

The dispersive limit is attained when the the detunings between the cavity and the energy
levels of the artificial atom are large, so when in particular the condition |ωge − ωr| � g01 is
satisfied. Then, the Hamiltonian for the lowest two levels can be cast into the form [7]

H =
(1
2
~ω′a + ~χa†a

)
σz + ~ω′ra

†a. (2.7)

This is the dispersive Jaynes-Cummings Hamiltonian. The frequencies ω′a and ω′r are renor-
malised (here, dispersively shifted) counterparts of ωa and ωr. In the above equation, the
ac-Stark shift [22] becomes apparent: the transition frequency ω′a is shifted by the amount 2χ
for every photon trapped inside the cavity. The dispersive shift χ depends on the coupling
strengths gi j and on the transition frequenciesωgi of the lowest two levels. As may be expected,
the Hamiltonian (2.5) describing the interaction of radiation with a two-level-system can also
be cast in a form similar to (2.7). The dispersive regime is of fundamental importance for the
readout procedure, described in section 3.3.

2.3 Towards the transmon

Superconducting qubits can be based either on phase, charge or flux. The transmon is a
development of the archetypal charge qubit, the Cooper pair box. In the following, we present
some aspects of the theory behind the transmon, describing what physics its functionality relies
upon and outlining the course of its development.

Josephson junctions

A Josephson junction is made of two superconducting electrodes separated by a thin insulating
layer. The electrical circuit representation is shown in Fig. 2.2. Each electrode can be described
by condensate wavefunctions

Ψk = Ψ0eiϑk

with phase differenceϕ = ϑ1−ϑ2. If the charges on the electrodes are±Q, the number of Cooper
pairs is n = −Q/2e, where −e is the electrical charge of the electron. The electrical charge Q and
the phase ϕ obey the Josephson equations [23]

Q̇ = IJ − Iext,

ϕ̇ = −2eV/~,

where IJ = Ic sinϕ is the Josephson current and Ic is the critical current, the maximal current a
junction can support. Iext is an external current source and V = Q/CJ is the ratio of the charge to
the junction capacitance CJ. From those equations, one derives ϕ̈ = 2e

~CJ
(IJ − Iext). This equation

is the equation of motion ∂
∂ϕL − d

dt
∂
∂ϕ̇ = 0 of the Lagrangian

L =
1
2

CJ~
2

4e2 ϕ̇
2 + EJ cosϕ +

Iext~

2e
,

7
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IextIext
EJ, CJ

EJ

C

 –Q +Q IextIext

J

IextIext
Φ

(a) (b) (c)

Figure 2.2: (a) The electric circuit diagram of a Josephson junction with Josephson energy EJ and
capacitance CJ. (b) A more detailed model of the Josephson junction. The cross marks an ideal
junction. The architecture of the junction, a dielectric layer sandwiched between conductors,
gives rise to the capacitance CJ. (c) The electric circuit diagram of a squid. Graphics adapted
from [3].

where
EJ = Ic~/2e (2.8)

is the Josephson energy. One major drawback becomes apparent: EJ cannot be tuned in situ, it
is determined by the geometry of the device, fixed at fabrication.

However, there is a device behaving like a Josephson junction with tunable Josephson energy:
the so-called squid, short for superconducting quantum interference device. It consists of two
Josephson junctions connected by two superconducting wires, cf. Fig. 2.2. Its Josephson energy
is a function of the flux of the magnetic field Φ flowing through the loop [3],

EJ(Φ) = EJ cos
πΦ

Φ0
,

where Φ0 = h/2e is the magnetic flux quantum. The relevant degree of freedom of the squid is
the flux threading the loop. It is operated in the regime EJ � EC.

The Cooper pair box

The simplest version of a qubit based on Josephson junctions is the Cooper pair box cpb.
Consider a capacitor with capacitance Cg, biased by a gate voltage Vg, connected to a Josephson
junction, as depicted in Fig. 2.3. The cpb consists of one of the electrodes of the capacitor with
capacitance Cg, the connection between capacitor and Josephson junction, and one of the
electrodes of the Josephson junction, as shown in Fig. 2.3. The part between the the capacitor
and the junction is called the island.

Charge Basis.— In order to find the (quantised) Hamiltonian of the cpb, one applies a Legendre
transform to the Lagrangian to find the Hamiltonian and imposes canonical commutation
relations. The Lagrangian of the system is [3]

L =
1
2

CJV2
J +

1
2

Cg(Vg − VJ)2 + EJ cosϕ,

8



2.3 Towards the transmon

Vg

CPB

Cg

EJ, CJ

Vg

split CPBEJ, CJ

Cg

(a) (b)

Figure 2.3: Circuit diagram of a charge qubit based on a cpb, (a) and a split cpb, (b). The
additional Josephson junction in the split cpb permits to tune EJ. Graphics adapted from [3].

where VJ = −~ϕ̇/2e is the voltage across the junction. The Lagrangian can be cast into the form

L =

(
~

2e

)2 1
2

(CJ + Cg)ϕ̇2 + EJ cosϕ +
~

2e
CgVgϕ̇

if one neglects a constant term (of no importance when quantising). The total charge Q in
the island is Q = QJ − Qg = −2ep/~ = −2en, where p = d

dϕ̇L = ~n is the canonically conjugate
momentum to ϕ. The Hamiltonian is

H = pϕ − L = 4EC(n − ng)2
− EJ cosϕ, (2.9)

where ng = CgVg/2 is the gate charge and EC = (2e)2/2(Cg + CJ) is the charge energy. Imposing
the canonical commutation relation [ϕ,n] = i (and thus ϕ = i d

dn ), the eigenstates |n〉 of the
number operator n obey e±iϕ

|n〉 = e∓
d

dN |n〉 = |n ± 1〉. Using this and the completeness relation
for n, the above Hamiltonian can be written as

H =
∑
n∈Z

(1
2

EC(n − ng)2
|n〉〈n| −

1
2

EJ(|n〉〈n + 1| + |n + 1〉〈n|)
)
. (2.10)

This is the Hamiltonian of cpb in the charge basis. The first term in the sum represents the
electrostatic contribution, whereas the second term, the dynamical contribution, represents the
tunnelling of Cooper pairs on and off the island. The above equation provides us with an
intuitive understanding of the quantities EJ and EC. Half the Coulomb energy, EC/2, is the
energy required to add a Cooper pair onto a charge neutral island. [3]. The Josephson energy
EJ is the potential energy stored in the junction.

In the so-called charge regime, meaning EC � EJ, and if ng is tuned to be near a half-integer
value of n, the states |n〉 and |n + 1〉 have almost degenerate energies [3] and the other states can
be ignored. Writing

|n〉 =

(
1
0

)
, |n + 1〉 =

(
0
1

)
,

and discarding all terms involving other numbers than n and n + 1, the Hamiltonian reduces to

H = −
1
2

EJ

(
0 1
1 0

)
+ 4EC

(
n2

g 0
0 1 − 2ng + n2

g

)
= −

1
2

Bxσx −
1
2

Bzσz. (2.11)

9



2 Theory on qubits, circuit qed and geometric phases

In the above, where we defined Bx = EJ and Bz = 4EC(1 − 2ng), the last equality follows from
dropping an irrelevant constant term (energy shift) proportional to the unit matrix. Note that
H looks like the Hamiltonian of a spin-1/2 particle in a pseudo-magnetic field with components
Bx and Bz. H has eigenvalues ± 1

2

√
B2

x + B2
z . The corresponding eigenvectors are

| ↑〉 = cos
(
ϑ
2

)
|0〉 + sin

(
ϑ
2

)
|1〉 and | ↓〉 = − sin

(
ϑ
2

)
|0〉 + cos

(
ϑ
2

)
|1〉,

where ϑ = arctan Bx/Bz(Ng) is the mixing angle. The states | ↓〉 and | ↑〉 are the ground,
respectively excited, eigenstates of the cpb. The energy splitting between the eigenstates is
~ωa =

√
B2

x + B2
z .

Phase basis.— In order to solve the Hamiltonian (2.10) analytically, we swap the number n for its
canonically conjugate variable ϕ. The Hamiltonian can then be solved in terms of the Mathieu
functions [8]. To obtain H in the phase basis, one makes use of the relations

n = i
d

dϕ
, neiϕ = eiϕ(n+1)

where the basis vectors can be expressed in terms of each other as∑
n∈Z

eiϕn
|n〉 and |ϕ〉 =

∫ 2π

0
dϕ e−iϕn

|ϕ〉.

Then, one finds

H = 4EC

(
i
∂
∂ϕ
−

ng

2

)2

|ϕ〉〈ϕ| −
1
2

EJ(eiϕ + e−iϕ)|ϕ〉〈ϕ|.

The solutions of the Hamiltonian are plotted in Fig. 2.4. In the limit EJ/EC → 0, the shape of
the spectrum can be read off eqn. (2.10). Then, for each fixed n, the energy as a function of the
gate charge ng is a parabola centred at ng = n.

The split Cooper pair box

Although the cpbhas a tunable parameter, namely the gate charge ng, it is a significant drawback
that the Josephson energy EJ cannot be modified. Aspiring toward further control over the cpb, a
device with tunable Josephson energy was created, the so-called split cpb. In essence, it consists
of a cpb equipped with an additional Josephson junction, as can be seen from its effective circuit
representation shown in Fig. 2.3. It can be shown [3] that the Josephson energy of the split cpb
is

EJ(Φ) = EJ cos
(
πΦ

Φ0

)
,

where EJ is the Josephson energy of the cpb as defined in eqn. (2.8). This holds only if both
Josephson junctions have the same Josephson energy, EJ/2.The Hamiltonian of the split cpb is
identical with the Hamiltonian of the cpb, eqn. (2.11), with the exception that the coefficient Bx
now depends on the flux, Bx = Bx(Φ) = EJ cos (πΦ/Φ0).

10
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Figure 2.4: Energy levels Egi of the cpb as a function of the gate charge ng for various ratios
EJ/EC. The three lowest energy levels i = e, f , h are shown. The energy levels are normalised
with respect to the lowest transition Ege (measured at the sweet spot) and are offset in such a way
that the bottom of the lowest energy level is at zero. In the transmon regime (rightmost figure),
the transition energy between ground and first excited state is approximately ~ωa =

√
8EJEC.

Considering the energy levels of the cpb plotted in 2.4, the presence of charge dispersion, that is,
variation of the transition energy as a function of the gate charge ng, is manifest. Whereas charge
dispersion is comparatively low around the so-called sweet spot (ng = 0.5), it increases away
from it. It is desirable to operate the qubit at the sweet-spot since this has been demonstrated
to increase dephasing time [24]. At the sweet spot, the linear dependence on charge noise
is eliminated [8]. However, due to slow drifts in the gate charge, it needs to be adjusted
continuously to avoid drifting away from the sweet spot, a source of difficulty in experiments.

2.4 The transmon

The transmon is a modified version of the split cpb-qubit [8], which was devised to lessen the
influence of 1/ f charge noise, the principal source of dephasing in the split cpb. This is achieved
by eliminating the dependence of the energy levels on gate charge. Both devices share the same
effective Hamiltonian [25] but they operate at different ratios EJ/EC: whereas it is approximately
unity for the cpb, it is far greater than one for the transmon. From a technical point of view,
the transmon closely resembles the split cpb qubit. The dominant feature of the transmon is an
additional capacitance shunting the two Josephson junctions. An increased gate capacitance
also sets it apart from its predecessor. The effective circuit diagram is shown in Fig. 2.5.

Charge dispersion

When increasing the ratio EJ/EC, the variation of the energy levels as one sweeps the gate
charge gets lesser and lesser. In fact, charge dispersion decreases exponentially with EJ/EC. As
a result, in the transmon regime, the energy levels are almost independent of the gate charge, as
illustrated in 2.4. Thus, the transmon displays the desired robustness against charge noise and
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2 Theory on qubits, circuit qed and geometric phases

ΦVg

EJ, CJ

C g

Cr C BLr

C in

Figure 2.5: Effective circuit diagram of a transmon. The resonator (green) used for qubit control
is modeled as a circuit with impedance Lr and capacitance Cr. The capacitor CB shunts the split
cpb (red). Graphic adapted from [8].

it is no longer necessary to tune the gate charge to remain at the sweet spot. In the transmon
regime, the charge dispersion can be approximated by [8]

εi ≈ (−1)iEC
24i+5

i!

√
2
π

(
EJ

2EC

) i
2 + 3

4

e−
√

8EJ/EC . (2.12)

The expression εi is the peak-to-peak value for the charge dispersion of the ith energy level.

Anharmonicity

However, as EJ/EC increases, the separation between the energy levels diminishes with a power
law in EJ/EC. For large enough ratios EJ/EC the spacing of the energy levels becomes almost
equidistant. Then the energy spectrum resembles the one of a harmonic oscillator. Operated in
this regime, the transmon bears more resemblance to a multi-level-system than to a two-level
system because of the smallness of the anharmonicity α = Ee f −Ege. Even though the transition
matrix elements are significant only between nearest-neighbour levels, the proximity of the
transition frequencies may account for some leakage in the next-to-nearest-neighbour levels
during qubit operations. Therefore, care must be taken to increase EJ/EC only so much as
to keep the anharmonicity large enough for practical purposes. Since the charge dispersion
decreases exponentially and the anharmonicity decreases only algebraically, this may readily
be achieved.

Further properties

The theory predicts [8] that the coupling between the cavity and neighbouring transmon levels
increases as EJ/EC rises, whereas the coupling between the cavity and non-neighbouring trans-
mon levels vanishes as EJ/EC rises. Strong coupling between cavity and transmon allows for
instance the observation of vacuum Rabi splitting, which occurs when the qubit is in resonance
with the cavity. Then, the radiation transmitted through the cavity is split into two frequency
lines. Strong coupling also permits a cavity coupled to two qubits to act as a photon bus, a
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possible means of transporting information between distant qubits. Both effects were observed
in Ref. [5].

In the dispersive regime, where the detuning between the energy-level-transitions of the trans-
mon and the cavity are large, the transmon can be operated like the split cpb, because of the
similarity of the respective Hamiltonians, cf. eqn. (2.7). The qubit-state-dependent ac-Stark
effect allows us to deduce the qubit state from measurements of the transmitted amplitude
and phase of a microwave probing signal sent through the cavity [8]. In practice, coherent
microwave radiation E(t), called drive,

E(t) = Ex(t) cos(ωdt + β) + Ey(t) sin(ωdt + β), (2.13)

is applied to the input port of the resonator. Ex(t) andEy(t) are the two independent quadratures
of the drive and are 90◦-phase shifted with respect to each other.

Experimental tests

The functionality of the transmon has been verified experimentally in many instances. An
increased insensitivity to charge noise has been successfully demonstrated in Ref. [26]. The
observed dephasing times go as high as roughly T2 = 3µs and the energy relaxation times reach
approximately T1 = 1.6µs [25].

2.5 Pi-pulses

The π-pulses and its sibling, the π/2-pulse, are fundamental building blocks of single-qubit
manipulations. Their effect can conveniently be modelled using a two-level transition exposed
to radiation. Here, we consider a bound electron for simplicity. A detailed treatment can be
found in Refs. [27] and [28].

Consider a quantum mechanical system described by the time-dependent Schrödinger equation

i~
∂
∂t
|ψ〉 = H|ψ〉 (2.14)

where the Hamiltonian H is split up in two parts, H = H0+Hi(t). H0 is the time-independent part
with eigenfunctions |ψi〉 ≡ |i〉 and eigenvalues ~ωi. HI(t) is the perturbative, time-dependent
part. To solve eqn. (2.14), we consider the ansatz

|ψ(t)〉 =
∑

i

cie−iωit|ψi〉, ci ∈ C.

Restricting the problem to a two-level-system, the ansatz becomes

|ψ(t)〉 = c0e−iω0t
|0〉 + c1e−iω1t

|1〉. (2.15)
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2 Theory on qubits, circuit qed and geometric phases

Normalisation requires that |c0|
2 + |c1|

2 = 1. If the perturbative part of the Hamiltonian is to
describe radiation with constant amplitude E0, it is given by

HI(t) = er · E(t), E(t) = E0(t) cosωt,

where r is the position of the electron with respect to the nucleus. Plugging this and the ansatz
(2.15) into eqn. (2.14) gives a coupled system of equations for the coefficients c0 and c1:{

iċ0 = Ω cosωt e−iω10tc1
iċ1 = Ω∗ cosωt eiω10tc0

, (2.16)

where ω10 = ω1 − ω0 is the transition frequency between states 0 and 1 and Ω = R01 · E/~ is
the so-called Rabi frequency, the product of the dipole matrix element R01 = e〈0|r|1〉 with E/~.
The terms 〈i|r|i〉, i = 0, 1 vanish because r is an odd operator and the states |i〉 have either even
or odd parity. If we orient the electrical field vector E along the x-axis, E(t) = |E0| cosωt ex and
impose the initial conditions c1(t = 0) = 0, the system (2.16) can be solved. One finds that

|c1(t)|2 =
Ω2

W2 sin2
(Wt

2

)
,

where W2
≡ Ω2 + (ω − ω10)2. So the population |c1(t)|2 of the excited state varies between 0

and a maximum of W2/Ω2 which is reached periodically: we observe oscillatory behaviour in
response to the external field. This phenomenon is called Rabi oscillation. When the external
radiation field is in resonance with the transition frequency of the two-level-system, ω = ω10,
W = Ω and |c1(t)|2 = sin2 (Ωt). This means that the state |1〉 can be fully populated. The pulse
of resonant radiation of duration tπ = π/Ω,

E(t) = E0χ[0,tπ](t) cosω10t,

is called a π-pulse. The function χ[0,tπ](t) is one if t ∈ [0, tπ] and zero else. If the system was
initially in the ground state, it results in a complete transfer of the population in the excited
state:

|ψ(t = 0)〉 = |0〉
π-pulse
−−−−−→ |ψ(t = tπ)〉 = −i|1〉.

More generally, for an arbitrary initial state, it results in

|ψ(t = 0)〉 = c0|0〉 + c1|1〉
π-pulse
−−−−−→ |ψ(t = tπ)〉 = −i(c1|1〉 + c0|0〉).

A π/2-pulse lasts half the duration of a π-pulse. If the system is the ground state before the
pulse, it will be mapped as follows:

|0〉
π
2 -pulse
−−−−−−→

|0〉 − i|1〉
√

2
.

That is, the excited state is mapped to an equal superposition state. Likewise, a π/2-pulse maps
ground state to an equal superposition state. A note on the case where the radiation amplitude
varies in time: When E0 = E0(t), the Rabi frequency also varies with time, Ω(t) = |R01E0(t)/~|.
The pulse area, a dimensionless quantity, is defined as

Θ =

∣∣∣∣∣R01

~

∫
∞

−∞

dt E0(t)
∣∣∣∣∣ .

If Θ = π, the pulse is a π-pulse.
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Driven qubit in the rotating frame

The Hamiltonian of the qubit exposed to coherent drive with fixed phase as in eqn. (2.13) is [29]

H =
~

2
ωaσz + ~Ω

(
cos(ωdt + β)σx + sin(ωdt + β)σy

)
, (2.17)

where ~Ω is the dipole interaction strength between the qubit and the drive and Ω is the Rabi
frequency in units of angular frequency. We now transform this Hamiltonian to a frame rotating
about the z-axis at the drive frequency ωd (in angular units). This transformation is described
by the unitary operator U = eiωdtσz/2. The state vector |ψ〉 is mapped to |ψ̃〉 = U|ψ〉. From the
Schrödinger equation for |ψ̃〉 one finds that the Hamiltonian H is mapped to H̃ = UHU†−i~UU̇†.

If one carries out the computation in the rotating wave approximation, i.e. if one keeps only
the terms oscillating at frequency ωd and neglects those at frequency 2ωd, the Hamiltonian in
the new frame of reference H̃ becomes time-independent. It is given by

H̃ =
~

2
(Exσx + Eyσy + ∆σz). (2.18)

where ∆ = ωa − ωd is the detuning, Ex = Ω cos β and Ey = Ω sin β. This Hamiltonian can
compactly be written as H̃ = ~

2 B · σ, where Bx = Ex, By = Ey and Bz = Ω. In the rotating frame,
the Hamiltonian (2.17) has thus received a simple interpretation. It describes a spin 1/2 particle
in an effective magnetic field B whose components are given by the detuning and the drives
multiplied by a phase angle.

15
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2.6 Geometric phases

In quantum mechanics, the wavefunction describing a particle acquires a phase as it evolves
in time. The phase γ can be divided into a dynamic phase γd and a geometric phase γg. The
dynamic phase follows from the Hamiltonian—it is the energy of the state, integrated over
time and divided by the reduced Planck constant. The geometric phase, on the other hand,
constitutes a ‘memory’ of the evolution the system has undergone [10]. If the final state |ψ′〉 is
related to the initial state |ψ〉 via |ψ′〉 = eiγ

|ψ〉, i.e. when the evolution is cyclic, |ψ〉 and|ψ′〉 lie in
the same ray of the Hilbert space, since they only differ by a phase factor. If evolution is cyclic
and, in addition, the evolution of the system takes places adiabatically—what in this context
means slowly—, this phase is also called Berry’s phase. This is a tribute to Sir M. V. Berry who
first investigated it in this setting [13]. Some three decades before, S. Pancharatnam introduced
geometric phases while studying the rotation of the polarisation of light [30]. A few words
about the term ‘geometric’: the phase is geometric because it depends neither on the energy of
the eigenstate nor on the rate of the evolution. It depends solely on the sequence of quantum
states [10].

In the following, we show how Berry’s phase arises from the Schrödinger equation with a
time-dependent Hamiltonian and how it can be likened to parallel transport. Then, after a few
words on generalisations and experimental tests of Berry’s phase, we derive a simple expression
relating it to the sequence of quantum states.

Berry’s phase

Given a quantum system, described at the time t = 0 by a normalised wavefunction |ψ〉 in a
Hilbert spaceH and a Hamiltonian H, one might want to investigate how the system evolves
when H is modified from H(0) to H(T) during the time T. If T is large enough or the change
slow enough, i.e. if H is modified adiabatically, Ehrenfest’s adiabatic theorem (see, for example,
Ref. [31]) implies that at t = T the system will have evolved into an eigenstate of H(T).

What can be said about the phase of the wavefunction in the case where H(0) = H(T), implying
that the evolution of the state is cyclic? The following considerations are based upon Ref. [32].
Denoting the parameters on which the Hamiltonian H depends collectively by R, and assuming
that these change adiabatically over time, R = R(t), the Schrödinger equation describing the
time evolution of |ψ〉 is

H(R(t))|ψ(t)〉 = i~
d
dt
|ψ(t)〉. (2.19)

If the state at t = 0 is in the nth normalised eigenstate, |ψ(0)〉 = |n,R(0)〉, where

H(R(0))|n,R(0)〉 = En(R(0))|n,R(0)〉,

what is the state at some t > 0 ? At a glance, one is tempted to propose

|ψ(t)〉 = exp
{
−

i
~

∫ t

0
dt′ En(R(t′))

}
|n,R(t)〉 ≡ eiγd ,
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Figure 2.6: If the evolution of the Hamiltonian is adiabatic and cyclic, the state vector |ψ(T)〉
after the evolution will lay in the same ray as the state |ψ(0)〉 before the evolution. However, the
phase may differ. This also appears in the properties of the curves C and Ĉ, describing the curve
traced out by |ψ(t)〉 in the Hilbert space H and in the projective Hilbert space P, respectively:
whereas C is open, making the phase difference manifest, the curve Ĉ is closed.

that is, the initial state multiplied by a dynamical phase factor. The dynamical phase is

γd = −
1
~

∫ t

0
dt′En(R(t′)).

However, this ansatz does not satisfy the Schrödinger equation (2.19). One therefore makes the
following educated guess,

|ψ(t)〉 = exp
{

iγg(t) − i
∫ t

0
dt′ En(R(t′))

}
|n,R(t)〉,

where γg(t) is an extra phase, the geometrical phase. Plugging this into the Schrödinger
equation, one finds

H(R(t))|ψ(t)〉 = En(R(t))|ψ(t)〉

for the left-hand side and

i~
d
dt
|ψ(t)〉 =

(
− ~γ̇d(t) + En(R(t))

)
|ψ(t)〉 + exp

{
iγg(t) −

i
~

∫ t

0
dt′ En(R(t′))

}
i~

d
dt
|n,R(t)〉

for the right-hand side. Equating both sides and multiplying the equation by 〈ψ(t)| gives

γ̇g(t) = 〈n,R(t)|i
d
dt
|n,R(t)〉,
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which can be integrated to

γg(t) = i
∫ t

0
dt′ 〈n,R(t′)|

d
dt′
|n,R(t′)〉 = i

∫ R(t)

R(0)
dR 〈n,R|∇R|n,R〉. (2.20)

The phase γg(t) should be real to preserve the norm-squared of the wavefunction. This is the
case, since

={γ̇g(t)} = =

{
i〈n,R(t)|

d
dt
|n,R(t)〉

}
=

1
2

(
〈n,R(t)|

d
dt
|n,R(t)〉 + c.c.

)
=

1
2

d
dt
〈n,R(t)|n,R(t)〉 = 0

due to the normalisation of the state. If the evolution is cyclic, the geometrical phase change is

γg = i
∫ R(T)

R(0)
dR 〈n,R(t)|∇R|n,R(t)〉.

This quantity does not necessarily vanish, since the integrand may not be a total derivative.
However, it is independent of the rate at which the path R([0,T]) is traversed. In the above
case, where both adiabaticity and cyclicity are assumed, the geometrical phase is called Berry’s
phase.

Connection to Parallel transport

The aim of this paragraph is to elucidate the connection [10] between classical parallel transport
and Berry’s phase. Parallel transport of a vector along a curve in a plane merely amounts to
moving the vector along the curve while keeping its length and direction constant. Parallel
transport along a curve on a curved surface is slightly more intricate. One requires the following:
that (a) the length of the vector and (b) the angle between the vector and the surface normal
should be kept constant. The special case of the transformation undergone by a vector parallel
transported along a closed curve P is called a holonomy transformation. If the closed curve lies
in a plane, the transported vector is identical to the initial vector. If, however, the closed curve
lies on a sphere with radius r, the vector is rotated by an angle α which is equal to the solid
angle subtended by the curve, i.e. α = A/r2, where A is the area on the sphere enclosed by the
closed curve. To illustrate this property, consider a vector vi which is initially at the north pole
of the sphere and points along a meridian, as depicted in Fig. 2.7. Parallel-transport it along this
meridian until it reaches the equator, then let it move along a quarter of the equator. Finally,
parallel-transport it along the new meridian until it reaches the north pole again. The parallel-
transported vector v f differs from vi: since the area enclosed by the curve P is one eighth of the
surface of the sphere, A = 4πr2/8 = 1

2πr2, vi has been rotated by an angle α = 1
2πr2/r2 = π/2.

How can classical parallel transport help us gain an understanding of Berry’s phase? Consider
a spin vector S in a magnetic field B, with S being parallel to B. Then, vary the direction of
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P
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Figure 2.7: Illustration of parallel transport on a sphere. The vector vi is transported along
a meridian, along the equator and finally along a new meridian. It ends up rotated when it
reaches its original position. Figure adapted from [29].

B adiabatically, so that the S follows B when B traces out a curve C on a sphere with radius
S = |S|. Let us consider what happens to a vector parallel-transported along C. Imagine a
cartesian triad transported along C, with its z-axis pointing radially, and the (x, y)-plane being
parallel-transported. If C is closed, any vector which keeps a fixed orientation with respect to
this triad will reach its departure point rotated about the z-axis by the angle α. So the spin vector
S will be rotated, too, and this changes the phase of the spin wavefunction by γg = −α/2, the
geometric phase. In addition, because the spin exposed to a magnetic field undergoes Larmor
precession with frequency ωL about the axis ωL, the spin wavefunction also accumulates a
dynamical phase γd.

Generalisations of Berry’s phase

In the above paragraph, two assumptions were made: first, that B should be modified adia-
batically and second, that S should be parallel (or antiparallel) to B. However, as Aharonov
and Anandan demonstrated [33], both assumptions are not necessary. As long as B is varied
in such a way that S follows the same path C, the geometric phase γg will be the same, the
motion need not be adiabatic. As for the angle δ between S and B, it determines how much
dynamical phase the qubit acquires. The angular frequency of precession of the qubit around
the spin axis S is the projection of the angular momentum vector ωL onto S. Therefore, this
angular frequency is ωL cos δ. The case where S is parallel to B implies δ = 0, and the angular
frequency of precession is, as above, ωL cos(0) = ωL.

Berry’s phase appears in still a more general context. Samuel and Bhandari [34] proved that
the evolution of the quantum system need not be cyclic, i.e. the final state need not lay in the
same ray as the initial state. Then, the curve C traced out on the sphere is no longer closed.
Berry’s phase appears as an integral over the surface (the ray space) bounded by the contour
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2 Theory on qubits, circuit qed and geometric phases

C closed by any geodesic curve joining the initial and final state. The geodesics of the ray
space are defined via the metric on the ray space, which is induced by the inner product on the
Hilbert space. Furthermore, Samuel and Bhandari showed that the evolution of the quantum
system may be interrupted by quantum measurements. Both generalisations, Aharanov and
Anandan’s, as well as Samuel and Bhandari’s, are based on the work by Pancharatnam.

The geometric phase has also been extended to the case involving more than one state, giving
rise to so-called off-diagonal geometric phases [35]. The analysis of the Berry phase in terms of
differential geometry has been carried out by Simon [36].

Experimental tests

Berry’s phase has been observed in a variety of settings. Among the first observations are, in
1986, the detection using photons in optical fibre [37] and in 1987, the observation using spin-
polarised neutrons [38] and the detection using the spins of chlorine nuclei within a crystal
of sodium chlorate [39]. The nonadiabatic but cyclic phase was observed in the same year
in a system of coupled protons [40]. The noncyclic phase was measured in a spin-polarised
neutron experiment [41]. The first observation of Berry’s phase in a solid-state qubit took place
in Prof. Wallraff’s research group in 2007 [29]. In 2008, Berry’s phase was first determined in a
superconducting charge pump [42].

Derivation of Berry’s phase

The following is a derivation of Berry’s phase, closely following Berry’s original paper [13]. We
find a simple expression for the phase based on the sequence of quantum states the system has
followed.

Working in a three dimensional parameter space, the geometrical phase as defined in (2.20) can
be rewritten by means of Stoke’s theorem as

γg = γg(n,C) = −=

∫
C

dS · rot〈n,R)|∇R|n,R(t)〉,

where C is the closed contour traced out by R(t). Writing |n,R(t)〉 ≡ |n〉 and ∂
∂ j ≡ ∂ j for simplicity

and using that(
rot〈n|∇|n)〉

)
i
= εi jk

(
〈∂ jn|∂kn〉 + 〈n|∂ j∂kn〉

)
= εi jk

(
〈∂ jn|∂kn〉

)
=

(
∇n ∧ ∇n

)
i
,

one finds

γg(n,C) = −=

∫
C

dS · 〈∇n| ∧ |∇n〉 = −

∫
C

dS · =
∑

m
m,n

〈∇n|m〉 ∧ 〈m|∇n〉 ≡ −
∫

C
dS ·Vn(R). (2.21)

In the last step,

(∇n ∧ ∇n)i = εi jk

(
〈∂ jn|

∑
m
|m〉〈m||∂kn〉

)
= εi jk

( ∑
m

m,n

〈∂ jn|m〉〈m|∂kn〉 + 〈∂ jn|n〉〈n|∂kn〉
)
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was used. The last term of the above expression vanishes in (2.21) because 〈n|∂kn〉 is purely
imaginary. From the Schrödinger equation (2.19), one has

∇H(R)|n〉 + H|∇n〉 = ∇En(R)|n〉 + En|∇n〉
⇐⇒ 〈m|∇H(R)|n〉 + 〈m|H|∇n〉 = (∇En(R))〈m|n〉 + En〈m|∇n〉

⇐⇒ 〈m|∇n〉 =
〈m|∇H(R)|n〉

En − Em
,

as long as m , n. Inserting this into (2.21) gives the following result:

γg = −

∫
C

dS · =
∑

m
m,n

〈n(R)|∇RH(R)|m(R)〉 × 〈m(R)|∇RH(R)|n(R)〉
(Em − En)2 .

Here, a comment is in order. Because the geometric phase is now explicitly independent of
|∇n〉, any solutions of the Schrödinger equation may be used to compute it without affecting
its value. Is it gauge invariant because it is independent of the phase of |n〉. This is remarkable
because, as can be seen from (2.21), γg depends on 〈n|∇n〉. And the expression 〈n|∇n〉 does
depend on the choice of phase: if |n〉 7→ eiµ(R)

|n〉, then 〈n|∇n〉 7→ 〈n|∇n〉 + i∇µ.

What can be said about the geometric phase if there is a degeneracy in parameter space? As
can be seen from eqn. (2.21), the geometric phase is dominated by the states involved in the
degeneracy if C lies close to it. We consider the twofold degeneracy of the energy levels of a
spin 1/2 system in the absence of a magnetic field. This situation corresponds to a degeneracy
point R∗ in parameter space. As soon as the magnetic field is non-zero, the degeneracy is lifted,
i.e. one moves away from R∗ to a point R in its the neighbourhood. We denote the two states
involved in the degeneracy + and −, with E+(R) ≥ E−(R). Then, expanding the Hamiltonian
around R∗, ∇RH(R) ≈ ∇RH(R∗), one has

V+(R) = =

∑
m

m,+

〈+(R)|∇RH(R)|m(R)〉 × 〈m(R)|∇RH(R)| + (R)〉
(Em − E+)2 (2.22)

= =

∑
m

m,+

〈+(R)|∇RH(R∗)|m(R)〉 × 〈m(R)|∇RH(R∗)| + (R)〉
(Em − E+)2 (2.23)

≈ =
〈+(R)|∇RH(R∗)| − (R)〉 × 〈−(R)|∇RH(R∗)| + (R)〉

(E+ − E−)2 . (2.24)

Because only the energy states involved in the degeneracy make sizeable contributions to the
sum, the other terms of the sum may be dropped.

We now take, without loss of generality, E±(R∗) = 0 and H(R) = 0. The most general Hamiltonian
coupling two states is of the form

H(R) =
1
2

(
Z X − iY

X + iY Z

)
.

Its eigenvalues are E+(R) = 1
2

√

X2 + Y2 + Z2 ≡ 1
2 R and E−(R) = − 1

2 R. It has the additional
property that ∇H = 1

2σ. The computation of the geometric phase is greatly simplified by
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exploiting the isotropy of the spin. We rotate the coordinate system so that R is parallel to the
Z−axis, R = (0, 0,Z). Then, using

σx|+〉 =

(
0 1
1 0

) (
1
0

)
=

(
0
1

)
= |−〉, σx|−〉 = |+〉

and the similar relations σy|±〉 = ±i|∓〉, σz|±〉 = ±|±〉, one has

(V+)x = =

{
〈+|
σ
2
|−〉 × 〈−|

σ
2
|+〉(E+ − E−)2

}
x

=
1

4R2=
{
〈+|σy|−〉〈−|σz|+〉 − 〈+|σz|−〉〈−|σy|+〉

}
=

1
4R2=

{
〈+|(−i)|+〉〈−|1|+〉 − 〈+|(−1)|−〉〈−|i|+〉

}
= 0

and, similarly, (V+)y = 0 as well as (V+)z = 1
4R2={i− (−i)} = 1

2R2 . Consequently, when one rotates
back the axes, the result is V+ = 1

2R2 ·
R
R . Finally, from (2.21), we find that the geometric phase is

γg(+,C) = −
1
2

∫
C

dS ·
R
R3 ≡ −

1
2
α(C), (2.25)

where α(C) is the solid angle subtended by the curve C at the degeneracy point R∗. Now, since
V+ = −V−, cf. eqn. (2.22), γg(−,C) = + 1

2α(C). In brief, the geometrical phase factor associated
with C is

eiγg(±,C) = e∓
1
2 iα(C).

This is the central result of this section: the geometric phase is, up to a sign, half the solid angle
α(C) of the curve C in parameter space.
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3 Experimental techniques and equipment

This chapter is devoted to an overview of the techniques and equipment used in this thesis.
After a description of the artificial atom and its immediate environment, the sample, we move
on to the dilution refrigerator. A few paragraphs on signal processing, the qubit-readout
mechanism and qubit spectroscopy conclude this chapter.

3.1 The sample

In the following, we describe the physical implementation of the microwave cavity qed setup
used in this experiment. In essence, it consists of a resonator coupled to a transmon qubit
mounted on a chip (‘on chip’ cavity qed).

The resonator

The resonator is formed by a one-dimensional transmission-line resonator, consisting of a
section of a superconducting coplanar waveguide (cpw). The advantage of the architecture
combining a one-dimensional resonator and a cpb is the strong coupling, 104 times stronger
than what is achievable in atomic systems such as 3D microwave cavities and Rydberg atoms.
This is possible because the mode volume of the 1D resonator is small compared to the mode
volume of a three-dimensional cavity of similar wavelength, and because of the large geometric
capacitance of the cpb [43].

Specifically, cpws can be designed to operate at frequencies of 10 GHz, allowing to use the
qubit in a broad frequency range. The frequency of the cavity depends on the geometry of
the resonator. Accurate manufacturing of cpw resonators with designed coupling has been
demonstrated in Ref. [44]. Apart from the technical ability per se, this is of relevance since
different experiments demand different quality factors. For instance, fast measurements on the
qubit require low-Q resonators, while storage of photons requires high-Q resonators.

A cpw consists of two semi-infinite ground planes mounted on a dielectric substrate separated
by a slot. In the centre of this slot lies the centre strip conductor [45]. A schematic representation
in shown is Fig. 3.1. The theoretical description of the resonator relies on transmission line
theory (as opposed to circuit theory) because of the electrical size of the circuit: circuit theory is
applicable only if the wavelength of the radiation by far exceeds the dimensions of the circuit.
But here, the wavelength of the microwave radiation in the cavity is comparable to the length
of the transmission line. The cpw can nevertheless be modelled using circuit theory by using
the equivalent lumped circuit representation: an infinitesimal piece of the transmission line is
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3 Experimental techniques and equipment

ε

Figure 3.1: Schematic of the section of a cpw. Conducting materials are shown in blue, dielectric
materials in red. The dielectric material with permittivity ε is mounted on top of a conducting
ground plane (bottom). On top the dielectric plane there are two ground planes, to the left
and to the right. Between these ground planes, separated by slots (white) lies the centre strip
conductor.

described as a circuit having a series inductance per unit length and a shunt capacitance per
unit length. (For further details see [46], chapter 2.1). The lumped circuit representation is
convenient for developing an intuitive understanding of the resonator and, what is more, for
the quantisation of the resonator.

The resonator is made of niobium and is fabricated using optical lithography. Because niobium
is superconducting in liquid helium, the resonator can be tested conveniently. The resonator
couples to the input and output transmission lines via gap capacitors. (For increased coupling
capacitances, finger capacitors may be used.) These capacitors can be likened to the mirrors
found at either end of an optical Fabry-Pérot cavity. Their capacitances determine the quality
factor of the cavity. The resonator rests on a sapphire substrate, a material chosen for its low
dielectric losses.

The transmon qubit

The sample contains two transmons placed in the cavity at an antinode of the standing wave
forming in the cavity. The transmons are made of aluminium. Aluminium oxide serves as
tunnel barrier in the Josephson junction. The transmons were manufactured using electron
beam lithography. Each transmon can be probed by two channels: either the signal reaches the
transmon via the resonator, or it is applied directly through a gate line capacitively coupled
to the transmon. An optical microscope image of the sample is shown in Fig. 3.2. With the
gate lines, it is possible to address each qubit locally, suppressing coupling to the other qubit.
Experiments using sideband transitions to generate entanglement between a qubit and the
resonator (or between two qubits) made use of the gatelines [47]. However, the gatelines were
not used in the measurements presented here.

The sample is mounted onto a sampleholder and grounded using wire-bonds. The solenoids
used to tune the energy levels of the qubits are attached to the sampleholder as well and produce
a homogeneous magnetic field that extends over the squid loops.
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Figure 3.2: False-colour rendering of an optical microscope images of the sample. Supercon-
ducting materials (Nb, Al) are shown in white, whereas dielectric materials are blue. (a) A
detail of the on-chip cavity qed system: a transmon inserted in the resonator, capacitively
coupled to the gateline and the input port. The meanders of resonator do not detract from
its functionality as long as the curvature radius is far smaller than the transverse dimensions.
On the left, the narrowing of the input port of the resonator is visible. The input and output
port being larger than the centre slot, their size is continuously reduced at either connection
point to make sure they are impedance-matched with the external lines at every point. (b)
The transmon qubit (300µm across) embedded in the strip line. The dielectric element (blue)
that separates the centre strip conductor from the cpb-island couples them capacitively. The
reservoir is also capacitively coupled to the bottom ground plane (bottom, white). As in a
split-cpb, the island and the reservoir are connected by two Josephson junctions in the centre of
the finger-capacitor (meandering blue line). The finger-capacitor shunting the island and the
reservoir is specific to the transmon. (c) Detail of the centre of the transmon. The two Josephson
junctions (200 nm × 200 nm) are apparent as small structures. The sample was fabricated and
imaged by Johannes Fink.
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3.2 The dilution refrigerator

The sample is placed into a dilution refrigerator and kept at a temperature of about 20 mK,
where both the niobium and the aluminium are superconducting. At a temperature this low,
thermal excitations of the transmon become negligible and the model described in section 2.2 is
accurate. It is not clear whether there is quasiparticle excitations in the the transmon. However,
because they are of no importance at temperatures below≈ 20 mK, the number of excess Cooper
pairs with respect to a neutral background may be identified with the charge Q of the cpb [3].

3.3 The measurement technique

In the dispersive regime, where the resonant coupling between the single mode of the elec-
tromagnetic field in the cavity to the two level system is small compared to the atom-cavity
detuning, the readout of the qubit is performed by probing the resonator. The cavity is ir-
radiated with microwave radiation and the state of the qubit is encoded in the transmitted
microwave radiation.

Signal processing

The signals are produced using an arbitrary waveform generator (awg) and microwave gener-
ators. They are sent into the fridge at powers ranging from −50 dBm to 20 dBm. A series of
attenuators and filters reduce the signals to a power of some attowatts and filter out noise be-
fore they reach the sample. The signals transmitted through the resonator are amplified again,
filtered and finally analysed. Because the transmitted signal is at frequencies in the range of
some GHz, it needs to be downconverted in frequency by about three orders of magnitude
before the computerised data acquisition takes place. This is achieved by using an IQ-mixer as
analogue downconverter. The transmitted signal, rf, with frequency ωrf is split into two parts
of equal amplitude. The input from the so-called local oscillator, lo, typically of frequency
ωlo = ωrf − 10 MHz, is also split into two parts of equal amplitude, and one of the signals is
phase-shifted by 90◦. These four signals are now mixed two by two, producing the outputs I
and Q, the so-called I quadrature and Q quadrature. Both I and Q are a superposition of two
waves oscillating at frequencies ωrf + ωlo and ωlo − ωrf, respectively. A low pass filter then
eliminates the fast oscillating components in both quadratures. The full information of the rf
signal is finally recovered: the amplitude is

√
I2 + Q2 and the phase is arg(I + iQ).

A detailed description of signal processing and a deep account on data acquisition can be found
in Ref. [48].

Dispersive readout and population reconstruction

The properties of dispersive readout are extensively discussed in Ref. [49]. Here, a synopsis is
deemed sufficient. In the dispersive regime, the qubit-resonator system can be modeled by the
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Figure 3.3: The I-quadrature (blue points) and Q-quadrature (magenta points) of the transmitted
signal probing the qubit state. The lines are the theoretical responses numerically computed by
fitting the cavity Bloch equations to the collected data. (a) Ground state response. (b) Excited
state response. In both (a) and (b), the measurement pulse is switched on after 5µs and the
responses reach a steady state after ≈ 12µs.

dispersive Jaynes-Cummings Hamiltonian (2.7). The rffield used to manipulate the qubit gives
an additional contribution to the Hamiltonian. Incorporating dephasing and dissipation, the
dynamics of the system are encapsulated in a Lindblad-type master equation. This first-order
differential equation leads to a complete set of eight coupled differential equations of motion
for the Bloch vector 〈σ〉, the resonator field operators 〈a〉, 〈a†a〉 and 〈aσ〉. These equations are
known as the Cavity-Bloch equations and can be solved numerically.

The qubit state is probed with so-called (strong) pulsed measurements. In contrast to (weak)
continuous measurements, the measurement signal is applied only after completion of the
qubit state preparation, thus avoiding measurement-induced dephasing and undesirable shifts
of the qubit transition frequency due to photons populating the resonator (ac-Stark shift [22]).
In this context, weak and strong refer to the number of intra-cavity photons. From the point of
view of quantum mechanics, both types of measurement are weak measurements, in the sense
that the coupling between measured system and measuring device is weak.

When probing the resonator at its resonance frequency, the resonator response depends on the
state of the qubit, cf. Fig. 3.3. If the qubit is prepared in the ground state |g〉, the Q quadrature
reaches the steady state exponentially with a rate given by the photon decay rate κ, whereas
the I quadrature remains zero. If, on the other hand, the qubit is in the excited state |e〉 before
the measurement, both quadratures are non-vanishing. The lifetime T1 of the excited state is
extracted from the fit of these quadratures to the Cavity-Bloch equations. For a general qubit
superposition state |ψ〉, the population is reconstructed from the area enclosed between the
response of |ψ〉 and the ground-state response. This area is proportional to the excited state
population.
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Performing spectroscopy

Qubit spectroscopy, that is, determining the transition frequency between the different levels
of the transmon, is performed by irradiating the system with two signals. In addition to the
rf-signal described above, a spectroscopy signal is sent into the cavity. When the spectroscopy
signal is in resonance with a transmon transition frequency, the transmitted rf-amplitude drops
due to the shift of the resonance frequency. This dip in amplitude has the shape of a lorentzian
line whose width is inversely proportional to the power of the spectroscopy signal and the
lifetime of the qubit. It occurs because the resonant spectroscopy tone induces incoherent Rabi
oscillations in the qubit.
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4.1 Characterisation of the qubit

The qubit has a maximum Josephson energy of EJ,max = 31.37 GHz and a Coulomb energy
EC = 0.320 GHz, the ratio is approximately EJ,max/EC = 98. The energy relaxation time T1
inferred from population reconstruction varies rather much in time when measured at the
same qubit transition frequency. It often lies in the range of 1.0µs and 1.2µs. The coupling
strength between qubit and resonator is g/2π = 115 MHz. The qubit transition frequencies used
for the measurement of geometric phases are ωge = 5.541 GHz and ωe f = 5.198 GHz, implying
a qubit anharmonicity of α = 343 MHz. At these transition frequencies, EJ = 13.42 GHz and
therefore EJ/EC = 42, setting the qubit into the transmon regime.

4.2 Description of microwave drive pulses

As described in section 2.4, the ratio EJ/EC determines at the same time the remaining charge
dispersion and the degree of anharmonicity. In our sample EJ/EC is large and therefore the
anharmonicity is small. This means that with conventional square or gaussian pulses some
coupling to leakage levels cannot be avoided, this is especially true for small pulse lengths.
Since increasing the pulse length is ultimately undesirable—the gate operation time should
be as short as possible to keep decoherence effects under control—, a different solution must
be found. Motzoi et al. [50] proposed an analytical approach called derivative removal by
adiabatic gate, or drag, in order to prevent population leakage.

drag pulses

A common way of countering leakage into the third level is not to use pulses with a square
envelope, but rather pulses with a Gaussian or a tangential envelope. A Fourier analysis of these
envelopes shows that they give rise to less leakage. drag pulses are an adaptation of Gaussian
pulses, derived in a model where the multilevel-system is approximated by a three-level system
whose two lowest levels represent the qubit and excitation of the third level represents leakage.

Using the second quadrature.— The qubit is, as usual, manipulated by means of monochromatic
microwave pulses with two quadratures Ex(t) and Ey(t) of frequency ωd. We assume that the
pulse is applied on the Ex(t)-quadrature. Then, by transforming the effective Hamiltonian of
the three-level-system into the qubit subspace, it becomes apparent [50] that leakage can be
cancelled to order E4

x/α
3 by simultaneously (a) sending a pulse on the second quadrature Ey(t)
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and (b) adjusting the detuning ∆ = ωge − ωd. Here, α is the anharmonicity as introduced in
section 2.4.

As far as the second quadrature is concerned, it needs to be set to Ey(t) = −Ėx(t)/α. That
is, leakage can be prevented by applying a 90◦-phase shifted pulse proportional to the time
derivative of the desired pulse. This is implemented in our version of the drag pulse.

Ramping the phase.— The detuning, on the other hand, needs to be adjusted to ∆ = (λ2
−

4)Ex(t)2/4α, where λ is the ratio of the strength of the |e〉 → | f 〉-transition to the strength of the
|g〉 → |e〉-transition (in terms of dipole matrix elements). In other words, a detuning growing
quadratically in the amplitude Ex(t) of the carrier is able to compensate leakage. This feature
was added to our drag pulses, resulting in drag pulses with phase ramping.

Both pulse types are based on truncated gaussian pulses. Their envelope is the central portion
of a Gaussian with standard deviation σ, truncated symmetrically at a time σt around the centre
of the Gaussian. The truncation parameter t determines the flatness of the extracted portion of
the Gaussian. Truncation is necessary to end the pulses at zero amplitude.

The pulse with variable phase has two scale parameters. Consider the case where we want
to apply a pulse on the Ex(t)-quadrature. Then, as described above, a compensation pulse
is applied on the second quadrature Ey(t). This pulse will not be computed based on the
amplitude Ex(t), but based on a scaled value of Ex(t). The ramping of the phase will also not
be computed based on the amplitude Ex(t), but on a differently scaled value of Ex(t). Although
theory sets both scale values to one, it appeared that different calibrations give better results.
The scale values need to be determined on a daily basis, because they vary even if the qubit
transition is tuned to the same frequency. An explanation as to why the optimal scale values
differ from theory has yet to be found.

4.3 Determining the resonator frequency

The first step towards controlling the qubit is to determine the resonator frequency. This is
achieved by inputting a signal with a constant power of usually −35 dBm into the cavity using
the rf signal generator, corresponding to about 0.1 photons in the resonator, taking into account
the attenuation due to the microwave transmission line. The output power is measured as a
function of the frequency νrf of the rf signal. This measurement gives, as expected, a Lorentzian
function

I
γ2

(νrf − νr)2 + γ2 ,

which is peaked at the resonator frequency νr and has half-width at half-maximum γ and height
I. The result of a resonator measurement is shown in Fig. 4.1. In this figure, we extracted the
resonator frequency νr = ωr/2π = 6.95135 GHz, a quality factor of Q = ωr/γ = 2417.08 and a
photon decay rate κ/2π = 2.87593 MHz. These parameters were approximately constant over
the different experiments since the qubit was always operated at similar transition frequencies.
Note that νr is not the bare resonator frequency, but the resonator frequency shifted by the
presence of the qubit.
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Figure 4.1: Resonator measurement (blue points) and fit (orange line). The plot shows the
transmission of the probe signal as a function of its frequency.

4.4 Determining the Rabi frequency

A essential point in qubit manipulation is determining its Rabi frequency. This is achieved as
follows:

∗ Select the kind of pulse which will be used during the experiment, e.g. Gaussian drag
pulses or drag pulses with phase ramping, and set the pulse parameters σ and rf.

∗ Using pulses with the above specifications, create a sequence of pattern files. A pattern
consists of a single pulse with fixed amplitude in resonance with the qubit, ωd = ωa.
Throughout the sequence, the amplitude of the pulses is varied from zero to one, one
being the maximum output amplitude of the awg. (We always use the entire power
range of the awg and take care to reduce the power of the signal by introducing adequate
damping at a later stage.) The patterns are displayed schematically in Fig. 4.2.

∗ Run this sequence, performing qubit spectroscopy at the end of each pattern. Repeat the
sequence at least 3 × 104 times to accumulate measurement statistics.

A typical measurement outcome of such a sequence is shown in Fig. 4.3. The excited-state
population varies between 0 and 1, depending on the pulse area, that is, twice the azimuthal
angle by which the state vector was rotated by the pulse. The data is fitted using Mathematica.
From the fit, one extracts the pulse amplitude which drives the qubit from the ground state
into the excited state. A pulse with this precise amplitude is a π-pulse. The pulse with half the
amplitude, i.e. which drives the qubit from the ground state into an equal superposition state,
is a π/2-pulse. The visibility, defined as the maximum difference in qubit population observed
in a Rabi oscillation experiment, is a parameter to quantify the precision of π-pulses. In this
experiment, we obtained a visibility of 1.03 ± 0.01.
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Figure 4.2: Pulse sequence to determine the Rabi frequency. The pulse length is fixed but the
amplitude is swept from low to high. The measurement pulse, applied after the Rabi pulse,
probes the qubit state.
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Figure 4.3: Excited state population as a function of pulse amplitude. We see almost two Rabi
oscillations, obtained by varying only the pulse amplitude but not the pulse length.

Linearity of Rabi frequency as a function of drive amplitude

To ascertain ourselves that the microwave signals used for manipulating the qubit scale correctly
in amplitude, the following experiment was carried out. It is predicted that the Rabi frequency
of the qubit is a linear function of resonant drive applied to the qubit [28]. While this is true in
an ideal system, power-dependent performance of the microwave components, e.g. the mixer,
can cause deviations. The linearity of Rabi frequency as a function of the drive amplitude was
tested by exposing the qubit to resonant pulses with square envelopes of variable length, thus
producing Rabi oscillations. For a fixed pulse amplitude, the length of the pulse varied in steps
of 1 ns. Based on the reconstructed populations, the duration t2π necessary for a 2π-pulse and
the Rabi frequency were determined. The same procedure was repeated for eight different
amplitudes, corresponding to drive frequencies between 10 MHz and 80 MHz. The factor used
to convert the pulse amplitudes to drive frequencies, cf. appendix A, was determined using
a calibrated drag-type π/2-pulse of length 12 ns. The area covered under the pulse of length
t2π and amplitude A was computed, too. As can be inferred from eqn. (A.2), the area should
amount to unity when the drive amplitude is converted in Rabi frequency.
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Figure 4.4: (a) The area Θ of the pulses which corresponds to a 2π-pulse, plotted as a function
of the drive amplitude output by the awg. In theory, the area should be unity. (b) The
Rabi frequency Ω/2π increases linearly with the drive amplitude, in keeping with theoretical
predictions.

Analysing the collected data, shown in Fig. 4.4, it is apparent that the Rabi frequencies indeed
scale linearly with the drive frequencies. The pulse area Θ, however, appears to be 3% to 4%
smaller than expected, showing a tendency to increase with the drive. Possible explanations
include effects due to the sudden turning-on of the pulse or some non-linearities in the sys-
tem generating and mixing the pulses. However, the discrepancy, albeit of unclear origin, is
hopefully small enough not to be troublesome.

4.5 Ramsey experiment

In order to verify the accuracy of the qubit transition frequency ωa determined by spectroscopy
measurements, one can use a Ramsey interference experiment [16], which bears some similarity
to Mach-Zehnder interferometry. Its general operating mode is describe here. Assume the qubit
to be initially in the ground state |g〉. Then, a π/2 pulse with phase ϕ = 0 is applied to qubit,
creating a equal superposition state (|g〉 − |e〉)/

√
2. By means of a phase shifting element, this

state is transformed into (eiϕ
|g〉 − |e〉)/

√
2. Then, a second π/2 pulse, again with phase ϕ = 0, is

applied. The resulting qubit state is

1
√

2

|e〉 + |g〉
√

2
+

1
√

2

eiϕ
|e〉 + |g〉
√

2
=

(
1 + eiϕ

)
|e〉 +

(
1 − eiϕ

)
|g〉

2
.

Therefore, the probability of finding the qubit in the ground or in the excited state is

Pg = cos2
(ϕ

2

)
, Pe = sin2

(ϕ
2

)
.
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Figure 4.5: A Ramsey pulse sequence. The spacing ∆t between the π/2-pulses is increased in
steps of 3 ns.

That is,

Pe =

1 if ϕ = 0 mod 2π,
0 if ϕ = π/2 mod 2π

.

The interpretation is straightforward. In the first case, both π/2 pulses simply add up and they
amount to a single π pulse. In the second case, the state has evolved in such a way that the
second pulse undoes the effect of the first pulse and brings the state vector back into the ground
state. The implementation of the Ramsey interference experiment is as follows:

∗ Create a sequence of pattern files. A pattern consists of two π/2-Rabi pulses, both around
the x-axis (i.e. with phase ϕ = 0), separated by a time interval ∆t. This is illustrated in
Fig. 4.5. Both pulses are detuned from the qubit transition frequency by ∆ = 5 MHz.

∗ Throughout the sequence, ∆t sweeps the range from 0 to 1500 ns in steps of 20 ns.

∗ After each pattern, the qubit state is read out. The extracted data is the average obtained
from at least 3 × 104 repetitions of the sequence.

Now, the dephasing element comes into play. Consider the qubit in the rotating frame. The
first pulse brings |g〉 into an equal superposition state, regardless of a potential detuning. If
the π/2 pulses are resonant (ωd = ωa), the qubit state will acquire no phase during the interval
∆t—it is unaltered. The second pulse then maps the superposition state into |e〉. If, conversely,
the π/2 pulses are detuned by a frequency ∆, during the interval ∆t the qubit will acquire
a phase ϕ = ∆ ∆t relative to the drive. Remembering that the second pulse is also applied
about the x-axis, it is evident that the second pulse will not bring the superposition state in
the excited state since the superposition state has a nonvanishing component along the y-axis.
The z-component of the state after the pulse is the y-component of the state right before the
pulse. The z-component of the Bloch vector thus reads ± cosϕ. This is the component which
is measured using qubit spectroscopy. A typical result of a Ramsey experiment is shown in
Fig. 4.6, along with a fitted curve. The fitting routine extracts the frequency ν = (∆̃ + ∆)/2π of
the oscillations, and the qubit transition frequency is then adjusted by the amount ∆̃. In this
case, we measured oscillations with ν = 4.98 ± 0.01 MHz.
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Figure 4.6: Excited-state population as a function of the time delay between the Ramsey pulses.
We see Ramsey interference fringes due to off-resonant driving of the qubit. The exponential
decay is due to dephasing.

So far, we have not mentioned decoherence. The data in Fig. 4.6 shows that the oscillations are
governed by an exponential decay law. There are two types of damping, longitudinal relaxation
and transverse relaxation [27], characterised by the decay constants T1 and T2. Longitudinal
relaxation is essentially population decay, this is why T1 is called the energy relaxation rate.
Transverse relaxation is related to dephasing processes, therefore T2 is called the dephasing
rate. The decay rates associated with T1 and T2 are γ1 = 1/T1 and γ2 = 1/T2. They are related
via

γ2 =
1
2
γ1 + γ′2,

where γ′2 is the so-called pure dephasing. The decay rate γ2 is the decay rate characterising
the Ramsey fringes. From the experiment shown in Fig. 4.6, we extracted a dephasing rate
T2 = 700± 19 ns using an exponential fit. Comparing this to the fitted T1, see section 4.1, we see
that the main contribution stems from pure dephasing.

4.6 Pulse calibration

Since both spin-echo and state tomography rely crucially on π/2-pulses, their exact calibration
is of utmost importance. Amongst the factors contributing to imprecisions is (a) the difficulty
of accurately determining the amplitude needed for producing a π pulse, (b) variations in the
qubit transition frequency as well as (c) the question whether a 90-phase-shifted pulse about
the x-axis is a pulse about exactly the y-axis or is slightly off due to mixer inaccuracies (which
should be calibrated).

Point (a) is discussed in section 4.4. In order to verify point (b), that is, to detect possible
fluctuations in the transition frequency, repeated qubit spectroscopy measurements were per-
formed during approximately 12 hours. In total, 313 measurement sequences determining both
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Figure 4.7: The plots display successive measurements of νge (left) and νgf/2 (right). The
fluctuations of the transition frequencies stay within a frequency band of about 400 kHz. The
data was acquired continuously during about 12 hours.

νge = ωge/2π and νgf/2 = (ωgf/2)/2π were performed. The transitions were located approxi-
mately at νgf/2 ≈ 5.418 GHz and νge ≈ 5.245 GHz. A sequence consists of two spectroscopy
sweeps across the frequencies from 5.216 GHz to 5.450 GHz in steps of 500 kHz, so as to see
both transitions. The power of the spectroscopy signal during the first sweep is −42 dBm
(to observe the |g〉 → |e〉-transition), during the second sweep it is −10 dBm (to observe the
|g〉 → | f 〉/2-transition). For each transition, the power was chosen low enough to guarantee a
narrow lineshape but high enough to ensure a peak value markedly above the background.

The results of the repeated measurement of the transition frequencies are shown in Fig. 4.7.
The transition frequencies were extracted from the data using a Lorentzian fitting routine.
The average transition frequencies are νge = 5.41766 ± 0.00021 and νgf/2 = 5.24577 ± 0.00017.
Whereas νgf/2 increased by approximately 350 kHz over the thirteen hours the measurement
lasted, νge remains in a frequency band of about 200 kHz. The expected charge dispersion εi for
the ith level can be calculated using eqn. 2.12. One finds 65 kHz for the e-level and 2.38 MHz for
the f -level. This suggests that the drift is not caused by charge dispersion only. Still, the drift
in the transition frequency νge is negligible for the geometric phase experiment since it causes
a shift in Rabi frequency which lies within measurement inaccuracy. The charge dispersion of
the f -level, however, would play a role in experiments making use of the thrid level.

As far as (c) is concerned, a purely pragmatic approach was taken. We first determined the
amplitude needed for the Rabi pulses as explained above in section 4.4. Then, a sequence of
calibration pulses was applied to the qubit. In the sequence, there are three types of patterns.
There are patterns with pulses which transport the qubit form the ground state into (1) the
excited state, (2) an equal superposition state, (3) the ground state. For each type of pulses,
the axis along which the qubit is rotated is varied. In the experiment, the first sequence of
pulses was applied using the Rabi pulse amplitude. Then, both the π and π/2 amplitudes were
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Figure 4.8: Results of the calibration sequence. The blue bars refer to the experimental results,
the light blue bars on top indicates the standard deviation. The red bars indicate the population
expected theoretically, mutliplied with the maximum population measured after aπ-pulse. The
light red bars indicate the errors of population reconstruction.

modified until the the correspondence between the expected population and the measured
populations was satisfactory.

It is to be noted that the calibration of the pulses where a excited state population of Pe,z = 1/2
is expected is more difficult than the calibration of the pulses where one expects Pe,z = 1. This
is because the expected population goes as 1

2 (1 − cos rπ), where r it the ratio of the pulse to a
π-pulse. [E.g. α = 1 is a π-pulse, r = 1/2 is a π/2-pulse.] That is, when r ≈ 1, the excited state
population Pe,z is insensitive to r because the cosine is approximately constant, whereas when
r ≈ 0.5 the cosine varies the most quickly and Pe,z becomes sensitive to fluctuations in r.

If the results of a calibration were not satisfactory, it was repeated with slightly different scaling
values of the drag pulses, see 4.2. Experience shows that the calibration pulses give unreliable
results if the number of averages is too low. The results shown in Fig. 4.8 were obtained using
pulses with phase-ramping of length 20 ns, with σ = 5 ns and t = 2. The sequence was run
fifteen times, totalling 150×103 averages. This calibration was judged satisfactory and used for
measurements of the geometric phases. It is to be noted that the pulses do not attain population
levels of 0, 0.5 and 1 because the pulse length is finite: the state starts to decay even before the
pulse is over. This accounts in particular for the non-vanishing populations measured in the
6th, 5th and 4th last pulses.
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4.7 State tomography

How are we to gain information about the phase of the qubit? To determine the phase, full
knowledge of the qubit state is indispensable. Quantum state tomography, or state tomography
for short, is the process of experimentally determining the state of an unknown quantum
state [14]. Remembering that any qubit state can be decomposed as ρ = 1

2 (id2+rxσx+ryσy+rzσz),
cf. eqn. (2.4), it appears that knowledge of rx, ry and rz is sufficient. But, since the measurement
setup permits only the measurement of the z-component of the qubit rz, how are we to find out
the other components?

In this paragraph, we describe how to gain full knowledge of the state. The procedure relies
on the principle that, given identical experimental conditions, all reiterations of the same
experiment will yield the same results. By repeating the sequence and reading out a different
component each time, one gains information about rx, ry and rz. This is achieved by rotating the
qubit just before the readout procedure. A tomography sequence consists of four consecutive
repetitions of the sequence that manipulates the qubit. What differs between the repetitions is
the very end of the patterns. At the end of the first sequence, no additional pulse follows. At
the end of the second (third) sequence, however, there is one additional π/2-pulse around the
x-axis (y-axis). At the end of the fourth sequence, there is a π-pulse around the x-axis. The
effect of those pulses is to rotate the qubit state vector. After each of those four sequences, the
z-component of qubit state is read out. The first readout gives rz, the second readout gives rx
and the third readout ry. The fourth readout gives the ground state population. In theory, the
sum of the ground and excited populations should add up to one. If this is not the case, either
the pulse calibration is imprecise or there is population in higher levels. This is why the fourth
readout serves as a consistency check.

4.8 Spin-echo

No attempts were made to measure the total accumulated phase of the qubit, i.e. the sum
of the geometric and dynamic contributions, and compute the dynamical part to obtain the
geometric part. Instead, we used a technique called spin-echo [52], which was developed in
the field of nuclear magnetism to restore transverse magnetisation. In essence, a spin-echo
sequence is a Ramsey sequence with an additional π-pulse placed symmetrically in between
the two π/2-pulses. The pulse sequence is illustrated in Fig. 4.10. It has two effects. First,
it has been shown that the dephasing time T∗2 of a spin-echo sequence can be larger than the
T2 extracted from a Ramsey experiment [29]. Second, it cancels out the dynamical phases the
qubit accumulates during the free evolution between the π/2-pulses, because the π-pulse flips
the sign of the dynamical phase. This can be seen in Fig. 4.10. A T∗2-measurement was carried
out using 12 ns pulses with phase ramping, driving the qubit at resonance. The data and the
corresponding fit are depicted in Fig. 4.9. We extracted T∗2 = 586 ± 14 ns, which is about 100 ns
shorter than the conventional T2. For this transmon sample, the spin-echo procedure does not
reduce dephasing.
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Figure 4.9: Populations measured after the spin-echo sequence. The populations shows ex-
ponential decay as a function of the time between the pulses. Asymptotically, pe approaches
one-half.

In practice, theπ-pulse can be implemented around any axis lying in the (x, y)-plane, orthogonal
to the quantisation axis, the z-axis. The pulse pattern shown in Fig. 4.10, that is π

2 |y, π|x,
π
2 |y, puts

a qubit that was initially in the ground state into the excited state. The sequence π
2 |y, π|y,

π
2 |y,

on the other hand, transports the qubit from the ground state back into the ground state. The
following paragraphs describe how this was verified experimentally.

Rotating the π-pulse. A sequence of spin-echo patterns with variable rotation axes of the π
pulse was implemented. The rotation axis of the π-pulse was varied in steps of 5◦ from −180◦

(negative x-axis) over −90◦ (negative y-axis) over 0◦ (positive x axis) to 175◦, whereas both
π/2-pulses were applied around the y-axis. For prefect pulses, the theory predicts populations
〈σy〉 = − sin k and 〈σz〉 = cos k, where k is the angle of the rotation axis of the π-pulse. The pulse
patterns are akin to the spin-echo patterns shown in Fig. 4.10, the variable rotation axis of the
central pulse being the only difference.

The pulses used were pulses with phase-ramping of length 12 ns. The experiment was repeated
with two different pulse separation times ∆t. Every datapoint was averaged about 65000 times.
The result of a sequence with ∆t = 200 ns, displayed in Fig. 4.11, are in good accordance with
theory. Averaged over the six repetitions of the experiment, the phase offsets are (1.9± 2.6)◦ for
σy and (2.3± 2.4)◦ for σz. Averaged over the ten repetitions of the experiment with ∆t = 100 ns,
the offsets amount to (0.8 ± 0.4)◦ for σy and (1.5 ± 0.4)◦ for σz. These offsets are too small to
account for potential deviations in the Berry phase measurement.

Adding supplementary dynamic evolution. As mentioned in the introductory paragraph of this
section, the spin-echo technique cancels the phase the qubit acquires during the free evolution
between the Ramsey pulses. It is, in fact, more powerful: since the π-pulse inverts the sign of
the dynamical phase, any kind of dynamic phase can be cancelled as long as the evolution of
the qubit is identical before and after the π-pulse. We exploit this property in this experiment
by subjecting the qubit to identical adiabatic pulses between the spin-echo pulses. The qubit is
driven with constant detuning. After the first π/2-pulse, we increase the drive field adiabati-
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Figure 4.10: The evolution of the state vector during a spin-echo sequence, (a-c), and the pulses
used to produce it, (d). (a) The state vector is first rotated by π/2 about the y axis and then
acquires a dynamical phase δ during the time ∆t. (b) The π-pulse about the x axis mirrors the
y component of the state vector. (c) After yet another interval ∆t, the state vector is parallel to
the x-axis. Finally, a π/2-rotation about the y-axis maps the state vector to the ground state.
(d) A spin-echo pattern. The two π/2-pulses about the y-axis are placed symmetrically in time
before and after the central π-pulse about the x-axis. The time interval is ∆t.

cally, applying it on the Ex-quadrature only. Then, the field is kept constant for a determined
amount of time before the qubit is adiabatically ramped back to zero drive field. After the spin-
echo π-pulse, the ramping procedure is repeated. The pattern is concluded by the spin-echo
π/2-pulse. It is depicted in Fig. 4.12.

The applied drive corresponded to 1.3 times the amplitude of a π/2-pulse and the spacing ∆t
between the spin-echo pulses was 200 ns. The results of a measurement with 65535 averages
per data point are displayed in Fig. 4.13. The experiment was repeated five times, leading to
phase shifts (−2.4 ± 1.3)◦ for σy and (−0.4 ± 0.6)◦ for σz, closely matching the theory.

In conclusion, the deviations from the expected is not large enough to account for potential de-
viations measured in spin-echo measurements. Significant deviations would have introduced
errors in the read-out of the populations 〈σy〉 and 〈σz〉. These errors would in turn have given
rise to inaccuracies in the measured geometric phase.
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Figure 4.11: Populations 〈σy〉 and 〈σz〉 after spin-echo sequences with variable rotation axis of
the π-pulse, reconstructed using state tomography. The short pulses belonging to the spin-echo
sequence were ∆t = 200 ns apart. The orange lines are fits to the data, from which the shifts in
phase of the curves with respect to the theory curves can be computed. The phase shift is 2.3◦

in (a) and 3.3◦ in (b), showing good agreement with theory.
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Figure 4.12: The additional pulses (green) in between the spin-echo pulses induce adiabatic
qubit motion. Since they are repeated symmetrically on either side of the central πk-pulse, the
qubit acquires no dynamic phase during this sequence if its motion is completely adiabatic.

4.9 Measurement of Berry’s phase

This section presents the central results of the thesis, the measurements of Berry’s phase. It is
organised as follows. First, we describe the paths the qubit traces out and how it acquires a
geometric phase. Then, we present the implementation of the pulses used to manipulate the
qubit and the results we expect. Finally, after considerations on adiabaticity, a discussion of the
analysed data concludes the section.

Qubit path

In this paragraph, we describe the path that the qubit Hamiltonian traces out in parameter
space so that the qubit acquires a geometric phase. The general idea is the following: the qubit
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Figure 4.13: Populations 〈σy〉 and 〈σz〉 (measured with state tomography) after spin-echo
sequences with variable rotation axis of the π-pulse and adiabatic motion of the qubit, as
depicted in Fig. 4.12. The pulse separation was ∆t = 200 ns. In between the orange lines are fits
to the data, from which the shifts in phase of the curves with respect to the theory curves can
be computed. The phase shift is −2.1◦ in (a) and 0.3◦ in (b), close to the theoretical predictions.

follows the path indicated in Fig. 4.14a twice. Depending on the orientation of the contours, its
wavefunction will acquire different phases. If the qubit traverses the contour C+, it acquires
a phase γd + γg. On the other hand, if it traverses C−, it acquires a phase γd − γg, since only
the geometric phase depends on the orientation of the loop. We make use of the spin-echo
technique, so that the dynamic phases accumulated along each contour cancel exactly.

The pulse patterns used to measure the geometric phase start by creating an equal superposition
state by means of a π/2-pulse applied to the ground state.

|g〉
pi
2 |y
−−−→ exp

{
i
π
2
σy

2

}
|g〉 =

1
√

2

(
cos

(
π
4

)
|g〉 + sin

(
π
4

)
|e〉

)
=
|e〉 + |g〉
√

2
.

Then, the qubit traverses two contours C± separated by a spin-echo π-pulse. As an example,
we consider the pattern C+−, in which the contour C+ is traced out before the contour C−. The
state vector after traversing the first loop C+ may be expressed as [53] (|g〉 + e2i(γd+γg)

|e〉)/
√

2.
The π-pulse about the x-axis inverts the sign of the phase and the state vector reads (|g〉 +

e−2i(γd+γg)
|e〉)/
√

2. Traversing the second loop C− contributes γd − γg to the phase of the |e〉
component of the state vector. Therefore, the state reads

(|g〉 + e2i(γd−γg)e−2i(γd+γg)
|e〉)/
√

2 = (|g〉 + e−4iγg |e〉)/
√

2.

Similarly, after traversing the first contour clockwise and the second contour anticlockwise,
C−+, the state vector reads (|g〉 + e+4iγg |e〉)/

√
2. The pulse pattern ends with a π/2-pulse, which

concludes the spin-echo sequence.

The full-blown experiment, i.e. a spin-echo pattern followed by state tomography, consists of
four fast pulses: three for the spin-echo pattern and one for tomography. However, the last
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Figure 4.14: (a) The path traced out by the state vector in parameter space. At first, there is
only detuning, orienting R along Rz. Then, as drive increases, it acquires an new component
along Rx. After the drive has reached its maximum value, the drive amplitude is kept constant
and R forms an angle ϑ with respect to the Rz-axis. Then, the phase of the drive is modulated,
causing R to trace out the path C±. Finally, the drive amplitude is decreased again and R points
along Rz, as in the beginning. (b) The state vector s in the rotating frame, while detuning and
drive are being applied. The qubit is precessing around the axis R(t) with Larmor frequency
ωL = |R(t)|. As the drive amplitude changes, so does the orientation of the axis: during one
cycle C±, the axis traces out the path indicated by dashed lines. Graphic adapted from [29].

pulse is dispensable since two consecutive π/2-pulses (around x,y,z) only change the order in
which the components ri are read out in state tomography. So, at the minute cost of rotating
the measured data to compensate for the missing Ramsey π/2- pulse, the sequence is shorter
and decoherence effects are lessened. Also, the data is more accurate since every additional
π/2-pulse introduces some imprecision.

Implementation of the pulses

By means of detuned microwave pulses, the qubit is subject to an effective pseudo-magnetic
B-field R, whose components are (Ex,Ey,∆), see section 2.5. By skilfully manipulating the
amplitude and phase of the microwave pulses, the state vector is caused to follow the paths
C±±. An example of a pulse sequence is shown in Fig. 4.15. After the resonant π/2-pulse, the
drive field is ramped up adiabatically. The detuning ∆ is kept fixed at all times. Ramping the
drive field tilts B: from being parallel to the z-axis, B = (0, 0,∆), it is brought to B = (Ex, 0,∆)
and forms an angle ϑ with respect to the z-axis. This angle is called the opening angle, and its
cosine is cosϑ = ∆/

√

∆2 + Ω2. Since the magnetic field is ramped up slowly, the plane in which
superposition state lies remains perpendicular to B. When the drive is ramped up completely,
we increase the phase of the microwave drive linearly. This causes B to rotate around the z-
axis, either clockwise or anticlockwise. Again, this happens at adequately low speed to ensure
adiabaticity (cf. next paragraph). Then, after a full rotation, the drive field is ramped back
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Figure 4.15: Depiction of the envelopes of the pulses applied during a Berry phase measurement.
The blue line corresponds to the Ex-quadrature, whereas the green line corresponds to the Ey-
quadrature of the applied microwave pulse. Subjected to the pulse sequence to the left, the
qubit traces out the path C−, is then flipped around the x-axis and traces out the same C−path
once more. That is, the qubit follows the path C−− and both the geometric and the dynamic
phases cancel out. In the pulse sequence to the right, the Ey-quadrature after the π-pulse
is phase-shifted by 180◦. This inverts the direction in which the second path is traversed.
Therefore, the qubit follows the path C−+ and acquires a geometrical phase.

again. After applying the π-pulse, the qubit is made to trace out the second contour. A state
tomography pulse, also acting as spin-echo-pulse, concludes the sequence.

In the limit of total adiabaticity, the expected excited-state populations 〈Pe〉 for the contour C−+

are
〈Pe,x〉 = 0, 〈Pe,y〉 =

1
2

(1 − sinϕ), 〈Pe,z〉 =
1
2

(1 − cosϕ).

Therefore, since the populations and the components of the state vector are related via r = 1−2Pe,
we expect

〈σx〉 = 0, 〈σy〉 = sinϕ, 〈σz〉 = cosϕ.

From this, the phase can readily be extracted as ϕ = arctan〈σy〉/〈σz〉.

A note on the amount of geometric phase the qubit acquires during a full pattern: according to
section 2.6, the accumulated phase is

γg(C±) = ∓
1
2

iα(C±). (4.1)

That is, the geometric phase is half the solid angle α subtended by the contour C± traced out
by R = (Ex,Ey,∆), see Fig. 4.14a. The solid angle is α = 2π(1 − cosϑ), where ϑ is a function of
the drive and the detuning. However, the experiment is designed in such a way that the qubit
acquires a phaseϕwhich is the double of the α. The factor four has two causes. Firstly, the phase
γg is accumulated twice because two contours are traversed in a measurement. Secondly, the
Ramsey interferometry also doubles the acquired phase. In brief, we expect to measure ϕ = 2α.
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4.9 Measurement of Berry’s phase

Considerations on adiabaticity

When measuring Berry’s phase, adiabaticity must be maintained during all pulses except the
(resonant) π- and π/2-pulses. A measure of adiabaticity is the adiabaticity parameter A. It
is defined as the ratio of the rate of change of the state vector r(ϑ(t), ϕ(t)) and the Larmor
precession frequency ωL =

√

E2 + ∆2 in the rotating frame:

A =
|ṙ|
ωL

=

√
(ϑ̇ cosϑ cosϕ − ϕ̇ sinϑ sinϕ)2 + (ϑ̇ cosϑ sinϕ + ϕ̇ sinϑ cosϕ)2 + (ϑ̇ sinϑ)2√

E(t)2 + ∆2
,

where r is the Bloch vector. In the special case where ϕ is constant, i.e. when the drive field is
ramped up, the adiabaticity parameter reduces to

A =
|ϑ̇|√

E(t)2 + ∆2
.

When, on the other hand, ϑ is constant, e.g. when the drive field is rotated around the z-axis,
one has

A =
|ϕ̇ sinϑ|√
E(t)2 + ∆2

.

In the measurement sequences,A is being kept smaller than 0.04. This proved to be low enough
to obtain good results. Measurements were performed with A ≤ 0.025 during the part of the
pulse sequence where the drive amplitude is varied and slower motion of the qubit during the
part of the pulse sequence where the phase of the drive is varied. However, in this regime of
adibaticity, both measurements gave similar results.

Collected data and extracted phases

Early attempts at measuring the geometric phase with drive pulses which did not have constant
adiabaticity but the envelope of a hyperbolic tangent function turned out to be unsuccessful.
The control measurements (performed by having the qubit trace out the path C++ for exam-
ple) showed that the qubit acquired a non-zero geometric phase. At this stage, the π- and
π/2-pulses were Gaussian pulses without drag compensation. After implementing adiabatic
ramping, we tried to repeat the experiment with Gaussian pulses without drag compensation.
The obtained phases showed marked improvement, although the deviations from theoretical
predictions were still important. This is why, in a next step, drag pulses were used. The greatest
improvement, however, was achieved by using pulses with phase ramping.

Experiments with ∆/2π = −50 MHz.— The measurements shown in Fig. 4.16 were performed
using 12 ns-pulses with phase ramping for the direct pulses. The adiabaticity coefficient is
A ≤ 0.04 and the detuning is ∆/2π = −50 MHz. To accumulate measurement statistics, every
datapoint was averaged 6.5 × 105 times. The drive was increased from approximately 2 MHz
to 78 MHz, resulting in opening angles ϑ from 0◦ to 29◦. For each fixed drive amplitude, two
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Figure 4.16: (a) Measured components 〈σx〉, 〈σy〉 and 〈σz〉 (blue, red and green) of the state vector
after qubit evolution along the path C−+. The oscillations of 〈σx〉 are due to non-adiabatic effects.
The detuning was ∆/2π = −50 MHz. The data points are connected to facilitate reading the
graph. (b) The blue curve is the phase extracted from the data shown in (a). The red curve is the
phase obtained in the zero-phase control measurement which was carried out simultaneously.
In the control measurement, the qubit followed the path C++. The solid lines are theory curves
as predicted by Berry. The data shows a root-mean-square deviation of 0.42 rad (C−+) and
0.06 rad (C++) from the respective theory lines.

pulse patterns were applied: the first one causing the qubit to trace out the contour C−+, the
second one C−−. The second measurement serves as a control measurement in which the qubit
should accumulate no phase at all. A pattern has a length of roughly 500 ns. Dephasing effects
reduce the visibility of the measured state vector to 59%.

Experiments with ∆/2π = 30 MHz.— With a lower detuning and otherwise unchanged param-
eters, the pulse sequence is lengthened to some 700 ns because ramping the drive takes more
time (if one keeps the adiabaticity parameter constant). This implies a further reduction of the
visibility. We carried out a measurement with a detuning of ∆/2π = 30 MHz. The extracted ge-
ometric phase is shown in Fig. 4.17b. The visibility amounts to 50%. In Fig. 4.17a, the results of
a measurement with ∆/2π = 50 MHz are shown for comparison. Only the detuning was mod-
ified, the other paramters were not changed. The data suggests that the phase measurement is
more accurate for smaller detunings.

Concluding remarks

The measurements of Berry’s phase show good agreement with theory for small opening angles
ϑ. However, above a certain value, the phase departs from the Berry’s prediction. When this
occurs, and on which parameters it depends, is as yet unknown. The control measurements,
which match the theory even for large drive amplitudes, show that the spin-echo technique
works well. This was also confirmed by the measurements in section 4.8. We do not expect
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Figure 4.17: Geometric phases measured with different detunings and the deviations from
theory. The blue curves stem from C+− measurements, the red curves from C−− control mea-
surements. The solid lines in (a) and (b) are theory curves. (a) The detuning is ∆/2π = 50 MHz
and each data point was averaged 65000 times. The root-mean-square deviations from theory
are 0.70 rad for C+− and 0.17 rad for C−−. (b) The detuning is ∆/2π = 30 MHz with tripled
averaging (195000 times). The root-mean-square deviations from theory are 0.30 rad for C+−

and 0.12 rad for C−−. (c) Deviations of the measured phases in (a) from the theory line. (d)
Deviations of the measured phases in (b) from the theory line.
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sudden changes in the transition frequency ωa of the qubit either. The stability of the transition
frequencies over a long period of time was demonstrated in section 4.6. Therefore, also this
influence can be ruled out. Furthermore, in the same section, we showed that the π-pulses are
well calibrated. The calibration was verified before and after measurements of Berry’s phase
and the results strongly suggest that no deterioration occurs during the measurements.

The chosen detuning plays a important role in the measurement of the geometric phase. Com-
parison of Fig. 4.17a and Fig. 4.17b shows that the phase measured with the lower detuning
agrees better with theory. An explanation for this fact has yet to be found. Moreover, it seems
somewhat surprising that the Berry phase measurement with a negative detuning, see Fig. 4.17a,
agrees about as well with theory than the measurement with opposite detuning, 4.16b. If the
detuning is positive, the drive frequency is below the qubit transition frequency ωge. Since
the qubit has a negative anharmonicity, drive with positive detuning is closer to the transition
frequency ωe f . Therefore, one would expect more unwanted population in the higher level
with positive than with negative detuning.

Although Berry’s phase was measured successfully within a broad range of drive frequencies
(≈ 80 MHz), a rigorous explanation as to when and why the deviations occur is highly desirable.
A deep experimental study of the effects of detuning and the adiabaticity parameter could help
finding the causes of the deviations. A numerical computation of the geometric phase for
a system comprising five levels has recently be carried out by Marek Pechal. The results
indicate that the higher levels cause a deviation from Berry’s prediction which grows both
with detuning ∆ and with solid angle α. The computed deviation has the same sign as the
observed deviation, however they do not match quantitatively. A perturbative expansion of the
Hamiltonian describing a mutlilevel qubit exposed to drive gives results that are very similar
to those obtained by the numerical computation.

48



5 Conclusion

The aim of this thesis was the measurement of Berry’s phase in a transmon qubit coupled to a
resonator. This goal was attained. Along the way, the pulses employed for qubit control were
refined, leading to better agreement between Berry’s theoretical predictions and the measured
phases than in the first measurements. Various techniques, such as Ramsey-interferometry and
the spin-echo procedure, were successfully applied in the course of this work.

After the first measurements of the geometric phase, it became apparent that it was necessary
to use considerably slow and well-calibrated pulses. Otherwise, the precision attained in the
measurements of Ref. [29] was out of reach. The energy-level structure of the transmon, notably
the small anharmonicity, and the considerably shorter energy relaxation and dephasing times,
may account for this. The experimentally obtained curves deviate from theory when the applied
drive induces Rabi oscillations with approximately 40 MHz. In addition, the influence of the
detuning applied during the pulse patterns and the role of the third level remain unquantified.
Here, theoretical computations and numerical simulations show that the inclusion of higher
levels causes the acquired phase to deviate increasingly from Berry’s phase as the Rabi frequency
increases. Even though the modelled deviations and the experimentally obtained deviations
do not match quantitatively, the signs of the deviations agree. This is a starting point is for
further investigations.

The Berry phase measurement is the starting point for a vast array of possible developments.
One could examine the sensitivity of the geometric phase to artificial noise added to the path
traced out by the qubit in parameter space to test the robustness of the phase and find a
model describing the influence of fluctuations of various rates. The ability of manipulating two
qubits dispersively coupled to a single resonator has been demonstrated [47], and this begs to
implement a geometric two-qubit gate detuned from each other, as is proposed in Ref. [54].
Then, it is certainly worthwhile to explore the diverse generalisations of Berry’s phase: what
happens if we go without cyclicity, or without adiabaticity [33]? The latter idea is of particular
interest for applications related to quantum computation. Indeed, this would allow to speed
up gate operations and partially lessen the issues related to energy relaxation and dephasing
while retaining the robustness.
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A Conversion of drive amplitude

We seek how to convert the dimensionless amplitude A ∈ [0, 1] of the pulses generated in the
pattern files into the real drive amplitude E (in angular frequency units). The time evolution of
the qubit state is given by

|ψ(t)〉 = T exp
{
−

i
~

∫ t

0
dt′H(t′)

}
|ψ(0)〉.

We drive the qubit with radiation E(t) of frequency ωd/2π on the Ex-quadrature,

E(t) = Ex(t) cos(ωdt).

From eqn. (2.18), we know that the Hamiltonian

H(t) = ~E(t)
σx

2
,

describes the interaction of the qubit with an resonant external radiation field in a frame rotating
at ωd. Thus, in this frame, the qubit state evolves according to

|ψ(t)〉 = exp
{
−i

∫ t

0
dt′ E(t′)

σx

2

}
|ψ(0)〉.

The time ordering operator has been omitted since there is only σx involved. Letting |ψ(0)〉 = |0〉,
and since exp{ipσx} = cos(p)id2 + i sin(p)σx, we have

|ψ(t)〉 = cos
(

1
2

∫ t

0
dt′ sE(t)

)
− i sin

(
1
2

∫ t

0
dt′ sE(t)

)
(A.1)

We now consider two cases.

Case 1.— We apply radiation with a square pulse envelope during the interval [0,T], that is,
Ex(t) = E0χ[0,T] with E0 ∈ C. Then, from eqn. (A.1), we find

|ψ(T)〉 = cos
(1
2
E0T

)
|0〉 − i sin

(1
2
E0T

)
|1〉. (A.2)

If the duration of the pulse is T = tπ = 2π/E0, the qubit accumulates the phase π, and

|ψ(T)〉 = cos(π)|0〉 − i sin(π)|1〉 = −|0〉.

This corresponds to a 2π-pulse, since it maps |0〉 to −|0〉.
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A Conversion of drive amplitude

Case 2.— Now, we choose a pulse with an envelope having the shape of a truncated gaussian

Ex(t) = E0ρ(t)χ[0,T],

where ρ(t) describes the truncated gaussian normalised to unit height. Then, eqn. (A.1) leads
to

|ψ(T)〉 = cos
(

1
2
E0

∫ T

0
dtρ(t)

)
|0〉 − i sin

(
1
2
E0

∫ T

0
dtρ(t)

)
|1〉.

and the requirement for obtaining a 2π-pulse is

1
2
E0

∫ T

0
dtρ(t) = π.

We now introduce s, the conversion factor permitting to transform the dimensionless amplitude
A(t) of the pulses generated using the awg into drive amplitude in units of angular frequency,
Ex(t) = sA(t). In our setup, the amplitude Aπ corresponding to the π-pulse can determined by
measuring the excited state population while sweeping the amplitude. So, writing E0 = sAπ in
the equation immediately above, we find that

s =
2π

Aπ

∫ T
0 dtρ(t)

.
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