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Abstract

Recent theoretical and experimental work has shown that photosyn-
thetic structures exhibit remarkable transport efficiencies, potentially
caused by an interplay between quantum effects and a structured noise
environment. However, owing to their complex open quantum sys-
tem dynamics, simulating these structures on a classical computer has
proven very demanding. In this thesis we instead study such systems
in an analog quantum simulation within the well established super-
conducting circuit architecture. In this framework we successfully fab-
ricate and characterize a highly tunable three qubit network with a
controllable noise environment. This has allowed us to study transport
both in the presence of a white and a structured environment, with
which we have shown the first experimental realization of noise as-
sisted transport in a system of quantum mechanical elements. Finally,
we have performed an experimental investigation into the mechanics
underlying the assisted transport through the phonon antenna mecha-
nism, providing further evidence that a structured environment might
be a crucial ingredient of nature’s efficient light harvesting capabilities.
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Chapter 1

Introduction

Sunlight is the most abundant form of energy source available on Earth,
and it has fueled the planet’s biosphere for the vast majority of its evolution
[1]. However, since the start of the industrial revolution humankind has
differentiated itself from the rest of the ecological system in this regard by
switching to other sources of fuel, and as of 2015 solar energy comprised less
than 2.1% of the total human energy supply [2]. While these other sources
of energy have been successful up to now, forecasts indicate that due to a
dwindling fossil fuel supply, the cumulative nature of CO, emissions, and
an ever increasing energy consumption, solar energy will again have to be-
come a significant fraction of the energy supply during the next century [3].
It is for these reasons that a large body of research is dedicated to improving
modern day light harvesting technologies, a significant part of which is the
study of photosynthetic organisms, which have been successfully harvesting
solar energy for several billions of years [4]. Exhibiting efficiencies surpass-
ing all man made devices, research into their functioning can thus serve as a
path to understanding, utilizing and potentially surpassing the capabilities
of the organisms found in nature [5].

However, the study of biological systems is highly complex and often im-
penetrable with rigorous mathematical models [6]. Photosynthesis is no
exception to this, with different organisms exhibiting strongly varying light-
harvesting systems reflective of their different conditions and habitats [7].
Nevertheless, they all exhibit the same procedure: energy in the form of
photons is absorbed by light-harvesting antennas in the form of an elec-
tronic excitation, and this excitation is then transported to a reaction center,
where a charge separation event transforms it into a more stable form of
energy [6]. One of the simplest and most well studied examples of such a
light harvesting system is found in green sulfur bacteria, an organism that
strictly depends on light as a source of energy [8]. It has a very large antenna
complex made out of chlorosomes, allowing them to thrive in low light con-



ditions. The antenna is connected to the reaction center via a specialized
structure known as the Fenna-Matthews-Olson (FMO) complex [9].

Given its small size (on the order of several hundred nanometers) and its
solubility in water, much research has been done on the structure and prop-
erties of FMO. Importantly, it was found to have close to 100% efficiency in
transporting excitations from the antenna to the reaction center, despite of
an excitation lifetime of less than a nanosecond [10]. This prompted further
research into the mechanism underlying the efficient transport, a milestone
in which was reached in 2007 when Fleming et al. found evidence for quan-
tum coherences being present during the transport [11]. This kick-started
the research of FMO in the context of quantum biology, with the aim of find-
ing out whether the observed quantum effects could contribute to its high
transport efficiency.

In order to understand how one can treat FMO in a quantum mechani-
cal framework we first need to take a closer look at its structure. FMO is
made up out of a trimer of negligibly coupled complexes, each consisting
of eight bacteriochlorophyll molecules often referred to as pigments. These
pigments are bound to a protein backbone, forming the noisy environment
of the pigments as well as creating their energy landscape [12]. Excitations
typically enter a single pigment via the antenna complex and are then trans-
ferred via the other pigments until they reach the reaction center. This struc-
ture is illustrated in figure 1.1, where the colors of the antenna and the reac-
tion center show the analogy with FMO being a wire connecting an anode
and a cathode.

The basic structure already provides a naive picture of how quantum coher-
ences could contribute to the efficiency of FMO: instead of the excitation
transferring from pigment to pigment sequentially, one could instead imag-
ine that the wave function of the excitation enters a superposition of mul-
tiple pigments combined in order to traverse several paths at once, finding
the shortest route from antenna to reaction center. While at first sight the
notion of such quantum coherences occuring at room temperature is quite
surprising, comparison of the relevant energy scales in FMO indicate that
quantum effects could in fact have a relevant impact on the system [16].

A more rigorous theoretical treatment of FMO in the context of quantum
mechanics can be found in two seminal works by Plenio & Huelga and
Mohseni et al respectively [17, 18], where the FMO complex is considered
as a quantum network of sites that can either have zero or one excitations
present. Each of the sites is thus equivalent to a two level system, such as a
spin-1/2 particle or a generic qubit. As described by Caruso et al [10], such
a system can indeed lead to the delocalized transport behaviour hinted at
above.

However, this picture does not touch upon one of the most crucial elements
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Figure 1.1: An illustration of the light-harvesting structure of green sulfur bacteria,
consisting out of an antenna connected to a reaction center via the FMO complex.
The FMO complex itself has a trimeric structure, of which each unit consists of 8
pigments held in place by a portein backbone. Image adapted from [13, 14, 15].

of the system: the environment of the pigments. Governed by the protein
backbone of the FMO complex itself, it is thought that the surroundings of
the pigments take the form of a strongly coupled vibrational environment
of phononic modes [12]. The standard picture of quantum mechanics is that
the fluctuations originating from this environment would cause any coher-
ences present in the system to rapidly decay, resulting again in a system
where excitations incoherently hop from pigment to pigment sequentially.
Yet absorption and fluorescence measurements have shown that the fluc-
tuations of the protein environment have significant structure, potentially
promoting long lived coherences instead of destroying them [19]. This struc-
tured noise environment provides another obstacle for the study of FMO,
as modeling an open quantum system of many interacting degrees of free-
dom is one of the main challenges in modern physics and chemistry [20].
Limited by exponentially increasing amounts of resources required, classi-
cal computational methods have not been able to provide solutions to these
questions, and while universal quantum computers are conjectured to offer
improvements in this area, they are not available yet.

Mostame et al. have instead proposed the design of an analog quantum
simulator tailored to the model of interest, in which one can physically en-
gineer the environment of the open system that is so challenging to study
with classical computational methods [20]. More specifically they propose
to build an FMO type structure using the superconducting circuit architec-



1.1. Analog Quantum Simulation of FMO

ture, which can then be studied in a laboratory setting. The system studied
in this thesis is a variant of the proposed simulator, in which we study the
dynamics of energy transport in a network of transmon two level systems
in the presence of an engineered noise environment.

1.1 Analog Quantum Simulation of FMO

In order to set up the system studied in this thesis we start from the pro-
posal by Mostame et al. and indicate how our system deviates from this,
highlighting the differences in implementation. They begin from a generic
Hamiltonian governing the FMO network, given by

ﬁTot = 7:[5 + 7:[]3 + 7:[573 (1.1)

where 7:[5 is the Hamiltonian of the network of 8 coupled sites, 7:[3 is the
Hamiltonian of the environmental bath created by the surrounding protein
structure, and Hs_p governs the interaction between these two systems. In
line with the work of Plenio & Huelga and Mohseni, the Hamiltonian of a
network of N FMO sites is given by [17, 18]

N
Tis = % )3 [sjfrz,]» + Y Vi (o7 0+ &,jfrj)] (1.2)
j=1 k>j

where 0 ; is the Pauli z operator of site j and (Af;r’* creates or annihilates an
excitation at site j. It describes a system of sites of energy ¢; through which
excitations can travel via the (transition-dipole-dipole) couplings Vj;. Impor-
tant is to note that the parameters of this Hamiltonian should be chosen in
accordance with what is observed in FMO, where one finds that the sites
form a ladder of energy levels decreasing from the site at which the exci-
tation arrives from the antenna complex to where it leaves to the reaction
center. There are thus significant energy mismatches Aj = [e; — ;| between
the sites where typically Ay > Vi, suppressing coherent transport from site
to site.

Mostame et al. propose to recreate this site Hamiltonian through a system
of eight coupled superconducting flux qubits [21], the transition frequencies
and couplings of which are determined in accordance with a mapping from
experimentally determined FMO parameters to the superconducting circuit
regime. It is this feature that highlights the power of the superconducting
architecture, as it offers tremendous control over the fundamental system
parameters such as the coupling rates, the energetic disorder, and the in
and output coupling, a luxury not present in most other architectures. The
proposed topology of the network is shown in in figure 1.2 where (in line
with what is known about FMO) excitations enter the system at site eight
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1.1. Analog Quantum Simulation of FMO

(shown in green), from which they can then propagate through the coupled
network and leave into the reaction center (the sink) at site 3 (shown in

orange).
==

Figure 1.2: An illustration of the proposed network topology of the analog quantum
simulator of FMO, where the site labels numbering is based on historic reasons.
Image taken from [20].

In this thesis we choose not to work with flux qubits but with transmon
qubits instead, which are extensively discussed in the next chapter. More
importantly, we also choose not to look at the full system of eight coupled
sites. While fabricating such a system should be possible in the near future,
the experimental complications that come with the full characterization and
control of eight qubits have motivated us to start our research in a reduced
topology. In this thesis we therefore treat a system of three coupled trans-
mon qubit, in which we can study the simplest toy model of an FMO type
structure consisting of only two sites and its more complex variant of three
sites.

We now move on to the description of the bath. Due to the vibrational na-
ture of the protein environment, the bath g is often described as being
phononic: it consists of a network of displaced harmonic oscillators. More-
over, contrary to what one might expect due to the small dimensions of
the system, research has shown that the bath of each site is largely uncorre-
lated with respect to other sites; each effectively has its own bath [22]. The
Hamiltonian of the bath is therefore given by

A N . N T
Hp =Y M= Yy e (8) +4]+1/2) (1.3)
=i j=i 1

which takes the form of a generic harmonic oscillator Hamiltonian of size

I, with w{ being the frequency of the /th phonon coupled to site j and ﬁ;r’]
the creation operator of phonons in the /th bath mode of site j. Mostame
et al. propose to create such a bath by connecting each site to a collection
of damped quantum LC resonators, the implementation of which in the
context of this thesis we will comment on shortly.



1.1. Analog Quantum Simulation of FMO

First we introduce the interaction between the bath and the sites themselves,
which is often described by a linear coupling between the bath and the
system. This is known as the perturbative coupling approximation or the
Born approximation, the validity of which has been thoroughly researched
in the context of FMO [6]. It results in an interaction term governed by the
Hamiltonian

1=

Hs_p = (1.4)

]

_ N

TR o PN

Hg_p = ZUZ/J
j=1

AT,7 N
Yo (a7 -+ )
1

Il
—

where x;; = hw{dﬂ is the coupling between the jth site and the /th phonon
and dj; is the dimensionless displacement between the minima of the ground
and excitated state potentials of the /th phonon mode at site j. Note that

the reorganization energy /\j =3y hw{d]zl/ 2 was implicitly included in the
system Hamiltonian by defining ¢; = ¢; + A; with ¢; being the true transition
energy of site j in the absence of a bath [20].

Combining all of the above, H 1ot is described by the well known indepen-
dent boson model [23]. Following Mostame et al. we can write it in the site
energy basis defined by Hs |S) = Es|S) and find that

Arr = Y Es|8) (S| + ¥ 18) (T KLy (7 +4]) + s (15)
S ST,

where K];T = (JIS)] {JIIT) x;i- By writing the equation in this form we see
that the system-bath coupling is off-diagonal and can thus lead to transitions
between the sites.

However, the bath and its coupling to the sites studied in this thesis marks a
significant departure from the proposal. This is due to experimental consid-
erations: as written above Mostame et al. propose to couple each of the sites
to a series of dampened quantum LC resonators, going as far as coupling
each individual qubit to up to 15 different LC resonators with frequencies
in the range of 100 MHz to 3 GHz in order to replicate the full FMO bath.
While in principle the fabrication of such resonators is well developed in
this research group [24], fabricating such an array of resonators is currently
not technologically feasible due to the physical size they would take up on
the chip.

An alternative to the above would be using a reduced number of resonators,
leading to a reduction in the structure of the environment. Instead of do-
ing so we choose to study the system in what is known as the classical
noise approximation, where the quantum environment is replaced by time-
dependent fluctuations of transition energies: this is known as the Haken-
Strobl-Reineker (HSR) model [25]. In this model H; is replaced by the time
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dependent Hamiltonian

N
() = % 3 | (ej+3ej(1) 0+ Y Vie (6570 + fr,jfr]-)] (1.6)

j=1 k>j
where all of the bath dynamics are now contained in the (classical) fluctu-
ating transition energy term Je;(t). At first sight this Hamiltonian appears
to contain much less structure than the originally proposed variant with the
quantum bath. However, as we explicitly derive in appendix A the two can
be made equivalent in the high temperature limit n(w) > 1 by choice of the
proper time varying signal governing Je;(t). Here n(w) is the Bose-Einstein
distribution defined in appendix A and for the FMO parameters listed in the
proposal by Mostame et al. we find that n(w) ~ 7 for the relevant phononic
frequencies at 300 K. This shows that the classical noise approximation can
be used to gain significant insight into the physics governing FMO without
the explicit need for a quantum bath [22, 26].

With this we have described the basics of the system studied in this thesis:
we look at a system of three coupled two level systems in the presence
of a noise environment contained in site dependent fluctuating transition
energies. We then study how well energy is transported through the system
as a function of the power of the noise environment. However, two crucial
ingredients are missing at this stage: the FMO complex serves to transfer
excitations from an antenna complex to a reaction center. As introduced in
the next chapter, the role of the antenna will be played by a transmission line
through which we can drive the system with a coherent microwave signal,
and the reaction center will be mimicked with a resonator into which one of
the sites can decay.

1.2 Theoretical Expectations

Before we begin a rigorous treatment of the elements used in our system
in the next chapter, we first treat what is expected from the two and three
site networks based on theory. The transport of excitations in the two site
model in the presence of a classical memoryless (white noise) bath de;(t) is
discussed in work by Rebentrost et al. [27], where they illustrate a simple
example of noise assisted transport.

They begin by treating the system of two sites |1) and |2) that can each host
only a signle excitation with the Hamiltonian

”HZ%(ID (11 =12) )+ v/2(|1) (2| +[2) (1]) (1.7)

where A is the energy mismatch between the sites and V is the coupling
strength. In the absence of a noise environment such a system evolves coher-
ently: starting from an excitation at site one, one can treat the system on the
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Bloch sphere as rotating about the z-axis by an angle 6 = sin™! (;55) where
hQ) = VA? 4+ V2 is the well known Larmor frequency. Given the above, the
maximum probability of finding the excitation initially located at site 1 at
site 2 is given by sin® (26) while the average probability is sin” (§); one finds
that for A > V the excitation remains localized at site 1. In the literature
this vanishing-to-weak noise regime is therefore known as the quantum lo-
calization regime. Its analysis can be be generalized to a system of many
energy mismatched sites such as FMO, where the general picture is that an
excitation starting from an initial site evolves into a superposition of energy
eigenstates with a vanishing overlap of the excitation being at other sites; in
the absence of noise such a network thus has a low transport efficiency.

One then introduces the noise environment. As derived in appendix A, for
white noise such an environment can be fully characterized by a Lindblad
master equation containing a pure dephasing rate y,, which we will here
assume to be equal for sites 1 and 2. In this scenario the system obeys the
well known optical Bloch equations [28], from which one finds that instead
of remaining localized at site 1 the excitation now gradually diffuses over the
two sites, ending up in a fully mixed state with a 50% chance of being found
at either site. This diffusion process can be thought of as a random walk on
the Bloch sphere with a step size equal to 0 taken every 'y(;] ; the system

must thus perform approximately (§)2 71—47 steps to reach the final mixed

state. This is one of the simplest instances of environment-assisted quantum
transport (ENAQT), as the system has gone from a quantum localization
regime to a state in which site 2 can now be reached with the assistance of
the noise environment. While for a system with more than two sites the
analysis is more complicated, the general picture should still hold. One
can think about this in terms of interferences: in the quantum regime, the
paths leading from the initial site to the target site destructively interfere.
When the noise causes the coherences of the system to decay so does the
destructive interference, lifting the localization and allowing for an increased
transport to the target site.

However, this analysis no longer holds in the limit of strong noise and large
dephasing rates. When 74 > A the angle the system precesses before being
fully decohered is approximately given by ¢ = %, and the probability of re-

2
maining at site 1 is thus given by cos? (¢) ~ 1 — <%> . The system thus es-
sentially performs a biased random walk of step size ¢ with an average step

time %, and in a time ¢ the the system diffuses by an angle A2/ 27(; 3/2 ; this

is derived in [27]. While such a system will still converge to the aforemen-
tioned mixed state, it will do so in a much longer and ultimately irrelevant
timescale as the transport rate is suppressed by a polynomial in . While
again more complicated, this analysis is also expected to hold for larger sys-
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tems. In the literature it is described using the quantum Zeno effect (QZE):
a high dephasing rate 7, is equivalent to the excitation continuously being
measure in the site basis, freezing its evolution and trapping the excitation
at its initial site. This then suppresses any transport away from the initial
site.

Figure 1.3 illustrates the three phases of quantum localization, noise asissted
transport, and the quantum Zeno effect for a classical and digital simulation
of FMO in the presence of a classical white noise bath [27]. We observe
the suggested initial increase in efficiency (here defined as the number of
excitations that leave the system via the sink per unit time) with increasing
noise powers attributed to the lifting of quantum localization, where it can
be seen to reach a maximum and then decrease in accordance with the QZE
effect. Note that in this plot -y, is in units of inverse wavelength, which can
be thought of as a frequency.

Localization ENAQT Zeno
1.0 i
_/ 500
0.8) g 200 &
> g =
Q 1 = 100 g
2 0.6 E E
2 £ 50 5
o 04 . z
& 20 KB
0.2 £ a
. 8 10
0.0 S

104 0.01 1 100 10* 10
Dephasing rate (cm™)

Figure 1.3: The efficiency (blue) and transfer time (red) as a function of dephasing
rate vy as simulated for the FMO complex in the presence of a white noise bath.
The three dephasing regimes can be observed, being the initial quantum localization,
environment-assisted quantum transport, and the quantum Zeno effect. Picture
taken from [27].

While the above scenario of a white bath will be the starting point for study-
ing FMO type structures in the presence of noise in this thesis, it fully ne-
glects the structure of the bath. Yet as previously discussed it is exactly
this structure that is thought to be crucial for the long lived coherences ob-
served in FMO [19]. It is for this reason that we also study the system in
the presence of a more structured environment, in the form of noise with
Lorentzian power spectral densities with a variable center frequency and
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amplitude. This is based on a concept known as the phonon antenna mech-
anism [29, 30]: given that the environment of an FMO-type system has an
environmental spectral density that is peaked around certain frequencies, it
is hypothesized that the system sets up its energy mismatches to coincide
with these peaks, making use of otherwise detrimental noise and thereby
optimizing transport between the sites. The split site energy levels thus ef-
fectively act as an antenna for the environmental modes, leading to another
instance of noise assisted transport.

Although such a mechanism has been proposed to be related to biologi-
cal olfactory processes [30], it also has significant applications to FMO: the
phononic modes of the protein environment lead exactly to such peaked
power spectral densities. This is illustrated by figure 1.4, which depicts the
experimentally determined power spectral density of the FMO environment
[20, 19]. Note that this power spectral density is largely fixed by factors such
as temperature, while recent research indicates that the structure of the pro-
tein helices encapsulating the pigments can effectively be used to tune their
relative energy mismatches [12]. This has led researchers to believe that the
structure of FMO has evolved into its current form of mismatched sites in
order to make optimal use of the environmental noise available, maximizing
its transport efficiency [12].

v Y

-600 =400 =200 0 200 400 600
o [cm1]

Figure 1.4: The temperature-dependent power spectral density as experimentally
observed for FMO at 77 K. The blue bars indicate the energy mismatches of the
FMO complex. Note that the dashed blue lines indicate the actual observed PSD,
while the red lines indicate the spectrum obtained if one were to pursue the proposal
of Mostame et al. by coupling the pigment network to LC resonators. Figure taken

from [20].

While the previously discussed white noise bath is readily described with
a master equation in Lindblad form and a pure dephasing rate <y, the sce-

10
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nario of the phonon antenna is already more challenging to treat theoreti-
cally as one can no longer assume the bath to be memoryless. Some of its
properties can still be characterized within a modified Redfield approach;
the interested reader is referred to the supplementary information of [30] as
its treatment is beyond the scope of this thesis. However, this scenario is
readily realised in the system studied in this thesis: we will therefore thor-
oughly investigate its dynamics in both the two and three site setup in order
to experimentally verify its role in noise assisted transport.

1.3 Previous Experimental Efforts

Up to this stage all of the discussed models were purely theoretical, in ad-
dition to a proposed experimental setup. However at this time, to our best
knowledge, four experimental verifications of noise assisted transport in an
FMO-type network exist, all of which were done in a fully classical system.
We will discuss two of these; the other two can be found in [31, 32].

The first experiment we discuss is by Biggerstaff et al (cite), in which they
used a network of four coupled laser-written waveguides to create a four
site network Hamiltonian. They used broadbanding of the input illumina-
tion as a source of controllable dephasing by averaging over the result from
an array illuminated at many different wavelengths. Although each individ-
ual wavelength propagates through the system coherently, the dephasing is
achieved by using a single intensity measurement at the output that does not
resolve wavelength, effectively seen as dephasing by a memoryless bath. In
this system they observed an increased transport efficiency compared to the
case of narrowband illumination, indicative of the phase between quantum
localization and noise assisted transport. However, in this experiment no
maximum efficiency was reached and the subsequent quantum Zeno phase
was thus not observed, as only moderate dephasing rates could be achieved.

The second experimental work is by Viciani et al. [33], in which they mim-
icked a four site network using a Mach-Zehnder type setup with an optical
cavity placed in each of its two arms combined with two fiber optic cou-
plers, coupling laser light into and out of the system. These couplers thus
effectively serve as the sites located next to the antenna and the reaction
center respectively. The environment is then simulated by tuning the cavity
frequency mismatch A = |w; — wy|. Starting from A = 0 as a zero noise
environment, they then measured the transmission of the system for a set
of different mismatches which can be related to static and dynamic disorder
in the system. The latter can then be related to an effective dephasing rate.
In this experiment all three phases of the transport efficiency were observed,
with an initial increase from the quantum localization regime to a maximum
at moderate dephasing rates, before observing a decreased efficiency at even
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higher dephasing rates due to the quantum Zeno effect.

While the above two experiments have shown behaviour in line with what
is expected from theory, they have done so in a completely classical setting.
This meant that they were impervious to mechanics such as lifetime effects
of the to be simulated excitations, along with other properties associated
with two level systems such as photon blockade, related to how each site can
only host one excitation at a time. In addition to this the classical systems
are fundamentally incapable of hosting the quantum coherences observed
in FMO, and its potential effect is thus not present. The system studied in
this thesis aims to improve on this by offering the first experimental realiza-
tion of noise assisted transport in a fully quantum mechanical architecture,
intrinsically including lifetime effects, superpositions and potential coher-
ent transport, creating a closer analogue to the true FMO complex found in
nature.

In addition to the above the superconducting architecture offers tremendous
control over the fundamental system parameters such as the coupling rates,
the energetic disorder, the input and output coupling and the driving rate
of the system, allowing us to create a system with properties closer to FMO
than feasible in the two classical scenarios. In contrast to the waveguide
experiment we can also generate noise environments with amplitudes that
can be varied over orders of magnitude, allowing us to investigate all stages
of noise assisted transport. Moreover, we are able to do this with effectively
arbitrary noise power spectral densities, allowing us to investigate the po-
tential effect of a structured environment completely absent in the previous
experimental realizations. Finally, while not performed in the context of this
thesis, our architecture also readily allows for a number of follow up exper-
iments that are much more difficult to perform in a classical setting such as
recreating the ultra low light environments of the green sulfur bacteria with
single photon excitations and studying the effect of variable input photon
statistics such as incoherent light.
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Chapter 2

Theory of the Superconducting
Architecture

As introduced in the previous chapter, the goal of this thesis is to perform an
analog quantum simulation of a light harvesting structure in the presence of
noise using the superconducting circuits architecture. More specifically, we
aim to do so using a system of coplanar waveguides and transmon qubits
subjected to an artifically generated noise environment. In this chapter we
will first introduce the theory governing each of these circuit elements on
their own, before combining all of them into a single system and studying
their interactions.

2.1 Transmon Qubits

As discussed in chapter 1, our choice of two level system used to model
the sites of the FMO-type complex is the superconducting transmon qubit.
Being the fundamental building block of our system, it is a natural starting
point for our theoretical treatment.

The transmon is often referred to as an artifical atom. However, at first
sight it does not resemble the atoms found in nature; it is an electrical cir-
cuit consisting of countless atoms that only functions properly at cryogenic
temperatures. The comparison is derived from an important shared prop-
erty: their anharmonic energy spectrum. Denoting that the energy spacing
between different levels of the system are not equal, such anharmonicity is
found in every atom. An example of this is the famous spectrum of the

hydrogen atom
e*m, 1
Ev=—-""-> <2> (2.1)
32m2e3h” \ 1

where n denotes the principal quantum number, m, is the electron mass, e
is the elementary charge, ¢ is the electric permitivity of free space and 7
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2.1. Transmon Qubits

is the reduced Planck constant [34]. Due to the 1/n? dependence on the
principal quantum number, the spacing between adjacent energy levels of
the hydrogen atom is not a constant but a function of the levels themselves;
the spectrum is thus anharmonic. In this section we will show that the
energy level spacing of the transmons shares this property, hence justifying
its classification as artifical atom. Note that such anharmonicity is essential
in order for the transmon to be used as a two level system; if the spectrum
was harmonic one could not drive transitions between a specific pair of
levels and one would not have a qubit.

2.1.1 LC Circuits

Curiously enough, we begin our description of the transmon from a system
with exactly such a harmonic spectrum: the LC circuit. The most elementary
circuit the transmon is related to, the LC circuit consists of a capacitor with
capacitance C and an inductor with inductance L connected in series as
shown in figure 2.1. One can show that it has the ability to store electrostatic

energy in the capacitor given by CTVZ where V is the voltage, and magnetic

energy in the inductor given by LTIZ where [ is the current. Moreover, one
can use Kirchhoff’s current and voltage laws and the constitutive relations of
the individual elements to show that V = % = —L® where Q is the charge
across the capacitor and @ is the magnetic flux in the inductor, offering an
alternative basis of coordinates to describe the system. Regardless of the
choice of coordinates, one can show that the energy stored in the circuit
is then converted between the two elements in an oscillatory fashion with

frequency wy = \/% ; it is a harmonic oscillator, just like the mass-spring

system [35].

Q| |©
| |
@
—
o

Figure 2.1: The LC circuit with capacitance C, inductance L, charge Q and flux ®.

The above describes the circuit in terms of classical physics as known from
Maxwell’s equations. We now depart from this picture and describe the sys-
tem in the context of circuit quantum electrodynamics (circuit QED), where
we can treat the system in terms of single excitations. To do so we start from
the Lagrangian of the system. The Lagrangian in terms of the flux is given

14



2.1. Transmon Qubits

by

Cd? @2
in accordance with the kinetic and potential energy of the system. Defining
the canonical conjugate momentum % = CP = Q, we can use a Legendre

transformation H = ®Q — L to write the Hamiltonian

2 2
H= A (2.3)

2C 2L
which is in line with the energies referenced above. In the next step we
elevate the charge and flux coordinates to quantum mechanical operators by
enforcing the canonical commutation relation [Q, <i>] = —ih, allowing us to
introduce the creation and annihilation operators of the second quantization

formalism

at = Jzizizc (ZCQ* - i<i>*) (2.4)
i = \/Z;TC (ZcQ +id) (2.5)

where Z¢ = \/g is the characteristic impedance of the LC circuit and where

A

[a, ﬁ*} = 1 [35]. With the above, one can write the Hamiltonian of the circuit
as

= hewy (a* -+ ;) (2.6)

where once again wy = ﬁ Studying the system in the Fock (number) ba-

sis, one finds that 7 1) = hiwon |n) = E, |n): the energy of the n-excitation
state is linearly proportional to the number of excitations, and the separa-
tion between the different energy levels is constant. The spectrum of the
quantum mechanical LC oscillator is therefore harmonic [35].

2.1.2 Nonlinear Circuits

As written above the transmon has an anharmonic spectrum, as opposed to
the LC circuit. In order to depart from the harmonic spectrum we therefore
introduce a nonlinear element to the circuit: the Josephson junction. A non-
linear, dissipationless inductive element, the Josephson junction consists of
two superconducting layers separated by a weak link such as a thin insulat-
ing barrier [36]; chapter 3 contains more details on the fabrication process
itself. Predicted in 1962 by David Josephson [37], the behaviour of the junc-
tion is governed by two important equations: the Josephson DC and AC
relations

[ =Iysiné 2.7)
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2.1. Transmon Qubits

V= 27r5 (2.8)
where Ij is the temperature and material dependent critical current of the
junction, J is the quantized phase difference of the order parameter on each
side of the junction [?], and ®y = % is the magnetic flux quantum. Relat-
ing this to the relationship between the current and the voltage across an

inductor V = —LI one finds that

_ Do 1
27l cosé

[=Lg—i 2.9)
COS 0

The Josephson junction thus has an effective nonlinear inductance, where
Ljp = 2%0 is essentially fixed after fabrication. As with a linear inductor,
one can describe the energy stored in the junction as

D = o .
Eoseptson = / VI = / dt5 2 8lysind = —E; cos (2.10)

with Ej = % being the maximal energy stored in the junction.

One can then envision replacing the inductor of the LC circuit of figure 2.1
with such a Josephson junction. The cooper pair box (CPB) is such a circuit;
it is the textbook example of an anharmonic system based on superconduct-
ing circuits. In figure 2.2 we show its slightly more complex relative in
black: the split cooper pair box. It has not one but two Josephson junctions
connected in parallel (denoted by crossed boxes), known as a superconduct-
ing quantum interference device (SQUID). It can be shown that the SQUID
obeys the same relationships as the Josephson junction with the substitution

Ip — 2Ip| cos (7‘(%) |; it acts as a Josephson junction with a critical current
tunable by an external magnetic flux ® [38]. From here on out we therefore

write Ej as Ej(®) to denote that the system contains a SQUID instead of a
single junction.

Returning to the split CPB containing a SQUID, its Hamiltonian is analogous
to that of the LC circuit [35]:

QZ
where Cy = Cg + 2C; as the junctions also have some relatively small capac-
itance C;. While such a Hamiltonian contains the physics of the system in a
rather general form, one can go into more detail as discussed in [35].

As illustrated in figure 2.2 the split CPB essentially consists of a supercon-

ducting island of N = % Cooper pairs connected to a reservoir via the
SQUID, as well as to a capacitance to ground C¢. If one then connects the
circuit to a voltage source V (shown in gray in figure 2.2) one can effectively

16



2.1. Transmon Qubits

GL GL

Figure 2.2: The cooper pair box (black) and transmon (black and green) circuits
of N Cooper pairs containing two identical Josephson junctions of capacitance C;
and effective inductance Ly capacitively coupled to a a voltage source V (gray) with
capacitance Cg in the presence of an external magnetic flux ®. The transmon circuit
contains an additional capacitance Cg.

tune the charge of the split CPB by changing the number of Cooper pairs on
the island: the charge is then given by Q? = (2¢(N — ng))?, where ny = CgZG
is the polarization charge on the capacitor Cg . Note that n, is continuous,
in contrast to N. As the number of cooper pairs is quantized, one can elevate
it to a quantum operator such that the Hamiltonian of the split CPB is then

given by

H =4Ec(N — ng)? — Ej(®) cosé (2.12)

where Ec = % is known as the charging energy. In this basis the Hamilto-
nian does not have an exact solution; one has to truncate the phase up to a
certain amount of Cooper pairs N and use numerical methods to solve for
the energy level structure. However, as the number of Cooper pairs N and
the phase § are conjugate variables ([(5 N] = i) the above Hamiltonian can
thus also be written in the phase basis, where it takes the form

2
ﬁ:%(qg—%>—a@nm£ (2.13)

In this basis one can solve for the energy levels of the system exactly using
Mathieu’s functions [39]. The result is indeed an anharmonic energy spec-
trum, with its general anharmonicity a function of both n, and Ee L (where we
omit the ® dependence for brevity), as shown in figure 2.3. More explicitly,
the figure shows the first three eigenvalues (n = 0, 1, 2) of the Hamiltonian in
units of the first transition energy Eq; = E1 — Eo evaluated at ny = 1/2. Note
that for the CPB panel (a) is the most relevant, as originally it is operated
in the E—é ~ 1 regime [40, 41]. One can observe that here there is significant
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2.1. Transmon Qubits

variation of the energy level structure with respect to n, (referred to as its
charge dispersion), which makes it prone to noise in this parameter. Tradi-
tionally the CPB is therefore operated at its so called sweet spot, denoted by
the dashed lines in panel (a). Here the transition frequency is insensitive to
noise in g to first order and the level structure is strongly anharmonic [42].

(a)IE{/E;c = 1.|0 '(b)l EJ/E?C‘ = 510 .

10—
I
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Figure 2.3: Eigenenergies E,, of the CPB Hamiltonian (equation 2.13) for the first
three energy levels (m = 0,1,2) as a function of the polarization charge ng for
different ratios E;/Ec. Note that the energies are normalized by the transition
energy Eo1 evaluated at the degeneracy point ng = 1/2, indicated by vertical dashed
lines in panel (a). Figure taken from [39].

2.1.3 The Transmon regime

While operating at the sweet spot mitigates some of the influence of noise
in ng, jumps and drifts in the offset charge will still affect the qubit and
induce decoherence. This is where the transmon distinguishes itself from
the CPB: by adding a large shunting capacitor Cp between the island and

the reservoir (the green part of figure 2.2) one increases Cy, which in turn

reduces Ec and thus increases g—é [39]. As shown in the panels of figure

2.3 this strongly reduces the sensitivity to n¢, improving the coherence time
of the system with respect to the CPB. As the panels also show this is not
without a disadvantage, as the anharmonicity of the levels reduces when

. U - . .
increasing % into the regime of tens to several hundreds. However, this
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2.1. Transmon Qubits

is the key point of the transmon system: increasing the ratio E—é causes an
exponential decrease in the charge sensitivity, but only an algebraic decrease
in the anharmonicity [39]. The transmon is therefore designed with this
interplay in mind, operating in the regime where the anharmonicity is still
sufficient to perform qubit experiments while improving coherence times.

In its full form the Hamiltonian of the transmon takes on the same form as
that of the split CPB, given by equation 2.12 with an adjusted Ec. As written
above, this can be solved analytically in the phase basis using Mathieu’s
functions. However as apparent from figure 2.3(d) and detailed in [39], the
transmon is essentially a weakly anharmonic harmonic oscillator; in the limit
of E—é > 1 one can approximate the eigenvalues of the Hamiltonian by those
of the Duffing oscillator

1\ E
E, ~ —E;(®) + /8EcE;(®) <n+ 2) - 1—5 (612 + 61+ 3) (2.14)

This allows one to quantify a number of useful concepts, such as the transi-
tion frequency between the ground state ¢ and the first excited state e:

hweg(QD) = (E1 — Eo) ~ \/8EcE]

cos <7tqq;0> ' —Ec (2.15)

This expression will be the basis for the operation of the qubits in this thesis:
in almost all scenario’s discussed we restrict our system to its lowest two lev-
els so that the Hamiltonian is given by that of a typical qubit with transition
frequency weg
~\ Nweg (P)0
B = 8T
2
where 7, is the Pauli z matrix. This is exactly of the form of the (uncoupled)
pigment sites discussed in chapter 1.

(2.16)

In order to operate our system in the regime where this holds we need
to be mindful of the absolute and relative anharmonicity between the first
excited state and second excited state (f state) so that we do not leave our
desired subspace. For the transmon these quantities are denoted by a and
«, respectively and approximately given by [39]

8E; (@) /2
a~ —Ec, ay~ — (’()> (2.17)
Ec
It is interesting to note that the anharmonicity is negative; in contrast to
the split CPB operated at its sweet spot (figure 2.3a) the energy difference

between the e and the f state is smaller than between g and e.

While we have set up the framework governing the qubit system of interest
in this thesis, we have not yet developed the tools used to interact with the
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2.2. Coplanar Waveguides

device. In order to probe the system one needs to be able to send signals
into the qubits as well as detect the photons output by the system, and in ad-
dition to that one might be interested in the interaction between the photons
and the system itself. This relates back to the concepts of the antenna and
the reaction center, which serve as the input and output of the FMO-type
system. In the next section we develop the theory governing the elements
used for this.

2.2 Coplanar Waveguides

In the superconducting circuit architecture the primary structure used to
interact with the transmons is the coplanar waveguide (CPW): the two di-
mensional analog of the coaxial cable. It is a planar structure built up out of
a centre conducting strip separated from ground planes on both sides, essen-
tially making it a slotline with a third conductor centered in the slot region
as schematically depicted in figure 2.4. Due to this geometry it functions as
a transmission line, supporting even or odd quasi-TEM modes depending
on the relative direction of the electric field in the two slots as described by
transmission line theory [43].

Figure 2.4: A schematic depiction of a coplanar waveguide. Figure adapted from
[44].

As also depicted in figure 2.4, one can instead choose to model the system
using a distributed element representation as detailed in [45]. In this frame-
work one describes the system of length d as an infinite chain of capacitances
and inductances per unit length, ¢ and [ respectively, spaced at an interval
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2.2. Coplanar Waveguides

Ax with fluxnodes ¢;. The system is therefore essentially a chain of cou-
pled LC oscillators, which facilitates its quantization. We again begin with
the Lagrangian of the system, starting from a discrete representation of N
segments of length Ax:

N N=1 /(4 32
L= Z CAJ(PZ — Z W (2.18)
i=1

[ey

i=

In the continuum limit of N — o0 and Ax — 0 the above becomes the

integral [45] )
e ); op(x,t)
L= /O R < N > (2.19)

where ¢(x,t) is now a flux density. Before moving on to the Hamiltonian
description of the system we first look at the Euler-Lagrange equation of the
system, which turns out to have the form of the wave equation

02 02
a—t‘f — vzﬁ =0 (2.20)
with v = \F’ the speed of light in the waveguide is thus set by ¢ and [. This
equation has the general solution
P(x,t) = Y Aycos (knx + ay) cos (kyvt + Br) (2.21)
n=1

where A, k,, a, and B, all depend on the boundary conditions of the sys-
tem. In this thesis we are mostly concerned with open boundaries at x = 0
and x = d, for which the derivative has to vanish at the boundaries and thus
ay = 0 and k, = %, whereas the other two constants are determined by
the initial conditions [45]. More importantly, substituting the solution to the
wave equation with these conditions and integrating over space results in

v G ¢
= ; T (2.22)
where ¢, = A, cos (k,vt + By), Cy = % and L, = % Comparing equation
2.22 to the Lagrangian of the LC oscillator (equation 2.2) shows that the

coplanar waveguide is thus essentially an infinite chain of uncoupled LC
oscillators [45]; its second quantization form Hamiltonian is thus given by

= i <a an + ;) (2.23)
1

with w, = N ol Bt From this one can also calculate the effective

characteristic impedance of mode n, given by Z,, = / % =2z \/g .
n
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2.2. Coplanar Waveguides

The above equation has two regimes relevant for this thesis. The first is for
long waveguides with large length d; here the spacing between the modes is
very small and essentially every mode is supported. We use such coplanar
waveguides as transmission lines for the transmons, capable of transporting
photons in and out of the system at virtually any frequency. One can there-
fore see it as the antenna complex of FMO, introducing excitations to the
pigment sites.

Its Hamiltonian can be derived from equation 2.23 by assuming that the
CPW essentially has infinite length (or equivalently no boundary condi-
tions), resulting in

= /0 dwhw (a;an + ;) (2.24)

However, as noted in the introduction of this section the coplanar waveguide
has two slots, essentially limiting the modes to travel either to the left or to
the right. The above can therefore also be written as [46]

1l = / dwhe (akar + 6far ) (2.25)

0
where ﬁ’{ RL} denote right and left propagating modes respectively and where
we have dropped the zero field offset for convenience. Moreover, in the
above two Hamiltonians the dimensions of the creation and annihilation op-

erators have been redefined to incorporate d — oo, reflected in the apparent
change of units of in the overall Hamiltonian.

The other regime is for d at an intermediate value, such that the energy level
spacing is large enough that we can essentially reduce the above Hamilto-
nian to a single harmonic resonator of fundamental frequency w, = %ﬁ:

A = hw,a'a (2.26)

Such CPWs are known as coplanar waveguide resonators. As they follows
the same physics as the LC circuit, we treat them as such in the theory
that follows. Their fabrication and functioning is extensively documented in
[24], of which some of the details are contained in chapter 3. For now it is
sufficient to know that they are essentially a segment of coplanar waveguide
separated from CPW transmission lines at each end by a gap, which causes a
capacitive coupling and essentially functions as mirrors of the Fabry-Perrot
cavity. While such resonators allow for a wide range of applications in
circuit QED (such as qubit control and dispersive readout), in this thesis
we mostly use them to induce decay of the qubit excitations via the Purcell
effect [39] as detailed in the next section. They thus function as the systems
reaction center, irreversibly transferring excitations out of the pigment sites.
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2.3. Interactions Between the Elements

With this we have treated the relevant theory of individual coplanar waveg-
uides. However, it is important to point out that in order for the above
quantum description to hold the CPW needs to have low losses in order to
preserve coherences. For this reason the CPWs in this thesis are made out
of superconducting materials such as niobium, as outlined in chapter 3.

2.3 Interactions Between the Elements

In the previous sections we have introduced three distinct elements: trans-
mon qubits, coplanar waveguide transmission lines, and coplanar waveg-
uide resonators. While we have discussed the functioning of each element
by itself, we have yet to introduce the interactions between the individual
elements and the behavior of the system as a whole. This is the purpose of
this section, starting off with a general circuit picture capturing the entire
system and the focusing on the interactions between the individual elements
one by one.

The system studied in this thesis is shown in figure 2.5. The top component
is a CPW transmission line with capacitance and inductance per unit length
c and /, shown in purple. We then have three transmon qubits (Q1, Q2 and
Q3) with capacitances C; and Josephson energies Ej;, shown in red, blue,
and green respectively. Finally we have a CPW resonator with effective
capacitance and inductance C, and L, shown in orange; as discussed in the
previous section these depend on the resonator length and the energy level.

A number of these elements are capacitively coupled to each other: qubits 1
and 2 are designed to capacitively couple to the transmission line via Cy(; 23,
while qubit 3 couples to the resonator with Cs,. In addition to this, there is
a strong coupling Cj» between qubits 1 and 2, and a weaker coupling Cp3
between qubits 2 and 3. In addition to this, the diagram depicts potential
stray couplings between the other elements in gray. Finally it is important to
note that this design deviates from the standard floating transmons; instead
all components share a common ground to reduce the stray capacitance Ci3
as much as possible.

In order to solve the Hamiltonian of this system we adopt the same approach
as used before, first setting up the Lagrangian of the system and then apply-
ing the Hamiltonian and second quantization formalisms in correspondence
with the techniques described in the respective sections of each element. We
again start off with a Lagrangian in terms of the flux coordinates of each
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Figure 2.5: Circuit diagram of the system studied in this thesis. It consists of a
CPW transmission line (purple), three transmon qubits (red, blue, green) and a
CPW resonator. Designed couplings are shown in the color of the involved elements,
while stray couplings are shown in gray. The flux coordinates of these elements are
also denoted, with ¢y, being the transmission line flux coordinate, ¢; the coordinate
of transmon j and ¥ the coordinate of the CPW resonator.

component
cAx $2 {Pmi1 — Ppm}? i l] 12
=L G- el S g £
- m= = i<j
Ci o 21 2 Cj.. . Cr., U2
+ [2% +Ejjcos (cpo%)] + [ — 9] } AT (2.27)

where ¢, ¢; and ¢ are the generalized fluxes of the transmission line, the
qubits and the resonator respectively, %’;qoj = ¢; and Ax is again the unit
length of the discretized transmission line. Moreover, we have implicitly
assumed that the qubits couple to the transmission line at the same position
X = xy,; this can be justified by noting that the wavelength of the microwave
photons relevant for transmons is much larger than the size of the structure.

In order to obtain the Hamiltonian it is convenient to rewrite the Lagrangian
in matrix form

L=®1Cd—-d'L ', (2.28)
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where ®T = [¢1, ¢, - - , PN, 91, 92, 93, 1], L is a matrix of inductances and C
a matrix of capacitances. We can now employ the definition of the canonical
conjugate momentum ¢q; = ng = Cjj¢; for each of the coordinates and obtain

a Hamiltonian in matrix form
1 1
=5Q'CTQ+ 0L (2.29)

where we define QT = [P1, P2, , PN, q1,92,93,7], which is a vector of con-
jugate momenta. Next we elevate our coordinates to operators through the
enforcement of the canonical commutation relations and finally transform
the Hamiltonian to the second quantization formalism as done in the previ-
ous sections. Our final Hamiltonian is then given by

H=FHr+Hr+Ha+Hr_a+Hrr+Haa+Har (2.30)

denoting the different parts of the system: A for transmon artifical atom or
qubit, T for CPW transmission line and R for CPW resonator.

The first three parts of the system Hamiltonian have already been derived
in their respective sections. Furthermore, we assume that ?:lT_R can be ne-
glected altogether; there should be virtually no coupling between these ele-
ments. The other interaction Hamiltonians are of interest, and we treat them
in more detail in the next sections. Note that in these sections we will not ex-
plicitly derive expressions for the relevant parameters in terms of the above
matrices C and L; this is done in appendix B.

2.3.1 Transmon-Transmon Coupling

The first interaction of interest is between the transmons themselves. The
three transmon system is described by the combined Hamiltonian Haa =
Ha + Ha—_a given by

3

Han/l = Z% 5 aZ] +k21k] o + 0 )0 +07) (2.31)
= <J

A+

where 0‘] are the raising and lowering operators of the qubits given
by 0. = (AT].+ +0; and Jj denotes the coupling between the qubits. It is

proportional to the coupling capacitance Cjk as given in B.

This Hamiltonian contains terms where qubits exchange an excitation pro-
portional to &,f&f as well as terms where both qubits gain and lose an ex-
citation simultaneously proportional to 67-0;". For the scenarios of interest

]
the latter terms can be dropped in the so called rotating wave approximation

(RWA) [47] in order to obtain the simplified Hamiltonian
3

Han/h=Y lzaz,j + Z]k] (‘Tk o7 + ooy )] (2.32)

j=1
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Depending on the relative values of the parameters, the Hamiltonian has
several regimes of interest. The main regime studied in this report is when
qubits 1 and 2 are on resonance: wi = wy = w,. For illustration purposes
we first leave out the third qubit and write

~ Wy . Wy . A A A A
Han/h= =000+ 57000+ Jia (0705 +05°07) (2.33)

We can then diagonalize this Hamiltonian by introducing two new modes
B and D for which &;D = % (&1i + &Zi) and analogous expressions for the

other operators. Substituting this into the Hamiltonian gives

. wg wp .,
Han/h = 7302,3 + TD@,D (2.34)
where wpp = (wg £ J12). The resulting Hamiltonian is thus one of two

uncoupled qubits, which are often referred to as the symmetric and the
antisymmetric mode or the bright and the dark mode. While the first name
simply refers to the phase relation between the two qubits, the terms bright
and dark refer to how these modes interact with the waveguide they are
coupled to; this is derived in the section governing the interaction between
the qubits and the waveguide itself.

It is also of interest to apply the previously introduced transformation to the
Hamiltonian of the three coupled qubits. We start from equation 2.32, set the
frequencies of the first two qubits equal to w, and apply the transformations:
. wj
Han/hi= ), S0+ ]m (0505 +0305) +Jps (0505 + 07 0p)
j={B,D,3}

(2.35)
where Jipp13 = % (J13 £ J23); the coupling between the dark mode and
qubit 3 and the bright mode and qubit 3 is not equal if none of the individual
qubit couplings are nonzero, which might be relevant in the presence of
finite (parasitic) capacitance Cis.

2.3.2 Transmon-Resonator Coupling

The second interaction we look at is between the transmons and the CPW
resonator; a subset of an entire research field known as cavity quantum
electrodynamics (cQED). An extensive review can be found in [48]; here
we only cover the basics of the interactions and the results relevant for the
thesis.

The Hamiltonian of the combined three qubit resonator system Har = Ha +
Hr + Ha—r is given by

3 .
Fiar/h=wata+ ) %&ZJ + g (a* +) (o +27) (2.36)
i=1
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where g;, is the term that dictates the coupling strength. It is proportional
to C,; and explicitly defined in B. If one then again applies the RWA, one
can drop the terms corresponding to 4'6;" and 407 and obtain the famous
Jaynes-Cummings Hamiltonian [49]

N 3 [w;j
Har/h = wrdta+Y {zfaz,j + gjr (a*a]f + a]*a)} (2.37)
j=1

governing the relevant interactions between the qubits and the resonator.

In the context of circuit QED one typically studies the interactions between
the resonator and the qubits in the dispersive regime, where the parameter
hierarchy

N = (weg — ;)" > ¢ (2.38)

allows one to further approximate the above Hamiltonian. However, in this
thesis qubit 3 (which is the only qubit that couples to the resonator, ne-
glecting parasitic capacitances) is in the A ~ g regime, meaning that such
approximations do not hold. While crucial for techniques such as quantum
non-demolition (QND) readout, in our experiments the resonator plays a
very different role altogether; we use it to reduce the lifetime of the qubits
through the Purcell effect.

Discovered in 1946 by Edward Mills Purcell [50], the Purcell effect describes
how a system coupled to a resonator has its decay rate I' altered. This also
holds for the transmon, where each of its excited states will have an altered
decay rate when coupled to a resonator. While relatively simple expressions
for this alteration can be obtained for a dispersively coupled transmon [39],
we require the expressions valid in the full regime, as is derived in [51].
There one finds that the decay rate due to the Purcell effect is given by

rzg—\f\/—Aﬂ/Ahr(mf (2.39)

A—A2+42—K—2 2.40

where « is the decay rate of the resonator. Equation 2.39 obeys the two

standard limits: for A — 0 we have that I' — 7; the two systems fully
hybridize into two new modes. For A? >> ¢ one can derive the standard

with

dispersive expression I' = x (%)2 [39, 51].

Note that formally speaking the decay rate has two contributions: I' =
Yr + Ynr Where 7, is radiative decay in the form of photons and v, is nonra-
diative decay through a number of other channels, which is typically a small
contribution in transmons. The Purcell effect is a radiative decay channel,
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2.3. Interactions Between the Elements

and for the regimes encountered in this thesis it can therefore be assumed
that the decay rate of qubit 3 I'; is dominated by radiative decay 7,3 into
the resonator. It is this process that can be seen as mimicking the reaction
center of FMO, with qubit 3 playing the role of the pigment site closest to
the reaction center into which it irreversibly transfers its excitations.

2.3.3 Transmon-Transmission Line Coupling

The final interaction Hamiltonian that is to be covered is Hr_,, the inter-
action between the transmission line and the transmons. These interactions
have gained much interest in recent times [46, 52] because the CPW transmis-
sion line is essentially a one dimensional system: the reduced dimensional-
ity offers advantages in the context of strong light-matter interactions due to
an increased interaction strength compared to open three dimensional sys-
tems [53]. While these strong interactions are not of specific interest in this
thesis, we will draw from recent work in this area to cover the interactions
between the transmons and the waveguide, using [46] as a guide.

Neglecting the potential parasitic coupling to qubit 3 (given by C3), we
now treat the interaction between qubits 1 and 2 and the transmission line
governed by Hra = Hr + Ha + Hr_a. Following [46] the interaction Hamil-
tonian takes the form

2
Hra/hi=Y by (& +5) o, (2.41)
j=1

where bj; is the coupling strength between the transmons and the transmis-
sion line; it is generally denoted by gj; but here it has been renamed in order
to avoid confusion with the resonator transmon coupling. It is proportional
to C;j as given in B. Moreover, ﬁj is related to the electric field at location x;
of the jth transmon and is given by

[p

= —i / dw~/w [aLe*iwxf/uaRefwxf'/” (2.42)
0

1
Vie

(T]-Jr +0; one can see that this form of the interaction only involves transitions

between adjacent states of the qubits.

where v = is the phase velocity in the transmission line. As 0y; =

Solving the above interaction is rather complex, as it involves a continuum
of modes travelling in both directions. However, as shown in [46] one can
solve the Heisenberg equations of motion for the field modes d; r) and
express Z; in terms of an incoming field and a time dependent coupling
to the atom in order to simplify the situation. Following [44] we make
the Markov, long-time, and rotating wave approximations while absorbing
Lamb shifts into the qubit energies, allowing us to trace out the transmission
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line field degrees of freedom. The two qubit-waveguide system can then be
expressed in terms of a master equation

o= L(p) (2.43)

where p is the density matrix and £(p) is known as the Liouvillian superop-
erator of the system; it maps operators to operators. Given the approxima-
tions mentioned above it takes on the so called Lindblad form

. . N . 1
L(p) = _% [T, 0] + Z;h]- (L]-pL* — 2{L}L]-,p}> (2.44)
]:

where L; is known as a Lindblad superoperator, /; is a constant and {4, b}
denotes the anti-commutator of operators  and b.

For the interactions induced by the transmission line the Liovillian is given
by

i L U BV L
L(p) = 5 [Ha, 0] +]; I [Uj po; — 5 (0]*0]. p+p0;"0; )} (2.45)
and the Hamiltonian is given by
. 2 [wj
Hra/h =) [2]52,]' + dj(f)@’x,]} (2.46)

=

while d;(t) is an effective drive term of the transmon qubits, its form de-
pendent on the signal input into the transmission line. Formally equation
2.46 also contains a waveguide mediated qubit interaction term Ji» r, but
this is expected to be significantly smaller than the designed capacitive J1»
for two qubits separated by much less than one wavelength [46]. We thus
treat this as a small perturbation and absorb it into the coupling J;» defined
previously.

Before looking into the form of d;(t) we first note that equation 2.43 contains
the aforementioned decay rate I'; encountered in the context of the Purcell
effect. As noted before it consists of two contributions: T'; = 7,j + Y
being the radiative and non-radiative decay. However, as qubits 1 and 2 do
not couple to the resonator (up to parasitic coupling) they are not subject
to the Purcell effect and <, thus has no contribution from that. Instead in
tracing out the field degrees of freedom the waveguide adds a significant
contribution to the radiative decay v,; & C;; such that for qubits 1 and 2 one
can also assume that I'; is dominated by radiative decay, this time into the
transmission line.
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2.3. Interactions Between the Elements

Returning to the drive term d;(t), one can derive that for an input coherent
field coming from the left (or right) side of the transmission line it is given

by
di(t) = 2\/?1 /lecjuj sin (wyt) (2.47)

where P is the applied microwave power in Watts and wy is the frequency
of the driving field. However, such time dependent Hamiltonians are often
difficult to handle; by going into the rotating frame of the drive frequency
one can transform equation 2.46 into the simplified form

N 2 w]- N R
Hra/h = Z 70'21]‘ + Q]‘(Tx/]‘ (2.48)
=1

where (); = 24/ %1 /£ is a time independent driving term. The above thus
]

establishes the CPW transmission line as the antenna of the pigment system,
introducing excitations into the system at a rate ().

While at this stage we have covered the interaction between the transmission
line and uncoupled qubits, it is also interesting to look at the above for
coupled transmons. Taking the coupling into account, equation 2.48 instead
takes the form
. 2 | w;
Hran/bh = E [2]@,]‘ + Q0 + ]{Z;]kj (@'Ijﬁj_ + 5']+5'k_>] (2.49)
<J

j=1

If we now again set the two qubit frequencies equal to w, and move into the
bright/dark mode basis (as was done in equation 2.34) we find that

~ Wk A ~
Hran/h= ) S0+ Qb (2.50)
k={B,D}

where Qpp = % (Q1 £ ). We see that in the scenario where Q)1 = ()
the bright mode has an enhanced driving rate while the dark mode is not
driven at all; it decouples from the transmission line. This is also seen in the

correlated decay of the states, which in the bright/dark basis are given by

[46]
2
rB,D — w + \/(%12%2) + ‘712‘2 (2_51)
where
Y12 = \/('le - 'anl) (’)’rZ - 'anZ) (252)

is the correlated decay rate of the two qubits. Combining the two above
equations for Y1 = Y2 = Yr K Yr{12) One finds that [46]

I'pb =Y <ITp=91+72— Yur (2.53)
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The above is an interesting result: in the ideal scenario where the two cou-
pled qubits are identical and couple equally to the transmission line, they
form two new modes. The first of these is short lived and radiates approx-
imately twice as much as the individual qubits, whereas the other is long
lived and does not radiate at all. This is the reason behind naming them the
bright and the dark mode.

2.4 Classical Noise Environments

At this stage have covered the theory governing the physical elements of
our setup and how they interact with one another. While the study of these
interactions is of interest by itself, our motivation is more involved: as in-
troduced in chapter 1, we want to study the interactions of the system in
the presence of a classical noise environment. In appendix A we introduced
several concepts related to such noise, being its probability distribution, its
power spectral density and its effect on a qubit when it takes the form of a
time-varying transition frequency dw(t). In this section we quantify these
concepts for the transmon qubits.

2.4.1 Flux Noise

In order to quantify the effect of a classical noise environment on the trans-
mon qubits, we first need to establish what constitutes their environment.
We do so for a single qubit, and the analysis can then be extended to any
system size. A convenient starting point is the quantity that determines the
evolution of a single transmon qubit, its Hamiltonian:

Ho/h = — 2o, (2.54)

where we have derived that wy is given by

P
Wy = \/SEcE]|COS <7T>| - EC (255)
Do

Looking back at this this equation we see that the transition frequency has
three components: Ec, E; and ®. In section 2.1 we have previously estab-
lished that the charging energy Ec and the Josephson energy E; are assumed
to be fixed for a fabricated transmon; the charging energy is determined by
the total capacitance of the circuit Cy, and the Josephson energy is deter-
mined by the critical current of the junction Iy which is a property of the
materials and geometry used. At higher temperatures one can envision that
these parameters might be subject to small fluctuations, but at the tempera-
tures relevant for the operation of the transmon qubits this is negligible.
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2.4. Classical Noise Environments

After fabrication the Hamiltonian of the transmon qubit is therefore purely
parametrized by the external magnetic flux ®, which is typically set to some
working point value. However it is also affected by noise and can be written
in the form ®(t) = ® + Jd(t); it is what constitutes the noise environment
of the transmons.

In order to quantify how such flux noise affects the Hamiltonian we express
it in a Taylor series expansion about the working point value [54]

B dH,

l d*H,
2! dP2

5@ (t)* + O (6@(t)%) (2.56)

If we subsequently assume that the deviations are small compared to the
working point value we can omit the terms of order O(5®(t)?) and the
resulting approximate Hamiltonian is given by

1 dw . 1 A
H/h= ~3 (wo + clq)()éd)(t)) 0z =5 (wo +dw(t)) 0 (2.57)
where the derivative ’fi% is given by
dwo [ ( 1) >:| 2EcE] . ( ) ) 7T
—— = —sgn |cos | T— ——————sin|{ 71— | — (2.58)
dd b ‘COS (7‘[%) ‘ Dy ) Dy

We see that the flux noise d®(t) corresponds to a fluctuating transition fre-
quency dw(t), exactly like assumed for the noise environment of FMO in the
Haken-Strobl-Reineker (HSR) model described by equation 1.6. In appendix
A we derived that such a system is fully governed by the (exact) master

equation
i R £) . .
p= _E‘UO[‘TZIP] + %52() (02007 — p) (2.59)
where the pure dephasing 4(t) is given by

sin(wt)
w

Yo(t) = [ o:o dw Sx(w) (2.60)

2
Note that for flux noise applied to the transmons Sx(w) is given by (%) So(w)

by virtue of equation 2.57. From this we find that in addition to the de-
pendence on the flux noise power spectral density, the magnitude of the
dephasing is also proportional to the derivative of the transition frequency.

We can now investigate the above for the two types of noise explored in this
thesis: white noise with a constant power spectral density and noise with a
Lorentzian power spectral density. It turns out that for the former the above
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picture can be strongly simplified: assuming that the flux noise is governed
by white noise with a constant amplitude S¢(w) = A one can find that

.00 2
y(,,(t):A(d“’O)/ dew Smc(uwt) A <%’> (2.61)

In this scenario the pure dephasing v, is thus linearly proportional to the
amplitude of the white noise and constant in time. This greatly reduces
the complexity of the master equation, as in analogy with the Transmon-
Transmission line coupling it is now given in terms of Lindblad superopera-
tors. In terms of the evolution of the system, its coherences (given by the off
diagonal elements of the density matrix) now simply decay exponentially
on a timescale set by .

For noise with a Lorentzian power spectral density

So(w) = S (2.62)

e (4)

the situation is more complex; here equation 2.60 evaluates to a complicated
time dependent pure dephasing rate . This scenario therefore does not
necessarily lead to monotonically decaying coherences.

Finally it is interesting to note that given the above one can show that for
the resonant coupled two qubit system of equal pure dephasing v, (f) we
find that 7,y (1) = 242 [52].

2.5 Theory of the Combined system

We have arrived at the stage where we can describe the entire system as
a whole, governed by a single master equation. Including all of the con-
cepts and approximations introduced in the previous sections, the master
equation is given by p = L(p) with

N 3 o 11 . L
L(p) = =7 [H.p] +]; [F]’ (aj pot =5 [Uﬂf o+ 007 0; D +

where the Hamiltonian is given by

3
H/h=wata+ Y
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and the pure dephasing rate 7,;(t) is given by equation 2.60. Note that here
it is assumed that only qubits 1 and 2 couple to the waveguide, while only
qubit 3 couples to the resonator. Moreover, the coupling between qubits
1 and 3 is not neglected; our experimental findings have shown that this
parasitic coupling is significant enough to be included.

In the regime where the relevant approximations hold, the above equations
govern the dynamics of the system when a coherent state is used as input.
However we have not yet described what kind of field is output by the
system, and how we can relate this to its internal properties. This is the
topic of the next subsection, governing the input-output formalism.

2.5.1 Input-Output Theory

At its core input-output theory describes the statistical properties of light
output by the system at port k given by ak ., knowing the field input into

out’s
the system at port j given by @, as well as the systems Liouvillian governing
its evolution £(p). Given that the main method of study in our experiments
is indeed sending light into the system and observing what is output, input-
output theory is our main tool of study: we use it to probe the system,
gather information about its internal dynamics, and characterize the differ-
ent system parameters. It can be used to define a number of useful concepts,
among which the reflection and transmission coefficients of the system (also
known as the scattering parameters):

2 <a]kt> 2 (2.65)

It)? = (2.66)

for which r +t = 1 [55]. Note that the above holds for any combination
of ports; in our thesis the relevant ports are the input and output of the
transmission line and the input and output of the resonator, which share
a port. With a system as intricate as ours a full theoretical evaluation of
the above in any possible scenario is beyond the scope of this thesis; such
calculations are best left to numerical approaches.

It is however instructive to look at a reduced picture, such as a single mode
input into the transmission line from the right side of the transmission line
AR

a; (w,t) that interacts with a single transmon qubit of transition frequency

wy at the center of the transmission line and leaves to the left as a%,,(w, t).
The theory governing this process is described in [44, 46] where one finds
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that
. r
fgi(w, t) = (w, t) + el \fzﬂt — to) (2.67)

where t is the time it takes for the input mode to reach the atom. This can
then be used to solve for the above transmission and reflection coefficients
by noting that the expectation operator (- - - ) is linear; one can thus write

<a§ut> = <a51> + \/§<a> (2.68)

As the input field is generally known the only part that is to be determined
is (07): the expectation value of the atomic lowering operator. It is given
by solving the steady state of the system’s master equation and calculating
Tr [p6~]. This can be done exactly for a single two level system with decay
rate I', driving rate () and dephasing rate ¢ as detailed in [55]: it has a
transmission coefficient given by

r 1—iA/T;

—1—p—
g ToT2 1+ (A/T2)% + /1T,

(2.69)

where I'; = 5 L Yo 1l = 5 + - is the ratio of the radiative losses to the total
losses and A = |wo — wy| is the detuning between the qubit and the driving
field. As can be seen, all of the major system parameters are contained in this
expression and its measurement will therefore be crucial in characterizing
our system.

Another expression of interest is the power spectral density of the system,
given by the Fourier transform of the correlation function. In the context of
quantum optics it can be derived using the quantum regression theorem to
be given by [28]

G (1) = < at+ 1) > [ )a*] (2.70)

or by its more often employed normalized version

At ~
o=

In order to solve for this one thus again requires knowledge of the input
and output field through input-output theory, as well as of the systems
Liouvillian £. Performing the Fourier transform of 2.71 then results in the
power spectral density S(w), containing information about any incoherent
scattering of the system.

While for our complete system this also results in a complicated expression
that should be solved with numerical methods, it is again instructive to
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restrict ourselves to a single two level system. When driving such a system
on resonance (wp = wy) the power spectral density is given by the famous
Mollow Triplet, an approximate expression for which is given by [55]

1 hwl Vs 27¢ Ys
S(w) = — 2.72
(W) =775 ((A+Q)2+7§+A2+7§+(A—Q)2+7§ 2.72)

where 75 = (I' + 1) /2 and 7. = I';. Note that this equation is valid only
when the driving rate is strong compared to the loss rate: 0% > I'’’. While
exact expressions can also be derived [28], this specific form highlights that
it results in a structure of three peaks separated by (). The Mollow triplet is
therefore well suited for the determination of the driving rate.
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Chapter 3

Design & Fabrication

In the previous chapter we introduced the theory governing transmission
lines, resonators and transmon qubits, as well as of their coupling in the
geometry illustrated in the circuit diagram of figure 2.5. In this section
we now cover the design and fabrication of a chip realizing this geometry:
tirst we discuss the design of chips containing just the waveguides and the
resonator, and in a second stage we introduce the design of the qubits and
incorporate them into the chip.

In addition to the physical components we also discussed flux noise and its
effect on the transmon qubits. We found that ultimately the power spectral
density and the probability distribution of the noise are what define the
form of the interaction; after establishing the design of the chip we therefore
also discuss the design of flux noise with arbitrary power spectral densities
and probability distributions that can be applied to our chip.

3.1 Mask Design

We begin with the chip without the qubits. It is important to note that both
the design and the fabrication of this chip was done by Dr. Anton Potoc¢nik.
We therefore only cover the basics of the process.

The chip design contains a number of elements: a coplanar waveguide trans-
mission line for input and output to qubits 1 and 2, a coplanar waveguide
resonator that serves as the output of qubit 3, and two additional elements:
two flux bias lines. Essentially a line through which current can flow, their
function is to provide a tunable flux source that couples predominantly to
the qubits they are closest to. This allows one to tune the transition fre-
quency of a single qubit without strongly perturbing other qubits. In ad-
dition to this the flux lines can also be used to generate individual noise
environments for each of the qubits.
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3.1. Mask Design

The design of such a chip is shown in figure 3.1, created using Mathematica.
It contains all the aforementioned elements in addition to a qubit box that
would contain the qubits, as well as airbridges (shown in red). They are
crossover connections made between the ground planes that are interrupted
by the structures to equalize potentials, but one has to take care that they do
not facilitate the formation of ground loops. Moreover, the CPW resonator
is capacitively coupled to the qubit box on one side and to a transmission
line on the other side with a designed capacitance Ci.

¥ .
Y Transmission Line 3;
1 i & M61B
— | ;Flu;( Line 1_ - ‘__ I;qu Lir(e 2_ =
700 pm Resonator %

Figure 3.1: The design of the B chips of mask 61. It includes a transmission line, a
qubit box, two flux lines, and a resonator with coupling capacitance C,. Shown in
red are airbridges.

While the fabrication of a chip containing these elements is well established
in this group [56], variations still occur between different iterations of fabrica-
tion, especially when it comes to the CPW resonator. Its resonance frequency
is determined by the length of the CPW as well as its effective permitivity
e.rf, while its loss rate « is mostly determined by the capacitance Cy [57]. In
order to get these quantities in the desired range it is therefore good practice
to fabricate a number of chips with slightly different design parameters and
choose the best one. This is done on a so called mask; a large wafer contain-
ing a number of identical copies of the chips with the different parameters.
One then takes a copy of each of these for characterization, after which a
remaining copy of the best version is selected for the qubit writing stage.

The chips studied in this thesis were fabricated from such a mask: mask
61. On this mask we only varied the aforementioned resonator properties,
its resonance frequency and loss rate, by varying the resonator length and
the coupling capacitance respectively. The designed parameters of the chips
fabricated onto it are listed in table 3.1 where it should be noted that our
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aim was to have a fundamental resonance frequency between 5.5 and 6 GHz
and a loss rate between 50 and 100 MHz.

Moreover, as denoted in the table the mask contains two types of chips:
chips of the form shown in figure 3.1 referred to as the B chips, and well as
chips without the qubit box and the flux lines referred to as the A chips. The
goal of these chips is to investigate the source of potential cross coupling be-
tween the different elements through elimination of intermediate structures.
For example, the A1 chip is the reduced version of the B3 chip and A2 is the
reduced version of B1.

Chip | fo [GHz] | Cy [fF] | x [MHz]
Al | 5.751 95 17

A2 | 5531 552 | 48

A3 | 5360 963 | 127

AL | 6242 95 21

Bl | 5531 552 | 48

B2 | 6012 501 | 51

B3 | 5.751 95 2

B4 | 5360 963 | 127

B5 | 5.834 860 | 131

Table 3.1: The variable design parameters of the studied chips of mask 61: the
fundamental frequency fo, the coupling capacitance C and the resulting loss rate
K.

In the fabrication process itself the structures are etched into a layer of nio-
bium on top of a sapphire substrate using a photolithographic process [56]
with respective thicknesses of 150 nm and 500 ym. The choice for niobium
stems from the fact that it becomes superconducting at T. ~ 8.6 K, while our
experiments are performed at sub liquid helium temperatures. The layer
will thus be dissipationless and not contribute to resistance based losses. It
is in this superconducting layer that one then constructs the different compo-
nents by etching away the desired segments. Figure 3.2 shows a microscope
image of one of the B chips fabricated in this manner, with the niobium layer
shown in white and the underlying sapphire layer visible in green.

3.2 Qubit Design
In contrast to the design of the mask, the design of the qubits themselves

was done during this thesis. It proceeded in several steps: first the capacitive
pads were designed, governing the charging energies of the qubits E¢ as well
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Figure 3.2: A false color microscope image of a fabricated B chip of mask 61.

as the coupling between the different elements such as J;» and g3,. In the
next stage the SQUIDs were introduced, their position determined based on
the coupling to the nearby flux lines. Finally the qubits were fabricated onto
the B5 chip discussed in the previous section by Dr. Simone Gasparinetti,
with the target E; based on the desired we;. The choice for the B5 chip is
motivated in chapter 5, where the characterization of mask 61 is discussed.

3.2.1 Capacitive Design

We begin with the capacitive design, for which an iterative approach was
used. First the general design was drawn in Mathematica, after which capac-
itive simulations were performed with ANSYS Maxwell in order to estimate
the different capacitances. These capacitances were then used to determine
the different qubit parameters using the quantities derived in appendix B.

More explicitly, we begin with a design based on the geometry of the qubit
box. It has a size of 700 by 700 ym etched into the niobium. It is onto
this box that we draw the qubit capacitance pads out of Aluminum, which
becomes superconducting at T, ~ 1.2 K, a temperature readily achieved
in the experiments performed with the qubits. An example of the design
of the pads is shown in figure 3.3, which highlights several considerations.
The first of these is the difference between the first two qubits and qubit
3. Qubits 1 and 2 were designed with the possibility of introducing noise
environments in mind. They are therefore located close to the flux lines,
which are located in the middle of the qubit box themselves. The capacitance
pads of qubits 1 and 2 are therefore set up so that one can write a SQUID
in the large section of sapphire on the sides of the pads, as close to the flux
lines as possible. Moreover, the capacitance pads of qubits 1 and 2 are an
exact mirror image so as to make their qubit properties as equal as possible.
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For qubit 3 the situation is different; it is designed to have its SQUID situated
in the green rectangular area near the bottom center of the qubit box where
the influence of the flux lines is expected to be negligible. This necessitates
a slightly altered design for the pad of qubit 3, as reflected in the figure.
Furthermore even though we use only 3 qubits in our experiments we chose
to create a fourth pad in the bottom left corner, again the mirror image of
qubit 3. No SQUID loop is to be connected to this pad; its role is to create
an equal environment for all of the qubits, essentially achieved by making
the capacitance matrix C of the qubit system symmetric.

B |
Qubit 1 ~ ‘ N Qubit 2 -
i lnnn @
f %[] C3— %
o
T
WH UL

Figure 3.3: The design of the capacitive part of the qubits. Indicated are the gaps
that predominantly define the different capacitances.

Figure 3.3 also highlights the features that determine the relevant capaci-
tances. The capacitance pads themselves are periodic structure of multiple
fingers, and their capacitance mainly comes from the area between the fin-
gers. As the pad of qubit 3 is less wide than that of qubits 1 and 2 it therefore
has longer fingers to compensate and maintain a similar Ec. Similarly, the
gaps between the different pads determine the coupling capacitances, which
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are chosen in accordance with the desired parameter hierarchy.

Once an agreeable design is found we export it as a CAD file and import it
into ANSYS Maxwell, where we have set up a section of the B5 chip centered
around the qubit box. This is to include the capacitive coupling of the qubits
to the transmission line and the resonator. The design is then integrated into
the chip as shown in figure 3.4, where the dark areas indicate sapphire, the
outer ground plane is niobium, and all other structures are aluminum.

Note that in the simulation we define the imported pads to consist out of
a perfect conductor rather than aluminum to mimic its superconductivity.
The same is done for the niobium surrounding the qubit box, which is
joined with the aluminum into a single ground plane for purposes of cal-
culation. Experimentally this is done by evaporating an overlapping region
of aluminum onto the niobium as shown by the transparent section of figure
3.4.

Transmission Line

Qubit 1 Qubit 2
Flux Line 2

Flux Line 1 a
- 4
Qubit 3

Aluminum Resonator
Niobium
Overlap

Figure 3.4: The capacitive part of the qubits defined in ANSYS Maxwell. Indicated
are the different components of interest, as well as the (transparant) overlap between
the aluminum and niobium ground plane.
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In the next step we set up Maxwell for electrostatic solutions and assign a
distinct excitation to each of the colored regions of figure 3.4. Note that this
is also true for the fourth capacitance pad; it is set to a different potential
than the ground plane which shares its color. Choosing a suitable number of
passes and error percentage, Maxwell then simulates the capacitance matrix
of the system consisting of the different sections using increasingly detailed
meshes. We then export this matrix, analyze it using a Mathematica script
based on the calculations detailed in B with an additional fourth qubit and
a fixed E;. We then look at the resulting Hamiltonian parameter table, and
based on which parameters are not in the desired range we return to the
initial stage of drawing the pads in Mathematica, make suitable adjustments
to the design, and repeat the process until convergence.

3.2.2 Inductive Design

Once the capacitive components have been designed we move on to the
inductive stage; the SQUID design. In the first stage we import the final-
ized capacitive design back into Mathematica and define the outlines of the
SQUIDs onto this: we draw segments connecting a 10 by 12 micrometer
SQUID box to the respective capacitance pad and the aluminum ground, as
shown in figure 3.5a.

For qubit 3 we simply choose the SQUID box to be in the center of its des-
ignated segment, but for the positions of SQUID 1 and 2 we again resort
to Maxwell, now in its Magnetostatic solution mode. Here we draw the
SQUID loop in more detail as shown in figure 3.5b and assign currents to
the SQUID and the flux line. From this Maxwell then calculates an induc-
tance matrix, giving us an indication of the mutual inductance between the
flux line and the SQUID. We then vary the x and y position of the SQUID
box over a range of values and repeat the process, mapping out the induc-
tance space in search for a maximum. Once this has been found we return to
Mathematica and fix the SQUIDs of qubits 1 and 2 to these positions, where
we found the maximum the be at two thirds of the upper flux line segment.
The design of the actual SQUID inside its box is then done by Dr. Simone
Gasparinetti based on considerations such as target E; and flux sensitivity.

3.2.3 Fabrication and Parameter Estimates

The final stage of the qubit design is the fabrication, also done by Dr. Simone
Gasparinetti. A detailed overview of the process can be found in [56], but the
general concept is that the qubits are made by patterning their structure into
a positive resist with electron-beam lithography, after which aluminum is
depositied via shadow evaporation. Note that at some stage the evaporation
is interrupted by a static oxidation in order to create the aluminum oxide
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3.2. Qubit Design

Figure 3.5: SQUID design for the qubits. Panel (a) shows how the general outlines
of the SQUID are designed in Mathematica, whereas panel (b) shows how a more
precise version of the SQUID can be drawn in Maxwell in order to simulate the
mutual inductance with respect to the nearest flux line.

layer, the thickness of which determines the Josephson energy E; together
with the size of the junction [38].

Once all of the qubits have been fabricated onto the chip, it is bonded onto
a copper printed circuit board (PCB) using aluminum wirebonds. The PCB
itself has SMP jack launchers soldered onto it prior to this, which can be
used to connect the necessary electronics to the PCB discussed in chapter 4.

The sample resulting from the above process is shown in figure 3.6; it is the
main object of study in this thesis. Panel a shows the chip in its entirety,
with the transmission line in purple connected to ports 1 and 2, flux line 1
in yellow connected to port 3, the CPW resonator in orange connected to
port 4 and flux line 2 in pink connected to port 5. Panel b shows a zoom in
of the qubit box itself, containing qubit 1 in red, qubit 2 in blue and qubit 3
in green.

While the exact properties of the sample are characterized in chapter 5, we
can already formulate an estimate of the Hamiltonian parameters based on
the simulated capacitances and the target qubit frequencies. These estimates
are listed on table 3.2, and are in line with the parameters aimed for based
on the proposal of Mostame et al. [20]. The only exception to this is Ji3;
ideally it would be equal to zero so that the bright and dark mode couple to
the third qubit equally (see equation 2.35) but we could not reduce it below
the simulated value without changing the size of the qubit box, which was
unpractical given that the mask had already been fabricated prior to the
qubit design.
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Figure 3.6: A false color microscope image of the sample used for the experiments
in this thesis. Panel (a) shows the overall chip containing the transmission line,
the two flux lines, the resonator and the qubits, while panel (b) offers a zoomed in
picture of the qubit box.

3.3 Flux Noise Design

Now that we have covered the design and fabrication of the physical object
of interest, we discuss how to generate the noise environment of the qubits.
In chapter 2 we defined the qubit environment to be given by the magnetic
flux ®(t) in the form of in the form of a static working point value plus a
small fluctuating contribution: ®(t) = ® + éP(t). Moreover, we defined this
small fluctuation contribution to be the noise; its power spectral density and
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3.3. Flux Noise Design

Parameter | Designed value/27*

Ec 121 MHz
Eco 120 MHz
Ecs 121 MHz

E]{1,2,3} 50 GHz
(4){1/2’3} 6.8 GHz

wy 5.834 GHz
J12 120 MHz
J13 3.7 MHz
J23 38 MHz
o 200 kHz
9 1.4 MHz
03 110 Mz

Table 3.2: Designed Hamiltonian parameters for all three qubits and the resonator,
in addition to the designed Ec and Ej. Note that the reported values of Ec and E;
are not divided by 27, as indicated by the asterisk.

probability distribution fully described the effect of the noise environment
on the transmon qubits.

In this section we briefly describe how to design and physically implement
a general flux noise term of the above form with an arbitrary power spectral
density and probability distribution; the exact details of the process can be
found in appendix C.

3.3.1 Digitally Generating Noise

As discussed in the appendix, we start the noise design by generating a dis-
crete digital time series y[t] with arbitrary power spectral density S(f) =
A(f). This is done by first generating white noise x[t] with unit power
spectral density S(f) = 1 by independently drawing from the Gaussian dis-
tribution with zero mean and unit standard deviation, which we then sub-
sequently subject to the linear mapping of a filter with the transfer function

H(f) = \/A(f) resulting in Sy (f) = A(f).

To illustrate the generation of noise with an arbitrary spectral density we
generate and analyze the two different noise series studied in this thesis:
white noise with a high frequency cutoff and noise with a Lorentzian power
spectral density. The first has a power spectral density given by

a

SX(f) = 7=b (31)
1+e
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3.3. Flux Noise Design

which is a generalized version of the Fermi Dirac distribution. For the
proper choice of parameters, it is essentially white noise of amplitude a
up to an exponential cutoff at f = b with steepness c. The reason for its
finite bandwidth is that, as briefly noted in appendix C, infinite bandwidth
white noise does not exist in nature; this would contain infinite energy. We
therefore have to cut it off at some frequency, which we choose such that the
noise covers all the relevant energy mismatches explored in our experiments.
Moreover, we choose the Fermi-Dirac distribution (rather than for example
a step function) due to its closed form expression and smooth properties.

We combine this power spectral density with the filtering method discussed
in appendix A to generate a time series of length n = 16 x 10° using m =
2000 impulse response function amplitudes h[t], for which we set a = 0.1
V2/Hz, b = 400 MHz, and ¢ = 10.8 MHz. This corresponds to noise with a
flat spectrum up to 350 MHz, dropping down to below 1% of a at 450 MHz.
As shown in figure 3.7a this spectrum is reproduced with better than 1%
accuracy in a subsequent fit, where we estimated the power spectral density
of the time series using Welch’s method, which is a windowed and averaged
periodogram [58].

The second time series we generate has a Lorentzian power spectral density
centered at some specific frequency. Its power spectral density is given by

Sx(f) = ———

()
which is a Lorentzian function of maximum amplitude a centered at fre-
quency b with a full width at half maximum of 2c. This type of power
spectral density is studied in the context of the phonon antenna mechanism
introduced in chapter 1. Figure 3.7b illustrates that this spectrum is also
readily produced; the input parameters a = 0.1 V2/Hz, b = 100 MHz and
¢ = 2 MHz are again reproduced with better than 1% accuracy.

(3.2)

Note that the above power spectral densities are digital; the units reported
are thus arbitrary. However we chose them in anticipation of the physical
implementation of the noise, which is the subject of the next section.

3.3.2 Digital to Analog Conversion

As written at above, the digitally generated noise is now physically imple-
mented. As discussed in appendix C, it takes the form of a voltage U (t) with
a power spectral density Sy;(f) and probability distribution fi;(u) equal to
that of the random variable X, and it is generated with an arbitrary wave-
form generator (AWG).

Figure 3.8(a) shows the power spectral density of a sample implementation
of this: we digitally generated a Gaussian distributed time series with its
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Figure 3.7: (a) The digitally generated time series with a Fermi-Dirac power spectral
density, flat up to 350 MHz and exponentially decaying to zero at 450 MHz. (b)
The digitally generated time series with a Lorentzian power spectral density with a
center frequency of 100 MHz and a full width at half maximum of 4 MHz.

power spectral density governed by the Fermi Dirac distribution of equation
3.1, with a = 0.1 V3/Hz, b = 325 MHz, and ¢ = 5.44 MHz; note that
these parameters are different than the ones used for the digital white noise
discussed above. We then exported this pattern to the AWG and measured
its output with a spectrum analyzer, the result of which is shown in the
tigure along with a fit with equation 3.1.

From the figure we see that the recipe is effective in producing a spectrum
with better than 1dBm flatness over the bandwidth of the signal; quantita-
tively we find that it reproduces the parameters with 99.8, 99.7 and 90% accu-
racy respectively. The fact that the exponential cutoff parameter is less accu-
rate can be explained by the fact that it is very sensitive to small deviations.
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3.3. Flux Noise Design

However, based on figure 3.8(a), the cutoff is still implemented in a satisfac-
tory fashion. Figure 3.8(b) shows a similar measurement for voltage noise
with a Lorentzian power spectral density with amplitude a = 0.1 V?/Hz,
center frequency b = 185 MHz and full width half maximum 2c¢ = 10 MHz,
where all three parameters were reproduced with better than 1% accuracy.
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Figure 3.8: (a) The power spectral density of the generated white voltage noise as
estimated by the spectrum analyzer, fit with equation 3.1. (b) The power spectral

density of the generated white Lorentzian power spectral density voltage noise as
estimated by the spectrum analyzer, fit with equation 3.2.

3.3.3 Voltage to Flux

The final step that remains is converting the generated voltage noise signal
into a magnetic flux signal, and in turn relating Sy;(f) to Se(f). In order to
do so we send the voltage noise into the lines connected to the sample’s flux
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3.3. Flux Noise Design

lines (as treated in chapter 4), where the voltage passes through a series of
attenuators. The attenuators cause a total voltage drop given by a = IT/"'a;
where «; is the (voltage) attenuation of the ith attenuator. Rather than at-
tenuating, the final (nth) attenuator in the chain effectively acts as a resistor
R, resulting in a current I in accordance with Ohm’s law. This current then
ultimately passes through the flux line on the sample itself, resulting in a
magnetic field B(r) = gé‘—ffr where g is the magnetic permeability of free
space, r is the radial distance from the flux line and g is a geometric factor
close to 1. Finally, the magnetic field is related to the flux by & = BA cos 0
where A is the area of the relevant surface (the SQUIDs) and 6 is the angle
between the magnetic field lines and the normal to the relevant surface. We
combine all of these factors into a generalized mutual inductance M, which
relates the voltage and the flux: & = MV.

The above thus tells us that the relationship between the voltage U and the
flux @ is linear, given by

_ agpoAcost

D
27trR

u=Mu (3.3)
If one assumes that these parameters are not subject to any significant fluc-
tuations and have a flat frequency response, then there is also a linear rela-
tionship between Sy(f) and So(f):

So(f) = [ at (@(0)@(1)) cos(f1) 4)
— M /O " dt (U(0)U(r)) cos(Ft) (3.5)
= M?Sy(f). (3.6)

With this we have thus established how to generate flux noise in a specific
flux line with an arbitrary power spectral density So(f).
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Chapter 4

Experimental Setup

In this thesis we use several important experimental tools and techniques
to characterize and measure our sample of interest. In the first stages of
the experiments we used a so called dipstick submerged into liquid helium
connected to a vector network analyzer (VNA) in order to characterize the
mask the qubits were to be printed on. Conversely, the advanced measure-
ments and characterization was done in a dilution refrigerator, providing
the electrical and thermal environment of the sample. Instead of a VNA,
the dilution refrigerator was connected to a more involved signal processing
chain where the fields output by the sample were measured and processed
consisting of down conversion, amplification and a field programmable gate
array (FPGA). In this chapter we provide an overview of each of these tools
to give insight into the measurement techniques used in chapters 5 and 6.

4.1 Dipstick Setup

As written above, the first stages of the experiments were performed using
dipstick measurements; submerging the chip into a liquid helium dewar to
cool them down to 4.2 K, which is below the chip’s critical temperature for
superconductivity T.. At these temperatures one can then probe the prop-
erties of the chip using input-output theory. To do so, the chips themselves
were individually placed onto the dipstick, and the other side of the dipstick
was connected to the VNA using SMP connectors. The VNA then measured
the relevant scattering parameters, such as the reflection and transmission
coefficients introduced in chapter 2.

Different steps have to be taken in order to measure with the dipstick setup.
To begin with one performs a calibration of the VNA and the SMP cables
connected to the dipstick by connecting them only to the dipstick with no
chip placed onto it. This is done to calibrate out any distortions caused by
the cables. As the VNA has four ports while the chips used in this report
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4.1. Dipstick Setup

have up to 5 relevant connections, one has to choose which scattering param-
eters are most relevant and connect the cables according to this, or instead
perform several calibrations with the cables connected in different configu-
rations. During the measurements the connectors of the chip that were not
connected to the VNA were terminated with 50 () at room temperature.

The calibration of the VNA is done manually, using a specifically designed
calibration kit containing four components: a short, a load, an open and a
through connector. Guided by the VNA, one connects these components to
the corresponding cable port on the dipstick one by one, after which the
VNA gathers statistics for its calibration settings. It is important to note
that the calibration is done at room temperature and not at liquid helium
temperature, as one constantly has to change the calibration components
on the bottom of the dipstick which would otherwise be submerged in the
helium.

One should carefully pick the relevant measurement parameters of the VNA
before performing the calibration, as changing them at a later stage might
render the calibration invalid. The parameters used for calibration and mea-
surement in this report are listed in table 4.1. Moreover, the calibration was
done using the ‘Qudev female connector’ settings found on the VNA in the
Quantum Device lab the thesis was performed in.

Parameter: Setting:
Power -8 dBm
IF Bandwidth 50 kHz
No. of Averages 40
No. of Points 6000
Frequency Range | 1 GHz to 14 GHz

Table 4.1: VNA settings used for the calibration process.

Once the calibration has been completed, one can mount the chip and begin
the submerging procedure. The dipstick is slowly placed into the helium de-
war, continuously monitoring the pressure. While initially the pressure will
vary only slightly, there is a certain point at which it increases much more
rapidly. For safety reasons it is crucial to wait for the the pressure to drop
before submerging the dipstick any further. Once the chip is sufficiently
cooled down, superconductivity will occur and for example resonances of
the resonator on the chip will become visible on the VNA. After this occurs
one should still lower the device several centimeters further in order for the
temperature of the device to equilibrate.

After completion of the submerging procedure one can start to operate the
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VNA. As discussed in chapter 3 we expect the fundamental mode of the
resonator around 5.5 GHz, and so the initial frequency range of 1 GHz to 14
GHz will contain this mode as well as one or more integer multiple modes.
While at this stage all scattering parameters can already be viewed and ex-
ported, we also choose a subset of these resonances to zoom in on to capture
in more detail. At this stage no further signal processing has to be done, as it
is all performed internally by the VNA. When the relevant frequency ranges
have been explored and exported, the measurement is completed and one
can slowly take the dipstick out of the dewar again.

4.2 Cryogenic Setup

The more advanced experiments were performed in a cryostat, more specifi-
cally a dilution refrigerator. Essential to the operation of many experiments
in the circuit QED architecture, it facilitates performing low temperature
experiments where not only superconductivity needs to be achieved but
thermal populations should also be strongly reduced in order to improve
lifetimes and coherence rates of the quantum mechanical components. In
addition to that the cryostat provides a large degree of shielding from the
environment, reducing the influence of electromagnetic fields in the vicinity
of the system. In these conditions the quantum properties of the circuits
dominate and are well measurable, setting the stage for our experiments.

The specific dilution refigerator used in these experiments is the BlueFors BF-
LD250 cryogen-free dilution refrigerator system, nicknamed the BlueForsl
in this lab. It can achieve temperatures as low as 10 mK using the heat of
mixing of the two Helium isotopes, *He and *He. While the exact princi-
ples governing this mixing are beyond the scope of this thesis and can be
found in [59], the basic concept is based on the fact that *“He undergoes a
phase transition from a normal fluid to a superfluid at 2.7 K, and that this
temperature decreases when *He is mixed with *He. Below a certain tem-
perature this mixture will then separate into two phases (a *He rich and
poor phase known as the concentrated and the dilute phases), where at low
temperatures the enthalpy of the latter is larger than of the former. Moving
%He from the concentrated phase to the dilute phase therefore requires en-
ergy, cooling down the system to these low temperatures of around 10 mK.
Before the above process begins the system first has to be precooled to 4.2
K temperatures, which is traditionally done by surrounding the cryostat by
liquid *He which has to be refilled periodically. Instead of the above the
Bluefors 1 utilizes a pulse tube system that delivers these initial low enough
temperatures in such a way that the the cryogen handling circuit is closed,
hence the name cryogen free.

However, in order to probe the system and measure its response it has to be
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connected to room temperature electronics (such as microwave generators)
without compromising the cold environment of the chip. This is achieved
by the cryostat having several temperature stages, slowly leading the lines
through which the initially room temperature signals travel to the 10 mK
stage. The Bluefors 1 has six such stages: the 300 K room temperature stage,
the 70 K stage, the 4 K stage, the 1 K still stage, the 100 mK stage and finally
the 10 mK base stage. The last four of these stages are depicted in figure 4.1,
which shows the inside of the cryostat without its lower shields.

Figure 4.1: Photograph of a part of the inside of the Bluefors1 cryostat. The visible
temperature stages are indicated.

As broadly visible in figure 4.1 the different stages contain various compo-
nents, each of which plays their own role in sending and receiving signals
from and to the chip located in the bottom stage. A more detailed picture of
these components is given in figure 4.2, showing a diagram of the relevant
lines running through the cryostat along with their port numbers on top of
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the cryostat. Moreover, each line is connected to a specific port of the chip
and therefore has its own role; for example, line 8 provides the input modes
for the transmission line, line 10 provides a flux for flux line 1, and line 2
contains the modes output by the resonator. The right most line is different
from the others; it consists of superconducting DC wires in a twisted pair
configuration, connected to a small superconducting coil connected to the
bottom of the sample holder. Its role is to provide a global flux that cou-
ples to each qubit with roughly equal strength, allowing one to tune their
resonance frequencies as detailed in chapter 2.

Looking at the lines in more detail from left to right, line 12 serves as a res-
onator input line. It is attenuated by 20 dB at three different stages in order
to suppress the thermal population of the previous stage, making sure that
only a small fraction of the room temperature thermal photons arrives at the
sample. It is set up so that one can measure the resonator in reflection; a cir-
culator at the base stage (offering 20dB isolation in the unwanted direction)
sends the photons into the resonator, from which the output is routed into
cable 2, the resonator output line. Here one has two isolators (consisting of
50 Ohm terminated circulators) at the base stage in order to suppress any
photons coming back to the sample from the output line, and higher up
one has a high-electron-mobility-transitor (HEMT). Essentially a high gain
low noise amplifier that can operate at 4 K, the HEMT amplifies the signal
coming from the resonator with 30 to 40 dB gain.

One then has two identical lines, 10 and 11, which serve to provide the flux
for flux lines 1 and 2 respectively. They each contain a total of 23 dB attenu-
ation of which the last 3 dB essentially serves as a resistor, transforming the
input voltage into a current. In addition to this they have two low pass filters,
allowing only DC to 780 MHz radiation to pass which serves to suppress po-
tential flux noise at the qubit frequencies. One then has line 4, serving as
the transmission line output. Similar to the resonator output line, it again
contains a number of isolators and a HEMT. However, it also contains a 4
to 8 GHz bandpass filter which serves to suppress noise outside of the band
of interest which would otherwise contribute to compressing the amplifier.
Note that this argument would also apply to the resonator output line, but
that this line was designed to function over a larger frequency range. The
next line is line 8, the transmission line input. It is essentially identical to
the resonator input line (line 12) containing a total of 60 dB attenuation
to suppress the thermal population reaching the sample. Finally there is
the aforementioned superconducting coil which contains a finite resistance
low pass filter similar to the flux lines, which again serves to convert an
input voltage into a current while suppressing noise at the qubit transition
frequencies.
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4.2.1 Room Temperature Components

While the previous section covered how signals are routed in and out of
the cryogenic system, we have not covered what occurs at the room tem-
perature stage. We begin with the signals input into the transmission line
and the resonator: set up identically, lines 8 and 12 are simply connected to
a (room temperature) Rhode-Schwartz SGS100A microwave generator that
generates the coherent microwave signal input into the sample, known as
the RF signal.! The output of lines 2 and 4 is handled in a more complex
manner: as shown in figure 4.3a the output of these lines first enters an am-
plification board at room temperature before entering a down conversion
board containing a mixer; the details of these two components are omitted
for brevity.

While the amplification board increases the amplitude of the output signal
further, the down conversion board is more complicated. It functions as a
method of transferring the RF signal information from its carrier frequency
to a fixed intermediate frequency (known as IF) while preserving phase and
amplitude information. This is done so that subsequent signal processing
equipment does not have to be designed to operate at the RF frequencies
but instead can function in a fixed regime. In order to facilitate this mixing
one requires a so called local oscillator (LO) input into the mixer alongside
the RF signal, whose frequency is at a fixed distance of the RF such that
fir = |frr — fro|- For the LO we use another Rhode-Schwartz SGS100A
microwave generator, and unless stated otherwise we set it up so that f;r =
250 MHz. The IF signal is then routed into an analog to digital converters
(ADC), after which it is fed into the Virtex 6 field programmable gate array
(FPGA) for digital signal processing.

The details of the signal processing itself are rather involved and can be
found in [60, 61]. Important for this thesis is that the Virtex 6 has a sam-
pling rate of 1000 MHz and thus a Nyquist frequency of 500 MHz, meaning
that it can record signals with a bandwidth of 500 MHz. When f;r = 250
MHz the FPGA thus records a 250 MHz bandwidth around fir. The FPGA
can then use a number of ’signal math” settings in order to calculate several
statistical moments of the data S(7) such as its amplitude (S(7)) and its
autocovariance function (S(0)*S(t)) from which quantities such as the re-
flection coefficient and the power spectral density can be calculated. Finally
one has to note that in the setup used in this thesis only one mixer output
is used, which causes the resulting IF signal to be symmetric around fir.
Signals at f = fir & 6 therefore cannot be distinguished.

One problem that one runs into with the above setup is that while it can
be used to faithfully determine the amplitude of the signal output by the

n our experiments only one pair of input and output lines was connected at the same
time as they were not needed simultaneously.
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sample, its phase shift cannot be. One can understand this by noting that
the system only determines the phase of the signal output by the cryostat
¢out, whereas the phase difference accreditable to the sample A¢ = ¢i,, — Pout
also requires knowledge of the phase of the RF signal entering the cryostat
¢in. To circumvent this one can use a phase reference, which is essentially a
branch of the input RF signal that does not traverse the cryostat. As shown
in figure 4.3b this is accomplished by splitting the initial RF signal into two
branches, one of which goes into the cryostat as mentioned above while the
other is simply attenuated down to a level similar to the overall attenuation
of the entire cryostat-sample system. Both branches then undergo their own
warm amplification and down conversion, after which the FPGA performs
the necessary signal processing in order to obtain A¢. Note that in this step
the two signals are multiplied, essentially lowering the signals amplitude
by its square and thus lowering the signal to noise ratio. We therefore only
utilize the phase reference in the scenario’s where the phase is essential,
which is mentioned explicitly in the text.

The final room temperature components are the inputs of the two flux lines
and the superconducting coil. Each of these is connected to a Stanford Re-
search Systems voltage source (denoted by SRS), providing a DC voltage that
can be related to a static flux at the sample used to vary the qubit transition
frequency. While for the superconducting coil this DC voltage is directly
connected to the DC wires shown in figure 4.2, the setup for the two flux
lines is more complicated.

As discussed in chapters 2 and 3 we are interested in creating a noise envi-
ronment for the qubits through their flux, related to the voltage applied to
the flux lines. In order to do so we combine the voltage noise signal gen-
erated by a Tektronix AWG5000 arbitrary waveform generator (AWG) with
the DC voltage in a bias tee. The bias tees used are specifically designed
to have a relatively low lower end frequency cutoff of 3 kHz so as to not
spoil the potential low frequency features of the noise. Moreover we intend
to vary its amplitude in two distinct ways: we can tune the amplitude over
a moderate range in small steps using the output amplitude of the AWG,
and over a larger but more coarse range using attenuators, for which we
attenuate the AWG output signal by switching between 3 dB or 8 dB.
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Figure 4.2: Cabling diagram of the lines used for the experiments in this thesis.
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Figure 4.3: Schematic depiction of the input and output microwave signals and their
subsequent routing through room temperature components. Panel a shows how the
output signal is amplified, down converted and then input into the FPGA where it
is amplitude is processed, whereas panel b shows how the previous scheme can be

adapted to include phase information in addition to the amplitude.
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Chapter 5

Characterization of the System

We have now covered the design and fabrication of the sample of interest
(chapter 3) as well as how to connect it to the relevant setup to enable mea-
surement of its behavior (chapter 4). However, at this stage the sample
essentially functions as a black box; while we know the type of components
it is made out of and how they interact, their exact properties (introduced
in chapter 2 are not known. In this chapter we therefore aim to characterize
these properties.

Chronologically this characterization occurred in two steps: we first charac-
terized the properties of mask 61 using dipstick measurements as discussed
in section 5.1. Based on this we chose what chip to fabricate the qubits on,
and thus chip was then characterized in the Bluefors setup as discussed in
section 5.2.

5.1 Mask 61

We begin with the characterize the chips of mask 61. As discussed in chapter
3 the mask contains two types of chips: the A and the B chips. Shown
again in figure 5.1 for convenience, the B chips contain the transmission line,
both flux lines, the resonator and the qubit box. The A chips are a reduced
version of the above, containing only the resonator and the transmission line
in order for us to study the effect of the absence or presence of the different
elements. In addition to this distinction between the two types we also vary
two parameters in the individual chips, being the resonator frequency and
its loss rate. Varied through the resonator length I and the coupling C,
characterizing these quantities was the main goal of this study; based on its
outcome we decided which B chip was most suited to fabricate the qubits
onto.

In order to perform the characterization of the chips we employ the dip-
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Figure 5.1: False color microscope image of a B chip of mask 61 with the port
numbers indicating how the different VNA ports were connected.

stick setup detailed in chapter 4, connecting the 4 available VNA ports as
shown in 5.1 and operating the VNA using the settings detailed in table
4.1. The VNA is then used to obtain the scattering parameters of the sys-
tem Sy, containing the information about the aforementioned resonance
frequencies and coupling of the resonator. We extract these parameters us-
ing a Lorentzian lineshape model developed for transmission line resonators
[62]. It directly fits the scattering parameters with a fundamental resonance
frequency fy as well as loaded and external quality factors Q; and Q. In
turn these parameters tell us about the internal quality factor Q; through
é = é + é and the loss rate of the resonator given by x = & Depend-
ing on whether we measure in transmission or reflection, the exact form of
the Lorentzian is given by

i
Sin=1- % (5.1)
1 ‘JI_ZZQLT
/ Qe
1+ 21QL 0

where the angle ¢ accounts for a potential asymmetry in the lineshape as
detailed in [62].
5.1.1 Resonator Spectra

With the above we now discuss the measured spectra of the resonators. To
begin we look at the absolute reflection parameters obtained from measuring
the resonator of the B32 chip; |S33(f)|. Shown in figure 5.2, we can observe
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the reflection parameter over the full frequency range that was calibrated.
We observe two resonances: one at 5.5 GHz and another at the first integer
multiple of the fundamental frequency, 11 GHz. Note that there are also
some unexpected features in the reflection spectrum; these features originate
from the fact that the VNA is not calibrated with the sample placed onto the
dipstick, as they can also be seen at room temperature. However, they cannot
be fully taken out using a high temperature data set as their exact features
are slightly altered by temperature; we therefore ignore them as they do not
hinder the characterization.
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Figure 5.2: The reflection spectrum of the resonator of the B32 chip over the full
calibrated frequency range.

We subsequently investigated the resonances in more detail by zooming in
on the relevant frequency ranges as shown in the two panels of figure 5.3.
Plotted over the data (blue) is the fitted Lorentzian lineshape of equation
5.1 (red). From these fits we extract that the exact resonance frequencies are
given by fo = 5.814 GHz and f; = 11.63 GHz, with linewidths xy = 6.051
MHz and x; = 11.99 MHz respectively.

The measured values for the fundamental mode of all of the other the other
A and B chips are listed in table 5.1, as this is the mode the relevant mode
for our chip. While the fundamental frequency of all the designed A chips
is within 1% of the designed value, the B chips are up to 3% higher than de-
signed. The direct comparison between the A1l and the B32 chip gives some
insight into this: we see that the fundamental frequency of the B32 resonator
is around 15 MHz higher than the fundamental frequency of the A1l chip,
while both resonators are fabricated using the same design parameters. As
the A11 chip does not contain the qubit box and the flux lines we therefore
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attribute the frequency shift to the fact that the qubit box lowers the effective
capacitance of the resonator. Larger discrepancies can be seen between the
designed and measured xp, which has been attributed to the fact that the
computation of xy from the designed C, can still be further refined.

2.0
1.5t
1.0;
0.5t
0.0f

-05; (a) ]

0 1 1 L L L L
5.800 5.805 5.810 5.815 5.820 5.825 5.830
Frequency, v [GHZ]

Scattering Parameter, |S33] [dBm]
|

11.61 11.62 11.63 11.64 11.65
Frequency, v [GHZ]

Scattering Parameter, |S33] [dBm]

Figure 5.3: Panel (a) shows a fit of the fundamental resonance of the resonator of
the B32 chip, while panel (b) shows the fit of the first higher order mode.

5.1.2 Cross Coupling

We now discuss the scattering parameters obtained from measuring the
transmission between the different elements: through the transmission line
itself, between the transmission line and the resonator, between the trans-

63



5.1. Mask 61

Designed Designed
Chip fo (GjIrE)Iz) Ko (1\/}{}012) (I\%fz)
(GHz) (MHz)
All | 5.751 5.794 | 9.5 6.00 965
A42 | 6.242 6.282 | 9.5 6.87 915
B14 5.530 5.655 | 55.2 25.5 222
B21 6.011 6.152 | 50.1 36.3 170
B32 5.751 5812 | 9.5 6.04 962
B44 5.360 5.533 | 96.3 70.7 78.3
B51 5.833 6.017 | 86 85.5 70.4

Table 5.1: The determined fundamental frequencies fo, loaded quality factors Qpo
and linewidths kg = % of the resonators of the measured A and B chips compared
to their designed parameter values.

mission line and the flux line, and between the resonator and the flux line.
Given that the geometry of each of the B chips is equal we only performed
these measurements for the B32 chip, the general behaviour of which should
cover that of all the chips.

Figure 5.4a shows all the scattering parameters of the transmission line it-
self for the B32 chip. We do not observe the presence of the 5.5 GHz mode,
indicating that the transmission line is well decoupled from the resonator.
There are however some higher frequency features in reflection (for exam-
ple at 10.4 GHz), albeit not centered at the resonators; their origin is not
known. Moreover, one can observe that the transmission spectrum is not
flat; such trends will have to be adjusted for in transmission line measure-
ments involving the qubits.

Additionaly, figure 5.4b shows the scattering parameters of the transmission
between the resonator and the transmission line, where we chose to use port
1 for the transmission line as this port will be used as the input during the
qubit experiments. Here we do observe that there is weak transmission at
both 5.5 GHz and 11 GHz of -50 and -21 dB respectively, indicative of some
coupling between the transmission line and the resonator. It is however
small enough that it should not influence our experiments as it can always
be calibrated out when relevant. Moreover, investigation of the A chips
shows that this coupling is only present in the presence of the qubit box,
meaning that it is the qubit box that mediates the coupling.

Finally we discuss the transmission between the transmission line and the
flux line and the resonator and the flux line, again for the B32 chip. No
intended connection or coupling between the transmission line and the flux
line is fabricated, and as shown in figure 5.5(a) we also do not observe any,
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Scattering Parameter, |5, | [dBm]
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Figure 5.4: Panel (a) shows the scattering parameters of the transmission line (ports
1 and 2), while panel (b) shows the scattering parameters for the combined system
of the resonator (port 3) and the transmission line (port 1).

indicating that the two elements are well decoupled. The same scenario
exhibits different behaviour for the transmission between the resonator and
the flux line; here we do observe a small transmission of -52 dB between the
flux line and the resonator at 5.5 GHz as shown in figure 5.5(b), although
no such transmission is present at 11 GHz in contrast to what was observed
for the transmission line-resonator coupling. Importantly the coupling at
5.5 GHz is again small enough that it can be neglected in our experiments,
especially when considering that neither of these elements will be strongly
driven.
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Figure 5.5: Panel (a) shows the scattering parameters of the transmission line (port
1) and the flux line (port 4) system for chip B32, while panel (b) shows the scattering
parameters of the the resonator (port 2) and the flux line (port 4) system, also for
chip B32.

5.1.3 Chip B5

Based on the characterization discussed in the previous section we decided
that the B5 chips would be most suitable to use for our experiments involv-
ing the qubits. It has a center frequency around 1 GHz below the designed
qubit frequencies as well as a loss rate of 85 MHz, allowing us to tune the
decay rate of qubit 3 over a wide range of values via the Purcell effect dis-
cussed in chapter 2. In addition to this the B chips have been shown to
exhibit negligible cross couplings between the different components and do
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not have any unexpected spectral features in the frequency ranges relevant
for the qubits, establishing that they are suitable for our experiments.

5.2 Qubit System

At this stage the base chip has been chosen and the qubits have been de-
signed and fabricated onto the sample, resulting in the chip shown in figure
5.6 which is repeated for convenience. In this section we treat the charac-
terization of its properties using the cryogenic Blueforsl setup, determining
quantities such as the transition frequencies, driving rates, loss rates and
charging energies for each element. This is done using a number of differ-
ent tools introduced in chapter 2, such as magnetic flux dependence of the
qubit frequencies, scattering parameters, and power spectral densities, using
each of the lines connected to the sample.

Figure 5.6: A false color microscope image of the sample used for the experiments
in this thesis. Panel (a) shows the overall chip containing the transmission line,
the two flux lines, the resonator and the qubits, while panel (b) offers a zoomed in
picture of the qubit box.
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5.2.1 Magnetic Flux Dependence

We begin by determining the parameters of the undriven three qubit res-
onator system, ignoring the presence of noise and the losses induced by the
transmission line. As discussed in chapter 2, this system is governed by the
Hamiltonian

3
w,ata + +3)

j=1

:r\;ﬁ

Yoo s (57 +610)+ £y 25 015
k<j

(5.3)
where we have included all potential parasitic couplings between the ele-
ments. We initially focus on the determination of w;, Ji; and g;;; the tran-
sition frequencies and the coupling of the different elements. Determining
these parameters can be done using the magnetic flux dependence of the
qubit transition frequency. Assuming that the qubits are not completely
identical, performing spectroscopy of their resonance frequency as a func-
tion of flux will lead to distinct signatures for each qubit in the systems
transmission and reflection coefficients (equations 2.65 and 2.66).

To perform the spectroscopy we make use of three distinct sources of flux
present in our system that can all be varied individually. These are the
small superconducting coil, which is expected to act on all of the qubits in
a rather uniform fashion, and the two flux bias lines which act primarily on
the qubit they are nearest to. In practice each qubit will be affected by the
flux of any of these elements due to finite cross-coupling, and one wishes to
characterize these cross-couplings to gain individual control over the qubits.
For this we model the flux seen by each by each qubit in the following
way: each distinct flux generating element j is controlled by a voltage V;,
which is linearly related to the flux seen by the individual qubits through a
generalized form of mutual inductance M;; as previously discussed in the
context of flux noise in chapter 3. Note that in addition to the user generated
flux the model should also allow for a potential environmental offset ®,;, so
that ®; = }; M;;V; + ®,;. For our system of three qubits and three flux
generating elements this can be written as

D M1 My My Vi Dy
D | =My My My | (V2] + | P (5.4)
(O] Mz Mz Mz V3 D3

Combining this with the two level approximation for the Transmon from
chapter 2 the transition frequency of the ith qubit is then given by

7T —
w; ~ \/SECZ-E]i|cos (%mi* V4 CI)i) | — Eci (5.5)

where m;, denotes the ith row of the mutual inductance matrix M and V is
the aforementioned voltage vector.
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Given the above dependence on the flux, we vary each of the flux sources
individually and perform spectroscopy of the qubit resonances as a function
of the voltage applied. By fitting how the qubit frequencies respond to the
magnetic flux we can determine the values of M, and in turn it gives us an
estimate of the Hamiltonian parameters.

Figure 5.7 shows such a spectroscopic measurement through the transmis-
sion line, with a coherent microwave signal input into the transmission line
at port 1 and output at port 2. By changing the voltage applied to the coil
(and thereby the flux seen by each qubit) we can identify three distinct trajec-
tories that each follow equation 5.5. We then subsequently fit these curves
with the eigenvalues of equation 5.3 to determine the parameters; these fits
are the green semitransparent lines. Note that the spectrum of qubit 3 is
difficult to determine in this measurement. It is only visible when it is close
to resonance with qubits 1 and 2 as only they couple to the transmission line.
In order to follow qubit 3 all the way up to its maximal frequency (the sweet
spot) we measure its spectrum through the resonator in reflection instead
(port 4 functions as both input and output), in which case qubits 1 and 2 are
difficult to measure.

While such a general flux sweep is a good starting point to obtain estimates
for all of the parameters, more accurate determination requires a tailored
approach. For example, My; and ®,; are uniquely determined by measuring
the first and the second sweet spot of qubit 1 due to the periodicity of the
Josephson energy, and in a similar way one can accurately determine the
entire matrix M element by element. The determined matrix is given in
table 5.2. It is in line with expectations, apart from the fact that the first flux
bias line (port 3, closest to qubit 1) has significant cross coupling to qubit
3, whereas the second flux line g)ort 5, closest to qubit 2) has much weaker
cross coupling. Quantitatively, 772 = —0.20 whereas AM/133 = —0.06; flux line
1 couples to qubit 3 more than three times as strongly as flux line 2 to qubit
3. The cause of this asymmetry is not understood as of yet, and while when
it comes to biasing the qubits it can be compensated for with the other flux
sources, the same does not hold for applying noise. As derived in Chapter
2, the noise applied to flux source j seen by qubit i is proportional to Ml]’
applying noise to flux line 1 will thus also affect qubit 3 to a non-negligible
degree. Future designs of the base chip (the B chips of mask 61) should aim
to investigate the cause of the cross coupling and improve on this.

Having determined M offers a new tool: it allows for individual control of
the qubits. Numerically inverting equation 5.5, we can numerically map out
qubit trajectories in flux space to create virtually any scenario. An example
of such a numerically generated trajectory is shown in figure 5.8, where
we performed spectroscopy through the transmission line for settings of V
(and thus of ®) for which the bare frequencies of qubits 1 and 2 would
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Figure 5.7: Magnetic flux dependence of the three qubits measured through the
transmission line. The applied coil voltage V1 is linearly proportional to the mag-

netic flux received by each qubit. The green lines indicate a fit with the eigenvalues
of the Hamiltonian of the system.

M;i/ Do[V ] il i2 i3
1j 0.135 | 0.159 | 0.023
2j 0.158 | -0.058 | -0.191
3j 0.093 | -0.032 | 0.012

Table 5.2: Mutual inductance parameters in terms of number of flux quanta for all
three voltage sources (columns) and qubits (rows).

intersect each other while keeping qubit 3 far detuned. These trajectories
are indicated by white dashed lines. Due to the presence of finite qubit-
qubit coupling Ji» the trajectories anticross; they hybridize into the bright
and the dark mode derived in chapter 2, with the bright mode being much
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more pronounced than the dark mode that almost completely vanishes from
the measurement. Not only does this allow us to study the hybridization
in more detail as discussed at the end of this chapter, it also allow us to
determine [, with the highest possible accuracy. We find it to be 94 MHz
when qubits 1 and 2 are at their maximal frequencies. By performing similar
measurements we then determine all of the coupling parameters.
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Figure 5.8: Anticrossing between qubits 1 and 2 which hybridize into the bright
dark modes, measured through the transmission line. The dashed lines indicate the
uncoupled frequencies of the qubits.

Special attention should be given to the determination of the resonator fre-
quency wy. It cannot be measured directly using the magnetic flux depen-
dence as its resonance frequency is independent of flux, and as previously
measured at 4 K it has a substantial loss rate x, which means that measuring
its absolute lineshape in reflection does not lead to any discernable signature
in our setup. Instead we measure its resonance frequency in phase using a
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phase reference; as discussed in chapter 4 we split the signal input into the
resonator into two, the first branch of which enters the cryostat and then
the resonator, while the other does not. We then compare the phase of the
signal output by the resonator to the second branch and from this we restore
the phase information of the spectroscopy measurement, which is much less
sensitive to having a large «, and allows us to determine w;.

Table 5.3 lists all of the determined parameters of the Hamiltonian (equa-
tion 5.3) at their maximal value, along with their designed or simulated
values which were discussed in chapter 3. The resonator frequency is the
exception here: we instead list the value determined during the dipstick
measurements discussed in the previous section. The listed values are all
determined with an accuracy of around 1 MHz, with the exception of ¢,
which has an accuracy of 100 kHz and g3, of which no signature was found
with a resolution of 200 kHz. Most parameters are in line with the designed
parameters, with especially [1, and g3, lower than simulated. In addition to
this w, has decreased compared to what was measured at 4 K. This can be
attributed to an increased effective effective permitivity ¢,¢¢ of the CPW due
to the lower temperature.

Parameter | Measured value/27 | Designed value/27
w1 6.948 GHz 6.8 GHz
wy 6.694 GHz 6.8 GHz
w3 7.271 GHz 6.8 GHz
wy 5.985 GHz 6.017 GHz
Ji2 94 MHz 120 MHz
J13 6 MHz 3.7 MHz
J23 37 MHz 38 MHz
S1r < 200 kHz 200 kHz
SQor 1 MHz 1.4 MHz
93r 77 MHz 110 MHz

Table 5.3: Measured and designed Hamiltonian parameters for all three qubits and
the resonator.

The qubit frequencies w; require further analysis in order to fully character-
ize them: they are determined by the charging energy Ec and the maximal
Josephson energy E;. These can be determined by using that the transmon is
not a pure two-level system; as discussed in chapter 2 there are other energy
states than the ¢ and e states used to define the two level system and the first
of these is the f level. For this level one can show that wy, ~ we; — Ec [39]
and this level can be made visible in spectroscopy by using relatively strong
driving rates: the ground state transmon can undergo a so called (g — f) /2
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transition in which two photons of energy wy,/2 = weg — Ec/2 excite the g
state into the f state. Comparing this transition frequency to the standard
g — e transition then allows one to determine Ec and through equation
5.5 Ej is then known as well. One can also determine the relative anhar-
monicity &, by comparing the two transition frequencies, repeated here for
convenience.

Table 5.4 lists all of these parameters for the three qubits at their maximal
frequencies, in which we observe that the charging energies are very close
together albeit somewhat offset from their simulated value, and that there
is a spread of around 10% between the Josephson energies which is in line
with expectations [63].

Qubit | Measured Ec | Designed Ec | Measured E; | Designed E; o
1 140 MHz 121 MHz 449 GHz 50 GHz | -0.020
2 142 MHz 120 MHz 41.1 GHz 50 GHz | -0.021
3 137 MHz 121 MHz 50.1 GHz 50 GHz | -0.019

Table 5.4: Transmon parameters for all three qubits.

5.2.2 Driving Rate

Having determined the qubit and resonator parameters as well as their cou-
plings, we now turn to the relation between the microwave signal input into
the transmission line at port 1 and the driving rate experienced by qubits 1
and 2, (01 5. In chapter 2 we discussed two measurement scenarios in which
the driving rate showed up: in the lineshape of a driven qubit (equation
2.69), and in its resonance fluorescence, in the form of the Mollow triplet
(equation 2.72. These equations were derived in the context of a single qubit
coupled to the transmission line, which is rather different than our coupled
system. However, using the flux sources available in the system we can
tune our qubits into a regime where this is effectively the case: detuning the
qubits from each other by several GHz essentially decouples them, allow-
ing us to use the formalism developed for single qubits, similar to how we
studied the bright and dark mode in the absence of qubit 3 in figure 5.8.

The above scenario thus allows us to study the lineshape and the resonance
fluorescence of the individual qubits. However, in the lineshape () and
¥+ = I — vy act in a rather similar way, essentially broadening the lineshape
and influencing its amplitude. The simultaneous determination of these
parameters is therefore troublesome. Moreover, at higher input powers the
qubit saturates, reducing the contrast of the lineshape significantly. The
resonance fluorescence does not suffer from these effects; the positions of
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the side peaks of the Mollow triplet are determined predominantly by Q). It
thus serves as a strong tool for characterizing the driving rate. Conversely,
it is not very suitable for determining parameters such as 7, 7, and 7
as these rely on the height of the center peak of the triplet, the measured
amplitude of which depends sensitively on the gain profile of our output;
we will thus characterize these parameters in a different way.

Returning to the driving rate, we begin by isolating qubits 1 and 2 at the fre-
quencies of interest using M. In our main experiments (discussed in chapter
6) qubits 1 and 2 are hybridized into the bright and dark mode, with their
bare frequencies around 6.35 GHz. We therefore characterize their driving
rate at this frequency. This is done by first measuring the qubit lineshape in
spectroscopy (through the transmission line) and then measuring its power
spectral density, by driving the qubit on resonance and measuring its power
spectral density, also through the transmission line. We then measures the
resulting resonance fluorescence as a function of power and simultaniously
fit them with an analytic expression of the Mollow triplet (see [28]).

The resulting fits are shown in figure 5.9a, where the position of the side
peaks is governed by (). Note that in these figures we used some knowledge
about parameters yet to be characterized: the amplitude of the triplets is
reduced from its maximal value of 0.5, set by the fact that we look at a single
output of the transmission line, due to finite 4 and <,,. While needed for
the correct vertical scaling of the spectrum, they do not influence the position
of the side peaks.

The determined values of () can then subsequently be fit to the input mi-
crowave power set on the signal generator (); V/P. As shown in figure
5.9b such proportionality is well reproduced, allowing us to tune (). Sim-
ilar measurements were performed for qubit 2, and we find that the rele-
vant constants of proportionality are given by a; = 36.9 GHz/+/Watt and
a; = 32.0 GHz/+/Watt. Note that these constants of proportionality are a
function of the attenuation in the input line and the loss rates of the qubits,
where the former is identical for both. The discrepancy between the two
values is thus due to a difference in their loss rates, which we determine in
the next section.

5.2.3 Loss Rate

The next parameter we wish to determine is the loss rate I' = 7, + ,,,. Hav-
ing characterized () we are free to use the lineshape to determine ,, but de-
termining <y, in this way is again problematic: it is almost indistuingishable
from 4. In order to circumvent this problem we follow the method of [52]
and use that 7 is expected to be dominated by its flux noise contribution,

2
for which we derived in chapter 2 that 7y, « (ag‘)q‘;g) . If we thus measure
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Figure 5.9: Resonance fluorescence measured through the transmission line in the
scenario where qubit 1 is at 6.35 GHz and the other two qubits are far detuned. The
solid curves denote fits with an analytic expression for the Mollow triplet.

the qubit lineshape at its sweet spot we can approximate that v, = 0 and
determine ,,,. Subsequent determination of 4 at some other frequency can
then be done by fixing ,,, to that determined value; this is covered in the
next section.

When determining <,, at the maximal qubit frequency it is important to
consider that 7, (and by extension Q) are frequency dependent. While from
basic theoretical considerations one can find that 7, wezg, the fact that
the transmission line does not have a flat density of states means that one
cannot assume this relationship to hold [52]. In order to properly determine
Ynr one thus has to recalibrate () at the maximal qubit transition frequency.
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Having done so, figure 5.10 shows a measurement of the lineshape of qubit
2 at its sweet spot for various powers along with their fits. We observe
that the lineshapes saturate for higher driving powers as is expected; a two
level system can absorb only one photon at a time. Moreover we find that
v = 5.48 MHz and that v,, = 210 kHz. Table 5.5 lists these parameters for
all three of the qubits determined in the same way, where the measurements
for qubit 3 were done in reflection via the resonator. We find that qubits 1
and 2 have similar radiative loss rates, indicative of the fact that they couple
to the transmission line with similar strengths.
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Figure 5.10: Lineshapes for qubit 2 at its sweet spot as a function of driving rate.

Qubit Ve /27T | Ynr /27
1 5.83 MHz | 390 kHz
2 5.48 MHz | 210 kHz
3 325 kHz | 120 kHz

Table 5.5: The radiative and nonradiative loss rates for all three qubits as measured
at their maximal frequencies.

However, in table 5.5 we see that qubit 3 has a much lower loss rate than the
other two qubits. This is as expected; as discussed in chapter 2 the mecha-
nism governing its radiative losses is not the coupling to the transmission
line but the coupling to the resonator, via the Purcell effect. We discussed
that when the two elements are on resonance the loss rate of qubit 3 is equal
to half the loss rate of the resonator x, while at large detunings it decreases
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like é, explaining the low value measured at the sweet spot of qubit 3.
Given the above, we measured 7,3 as a function of detuning in order to get
an estimate of x at cryogenic temperatures, the results of which are shown
in figure 5.11. By fitting the loss rates with the analytic expression for the
Purcell effect (equation 2.39) and keeping w, and g3, fixed, we found that
x = 51.2 MHz, down from 85.5 MHz at 4 K. A significant decrease, we again
attribute it to the higher effective permitivity of the CPW at cryogenic tem-
peratures compared to 4 K. Note that ideally one would have more data in
the region close to the resonator frequency, the qubit lineshapes become so
distorted that the determination becomes troublesome.
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Figure 5.11: The loss rate of qubit 3 as a function of detuning from the resonator, fit
with the analytic expression for the Purcell effect.

5.2.4 Pure Dephasing

The last system parameter to be characterized is the pure dephasing rate 7.
Having fixed all other parameters, it can be found from the single qubit line-
shapes used extensively in the previous section. However, we derived that

0Weg

2
Yo ( & ) ; its determination is therefore frequency dependent. While the

dephasing rate as a function of qubit frequency thus requires measurements
at many different bias points, the experiments discussed in the next chapter
are done with the qubits confined to a region of about 100 MHz around 6.35
GHz where the variation in 7, is small. We therefore determine it at 6.35
GHz and assume it to be independent of frequency for the scenario’s of inter-
est. However, it is not independent of every factor; as discussed in chapter
3 we intend to control the flux noise environment for the qubits, governed
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by noise with a specific distribution and power spectral density. Varying the
properties of this noise changes -y, significantly, as we now characterize.

More specifically, we measure the lineshapes of the qubits while applying
the white noise designed in chapter 3. Shown and discussed in figure 3.8,
it is white up to 300 MHz after which it exponentially decays to 0 at 350
MHz while it has a base amplitude of Sx = 0.1 V2/Hz. In order to vary
the noise power this amplitude is varied in small steps with AWG, while
larger steps are made by attenuating it with either 3 dB or 8 dB. Moreover,
the noise is only applied to flux line 2 and therefore predominantly to qubit
2, the choice for which is motivated by the relatively strong cross coupling
between flux line 1 and qubit 3, the consequences of which we expand upon
in the next chapter. Note that in order to fit the lineshapes we also had to
determine the radiative loss rates of qubits 1 and 2 at 6.34 GHz using the
methods introduced in the previous section where we found that ,; = 3.34
MHz and 1,2 = 3.30 MHz respectively.

Figure 5.12a shows the measured lineshape of qubit 2 as a function of noise
power applied to flux line 2, fit by keeping all parameters other than v,
fixed to their determined values. The lineshape becomes broader and more
shallow as a function of dephasing rate, which can be understood through
the fact that the noise essentially causes the qubit frequency to rapidly oscil-
late. This causes an effective spread in its center frequency, broadening the
mode, and making it so so that a fixed microwave drive is never fully on
resonance, making it more shallow.

Panel b shows the extracted relationship between the dephasing rate and the
applied noise power in terms of its amplitude before it enters the cryostat.
As derived in appendix A we find a linear relationship between the noise
amplitude and the dephasing rate of the form 7y = a + bSx; more specif-
ically we find that a, = 450 kHz is the dephasing rate of qubit 2 with no
noise applied, while b, = 1900 kHz?/V?2. In a similar way we characterize
the effect of the noise applied to flux line 2 on qubits 1 and 3, as given in
table 5.6. It can be seen that the coupling to these qubits is indeed much
weaker as was expected; at the highest applied noise power qubit 3 has a
dephasing rate of only 1.1 MHz which should not influence the experiments
by a significant amount. However, if one were to apply an equal amount
of noise to flux line 1 the resulting dephasing would be six times higher as
seen from table 5.2. Observing the effect of vy = 3 MHz on the lineshape of
qubit 2 in 5.12a illustrates that vy, = 6 MHz would affect qubit 3 significantly,
which is why we choose to apply the noise only to flux line 2.

5.2.5 Bright and Dark Basis

In addition to the fact that applying noise on flux line 1 would dephase
qubit 3, we now argue that there is also no physical reason for why we
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Figure 5.12: Panel (a): Lineshapes for qubit 2 isolated at 6.34 GHz as a function of
applied noise power. Panel (b): Extracted linear dependence of the pure dephasing
Y of qubit 2 on the applied noise power.

should apply noise to both flux lines. It is evident that in the scenario where
one considers the performance of qubits 1 and 2 separately, applying noise
to only a single flux line causes a significant asymmetry in the system, es-
sentially leaving qubit 1 unaffected. However, in the experiments discussed
in the next section we do not consider such scenarios: we only look at the
reduced system of qubit 2 and qubit 3, or at the three qubit system in which
qubits 1 and 2 are fully hybridized into the bright and dark mode. Treated
in chapter 2, we described how in this basis the bright and dark mode ex-
perience a pure dephasing rate equal to the mean of the individual qubit
dephasing rates. Disregarding the small cross coupling between flux line 2
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Qubit a b
1 380 kHz | 6.28 kHz?/V?
2 450 kHz | 1900 kHz?/V?
3 710 kHz | 5.28 kHz?/V?

Table 5.6: The scaling parameters vy = a + bSx of the qubits at 6.34 GHz as
determined for 300 MHz bandwidth white noise with Sy = 0.1V?/Hz applied to
flux line 2.

and qubit 1, the pure dephasing rate of the bright and dark mode is thus
given by 745y = 7. Working in this basis there is thus no distinction
between applying noise to both qubits or to the individual qubits.

Motivated by the fact that we work in the bright and dark mode basis in
the next chapter, we also performed all the above characterization steps for
the bright and the dark mode. This was achieved by tuning qubits 1 and
2 on resonance at 6.34 GHz, resulting in the spectrum shown in figure 5.13.
In line with expectations, one observes the narrow and shallow dark mode
(indicative of its extremely weak coupling to the transmission line) and the
much broader and deeper bright mode. Assuming that the bright and dark
mode had a nonradiative loss rate v,,(3p} = M as predicted by the
theory discussed in chapter 2 we found that v, = 6 09 MHz, which in line
with the y,1 + 7,2 = 6.6 MHz expected from theory. For the dark mode we
find y,p = 120 kHz; its loss rate is thus dominated by -,,. Note that the
reason for the nonzero radiative losses might be that the two qubits do not
have identical properties, or that the hybridization is not perfect. Regardless
of this we find that FD = 0.08; the loss rate of the dark mode is thus less
than 10% of that of the bright mode.

Finally we also characterized the effect of noise applied to flux line 2: for the
bright mode we found a base dephasing rate of ag = 590 kHz and a noise
scaling parameter of by = 924 kHz?/V?2. This is slightly lower than one half
of by, which might again be explained by the unequal properties of qubits
1 and 2. Such characterization was not possible for the bright mode; due to
its marginal -y, any applied noise makes its lineshape almost impossible to
measure. We will thus assume that yyp = 74D, as predicted by theory.

With the above we have determined the last parameters of the sample, fully
characterizing all of its relevant properties. What remains now is using the
knowledge of these parameters and the degrees of freedom available to us in
order to create the scenario’s relevant to the biological scenario’s discussed
in the introduction, which is the subject of the next chapter.
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through the transmission line.
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Chapter 6

Results & Discussion

Having fully characterized the system, we are now able to perform several
experiments related to noise assisted transport. We do this in two distinct
scenarios: in the first we consider only qubits 2 and 3, resulting in the two
site model discussed in chapter 1, while in the second scenario we introduce
qubit 1 into the picture and fully hybridize qubits 1 and 2 into the bright
and dark mode. In both of these scenario’s we then expose qubit 2 to noise
of a certain power spectral density and explore how the energy transported
from the transmission line to the resonator evolves.

Experimentally we set up the scenario’s as follows: we first pick a suitable
flux bias point in order to obtain a certain hierarchy of energy levels in
the system, of which we then coherently excite the highest energy mode
via the transmission line. Simultaneously we apply a noise signal with a
specific amplitude to flux line 2 and measure the system’s incoherent emis-
sion spectrum in the form of a power spectral density through the resonator
output. This power spectral density is integrated to obtain a power, which
is our figure of merit for how well radiation is transported. The above is
then repeated for different noise amplitudes and power spectral densities as
designed in chapter 3.

6.1 White Noise Environment

We begin our experiments in the setting of a white noise environment, a
scenario well studied in literature and also experimentally explored in the
classical setups discussed in chapter 1. While research has shown that the
environment of FMO consists of highly structured noise, such investigations
are still important in order to establish the general effect of noise on the
transport, while potentially giving insight into an underlying mechanism.

82



6.1. White Noise Environment

6.1.1 Two Qubit Scenario

We start with the discussion of the two qubit scenario, depicted in figure
6.1(a). In this scenario qubit 2 is coherently excited via the transmission
line, acting as the pigment site closest to the antenna where the excitation
enters the system. At the frequency used in this setup it has a loss rate of
I'y/2m = 3.5 MHz and it couples to qubit 3 with J»3/27t = 33 MHz, where
qubit 3 acts as the site closest to the reaction center. Its excitations are then
transfered into the reaction center via the Purcell effect mediated by their
coupling g3,/27m = 71 MHz. In addition to this white noise is applied to
flux line 2, playing the role of a memoryless environment.

Aside from the system parameters fixed by design, the dynamics of the sce-
nario are governed by a number of variables. First one has the drive strength
(), the rate at which qubit 2 is excited, which sets the excitations incoming
from the antenna complex per unit time. One also has the detuning be-
tween qubits 2 and 3 A3, essentially governing how effective their coupling
is. The detuning between qubit 3 and the resonator A3, then sets the loss
rate of qubit 3, governing how many excitations can be transferred to the re-
action center per unit time. Finally, one has the noise PSD amplitude S¢ (f),
governing the effective coupling between the environment and qubit 2. In
order to simplify the situation we fix two of these parameters: (), /27t = 10
MHz and Az, = 250 MHz, resulting in I'3 /271 = 3.4 MHz. We then study the
power spectral density and the power output at the resonator as a function
of noise PSD amplitude S¢ for several different detunings Ajs.

Figure 6.1(b) shows the measured PSD for A3 = 0 as a function of dephas-
ing rate of qubit 2. Note that at this detuning qubits 2 and 3 fully hybridize
into two new modes that couple equally to the resonator and the transmis-
sion line and are energetically separated by 2]»3; we refer to them as H1
and H2. We observe that at no noise power applied all of the resonance
fluorescence is located at the frequency of H2, which is where the coherent
excitation is applied. This can be understood through the quantum localiza-
tion effect introduced in chapter 1; the energy level mismatch between the
two sites leads to a negligible overlap with H1. However, with increased
noise power we observe that some of the excitations are transferred to H1;
the noise effectively opens a channel between the two states. At even higher
noise powers we observe that the fluorescence at both modes keeps decreas-
ing, which can be understood through the quantum Zeno effect (QZE).

Figure 6.1(c) shows the same measurements for the scenario in which the
two qubits are detuned: Az = 50 MHz. At this detuning the qubits are
less hybridized and behave more like the individual qubits, which is also
reflected in the measurements. At no applied noise power all of the fluores-
cence is again localized at the frequency of qubit 2, but the overall amplitude
is smaller than in the zero detuning case. This is because at this detuning
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Figure 6.1: (a) Energy level diagram of the two qubit scenario, indicating the rele-
vant parameters and variables. Qubit 2 is driven via the transmission line (port 1)
and the output of the system is measured through the resonator (port 4). (b) Power
spectral density measurements of in the Aoz = 0 as a function dephasing rate. The
gray lines indicate the positions of hybridized modes H1 and H2. (c) Power spectral
density measurements of in the Ay3 = 50 MHz case as a function dephasing rate.
The gray lines indicate the positions of qubits Q2 and Q3. (d) Integrated power
spectral densities of both A3 cases as a function of noise power applied.

the effective coupling between qubits 2 and 3 is weaker, and by extension so
is the coupling from qubit 2 to the resonator. This behaviour again changes
at higher noise powers: we observe more fluorescence at qubit 3 with in-
creasing S¢, indicative of the noise opening a channel facilitating transport
between the two modes. At even higher noise powers we then once more
observe that all of the amplitudes again go down due to the QZE.

In order to quantify the above trends we subsequently integrated the mea-
sured power spectral densities for each applied noise power, as depicted
in figure 6.1d. Here we observe an interesting difference between the two
cases: for Ayz = 0 the output power starts from a maximum and smoothly
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6.1. White Noise Environment

decreases as a function of noise power, despite excitations being transported
from H2 to H1 in the phase between the initial localization and the QZE.
This is because such transport leads to no benefits: H2 and H1 couple to the
resonator equally. For the A3 = 50 MHz case the observed trend is differ-
ent: the transported power starts off lower than the other scenario due to the
localization at qubit 2, but for moderate noise powers the output power in-
creases and even overtakes the first scenario. We thus observe noise assisted
transport. At higher noise powers the output power again decreases, in line
with the expected QZE effect.

6.1.2 Three Qubit Scenario

The above has been our first experimental verification of noise assisted trans-
port as seen in the simple two site system. We now move on to the three
qubit scenario, depicted in figure 6.2(a). In this scenario qubits 1 and 2 are
fully hybridized into the bright and dark modes, whose transition frequen-
cies are split by 2J12/27m = 175 MHz. As discussed before the bright mode
functions as a superradiant absorber and is thus essentially the site closest
to the antenna, while the dark mode is close to uncoupled from the transmis-
sion line. It functions as an intermediate site between the initial and the final
site to which it couples with Jp3/27m = 19 MHz, the role of which is again
played by qubit 3. In addition to the above noise of amplitude S¢ is again
applied to flux line 2, playing the role of the fluctuating environment for
both the bright and the dark mode which couple to it with half the strength
of the individual qubits.

The dynamics of this scenario are governed by similar parameters as the
previous one: the bright mode is excited with (), the detuning between the
dark mode and qubit 3 is given by Apz, the detuning between the resonator
and qubit 3 is given by A3, and the noise amplitude is given by S¢, where its
effect on the bright and dark mode is approximately half of its effect on qubit
2 alone. We again fix two of these parameters: (25 /27t = 15 MHz (chosen by
using the same input power as in the two qubit experiment) and Az, = 200
MHz, resulting in a slightly increased I';/27r = 4.6 MHz. We then again
study the power spectral density and the power output at the resonator
as a function of noise PSD amplitude S¢ for several different detunings
Ay3. However, it is important to note that we do not study this scenario for
explicit comparison to the two qubit case: we study it due to its cascading
energy level structure, a reduced version of what is experimentally observed
for FMO.

Similar to the two qubit scenario, figure 6.2(b) shows measurements of the
PSD as a function of dephasing rate for Aps = 0. At this detuning the
dark mode and qubit 3 fully hybridize into two new modes that couple
equally to the resonator, and they are energetically separated by 2]pz. We
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Figure 6.2: (a) Energy level diagram of the three qubit scenario, indicating the
relevant parameters and variables. The bright mode is driven via the transmission
line (port 1) and the output of the system is measured through the resonator (port
4). (b) Power spectral density measurements of in the Ap3 = 0 case as a function
dephasing rate. The gray lines indicate the positions of hybridized modes H1 and
H2 as well as the bright mode B. (c) Power spectral density measurements of in
the Aps = 60 MHz case s a function dephasing rate. The gray lines indicate the
positions of qubit 3 Q3, dark mode D, and bright mode B. (d) Integrated power
spectral densities of both Aps cases as a function of noise power applied.

again refer to them as H1 and H2. We observe that at no noise power
applied no fluorescence is detected at all; only the bright mode is excited
and at this large detuning it is effectively uncoupled from the resonator.
The excitations are thus again localized away from the reaction center. With
increased noise power we observe fluorescence at the frequencies of both
hybridized modes; the noise thus again opens a channel between the bright
mode and the two hybridized modes, not unlike the A3 = 50 MHz scenario.
The noise thus successfully assists transport through this cascaded network.
At higher noise powers we observe that the amplitude of the fluorescence
again decreases, in line with the QZE. However, it also appears to be located
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more in the upper hybridized mode H2; this might be attributed to a slightly
imperfect hybridization between the dark mode and qubit 3.

6.2(c) shows similar measurements for the scenario in which the dark mode
and qubit 3 are are detuned: Aps = 60 MHz. At this detuning the modes
are again much less hybridized and behave more like the individual qubits.
At no applied noise power we once more observe no fluorescence, in line
with localization at the bright mode. For increased noise powers we initially
observe fluorescence mostly at the dark mode, then at both at the dark mode
and qubit 3, and for higher noise powers only at qubit 3. The noise thus
successfully assists transport from the bright mode to qubit 3, potentially
with the dark mode as an intermediate site. At even higher noise powers we
then once more observe the QZE.

We again integrated the measured power spectral densities for each applied
noise power, as depicted in figure 6.2(d). Here we observe that the Apz = 0
case behaves not unlike the Ay; = 50 MHz case. It starts from no out-
put power and increasing to a maximum at moderate noise powers, before
smoothly decreasing due to the QZE. It is another instance of noise assisted
transport. Interesting is the comparison to the Apz = 60 MHz case: it ex-
hibits the same overall trend, with a maximum at higher noise powers. This
can be explained by the larger energy gap that needs to be bridged between
the bright state and qubit 3. Moreover, while its maximal power is lower
than for the Apz = 0 case it does eventually overtake it, leading to slightly
higher powers. These results are interesting for two reasons: first it shows
that a relatively large energy gap Aps can be bridged with the assistance of
noise, and in addition to that it shows that the energy level of the interme-
diate stage could theoretically be tuned to optimize the transport at a fixed
noise power.

6.2 Phonon Antenna Mechanism

In the previous section we observed noise assisted transport both in the two
qubit and the three qubit scenario. At this stage it is however not clear how
the noise facilitates this transport; from the measurements it appears as if it
induces transitions between detuned states, but such a mechanism is not ob-
vious from the interaction with a white noise bath. Moreover, the phononic
bath of FMO is also not white, but highly structured: its PSD consists of a
number of Lorentzian peaks at different frequencies. As discussed in chap-
ter 1 these peaks are one of the proposed mechanisms behind the transport,
described in a framework known as the phonon antenna mechanism. The
concept is that sites detuned by A are sensitive to features in the power spec-
tral density at this frequency, and that the energy level structure of FMO
might have evolved to benefit from these peaks.
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In order to experimentally investigate this mechanism we do the opposite of
the above: we fix the frequencies of the qubits and vary the center frequency
Lorentzian power spectral density while measuring the energy transported
through the system.

6.2.1 Two Qubit Scenario

We begin by studying this in the two qubit scenario depicted in figure 6.1(a),
using the same parameters as in the white noise experiment. Figure 6.3(a)
shows the result of such a measurement for Ay; = 195 MHz, where we
varied the center frequency of fixed amplitude Lorentzian PSD noise with a
full width at half maximum (FWHM) of 10 MHz, applied to flux line 2. We
observe exactly what is predicted by the phonon antenna mechanism: the
transport is maximal when the center frequency of the noise corresponds
to Ap3. This offers a possible explanation for how the white noise bath
facilitates the transport, as it also has frequency components at Aps.

We subsequently investigated the dependence of the transport on the ampli-
tude of a Lorentzian PSD centered at A3, shown in figure 6.3(b) for dr3 = 85
and 195 MHz. Here we observe similar behaviour as for the white noise
measurements, with the three regimes of quantum localization, noise as-
sisted transport and the quantum Zeno effect. Interesting is the comparison
between the two detunings: we find that in order to bridge the larger energy
gap stronger noise amplitudes are required, but that ultimately even higher
transport powers can be achieved while also maintaining powers close to
its maximum value for a much larger range of noise amplitudes. Further
measurements could give insight into this mechanism.

The comparison with the powers measured for the white noise scenario (fig-
ure 6.1) is also of interest: we find that even for this high detuning between
the qubits equivalent if not better transport powers can be achieved. This can
be understood through the fact that the Lorentzian power spectral density
only contains components at a beneficial frequency, whereas the white noise
contains a large bandwidth of noise that only leads to detrimental dephas-
ing of the system. Note however that we cannot quantify if the maximum is
achieved at a similar noise power, as two different metrics are used.

6.2.2 Three Qubit Scenario

We subsequently study the same concepts in the three qubit setup depicted
in figure 6.2(a). We again begin by studying the transport as a function of the
Lorentzian noise power spectral density center frequency, shown in figure
6.4(a) for Apr = 70 MHz. In line with the two qubit experiment, we observe
maxima in the transport when the power spectral density is centered at the
frequency of one of the modes. Specifically, we observe a local maximum at
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Figure 6.3: (a) Energy transport in the two site system for A3 = 195 MHz as a
function of the center frequency of the Lorentzian power spectral density of the ap-
plied noise. (b) Energy transport for the two site system for two different detunings
Ap3 as a function of the amplitude of the Lorentzian power spectral density noise,
centered at As.

the detuning between the bright mode and the dark mode 2];, = 175 MHz,
while we find a global maximum at the detuning between the bright mode
and qubit 3: Agz = 245 MHz. It is not surprising that this transport channel
is more efficient than through the dark mode; as Apj is significant compared
to Jps = 19 MHz the dark mode is essentially uncoupled from the resonator
and without any frequency components around Aps the noise cannot assist
transport from the dark mode to qubit 3 in order to bridge this energy gap.
These measurements thus provide a strong indication of how sensitive the
transport is to the structure of the enviroment.

In figure 6.4(b) we subsequently study the Lorentzian amplitude depen-
dence of the transport for a noise PSD centered at Ag3, where we once again
observe all three phases of noise assisted transport. Moreover, its compar-
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ison to figure 6.2 shows that the Lorentzian noise power spectral density
leads to a maximal transport that is more than twice as high as what is
achieved with white noise, verifying that a structured noise environment
can lead to significant improvements in transport.
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Figure 6.4: (a) Energy transport in the three site system for Aps = 75 MHz as
a function of the center frequency of the Lorentzian power spectral density of the
applied noise. (b) Energy transport for the three site system as a function of the
amplitude of the Lorentzian power spectral density noise, centered at Ags. The dark
mode and qubit 3 are indicated with gray dashed lines.

6.3 Remaining Measurements

At this stage we have covered the experiments performed during this thesis.
However, it should be noted that the project itself has not been concluded:
there are still several measurements of interest remaining that can be done
without any adjustments to the setup. The simplest of these is performing
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the above experiments at a number of other detunings Aj; in order to observe
trends in the dependence of the transport on this disorder. In addition to
this we intend to explicitly compare our results to theoretical simulations of
the system.

A more involved measurement we aim to do is to study the three qubit
network in the presence of even more structured noise, in the form of a
power spectral density of multiple Lorentzian peaks centered at more than
a single transition. An example of this would be a three peaked structure,
with Lorentzians at Agp, Aps and Apz. As this is reminiscent of what is
observed in the environment of FMO, it could provide insight into whether
a cascading network of site levels can be used to optimize transport in such
an environment, making use of all frequency components available.

Furthermore, at this stage we have only studied the energy successfully
transported through the system, neglecting any photons re-emitted into the
transmission line by qubits 1 and 2. In a subsequent set of measurements we
aim to characterize these losses so that one can define an actual efficiency
for our system, given in terms of photons successfully transported from the
transmission line to the resonator per photon absorbed by the qubits. This
is equivalent to the internal quantum efficiency of solar cells and it is essen-
tially the figure of merit for the performance of an FMO-type structure.

In the near future a number of more complicated measurements could also
be performed with this setup or a slight variation of it, however these will
be discussed in the outlook of the next chapter.
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Chapter 7

Conclusions & QOutlook

In this thesis we have studied a number of concepts. We began with a
general treatment of the literature surrounding light-harvesting structures
found in nature, focusing on the protein-pigment complex of green sulfur
bacteria known as the Fenna-Matthews-Olson complex (FMO). A topic of
much recent interest, it is able to transport excitations from its antenna com-
plex to its reaction center with near 100% efficiency. In 2007 research by
Fleming et al. found evidence for quantum coherences in this transport,
indicating that it might be quantum mechanics that underlies these high ef-
ficiencies. Subsequent work has focused on researching how such quantum
coherences might persist even in room temperature conditions, and they
found that the highly structured noise environment of FMO might hold the
key to explaining these phenomena.

However, dealing with such open quantum systems of many interacting
degrees of freedom has proven intractable on modern classical computers,
inspiring Mostame et al. to propose exploring such a system in an analog
quantum simulator. They proposed to do so in the superconducting archi-
tecture due to its high degree of parameter control, using a number of qubits
coupled to an environment of quantum harmonic oscillators to recreate the
structure of FMO.

In this thesis we have explored a variant of such a system, using the super-
conducting architecture to create a network of three transmon qubits cou-
pled to coplanar waveguides in order to mimic the transport of excitations
from an antenna complex to a reaction center in the presence of a noise
environment. Importantly this noise environment was not formed by a col-
lection of harmonic oscillators but instead by a time varying magnetic flux.
This allowed us to study the system in the classical noise approximation
known as the Haken-Strobl-Reinker model, a high temperature variant of
the quantum bath proposed.
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We began the thesis with a treatment of the theory governing the supercon-
ducting architecture in chapter 2, after which we discussed the design and
fabrication considerations considered in making such a system in chapter
3. This system was then studied in the experimental setup detailed in chap-
ter 4 and fully characterized as discussed in chapter 5. We found that the
designed Hamiltonian parameters were successfully achieved with a high
degree of precision, and that many of the variable parameters could be ac-
curately tuned to explore different scenarios.

The first of these scenarios was a two site model consisting of qubits 2 and
3. Here we studied the transport from the transmission line to the resonator
through the qubits as a function of dephasing induced by a white noise en-
vironment, in which we showed the first experimental verification of noise
assisted transport in a network of quantum mechanical elements. This phe-
nomena was then also observed in the more complicated geometry of three
different sites.

However, the noise environment of FMO has been found to be highly struc-
tured, in contrast to the explored white noise environment. Following the
concept of the theoretical phonon antenna mechanism we subsequently ex-
plored transport through the system in the presence of a noise environment
that had a Lorentzian power spectral density, reminiscent of the peaked fea-
tures of the FMO environment. Here we showed that such peaked power
spectral densities indeed lead to an increased transport efficiency when they
are centered at the energy mismatch between two sites, experimentally ver-
ifying the validity of the phonon antenna mechanism. Furthermore it il-
lustrates a mechanism for understanding how a typically detrimental noise
environment can instead lead to enhanced transport, giving insight into how
FMO might be able to achieve its remarkable efficiencies.

As discussed at the end of chapter 6 we have not yet exhausted all scenarios
of interest that can be studied with the current setup, as several more white
noise and Lorentzian power spectral density scenarios can be explored in
order to gain further insight into the system. However, we also propose a
number of follow up experiments that can be explored in such a system in
the near future. A major open question in the literature is whether such
noise assisted transport can also occur in the presence of incoherent excita-
tions, such as those that drive actual photosynthesis. Up to now we have not
explored such physics as we excited our qubits with a coherent microwave
drive. However, it is well within the capabilities of the experimental setup
to instead drive the qubits incoherently, giving insight into such physics.

Furthermore we have not touched upon coherences in the system or their
role in the transport itself. Although we known the system studied in this
thesis is fundamentally capable of hosting such coherences, their quantifica-
tion at different stages of transport is not obvious. One way to look into this
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would be by studying photon statistics at the output of the resonator, provid-
ing a way to quantify the non-classical properties of the output as a function
of noise environment. These measurements are also well established in this
group and could be performed in the same setup.

Yet another such scenario would be exploring the single photon regime of
our system. As of now we have looked at the transport for (); ~ I';, where
the driving rate was roughly equal to the loss rate of the qubits, but one can
instead imagine lowering the driving rate such that only a single excitation
is present in the system at a time, which is thought to be the case for FMO
due to the low light environment green sulfur bacteria live in. Such a mea-
surement is also readily explored in this setup by introducing parametric
amplifiers to increase the signal strength measured at the resonator output

Finally one can think about adjusting the topology of the system, introduc-
ing the proposed harmonic oscillators to simulate the effect of a quantum
bath and eventually scaling up the system to all eight sites of FMO, replicat-
ing the full system. While experimentally challenging, the superconducting
architecture used in this thesis forms no obstacles in doing so due to its
scalability and high degree of parameter control.
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Appendix A

The Relationship Between a Phononic
Bath and Classical noise

In chapter 1 we introduced how the Hamiltonian of the FMO complex is
typically described by the independent boson model:

N ) ) )
+Y Y] (a7 + 2 +1/2)
=i 1

N

. 1 R . .
Hror = 5 Z; [8]'0'2,]‘ + kZV]k (0']%0']( + U'I:FO'])
= >]

(A1)
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+

X ROE,
Uz [Zxﬂ (“z + ”l)
1
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We then went on to motivate that we do not study a system of this form in
this thesis due to several experimental considerations, such as the physical
size of the harmonic resonators proposed to simulate the above bath. The
suggested alternative was studying the system in the classical noise approx-
imation, where the quantum environment is replaced by time-dependent
fluctuations of transition energies in the Haken-Strobl-Reineker (HSR) model.
In this model Hr; is replaced by the time dependent Hamiltonian

1Y . e Aia
H(t) = 5 Y | (ej+0¢i(1) 02+ Y Vi ((7].*(7;( + a,:raj)] (A2)
j=1 k>j
where all of the bath dynamics are now contained in the (classical) fluctuat-
ing transition energy term Je;(t).

As noted in the main text, at first sight this Hamiltonian appears to contain
much less complexity than the originally proposed quantum bath. However,
in this appendix we now derive that these two models can be seen as equiv-
alent in the high temperature limit kgT > w; by choice of the proper time
varying signal governing de;(t). To do so we will illustrate how this is done
with the reduced system of a single site in terms of a qubit, which can then
be extended to N sites as found in the above Hamiltonian.
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A.l. Classical Noise Approximation

A.1 Classical Noise Approximation

In this section we will follow the derivation described in [64], for which we
will set i = 1. We start from the classical noise approximation known as the
HSR model, where the Hamiltonian of a single qubit is given by

AUt) = % (wo + 6 (1)) 6 (A3)
where wy is the fixed qubit resonance frequency and dw(t) describes time
dependent fluctuations in the environment. These fluctuations are typically
parameterized by some noise environment described by a random variable
X generating events x(t): dw(t) = f(x(t)). Essential to our description of
the effect of dw(t) is that X has a specific probability distribution governing
the amplitudes of the events x(t), as well as a power spectral density govern-
ing the correlations between subsequent events. It is therefore instructive to
briefly introduce these concepts, which we do in the next section.

A.1.1 Statistical Properties of X

The amplitude distribution of the events x(t) of the random variable X is
fully characterized by either defining all of the statistical moments E [X"],
or by specifying the probability density function fx(x). It is defined as

b
Probability [a < x < b] = / fx(x)dx (A4)
An example of this is the ubiquitous Gaussian distribution function given
by
_ 1 (x—p)?
fx(x|p, o) = N (— 52 (A.5)

where y = E [X] is its mean and ¢? = E [(X - “l/l)z} is the variance. It is
important to note that for a generic random variable this probability dis-
tribution can vary with time. However, as motivated in the section on the
phononic bath, the random variables studied in this thesis do not have such
time dependence so that fx(x) is fixed.

Such random variables are said to be wide-sense stationary (WSS), a prop-
erty of random variables that satisfy two requirements: its mean function
u(t) = E [X] is constant for all times, and its autocovariance function Cx (¢,t')
defined as

Cx(t,#) = E [(x() — p(D) (x(¥)) — u(t'))] (A6)
does not depend on the specific times t and #/, but only on the time lag
T =t — t'. It can therefore be written as

Tx(7) = E[(x(t) — p) (x(t +7) — p)] (A7)
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A.l. Classical Noise Approximation

The autocavariance function is a measure of how correlated terms of the
random variable are at different times. It is these correlations that contain
the information of interest for quantifying the temporal properties of noise;
they can for example be used to define the textbook example of noise, white
noise [65]:

Definition A.1 The events x(t) produced by a random variable X are white if X
is wide sense stationary, has zero mean, nonzero variarnce o2, and autocovariance
function yx(T) = 0.

In the above, §;; is the Kronecker delta. White noise is often taken as the
definition of uncorrelated: the values of X(t) do not follow any trends at
any time lags 7, making it a memory-less, uncorrelated process.

However in literature noise is typically quantified by its power spectral den-
sity Sx(w) rather than through the autocovariance. It is a distribution that
describes how the power of a time series is distributed in frequency space
rather than in time. Note that this name is mostly based on convention;
while the distribution can be an actual physical power, it is often simply
identified with the squared value of the quantity in question. If it is indeed
a power it typically has units of dBm/s/Hz, or simply power, and its inte-
gral over a certain frequency range gives how much energy is contained in
that bandwidth.

In order to connect the autocovariance to the power spectral density the
stochastic process generally has to meet several conditions. Most of these are
trivially met for WSS processes, and the quantities can then related through
the Wiener-Khinchin theorem [66]:

Definition A.2 If X is a WSS process with zero mean and an absolutely integrable
autocovariance function yx (), its power spectral density is given by

Sx(@) = Flyx(@)] = 5 [ dre () (A8)

where F...] is the Fourier transform. The theorem thus states that the two
quantities of interested are a Fourier pair, given that the necessary conditions
for inversion are met.

If we now apply the definition of white noise (definition A.1) to that of
the power spectral density (definition A.2), we see that for white noise
Sx(w) = Flo*p:] = ¢%. The power spectral density is thus independent
of frequency, which is why white noise is referred to as having a flat power
spectral density. Note that its integral would be infinite; true white noise
therefore does not exist in nature.
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A.l. Classical Noise Approximation

A.1.2 HSR Model

With the above definition of the probability density function and the power
spectral density we have quantified the amplitude distribution and the tem-
poral properties of the noise of interest. We can now return to the descrip-
tion of the HSR model, governed by the Hamiltonian

AU(t) = % [wo + de(£)] & (A9)

The time evolution operator of this Hamiltonian is given by
P .
U(t) = exp (—i/ ds?—[(s)) = exp <—; [wot 4 ¢(t)] 5’2> (A.10)
0

where we defined the new random variable ¢(t) = fot dséw(s).

For the sake of generality we now look at the evolution of this system in
terms of its density matrix; an alternative picture in terms of evolution on
the Bloch sphere can be found in [67]. Given some fixed initial condition
0(0) its evolution is given by p(t) = U(t)p(0)U’(¢). Since [H,&;] = 0 one
finds that the populations of p(t) in the eigenbasis of ¢, are constant, while
the off-diagonal elements po; (t) = p;,(t) are given by

Po1 () = e“otei®t) gy (0) (A.11)

Given a single realization of dw(t) we can then compute the value of o (t)
given the above. However, in an experiment one does not observe a sin-
gle one of these realizations. Instead one averages over many identically
prepared copies of the system. What we are thus interested in is

<e1'¢<f>> =T (A.12)
where the angular brackets denote averaging over many iterations of the
noise and I'(#) is known as the decoherence function.

From this one can derive the exact (non-Markovian) master equation of
p(t) = (p(t)) to be given by

. i . Tolt) . .

o=t —s) o+ 2 @po—p) a3

where %(t) = Im [I'] is an energy shift and 7,(t) = Re[I'] is the pure
dephasing rate. The time dependence of the noise is thus fully absorbed
into X.(t) and y4(f).

In order to continue the derivation we note that the decoherence function is
essentially equal to the cumulant-generating function K(t) [68]

K(t) = log (<efx>) (A.14)
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A.2. Independent Boson Model

where X is the probability distribution of the relevant random variable. For
example, if X is a Gaussian random variable with a vanishing mean y = 0
and variance 02, one can use equation A.5 to find that K(t) = t?0?/2 by
writing out the Taylor expansion of K().

We can now relate this to the decoherence function of equation A.12 by
noting that it is a cumulant-generating function with tX given by i¢(t) =

i fot dséw(s). If we thus assume the random variable X parametrizing dw(t)
to be a Gaussian process (the choice for which is motivated in the next sec-
tion), we find that the decoherence function is given by the autocovariance
function of dw(t):

T(t) = % /0 s /0 "4’ (5eo(s)ow(s")) (A.15)

If we then further assume that éw(t) is WSS we can write (dw(s)dw(s’)) =
rx(s —s') so that

I'(t) = ;/Ot dt _TT dt'yx(t') (A.16)

where we used a change of variables T = s+’ and 7/ = s — s’. From this it

is clear that X(t) = 0, and from standard calculus it follows that

sin(wt)
w

1 t 00
1) =5 [ dryx(©® = [ dw Sx(w) (A17)
where we introduced the power spectral density of dw(t) parametrized by
the random variable X(t). It is interesting to see that low frequency flux
noise contributes the most to the magnitude of the pure dephasing rate, due
to the 1/w dependence of equation A.17.

The above gives us an exact expression for the master equation of the system
in the presence of a fluctuating transition frequency dw(t) with an arbitrary
power spectral density Sx(w). Moreover, while we assumed the noise to be
Gaussian, one can perform the same calculation for any probability distribu-
tion by calculating the relevant cumulants.

A.2 Independent Boson Model

Now that we have derived how one treats the effect of the classical noise
approximation we turn to a treatment of the independent boson model. For
this we follow the derivation found in [69] and again simplify our system
to a single qubit. However, we make no such assumptions about the bath; it
still consists of I harmonic oscillators. The system thus has the Hamiltonian

Hror = 7:15 +Hp + 7:[573 = 70'2 + ZwkaZak + 03 Exk(ak + IZZ) (A.18)
k k
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A.2. Independent Boson Model

The interaction term can also be written as ¢, X, where X = ¥ xx(ax + aZ)
is the collective bath coordinate.

At this stage we can already motivate replacing such a bath by a classical
noise field, illustrated as follows. We begin by moving into the interaction
picture generated by s + #p so that the Hamiltonian becomes time depen-
dent and takes the form

A

Hsp(t) = 0:X(t) (A.19)
with ' '
X(t) =Y xe(e “ap + e“af) (A.20)
k
We now assume that the bath starts in a thermal state

og=c Pz (A.21)

with B = 1/ksT and Z = Tr[e #"#] being the partition function. From this
one can find that (X(t)) = Tr[X(t)pp] = 0; the collective bath coordinate
thus has zero mean. However, its fluctuations do not vanish as seen from its
autocorrelation function

(X(HX(H)) = / dw e~ =15 () (A22)
where S(w) is now a temperature dependent power spectral density defined
by

J(lwhn(lwl) (@ <0)

where n(w) = (eP¥ — 1)~ is the Bose-Einstein distribution governing the
temperature dependence and the zero temperature power spectral density
is

stw) = { Jltene) (>0 A23)

J(w) =Y |xil?6(w — wy) (A.24)
k

We have chosen the notation S(w) in analogy with the previously introduced
Sx(w) to make it clear that one should compare these two functions and not
J(w) itself. In addition to this the thermal state implies that the statistics
of X(t) is Gaussian, motivating the choice of this distribution made in the
previous section.

The above thus motivates how one could imagine replacing X(t) in the
above Hamiltonian with a classical zero-mean noise field having Gaussian
statistics and power spectral density S(w). However, in general this ignores
the dynamics of the quantum bath itself that is perturbed by the interaction
with the system. While this is not negligible for a general quantum bath, we
now show that such an assumption does hold for the independent boson
model.
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A.2. Independent Boson Model

In order to do so we attempt to solve the evolution of the qubit’s reduced
density matrix ps(t) = Trg[U(t)p(0)UT(t)], where we trace out the bath
degrees of freedom and again define U(t) to be the time evolution operator,
for which we assume that the initial state of the system is p(0) = ps(0) ® pp.

For most quantum systems one would now run into time-ordering compli-
cations when dealing with U(t), governed by the time-ordering operator 7.
For bosons it is defined as

/

ny | A@)B() (t>1)

However, for our system this is not the case: [X(t), X(#')] commutes with all
the other terms in the Hamiltonian so that one can use the Magnus expan-
sion [70] to write that

Uu(t) = T{exp (—i/otds ﬁSB@))}

= exp <—i/0tds Hsp(s) — % /Otds /Os ds’' [ﬁSB(S),ﬁSB(S/)]> (A.26)

(A.25)

In the above the second term simply leads to a global phase and it can thus
simply be dropped, so that we can use equation A.19 to find that

U(t) = exp {;0 y [ak(t)a; - [x;;(t)ak} } (A.27)

k

where we introduced ,
B 2Xk(1 o ezwkt)
= o

o (t) (A.28)

The above can be made more transparent by introducing the displacement
operator

D(a) = exp (uaf - oc*ﬁ) (A.29)

to write our time evolution operator in its final form

u(t) = 1)1 T [ D(ax/2) + |0) (O] ] [ D(—ax/2) (A.30)
k k

This tells us that U(f) describes a time-dependent displacement of each
mode by an amount £y (#)/2 conditional on the state of the qubit.

In terms of the actual time evolution of the system we now again use that
[H,0-] = 0 to find that the populations in the eigenbasis of ¢, are constant,
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A.2. Independent Boson Model

while the off-diagonal elements decay as pg;(t) = e T1)py(0) where we
recover the decoherence function. Here it is given by

e T = <]’[ D(lxk)> (A31)
k

B

where the expectation value is with respect to the bath. As in the classical
scenario one can now use that I'(t) is essentially the cumulant generating
function of the random variable Y (axa} — ajai), which due to its Gaussian
statistics can again be expressed in the form of the correlation function. For
the bosonic bath this takes the form
4 2
INOESY z’;’[l — cos(wgt)] coth (Bwy/2)

k k

o 4[1 — cos(wt)

where S(w) is the previously introduced temperature dependent power
spectral density.

This can be used to find that once again X(t) = 0 and
*© sin(wt
Yo(t) = [ dw C(U)S(w) (A.33)

so that the final system can be described as

p= _%WO [&z/ P] + %Pz(t) (02007 — p) (A.34)
in complete analogy with the classical noise bath. Explicit comparison of
the two scenarios shows that the evolution of the independent boson model
is thus equivalent to that produced by a classical noise environment with
stationary Gaussian statistics and a power spectral density Sx(w) = S(w).
This last factor is the only remaining complication: as given in equation A.23
the quantum bath has a power spectral density that is asymmetric around
w = 0, which is not possible for a (real) classical noise signal. Based on
this we can thus conclude that the classical noise environment is a good
approximation only in the high temperature limit, where n(w) > 1 and
S(w) is approximately even.
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Appendix B

Calculating the Hamiltonian
Parameters

In chapter 2 we discussed the general derivation of the Hamiltonian of the
combined system, consisting of the transmission line, three transmons and
the coplanar waveguide resonator. Its circuit representtion is repeated in
figure B.1 for convenience. We derived that its Hamiltonian could be written
as

H= %QTQ‘lQ + %qﬂylcb (B.1)
where L is a matrix of inductances, C a matrix of capacitances,
&1 = [p1, 02, , N, 91, P2, 93, V] (B.2)
are the fluxes, and
Q" = [p1 P2 PN, 32, 05,7] (B3)

are the conjugate momenta. For convenience we repeat that ¢ and p refer
to the transmission line, ¢ and g to the transmons, and ¥ and r to the CPW
resonator.

We then went on to discuss this Hamiltonian in the second quantization
formalism, using factors such as the qubit frequencies wj, their couplings Jj,
the coupling to the resonator g, and the coupling to the transmission line
bj;. While these quantities have simple closed form expressions in the case
of a system consisting of only the two relevant components (see for example
[39, 46]) the combined system is more difficult to treat due to the capacitive
contributions each element has on one another.

In this appendix we show how one can approximate such a combined sys-
tem in order to calculate expressions for the relevant Hamiltonian parame-
ters, which can then be used in simulations to accurately design a system
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Figure B.1: Circuit diagram of the system studied in this thesis. It consists of a
CPW transmission line (purple), three transmon qubits (red, blue, green) and a
CPW resonator. Designed couplings are shown in the color of the involved elements,
while stray couplings are shown in gray. The flux coordinates of these elements are
also denoted, with ¢y, being the transmission line flux coordinate, ¢; the coordinate
of transmon j and ¥ the coordinate of the CPW resonator.

with the desired properties as described in chapter 3. Most notably, we have
to make two approximations: we need to treat both the transmission line
and the CPW resonator as finite dimensional structures so that we end up
with finite dimensional matrices C and L.

For the CPW resonator this is already implicit in the above, where we treat

is as an effective LC circuit with C, = %, L, = 2;—‘21 and Z, = %\/g For
the transmission line the approach is more complex; in principle it has to be
treated as a distributed element system, but we will that it is fabricated such
that Z; = 50 Q. If we then calculate an approximate C; based on ANSYS

Maxwell simulations we define an effective L;, reducing our system to the
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finite dimensional matrices

G+ Z] Cr] —Cyt _Crl —Cpn _Cr3
—Cnt G+ )Gy —Cn —Cn —Ci3
C= —Cn —Cn Ci+Y, G —Ci2 —Ci3
—Cr —Cp —Ci2 G +Y, G —C23
—Ci3 —Cis —Ci3 —C3 G+);G
(B.4)
L, 0 0 0 O
0 L, 0 0 O
L=|0 0 L 0 o0 (B.5)
0 0 0 Ly O

0 0 0 0 L

where the first column describes the resonator, the second column the trans-
mission line and the remaining three columns the three transmons. In the
above the summations }; C;; are over the elements i # j.

Based on the derivations found in [39, 46] and calculations done by Dr. An-
ton Poto¢nik we can use the above matrices to calculate all of the second
quantization Hamiltonian parameters. To do so we will use m to denote
mth transmon and Q]-*kl to indicate the element on the jth row and kth col-
umn of the inverted capacitance matrix. From this one finds that

®\? 1
=(=2) — B.
o= (%) 1, ®9
eZCil
Ecm = ;]] (B.7)
Wy = \/8EcmE]m — ECm (BS)
C_l 1 1/4
]mn = =% < — — ) (B_9)
2\ CoumLonnCon Lun
2
-1
Zt <Q2mct)
=St 7 B.1
bmt 2 me ( O)
1/4
C,! 1
== B.11

where we assume that Z, and Z; are unaffected by the perturbations caused
by the other elements.

With the above one can calculate all of the relevant system parameters, given
the systems capacitance and inductance matrix. These can be simulated
using ANSYS Maxwell as described in chapter 3.
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Appendix C

Designing Flux Noise

As discussed in chapter 3, we digitally design and physically implement
flux noise with arbitrary power spectral density functions in our system. In
this appendix we quantitatively treat how this is done for flux noise Phi(t)
with arbitrary spectral densities S (f) and probability distribution feo(¢).

Before we begin we should note that while in general the designed noise se-
ries can be continuous, this chapter we will only consider series consisting
of a finite or countable number of elements: the class of discrete-time time
series. This is because the noise of interest in our experiments is ultimately
implemented by an arbitrary waveform generator, which has a discrete-time
input and output. To make the discretization apparent, we denote the se-
quence of events as P[t], in contrast to ®(t) used for a continuous series of
events.

C.1 Digitally Generating Noise

We start with the description of how to generate a digital time series x[t],
governed by a random variable X with the desired properties. Generating
events with just the desired probability distribution is not challenging; every
major mathematical software package has built in features for random num-
ber generation with specific distributions, and those that are not included
can be defined manually. However, the temporal relationship between the
events (captured by Sx(f)) is more difficult to construct. While some specific
densities can be generated using tailored algorithms [71, 38], we choose in-
stead to construct a recipe that allows one to digitally generate any desired
S(f) = A(f). This is done by generating white noise with a unit power
spectral density Sx(f) = 1 and digitally filtering it into the desired form.

We start by generating the white noise. In appendix A we defined what
it is for a general random variable X to be white: it has to be wide sense
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C.1. Digitally Generating Noise

stationary (WSS), have zero mean, nonzero variance 02, and autocovariance
function 7 x [l] = 025y, which means it has to be uncorrelated in time. If this

is satisfied, the time series x[t] has power spectral density Sx(f) = 2.

In appendix A we discussed that the WSS property itself is satisfied if x|¢]
is generated from a random variable X whose probability distribution does
not vary in time, which is the case for events generated numerically from a
fixed distribution. Moreover, if one chooses to generate the time series x|[¢]
by drawing the events from X independently with a finite second moment
E[X?], one can prove that they are also uncorrelated [72].

Therefore all that is required to generate white noise with Sx(f) = o2 is

to draw independent events from a random variable X with zero mean
E[X[t]] = 0 and finite second moment E[X[t]?]. To obtain a time series x|[t|
of length n with Sx(f) = 1 one could thus independently draw n samples
from a Gaussian distribution with zero mean and unit standard deviation,
which can be done with every major mathematical computation program.
In this thesis we choose to use Wolfram Mathematica.

In order to change the above unit power spectral density to any desired
Sx(f) = A(f) we apply a digital filter. Specifically, the white noise is fil-
tered with a linear time-invariant (LTI) digital filter: a filter for which the
relationship between input and output is a linear and time invariant map
[73]. One can show that such a filter can be fully described by a single func-
tion, h[t], called the impulse response function: the image of the Kronecker
delta under the linear map of the filter [73]. It quantifies how to relate a
signal x[t] of length n input into the filter to its output y[t] through the
convolution of the input with the impulse response function:

[e0]

ylt] = (xxh)[t] = E x[k]h[t — k] (C1)

k=—c0

where x[t] is taken to be zero for time values outside of its range. This ex-
pression takes on a simpler form in frequency space; because a convolution
in the time domain corresponds to multiplication in the frequency domain,
a frequency space input signal X(f) = F|[x[t]] is related to its output Y(f)
through

Y(f) = H()X(f) (C2)
where H(f) = FJ[h[t]] is called the filter’s transfer function. If we now
combine the linearity of the expectation operator E|...], the definition of

the power spectral density, and the linearity of the filter, we find that the
power spectral density of a time series x[¢] filtered with a filter with response
function ht] is given by

Sy(f) = H(f)*Sx(f) (C.3)
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C.2. Digital to Analog Conversion

The above tells us how to generate a digital time series y[t] with arbitrary
power spectral density S(f) = A(f): we first generate white noise x[t] with
unit power spectral density S(f) = 1 by independently drawing from the
Gaussian distribution with zero mean and unit standard deviation, which
we then subsequently subject to the linear mapping of a filter with the
transfer function H(f) = /A(f) resulting in Sy(f) = A(f). Numeri-
cally this is done by convolving the white noise x[t] with the impulse re-
sponse function h[t], which is generated from /A(f) with Mathematica’s
FrequencySamplingFilterKernel function. This function creates a finite im-
pulse response (FIR) filter using a frequency sampling method [74]. Note
that the FIR is finite; the sharper the features of A(f) the more values of h|t]
are required to produce them faithfully which increases computation time.

C.2 Digital to Analog Conversion

The digitally generated noise discussed above now has to be physically.
This is done with an arbitrary waveform generator (AWG): the Tektronix
AWGS014C. It is a device that converts the digital time series to an analog
voltage signal with a sampling rate of up to 1.2 GSamples/s, where the
sampling rate determines several properties of the output. For example the
finite sampling rate determines the lowest frequency components contained
in the output: the lowest frequency produced by the AWG is given by the
sampling rate divided by the number of points n, which is the inverse of the
time it takes the AWG to completely output the signal. The AWG5014C has
a memory of 16 million points, which corresponds to a lower frequency cut-
off of 75 Hz; components below this cutoff frequency will not be captured
by output.

Conversely, the sampling rate of 1.2 GSamples/s implies a Nyquist fre-
quency of 600 MHz, which is the highest frequency at which a digital to
analog converter (DAC) can output a discrete-time signal before aliasing
occurs [73]. It effectively serves as an upper cutoff of the frequency compo-
nents that can be faithfully produced. While this upper end cutoff it is a
feature that is present in any DAC, it can be undesirable in our experiments.
We therefore always make sure that whatever power spectral density is used
has a cutoff frequency fo < fnyquist-

In addition to these cutoffs, the frequency response of the AWG is also not
flat in the intermediate region as every DAC essentially attenuates the higher
frequency components of the signal it produces. To understand the origin
of the effect one can consider a simplified model of how a DAC operates.
In general, the digital input of the DAC in the time domain is a train of im-
pulses and the output of each of these impulses is set according to a so called
zero-order hold: the DAC outputs a constant voltage during the update pe-
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riod given by the sampling rate. One can see this as a type of filter that
is being applied to the digital input, with impulse response function h(t)
given by a square pulse. The transfer function can then be calculated to be
given by sinc(7tf/fs) = SH;T}T; ]{Sf *, which drops off with increasing frequency
at a rate set by the sampling frequency f,. It thus effectively attenuates the
higher frequency components [73]. Note that this is a simplified picture of
how a DAC operates; different implementations exist meaning that the exact

form of the transfer function can be more complex.

For many applications such a drop off is not relevant as it occurs over rel-
atively wide frequency ranges, but in the case of white noise it causes sig-
nificant deviations from the wanted power spectral density and it needs to
be compensated. We opt to do so using pre-equalizing. In this approach
one treats the DAC as a black box type of filter with transfer function G(f)
that is applied to the input time series x[n] upon conversion from digital to
analog, so that

Sy(f) = G(f)*Sx(f) (C4)

If one is able to quantify the transfer function, the time series can be pre-
processed with the inverse filter F(f) = %f) to offset the effect up to an
accuracy given by the quality of the quantification and the number of filter
amplitudes used. In order to construct the inverse filter we input a signal
with known spectral density Sx(f) into the AWG, record the output spectral
density Sy(f) with a spectrum analyzer, and calculate and invert G(f). The
mapping the AWG performs on the time series that had a power spectral
density Sx(f) prior to pre-processing can then be modeled as

Sy(f) = G(f)*E(f)*Sx(f) = Sx(f) (C.5)

This final step completes the recipe recipe for constructing voltage noise
with an arbitrary power spectral density S(f) = A(f). We first digitally gen-
erate a time series x[t] of length n with unit power spectral density S(f) =1
by independently drawing from a Gaussian distribution with zero mean and
unit standard deviation. This time series is then filtered with two digital fil-
ters, with transfer functions H(f) = \/A(f) and F(f) = =L~. It is then

G(f)
finally converted into an analog voltage signal by the AWG.
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