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1 Introduction

The cost of computation has been in an exponential fall since the advent of digital computation

in the middle of the 20th century, halving roughly every 26 months [1]. The affordability of

computational power has in one way or another been instrumental in most recent technological

advances, for example in rocket engine design, genome sequencing, and artificial intelligence.

There are classes of problems however, that are too complex to solve in any realistic time-scale

using a classical computer even when taking into account their exponential growth in processing

power. These problems include simulation of quantum chemical processes for drug design and

material science, and factoring large numbers for cryptographic applications. There are algorithms

for solving these types of problems in feasible time, if one turns away from the classical model

of computation to the more powerful quantum computation [2, 3]. In addition, the possibility

to use quantum superposition to probe the entire classical state-space at once gives rise to a

possible speedup in other problems like unstructured database search [4], machine learning [5]

and solving systems of linear equations [6]. In classical computation the state s of the computer

is usually represented as a set of classical binary variables called bits s ∈ {0, 1}n, where n is the

size of the state space and the basic operations on the states, called gates, are transformations of

the type g : {0, 1}k → {0, 1}l. In a quantum computer the state space is replaced with a Hilbert

space of quantum bits, or qubits, s ∈ {|0〉 , |1〉}⊗n and the gates are unitary transformations on

subspaces of the full Hilbert space.

One of the main challenges in building a quantum computer is to isolate the system used to

encode the quantum state from its environment to suppress spontaneous emission and dephasing,

while retaining enough control over the quantum state to perform gates and measure the

quantum state at will. Different physical systems have been proposed to implement a quantum

computer, such as Rydberg atoms flying through a microwave cavity [7], cold ions trapped in an

electromagnetic trap [8], nuclei of molecules in liquid or solid state [9, 10], localized electrons in

semiconductors [11], individual photons [12], defects in diamond lattice [13], and superconducting

electrical circuits [14]. In many of the aforementioned systems high-fidelity control over, and

readout of, a single or a few qubits has been experimentally demonstrated, but there are still

significant challenges in increasing the system size. Two of the most promising platforms are

circuit quantum electrodynamics (QED) and ion trap quantum computing. In circuit QED

superconducting transmission line resonators and Josephson junction based artificial atoms are
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used to build a quantum information processing device. In ion trap quantum computing the

ions are isolated from the environment by trapping them in vacuum using a Paul trap and the

electronic and motional degrees of freedom are manipulated by applying laser or microwave

pulses. Both of these platforms have demonstrated coherent manipulation of order of tens of

qubits on a single device. The work in this master’s thesis and in Quantum Device Lab in general

was carried out on superconducting circuits.

The problem that qubits inevitably decohere would prohibit one from doing long calculations

on a quantum computer. This problem can be circumvented by using fault tolerant quantum

computation where a logical qubit is encoded in several physical qubits using a quantum

error correcting code. As the number of physical qubits used is increased, the error rate of

the logical qubit decreases exponentially [15]. The error correcting codes typically work by

repeatedly measuring different parity operators of the physical qubits to check if an error has

occurred. To achieve a reduction in the error rate of the logical qubit, a threshold for the

error probability between the measurements must be overcome. For a constant error rate, it is

therefore advantageous to make the correction cycle as short as possible. In a recent proposal

by Versluis et. al. [16] of a detailed architecture for fault tolerant computation using surface

code [17] the measurement takes 500 ns or 71 % of the total error correction cycle. By reducing

the measurement time, the cycle could be made shorter, which in turn would reduce the error

probability per cycle.

Another challenge in building a large-scale quantum computer in the circuit QED architecture is

the amount of required microwave cabling and classical control electronics. To determine the state

of a qubit in the circuit QED architecture, one measures the qubit state dependent transmission

or reflection amplitude of a microwave resonator (called readout resonator) dispersively coupled

to the qubit [14]. Extending this architecture naively to multiple qubits, one would need an

independent input and output line, microwave generator, amplifier and detector for each qubit.

A more cost effective way of extending to several qubits is to use frequency-division multiplexing

(FDM). The idea behind FDM is that a different frequency band is used for each readout

resonator, all of which are connected to a common feedline on the superconducting device. This

enables the use of only a single broadband microwave generator and detection chain. The number

of qubits that can be read out using a single detection line is limited by the ratio of available

signal generation and detection bandwidth to the spectral width used for reading out a single

qubit.
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The topic of this master’s thesis is the implementation and characterization of FDM readout,

or multiplexed readout, using the Zurich Instruments ultra high frequency lock-in (UHFLI)1

instrument, PycQED Python library for communication with measurement instruments and

a new sample design for fast, high-fidelity, low-crosstalk readout. In Chapter 2 theoretical

aspects of circuit QED, qubit state measurement by linear detection, multiplexed readout and

readout crosstalk are reviewed; in Chapter 3 an overview of the experimental setup used for the

experiments is given; in Chapter 4 the multiplexed readout experiments and results are discussed;

and finally in Chapter 5 the thesis is concluded with a summary and an outlook. In appendix A

an overview of the software used is presented together with comments about existing and added

features.

1Ultra high frequency (UHF) is the frequency band from 300MHz to 3GHz
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2 Theory overview

In this chapter I will give an overview of the main theoretical aspects relevant for multiplexed

readout. In Section 2.1 I will introduce the circuit QED setting we are working in and some of

the components that are often used in superconducting quantum processors. The theory behind

qubit state measurement and the relevant noise sources will be discussed in Sections 2.2 and

2.3. Finally, in Section 2.4 I will discuss the implementation of multiplexed readout, explain the

different sources for crosstalk and report on the analytical model of the microwave properties of

the device we have designed for fast, low crosstalk multiplexed readout.

2.1 Circuit QED

A harmonic oscillator coupled to a two-level system is one of the simplest setups where coherent

interactions between individual quantum systems can be observed. The dynamics of this system

are governed by the Jaynes-Cummings Hamiltonian [18, p. 302]:

Ĥ = −~ωQ

2
σ̂z + ~ωRâ

†â+ ~g(â†σ̂ + âσ̂†). (2.1)

Here ~ωQ is the qubit transition energy, ωR is the resonator angular frequency, ~g is the coupling

strength between them, σ̂z = |g〉〈g|−|e〉〈e| is the Pauli z operator, σ̂ = |g〉〈e|, â is the annihilation

operator of the harmonic oscillator, and |g〉, |e〉 are the ground and excited state of the two-level

system. The interaction term â†σ̂ + âσ̂† is due to the electric dipole interaction between the

qubit and the resonator field and initially also includes terms â†σ̂† and âσ̂, which are dropped in

the rotating wave approximation, valid under the assumptions |ωQ − ωR|, g � ωQ, ωR [19]. In

practice, the two-level system will always have some decoherence rate γ and the oscillator will

have a decay rate κ at which excitations are lost to the surrounding environment. To observe

coherent exchange of excitations between the two subsystems, we need to have g � γ, κ, which

is called the strong coupling regime [18, p. 308].

In circuit QED [14, 20] the qubit-resonator system is typically fabricated out of a thin film of

superconductor that is deposited on a dielectric substrate using standard lithographic techniques.

The advantage of circuit QED is that all of the parameters in the Hamiltonian (2.1) can be

engineered over a wide range of values by changing the dimensions of the corresponding circuit
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Figure 1: a) A false color micrograph of a charge qubit coupled to a coplanar waveguide resonator.

The center conductor of the resonator (cyan) is capacitively coupled to the superconducting island

(red). The SQUID loop connecting the island to the ground plane is shown in the inset. The magnetic

flux through the SQUID loop can be controlled with the current through the fluxline (blue). The

drive line (purple) is used for applying microwave pulses to the qubit to do single qubit rotations.

The coupling resonators (orange) couple the qubit to its nearest neighbours. b) An equivalent circuit

diagram for the circuit in a) with matching colors. The ground plane is depicted in black. For

simplicity the coupling resonators have been left out. CR and LR are the total capacitance and

inductance of the resonator, Cg and Cd are the capacitances of the superconducting island to the

inner conductors of the resonator and the drive line, CJ is the total capacitance of the center island

to the ground, EJ,1 is the Josephson energy of a single Josephson junction, Φ is the total magnetic

flux through the SQUID loop due to the current Ib.

elements. A standard way to implement the harmonic oscillator in circuit QED, also used for

the samples in this thesis, is to use a coplanar waveguide resonator, the frequency of which

can be tuned by changing its length. To isolate a two-level system in the energy spectrum, a

nonuniform energy-level spacing is required. This can be achieved by using a Josephson junction

which acts as a dissipationless nonlinear inductor. More specifically, we use the charge qubit [21]

configuration to achieve this. The electrical diagram together with photos of a charge qubit

coupled to coplanar waveguide resonator can be seen in Fig. 1.
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The Hamiltonian governing the dynamics of the charge qubit is given by [14]

Ĥ =
∞∑

N=−∞

[
4EC(N −Ng)2 |N〉〈N | − EJ,1

∣∣∣∣cos

(
π

Φ

Φ0

)∣∣∣∣(|N〉〈N + 1|+ |N + 1〉〈N |)
]
. (2.2)

The charging energy EC = e2

2(Cg+Cd+CJ)
is the energy scale related to adding electrons to the island,

2Ng is the number of offset electrons on the island due to a dc bias voltage, EJ = 2EJ,1

∣∣∣cos
(
π Φ

Φ0

)∣∣∣
is the effective Josephson energy of the superconducting quantum interference device (SQUID)

and Φ0 = h
2e

is the magnetic flux quantum. See also Fig. 1 for circuit parameters. In the

regime EJ . EC the energy eigenstates of Eq. (2.2) are strongly anharmonic, making it easy

to address only the lowest energy transition g ↔ e. However the downside of this regime is

that the transition energy also strongly depends on the value of Ng, which typically has large

fluctuations in practical realizations, called charge noise, limiting the qubit coherence times. On

the other hand a qubit with EJ � EC, called transmon [22], is insensitive to charge noise, but

has a reduced anharmonicity ~α = Ee↔f −Eg↔e ≈ −EC, where |f〉 is the second excited level of

the qubit system. In many applications one can restrict the qubit to the g and e state only, with

the transition energy between them

~ωQ ≈
√

8ECEJ − EC = 4

√
ECEJ,1

∣∣∣∣cos

(
π

Φ

Φ0

)∣∣∣∣− EC, (2.3)

effectively recovering the Jaynes-Cummings Hamiltonian (2.1) when coupled to a resonator.

To control the state of the qubit, microwave pulses can be applied to the drive line (see Fig. 1).

Let us consider the effect of a pulse with amplitude proportional to Re{Ω(t)e−iωdt}, where ωd is

the carrier frequency and Ω(t) the complex envelope of the pulse. The corresponding interaction

Hamiltonian in the rotating wave approximation, restricted to the {|g〉 , |e〉} subspace of the

qubit is

Ĥd = ~Ω(t)e−iωdtσ̂† + ~Ω(t)∗eiωdtσ̂. (2.4)

By choosing appropriate phase, length and amplitude of the pulse, arbitrary rotations of the

qubit state around an axis parallel to the x-y plane on the Bloch sphere can be made. In case

the drive pulse has spectral components overlapping the e↔ f transition frequency, the |f〉 and

state will also become populated resulting in leakage out of the |g〉, |e〉 basis (computational

basis). This sets a lower bound on the length the pulse if special care is not taken to avoid

exciting the higher energy levels of the qubit system [22].
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To extract any information from a quantum computer, it is necessary to measure the qubit’s

state. To be able to reuse the qubit quickly after the measurement, it is desirable that the qubit

is left in a known state. If after the measurement the system’s state is equal to the measurement

result, the measurement is called quantum non-demolition (QND) [23]. This is achieved when

the measured observable Ô commutes with the system Hamiltonian Ĥsys.. QND measurements

are achieved in circuit QED by measuring the qubit state dependent transmission of a coupled

resonator, called readout resonator, with the qubit-resonator detuning large compared to the

coupling ∆ ≡ ωQ − ωR � g. This regime of the qubit-resonator system is also called the

dispersive regime. Expanding the full Hamiltonian of a transmon qubit coupled to a resonator in

the powers of the small parameters gi/∆i, where gi is the coupling rate of the i’th transition

of the transmon to the resonator (g0 ≡ g) and ∆i the transition’s detuning from the resonator

frequency (∆0 ≡ ∆), and keeping only terms up to second power in gi/∆i, we are left with the

dispersive Hamiltonian

Ĥ = −
~ω′Q

2
σ̂z + (~ω′R − ~χσ̂z)â†â. (2.5)

The qubit and resonator frequencies get renormalized due to interactions with higher energy

levels of the transmon, ω′Q ≈ ωQ + g2/∆ and ω′R ≈ ωR − g2
1/2∆1 [22]. The form of the dispersive

Hamiltonian (2.5) is however the same as we would get from the Jaynes-Cummings Hamiltonian in

the dispersive limit. From the resonator’s perspective the dispersive coupling χ ≈ g2α/∆(∆ + α)

is the magnitude of the shift of resonator frequency depending on the qubit state, but it can also

be seen as a shift of the qubit frequency depending on the number of photons in the resonator,

called ac-Stark shift [20, 22, 24]. In the following chapters we will denote the renormalized

frequencies as ωQ, ωR and keep in mind that they are different from the uncoupled values. Driving

the resonator with a coherent field, the phase and amplitude of the emitted field become entangled

with the state of the qubit and amplification of the emitted field makes the qubit collapse into

one of the two states. With the interaction term Ĥint. = −~χσ̂zâ†â we measure the Ô = σ̂z

observable of the system Ĥsys = −~ω′Q
2
σ̂z. As the measured observable commutes with the qubit

Hamiltonian, the measurement is QND and the qubit remains in the measured state. The

dispersive approximation breaks down, however, if the number of photons in the resonator is

in the order of the critical photon number ncrit. = ∆2/4g2 [14]. In this case terms that do not

commute with the σ̂z operator become relevant and changes of the qubit state might occur,

breaking the QND-ness of the measurement.
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ADC

Device Fridge

gκin κout
ĥGĥAâout

bout

bin âA âG

AG Adc Dâ
DSP

Ain

Figure 2: A simplified schematic of the typical elements in a measurement chain. The notation and

direction of the signals at different stages of the measurement chain is depicted above or below the

signal line. Bosonic quantum signals are depicted as small Latin letters â and b̂, classical analog

signals are denoted with A and digital signals are denoted with D. See text for the description of the

linear measurement process.

2.2 Qubit readout by linear detection

In this section we will look quantitatively at how the the qubit state is determined in a dispersive

readout scheme. We derive expressions for the signal and the noise of the measurement result by

the example of a simple device where a readout resonator coupled to a single qubit is measured

in transmission.

The measurement chain relevant for the discussion in this section is depicted in Fig. 2. First

a readout pulse is generated at room temperature. In this thesis we only use pulses with a

constant amplitude oscillating at a frequency ωRO in the range 6–7.5 GHz. The pulse then enters

a dilution refrigerator, where it is attenuated at different temperature stages, so that the thermal

noise at room temperature is reduced to negligible levels at the base plate, which is at ∼10 mK.

The signal is then transmitted through the resonator coupled to the qubit, termed readout

resonator. The emitted signal passes through an isolator that stops counter-propagating fields

from reaching the sample, and is then amplified by a chain of amplifiers at different temperatures.

The amplified signal is downconverted to the intermediate frequency (IF) ωIF, using an IQ-mixer

in our case, and then digitized. The digital signal processing can be done in real time on special

purpose signal processing hardware or, if the full timetraces are saved, on a personal computer.

The dynamics of the resonator and the output field are modelled using the input-output for-

malism [25]. In the Heisenberg picture, the equation of motion for the resonator annihilation
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operator â(t) is [26, p. 132]

˙̂a(t) = −i(ωR − χσ̂z)â(t)− κin + κout

2
â(t)−

√
κinb̂in(t)−

√
κoutb̂out(t), (2.6)

where b̂in(out)(t) are the incident fields at the input (output) capacitor with decay rate κin(out). We

assume that b̂out(t) is in the vacuum state. The Pauli σ̂z operator is however stationary ˙̂σz(t) = 0

under the assumption that there are no measurement induced transitions or decay events due to

coupling to the environment. The outbound field at the output capacitor âout(t) is given by

âout(t) =
√
κoutâ(t) + b̂out(t). (2.7)

Because the measurement is QND, we assume the qubit to be in one of the σ̂z eigenstates in

the following. In the end, because the entire measurement process is linear, the probability of

finding the qubit in either of the eigenstates as a result of the measurement is proportional to

the corresponding diagonal element in the density matrix. Therefore we can assume the Pauli

z-operator to be a classical variable σz ∈ {1,−1}. To find the output field in terms of the input

field and the qubit state, we take a Fourier transform of Eqs. (2.6) and (2.7), and get the relations

âout(ω) = S21(ω)b̂in(ω) + S22(ω)b̂out(ω), (2.8)

S21(ω) =
2
√
κinκout

2i(ω − ωR + χσz)− κin − κout

, (2.9)

S22(ω) = 1 +
2κout

2i(ω − ωR + χσz)− κin − κout

. (2.10)

The Fourier amplitudes are given by ĉ(ω) = 1√
2π

∫∞
−∞ ĉ(t)e

iωtdt for ĉ = âout, b̂in, b̂out. While

Eq. (2.8) is generally valid for all devices with one input and output port, the exact form of

the scattering parameters S21, S22 given by Eqs. (2.9) and (2.10) will depend on the resonator

network.

Due to attenuation in the cables and components, the amplitude of the field at the input of the

amplifier âA is reduced by
√
A compared to the output from the cavity âout, where A is the total

power attenuation. Since the commutation relation
[
âout(ω), â†out(ω

′)
]

= δ(ω − ω′) must also

hold for the attenuated signal âA, a noise operator ĥA, which we assume to be a bosonic mode,

needs to be added to the signal [27]

âA(ω) =
√
Aâout(ω) +

√
1− AĥA(ω), (2.11)
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so that[
âA(ω), â†A(ω′)

]
=
[√

Aâout(ω) +
√

1− AĥA(ω),
√
Aâ†out(ω) +

√
1− Aĥ†A(ω)

]
=

= A
[
âout(ω), â†out(ω

′)
]

+ (1− A)
[
ĥA(ω), ĥ†A(ω′)

]
= δ(ω − ω′).

(2.12)

Ideally the noise mode is in the vacuum state, but more realistically it will be in a thermal

state at temperature T , where the expectation values for the amplitude and its modulus squared

are [27] 〈
ĥA(ω)

〉
= 0, (2.13a)

1

2

〈
ĥA(ω)ĥ†A(ω′) + ĥ†A(ω′)ĥA(ω)

〉
=
〈
ĥ†A(ω′)ĥA(ω)

〉
+

1

2
δ(ω − ω′) =

(
NA +

1

2

)
δ(ω − ω′).

(2.13b)

The noise photon number NA = 1
e~ω/kBT−1

follows the Bose-Einstein distribution. The 1/2 term

represents the intrinsic quantum noise due to simultaneous measurement of two uncommuting

observables.

Similarly, for the amplifier to amplify both quadratures equally by
√
G, where G is the power

gain of the amplifier, a bosonic noise mode ĥ†G must be added to the signal [27]. Assuming

that the different frequency components of the added noise are not correlated, the noise of the

amplifier mode can be written in a form similar to the noise of the attenuator mode

1

2

〈
ĥG(ω)ĥ†G(ω′) + ĥ†G(ω′)ĥG(ω)

〉
=

(
NG +

1

2

)
δ(ω − ω′), (2.14)

where NG is the noise photon number of the amplifier.

The output signal from the fridge âG is

âG(ω) =
√
GâA(ω) +

√
G− 1ĥ†G(ω) =

√
AGâout(ω) +

√
G(1− A)ĥA(ω) +

√
G− 1ĥ†G(ω).

(2.15)

If the gain is high enough so that the photon flux of the signal â†G(t)âG(t) is much higher than

the sampling rate of the data acquisition device νs, we can discard any further quantum noise

10



and consider it a classical signal aG(ω) = 〈âG(ω)〉+ δaG(ω) with the expectation values

〈aG(ω)〉 ≡ 〈âG(ω)〉 =
√
AGκout〈â(ω)〉 =

√
AGS21(ω)

〈
b̂in(ω)

〉
, (2.16a)

〈δaG(ω)δa∗G(ω′)〉 ≡ 1

2

〈
δâG(ω)δâ†G(ω′) + δâ†G(ω′)δâG(ω)

〉
= (2.16b)

= AG
〈
δâ†out(ω

′)δâout(ω)
〉

+G(1− A)NAδ(ω − ω′) +

+ (G− 1)NGδ(ω − ω′) +

(
G− 1

2

)
δ(ω − ω′),

〈δaG(ω)δaG(ω′)〉 ≡ 1

2
〈δâG(ω)δâG(ω′) + δâG(ω′)δâG(ω)〉 = 0. (2.16c)

I have denoted the fluctuations of the operators Ô = âG, â as δÔ(ω) ≡ Ô(ω) −
〈
Ô(ω)

〉
and

assumed that the noise modes ĥG and ĥA are not correlated with each other or the output

mode âout. The first term in Eq. (2.16b) is caused by the classical noise in the resonator. For a

resonator in a coherent state it will be zero, but in a realistic case, where the inputs are in a

thermal state, the result will be proportional to the number of thermal photons in the resonator

Nth.. This is given by the Bose-Einstein distribution Nth. = 1/(e~ωR/kBT − 1) for the resonator at

temperature T . The second and third terms are given by the number of noise photons in the

attenuator and amplifier modes, and the last term in Eq. (2.16b) is the inherent quantum noise

in phase-preserving amplification. In the following we make the assumption that the noise in the

output mode âout is uncorrelated at different frequencies, so that we can write Eq. (2.16b) in

terms of the noise spectral density N(ω):

〈δaG(ω)δa∗G(ω′)〉 = N(ω)δ(ω − ω′), (2.17)

N(ω) = AGNth. +G(1− A)NA + (G− 1)NG +G− 1

2
, (2.18)

Here we have explicitly included the possibility that the noise is frequency dependent.

The signal aG(ω) is given in the units of photons per square root hertz. To convert it to a

voltage spectral density AG(ω), we must multiply it by the spectral density of the voltage vacuum

fluctuations V0(ω) =
√

~ωZ0/2, where Z0 is the impedance of the transmission line [28]:

AG(ω) =

V0(ω)aG(ω) for ω ≥ 0,

A∗G(−ω) for ω < 0,
(2.19)
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The expression for the negative frequencies is due to the voltage being a real quantity. In time

domain we get the expression for the signal in volts

AG(t) =
1√
2π

∫ ∞
−∞

AG(ω)e−iωtdω =

√
~Z0

4π

∫ ∞
0

(
aG(ω)e−iωt + a∗G(ω)eiωt

)√
ωdω. (2.20)

The amplified signal is downconverted by multiplying it with a sinusoidal local oscillator (LO)

signal at frequency ωLO using a microwave mixer. We use an IQ-mixer, which has two outputs,

one of which has the LO phase shifted 90°. The two outputs of the mixer are

AI(t) = AG(t) cos(ωLOt), and AQ(t) = AG(t) sin(ωLOt), (2.21)

By considering the two real signals AI(t) and AQ(t) to be the real and imaginary part of a single

complex signal Adc(t) = AI(t) + iAQ(t), we can write downconverted signal at the output of the

mixer conveniently as Adc(t) = AG(t)eiωLOt or in frequency domain

Adc(ω) = AG(ω + ωLO) =

V0(ω + ωLO)aG(ω + ωLO) if ω ≥ −ωLO,

A∗dc(−ω) otherwise.
(2.22)

The mixer also adds noise to the signal [29] which we discard here, as it is typically small

compared to the amplified quantum noise in the signal already. A more rigorous condition

of when we can ignore the noise at later stages of the measurement chain will be derived in

Section 2.3.

The signal then passes through a low-pass filter with a cutoff frequency ωIF,max < ωLO, that filters

out all frequencies |ω| > ωIF,max. For simplicity, I assume that the filter has an infinitely sharp

cutoff, where in practice higher frequencies are only gradually more attenuated. The remaining

signal Fourier amplitude is proportional to the amplified photon field aG, but downconverted

from the readout carrier frequency ωRO to the IF ωIF = ωRO − ωLO. For |ω| ≤ ωIF,max we have

Adc(ω) = V0(ω + ωLO)aG(ω + ωLO). (2.23)

Next the two components of this signal are digitized, using an analog-digital converter (ADC)

with sampling rate νS. To avoid aliasing in the digitized signal, the analog low-pass filter cut-off

frequency is chosen to be lower than the Nyquist frequency ωIF,max < πνS. The digitized signal

12



is given by sampling the downconverted signal as given by Eq. (2.23) at discrete time-points

t = k/νS

D[k] ≡ Adc(k/νS) =
1√
2π

∫ ωIF,max

−ωIF,max

V0(ω + ωLO)aG(ω + ωLO)e−iωk/νSdω. (2.24)

Under the assumption that the length of the digitized timetrace kmax is long enough to cover the

entire pulse, the Fourier transform of the acquired signal can be expressed as

D(ω) ≡ 1√
2πνS

kmax−1∑
k=0

D[k]eiωk/νS =
1√

2πνS

∞∑
k=−∞

D[k]eiωk/νS =

=
1

2π
√
νS

∫ ωIF,max

−ωIF,max

Adc(ω
′)

∞∑
k=−∞

ei(ω−ω
′)k/νSdω′ =

=
√
νS

∫ ωIF,max

−ωIF,max

Adc(ω
′)

∞∑
n=−∞

δ(ω − ω′ − 2πnνS)dω′ =

=
√
νSAdc(ω) =

√
νSV0(ω + ωLO)aG(ω + ωLO). (2.25)

In case that the window of integration is shorter than the duration of the input signal, the

spectrum D(ω) is convolved with a corresponding window function.

To determine the qubit state, the digitized samples D[k] are multiplied with arbitrarily pro-

grammable selected integration weights w[k] and summed in the digital signal processor (DSP)

to yield the integrated signal

S = Re

{
kmax−1∑
k=0

w[k]D[k]

}
. (2.26)

In the same formalism the imaginary part of the sum
∑kmax−1

k=0 w[k]D[k] can be extracted by

choosing the −iw[k] as the integration weights.

While integration is done in time-domain in the DSP, it is insightful to also calculate the result

in frequency domain. For this we will define the Fourier transform of the integration weights

similarly to the Fourier transform of the digitized signal w(ω) ≡ 1√
2πνs

∑kmax−1
k=0 w[k]eiωk/νs and

w[k] = 1√
2πνs

∫ πνS
−πνS

w(ω)e−iωk/νsdω to see that the final integration result will be

S = Re

{∫ πνs

−πνs
D(ω)w(−ω)dω

}
, (2.27)
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with mean and variance

〈S〉 =
√
AGνS

∫ ωLO+πνs

ωLO−πνs
V0(ω) Re

{
S21(ω)

〈
b̂in(ω)

〉
w(ωLO − ω)

}
dω, (2.28a)

〈
δS2
〉

=
νs

2

∫ ωLO+πνs

ωLO−πνs
V0(ω)2N(ω)|w(ωLO − ω)|2dω. (2.28b)

To exemplify how this integrated signal can be used to determine the qubit state, we look at

the case of a long square pulse with length τ as an input
〈
b̂in(t)

〉
= b0e

−iωROt and constant

amplitude integration weights oscillating at the IF ωIF = ωRO−ωLO, w[k] = w0e
iωIFk/νs , where b0

and w0 are the corresponding possibly complex amplitudes. In the steady state limit τ � 1
κin+κout

the bandwidth of w(ω) and
〈
b̂in(t)

〉
is small enough that we can consider their product to be

proportional to the Dirac delta function
〈
b̂in(ω)

〉
w(ωLO−ω) ≈ b0w0

√
νSτδ(ω−ωRO). The signal

and noise terms become then

〈S〉 = νSτ
√
AGV0(ωRO) Re{S21(ωRO)b0w0} (2.29a)〈

δS2
〉

= ν2
s τV0(ωRO)2N(ωRO)|w0|2/2 (2.29b)

Because the scattering parameter S21 depends on the qubit state, we can deduce the qubit state

from the integrated result by choosing the phase of w0 or b0 appropriately. A threshold value

Sth. is chosen between the expectation values for S for the ground and excited states, such that

if S > Sth. we label the outcome as the qubit being in the corresponding state.

2.3 Measurement efficiency

The goodness of the measurement depends on how well we can determine state of the qubit from

a single integration result S. This is characterized by the signal to noise ratio (SNR), defined as

SNR ≡ 〈S
e〉 − 〈Sg〉√
〈δS2〉

, (2.30)

where the superscript g (e) denotes the qubit state. For the steady state case 2.29a and (2.29b),

the efficiency is given by

SNR2 =
2τAG|b0|2|Se21(ωRO)− Sg21(ωRO)|2

N(ωRO)
, (2.31)
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if we choose the optimal integration phase arg(w0) = − arg(S21(ωRO))− arg(b0). From Eq. (2.31)

we see that the SNR can always be increased by increasing the drive amplitude b0. In practice

we are limited by the number of photons in the readout resonator nRO during readout, which

should not be much larger than the critical photon number ncrit. for the dispersive approximation

to hold. For the steady state the number of photons in the readout resonator is given by

nRO = lim
t→∞

〈
â†(t)â(t)

〉
=

4κin|b0|2

4(ωR − χσz − ωRO)2 + (κin + κout)2
=
|S21(ωRO)|2

κout

|b0|2. (2.32)

The transmission amplitudes for the qubit in the ground and excited state are in general different,

and therefore so are the numbers of readout photons. Because we want to keep the measurement

QND for both qubit states, we are interested in the number of readout photons in the readout

resonator in the worst of the two cases nRO,max = max(ngRO, n
e
RO). We find an expression for the

SNR in terms of nRO,max:

SNR2 = τnRO,max
κout|Se21 − S

g
21|

2

max
(
|Sg21|

2, |Se21|
2
)AG
N

. (2.33)

The first term τnRO,max describes the duration and strength of the readout. We typically want

the readout to be fast for the qubit not to decay during the readout and not too strong so that

the dispersive Hamiltonian still holds. These requirements set an upper limit on how big we

can make the first term. The second term κout|Se21 − S
g
21|

2
/

max
(
|Sg21|

2, |Se21|
2
)

depends on the

properties of the device: χ, κout, ωR and the used readout frequency ωRO. It is maximized for

ωRO = ωR and κout = 2|χ|. The last term AG/N describes the gain and noise added to the

output signal âout(t).

The measurement efficiency η is the squared ratio of the achieved SNR to the SNR determined

by the quantum noise in the output signal from the device âout only, while keeping the device

and readout pulse parameters constant. In the case of a long square readout pulse studied above,

it would be given by

η ≡ SNR2

SNR2
q.l.

=
AG

N
=

(
1

2
+Nth. +

(
1− A−1

)(
NA +

1

2

)
+

(1−G−1)
(
NG + 1

2

)
A

)
, (2.34)

where the subscript q.l. denotes the quantum limit. So far we have assumed that no additional

noise or gain is added after the first first amplifier. In practice there are usually several amplifiers
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at different temperatures that add gain and noise to the signal. In this case we can extend

Eq. (2.34) according to Friis’ equation [30, p. 505]

1

η
=

(
Nth. +

1

2

)
+
(
1− A−1

)(
NA +

1

2

)
+

(1−G−1)
(
NG + 1

2

)
A

+
NG3

AG
+

NG4

AGG3

+ ... (2.35)

where the noise terms from later amplifiers NGi have a progressively smaller effect on the total

efficiency as the original signal is amplified by the previous amplifiers with gain Gj . In each term,

the numerator is equal to the extra noise added at that amplification stage, and the denominator

is the total gain before that stage. Each of the 1
2

terms correspond to the quantum noise added

to the system. In this formalism the attenuator is considered on the same terms as the amplifiers

but with a “gain” of A < 1. Looking at the structure of Eq. (2.35), 3 criteria necessary for

achieving an efficiency close to unity can be formulated: The attenuation before the first amplifier

should be as low as possible 1− A� 1. The first amplifier should work close to the quantum

limit, adding as little noise as possible NG � 1. And thirdly, the noise from subsequent amplifiers

should be small compared to the amplified signal NGi

/∏
j<iGj � 1. For example in the setup

used in this thesis the first amplifier has G = 20 dB of gain and overcomes the noise of the second

high-electron-mobility transistor (HEMT) amplifier. The HEMT amplifier is thermalized to the

4 K stage of the cryostat and therefore has a noise temperature of THEMT ≈ 4 K.

G ≈ 20 dB = 100� 12 ≈
(
e

~ωRO
kBTHEMT − 1

)−1

= NHEMT (2.36)

Therefore the third criterion is satisfied. We have normalised the measurement efficiency to the

maximum achievable SNR with a phase preserving amplifier. Using a phase sensitive amplifier,

which uses the same mode that is amplified as the ĥG mode, no quantum noise is added at the

amplification stage and it is possible to achieve measurement efficiencies up to 2 by this definition.

Therefore the measurement efficiency is often defined to be 2 times smaller than defined here.

2.3.1 Filter efficiency

In the previous chapter we derived the formula for SNR in the case of a long measurement pulse

so that the readout resonator is in the steady state. In many cases we want the readout to be

fast and therefore we can not make the steady state assumption. In the general case the achieved

SNR depends on the choice of the integration weights and is characterized by the filter efficiency

ηf. Here, we will study this dependence quantitatively.
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Expressing Eqs. (2.28a) and (2.28b) in time domain with the assumption of constant noise

spectrum V 2
0 (ω)N(ω) = V 2

0 N , we get

〈S〉 = Re

{
kmax−1∑
k=0

w[k]〈D[k]〉

}
, (2.37a)

〈
δS2
〉

=
V 2

0 Nνs

2

kmax−1∑
k=0

|w[k]|2. (2.37b)

The signal to noise ratio in this general case is given by

SNR2 =
2
(∑kmax−1

k=0 Re{w[k]∆D[k]}
)2

V 2
0 Nνs

∑kmax−1
k=0 |w[k]|2

. (2.38)

Here we have denoted the difference of average excited and ground state signals as ∆D =

〈De〉 − 〈Dg〉. We can look at Eq. (2.38) as a function of the 2kmax variables w[k] and w∗[k] and

maximize the SNR in terms of them:

∂SNR2

∂w[k]
= 0 ⇒ w∗[k] ∝ ∆D[k]. (2.39)

It is therefore optimal to use the complex conjugate of the mean difference of the excited and

ground state response of the system as the integration weights. These integration weights are

also called a mode-matched filter as they match the temporal profile of the input signal mode.

This insight allows us to calculate the filter efficiency

ηf ≡
SNR2

SNR2
opt.w

=

(∑kmax−1
k=0 Re{w[k]∆D[k]}

)2

∑kmax−1
k=0 |w[k]|2

∑kmax−1
k=0 |∆D[k]|2

, (2.40)

where SNRopt.w is the achieved SNR using the optimal weights.

The simplest way to experimentally determine the optimal weight function is to repeatedly

prepare the qubit in g and e state and measure the average time-evolution of D[k]. Since the

acquired samples will include noise, the expected value of the filter efficiency will be a function

of the number of averages navg. Let us denote the experimentally determined integration weights

after navg rounds of averaging as wn[k] = ∆D∗[k] + δwn[k]. The deviations δwn[k] will have the

expectation values

〈δwn[k]〉 = 0, 〈δwn[k]δwn[l]〉 = 0, 〈δwn[k]δw∗n[l]〉 = δkl2V
2

0 Nνs/navg. (2.41)
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Expanding the expectation value of the filter efficiency after navg averages, 〈ηnf 〉, as a function of

w[k] and w∗[k] in a Taylor series around the optimal value up to quadratic terms, we get

〈ηnf 〉 ≈ 1 +
kmax−1∑
k=0

∂2ηf

∂w[k]∂w∗[k]

∣∣∣∣
w[l]=∆D∗[l]

〈δwn[k]δw∗n[k]〉 = (2.42)

= 1− (2kmax − 1)νsV
2

0 N

navg

∑kmax−1
k=0 |∆D[k]|2

= 1− 2(2kmax − 1)

navgSNR2
opt.w

=
1

1 + 2(2kmax−1)

navgSNR2

.

The variation of the expectation value is

〈
(ηnf − 〈ηnf 〉)

2〉 ≈ (1− 〈ηnf 〉)2. (2.43)

As we increase the number of averages navg, the filter efficiency approaches unity at the scale
4kmax−2

SNR2 . The variations in the expected filter efficiency are in the same order as deviations from

unity. This gives us a practical way to check if we have taken enough averages for determining

the optimal integration weights.

2.3.2 Efficiency loss due to mixer imperfection

Eq. (2.21) describes the operation of an ideal IQ-mixer, but real mixers implement these equations

only approximately. Typical imperfections, that IQ-mixers suffer from, are signals at higher

harmonic frequencies and phase and amplitude imbalance. Here we will study the effects of

the phase imbalance ϕ and the amplitude imbalance α on the achieved SNR. The equations

describing the operation of mixer with phase and amplitude balance imperfections are [31]

AI(t) = AG(t) cos(ωLOt), and AQ(t) = αAG(t) sin(ωLOt+ ϕ), (2.44)

or in complex form

Adc(t) = AI(t) + iAQ(t) = AG(t)

(
1− 1− αeiϕ

2

)
eiωLOt + AG(t)

1− αe−iϕ

2
e−iωLOt. (2.45)

For conciseness we define the complex parameter ε ≡ 1−αeiϕ
2

that describes both the amplitude

and phase imbalance. For an ideal mixer ε = 0.
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In frequency domain the downconverted signal after filtering out frequency components with

|ω| > ωIF,max is

Adc(ω) =
1√
2π

∫ ∞
−∞

Adc(t)e
iωtdt = (1− ε)AG(ω + ωLO) + ε∗AG(ω − ωLO) (2.46)

= (1− ε)V0(ωLO + ω)aG(ωLO + ω) + ε∗V0(ωLO − ω)a∗G(ωLO − ω)

The effect of these mixer imperfections is the appearance of a second side-band at the frequency

ω′IF = ωLO − ωRO = −ωIF.

If the parameter ε is known and we can discard the added noise during and after the down-

conversion, this imperfection can be corrected for. In terms of the corrected signal A′dc(ω) =

V0(ωLO + ω)aG(ωLO + ω), Eq. (2.46) is given as

Adc(ω) = (1− ε)A′dc(ω) + ε∗A′∗dc(−ω). (2.47)

This equation can be inverted to calculate the corrected signal in frequency and time domain

A′dc(ω) =
(1− ε∗)Adc(ω)− ε∗A∗dc(−ω)

|1− ε|2 − |ε|2
, (2.48a)

A′dc(t) =
(1− ε∗)Adc(t)− ε∗A∗dc(t)

|1− ε|2 − |ε|2
. (2.48b)

In practice this inversion could be programmed into the integration weights. To take into account

the mixer imperfection, we want to calculate the integrated signal with the mode-matched

integration weights as

S = Re

{∫ πνS

−πνS
D′(ω)∆D′∗(ω)dω

}
, (2.49)

where D′(ω) =
√
νSA

′
dc(ω) is the Fourier transform of the digitized signal that has been corrected

for the mixer imperfection (same as Eq. (2.25)) and ∆D′(ω) is the average difference between

the corrected signals for the qubit in the ground- and excited states. In terms of the uncorrected

signals this equation is

S = Re

{∫ πνS

−πνS

((1− ε∗)D(ω)− ε∗D∗(−ω))((1− ε)∆D∗(ω)− ε∆D(−ω))(
|1− ε|2 − |ε|2

)2 dω

}
= (2.50)

= Re

{∫ πνS

−πνS
D(ω)

(|1− ε|2 + |ε|2)∆D∗(ω)− 2ε(1− ε∗)∆D(−ω)(
|1− ε|2 − |ε|2

)2 dω

}
.
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We see that the optimal weight function is

w(ω) =
(|1− ε|2 + |ε|2)∆D∗(−ω)− 2ε(1− ε∗)∆D(ω)(

|1− ε|2 − |ε|2
)2 (2.51a)

w[k] =
(|1− ε|2 + |ε|2)∆D∗[k]− 2ε(1− ε∗)∆D[k](

|1− ε|2 − |ε|2
)2 . (2.51b)

The time-domain Eq. (2.51b) assumes that the mixer imperfection is independent of frequency.

In practice it might not be the case, in which case Eq. (2.51a) would have to be converted to

time-domain with the general formula for the inverse Fourier transform.

Next we will calculate the loss of SNR if we do not correct for the mixer imperfection and use

just the complex conjugate of the difference of digitized signal for the two qubit states as the

weights w(ω) = ∆D∗(−ω). In this case the integrated signal and its variation are

〈Se〉 − 〈Sg〉 =

∫ πνS

−πνS
|∆D(ω)|2dω (2.52a)

〈
δS2
〉

=

∫ πνS

−πνS

∫ πνS

−πνS
〈Re{δD(ω)∆D∗(ω)}Re{δD(ω′)∆D∗(ω′)}〉dωdω′. (2.52b)

To expand the real parts as a sum of the argument and its complex conjugate in Eq. (2.52b), we

find the correlation terms

〈δD(ω)δD(ω′)〉 = νS(1− ε)ε∗
(
V 2

0 N
∣∣
ωLO+ω

+ V 2
0 N
∣∣
ωLO−ω

)
δ(ω + ω′), (2.53a)

〈δD(ω)δD∗(ω′)〉 = νS

(
|1− ε|2V 2

0 N
∣∣
ωLO+ω

+ |ε|2V 2
0 N
∣∣
ωLO−ω

)
δ(ω − ω′). (2.53b)

For clarity I will drop the dependence of V0 and N on frequency, assuming that the IF is small

compared to the LO frequency and that the noise has an uniform spectrum. Next to find

the effect of mixer imperfections on the SNR, we want to express the signal and noise of the

downconverted signal in terms of the signal ∆AG(ω) and noise V 2
0 N of the amplified signal at the

input of the mixer. For this I will assume that there is no overlap between the two side-bands in

the input signal |∆AG(ωLO + ω)||∆AG(ωLO − ω)| = 0. This is true as long as the pulse spectrum

is narrower than the intermediate frequency ωIF used. In the case that there is overlap between

the pulses, similar calculations can be done, but the result will be more complicated as it will

depend on the amount of overlap. To find the expressions for signal and noise, we have to
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evaluate the following integrals∫ πνS

−πνS
|∆D(ω)|2dω = νS

∫ πνS

−πνS
|(1− ε)∆AG(ωLO + ω) + ε∗∆AG(ωLO − ω)|2dω =

= νS

(
|1− ε|2 + |ε|2

) ∫ ωLO+πνS

ωLO−πνS
|∆AG(ω)|2dω, (2.54a)∫ πνS

−πνS
∆D(ω)∆D(−ω)dω = 2νS(1− ε)ε∗

∫ ωLO+πνS

ωLO−πνS
|∆AG(ω)|2dω. (2.54b)

Combining the results from Eqs. (2.53a) to (2.54b), we find the signal and noise to be

〈Se〉 − 〈Sg〉 = νS

(
|1− ε|2 + |ε|2

) ∫ ωLO+πνS

ωLO−πνS
|∆AG(ω)|2dω, (2.55a)

〈
δS2
〉

=
ν2

SV
2

0 N

2

((
|1− ε|2 + |ε|2

)2
+ 4|1− ε|2|ε|2

)∫ ωLO+πνS

ωLO−πνS
|∆AG(ω)|2dω. (2.55b)

The SNR is therefore

SNR2 =
(〈Se〉 − 〈Sg〉)2

〈δS2〉
=

(
|1− ε|2 + |ε|2

)2(
|1− ε|2 + |ε|2

)2
+ 4|1− ε|2|ε|2

2
∫ ωLO+πνS
ωLO−πνS

|∆AG(ω)|2dω

V 2
0 N

. (2.56)

The first factor on the right hand side of Eq. (2.56) gives the reduction of the SNR due to the

imperfection while the second factor is the available SNR in the signal before downconversion.

We define the mixer efficiency ηmix. as the ratio of signal to noise ratios

ηmix. =
SNR2

SNR2
ε=0

=

(
1 + 4

|1− ε|2|ε|2(
|1− ε|2 + |ε|2

)2

)−1

=
(1 + α2)

2

2
(
1 + 2α2 sin2(ϕ) + α4

) (2.57)

For example with amplitude imbalance α = 1 dB and phase imbalance ϕ = 5°, the efficiency

would be ηmix. = 94 %. When only a single ADC channel is available, a mixer with only one

output is sometimes used. This corresponds to the case α = 0 where mixer efficiency is ηmix. = 1/2

and half the signal is lost.

2.4 Multiplexed readout

Reading out several qubits at the same time using frequency-multiplexing is in many ways similar

to reading out a single qubit. The basic principle is sketched in Fig. 3. Instead of applying a

square pulse modulated at some carrier frequency ωRO to the input of the device, we apply a sum
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ADCDAC

ω

Ain(ω)

ω

Aout(ω) ∝ S21(ω) Ain(ω)

Device

S21(ω)

Figure 3: A circuit diagram depicting the architecture we use for multiplexed readout. The spectra of

the readout pulse at the input and output of the device are depicted in the top left and right corners.

of pulses with different modulation frequencies ωRO,j and possibly different amplitudes Aj. The

multi-tone readout signal can be generated by upconverting two baseband signals, representing

the real and imaginary part of a complex signal, using an IQ-mixer. Given the inputs AI(t) and

AQ(t) of the mixer, the output of the mixer, which is the input to the cryostat, is

Ain(t) = AI(t) cos(ωLOt)− AQ(t) sin(ωLOt) = Re
{

(AI(t) + iAQ(t))eiωLOt
}
, (2.58)

where ωLO is the local oscillator frequency. By choosing the intermediate frequencies of the

different tones ωIF,j = ωRO,j − ωLO, we find the readout signal as the sum over the readout tones

Ain(t) =
∑
j

Re
{

(Aj cos(ωIF,jt) + iAj sin(ωIF,jt))e
iωLOt

}
=
∑
j

Re
{
Aje

iωRO,jt
}
. (2.59)

The multi-tone signal enables us to probe the transmission spectrum S21(ω) at several different

frequencies at the same time. By choosing the readout resonators of the different qubits Qj to

have unique frequencies ωR,j, we encode the information about the state of the different qubits

in different frequency ranges of S21(ω). Finally, to discriminate between all the qubit states,

we need to have different integration weights wj[k] for each qubit resulting in the integration

results Sj. From Eq. (2.28a) we see that the integration weights wj(−ω) of qubit Qj need to

have spectral overlap with the difference of the transmission spectra for Qj in the ground and

excited state ∆jS21(ωLO + ω). Here and in the following ∆j represents the average difference

between the signals for qubit Qj in the excited and in the ground state.

The amount of qubits that can be read out using frequency multiplexing is limited by the

available bandwidth of the different parts of the readout chain, the bandwidth of a single qubit’s

readout resonator and the dynamic range of the amplification chain. In our setup the bandwidth

of the measurement chain is limited by the digital-analog converter (DAC) and ADC instrument
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at 2× 600 MHz. Another critical part of the measurement chain that might limit the available

bandwidth is the first amplifier. The widely used Josephson parametric dimer amplifiers, for

example, have bandwidth in the order of 30 MHz [32]. We use a travelling wave parametric

amplifier (TWPA) [33], which has high gain G > 20 dB over a 3 GHz bandwidth. Because

high-bandwidth IQ-mixers and secondary amplifiers are commercially available, they should

not be limiting the bandwidth of the measurement chain. The dynamic range of an amplifier

can become the limiting factor for increasing the number of qubits when the total power of the

different readout tones approaches the 1 dB compression point of one of the amplifiers or mixers.

2.4.1 Characterizing crosstalk

In this subsection we discuss different methods to characterize the crosstalk in multiplexed

readout. For the corresponding experimental results, see also Section 4.2.

The goodness of single qubit readout is characterized by its fidelity

F ≡ 1− P (e | 0)− P (g | π), (2.60)

where e and g denote the measurement result and 0 and π denote the preparation, g and 0

corresponding to the ground state and e and π to the excited state. To experimentally measure

the fidelity, the qubit is repeatedly prepared in one of the states and then measured, recording

the histograms of the integration results for both preparations. By normalizing the histograms

to unit area we find the probability densities of the results p(S) = dP (S<S0)
dS0

∣∣∣
S0=S

, where we

have denoted the probability that the integrated result is less than some value S0 as P (S < S0).

The threshold value Sth. is then chosen as the solution of p(S | 0) = p(S | π) to maximize the

fidelity. The main contributors to the infidelity terms P (e | 0) and P (g | π) are noise in the

integrated signal, making the distributions p(S | 0) and p(S | π) overlap; qubit decay during the

measurement; and qubit state mixing during measurement, causing both qubit excitation and

decay. [34]

To characterize multiplexed readout of n qubits, one can also measure the probability densities

of the integration results for the different preparations (ζ1...ζn) ∈ {0, π}n. By classifying the

integration results based on the threshold values Sth.,j, we get a 2n × 2n assignment probability

matrix P (s1...sn | ζ1...ζn), where (s1...sn) ∈ {g, e}n are the classification results. The assignment

probability matrix will deviate from the ideal diagonal matrix already because of the single qubit
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errors mentioned in the previous paragraph. In addition to the single qubit errors, there might

be correlations between the measurement results of different qubits. In the ideal case with no

crosstalk, the joint probability distribution would be the product of the marginal distributions

P (s1...sn | ζ1...ζn) = P (s1 | ζ1)...P (sn | ζn). (2.61)

Qualitatively, readout crosstalk is the deviation of the assignment probability matrix from the

separable form (2.61).

There are several options to quantify the amount of correlation between different qubits. Looking

at the difference between the measured assignment probability matrix and the uncorrelated

one that is the product of the marginal distributions, one can see all orders of correlation. For

example correlations in the decay of different qubits can be detected. Another metric to look

at is the correlation between the preparation and measurement results of different qubits. We

define the cross-fidelity Fij between qubits Qi and Qj as

Fij ≡ 〈ζisj〉 = 1− P (ej | 0i)− P (gj | πi). (2.62)

The diagonal elements i = j give the standard definition of the single qubit readout fidelity [34].

The advantage of looking at the average correlations is that the full table has only n2 unique

elements – one for each ordered qubit pair, compared to the 4n elements of the full assignment

probability matrix. However information about some types of correlations, for example correlated

bit-flip errors, are lost in the process of averaging over the preparation states.

So far we have looked at the crosstalk between different qubits that we are measuring. In some

applications we only want to measure a subset of the qubits that are connected to the same

input and output port of the device, and not affect the quantum state of the other qubits.

One way to characterize this type of crosstalk would be to use process tomography [35] or

gate-set tomography [36] to find the corresponding process matrix on the unmeasured qubit.

A simpler way to characterize this effect is to measure only the dephasing of the unmeasured

qubit, which is expected to be the dominant effect. This is done in the cross-Ramsey dephasing

experiment [37], where the measurement pulse is sandwiched between two π/2 pulses on the

unmeasured qubit. While varying the phase of the second π/2 pulse, we record the contrast

of the oscillating integrated signal S. The loss in contrast is proportional to the exponent of

the total dephasing of the qubit Γ. To show this we look at the evolution of the state of the
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unmeasured qubit in the density matrix formalism:

ρ̂i = |g〉〈g| =

(
1 0

0 0

)
first π/2 pulse−−−−−−−−→ 1

2

(
1 −i
i 1

)
dephasing−−−−−→ 1

2

(
1 −ie−Γ

ie−Γ 1

)
second π/2 pulse−−−−−−−−−→
around angle φ

1

2

(
1− e−Γ cos(φ) e−Γ−iφ sin(φ)

e−Γ+iφ sin(φ) 1 + e−Γ cos(φ)

)
= ρ̂f. (2.63)

The averaged integrated measurement result, normalized such that S = 1 for qubit in the ground

state and S = −1 for the qubit in the excited state, is then tr(σ̂zρf) = −e−Γ cos(φ). We extract

the dephasing Γ from the amplitude e−Γ of the oscillations as a function of φ.

2.4.2 Causes of crosstalk

In the previous subsection we discussed the different ways to recognize and quantify the crosstalk

in multiplexed readout, but said nothing about the physical origins leading to the crosstalk. The

mechanisms can be roughly divided into 5 categories, that we will present in this subsection.

Preparation crosstalk Typically state preparation and measurement errors are hard to

distinguish, since bit-flip errors during them look identical in the measurement results. This

notion also carries on to correlations between state preparation and measurement errors. We

call the correlations in measurement results that arises due to crosstalk in the state preparation

preparation crosstalk. If the preparation pulse of qubit Qi also couples to qubit Qj, we would

see an increased number of bit-flips on Qj if Qi was prepared in the excited state. This effect

would however not be visible in cross-fidelity Fij , as the effects of putting Qj in the excited state

and putting it in the ground state cancel out. To determine the magnitude of the expected

preparation crosstalk, Rabi oscillation can be driven using another qubit’s drive line. The ratio

of pulse amplitudes needed to do a π-pulse gives the ratio of the coupling rates to the two ports.

The effect of the preparation pulse on the other qubit can be estimated from the preparation

pulse parameters and the cross-coupling. Another example of a cause for state preparation

crosstalk would be a σ̂izσ̂
j
z interaction between the two qubits.

Direct cross-coupling In the Jaynes-Cummings Hamiltonian (2.1) we have the coupling

strength g between the qubit and the readout resonator. If a qubit Qi and the resonator Rj of
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an other qubit Qj are physically situated close to each other, or if they both couple to a spurious

mode on the device, a direct cross-coupling term might appear in the Hamiltonian:

Ĥxc = ~gij(â†Rjσ̂Qi + âRjσ̂
†
Qi). (2.64)

In the dispersive regime, this gives rise to cross-dispersive shift χij that changes the resonator

Rj frequency depending on the state of Qi. This type of crosstalk would be apparent in the

cross-Ramsey dephasing measurement as populating Rj can be seen as a weak measurement of

Qi. To do a more direct measurement of the direct cross-coupling and the cross-dispersive shift,

one can measure the transmission spectrum of Rj and check if the resonance is shifted between

the two states of Qi. In practical realizations we don’t expect the direct cross-coupling to be

significant as the qubits are physically located relatively far from other readout resonators.

Spectral overlap Another possible mechanism causing dephasing visible in the cross-Ramsey

measurement is a spectral overlap between the readout pulse of qubit Qi and the readout resonator

Rj of another qubit. In this case the readout pulse populates the resonator Rj with photons

which in turn leads to dephasing of Qj. To avoid the spectral overlap, the sum of the spectral

width of the pulse, characterized by the inverse pulse-length 1/τi, and the width of the resonator

spectrum, characterized by the decay rate κR,j, should be much greater than the frequency

spacing between the readout resonators 1/τi + κR,j � |ωR,i − ωR,j|.

Signal crosstalk In the general case we could have 2n different transmission spectra Ss21(ω),

depending on the state s of the n-qubit system. The state-dependent transmission can be written

as a function of the σ̂z operators:

S21(ω) =

〈
Ss21(ω)

n∏
i=1

(1 + siσ̂
i
z)

〉
s

= 〈Ss21(ω)〉s +
n∑
i=1

σiz〈siSs21(ω)〉s+

+
1

2

n∑
i,j=1
i 6=j

σizσ
j
z〈sisjSs21(ω)〉s + ... (2.65)

The averages are taken over all the possible computational basis states s of the n-qubit system.

The variables si = 1 for the qubit Qi in the ground state and si = −1 for the qubit in the excited
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state. By truncating the series at the second term, we come to the expression

S21(ω) ≈ S̄12(ω)− 1

2

n∑
j=1

σjz∆jS21(ω), (2.66)

where we have introduced the average transmission amplitude S̄12(ω) ≡ 〈Ss21(ω)〉s and the average

difference in the transmission amplitude for qubit Qj in the excited and ground state ∆jS21(ω).

This truncation is exact if the resonances in the transmission spectrum don’t overlap, but is a

good approximation even with some overlap present. The integrated results are then

Si = S̄i +
n∑
j=1

Mijσ
j
z, (2.67)

where we use Eq. (2.28a) to find the matrix elements to be

S̄i =
√
AGνS

∫ ωLO+πνs

ωLO−πνs
V0(ω) Re

{
S̄21(ω)

〈
b̂in(ω)

〉
wi(ωLO − ω)

}
dω, (2.68a)

Mij = −
√
AGνS

2

∫ ωLO+πνs

ωLO−πνs
V0(ω) Re

{
∆Sj21(ω)

〈
b̂in(ω)

〉
wi(ωLO − ω)

}
dω. (2.68b)

We see that spectral overlap between the change in transmission ∆jS21(ω) due to the state of Qj

and the integration weights wi(ωLO − ω) of Qi results in non-diagonal elements Mij and signal

crosstalk. By inverting the matrix M, we can transform the integration results Si to a set S ′i
dependant on the state of a single qubit only

S ′i =
n∑
j=1

(
M−1

)
ij
Sj =

n∑
j=1

(
M−1

)
ij
S̄j + σiz. (2.69)

This means that we can always get rid of signal crosstalk up to the accuracy of the truncation in

Eq. (2.66).

Environment-induced crosstalk There can also be a deviation from the separable form of

the assignment probability matrix Eq. (2.61) even if there are no cross-couplings of the elements

on the device and if the readout itself is perfectly crosstalk free. To illustrate this, let’s look

at an exaggerated example of two qubit multiplexed readout. Let us, for the first half of the

measurement, have perfect measurement with a diagonal probability assignment matrix P1, but
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for second half of the measurement, due to an external noise, all the qubits are in the mixed

state, resulting in a uniform matrix P2:

P1 =



gg ge eg ee

00 1 0 0 0

0π 0 1 0 0

π0 0 0 1 0

ππ 0 0 0 1

, P2 =
1

4



gg ge eg ee

00 1 1 1 1

0π 1 1 1 1

π0 1 1 1 1

ππ 1 1 1 1

 (2.70)

The average probability assignment matrix for this measurement is then

P3 =
P1 + P2

2
=

1

8



gg ge eg ee

00 5 1 1 1

0π 1 5 1 1

π0 1 1 5 1

ππ 1 1 1 5

, (2.71)

which is not separable to two individual probability matrices. If the two qubit assignment

probability matrices were independent with the same marginal distributions, we would have the

probability matrix

P4 =
1

16



gg ge eg ee

00 9 3 3 1

0π 3 9 1 3

π0 3 1 9 3

ππ 1 3 3 9

 = P3 −
1

16



gg ge eg ee

00 −1 1 1 −1

0π 1 −1 −1 1

π0 1 −1 −1 1

ππ −1 1 1 −1

. (2.72)

The environment crosstalk manifests itself as anti-correlation between bit-flip errors in this case.

2.4.3 Low-crosstalk device design

A crucial part of designing a device for multiplexed readout is developing accurate model for

the transmission amplitude S21(ω) as a function of the device parameters. In this subsection I

summarise the results on the input-output relations of the device developed for fast low crosstalk

multiplexed readout, investigated by J. Heinsoo [38].
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Figure 4: A schematic of the model used for calculating the input-output relations of the device

designed for multiplexed readout.

As seen in Fig. 4, each of the qubits Qi has a readout resonator with a frequency ωR,i coupled to

it with rate gi. The readout resonator is coupled to another resonator at frequency ωP,i, called

Purcell filter, with coupling rate Ji that is in turn connected to a half-feedline with a rate κP,i.

Adding the Purcell filter to the system changes the asymptotic behaviour of the transmission

amplitude through the readout resonator at large detunings ∆ from the resonator frequency from

1/∆ to 1/∆2. This serves two purposes: First, it reduces the density of bosonic modes that the

qubit sees from the continuum of the half-feedline, increasing the lifetime of the qubit. Second,

it increases the suppression of the transmission amplitude difference ∆S21(ω) for the two qubit

states at high detunings from the resonance. As we saw in Subsection 2.4.2, this is a requirement

for low crosstalk readout. At the input side, the half-feedline is terminated by an capacitor,

while at the output side it is galvanically coupled to direct the readout signal to the output port.

To find the transmission amplitude S21(ω) = âout(ω)/b̂in(ω) for a single qubit connected to the

half-feedline, we write down the input-output relations for the individual components on the

device in frequency domain. We assume that the spectral width of the resonances is small enough

that we can look at the resonators of a single qubit at a time.

The input capacitor with capacitance Cin has a reflection coefficient Γ(ω) = 1
1+2iωCinZ0

= 1−eiα
2

,

where we have introduced an angle parameter cot
(
α
2

)
= 2ωCinZ0. The field b̂Γ on the other side

of the capacitor (see Fig. 4) is given by

b̂Γ(ω) = (1− Γ(ω))b̂in(ω) + ΓâΓ(ω). (2.73)
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The Purcell filter is connected to the half-feedline by a t-junction, giving the relations

ĉ↑(ω) = −1

3
ĉ↓(ω) +

2

3
b̂Γ(ω) +

2

3
b̂out(ω), (2.74a)

âΓ(ω) =
2

3
ĉ↓(ω)− 1

3
b̂Γ(ω) +

2

3
b̂out(ω), (2.74b)

âout(ω) =
2

3
ĉ↓(ω) +

2

3
b̂Γ(ω)− 1

3
b̂out(ω). (2.74c)

With the interaction Hamiltonian ĤJ = ~J(âRâ
†
P + â†RâP), and internal loss rates γR and γP the

equations of motion for the two resonators are

0 = −i(ωR − ω − χσz)âR(ω)− iJâP(ω)− γR

2
âR(ω), (2.75a)

0 = −i(ωP − ω)âP(ω)− iJâR(ω)− γP + κP

2
âP(ω)−

√
κPĉ↑(ω). (2.75b)

The boundary condition, connecting the output field from the Purcell filter to the t-connector is

ĉ↓(ω) = ĉ↑(ω) +
√
κPâP(ω). (2.76)

The addition of the t-connector and the input capacitor to the system adds an additional port to

the Purcell filter with which it interacts. This renormalizes the frequency and the linewidth of

the filter to the values κ̃P and ω̃P:

κ̃P = κP
1 + Re{Γ}

2
= κP

3− cos(α)

4
, (2.77a)

ω̃P = ωP + κP
Im{Γ}

4
= ωP − κP

sin(α)

8
. (2.77b)

Solving the linear system of equations (2.73) to (2.76), we find the transmission amplitude to be

S21(ω)

1− Γ
− 1 = −

(
1 + Γ

1 + Re{Γ}

)
κ̃P(γR − 2i(ω − ωR + χσz))

4J2 + (γP + κ̃P − 2i(ω − ω̃P))(γR − 2i(ω − ωR + χσz))
. (2.78)

We will later fit this form of the transmission amplitude to experimental data to find the system

parameters ωR, ω̃P, χ, and κ̃P. For zero detuning between the two resonators ∆RP = ωR− ω̃P = 0

the spectrum consists a peak in the middle of a wider dip as seen in Fig. 5

For fast readout it is important to populate the readout resonator quickly. This speed is

determined by the effective linewidth of the readout resonator κR. To find the effective linewidth
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Figure 5: Transmission amplitude through the half-feedline for the qubit in the ground and excited state

and the modulus of the difference of the two complex transmission amplitudes. Calculated according

to the model (2.78) with the parameters Γ = 1, ω̃P = ωR = 2π × 6.92 GHz, κ̃P = 2π × 40 MHz,

χ = −2π × 3.23 MHz, J = 2π × 10 MHz, γR = γP = 0.

we write the equations of motion for the two resonator modes in time-domain and matrix form

and set the inputs to zero b̂in(t) = b̂out(t) = 0:(
˙̂aR(t)
˙̂aP(t)

)
=

(
−γR

2
− i(ωR − σzχ) −iJ
−iJ −γP+κ̃P

2
− iω̃P

)(
âR(t)

âP(t)

)
. (2.79)

The decay rates κ of the eigenmodes of this coupled system are given by κ = −2 Re{E.V.}, where

E.V. is an eigenvalue of the square matrix in Eq. (2.79). For readout purposes we are interested

in the effective linewidth κR of the mode that becomes the readout resonator mode in the J → 0

limit. To keep the model simple, we look at the case of lossless resonators γP = γR = 0, to find

the effective readout resonator linewidth

κR =
1

2

(
κ̃P − Re

{√
(κ̃P + 2i(ω̃P − ωR + χσz))2 − 16J2

})
. (2.80)

We see that to keep κR large, we need to keep the detuning between the readout resonator and

the Purcell filter ∆RP small.

In the following sections we will use the symbols κP and ωP without the tilde to refer to the

renormalized frequency and linewidth of the Purcell filter and also omit explicitly noting in the

text that the renormalized values are meant.
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3 Experimental setup

In this chapter I give a brief overview of the devices used in the course of this project and the

experimental setup to operate these devices.

3.1 Devices used

Superconducting device fabrication and design were not in the scope of this project and were

done by other members of the group. My contribution to the device development was the char-

acterization of the test devices. Here I will give a brief overview of the different superconducting

devices used over the course of my work.

All of the devices are fabricated on a sapphire substrate. A thin 150 nm film of niobium is

sputtered on top of the substrate by a commercial supplier1. Next, the coplanar waveguide and

coupling capacitor structure of the device and the qubit islands are etched out of the niobium

using photolithography. Aluminum airbridges are fabricated over the coplanar waveguides to

connect the different parts of the ground plane in two more steps of photolithography. For a

more detailed description of the photolithography processes see the PhD thesis of L. Steffen [39].

The Josephson junctions necessary to create the qubits are fabricated using high precision electron

beam lithography and shadow evaporation of aluminum. See the PhD thesis of J. Fink [40] for

details.

It took several iterations of sample design to fabricate a device where we could implement

multiplexed readout. In the first devices that implemented the readout geometry described

in Subsection 2.4.3, we used a design where the qubits are formed from two superconducting

islands connected by a SQUID loop. A false-colored micrograph of such an 8-qubit device is

shown in Fig. 6a. One of the issues that stopped us from achieving fast high-fidelity single-shot

readout on this device was the small effective linewidth κR of the readout resonators. There

was a systematic detuning between the readout resonator and Purcell filter frequencies in the

order of 15 MHz, which using Eq. (2.80) can be seen as one of the causes of the small effective

linewidth. The challenge in fabricating resonators with accurate frequencies comes from the

strong dependence of the resonance frequency on the different capacitances to the resonator. To

1STAR Cryoelectronics
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Figure 6: a), b) Micrographs of devices M81B1 and M86S1, used prior to the final device. c) A

false color micrograph of the device M85BM2, used for multiplexed readout experiments. The color

scheme is the same as in Fig. 1. In addition the Purcell filters are shown in green and the half-feedline

is shown in yellow.
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accurately predict the resonator frequency, the capacitances are modelled in an electrostatic finite

element simulation using the ANSYS Maxwell software, and after that a capacitance network is

solved to find the effective capacitance to the resonator.

To simplify the design of readout resonators and thereby improve the accuracy of their resonance

frequencies, we moved to a new qubit design with a single island cross-shaped qubits [41]. One

of the test samples can be seen in Fig. 6b. In addition to simplifying the capacitance network,

the single-island qubit has the electric field more confined around the qubit compared to the

two-island design. This could reduce the coupling to lossy elements in the sample-holder and the

PCB, potentially increasing the qubit lifetime.

The main experiments of this thesis were done on the device M85BM2 shown in figure Fig. 6c.

There are 8 single-island qubits, each with its individual readout resonator and Purcell filter.

All of the Purcell filters are coupled to the half-feedline, which is galvanically coupled at the

output port and capacitively coupled at the input port, implementing the readout structure from

Subsection 2.4.3. All qubits, except for Q1 and Q8 have an individual flux bias line for tuning the

qubit frequency with a dc current (see Eq. (2.3)) and for tuning transitions on different qubits

into resonance with each other, implementing two-qubit gates [42]. The coupling between the

qubits needed for implementing two-qubit gates is mediated by virtual photons in the coupling

resonators between neighbouring qubits, forming a linear chain.

For multiplexed readout experiments we used only qubits Q2, Q3, Q5, Q6 and Q7, because

the data acquisition device we used for multiplexed readout, the Zurich Instruments UHFLI,

supported 5 weighted integration units. This choice of qubits was due to the fact that the qubits

at the corners of the device, Q1, Q4, Q5 and Q8, had much higher maximum frequencies than

designed. They would therefore have to be operated far from their sweetspot ωQ = ωQ,max, where

the qubit’s sensitivity to magnetic flux fluctuations through the SQUID loop
∂ωQ

∂Φ
is large. The

increased sensitivity increases the fluctuations of qubit frequency, causing dephasing of the qubit.

3.2 Cryogenics and wiring

To reduce noise in the environment and thereby increase the coherence of the qubits, the quantum

device is cooled down to around 10 mK in a dilution refrigerator by BlueFors. We use the low

temperature of the device also for state preparation as the thermal state of the qubit is close to
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Figure 7: Schematic of the wiring connections

the ground state. The superconducting chip is glued to a printed circuit board (PCB), which is

attached to a copper sample holder, mounted to the base plate of the cryostat. We use semi-rigid

coaxial cables to connect the PCB to the front-panel of the fridge at room temperature. The

input lines are attenuated at different temperature stages to suppress the thermal noise from the

room temperature environment. To further shield the device from magnetic field fluctuations,

the sample holder is placed in a two-layer magnetic shield can made of Cryoperm.

The cabling diagram is shown in Fig. 7. We use arbitrary waveform generators (AWGs)1 to

generate the baseband quadratures of the qubit drive pulses. These are upconverted using an

IQ-mixer to the qubit frequency. To do spectroscopic measurements, we can apply a continuous

microwave tone from the microwave generator (MWG)2, that is normally used as the LO for the

upconversion, directly to the qubit drive line, bypassing the mixer with a microwave switch. The

flux bias currents are created using SIM928 dc voltage sources from Stanford Research Systems.

The instrument can also be used to apply a dc current to a coil below the device to apply a

1Tektronix AWG5014
2Rohde & Shwarz SGS100A
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global magnetic field. The two quadratures of the baseband readout pulse (see Section 2.4) are

generated by the Zurich Instruments UHFLI instrument. We are using the special quantum

controller (QC) firmware of the UHFLI, so the instrument in this configuration is also called the

UHFQC. The baseband quadratures are upconverted using an IQ-mixer. After passing through

the half-feedline, the readout tone is amplified by a TWPA [33] at the base temperature, and

thereafter by a HEMT at the 4 K stage. Compared to the Josephson parametric amplifier [32],

the TWPA has a much wider bandwidth, which allows us to use broadband readout pulses.

There are several additional amplifiers at room temperature. Another IQ-mixer, that uses the

same LO as the upconversion mixer, is used for downconversion of the readout signal (see Section

2.2). Both the input and output channels of the UHFQC have 600 MHz of bandwidth. Because

we are using an IQ-mixer, we can independently choose the signals in the upper and the lower

sideband of the upconverted pulse. This means that the readout pulse can have up to 1.2 GHz of

bandwidth. This bandwidth limit lead to the frequency spacing of 160 MHz between the readout

resonators of the final 8-qubit device M85BM2 described in Section 3.1.

3.3 Signal processing with the UHFQC

The first digital signal processing is done on the UHFQC. An overview of the signal processing

capabilities of the UHFQC is shown in Fig. 8. Upon receiving a trigger pulse, timetraces of the

two input channels are recorded, which we denote as the real and imaginary part of a complex

signal D[k]. These timetraces can directly be read out at the so called input average node of the

UHFQC. In the next step the real and imaginary part of the complex signal can be mixed by a

linear transformation

Re{D[k]} → crr Re{D[k]}+ cri Im{D[k]} (3.1a)

Im{D[k]} → cir Re{D[k]}+ cii Im{D[k]} (3.1b)

or equivalently

D[k]→
(
crr + cii

2
+ i

cir − cri
2

)
D[k] +

(
crr − cii

2
+ i

cir + cri
2

)
D∗[k]. (3.2)

The coefficients crr, cir, cri, cii can be arbitrarily programmed. This transformation is called

the deskew matrix and can be used to correct for amplitude and phase imperfections of the

downconversion mixer (see Section 2.3.2). It is not so useful in the case of multiplexed readout

36



Linear
Transform. Threshold.

Digital
Output

Linear
Transform.

Averager Segmented
Averager

Input Averager
to PC

Selector

Result Logger
to PC

Figure 8: Diagram of the signal processing with the UHFQC

as the phase and amplitude imperfections of the downconversion mixer typically depend on the

intermediate frequency and thus cannot be corrected with a global transformation.

The deskewed signal is integrated in the weighted integration units, each programmable with

unique integration weights w[k]. In the firmware of the UHFQC used in this thesis (v5.2), there

were 5 weighted integration units available, but Zurich Instruments has recently released firmware

that increases this number to 9. The integration results for the two input channels are then

added together in each weighted integration unit with arbitrary weights wr and wi to yield the

integrated signal S

S = wr

kmax−1∑
k=0

Re{D[k]}Re{w[k]}+ wi

kmax−1∑
k=0

Im{D[k]} Im{w[k]}, (3.3)

which for the choice wr = 1, wi = −1 gives us Eq. (2.26) that we analyzed in Section 2.2.

The integrated signals of each weighted integration unit can be read out or processed further.

The processing includes applying a linear transformation to correct for systematic correlations,

multiplying the integration results of different weighted integration units and thresholding the

integrated results at some preprogrammed level. The output node of the processed or unprocessed

integrated signals is called the result logger. The thresholded values can also be output to the

37



digital output port of the UHFQC to condition the following qubit operations on the measurement

results in a feed-forward experiment.

Most experiments we do consist of subexperiments, or segments, with different configuration

parameter values. These subexperiments are usually executed in an interleaved fashion, where

consecutive runs of the experiment are saved in different averaging bins, to avoid systematic

errors from parameter drifts while averaging the integrated signal in long measurements. This

segmented averaging is also colloquially called TV-mode. The UHFQC result logger supports

segmented averaging of the integrated signals unlike, the input averager, which can only average

the timetraces from a single subexperiment at a time. This means that for each timetrace that

one wants to measure with the UHFQC there is the increased overhead associated with setting

up the measurement and reading out the results from the UHFQC.

Reading out only the integrated signals differs from what is done in most other setups in our

group, where the timetraces are filtered and saved using a custom field-programmable gate

array (FPGA) and later analysed on a PC [43]. The filtering on the FPGA includes digital

downconversion and a finite impulse response (FIR) filter, both of which are linear operations so

that the filtered signal F [k] can be expressed as

F [k] =
∑
l

λ[k, l]D[l], (3.4)

where D[l] is the digitized signal. For example for a box-car filter of llmax samples and digital

downconversion from frequency ωRO the coefficients λ[k, l] are

λ[k, l] =

 1
lmax

e
i
ωRO
νS

l
, if k − lmax < l ≤ k,

0 otherwise.
(3.5)

The probabilities Ps of the system being in one of its states s are later calculated on a PC as

Ps =

∑
k Re{F [k]Rs[k]∗}∑
nRs[n]Rs[n]∗

= Re

{∑
l

∑
k λ[k, l]Rs[k]∗∑
nRs[n]Rs[n]∗

D[l]

}
, (3.6)

where Rs[k] are reference traces recorded after preparing the qubit in the corresponding state.

By comparing Eq. (3.6) with Eqs. (2.26) and (3.3) and by identifying the weights as w[l] =∑
k λ[k, l]Rs[k]∗

/∑
nRs[n]Rs[n]∗, we see that the same signal processing can be done on the

UHFQC.
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4 Tune-up and characterization of multiplexed readout

In this chapter the experimental results are presented. In Section 4.1 we report on the tune-up

and characterization experiments necessary prior to implementing multiplexed readout. Example

data from measurements on qubit Q6 is shown in the figures while the relevant parameters of all

the qubits are shown in table form. The results reported here are from the device M85BM2 used

for multiplexed readout experiments, but similar characterization measurements were done on

the devices before that to find the features of the design that have to be improved. In Section 4.2

the demonstration and characterization experiments of multiplexed readout are presented.

4.1 Tune-up of single-shot readout

4.1.1 Spectroscopic measurements

The transmission spectrum through the half-feedline, seen in Fig. 9a, shows 8 resonances with a

double-dip structure, corresponding to the resonator pairs. The ripples between the resonances

are caused by the varying gain of the TWPA and possibly by standing waves in the readout
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Figure 9: a) The transmission amplitude of the half-feedline with 8 double resonator resonances shown

with vertical lines. b) Qubit Q6 state dependent transmission of the half-feedline. Fits to the model

(2.78) are shown in dashed lines.
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R2 R3 R5 R6 R7

ωR/2π (GHz) 7.0534 6.5744 7.1995 6.8947 6.4069

ωP/2π (GHz) 7.0563 6.5790 7.1962 6.8995 6.3929

γR/2π (MHz) 2.3 1.8 1.0 1.4 1.7

κP/2π (MHz) 32.8 32.1 40.9 33.7 41.7

J/2π (MHz) 9.4 8.3 9.9 8.7 7.7

χ/2π (MHz) −4.0 −1.1 −0.9 −2.7 −2.6

κR/2π (MHz) 8.3 7.7 10.9 7.3 3.3

Table 1: Microwave properties of the 5 readout resonators

chain. By fitting the transmission amplitude around the resonance to the model (2.78), we

extract the microwave parameters of the two resonators: the frequencies ωR ± χ and ωP, the

couplings κP and J and the internal loss rate γR. To find the dispersive shift χ, we measure

the transmission spectra while preparing the qubit in the ground and in the excited state, seen

in Fig. 9b. The dispersive shift is given by twice the difference of the fitted readout resonator

frequencies (see Eq. (2.5)). The extracted microwave parameters for the 5 resonator pairs we

used for multiplexed readout experiments are shown in Table 1. The effective readout resonator

linewidth is calculated for the qubit in the excited and ground state from Eq. (2.80) and the

smallest of the two values is reported, as the smaller value will limit the speed of populating and

depleting the readout resonator in the worst case.

4.1.2 Single qubit gates tune-up

The approximate qubit frequencies are determined in a two-tone qubit-spectroscopy experi-

ment [44]. Here we apply a drive tone with varying frequency to the drive line of the qubit.

When the tone is resonant with the qubit frequency, the excited state becomes populated and the

transmission through the half-feedline at the corresponding readout resonator frequency changes.

By applying an even stronger drive tone, it is also possible to drive the g ↔ f transition in a

two-photon process. From the corresponding drive frequency ωgf/2 = ωQ + α/2, we extract the

anharmonicity α of the qubit.

To rotate the qubit state on the Bloch sphere, we apply a derivative-removal-by-adiabatic-gate
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Figure 10: Tune-up of single-qubit gates on the example of qubit Q6. a) The pulse amplitude is

swept to find the amplitude corresponding to a π-rotation in the Rabi experiment. b) The detuning

between the qubit and drive pulses is given by the frequency of state oscillation between the two

π/2-pulses in the Ramsey experiment. c) In the q-scale experiment the optimal amplitude of the

derivative quadrature of the DRAG pulse is found.

(DRAG) [45] pulse to the drive line of the qubit. The DRAG pulse has a Gaussian envelope on

one quadrature and the derivative of the Gaussian on the other, designed to correct for phase

errors and leakage out of the computational basis due to higher energy levels of the qubit. The

standard deviation of the Gaussian is σ = 10 ns and we truncate it at ±2.5σ to get a total pulse

length of 50 ns. The rotation angle is controlled by the pulse amplitude and the rotation axis

by its phase. The pulse amplitude corresponding to a rotation of π-radians Vπ is calibrated by

measuring the oscillations of the integrated signal as a function of the pulse amplitude in the

Rabi experiment, shown in Fig. 10a. The data is fitted to a cosine and the π-pulse amplitude is

taken to be the maximum of the fit.

The qubit frequency is more precisely determined in a Ramsey experiment, shown in Fig. 10b.

We apply two pulses with a varying delay τ between them to the qubit, each rotating the qubit

state by π/2 along the same axis. If the qubit frequency ωQ is detuned from the frequency of

the pulses ωd, the resulting signal will oscillate with the detuning frequency. Additionally the

oscillation amplitude will decay due to dephasing during the experiment:

S(τ) ∝ e−τ/T
∗
2 cos((ωQ − ωd)τ). (4.1)
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To better distinguish the detuning from decay, we introduce an artificial detuning ∆art., such

that the rotation axis of the second π/2-pulse is rotated by ∆art.τ . We extract the oscillation

frequency of the measured signal ωQ − ωd −∆art. from a fit.

The higher energy levels of the qubit perturb the driven system such that the effective rotation

angle for a short pulse is not along the x-y plane when driving at the qubit frequency determined

in the Ramsey experiment. To correct for this effect, we optimize the derivative quadrature VQ(t)

amplitude of the DRAG pulse in the q-scale experiment such that the rotation is around an axis

perpendicular to the z-axis on the Bloch sphere. We quantify the amplitude of VQ(t) in terms of

the qscale parameter such that

VQ(t) = qscaleσ
dVI(t)

dt
, (4.2)

where VI(t) is the quadrature of the pulse with the Gaussian envelope. We measure the average

qubit populations after applying a π/2 rotation around the x-axis followed by a π-rotation around

the y, x or −y-axis for different values of the qscale parameter, shown in Fig. 10c. At the optimal

value of the qscale parameter the rotations around the y and −y-axis give the same result, while

at other values, the rotation axis are tilted from what we expect and there is a difference between

the Ry(π) and Ry(−π) rotation.

The qubit frequency and other parameters described in this section depend on the bias magnetic

flux through the SQUID loop. The maximum qubit frequency ωQ,max is determined in a repeated

qubit-spectroscopy experiment while sweeping the flux bias current. The values reported in

Table 2 correspond to the flux biasing of the qubits as in the multiplexed readout experiment.

All qubits except for Q5 were biased close to their maximum frequency, which means that they

are less sensitive to the noise in the biasing magnetic flux. We could not tune qubit Q5 to its

maximum frequency because it would quickly decay there due to spontaneous emission through

the readout resonator at the small detuning from the readout resonator.

4.1.3 Readout parameters tune-up

We apply a square pulse Ain, modulated at the the readout frequency ωRO, at the input of

the fridge to determine the state of a single qubit. To pick the optimal modulation frequency

ωRO (also called readout frequency), we measure the complex transmission of the half-feedline

for the qubit in the excited state Se21(ω) and for the qubit in the ground state Sg21(ω). We
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Q2 Q3 Q5 Q6 Q7

ωQ,max/2π (GHz) 6.260 5.216 6.996 5.996 5.442

ωQ/2π (GHz) 6.2600 5.2157 5.449 5.9178 5.4421

α/2π (MHz) −226 −246 −198 −234 −238

Vπ (mV) 191 203 550 730 458

qscale (%) 5.9 4.3 8.3 8.3 0.2

T ∗2 (µs) 3.4 10 0.6 7.5 6.5

Table 2: Properties of the 5 qubits used in the multiplexed readout experiment.

choose the frequency where the absolute value of the difference of the transmission amplitudes

is maximal, so that the SNR in the steady state, as given by Eq. (2.31), is maximized. The

measured transmission amplitudes and their difference for qubit Q6 is shown in Fig. 11. The

readout frequencies ωRO of the other 4 qubits reported in Table 3 are picked in the same way.

To pick the optimal readout amplitude for a given pulse length a balance between low SNR at

low readout amplitudes and breakdown of the dispersive approximation and qubit state mixing

at high readout amplitudes must be found. We chose a readout pulse length of 80 ns as it enabled
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Figure 11: a) The readout frequency of qubit Q6 is set to ωRO/2π = 6.8935 GHz, where the difference

between the complex transmission amplitudes between the qubit in the ground- and excited states is

maximal. b) The readout pulse amplitude of Q6 was chosen VRO = 36 mV such that the readout

fidelity is maximized for the chosen pulse length and frequency.
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us to accumulate enough SNR to reliably distinguish between the two states while keeping the

number of photons in the readout resonator nRO in the order of the critical photon number

ncrit.. The readout amplitude was chosen for each qubit by sweeping the readout amplitude

while recording the probability distributions p(S | 0) and p(S | π). These distributions for qubit

Q6 at the readout amplitude used for multiplexed readout are shown in Fig. 12. Each of the

measurement results is classified as the qubit being in the ground or excited state according to

the threshold value, shown with the dashed line. The fidelity of the readout F was calculated for

each amplitude according to Eq. (2.60). To extract the signal-to-noise ratio, a double-Gaussian

was fitted to both distributions and the SNR calculated as

SNR =
µe − µg

(σe + σg)/2
, (4.3)

where µe/g and σe/g are the mean and the standard deviation of the corresponding Gaussian.

The extracted fidelity and SNR for reading out qubit Q6 are plotted as a function of the readout

amplitude in Fig. 11b. For each qubit we choose the readout amplitude where the total fidelity

is maximal. The loss of fidelity due to low SNR is given by the overlap error

εo = erfc

(
SNR

2
√

2

)
. (4.4)

At the readout amplitude we chose for qubit Q6, the overlap error is εo � 10−5 % and the errors

are mainly due to state transitions during or before the measurement.

To determine the number of photons in the readout resonator corresponding to the selected

readout amplitude, we do an ac-Stark shift measurement. From the dispersive Hamiltonian

Eq. (2.5) we see that the effective qubit frequency depends on the number of photons in the

readout resonator. We apply a readout pulses of 3.192 µs with different amplitudes V , expressed

in terms of the ratio to the amplitude used in single-shot readout experiments V = ξVRO. At the

same time, we apply a drive pulse a frequency ωd near the qubit transition frequency. We integrate

the last 2.275 µs of the transmitted readout pulse to determine the qubit state. The signal as a

function of the drive frequency is fitted to a Lorentzian function and the qubit frequency ωQ

and linewidth are extracted as the mean and full width at half maximum (FWHM) of the fit.

Example data for qubit Q6 at ξ2 = 0.9 % is seen in Fig. 13a. Repeating this measurement at

different readout amplitudes, we find the qubit frequency as a function of the scale parameter.

We fit the data to the model ωQ = ωQ,0 + 2χnROξ
2 of the dispersive Hamiltonian Eq. (2.5),

where ωQ,0 and 2χnRO are the fit parameters. Finally, we can calculate the number of photons
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Figure 12: Histograms of the integrated signal results of reading out qubit Q6. The qubit was prepared

in the ground state for the histogram in blue, and in the excited state for the histogram in red. The

experimental results are shown as circles while a fit to a double-Gaussian model is shown with lines.

The two peaks are well separated, which means that a smaller readout amplitude could have been

used.
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Figure 13: a) The frequency of the qubit drive tone is swept, recording the transmitted signal. We

see a change in the transmitted signal when the qubit drive tone is resonant with the qubit transition

frequency. The qubit frequency and linewidth are extracted from a Lorentzian fit. b) Repeating the

qubit spectroscopy measurement at different readout amplitudes we see a linear dependence between

the qubit frequency and readout power. The number of photons in the readout resonator at 100 % is

extracted from a linear fit.
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Q2 Q3 Q5 Q6 Q7

ωRO/2π (GHz) 7.0535 6.5720 7.2013 6.8935 6.4080

(ωRO − ωLO)/2π (MHz) 192.5 −289.0 340.3 32.5 −453.0

(ωRO − ωQ)/2π (MHz) 793.5 1356.3 1752.3 975.7 965.9

VRO (mV) 8.625 30.75 57.0 36.0 29.25

nRO 4.7 36.3 126.8 39.2 56.2

ncrit. 9.5 33.9 42.2 16.1 18.7

Table 3: Readout parameters of the 5 qubits used in the multiplexed readout experiment.

in the readout resonator for ξ = 100 %, nRO, by using the value of the dispersive shift χ from an

independent measurement (see Fig. 9b).

4.1.4 Mode-matched filtering

To extract the most SNR from the digitized signal, we use mode-matched integration weights in

single-shot readout experiments. As derived in Subsection 2.3.1, they give the highest possible

SNR. For this we record the averaged traces for the qubit in the ground excited state and use the

complex conjugate of their difference as the integration weight. The timetraces are averaged 215

times giving a filter efficiency ηf > 99.9 % according to Eq. (2.42). This efficiency is actually not

achieved, as we are not correcting for the phase and amplitude imbalance of the downconversion

mixer as per Eq. (2.51b). The downconverted signal for qubit Q6 in the ground and excited

state together with their difference is shown in Fig. 14. The oscillation at 2ωIF/2π = 65 MHz in

the difference of the downconverted signals comes from the downconversion mixer imperfections.

In comparison, the maximal filter efficiency achievable with a box-car filter is ηf = 89 %, when

integrating from 47.8 ns to 161.7 ns. If not optimizing the filter at all and choosing a box-car

weight starting at the arrival of the pulse and ending at τp + 1
κR

= 217 ns, the resulting efficiency

would be ηf = 60 %.

We pick the local oscillator frequency, which is common for all of the qubits, such that

the overlap between the weight spectra of different qubits is minimized to reduce signal

crosstalk. Due to constraints of the UHFQC, the integration weights are normalized such

that max
k

(Re{w[k]}, Im{w[k]}) ≤ 1. In Fig. 15b, we see that the peaks are well separated
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Figure 14: The measured responses to the τp = 80 ns readout pulse of qubit Q6 for the qubit in the

ground and excited states. The digitally downconverted quadrature that shows the largest difference

between the two traces is plotted. The absolute value of the difference of the two responses, which is

used as the mode-matched integration weight, is shown in purple. The quadrature orthogonal to the

optimal quadrature, averaged over the two states, is shown in gray.

in frequency with 5 orders of magnitude suppression in power at neighbouring qubit readout

frequencies. The input pulse powers, shown in Fig. 15a, are however suppressed only by 3 orders

of magnitude at the neighbouring qubit readout frequencies.

4.1.5 Timing

In some experiments the exact relative arrival time of the pulses generated by different instruments

is important. To characterize the delays between the AWGs and the UHFQC, we generated a

10 ns pulse from each of these instruments, let it propagate through the cryostat and the device,

and measured the arrival time of using the UHFQC. In Fig. 16a we see the pulse generated by the

UHFQC and acquired by the UHFQC with the same physical trigger starting both events. From

this measurement we find the optimal delay value of 216 ns between UHFQC pulse generation

and data acquisition. In Fig. 16b a trigger for the UHFQC and a pulse to the drive line of

qubit Q2 are generated using one of the AWGs. The modulation frequency of the drive pulse is

resonant with R2 and the output from the half-feedline is measured by the UHFQC. We see that

if we want the pulses to arrive at the sample simultaneously, we need to advance the UHFQC
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Figure 15: a) The power spectra of the readout pulses of the individual qubits, calculated from the

drive parameters. b) Power spectra of the mode-matched integration weights.

trigger by 176 ns. The delay between pulses from the master AWG and the slave AWG (the

master AWG triggers the slave AWG) and between the gate pulse to mask the qubit drive tone

from a MWG and the readout pulse were calibrated in the same way, yielding the values 414 ns

and 62 ns correspondingly.

4.2 Characterization of multiplexed readout

4.2.1 Assignment probability table

After finding the optimal parameters of single-qubit gates, necessary for state preparation, and

optimizing the readout amplitude, frequency and weight functions, we are ready for demonstrating

multiplexed readout. For this we prepare one of the 32 computational basis states of the 5 qubit

system and apply the five-tone measurement pulse to the half-feedline. We record 2 064 384 shots

for each of the prepared states. The qubits are not always in the ground state at the start of

the experiment due to thermal population. To filter out the shots, where some of the qubits

are initially in the excited state, we also do a preselection measurement 400 ns before the main

measurement. Later, while analysing the data, we discard the shots where not all of the qubits

were initially in the ground state. In the multiplexed readout dataset, this amounts to 30.8 %
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Figure 16: Calibration of the delays between the readout and the drive pulses. a) The UHFQC is

used to generate a 10 ns square pulse. The acquired time-trace shows that it arrives back at the

UHFQC 216 ns after the start of data acquisition. The frequency of the pulse is chosen between the

resonances so that it passes through the half-feedline relatively unperturbed. b) A 10 ns square pulse

is generated using the AWG. The pulse frequency is chosen to be in resonance with resonator R2

to see any transmission to the output port of the half-feedline. The frequency dependence of the

resonator structure distorts the pulse shape and the signal amplitude oscillates due to LO leakage

as the up- and downconversion mixers had different LO frequencies. To downconvert the signals

and smooth out noise, the digitized time-traces are convolved with a decaying exponential in both

cases, with time-constant τ = 7.4 ns. Because of the sharp rise of the used convolution kernel, the

convolution does not change the starting times of the pulses.
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Figure 17: a) Assignment probability of the different 5-qubit states as a function of the prepared state.

b) Deviation of the assignment probabilities from a fully separable probability matrix in percentage

points.

of the whole dataset. This number is consistent with the excited level populations seen in the

individual qubit readout experiments that were done interleaved with the multiplexed readout

experiment. There we removed 2.7 %, 6.8 %, 13.4 %, 7.6 % and 7.4 % of the data for qubits Q2,

Q3, Q5, Q6 and Q7 respectively. For each qubit Qi we first analyse the distributions p(Si | 0i)
and p(Si | πi) averaged over the different preparations of the other 4 qubits to find the threshold

voltage S0,q. Using these thresholds, we can label the measurement results with one of the 32

states of the 5 qubits. The resulting assignment probability matrix P (s2s3s5s6s7 | ζ2ζ3ζ5ζ6ζ7) is

shown in Fig. 17a.

In the ideal case the diagonal elements would all be 100 % while the off-diagonals would be 0 %.

The apparent deviation from the ideal corresponds mainly to errors in classification of a single

qubit. To better visualize any correlations in the probabilities, we calculate the average probability

table P (sq | ζq) for each qubit and find their Kronecker product as described in Subsection 2.4.1.

The resulting matrix does not have any correlations between the measurement results of the

qubits. The deviation of the original probability matrix from the product of the individual

matrices is shown in Fig. 17b. The difference is less than 1 percentage point for all elements. It

is not entirely clear what limits this type of crosstalk, but possible reasons include environment-

induced crosstalk, as significant fluctuations average single qubit readout fidelities were witnessed
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Figure 18: The cross-fidelity matrix, quantifying the correlations between the preparation of qubit Qi

and the measurement result of qubit Qj.

Q2 Q3 Q5 Q6 Q7

F (1) (%) 91.4 93.1 95.4 97.5 96.9

F (5) (%) 92.7 93.5 95.7 97.0 96.6

Table 4: Readout fidelity of individual readout F (1) and average readout fidelity in multiplexed readout

F (5) of the 5 qubits.

during the 13 hour data acquisition time.

From the assignment probability matrix we also calculated the cross-fidelity matrix Fij , given by

Eq. (2.62) and shown in Fig. 18. The diagonal elements, which give the average single qubit

readout fidelity, are greater than 92 % for all 5 qubits, while the off-diagonal elements are all less

than 0.23 %. The average readout fidelities in the multiplexed readout experiment F (5) match

well with the readout fidelities obtained from the experiments where only one qubit was read out

at a time F (1), as seen in Table 4.

4.2.2 Cross-measurement induced dephasing

So far we have looked at how the preparation of the 5 qubits affects the measurement results

of the same 5 qubits. There are many scenarios, for example linear error correcting code and
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entanglement swapping algorithm, where not all qubits connected to the half-feedline are read

out at the same time. The effect of measurement on the unmeasured qubits can be characterized,

as described in Section 2.4, in terms of the dephasing of qubit Qj caused by the measurement of

qubit Qi. To measure this, we conduct a Ramsey dephasing measurement, depicted in Fig. 19.

We apply two π/2-pulses on the dephased qubit Qj, with a variable phase difference φ. Between

the two π/2-pulses, we apply a measurement pulse with varying amplitude to qubit Qi. As

when determining the number of photons in the readout resonator, we quantify the amplitude of

the pulse V with the ratio ξ to the one used in the multiplexed readout experiment V = ξVRO.

There is a delay of 420 ns after the measurement pulse to also be sensitive to dephasing while

the resonator is ringing down. After the second π/2-pulse we measure the state of qubit Qj.

For each readout amplitude ξ, we fit the integrated readout signal S to a sinusoid as a function

of φ and extract the contrast C:

S(ξ, φ) = C(ξ) cos(φ+ φ0(ξ)). (4.5)

The extracted contrasts for qubit pair Qi = Q3, Qj = Q7 are shown in Fig. 19b. The instantaneous

dephasing rate is given by [46]

dΓ

dt
= 2χ Im{agRa

e∗
R }, (4.6)

where agR and aeR are the amplitudes of the field in the readout readout resonator for the qubit in

the ground and excited states. We note that the dephasing rate, and therefore also the integrated

dephasing, are proportional to the power of the readout tone. Therefore we fit the signal contrast

to the model

C(ξ) = C0e
−Γ = C0e

− ξ2

2σ2 . (4.7)

The integrated dephasing of qubit Qj due to the measurement of qubit Qi at ξ = 100 % is

therefore given by Γ = 1
2σ2 .

The dephasing is extracted in this way for all qubit pairs Qi, Qj and shown in Fig. 19c. The

probability of phase flip error on the qubit is given by Pφe = 1
2

(
1− e−Γ

)
with the worst case

value of 50 %. For qubit pairs (Qi,Qj) = (Q2,Q3), (Q2,Q5), (Q2,Q7), (Q6,Q3) and (Q6,Q7), the

change in contrast was below the noise level. In these cases we estimated the upper bound of the

dephasing Γ by assuming that the contrast changes by one standard deviation of the measured

contrasts over the amplitude range considered.
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Figure 19: Determining the dephasing of qubit Qj due the measurement of qubit Qi. a) Pulse scheme

used for the experiment. A measurement pulse with amplitude V = ξVRO is applied to qubit Qi

between two π/2-pulses on qubit Qj with a phase difference of φ. Finally the state of qubit Qj is

measured. The experiment is repeated at different values of ξ and ϕ. b) For each amplitude scale

ξ, the amplitude of the oscillations of the qubit Qi measurement signal as a function of φ is found.

Here the experimental data for Qi = Q3, Qj = Q7 is shown together with a fit to a Gaussian. The

total dephasing of qubit Qj due to the readout of qubit Qi at the full readout amplitude ξ = 100 %

is calculated from the fit parameters. c) The integrated dephasing rates of all qubit pairs together

with the corresponding probabilities of inducing a phase flip error.
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For most qubits the error probability is in the percent order, but the higher dephasing rates

of qubit Q2, when measuring the other qubits, can be seen as the result of the high effective

linewidth κR and dispersive shift χ of Q2 (see Table 1). The large linewidth increases the

populations agR, aeR when driving off-resonantly and the high dispersive shift χ directly increases

the dephasing according to Eq. (4.6). As a combination of biasing qubit Q5 1.5 GHz from its

maximum frequency and a fluctuating magnetic field noise, the measurements of the dephasing

of qubit Q5 were not very reliable. The large apparent dephasing rates of qubit Q5 when reading

out qubits Q6 and Q7 could thus be explained by fluctuations of its spontaneous dephasing rate

during the experiment.

4.2.3 Measurement efficiency

The diagonal elements Qi = Qj of the dephasing matrix Fig. 19c enable us to measure the total

measurement efficiency η when reading out the qubits [37]. To see this we derive the fundamental

relation between the dephasing of the qubit and the achieved SNR in the ideal case. For a linear

measurement in the computation basis, the measurement operator has the form

M̂(S) =
1√
σ
√

2π

e− (S−Sg)2

4σ2 0

0 e−
(S−Se)2

4σ2

, (4.8)

where σ is noise in the measured signal S, ideally only due to the amplified quantum fluctuations

of readout resonator field. This measurement operator is properly normalized with respect to

the measurement result S: ∫ ∞
−∞

M̂ †(S)M̂(S)dS =

(
1 0

0 1

)
, (4.9)

and gives the following distributions for the qubit prepared in the ground and excited state:

p(S | g) = tr
(
M̂(S)ρ̂gM̂

†(S)
)

=
1

σ
√

2π
e−

(S−Sg)2

2σ2 (4.10)

p(S | e) = tr
(
M̂(S)ρ̂eM̂

†(S)
)

=
1

σ
√

2π
e−

(S−Se)2

2σ2 (4.11)

with the quantum limited SNR

SNRq.l. =
Se − Sg

σ
. (4.12)
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Q2 Q3 Q5 Q6 Q7

Γ 16.3 15.3 29.3 62.6 57.6

SNR 5.8 5.5 7.1 11.3 10.5

η (%) 51.8 49.9 42.7 51.2 47.9

Table 5: Measurement efficiencies.

With our definition of the measurement efficiency, the actual achieved SNR is given by

SNR2 =
η

2
SNR2

q.l., (4.13)

because we are using a phase preserving amplifier instead of a phase sensitive one, which results

in a two-fold reduction of SNR2. Applying this measurement to a qubit in an arbitrary state

ρ̂i =

(
ρgg ρge

ρeg ρee

)
the post-measurement state ρ̂f, averaged over all possible measurement outcomes

is

ρ̂f =

∫ ∞
−∞

M̂(S)ρ̂iM̂
†(S)dS =

 ρgg e−
(Se−Sg)2

8σ2 ρge

e−
(Se−Sg)2

8σ2 ρeg ρee

 =

(
ρgg e−Γρge

e−Γρeg ρee

)
. (4.14)

Using the expression for the integrated dephasing from Eq. (4.14), we arrive at the expression

for the measurement efficiency

η = 2
SNR2

SNR2
q.l.

=
SNR2

4Γ
. (4.15)

Using Eq. (4.15) together with the measurement induced dephasing data from Fig. 19c and the

achieved SNR in single-shot readout, we calculate the measurement efficiencies for the 5 qubits,

reported in Table 5.
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5 Summary & outlook

We implemented multiplexed readout of 5 superconducting qubits using the Zurich Instruments

UHFLI instrument and, as the first team in Quantum Device Lab, the PycQED measurement

control software package. By employing mode-matched weighted integration, we achieve 92–97 %

readout fidelities with a 80 ns readout pulse. The multiplexed readout fidelities differ from the

individual readout fidelities of the qubits by less than 1.3 % for all and by less than 0.5 % for most

qubits. The 5-qubit state assignment probabilities deviate less than 1 % from the assignment

probability distributions of independent qubit, rendering the correlated errors insignificant

compared to single qubit errors. The cross-fidelity, indicating the correlations between the

measurement result of one and the preparation of an other qubit, is less than 0.23 % for all

qubit pairs. The effect of the readout pulse on unmeasured qubits is characterized in terms of

cross-measurement induced dephasing. The dephasing induced phase error probabilities are for

most qubits in the percent order or less and are limited by the spectral width of the drive pulses.

Zurich Instruments have by now updated the firmware of the UHFQC to support 9 weighted

integration units. After fabricating a copy of the current device with all qubits’ maximum

frequencies near the design values, we could demonstrate the multiplexed readout of 8 qubits.

To reduce the amount of cross-dephasing, we also plan to use shaped readout pulses that have a

smaller frequency bandwidth for a pulse of the same duration. This would allow us to demonstrate

the suppression of off-resonant driving of the readout resonators due to the individual Purcell

filters. When in addition to multiplexed readout we have implemented high-fidelity two-qubit

gates, an device with 8 linearly coupled qubits could be used to implement a linear error correcting

code [47] or an entanglement swapping experiment.
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A PycQED measurement and analysis software

In the course of this Master’s thesis we used the PycQED software package as the first team in

the Quantum Device Lab. PycQED is a Python library initially developed in the DiCarlo group

of the Delft University of Technology. This appendix serves the purpose of giving an overview of

the library and its concepts for someone who wants to start using it. The main goal of the library

is to provide a framework and ready-to-use tools for controlling the experiment’s hardware and

analyse the measurement results in the context of circuit QED. The latest version of PycQED,

which is under constant development, is available in the git repository published on GitHub1

under the MIT licence. For development of the library in the Quantum Device Lab, we have

created a fork of the repository under the QudevETH organization2.

A.1 Overview of the library

Instruments. For each hardware instrument there is a subclass of the base Instrument3 class

that handles communication with the instrument via its member functions and parameters. The

parameters are instances of the Parameter4 class and are wrappers for normal variables that

allow for custom setters and getters that can handle the hardware communication. The driver

classes for most instruments that we used and the parameter classes are defined in the QCoDeS5

library, which PycQED depends upon. Some instruments, like the Heterodyne6 instrument and

the qubit classes, do not correspond to any specific hardware, but coordinate the functions of

other instruments, and are called meta-instruments. The qubit classes are meta-instruments, that

contain references to the instruments relevant for doing single qubit experiments; parameters for

single-qubit operation, like qubit frequency and drive pulse parameters; and methods that run

the standard qubit characterization measurements. The qubit class that we developed for the

experimental setup used in this thesis is the QuDev_transmon7. For more detailed description of

1https://github.com/DiCarloLab-Delft/PycQED py3
2https://github.com/QudevETH/PycQED py3
3in qcodes/instrument/base.py
4in qcodes/instrument/parameter.py
5https://github.com/QCoDeS/Qcodes
6in pycqed/instrument drivers/meta instrument/heterodyne.py
7in pycqed/instrument drivers/meta instrument/qubit objects/QuDev transmon.py
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specific methods and parameters in the QuDev_transmon, see Stefania Balasiu’s semester thesis

[48, sec. 3.2.1].

Measurement control. The central component to running measurements with PycQED is the

MeasurementControl1 class. An instance of MeasurementControl is set up with a sweep function,

which is an instance of a class derived from the base Sweep_function2 class and is responsible for

setting the parameter values that are varied in the measurement; a list of sweep points, which are

the values that will be passed to the sweep function; and a detector function, which is an instance

of a class derived from the base Detector_Function3 class and is responsible for acquiring the

data. There are two types of sweep and detector functions, software and hardware controlled,

and their type needs to match in a single experiment. In a software controlled sweep the Python

program acquires the data using the detector function after each setting of the sweep parameter,

while in a hardware controlled sweep all the sweep points are programmed to the hardware at

the start of the experiment and extracted with the detector function after the measurement is

finished. There is also the option to use a second software sweep function to vary two variables

simultaneously in a 2D-sweep. As a special case of the software controlled sweep, adaptive

sweeps, where the next sweep points are calculated from the previous measurement results, are

also supported. Adaptive sweeps were not used in the course of this thesis, but could be used for

example for Nelder-Mead optimization. After finishing the measurement, the results together

with the values of all the parameters are automatically saved in the HDF54 data format. The

MeasurementControl can also plot the measurement results as the data is acquired.

Sweep and detector functions. As the most simple case of the software controlled sweep, any

instrument parameter can be specified as a sweep function. This is used for example in Listing 2,

where the MWG frequency is swept in a transmission spectrum measurement. Another example of

a software controlled sweep is the None_Sweep2, which is useful as the second sweep function in a

2D sweep for repeating the first sweep. The hardware controlled sweep functions used in this thesis

program the AWG with the waveforms for the subexperiments that are swept over. For this, every

experiment has its own AWG sequence function that actually creates the pulse sequences and

1in pycqed/measurement/measurement control.py
2in pycqed/measurement/sweep functions.py
3in pycqed/measurement/detector functions.py
4https://support.hdfgroup.org/HDF5/

59

https://support.hdfgroup.org/HDF5/


programs the AWG, reducing the sweep function to a wrapper that defines the units of the sweep

points and implements the interface expected by the MeasurementControl. The only software

controlled detector function used was the Heterodyne_probe1, which is a wrapper around the data

acquisition code in the Heterodyne and LO_modulated_Heterodyne2 meta-instruments. It has an

unintuitive interface, where some parameters that are defined in the heterodyne classes need to be

passed also to the detector function on initialization. The hardware controlled detector functions

that we used are UHFQC_input_average_detector1, UHFQC_integrated_average_detector1 and

UHFQC_integration_logging_det1. The input average detector function corresponds to the input

average output node in Fig. 8. The sweep points are the samples of timetrace and therefore it

does not make sense to use any other sweep function than the None_Sweep in this case. The

integrated average detector and the integration logging detector correspond to the result logger

output node in Fig. 8 and can be configured to output the result from any of the signal processing

stages. The difference between the two detectors is that unlike the integrated average detector,

the integration logging detector is hard-coded with no averaging and is thereby meant for logging

single-shot readout results.

Waveform generation. Programming the AWGs with the desired waveforms is handled by

the Pulsar3 class in PycQED. During initialization, the physical AWG channels used are defined

in the Pulsar with a name that is used to refer to the channel in other parts of the code.

When programming the AWGs, the Pulsar receives a list of Elements,4 which correspond to the

segments that will be programmed to the AWGs and a Sequence5 object that specifies the order

and number of repetitions of each segment and whether the playback should wait for a trigger of

the AWG. The waveforms are not saved in the Elements, but are generated on demand by the

Pulse6 objects in the Element. The Pulse classes get as inputs the time-values and output the

waveforms corresponding to these time-values, with the type of the pulse defined by the specific

subclass of the base Pulse class. When adding pulses to the Element, either the absolute starting

time or the starting time relative to some other pulse can be specified. For most pulse sequences

1in pycqed/measurement/detector functions.py
2in pycqed/instrument drivers/meta instrument/heterodyne.py
3in pycqed/measurement/waveform control/pulsar.py
4in pycqed/measurement/waveform control/element.py
5in pycqed/measurement/waveform control/sequence.py
6in pycqed/measurement/waveform control/pulse.py
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the multi_pulse_elt1 function, that generates an Element from a list of pulse dictionaries, is

used. A pulse dictionary is a Python dictionary that contains the pulse type, its parameters and

its start time relative to the previous added pulse. For single qubit gates, the pulse dictionaries

are compiled from the parameters in the qubit object by qubit methods.

Measurement Analysis. A useful feature of PycQED is that the analysis for standard

experiments is included in the same library as the measurement code. This enables quick reuse

of the results from previous experiments. For each experiment type there is an analysis class

that derives from the base MeasurementAnalysis2. The experimental data is loaded from the

HDF5 file generated by the MeasurementControl and the results are saved in the same file. For

a more detailed description of how the analysis classes work, see Stefania Balasiu’s semester

thesis [48, sec. 3.2.3].

A.2 Added functionality

To be able to use the PycQED library for multiplexed readout with the hardware setup in our lab,

several missing features had to be implemented. First, the initial version of the QuDev_transmon

was created, as each qubit object in PycQED relies on specific hardware, and ours differs from

what existed in PycQED.

In addition the drivers for the Stanford Research Systems SIM928 isolated voltage source

module and the Advantech PCIE-1751 digital input-output card were created, which we use for

dc-biasing the fluxlines and the coils and for switching the microwave switches for bypassing

the upconversion mixer of the drive pulses (see section 3.2) respectively. These drivers we

contributed to the QCoDeS library as they are useful for a wider audience. A meta-instrument

ConversionBoxControl3 specific to the microwave-switches in our setup was also created that

uses the more general PCIE-1751 hardware driver.

Because of the relatively large number of qubits on our sample, we needed to use two Tektronix

AWG5014 instruments to generate the drive pulses. For this the Pulsar class was updated with

1in pycqed/measurement/pulse sequences/standard elements.py
2in pycqed/analysis/measurement analysis.py
3in the PycQED Scripts Subversion repository pycqedscripts/drivers/conversion box control.py
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support for multiple AWGs. The update also added rudimentary support for using the UHFQC

as an AWG in the same framework.

Last, the pulse sequences for the multiplexed readout experiment the cross-dephasing measurement

were created.

A.3 Useful code snippets

In this section a series of example code-snippets for the basic tasks with PycQED are presented.

Listing 1: Initialization of the instruments used for spectroscopy. Each instrument is added to the

Station1 object using the station.add_component method to make its parameters available to the

MeasurementControl object for automatic saving.

 import␣numpy␣as␣np

 import␣pycqed

 import␣pycqed.measurement.detector_functions␣as␣det

 import␣pycqed.analysis.measurement_analysis␣as␣ma

 import␣qcodes

 from␣qcodes.instrument_drivers.rohde_schwarz␣import␣SGS100A

 from␣qcodes.instrument_drivers.stanford_research␣import␣SIM928

 from␣qcodes.instrument_drivers.tektronix␣import␣AWG5014

 from␣pycqed.instrument_drivers.meta_instrument␣import␣heterodyne

 from␣pycqed.instrument_drivers.physical_instruments.ZurichInstruments␣import␣UHFQuantumController

 from␣pycqed.measurement␣import␣measurement_control

 from␣pycqed.measurement.pulse_sequences␣import␣standard_sequences,␣single_qubit_tek_seq_elts,␣multi_qubit_tek_seq_elts

 #␣set␣the␣data␣saving␣directory

 pycqed.analysis.analysis_toolbox.datadir␣=␣r'E:\data'

 station␣=␣qcodes.Station()

 #␣Initialize␣the␣R&S␣SGS100A␣microwave␣generator␣driver

 MWG1␣=␣SGS100A.RohdeSchwarz_SGS100A(name='MWG1',␣address='TCPIP0::192.168.1.35')

 station.add_component(MWG1)

 MWG1.power(25)

 #␣Initialize␣the␣Tektronix␣AWG5014␣instrument␣driver

 AWG␣=␣AWG5014.Tektronix_AWG5014(name='AWG',␣address='TCPIP0::192.168.1.4')

 station.add_component(AWG)

 AWG.set_current_folder_name(r"C:\temp\PycQEDwaveforms")

 AWG.write('SOUR1:ROSC:SOUR␣EXT')␣#␣Use␣external␣reference␣clock

 #␣Initialize␣the␣ZI␣UHFQC␣instrument␣driver

 UHFQC␣=␣UHFQuantumController.UHFQC(name='UHFQC',␣device='dev2204',␣port=8004)

 station.add_component(UHFQC)

 UHFQC.triggers_in_0_level(0.5)

 #␣Initialize␣the␣SRS␣SIM928␣battery␣instrument␣driver.␣The␣battery␣that␣is␣connected␣to␣the␣coil␣is␣in␣module␣1.

 DC_source␣=␣SIM928.SIM928(name='DC_source',␣address='GPIB0::30::INSTR',␣slot_names={1:␣'coil_5'})

 station.add_component(DC_source)

1 in qcodes/station.py
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 #␣Create␣the␣homodyne␣metainstrument␣for␣spectroscopy␣measurements

 homodyne␣=␣heterodyne.LO_modulated_Heterodyne(name='homodyne',␣LO=MWG1,␣AWG=AWG,␣acquisition_instr='UHFQC')

 homodyne.acq_marker_channels('AWG_ch3_marker2')

 #␣Initialize␣the␣measurement␣control␣object

 MC␣=␣pycqed.measurement.measurement_control.MeasurementControl(name='MC')

 station.add_component(MC)

 MC.station␣=␣station

 #␣Initialize␣the␣pulsar.

 pulsar␣=␣pycqed.measurement.waveform_control.pulsar.Pulsar(master_AWG=AWG.name)

 station.add_component(pulsar)

 #␣The␣pulsar␣is␣added␣to␣the␣station␣object␣and␣the␣station␣is␣added␣to␣the␣pulse␣sequence␣modules␣so␣that␣the␣pulse

 #␣sequence␣modules␣have␣a␣reference␣to␣the␣pulsar␣and␣can␣upload␣the␣waveforms␣to␣the␣hardware.

 station.pulsar␣=␣pulsar

 standard_sequences.station␣=␣station

 single_qubit_tek_seq_elts.station␣=␣station

 multi_qubit_tek_seq_elts.station␣=␣station

 #␣The␣AWG␣channels␣need␣to␣be␣registered␣with␣the␣pulsar

 for␣i␣in␣range(1,␣5):

 ␣␣␣␣pulsar.define_channel(id='ch{}'.format(i),␣type='analog',␣name='{}_ch{}'.format(AWG.name,␣i),␣high=2,␣low=-2,

 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣offset=0,␣delay=0,␣active=True,␣AWG=AWG.name)

 ␣␣␣␣pulsar.define_channel(id='ch{}_marker1'.format(i),␣name='{}_ch{}_marker1'.format(AWG.name,␣i),␣type='marker',

 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣high=2.7,␣low=0,␣offset=0,␣delay=0,␣active=True,␣AWG=AWG.name)

 ␣␣␣␣pulsar.define_channel(id='ch{}_marker2'.format(i),␣name='{}_ch{}_marker2'.format(AWG.name,␣i),␣type='marker',

 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣high=2.7,␣low=0,␣offset=0,␣delay=0,␣active=True,␣AWG=AWG.name)

 pulsar.channels['AWG_ch3_marker2']['high']␣=␣1␣#␣Set␣UHFQC␣trigger␣amp.

Listing 2: An example of a 1D software sweep: a resonator spectroscopy measurement.

 homodyne.RO_length(2.275e-6)␣␣␣␣␣␣␣␣␣#␣Set␣the␣readout␣pulse␣length␣to␣the␣maximal␣supported␣value.

 homodyne.trigger_separation(3e-6)␣␣␣␣#␣Set␣the␣repetition␣rate␣of␣the␣experiment

 homodyne.mod_amp(0.05)␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣#␣Set␣the␣amplitude␣of␣the␣readout␣pulse

 homodyne.nr_averages(2**8)␣␣␣␣␣␣␣␣␣␣␣#␣Do␣256␣averages

 homodyne.f_RO_mod(450e6)␣␣␣␣␣␣␣␣␣␣␣␣␣#␣Set␣the␣readout␣modulation␣frequency

 homodyne.single_sideband_demod(True)␣#␣Use␣the␣signal␣in␣both␣input␣channels␣of␣the␣UHFQC

 MC.set_sweep_function(homodyne.frequency)

 MC.set_sweep_points(np.linspace(6.2e9,␣7.2e9,␣1001))

 MC.set_detector_function(det.Heterodyne_probe(homodyne,␣trigger_separation=homodyne.trigger_separation(),

 ␣␣␣␣demod_mode='single'␣if␣homodyne.single_sideband_demod()␣else␣'double',␣RO_length=homodyne.RO_length()))

 MC.run(name='resonator_scan_homodyne')

 ma.MeasurementAnalysis()␣␣␣␣␣␣␣␣␣␣␣␣␣#␣Create␣a␣plot␣of␣the␣measurement␣results

Listing 3: An example of a 2D software sweep: a resonator spectroscopy – coil voltage measurement.

 MC.set_sweep_function(homodyne.frequency)

 MC.set_sweep_points(np.linspace(6.2e9,␣7.2e9,␣1001))

 MC.set_sweep_function_2D(DC_source.volt_coil_5)

 MC.set_sweep_points_2D(np.linspace(-0.3,␣0.3,␣21))

 MC.set_detector_function(det.Heterodyne_probe(homodyne,␣trigger_separation=homodyne.trigger_separation(),

 ␣␣␣␣demod_mode='single'␣if␣homodyne.single_sideband_demod()␣else␣'double',␣RO_length=homodyne.RO_length()))

 MC.run(name='resonator_flux_scan_homodyne',␣mode='2D')

 ma.MeasurementAnalysis(TwoD=True)
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Listing 4: A QuDev_transmon qubit object is initialized and its parameters are set.

 from␣qcodes.instrument_drivers.Advantech␣import␣PCIE_1751

 from␣pycqed.instrument_drivers.meta_instrument␣import␣conversion_box_control

 from␣pycqed.instrument_drivers.meta_instrument.qubit_objects␣import␣QuDev_transmon

 MWG2␣=␣SGS100A.RohdeSchwarz_SGS100A(name='MWG2',␣address='TCPIP0::192.168.1.36')

 station.add_component(MWG2)

 #␣Initialize␣the␣mixer␣bypass␣switch␣control␣instruments

 DIO␣=␣PCIE_1751.Advantech_PCIE_1751('DIO')

 station.add_component(DIO)

 SwitchControl␣=␣conversion_box_control.ConversionBoxControl(name='SwitchControl',␣dio=DIO)

 station.add_component(SwitchControl)

 SwitchControl.set_switch({'UC2':␣'modulated'})

 #␣Create␣the␣qubit␣meta-instrument

 qb␣=␣QuDev_transmon.QuDev_transmon(name='qb',␣MC=MC,␣heterodyne=homodyne,␣cw_source=MWG2,␣readout_DC_LO=MWG1,

 ␣␣␣␣␣␣␣␣␣readout_UC_LO=MWG1,␣drive_LO=MWG2,␣AWG=pulsar,␣UHFQC=UHFQC)

 station.add_component(qb)

 #␣Readout␣parameters

 qb.RO_pulse_type('MW_IQmod_pulse_UHFQC')

 qb.RO_acq_marker_channel('AWG_ch3_marker2');␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.RO_pulse_marker_channel('AWG_ch3_marker2')

 qb.RO_acq_weight_function_I(0);␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.RO_acq_weight_function_Q(1)

 qb.RO_I_channel('0');␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.RO_Q_channel('1')

 qb.f_RO(7.0601e9);␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.f_RO_mod(450e6)

 qb.RO_acq_averages(2**10);␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.RO_amp(0.05)

 qb.RO_pulse_length(2.2e-6);␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.RO_acq_integration_length(2.2e-6)

 qb.RO_acq_marker_delay(-176e-9);␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.RO_pulse_delay(0)

 qb.set_default_readout_weights()

 #␣Drive␣pulse␣parameters

 qb.pulse_type('SSB_DRAG_pulse')

 qb.pulse_I_channel('AWG_ch1');␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.pulse_Q_channel('AWG_ch2')

 qb.f_qubit(6.17642e9);␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.f_pulse_mod(100e6)

 qb.X_pulse_phase(0);␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.X_pulse_phase_ef(0)

 qb.pulse_delay(0);␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.motzoi(0)

 qb.gauss_sigma(10e-9);␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.nr_sigma(5)

 qb.phi_skew(0);␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣qb.alpha(1)

 qb.drive_LO_pow(22)

Listing 5: Rabi, Ramsey and single shot readout fidelity experiments are conducted se-

quentially. 1D hardware sweeps are used in the QuDev_transmon.measure_rabi and

QuDev_transmon.measure_ramsey methods, which are called by the find_amplitudes and

find_frequency_T2_ramsey methods here. The QuDev_transmon.find_ssro_fidelity method

uses a 2D sweep where an inner hardware controlled sweep using the integrated logging detector is

repeated using an outer None_Sweep.

 qb.find_amplitudes(rabi_amps=np.linspace(0,␣0.5,␣61),␣update=True)

 qb.find_frequency_T2_ramsey(np.linspace(0,␣2e-6,␣101),␣artificial_detuning=5e6,␣update=True)

 qb.find_ssro_fidelity(nreps=50)
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