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Abstract

An array of coupled nonlinear cavities is a structure that could be used as a
quantum simulator of strongly correlated quantum many-body systems. In the
context of circuit quantum electrodynamics (circuit QED), such systems have been
also found useful to build quantum-limited Josephson parametric amplifiers, since
their multi-mode spectrum can be used to amplify signals at di↵erent frequencies
while preserving their phase. In this thesis we describe and characterize lumped-
element superconducting resonators both individually and in coupled arrays. A
non-linearity is also added to the system by including arrays of Superconducting
Quantum Interference Devices (SQUIDs), which are characterized and used to
build a tunable three-mode parametric amplifier.
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Chapter 1

Introduction

The progress in the control and manipulation of quantum systems has experienced
remarkable advances in the last decade, as shown by the recent work in atomic en-
sembles, photonic systems and solid-state platforms like superconducting circuits
[1]. All these di↵erent systems with their complementing advantages are opening
up new possibilities for the development of quantum technologies based on quan-
tum information processing. One clear example of such a quantum technology is
the field of Cavity Quantum Electrodynamics (Cavity QED), studied both in the
optical and microwave regimes and in mirror and circuit-based platforms [2–4].
In this context, a particularly attractive system is an array of coupled nonlinear
cavities. These kind of systems can improve our understanding of the interaction
between light and matter, but they could also be potentially used as photonic
quantum simulators [5–8].

Coupled nonlinear cavities are also applicable to the construction of quantum-
limited Josephson parametric amplifiers (paramps)[9]. Such amplifying devices
are essential for many of the experiments routinely performed in the field of cir-
cuit QED, and have allowed for example to measure quantum trajectories [10],
higher order correlation functions [11] or quantum feedback [12]. The increasing
requirements for these devices have stimulated the creation of several paramps
with di↵erent architectures. While several of these Josephson paramps are based
on coplanar waveguide resonators [13], lumped-element resonator based paramps
have recently also been studied [9, 14], since they o↵er advantages such as compact
design and improved bandwidth characteristics.

For both the designs of parametric amplifiers and analog quantum simulators, a
precise understanding and control over the di↵erent parameter contributions in the
Hamiltonian which describes the system is necessitated. The basic step to achieve
this understanding is the development and testing of simple models. These mod-
els are usually based on an equivalent electrical circuit when describing systems
of circuit QED, as they o↵er simplicity but still accurate results.

1



Chapter 1. Introduction 2

In this thesis, the design and experimental characterization of lumped-element
superconducting resonators have been performed, and the resonator circuit pa-
rameters have been extracted from their measurement, which has been used to
create a design model for the fabrication of resonators with precise parameters.
One-dimensional resonator arrays have also been studied and modelled by using
both circuit theory and a Hamiltonian description, and measurements were com-
pared to the expected results from our design model.

In addition, one-dimensional arrays of nonlinear resonators have also been built,
by substituting the meander inductor with arrays of superconducting quantum
interference devices (SQUIDs). These nonlinear resonator arrays show tunable
resonance frequencies and performance of degenerate and non-degenerate para-
metric amplification. Gain curves and parametric amplification phase diagrams
have been measured for both a single nonlinear resonator and an array of three
nonlinear resonators and compared to the theoretical predictions.



Chapter 2

Lumped elements in microwave
circuits

The lumped-element model is a simplification of a spatially-distributed electrical
system which can describe its behaviour when certain conditions, as an inap-
preciable phase delay, are fulfilled [15]. In the field of microwave circuits, passive
components like inductors or capacitors can be defined as lumped or quasi-lumped
elements due to their small electrical size, in particular when its physical dimen-
sions are much smaller than the electrical wavelength [16]. These kind of compo-
nents o↵er practical advantages, aside from being easily modelled, such as their
compact size and wider bandwidth characteristics. In this chapter we will treat
their physical description and comment on their main properties.

2.1 Lumped-element model of a transmission line

To get a good understanding of lumped elements in microwave circuits it is im-
portant to first understand transmission line theory, especially as the design of
microwave lumped elements is based on small sections of TEM (Transverse Elec-
tromagnetic) lines. In contrast to circuit theory, where an electrical network is
represented by idealized electrical components with the same current and voltage
over their dimensions, in transmission line theory we deal with a network of dis-
tributed parameters.

We can model an homogeneous transmission line as an infinite array of lumped
elements [15, 16], such that a small section can be represented as shown in figure
2.1. In this figure r represents the resistance of the individual conductors, g the
dielectric loss of the material between the two conductors, l the self-inductance
and c the capacitance between the two conductors, all defined per unit length. We
can even go one step further and neglect the losses of the system which are usu-
ally very small, specially for superconducting structures, therefore working with a
lossless transmission line model, where r, g = 0.

3
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rΔz lΔz 
cΔz gΔz 

v(z) v(z+Δz)i(z)

Figure 2.1: Lumped-element model of an infinitessimal part of a transmission line.

With this simplified model, we can apply Kirchho↵’s laws and obtain the ex-
pressions

v(z, t)� l�z

@i(z, t)

@t

= v(z +�z, t), (2.1)

i(z, t)� c�z

@v(z, t)

@t

= i(z +�z, t). (2.2)

If we now divide these two expressions by �z and evaluate the limit when �z goes
to 0, we can rewrite the expressions as:

@v(z, t)

@z

= �l

@i(z, t)

@t

, (2.3)

@i(z, t)

@z

= �c

@v(z, t)

@t

, (2.4)

which are known as the telegrapher equations for historical reasons [15]. If we
consider a harmonic steady-state excitation, the previous expressions simplify to

dV (z)

dz

= �j!l I(z), (2.5)

dI(z)

dz

= �j!c V (z), (2.6)

where j =
p�1. If we now take the spatial derivative of both of these expressions

we get to the wave equations

d

2

V (z)

dz

� �

2

V (z) = 0, (2.7)

d

2

I(z)

dz

� �

2

I(z) = 0, (2.8)

where � = j� = j!

p
l c is an imaginary propagation constant. The solutions are

found to be
V (z) = V

+

0

e

�j � z + V

�
0

e

j � z
, (2.9)

I(z) =
V

+

0

Z

0

e

�j � z � V

�
0

Z

0

e

j � z
, (2.10)
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where Z

0

=
p

l/c is the characteristic impedance of the transmission line, which
is typically Z

0

= 50⌦. Now from the travelling wave equations we can extract the
wavelength which is

� =
2⇡

�

=
2⇡

!

p
l c

, (2.11)

and the phase velocity

vp =
!

�

=
1p
l c

. (2.12)

2.2 Design and description of microwave lumped elements

In the field of microwave circuits a lumped element is defined as a passive elec-
trical component with no appreciable phase delay between its input and output
terminals. This implies, as we will show next, that the size of the lumped element
will always be much smaller than the operating wavelength of the circuit. If we
take the travelling wave solutions for a homogeneous transmission line from the
previous section, we can see that the phase delay of a particular component will
be negligible when j�d ⇡ 0, where d is the size of the component. This can be
rewritten as

�d = !

p
lc d =

! d

vp

=
2⇡vp
�

d

vp

= 2⇡
d

�

⇡ 0, (2.13)

which clearly shows that the phase delay will be small whenever the size of the
element is much smaller than the operating wavelength. This derivation can also
be written as a function of the operating frequency

�d = !

p
lc d = !

p
(l d)(c d) =

!

fs

= 2⇡
f

fs

⇡ 0, (2.14)

where fs is the so-called self-resonant frequency of a homogeneous transmission
line. For an arbitrary piece of TEM line the values of l and c will not be homoge-
neously distributed over its length but it will still have a self-resonant frequency.
This is the frequency at which the total reactance of the component becomes zero
[16]. This will actually happen for an infinite amount of self-resonant frequencies,
but we will usually always mean the first lowest self-resonant frequency of the
system.

We have seen then that a component will be considered a lumped element when
the operating frequency or the size of the component is much smaller than the
self-resonant frequency or the operating wavelength respectively. In microwave
circuits a general guideline for constructing a lumped element is keeping the max-
imum dimension of the element 20 times smaller than the operating wavelength
[16]. Having these basic definitions in mind, we will show how a transmission
line can be terminated to obtain the main lumped-element building blocks in mi-
crowave circuits: inductors, capacitors and resistors.
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2.2.1 The terminated lossless transmission line

In figure 2.2 a lossless transmission line of length d and characteristic impedance
Z

0

terminated with a load of impedance ZL is shown. If the impedance ZL is
allowed to have any arbitrary value, any incident wave coming from a source from
the left port of the transmission line will be partially reflected by the load due
to the impedance mismatch and therefore the total voltage and current in the
transmission line will be represented by the general solution showed in equations
2.9 and 2.10. At the terminal of the load the total current and voltage will have
to fullfill the condition

ZL =
V

I

=
V

+

L + V

�
L

V

+

L � V

�
L

Z

0

. (2.15)

Z0 , β ZL 

d

Figure 2.2: Transmission line of length d terminated with a load of impedance Z
L

.

Having this expression we can now derive the value of the voltage reflection
coe�cient �:

� =
V

+

L

V

�
L

=
ZL � Z

0

ZL + Z

0

. (2.16)

The reflection coe�cient � is the ratio between the incoming and reflected voltages
by the load. Now we can write the total voltage and current at the input ports of
the transmission line as

Vin = V

+

L (e�j�d + �ej�d), (2.17)

Iin =
V

+

L

Z

0

(e�j�d � � e

j�d). (2.18)

From these two equations we can derive the expression for the input impedance,
which is the impedance seen looking into the line from the input port:

Zin =
Vin

Iin

=
1 + � e

�2j�d

1� � e

�2j�d
Z

0

, (2.19)
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which by using the expression of the reflection coe�cient � we can rewrite as

Zin =
(ZL + Z

0

) e j�d + (ZL � Z

0

) e�j�d

(ZL + Z

0

) e j�d � (ZL � Z

0

) e�j�d
Z

0

=
ZL cos �d+ jZ

0

sin �d

Z

0

cos �d+ jZL sin �d
Z

0

= Z

0

ZL + jZ

0

tan �d

Z

0

+ jZL tan �d
. (2.20)

2.2.2 Inductor

With the expression of the input impedance of a terminated lossless transmission
line we will show that a load with zero impedance will yield a lumped-element
inductor for short transmission lines [16]. An inductor is a passive electrical com-
ponent which stores and releases magnetic energy. In its ideal representation it
does not store any electrical energy and it does not dissipate power. It is character-
ized by its inductance, which quantifies the amount of voltage induced by a change
in the current flowing through the inductor. This is mathematically expressed by
the relation

v(t) = L

di(t)

dt

, (2.21)

which if we assume an harmonic time dependence (ej!t) can be rewritten as

v = j!L i. (2.22)

The expression of the impedance of an inductor at a particular frequency is written
as

Z

inductor

= j!L = j 2⇡fL. (2.23)

Now let us go back to equation 2.20 and consider a load with impedance ZL = 0.
In this case the input impedance will take the form:

Zin = jZ

0

tan �d = jZ

0

(�d+
1

3
(�d)3 + ...) (2.24)

Z0 , β ZL = 0

d

Figure 2.3: Transmission line of length d terminated with a load of impedance Z
L

= 0.
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which by considering the lumped-element approximation for the transmission
line �d ⇡ 0 for small d we can approximate the input impedance as

Zin ⇡ jZ

0

1/�d� �d/3
=

j

q
l
c

1/!
p
lc d� !

p
lc d/3

=
1

1/j! l d+ j! cd/3
=

1

1/j!L+ j!C/3
, (2.25)

where L = l d is the total inductance of the transmission line and C = cd is
the total capacitance of the transmission line. We can see that matches with the
impedance of an ideal inductor in parallel with a parasitic capacitor. We therefore
can conclude that a lumped-element inductor can be designed by a shortcutted
(ZL = 0) transmission line with dimensions much smaller than the operating
wavelength. The value of the inductance can be engineered by changing the in-
ductance per unit length of the transmission line, i.e. by using di↵erent geometries
or materials.

2.2.3 Capacitor

An ideal capacitor is an electric passive component which does not dissipate energy
and which stores and releases electrostatic energy. The electrostatic energy is
stored between two conductors separated by a dielectric. It is characterized by
its capacitance, which is defined as the ratio between the stored charges and the
voltage. We can write this mathematically as

C =
q

v

, (2.26)

which by rearranging the terms and applying a time derivative yields the relation

i(t) = C

dv(t)

dt

. (2.27)

Assuming the harmonic time dependence we can obtain

i = j!C v. (2.28)

From the above expression we can derive the impedance of the capacitor at a given
frequency:

Z

capacitor

=
1

j!C

. (2.29)

Now, we go back to equation 2.20 and consider the case where the load has an
infinite impedance. In this case the input impedance will take the form:

Zin =
�jZ

0

tan �d
=

�jZ

0

�d+ 1

3

(�d)3 + ...

. (2.30)
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Z0 , β ZL = ∞

d

Figure 2.4: Transmission line of length d terminated with a load of impedance Z
L

=
1.

Considering the lumped-element approximation for the transmission line (�d ⇡
0) we can approximate the input impedance as

Zin ⇡ �jZ

0

�d

+
jZ

0

�d

3
=

q
l
c

j!

p
l c d

+
j

q
l
c
!

p
l c d

3

=
1

j!c d

+
j!l d

3
=

1

j!C

+
j!L

3
, (2.31)

where again C = cd is the total capacitance of the transmission line and L = ld

is the total inductance of the transmission line. In this case we have seen how
an open transmission line (ZL = 1) is the model for designing lumped-element
capacitors, with a small parasitic inductive contribution. The distance between
the two conductors and the material of the dielectric can be changed to achieve a
desired capacitance.

2.3 Parasitics and e↵ective element values

In the previous section we have shown how small sections of transmission lines
can be modelled as purely capacitive or inductive lumped elements. In reality,
however, ideal lumped elements are not realizable at microwave frequencies, since
due to fringing fields all components will always store both magnetic and electric
energy. These e↵ects need to be taken into account for having a complete descrip-
tion of the system. This is usually done by a lumped-element equivalent circuit,
which takes into account the parasitic reactances. Such models can be obtained
either from the simulation or the measurement of the components.

To give an idea of how to model parasitic reactances in lumped-elements, we
will here derive the e↵ective inductance of a non-ideal lumped-element inductor.
The main reactive parasitic contributions in inductors come from the parasitic
capacitance due to the interturn and ground plane e↵ect[16]. We can model such
parasitic capacitance as a capacitor in parallel to our ideal inductor. The total
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impedance of the circuit is

ZL0 =
1

j!L+ 1

j!CP

=
j!L

1� !

2

LCP

= j! Le, (2.32)

L

CP

Figure 2.5: Equivalent circuit of a lumped-element inductance with parallel parasitic
capacitance C

P

.

from which we can directly extract the value of the e↵ective inductance as

Le =
L

1� !

2

LCP

=
L

1� (!/!S)2
, (2.33)

where !S = 1/
p
LCP is the self-resonant frequency of the inductor. At frequencies

smaller than !S the e↵ective inductance will be close to L, but as the frequency
gets closer to the first self-resonant frequency, the capacitive contribution will be-
come stronger, yielding an e↵ective larger value of the inductance.

In the case of capacitors, a parasitic inductance is modelled in series, which for
the particular case of interdigital capacitors will come from the inductance of the
fingers. The total impedance will then be

ZC0 =
1

j!C

+ j!LP =
1

j!C

(1� !

2

LP C) =
1

j!Ce

, (2.34)

C LP

Figure 2.6: Equivalent circuit of a lumped-element capacitance with series parasitic
inductance L

P

.
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where the e↵ective capacitance is written as

Ce =
C

1� !

2

LP C

=
C

1� (!/!S)2
. (2.35)

Here the self-resonant frequency of the capacitor is defined as !S = 1/
p
LP C.

Interestingly, these e↵ective models will result in the same, but renormalized,
reactive element as long as ! < !S. When ! > !S, the character of the e↵ective
elements is changed, and e↵ective capacitors will become inductive and vice versa
[16].



Chapter 3

Design of lumped-element
superconducting resonators

In this chapter we will describe the main characteristics of the design of our
lumped-element superconducting resonators. We will first describe the general
details of the design, and then focus on each of the individual components of
the resonator and how its values can be estimated by simulations and model
calculations. The behaviour of parasitic reactances will also be studied with a
high-frequency electromagnetic simulation to estimate the validity of the lumped-
element approximation. In the last part of the chapter we will review the di↵erent
alternative geometries considered for one resonator and also how these designs are
adapted to couple several linear and nonlinear resonators.

3.1 General design

The structure of our resonators is based on an LC circuit where the energy os-
cillates from being stored in the electric field of the capacitor to the magnetic
field of the inductor. These components have been designed as microwave lumped
elements, based on the derivations in chapter 2. The inductors will be built as a
planar meander line, while the capacitors will have a multi-finger periodic struc-
ture, known as interdigital capacitors. A typical structure of a resonator can be
seen in figure 3.1, in which we can identify the shunt interdigital capacitor, the
meander line inductor and the interdigital coupling capacitor. In the design of the
figure, the capacitor and the inductor form a parallel LC circuit connected by a
thick island line, in series with the external coupling capacitor.

12
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Figure 3.1: Picture of a single lumped-element resonator. The white region corre-
sponds to the niobium while the gray region to the sapphire.

Our design choice is based on maximizing the distance between the components
and the ground plane, which reduces the stray capacitance contribution. Also a
rather large width of the island has been chosen to reduce the undesirable contri-
bution to the inductance from the island. The length of the island was optimized
to also reduce the island inductance but at the same time reduce the mutual ca-
pacitance between the capacitor and the inductor.

The circuit is structured into a superconducting layer of niobium on top of a
sapphire substrate. The fabrication process is done on a niobium-sputtered 2-
inch sapphire wafer, with a niobium thickness of 150 nm and a sapphire substrate
thickness of 0.43 mm, using a photolithographic process. Niobium, a type II super-
conductor, becomes superconducting at a Tc ⇡ 9.2 K. Although superconductors
are dissipationless, our resonators will be modelled as a RLC circuit, since other
losses are important, such as dielectric losses in the capacitor electric fields.

The design of parametric amplifiers requires non-linear resonators. For these
we will use a similar design with the meander inductor being substituted by an
array of SQUIDs made of aluminium. These SQUIDs will be fabricated on top
of the niobium and sapphire structures by using electron-beam lithography, since
the feature sizes will be much smaller than the linear structures. Aluminium is
superconducting at Tc ⇡ 1.2 K, and will therefore require dilution refrigerator
temperatures to be measured.

3.2 Interdigital Capacitors

At microwave frequencies there are several capacitor design possibilities, and for
our purposes, interdigital capacitors o↵er the simplicity of an integrated capacitor
without the need of a multilevel process in the fabrication and with moderate
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Figure 3.2: Detailed micrograph of
the two finger capacitors in our res-

onators.

Figure 3.3: Detailed micrograph of
a coupling gap capacitor in our res-

onators.

capacitance values. A micrograph where two of our interdigital capacitors can be
seen is shown in figure 3.2. Interdigital capacitors usually display higher quality
factors than overlay capacitors, but tend to be larger in size as the capacitance
per area is much less than for the overlay type [16].

An interdigital capacitor has a multifinger periodic structure and the capacitance
is given by the narrow gaps between the superconducting fingers. These gaps tend
to be long and meandered in order to maximize the exposed area between the two
superconducting structures, forming two electrodes of interdigitated fingers. The
capacitance can be increased either by increasing the finger length or the number
of fingers. However, by doing the latter we will also reduce the parasitic series
capacitance, which would otherwise increase by making longer fingers.

3.2.1 Capacitors design parameters

There are several parameters of the interdigital capacitor that can be adapted
during the design, such as the finger length, the gap and finger widths or the
distance between the sides. However, for most of our resonators we will vary only
the number of fingers of the capacitor and keep the other parameters constant.
In table 3.1 we show the typical chosen parameters for both shunt and coupling
capacitors.

SHUNT CAPACITOR COUPLING CAPACITOR

Finger length 197 µm Finger length 97 µm
Finger width 3 µm Finger width 3 µm
Finger gap 3 µm Finger gap 3 µm

Standard num. of fingers 9 Typ. num. of fingers 0-20

Table 3.1: Design details of the interdigital capacitors used in our resonators.

To achieve very weakly coupled resonators, it is also necessary to use so-called
gap coupling capacitors, as the one shown in figure 3.3. The width is always of
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10µm, and the gap length ranges from 3 to 70µm for extremely weakly coupled
samples.

3.2.2 Maxwell simulations

To estimate the expected capacitance values before fabrication we perform dc sim-
ulations of our capacitive structures using the commercial electromagnetic field fi-
nite element simulation program Ansoft Maxwell. Simulations for single resonators
with di↵erent design parameters have been performed by removing the meander
inductor from the design. Results of these simulations are shown in figure 3.4,
where shunt capacitance is plotted against the number of shunt capacitor fingers.
In the figure we can recognise the linear dependence of the capacitance.
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Figure 3.4: Plot of the simulated shunt capacitance of SC1 as a function of the number
of shunt capacitor fingers. The red curve shows a linear fit.

3.3 Meander inductors

A meander line inductor is a printed inductor with a two-dimensional structure,
where the conductor line (superconductor) is meandered back and forth to max-
imize its total length and with it its inductance [16, 17]. In a similar fashion to
interdigital finger capacitors it o↵ers the advantage of not requiring a multilevel
process in its fabrication, though it also displays smaller inductance per unit area
compared to coil or spiral inductors [16]. To get the maximum inductance for a
given area the meander turns have to be close together (3 µm in our case). This
will lead to a reduction of the inductance due to negative mutual inductance [17]
and it will also increase the parasitic capacitance between turns [16]. However it
will still maximize the inductance for a given area.
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Figure 3.5: Detailed picture of a me-
ander inductor with 21 meander turns

in one of our resonators.

Figure 3.6: Design parameters of a
meander inductor with three turns [17].

3.3.1 Inductors design parameters

The main parameters necessary to characterize a meander inductor are the width
of the meander line, the length and spacing of the turns, the number of turns and
the distance between the edges of the inductor. In our resonators we will only
change the number of turns with the rest of parameters fixed. Table 3.2 shows the
usual values of the main parameters of the inductor.

MEANDER INDUCTOR

O↵set Length 200 µm
Width of the line (w) 3 µm
Length of the turns (h) 180 µm
Gap between turns (d) 3 µm

Standard number of turns 21

Table 3.2: Design details of the meander inductors used in our resonators.

3.3.2 Estimation of the inductance

When considering only the inductive contribution of the inductor in the whole
resonator, the geometry is simple and general enough to avoid the use of electro-
magnetic simulations, and therefore we shall be able to characterize our inductors
by directly calculating the expected inductance. To do so we will use the method
derived by Stojanovic et al. [17] for meander line inductors. By doing so, we
obtain results of the dependence on the number of turns, as shown in figure 3.7.
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Figure 3.7: Plot of the estimated inductance of the meander inductor as a function of
the number of meander turns. The inductance for the standard number of turns (21)

is of 1.5 nH.

Yet from measurements and other simulations, we have seen that the contribu-
tion from the island of the resonator to the total inductance will be relevant, which
for most of our samples will have a value close to 0.2 nH.

An important e↵ect which should be taken into account for superconducting
inductors is kinetic inductance. In a superconductor, the total inductance will
have a contribution from the geometry of the line (geometric inductance) and
another due to the change in the kinetic energy of the Cooper pairs subjected
to high frequency currents (kinetic inductance). Since the second contribution
depends on the density of Cooper pairs in the superconductor, it will also depend
on the temperature at which the samples are measured. Within the Ginzburg-
Landau theory, for one-dimensional superconductors and for temperatures close
to Tc, the dependence of the kinetic inductance on temperature can be expressed
as [18]

LK(T ) ⇡ LK(T = 0)

✓
1

1� T/Tc

◆
. (3.1)

In our resonators the contribution of the kinetic inductance has been extracted
from measurements to be around 3%, which is shown in appendix B, and can
therefore be neglected.

3.4 High-frequency simulation of parasitics

To be able to quantify the parasitics in our resonators, we also performed high-
frequency electromagnetic finite element simulation of our structures, by using the
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Sonnet software. We analysed each of the lumped-element components individ-
ually and together as the whole structure. For each component we obtained the
first self-resonant frequency and therefore quantify their parasitic contribution. In
table 3.3 the number of fingers for the capacitors and the numbers of turns for the
inductor are indicated, together with the first self-resonance frequency obtained
from simulation.

Fingers/Turns Self-resonant frequency (GHz)

Shunt Capacitor 25 81.3
Shunt Capacitor (2) 50 230.0

Shunt Inductor 21 39.5
Coupling Capacitor 3 490.2

Table 3.3: Design parameter and simulated self-resonant frequency of each of the
components of our resonators. Self-resonant frequencies were simulated using Sonnet.

Simulating the whole resonator we obtain the resonance frequency and the first
self-resonant frequency, which is given in table 3.4.

Sample Resonant frequency (GHz) First parasitic frequency (GHz)

M36 IL0 4 6.97 48.95

Table 3.4: Results from the simulation of the structure of a whole resonator.

Having the first parasitic frequency of the whole system, we can estimate the
ratio between the first self-resonant frequency of each of the elements compared
to the typical operating frequency. By using the expected values of inductance
and capacitance of each one of the elements and the self-resonant frequency we
can extract the approximate parasitic contribution to each of them considering a
model of a series or parallel LC circuit. We also show the parasitic renormalization
factor as described in eqs. 2.35, 2.34. These results are shown in table 3.5.

fs/f0 Approx. parasitics Renormalization factor

Shunt Capacitor 11.6 15 pH 1.0075
Shunt Capacitor (2) 32.9 1 pH 1.0009

Shunt Inductor 5.64 11 fF 1.0325
Coupling Capacitor 70.0 8 pH 1.0002

Table 3.5: Ratio between the self-resonant and LC resonance frequency for each of
the components and estimation of the reactive parasitics. We also show the parasitic
renormalization factor, which have been obtained by using equations 2.33 and 2.35.

3.5 Multiple coupled resonators

The main focus in this thesis has been the measurement of arrays of 2 and 3
coupled resonators, even though arrays of 4, 6, 9 and even 15 coupled resonators
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have also been fabricated. In figures 3.8 and 3.9 we show samples with 2 and 3
resonators respectively.

Figure 3.8: Picture of a sample with two coupled resonators.

Figure 3.9: Picture of a sample with three coupled resonators.

The aim of this particular design for multiple coupled resonators is that each
resonator has approximately the same environment. With this design guide the
distances between the resonators were kept the same and equal to the distances
to the ground planes for resonators at the edges. In the case of the dimer the
position of the inductor and the capacitor were exchanged in the right resonators
for symmetry reasons. This also helps to obtain an electromagnetic field environ-
ment as similar as possible for both resonators, which is especially important when
introducing arrays of SQUIDs instead of meander inductors.

3.6 Nonlinear resonators

Single nonlinear resonators and arrays of 2 and 3 nonlinear resonators were also
fabricated, by shunting the resonator with an array of SQUIDs instead of the
meander inductor. A close picture of the arrays can be seen in figures 3.11 and
3.12, while the dimensions of an individual asymmetric SQUID are indicated in
figure 3.10. A summary of the design parameters of an individual SQUID are
given in table 3.6.
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Figure 3.10: Asymmetric SQUID with its dimensions.

SQUID parameters

Oxide thickness 2-3 nm
Left junction overlap 2.4 µm2

Right junction overlap 0.8 µm2

Loop area 19.2 µm2

Asymmetry 1/3

Table 3.6: Asymmetric SQUID design parameters.

Figure 3.11: Picture of an array of
30 aluminum SQUIDs.

Figure 3.12: Picture of an array of
45 aluminum SQUIDs.

In figures 3.13, 3.14 we show one nonlinear resonator and an array of 3 coupled
nonlinear resonators. The measurements of these two samples are described in
chapter 7.

Figure 3.13: Picture of a nonlinear
resonator.

Figure 3.14: Picture of an array of
three nonlinear resonators.



Chapter 4

Modelling of coupled RLC
resonators

The characterization of microwave superconducting resonators requires a proper
model (from simulations and measurements of each particular sample) which will
correctly describe our system. From the side of electrical circuits, it is desirable to
find the equivalent circuit model and the corresponding e↵ective parameters that
describe our microwave components. However, a Hamiltonian description of the
system will also be required to understand the behaviour of Josephson parametric
amplifiers and to precisely engineer the Hamiltonian for multiple-cavity quantum
simulations.

In this chapter we construct a basic equivalent-circuit model for a single res-
onator and show how this can be mapped into a Hamiltonian description through
input-output theory. From this model, we show what kind of measurements will
allow us to extract the e↵ective inductances and capacitances of the designed
lumped-element components of the resonators. We will also extend this model
to multiple-resonator systems and discuss how to obtain expressions that can be
fitted to the measured data.

4.1 Equivalent circuit model

In chapter 2 we state that at microwave frequencies fully ideal lumped-element
components will never be possible to design, mainly due to fringing fields. This
limitation would imply that a three-dimensional field analysis by solving Maxwell
equations is required to describe our system. Nevertheless, if di↵erent parasitic
contributions are understood and quantified, a distributed-element circuit could
be employed, where infinitesimal lumped elements will be continuously distributed
throughout the whole system. The same approach is used to describe a transmis-
sion line in chapter 2, however in the case of more complicated structures like
interdigital capacitors, meander inductors or the whole resonator, the values of
the infinitesimal lumped elements are not necessarily homogeneous, which can

21
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lead to complicated models.

An example of a distributed model is represented in figure 4.1. It will in general
have an infinite number of resonances, and solving it will require the application
of calculus. Even though this is already a strong simplification compared to the
field-analysis approach, one of the motivations for choosing a lumped-element ar-
chitecture in this thesis has been the simplified description of such components.
As discussed in chapters 2 and 3, if the operating frequencies are small enough
compared to the self-resonant frequency of the components, an e↵ective lumped-
element model will still work for narrow frequency ranges. Since the main inter-
esting regions of the resonators will be around their natural resonant frequencies,
the simplification will still hold.

Cκ R1 L1

G1 C1

R2 L2

G2 C2

LNRN

GN CN

Figure 4.1: Example of a distributed-element model for a certain microwave compo-
nent.

To emphasize the validity of this approach, we will show that the impedance of
a short-circuited �/4 line close to the resonance is equivalent to the impedance of
a parallel RLC circuit. A short-circuited �/4 line is a kind of distributed-element
resonator which can be modelled as a loaded transmission line with ZL = 0 [15].
The impedance of such a system was already derived in equation 2.20 but assuming
a lossless line. The impedance for the same resonator including losses will be

Zin = j Z

0

tanh(↵ + j�) d = Z

0

1� j tanh↵d cot �d

tanh↵d� j cot �d
, (4.1)

where Z

0

is the characteristic impedance of the transmission line, ↵ accounts for
the losses of the line, � the complex propagation constant and d the length of the
transmission line. The circuit will be resonant at the frequency for which d = �/4.
If we call the resonant frequency !

0

, we can write
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and then

cot �d = cot
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. (4.3)

If we also assume small losses yielding tan↵ ⇡ ↵, we can rewrite the impedance
as

Zin = Z

0

1 + j↵d ⇡�!/2!
0

↵d+ j ⇡�!/2!
0

⇡ Z

0

↵d+ j ⇡�!/2!
0

. (4.4)
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Now let us write the impedance of a parallel RLC circuit:

ZRLC =

✓
1

R

+ j!C +
1

j!L

◆�1

. (4.5)

If we substitute with the expression ! = !

0,RLC +�!, where !
0,RLC = 1p

LC
is the

RLC resonant frequency, and consider the case �! ⇡ 0, the impedance can be
rewritten as

ZRLC ⇡ 1

1/R + 2j�!C

, (4.6)

which allows us to see that it has the same form as equation 4.4. Thus we have seen
that a distributed-element resonator near one of its resonances can be equivalent
to an RLC circuit. It is important to note that aside from assuming small losses
we did not assume the system to be in any lumped-element approximation, and
the length of the resonator can have an arbitrary value. Based on the previous
derivations and this example, we will proceed to describe our lumped-element
resonator as a parallel RLC circuit.

4.2 Unloaded RLC parallel circuit

The equivalent circuit model used to describe our resonators is a parallel RLC
circuit with a series coupling capacitor. This model takes into account all the
designed lumped elements (shunt inductor, capacitor and coupling capacitor) and
also the losses of the resonator, mainly due to the electric fields in the dielectric
material. To understand better the properties of the circuit, we will start by con-
sidering only the RLC circuit without any external coupling, as show in figure 4.2.
For completeness we will solve the circuit in two di↵erent ways: one by calculating
the impedance [15] and the other by describing the system as an harmonic oscil-
lator and writing down the equation of motion [19]. Using both methods will help
us to better understand the meaning of the resonance frequency and the quality
factor.

R L C

Figure 4.2: Circuit model of an unloaded RLC resonator.
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4.2.1 Impedance method

In the RLC circuit model the resistor of the circuit will only dissipate energy, while
the capacitor and the inductor will release and absorb energy in a periodic way.
Because of this, the circuit will have a complex delivered power

Pin = V I

⇤ = |I|2 ZRLC =
|V |2
ZRLC

(4.7)

where V and I are the root-mean-square of voltage and current. In particular the
power dissipated by the resistor will be

PR =
|V |2
R

, (4.8)

and by using the expressions of the energy stored in a capacitor and the energy
stored in an inductor we will be able to write the average stored energy in each of
these components as

UC =
1

2
C |V |2, (4.9)

UL =
1

2
L |IL|2. (4.10)

By combining the previous expressions we can write the incident power as

Pin = PR + 2 j! (UL � UC), (4.11)

and allowing to rewrite the impedance of the system as

ZRLC =
Pin

|I|2 =
PR + 2 j! (UL � UC)

|I|2 . (4.12)

We see that the imaginary part of the impedance will vanish when the average
stored energies are identical in the capacitor as in the inductor, which will happen
at the resonant frequency

!

0

=
1p
LC

. (4.13)

Now we proceed to find the quality factor of the resonator. The quality factor is
defined as

Q = 2⇡
Energy Stored

Energy dissipated per cycle
= !

0

Energy Stored

Power Loss
, (4.14)

and it will in general describe the frequency selectivity of the circuit. For our
circuit it will yield

Q = !

0

UL + UC

PR

= !

0

RC, (4.15)

by using that UL and UC are equal at resonance.
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4.2.2 Equation of motion method

Instead of calculating the impedance, we are going to write down the equation of
motion of the circuit, starting by applying Kirchho↵’s current law to the circuit
in figure 4.2: X

k

Ik = IL + IC + IR = 0. (4.16)

And if we derive once with respect to time we getX
k

İk = İL + İC + İR = 0. (4.17)

We can write each one of the terms as

İR =
d

dt
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◆
=
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R

, (4.18)

İL =
V

L

, (4.19)

İC = Q̈C =
d

2

dt

2

(C V ) = C V̈ , (4.20)

allowing us to write

C V̈ +
V̇

R

+
V

L

= 0, (4.21)

which if we divide by C will yield the equation of a damped harmonic oscillator:

V̈ +
V̇

RC

+
V

LC

= V̈ + � V̇ + !

2

0

V = 0. (4.22)

In this equation � = 1/RC is the loss rate and !

0

= 1/
p
LC. Having these

parameters we can find the quality factor based on the previous definition:

Q = !

0

Energy Stored

Power Loss
= !

0

1

�

= !

0

RC. (4.23)

4.3 Loaded RLC parallel circuit

We have obtained the resonance frequency of the unloaded resonator and the
unloaded quality factor, also known as internal quality factor or Q

int

. In those
derivations we ignored any e↵ects caused by the external circuitry. However, to
be able to spectroscopically measure a resonator we will always require a coupled
system. In our case we couple our resonators with an external coupling capacitor,
which allows us to tune the coupling coe�cient of our system. The rest of cables
and the VNA are assumed to have a characteristic impedance of 50⌦, and therefore
we can write the exact reflection coe�cient at the input of the resonator as

�(!) =
ZT (!)� 50⌦

ZT (!) + 50⌦
, (4.24)
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R L CRL

Cκ

Figure 4.3: Circuit model of a loaded
RLC resonator.

R L C
R* C*

Figure 4.4: Norton equivalent circuit
of a loaded RLC resonator.

where ZT = j!C + ZRLC . It can be shown that such a system contains two res-
onances, corresponding to the unloaded and the loaded frequencies. Even though
for most cases only the loaded frequency will matter, it will become di�cult to
identify the position of the resonance by using the previous expression for the re-
flection coe�cient. To solve this, we first write the circuit of the whole system, as
shown in figure 4.3, where we model the cables and the VNA with a RL = 50⌦
resistor. To understand in a simpler way the e↵ect of the loading, we will start by
neglecting the internal losses, which is equivalent to considering an infinite internal
parallel resistor. The circuit now involves components in parallel and components
in series, but we can write the Norton equivalent circuit of the external branch
as a resistor and a capacitor in parallel, as seen in figure 4.4. The equivalent
components can be expressed as

C

⇤(!) =
C

1 + (!C RL)
2

, (4.25)

R

⇤(!) =
1 + (!CRL)

2

(!CRL)
2

. (4.26)

Since the two capacitors in parallel can be added together in a single component
with capacitance C+C

⇤, we end up with a parallel RLC circuit as in the previous
section, for which we already found the solution. If we now assume that C

⇤(!)
and R

⇤(!) do not change appreciably close to resonance, we can take their value
at the resonant frequency, so that C⇤ = C

⇤(!̃
0

) and R

⇤ = R

⇤(!̃
0

). This allows us
to write the resonant frequency of the system and the quality factor as

!̃

0

=
1p
LC̃

=
1p

L (C + C

⇤)
, (4.27)

Q = !̃

0

R̃ C̃ = !̃

0

R

⇤ (C + C

⇤). (4.28)

Where Q will be the external quality factor, since it does not take into account any
internal losses. We can also write down the expression for the external coupling
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rate , the rate at which energy is lost through the transmission line, as

 =
1

R̃C̃

=
1

R

⇤(C + C

⇤)
. (4.29)

If we solve self-consistently the expression of !̃
0

we will get the loaded resonant fre-
quency !̃

0

. It is important to note that we have reduced the original system with
two resonances to a system with a single resonance. This approximation has been
done by assuming that the Norton-equivalent elements are frequency independent.
Since the exact expression includes a dependence on the frequency, solving the cir-
cuit with any of the two previous methods will require to take the dependence into
account. However this approximation will still hold for most weakly coupled cases.

If we take into account the internal losses of the resonator, the resonant frequency
will remain una↵ected, but the quality factor, the loaded Q for this case, will
change since the e↵ective resistor will now be R̃ = (1/R+ 1/R⇤). We can write it
as

QL = !̃

0

R̃ C̃ = !̃

0

C + C

⇤

1/R + 1/R ⇤ , (4.30)

and for C⇤ ⌧ C it can be written as

1
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. (4.31)

4.4 Hamiltonian description for multiple coupled cavities

In this section we will derive a Hamiltonian of the system where several resonators
are capacitively coupled. Such a description will be used together with input-
output theory to derive the expression of the reflection coe�cient as a function of
the Hamiltonian parameters, which will be used to fit the measured data for two
and more coupled resonators. It will also be important to use it as a bridge be-
tween the circuit and the Hamiltonian models, since it o↵ers a simpler description
for larger systems and will allow to model nonlinear and quantum e↵ects, which
is ultimately required to design arbitrary Hamiltonian parameters.

In a similar fashion to the input-output theory derivation for one single resonator,
the Hamiltonian will not take into account the interaction with the external world,
and neither the internal losses. These will be considered later when applying input-
output theory. To start we will consider the Lagrangian of an electric circuit with
N LC parallel oscillators coupled to each other capacitively, with the mode flux
(Vi = �̇i) as coordinate [20]. It can be written as

L =
NX
i=1

1

2
Ci �̇

2

i +
NX
i=1

1

2
CJi (�̇i � �̇i+1

)2 �
NX
i=1

1

2Li

�

2

i , (4.32)

where the first contribution corresponds to the shunt capacitors, the second to the
coupling capacitors and the third to the shunt inductances. We can also rewrite
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the Lagrangian as

L =
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2
�̇T
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2
�T
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�1 �, (4.33)

where � = (�
1

,�

2

,�
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, ...) is a vector, C a tridiagonal capacitance matrix (Ci i =
Ci, Ci i+1

= Ci+1 i = CJi) and L

�1 the inverse of a diagonal inductance matrix
(L�1

i i = 1/Li). We can now extract the generalized momentum, the charge, as
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j
, (4.34)

which allows us to write the Hamiltonian as

H =
1

2
Q

T
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�1

Q+
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2
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where Q = (q
1

, q

2

, ...) is the charge vector. We proceed now to upgrade the two
canonical conjugate variables to operators described by the canonical commutation
relation h

q̂i, �̂j

i
= �j~ �ij. (4.36)

Now we can define second-quantization operators to reach the expression

H =
NX
i=1

~!i

✓
â
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where
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Having the expression of the Hamiltonian we can now apply the input-output
relations to obtain the di↵erent scattering parameters.

4.5 Input-output theory for a single resonator

In the previous section we found expressions which relate the values of the electrical
circuit components to the resonant frequency and the quality factor. To be able
to extract any of these parameters from the measurement of our resonators, it is
necessary to fit the scattering parameters of the system, since this is the data that
we will obtain by measuring with a VNA. For most of our geometries, the complex
reflection coe�cient will be the parameter to fit. We can directly use the expression
of equation 4.24, which depends on R, L, C, C, but in practice these parameters
will be underdetermined and therefore several solutions will be compatible with
the same reflection fit. A better solution is to fit a reflection coe�cient which
depends on the resonance frequency and the damping rates. To obtain these we
will use input-output theory, which describes the viewpoint of an external observer
that sends signals to the system and measures the reflected signals to extract
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information from it. We will start by considering the Hamiltonian of a resonator
in the linear regime, which is simply:

H = ~!
0

✓
â

†
â+

1

2

◆
, (4.40)

where !

0

is the resonant frequency of the resonator, and â, â† correspond to the
annihilation and creation operators of the field in the resonator. The Heisen-
berg equation can be derived for the model indicated in figure 4.5, obtaining the
expression

˙̂
a(t) = � j

~ [â(t),H]� + �

2
â(t) +

p
 â

in

(t), (4.41)

which rewritten in Fourier space takes the form
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(!). (4.42)

And together with the input-output relation
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 â(!), (4.43)

we can derive the expression
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� � 1. (4.44)

Here the parameters to be obtained from the fit are the resonance frequency !

0

,
the coupling rate  and the loss rate �.

Figure 4.5: Schematic of input-output theory applied to a single-ended single res-
onator.

The reflection coe�cient obtained from the impedance is equivalent to the one
derived from input-output theory when the approximations of weak coupling con-
sidered in the previous section are applied. The expression 4.24 can be rewritten
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as

�(!) =
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0�!2

!
+ j (̃(!) + �̃(!))

� 1

!
, (4.45)

where X = 1/!C is the reactance of the coupling capacitor and ̃ = 1/(C̃ R

⇤),
�̃ = 1/(C̃ R) are e↵ective damping rates. The term outside the parenthesis will
have modulus 1 and therefore can be expressed as a frequency-dependent phase
shift ✓(!). If we consider again only a region close to the resonant frequency, we
can approximate the phase shift ✓(!) ⇡ ✓(!

0

) as constant, and similarly ̃(!) ⇡
̃(!

0
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In this section we only considered the case of a single resonator, however we
note that input-output theory can be applied to any Hamiltonian, which allows
to obtain the reflection coe�cient for arrays of coupled resonators by using the
Hamiltonian derivation from the previous section. An example for two coupled
resonators can be found in [21].

4.6 Extraction of LC parameters

In this chapter we established a connection between the electric circuit parame-
ters C, L, C, R (internal resistance) and the resonators parameters !

0

,  and
�. Naively one could think that the previous derivations allow to extract the cir-
cuit parameters by measuring the resonators parameters. However there are two
limitations to such an approach. The first one is the requirement of an accurate
calibration of the measurement device to precisely measure a resonator. This is
particularly complicated for superconducting resonators, since a proper calibration
would need to be done at cryogenic temperatures with calibration standards suit-
able for those temperatures. The second limitation is that even if the resonance
frequency and the coupling and loss rates were precisely measured they would
not be enough to determine the circuit parameters. An additional parameter, the
phase shift � far from resonance, would be needed, but even with an accurate
calibration this phase will depend strongly on the external environment (charac-
teristic impedance of the measurement lines), requiring also a precise study of the
measuring setup to extract the parameters.

We conclude that the extraction of the parameters with measurement data from
individual samples is in practice not going to be possible. In this section we will
describe a method to extract all the relevant parameters which will require the
measurement of two identical resonators but with extremely di↵erent coupling
capacitors. First let us consider an extremely undercoupled resonator (C ⇡ 0,
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 ⌧ �, QL ⇡ Qint), whose resonant frequency will be

!

0

⇡ 1p
LC

, (4.47)

since there will be no ”loaded” contribution (for the moment we will not discuss
the internal quality factor, since the internal losses cannot be easily modified by
the design). Now let us consider a sample with the same shunt capacitor and shunt
inductor but extremely overcoupled ( � �, QL ⇡ Qext), whose frequency will be
given by

!̃
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=
1p
L C̃

=
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L (C + C

⇤)
=
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L (C + C
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and the external quality factor by
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By measuring the two di↵erent samples we will obtain !

0

, !̃
0

, Qext. By using
their corresponding expressions, it can be shown that we can write the coupling
capacitance as a function of the measured parameters:
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1

Qext !̃0

RL

0B@1� 1

1�
⇣

!0
!̃0

⌘
2

1CA , (4.50)

from which we can now find the rest of relevant parameters:
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⌘
2

� 1

1

1 + (!̃
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2

, (4.51)

L =
1

!

2

0

C

. (4.52)

By also measuring Qint of the undercoupled resonator, it would also be possible
to obtain the value of R, as R = Qint/(!0

C).

We note that the above procuedure assumes a fixed and well-defined value of
the characteristic impedance of the transmission line (RL). However the values of
C and L can be shown to be independent of the value of RL.
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Theory of Josephson parametric
amplifiers

In the field of quantum information processing and quantum optics the ability of
measuring electromagnetic signals at the single-photon level is an essential require-
ment. In the optical frequency range, photon counters exist, but for microwave
wavelengths there are no available single-photon detectors. Instead, quantum-
limited amplifiers have to be used previous to the detection of single-photon mi-
crowave signals [9, 13, 14]. The amount of noise added by these devices to the
amplified signal is only limited by vacuum fluctuations [22].

Among the di↵erent devices developed for quantum-limited amplification in the
range of microwave frequency, parametric amplifiers (paramps) remain the most
successful, and in recent years a great variety of paramps based on the Josephson
e↵ect have been built [9, 13, 14], allowing to characterize the quantum properties
of microwave radiation in the context of circuit QED. In this section we will
present the main properties and physical description of such systems, and focus
in particular in paramps based on lumped-element nonlinear resonators and the
advantages they might o↵er.

5.1 Parametric oscillation and amplification

A parametric oscillator is a harmonic oscillator which is driven by the variation of
one of the system parameters at a di↵erent frequency than the resonant one. The
most usually given example to illustrate this phenomenon is a child on a swing
pumping the amplitude of the swing oscillation by moving forward and backward
its legs. By doing so, the child will change the momentum of inertia of the sys-
tem and therefore also its resonant frequency and the damping (parameters). By
moving the legs at twice the natural frequency of the swing, the child is able to
drive the swing oscillation, similar as described in [23]. Such a system would be
described by the equation of a damped harmonic oscillator with time-dependent
parameters:

✓̈ + �(t) ✓̇ + !

2(t) ✓ = 0. (5.1)

32
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In contrast to the situation where a harmonic oscillator is directly driven (an adult
pushing periodically the swing), for parametric driving the oscillation amplitude
will remain zero if the system has no initial amplitude. However, if the oscillator is
driven at its natural resonant frequency to a particular amplitude, the parametric
oscillation will enhance this amplitude. This phenomenon is known as parametric
excitation or parametric pumping, and is the basic idea behind how parametric
amplifiers work [24].

In the field of quantum optics, parametric processes are usually associated to
the mixing of di↵erent frequency components of light, which is due to a nonlinear
refractive medium. In this context, a coherent pump field modulates the refractive
index of the medium (parameter), which is dependent on the applied electric field,
and e↵ectively drives or stimulates the amplitude of fields at di↵erent frequencies.
The frequency conversion can be caused by either a three-wave or a four-wave
mixing process [24, 25]. In the first case, the refractive index depends linearly on
the applied electric field (�(2) non-linearity, Pockels e↵ect), and each pump photon
is converted into a pair of signal and idler photons, their frequencies obeying the
relation !P = !S + !I . In the case of four-wave mixing, the refractive index de-
pends linearly on the intensity of the electric field (�(3) non-linearity, Kerr e↵ect),
and in the process two pump photons will be converted into a pair of signal and
idler photons with their frequencies obeying !P + !P = !S + !I . Such kind of
processes are behind the phenomenon of spontaneous parametric down-conversion,
where a laser beam incident on a non-linear crystal is used to generate entangled
signal-idler pairs of photons [24].

When discussing electrical circuits, the oscillating parameter is usually the ef-
fective impedance of the system [9]. This can be done by varying the capacitance
or inductance of the system over time. Experiments exploiting these ideas have
been performed since the beginning of the 20th century, and parametric amplifiers
were already used for the first time around 1913 for radio telephony in Europe
[26]. These first paramps used variable inductances, and although other alterna-
tives have been used over the years (varactor diodes, klystron tubes), Josephson
parametric amplifiers are still based in inductance modification.

5.2 Theory of SQUID arrays

5.2.1 The Josephson Junction

A Josephson junction is a device consisting of two superconducting electrodes con-
nected with a thin insulating layer. From BCS theory, we know that the electrons
in a superconductor condensate to Cooper pairs, which due to their bosonic char-
acter can be described by a single wavefunction, allowing the superconductor to
be described by a macroscopic phase and the local Cooper pair density. Brian
Josephson theoretically showed in 1962 that if the insulating layer is thin enough
the wavefunctions of each of the electrodes will overlap, which will allow Cooper
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pairs to tunnel through the insulating layer as a dissipationless supercurrent [27].
This is known as the Josephson e↵ect and it is described by the first and second
Josephson relations:

IJ(t) = I

0

sin �(t), (5.2)

V =
�

0

2⇡
�̇, (5.3)

where I

0

is the critical current of the junction, � the gauge-invariant phase dif-
ference across the junction and �

0

the superconducting flux quantum. The first
equation indicates that there will be a superconducting current across the junction
proportional to the sine of the phase di↵erence between the superconductors, with-
out any external electromagnetic field. This is known as the dc Josephson e↵ect
[28]. If we now take the second Josephson relation and consider a fixed voltage
between the two sides of the junction, we can solve the two relations yielding:

I(t) = I

0

sin

✓
�

0

2⇡
V t+ �

0

◆
, (5.4)

which indicates that the phase will vary linearly with time and the supercurrent
will oscillate at a frequency �0

2⇡
V , phenomenon known as the ac Josephson e↵ect.

Using the two Josephson relations we can get the relation between current and
voltage of the junction as

İ = I

0

2⇡

�
0

V cos �, (5.5)

and since in this expression there is a proportionality between the time-derivative
of the current and the voltage di↵erence across the junction, we can view our
junction as an inductor with a Josephson inductance of

LJ =
�

0

2⇡I
0

cos �
. (5.6)

Since the inductance depends on the cosine of the phase di↵erence, which is related
to the current, it is clear that it is a nonlinear inductance [29]. We can derive the
energy associated to the Josephson inductance as

EJ =

Z
V I dt =

�
0

Ic

2⇡
(1� cos �) = EJ0 (1� cos �), (5.7)

where EJ0 is the intrinsic Josephson energy of the junction. If we consider the
energy due to the charges at each side of the junction and obtain the corresponding
capacitance, we can derive the energy of the Josephson capacitance as

EC =
(2 e)2

2C
N

2 = EC0

N

2

, (5.8)

where EC0

is the charging energy of the junction and N the number of Cooper
pairs. These two energies will characterize the Josephson Junction and it will be
necessary to engineer their values for most of their applications.
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5.2.2 Symmetric and asymmetric SQUIDs

A SQUID (acronym for Superconducting Quantum Interference Device) is a su-
perconducting loop interrupted by one or more Josephson junctions. Its principal
use is to very sensitively detect magnetic fields [28]. Here in the context of circuit
QED we will only discuss the known as dc SQUID, which is basically constituted
by two Josephson junctions in parallel [30]. The total current going across the two
Josephson junctions is

ISQUID = I

1

+ I

2

= I

0,1 sin �1 + I

0,2 sin �2. (5.9)

Since the change of the phase along the closed contour has to be a multiple of 2⇡
we can write I

C

r✓ dl = 2⇡n, (5.10)

where ✓ is the macroscopic phase of the system. We can write the contour integral
as a sum of the contribution from the junctions and the one from the supercon-
ductors:I

C

r✓ dl = ((✓b � ✓a) + (✓d � ✓c)) +

✓Z a

d
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Z c

b
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◆
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We can write the phase di↵erence across the Josephson junctions as a function of
the gauge-invariant phase di↵erence and the vector potential A:
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and the integrals across the superconductors asZ a
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where ⇤ is the London penetration depth and J is the current density. If the thick-
ness of the superconductors is much larger than the London penetration depth,
the integral can always be performed through a path in which J = 0, allowing us
to write the whole contour integral asI

C

r✓ dl = �
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I
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and since the total magnetic flux is � =
H
C
A dl, we reach the expression
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This allows us to rewrite the critical current from expression 5.9 as

I

0

=

s
(I

0,1 � I
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�ext

�
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where we have assumed that � ⇡ �ext, since the field generated by the loop will
in general be extremely smaller than the flux quantum [31]. This last equation
shows that the SQUID is e↵ectively a Josephson junction with a critical current
which can be tuned with an external magnetic field. Now let us write down the
expression for the SQUID critical current when both Josephson junctions have the
same critical current:

I

0

= 2I
0

����cos✓⇡�ext

�
0

◆���� . (5.19)

If we compare the last expression with equation 5.18, and analyse the tunability
for arbitrary asymmetric values of the two junctions, it can be seen that an asym-
metric SQUID will always have a narrower range of tunability, but it will also have
smaller sensitivity to magnetic flux noise, specially on the extremal points. The
tunability of the Josephson inductance will have a similar behaviour depending
on the asymmetry of the SQUID, and if a SQUID is used as a non-linear induc-
tor in an LC resonator, the range of tunability of its resonant frequency and its
resilience to magnetic flux noise can also be modified by choosing desired values
of the asymmetry. In the design of Josephson paramps, we will in most cases
sacrifice the range of tunability in order to bound the tunable Josephson energies,
which will make the paramp more insensitive to inhomogeneities when dealing
with arrays of SQUIDs [9].

5.3 Josephson parametric amplification

In the previous sections we showed that a dc SQUID can be used as a non-linear
tunable inductor. Because of such properties, by adding the SQUID with a shunt
capacitor we can use it as a parametric amplifier [9], where the oscillating param-
eter will be the e↵ective inductance of the SQUID. There will in general be two
methods to do so. The first will use the non-linearity of the SQUID inductance
with respect to the applied current with currents much smaller than the critical
current
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This dependence is equivalent to a �

(3) non-linearity, and can therefore be used for
4-wave mixing. The second method will use the tunability of the critical current
in a SQUID [32], which for the symmetric case will depend on | cos �

�0
|. If we

consider only the external flux contribution, we can see that for values of � much
smaller than the flux quantum, the critical current will depend quadratically on
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the flux, yielding a 4-wave mixing process. However, an external dc flux can be
applied such that the dependence of the critical current on small flux variations
will be linear. If we set �dc

�0
= 1

4

, we can write

I

0, SQUID = 2 I
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����cos✓⇡ �dc + �ac

�
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and therefore
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The linear dependence will allow 3-wave mixing process (�(2)-like).

The JPAs described in this thesis will all be based on 4-wave mixing processes by
applying the pump tone as an ac current directly on the resonator. The alternative
of an ac flux is not easy to implement in our system, since the use of SQUID arrays
will di�cult the application of an homogeneous external ac flux.

5.3.1 Classical response of a nonlinear oscillator

A resonator-based JPA is essentially a weakly nonlinear oscillator [33]. We can
describe such a system by considering the Hamiltonian of an harmonic oscillator
with a Kerr non-linearity K, where K < 0:

H = ~!
0

â

†
â+

~K
2

â

†
â

†
â â. (5.23)

If the system has an external coupling and internal losses, we can take them
into account by using input-output theory. We will first consider the case where
only a strong coherent field ↵ is applied which we can therefore model classically.
Applying the usual input-output relations considering coupling and loss rates 

and � will yield a cubic equation in |↵|,

iK↵ |↵|2 +
✓
i(!

0

� !P ) +
+ �

2

◆
↵ =

p
↵in, (5.24)

where !P is the frequency of the strong applied signal (pump) and !

0

is the reso-
nant frequency of the linear system. This last expression can be solved analytically
for ↵, and for weak input powers will give a single solution. However, as we keep
increasing the input power, a critical value can be reached above of which the
system has three di↵erent solutions, of which only two of them will be stable,
therefore yielding a bistable solution. This behaviour can be observed in figure
5.1, where � = !P � !

0

. The green plot shows the oscillator with nonlinearity
K = 0, the blue close to the bifurcation point where the slope becomes infinite,
and the red a strongly nonlinear case, with a region having three solutions.

Once knowing the solutions of |↵| we can write the reflection coe�cient as

� =


i(�(!P � !

0

) +K |↵|2) + +�
2

� 1, (5.25)
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Figure 5.1: Population in the resonator as a function of the drive detuning �, in
units of , for a lossless nonlinear oscillator with three di↵erent nonlinearities, each
corresponding to di↵erent regimes of the oscillator. The red plot corresponds to the
strongest nonlinearity, the blue to an intermediate value and the green to the smallest.

where the value of |↵| will depend on the frequency of the pump. Since K < 0 it
will have the e↵ect of redshifting the resonant frequency of the resonator as the
input power increases.

Figure 5.2: Reflection coe�cient as a function of the drive detuning � for a critically
coupled nonlinear oscillator with varying nonlinearities. The red plot corresponds to the
strongest nonlinearity, the blue to an intermediate value and the green to the smallest.

5.3.2 Gain in the linear regime

Let us now consider a weak quantum field b̂(t) together with the strong pump
field |↵|, such that the input field obeys hb̂†in(t)b̂in(t)i ⌧ |↵in|2. We can linearize
the Hamiltonian such that only terms linear in b̂(t) will survive. We also consider
overcoupling by  � �, and therefore ignore the internal losses. This allows us
to write the same equations of motion for the classical drive as before, while the
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quantum field will obey
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where �̃ = (�(!P � !
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) � i/2 + 4K|↵|2). These expressions can be rewritten in
vector form as
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Now we can use the Fourier transform

b̂i(t) =
1p
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Z 1
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d� (5.30)

where � = !b � !P , and by introducing it to equation 5.28 will yield

ḃ(�) = (�S � i�)�1 bin(�) = G(�)bin(�), (5.31)

where b(�) = (b̂(�), b̂†(��)). By using the input-output relation b̂out =
p
 b̂�b̂in

we can get to
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(�) b̂†in(��)� b̂in(�)

= gS,� b̂in(�) + gI,� b̂

†
in(��), (5.32)

which shows that a signal at detuning from the pump � will get amplified by a
factor gS,� and also mixed with the components of the idle frequency with a factor
gI,�.

The relevant properties which will characterize a parametric amplifier will be the
maximum gain, the bandwidth and the dynamic range. The first two are given by
the function gS,�, at a given pump-resonator detuning and input power |↵in| (if
we only consider a single stable solution). However, the bandwidth will depend on
the amplitude of the maximum gain [33], and it will in general not be wider than
the linewidth of the resonator. Actually, as can be seen in figure 5.3, increasing
the gain will reduce the bandwidth, which can be understood by approximating
the curves as Lorentzians, implying that |gS,0|B ⇡ 1.

The other relevant parameter, the dynamic range, characterizes the behaviour
of the amplifier when the power of the signal is increased with a constant pump
power. In the previous derivations we assumed that the signal to be amplified is
always weak while the pump power is much stronger (sti↵ pump approximation),
however, if we increase the signal power we may reach a regime in which the
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Figure 5.3: Gain curves as a function of �/ for di↵erent pump powers. The green
plot corresponds to the highest power and the green to the lowest.

Figure 5.4: Phase diagram showing the gain of the amplifier at detuning � = 0.

depletion of the pump power cannot be neglected, and for which the gain will
start to decrease. As shown in [9], the 1 dB compression point of the JPA will
increase for bigger values of the ratio /K. We conclude from this dependence
that both the dynamic range and the bandwidth of the amplifier can be improved
by increasing the coupling rate, and that decreasing the non-linearity will also
help achieving a better dynamic range. We will address how to do so in the next
subsection.
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5.3.3 Lumped-element JPAs with asymmetric SQUID arrays

In this subsection we will describe the designed resonators with asymmetric SQUID
arrays. We will start by considering a lumped-element resonator with a single
shunting SQUID. The typical values for the shunt capacitance are ⇠ 100�300 fF,
which leads to charging energies of EC ⇠ 50� 200 GHz, while typically the EJ of
a SQUID is above 1 THz [34]. This implies that the resonator can be described
by the Transmon Hamiltonian as

H = 4EC n

2 � EJ cos � ⇡ 4EC n

2 � EJ
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where we have approximated for small values of the gauge-invariant phase. By
introducing creation and annihilation operators we can write the Hamiltonian in
the form of a Du�ng oscillator [35]
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which in the deep transmon limit (EJ � EC) can be written as
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where !

0

= 1/
p
LJ C, K = Ec/~ and where we removed the constant term �EJ .

Now that we have shown that the transmon Hamiltonian is equivalent to the
Da�ng which we used for the previous derivations, let us address the question of
improving the dynamic range and the bandwidth. Increasing the coupling rate 

is an option as we showed in the last subsection, but there are some limitations
to an arbitrary increase of , since a stronger coupling will yield higher currents
in the SQUID, whereas we assumed in several occasions that the currents across
the SQUID were much smaller than the critical current. The important parame-
ter is the ratio between the parametrically critical number of photons (N

bifurcation

)
and the number of photons corresponding to the critical current of the SQUID
(N

max

), which we want to keep as small as possible. In reference [33] this ratio
is shown to be proportional to  and in general much smaller in the lumped-
element limit. This means that we will not be able to increase  arbitrarily, but
that lumped-element resonators are a better option than distributed-element ones.

We can still argue that the dynamic range can be improved by decreasing the
non-linearity K. In the lumped-element case this could be done by increasing the
shunt capacitance, but this is likely to increase the geometric inductance contri-
bution, therefore forcing to reduce the bandwidth. Another option is using an
array of M SQUIDs instead of a single SQUID with same Josephson energy. If
we assume a Josephson energy of EJ/M for each SQUID and that the phase drop
across each of them is �/M , where � is the phase drop across the whole array, we
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can rewrite the Hamiltonian of eq. 5.33 as

H = 4EC n
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from which we can extract that even if the Josephson inductance LJ , given by the
quadratic term of the Hamiltonian, will be the same as for a single SQUID with
EJ , the nonlinearity K, given by the quartic term, will be reduced by a factor of
M

2. This yields then K = EC/M
2, so that the nonlinearity was reduced while

keeping the resonance frequency and the rest of parameters constant.

Last, there is an e↵ect that should also be taken into account, the added noise.
This noise can be introduced by the loss rate �, which we assumed to be negligible,
and it can only be reduced by identifying the loss sources and improving the design.
However, there will also be another noise contribution given by fluctuations of the
external magnetic flux, which will have stronger e↵ects in the case of SQUID
arrays. This contribution will originate fluctuations of the resonance frequency,
which will reflect in a fluctuating e↵ective gain. A way to cope with this e↵ect is
to reduce the frequency dependence on the magnetic flux fluctuations, which can
be done by fixing the external dc flux at a sweet spot, but will limit the tunability.
The solution we approach is the use of asymmetric SQUIDs, which as we saw in
the previous section are more resilient to magnetic flux noise.

5.3.4 Degenerate and non-degenerate amplification

A parametric amplifier can be operated in two di↵erent regimes, depending on
the detuning of the measured signal with respect to the pump frequency. In the
degenerate or phase-sensitive amplification, the signal to be detected is centered
around the pump frequency. In the non-degenerate, phase-insensitive or phase-
preserving amplification, the detected signal is detuned far from the pump.

In the degenerate case, signal and idler occupy the same mode, and this leads
to an interference e↵ect which will noiselessly amplify one of the two quadratures
of the mode while deamplifying the other quadrature. It is called phase-sensitive
since by modifying the relative phase between the pump and the signal a gen-
eralized quadrature can be chosen to be amplified. This kind of amplification is
usually used for fast dispersive readout of superconducting qubits, in which the
state of the qubit can be encoded in only one of the quadratures [19].

In non-degenerate amplification signal and idler will be detuned by 2�, and
both are equally amplified. This kind of amplification is used when the detection
of the two quadratures of the signal is required, as for the measurement of photon
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correlation functions, or also for multiplexed readouts [19].

For a JPA with a single resonance, as we have just seen, the gain will have a
maximum at zero detuning from the pump frequency. This means that the signals
to be amplified will have a limited detuning, and in general it will be more suitable
for degenerate amplification. Since the pump is at the same frequency as the signal
to be measured, it is necessary to cancel the pump in the output of the amplifier,
to avoid saturation and noise in the measurement scheme. It is also important to
note that the previous definitions for degenerate and non-degenerate amplification
are in general valid for 4-wave mixing with a single pump. In situations with two
pump signals or 3-wave mixing, degenerate amplification can be performed at a
finite detuning from the pump [32].

5.4 Multi-cavity LE paramp

In this section we will describe the properties of Josephson parametric amplifiers
where two or more coupled nonlinear resonators are involved. The interest for
these kind of devices is found in their performance as parametric amplifiers [9],
but also in their potential use for the quantum simulation of many-body systems.

The structure of these devices can be understood by combining the coupled
linear resonators described in chapter 3, where parallel LC oscillators are coupled
through a finger capacitor, with the use of SQUID arrays as nonlinear inductors as
described in this chapter. The coupled system will display more than one eigen-
frequency (as many as coupled resonators) with a detuning proportional to the
e↵ective coupling J . This means that degenerate amplification can be easily per-
formed at each of these frequencies, each of them e↵ectively behaving as a single
resonator. However, if we choose two of those resonances and apply a pump at
exactly the center between those frequencies, the 4-wave mixing process will allow
to perform non-degenerate amplification, in which the pump and the idler can be
considerably detuned from the amplified signal. The system can therefore be oper-
ated in the two di↵erent regimes, and it allows to amplify signals at very di↵erent
frequencies simultaneously. A description and experimental test of a system of
two coupled resonators were described by Eichler et al. in [9].

The Hamiltonian that describes nonlinear coupled resonators can be obtained
from equation 4.37 and introducing the Kerr term for each one of the resonators
we get to

H =
NX
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If we consider all resonator-resonator coupling interactions to be equal and only
afecting nearest-neighbours, the Hamiltonian can be rewritten as

H = �J
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â

†
i âj +

X
i

✏in̂i +
U

2

X
i

n̂i(n̂i � 1), (5.38)

where ✏i = ~!i, J = �~Ji,i+1

, U = ~K and n̂i = â

†
i âi is the photon number oper-

ator. This is exactly the Hamiltonian of the Bose-Hubbard model, which approx-
imately describes the interaction of bosons in a lattice [36]. This is a Hamiltonian
that has been intensely studied and experimentally implemented in systems of
ultracold atoms in optical lattices [37]. The reason is that as the ratio of U/J is
tuned, this Hamiltonian displays a quantum phase transition between a superfluid
and Mott insulators states, and the quantum simulation of such systems can shine
light into condensed matter problems which are di�cult to solve with classical
computers [1].

5.4.1 The Josephson Parametric Trimer

In this last subsection we will comprehensively describe the properties of a device
composed of three coupled nonlinear resonators from theoretical calculations. In
analogy to the previously designed two-resonator amplifier we call this device the
Josephson parametric trimer (JPT), as it is a circuit realization of a Bose-Hubbard
trimer. Even though we have designed coupled systems with a higher number of
resonators, the JPT is the natural continuation of the JPD and it is also the small-
est system which can show next-nearest neighbour interactions. In this particular
thesis we will focus on it use as a parametric amplifier although many of the results
could be useful for quantum simulations.

The Hamiltonian of the system can be written as
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j âi

⌘
+

3X
i=1

K

2
â
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where we consider the coupling between next-nearest neighbours, even though it
is much smaller than the nearest-neighbour. We also consider that the resonance
frequencies of the three resonators are the same. If we diagonalize the Hamiltonian
by ignoring the nonlinear term and considering J

13

⇡ 0, we find three hybridized
modes which can be written as

a
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and with eigenfrequencies !

+

= !

0

+
p
2J , !C = !

0

, !� = !

0

� p
2J , where !

0

is the bare resonance frequency of the resonators. The nonlinear term will shift
the three eigenfrequencies proportionally to the applied coherent drive. If we solve
the system by considering a strong classical field, as done in the previous section,
we can plot the number of photons present in each of the resonators as a function
of the detuning from the bare frequency, as shown in figures 5.5 and 5.6 for the
linear and strongly nonlinear cases.
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Figure 5.5: Number of photons present in each of the resonators in a linear trimer as
a function of the applied frequency, written as the detuning from the bare resonance

frequency in units of .
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Figure 5.6: Number of photons present in each of the resonators in a nonlinear trimer
as a function of the applied frequency, written as the detuning from the bare resonance

frequency in units of .

By considering the operation of the trimer in the linear regime, we can calculate
the gain in a similar way as with the single resonator case. However, since the
trimer has three resonance modes, non-degenerate amplification will be possible
by applying the pump at these frequencies, and the maximum of gain will not
necessarily be at � = 0. Therefore, to extract relevant information from solving
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the gain equations it is necessary to take into account the values of � at which
we might have strong gain. For the case of degenerate gain, we plot a phase
diagram in the same way as for the single resonator, showing the gain at � = 0
as a function of the two tunable parameters, the input power and the detuning
�. In the phase diagram seen in figure 5.7 we can distinguish the three resonance
frequencies red-shifted as the power is increased.

Figure 5.7: Degenerate phase diagram of the trimer, the value of the gain corresponds
to its value at � = 0. The input power in the coordinate axis has been chosen to
make clearer the comparison with the experimental results. It can be expressed as

(|↵
in

|2U/2)(1 + �/!0).

To show the non-degenerate behaviour in a phase diagram, a finite value of �
(pump and signal detuned) has to be chosen. Since the trimer has three eigen-
frequencies, we expect three di↵erent non-degenerate gains, each of them corre-
sponding to the applied pump exactly between the eigenfrequencies. If we choose
to observe the gain at the eigenfrequencies !

+

, !�, the pump will have to be at
the eigenfrequency !

0

, and the detuning of maximum gain will be at � = ±p
2J .

We plot the phase diagram corresponding to this gain in figure 5.8, which we have
obtained by finding the maximum in a narrow region around � = ±p

2J .
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Figure 5.8: Non-degenerate phase diagram of the trimer, the value of the gain cor-
responds to its value at � ⇡ p

2 J . The input power in the coordinate axis has been
chosen to make clearer the comparison with the experimental results. It can be ex-

pressed as (|↵
in

|2U/2)(1 + �/!0).

In contrast to the results shown by the JPD [9], the JPT can be operated at
the same power and detuning as a degenerate and a non-degenerate parametric
amplifier, by applying the pump close to the central eigenfrequency, therefore
obtaining gain at all the eigenfrequencies simultaneously. This is shown in figure
5.9, where this simultaneous behaviour can be observed.
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Figure 5.9: Gain as a function of the signal detuning �/, for a regime where both
degenerate and non-degenerate amplification are equally strong.
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Experimental setup

The lumped-element superconducting resonators described in this thesis were char-
acterized with two di↵erent setups. Samples without nonlinear SQUIDS were mea-
sured using a dipstick in a liquid helium dewar, where the temperatures attained
of 4.2 K are already below the superconducting critical temperature of 9.2 K of
niobium. In the case of non-linear resonators, with an aluminium SQUID array
placed instead of the niobium meander inductor, temperatures lower than 1 K are
needed and these measurements were done in a dilution refrigerator, which gets
down to a few mK. Some of the linear samples were also measured in the dilu-
tion refrigerator to get the insight on the behaviour of the quality factor at mK
temperatures. In the present section we will describe the details of each of these
setups.

6.1 Dipstick measurements

All the measurements of frequencies and quality factors of linear resonators have
been realized by a dipstick device in a liquid helium dewar, to thermalize them at
4.2 K. In this section we will summarize the procedure and calibration, comment
on typical issues and model the cable structure.

6.1.1 The measuring procedure

The liquid helium dewar is chosen to have a wide enough neck for the dipstick to
fit in. During the insertion of the dipstick the manometer is checked constantly
to make sure that the pressure due to evaporated helium does not get too high,
otherwise the dipstick could be ejected by excessively high internal pressure. To
avoid this it is important to insert the dipstick slowly and carefully, and wait for
the pressure to decrease whenever it rises notoriously. The insertion of the dipstick
usually takes 3 minutes.

While the sample is superconducting, its resonance frequency is temperature-
dependent due to kinetic inductance, as described by equation 3.1. To measure

48
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all the samples at the same temperature, it is imperative that the sample is sub-
merged far below the liquid Helium level and to wait for at least 5 minutes before
proceeding with the measurement, since this will allow the pressure to be released
to ambient pressure.

The dipstick we used has 8 ports, as seen in figures 6.1 and 6.2. SMA connectors
on top of the dipstick are connected to the VNA and SMP connectors at the bot-
tom are connected to the sample via bullets. The pins of this SMP connectors are
particularly fragile and one has to be careful to avoid breaking or bending them
while inserting the calibration standards samples.

Figure 6.1: Picture of the lower part
of the dipstick, with 8 SMP connectors

which connect to the sample.

Figure 6.2: Picture of the upper part
of the dipstick, with 8 external SMA

connectors.

The VNA used for the scattering matrix measurements is the Agilent N5230. It
has 4 ports, which means that we can measure all resonators of each sample by
doing two measurements with the VNA. This can either be done by changing the
connections to the dipstick while the sample is still inside the dewar or by taking
out the sample and changing its position. The first has the advantage that the
whole sample can be measured with a single dip in helium, while on the other case
one has to wait for the sample to be at room temperature to change its position
and dip it again. But on the other hand, for the latter method only a single cali-
bration of the dipstick has to be done, the connections are not manipulated, and
therefore the calibration can be better.

Once the whole setup is prepared, the spectrum is observed to find the resonance
frequency and also to detect the presence of additional spurious modes. Then the
data is collected with a narrower spectrum but covering the whole band of the
resonance, around 5 times the linewidth. The whole 4-port scattering matrix is
stored. This allows to study not only reflection measurements but also crosstalk
between di↵erent samples on a chip.
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In order to obtain from the measured files the resonance frequency and the
di↵erent quality factors the measured spectra are fitted using the method described
in the appendix A.

6.1.2 The calibration process

Before doing any measurement of the sample, it is necessary to perform a cal-
ibration of the dipstick cables through the VNA. This is specially required for
the measurement of undercoupled and overcoupled samples. In reflection mea-
surements it is usually enough to calibrate the cables which connect the network
analyser to the device under test, which can be done by using electronic cali-
bration. However, since at the end of the dipstick the cables are rigid and in
the sample holder SMP connectors are used, electronic calibration is not possible.
Therefore it has to be done manually with the Rosenberger SMP calibration kit
(DUT: SMP Qudev, Male). The kind of calibration performed is the so-called
short-open-load-reciprocal-thru (SOLR)[38]. It requires to measure each of the 4
ports with the 3 di↵erent standards and also a thru connection with one other spe-
cific port (1-2, 1-3, 1-4). This process consists of 15 steps which have to be done
carefully to avoid breaking connector pins or connecting the standards weakly. For
samples which only require reflection measurements, individual SOL calibration to
each port can be performed, which can be loaded as four independent calibrations.

For a good calibration it is important to take a suitable amount of points, a
bandwidth as narrow as possible and the same power as for the measurements
which are intended to be done. This last point can be extremely important, as our
particular VNA changes the calibration configuration every 10 dBm of calibration
power di↵erence. This can lead to the appearance of standing wave wiggles which
would not be seen with a calibration at the corresponding power.

6.1.3 Possible issues

To perform the measurement properly the following issues have to be considered:

• High power: Using high powers for the measurement decreases the need of
averaging, but the high electric current through the resonator might cause
observable nonlinear e↵ects and even reach the critical current, where super-
conductivity is broken down. A power of -30 dBm is a good choice for most
samples, given by a compromise between avoiding non-linearities and having
a large signal-to-noise ratio.

• Calibration: An excellent calibration is the main ingredient for collecting
correct data. Without a proper calibration, standing wave modes given by
the cables will appear in the measurement, as well as a frequency dependent
phase shift due to phase delay.
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• Incorrect closing of the sample holder: The sample holder has to be closed
completely, without letting empty space between the two parts of the sample
holder, as otherwise spurious microwave modes might be observed with the
VNA. To be able to do so it is important to check the state of the pins and
the bullets, which need to be of the right size (19k1).

• High temperature noise subtraction: Defects like phase delay are taken into
account in the calibration, but since the measurements are done at cryo-
genic temperatures while the calibration is done at room temperature, the
calibration will not be exact enough.

• Temperature stability: As discussed above, the sample should be introduced
as deep as possible to ensure proper thermalization of the sample.

6.1.4 Model for cable reflection

To understand why some calibrated VNA measurements show a reflection coe�-
cient with values higher than 1, we describe a simple model for the dipstick [39].
In the model we consider the VNA and the measured resonator at each side of the
measurement setup, while the connections are simplified in two parts: the cables
of the dipstick and the conductors of the PCB.
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Figure 6.3: Sketch of the model used for characterizing cable reflection.

We can model the incoming and outcoming signals in the VNA, in the resonator
and also in the two sides of the connector between the PCB and the cables of the
dipstick. We consider only attenuation losses in the cable (↵), but phase shifts
for both the cables and the PCB. We also consider reflection and transmission
coe�cients of the connector (r, t) and the reflection coe�cient R of the resonator.
Having taken these into account we can now write the relations between the dif-
ferent signals. First, the attenuation and phase shift of the cables are described
by
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The phase shift in the PCB is given by
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and the reflection of the resonator leads to
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If we now proceed to solve the previous expressions, we can derive the expression
for the reflection coe�cient [39]
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which for small values of r can be rewritten as
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If we assume that the calibration of the VNA normalizes the measured reflection
parameter, we have to take into account that the attenuation losses will be di↵erent
for the helium measurements with respect to the room temperature measurements.
Therefore the final expression for the approximated case will be
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Since the losses should be smaller for the helium case, the calibrated reflection
coe�cient can have absolute value bigger than 1.

6.2 The Vericold dilution refrigerator

All the measurements of parametric amplifiers were performed with the measure-
ment setup of the dilution refrigerator Vericold. A graphic depicting the basic
structure of our measurement setup is shown in figure 6.4, based on the figure and
details given in the PhD thesis of Arjan Van Loo [40].
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Figure 6.4: Schematic of the cabling in the Vericold fridge for the measurement of
nonlinear samples.



Chapter 7

Experimental results

In this chapter we present the measurement results and the analysis. The first
three sections are focused on characterizing linear resonators and extracting the
circuit parameters from the measurements. The last two sections analyse the
tunability of nonlinear resonators and their use as parametric amplifiers.

7.1 Parameter extraction and design model

To be able to precisely design resonators with specific circuit parameters (capac-
itances and inductances) it is desirable to have a simple model which yields an
estimate of the resulting circuit parameters given the design parameters (number
of fingers, meander turns). The simulations discussed in chapter 3 can be used to-
gether with the measured frequencies to extract all parameters. However, by using
the method explained in chapter 4, it is possible to extract all the circuit parame-
ters only from the measurements. In this section we will show such an extraction
by measuring the resonances of two identical unloaded resonators, one with very
weak coupling and the other with very strong. The results will then be used to ex-
tract the circuit parameters from three di↵erent studies (shunt capacitance, shunt
inductance and coupling capacitance) and build a design model.

7.1.1 Weak-Strong Coupling (WSC)

The design details of the Weak/Strong Coupling samples are shown in table 7.1.
We expect the weakly coupled sample to have a coupling capacitance of around
1 fF, which is considerably smaller than the expected shunt capacitance, allowing
us to ignore the contribution due to coupling to the resonance frequency.
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C. capacitor S. capacitor Inductor Sim. C Sim. C

Weak (1) Gap of 70 µm 8 fingers 21 turns 1.26 fF 133 fF
Strong (2) 12 fingers 8 fingers 21 turns 65.7 fF 135 fF

Table 7.1: Table showing the design parameters of the chip WSC 1. It is important
to note that the strongly coupled sample has a smaller finger width and gap than the

rest of fabricated samples, to increase the coupling strength.

The strongly coupled resonator has a very small quality factor, and this leads to
a larger uncertainty in the measurements, and therefore they have been repeated
several times for di↵erent identical samples. In table 7.2 we show the measured
parameters, where the uncertainty has been determined by repeating the mea-
surement for each of the samples. Since the interaction with the environment is
very strong, already di↵erent connectors may lead to di↵erent measured values.
The uncertainties shown for the mean are equal to the standard deviation of the
measurements.

Weak f
0

(GHz) Strong f
0

(GHz) Strong QL

WSC1 1 10.492(1) 8.70(2) 20.4(15)
WSC1 2 10.561(1) 8.65(2) 17.7(15)
WSC1 3 10.574(1) 8.72(2) 19.4(15)

Mean 10.54(4) 8.70(3) 19.2(15)

Table 7.2: Summary of the measurement results of the weak and strongly coupled
samples together with their mean.

From the measured data and the equations at the end of section 4 we can extract
the parameters with their corresponding propagated uncertainty, as shown in table
7.3. The obtained capacitance values are within the values obtained from Maxwell
dc simulations, shown in table 7.1, and the value of the inductance is slightly higher
than the one expected from the calculations in chapter 3, which was of around 1.5
nH. This additional contribution can be explained by the additional inductance
from the island, which has been estimated to be around 0.15 nH. Also a small
contribution will come from kinetic inductance, but it has been estimated to be
smaller than 0.03 nH, as explained in appendix B.

C (fF) C (fF) L (nH)

WSC1 1 124(9) 57(4) 1.86(14)
WSC1 2 122(11) 59(5) 1.86(16)
WSC1 3 126(10) 63(5) 1.81(15)

Mean 124(11) 60(5) 1.84(16)

Table 7.3: Extracted circuit parameters obtained from the resonator measurements.
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7.1.2 Shunt Capacitance (SC)

The results obtained from the mean values of the measured parameters in the
last subsection have been used to extract the parameters from three di↵erent
studies where shunt capacitance, shunt inductance and coupling capacitance were
swept with the rest of parameters kept constant and identical to those of the
WSC weak resonator. The study SC1 determines how shunt capacitance changes
with the variation of the number of fingers. In table 7.4 we show the number of
fingers on the shunt capacitor, the measured frequencies and the extracted shunt
capacitances of each measured sample compared to the values obtained from dc
Maxwell simulations. The extracted and simulated values show agreement within
their uncertainty. In figure 7.1 we represent the inverse square of the frequency,
which is proportional to the product LC, as a function of the number of shunt
fingers, which together with a linear fit shows the linear behaviour of the shunt
capacitance as a function of the finger number.

Sample Fingers f
0

(GHz) Extracted C (fF) Simulated C (fF)

SC1 1 0 16.924 48(4) 46.6(7)
SC1 2 1 16.645 49(4) 48.3(9)
SC1 3 2 14.808 63(5) 63.8(12)
SC1 4 4 12.868 83(7) 84.0(15)
SC1 6 10 9.967 138(12) 145(3)
SC1 7 17 8.452 192(16) 205(4)
SC1 8 26 7.137 269(24) 295(6)

Table 7.4: Measured resonance frequencies of the sample SC1 and corresponding
extracted and simulated shunt capacitances. The extracted capacitance has been cal-

culated as C = f�2
0 /L, where the value of L was taken from table 7.3.

0 5 10 15 20 25 30

0.005

0.010

0.015

0.020

Fingers

1êHF
re
qu
en
cy
L2 HG

H
z-
2 L

SweepingShunt Capacitance

Figure 7.1: Plot of the inverted square of the measured frequencies of SC1 as a
function of the sweeping parameter, the number of shunt capacitor fingers. The red

curve is a linear fit of the measured points.
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7.1.3 Shunt Inductance (SI)

In table 7.5 we show the swept number of meander turns, the measured frequencies
and the extracted inductances, obtained by using the value of C from table 7.3.
We also show the values of inductance obtained from the measured frequencies and
the simulated capacitances, which are in agreement with the extracted parameters,
though they are also higher than the estimations from chapter 3, which are also
shown in the last column. In figure 7.2 we represent the inverse square of the
frequency as a function of the number of meander turns and a corresponding
linear fit, which clearly indicates the linear dependence of the inductance as a
function of the number of turns (stripes).

Sample Stripes f
0

(GHz) Extr. L (nH) Sim. L (nH) Calc. L (nH)

SI1 2 1 18.728 0.58(5) 0.54(1) 0.10(5)
SI1 3 2 17.735 0.65(6) 0.60(1) 0.20(5)
SI1 4 3 16.868 0.72(6) 0.66(1) 0.25(5)
SI1 5 10 13.355 1.15(11) 1.06(2) 0.40(5)
SI1 6 14 11.936 1.44(13) 1.33(2) 1.10(5)
SI1 7 21 10.416 1.89(17) 1.74(3) 1.50(5)
SI1 8 30 9.165 2.45(19) 2.25(4) 1.95(5)

Table 7.5: Measured resonance frequencies of the sample SI1 and corresponding ex-
tracted, simulated and calculated inductances. The extracted capacitance has been

calculated as L = f�2
0 /C, where the value of C was taken from table 7.3.
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Figure 7.2: Plot of the inverted square of the measured frequencies of SI1 as a function
of the sweeping parameter, the number of meander inductor turns. The red curve is a

linear fit of the measured points.
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7.1.4 Coupling Capacitance (CC)

In table 7.6 we show the swept number of coupling capacitor fingers, the measured
frequencies and the extracted and simulated coupling capacitances. The extracted
and simulated values show worse agreement for the weakly coupled cases, due
to the fact that the extraction method considers the coupling capacitance to be
practically zero for these cases. In figure 7.3 we represent the inverse square of the
frequency as a function of the number of capacitor fingers and a corresponding
linear fit, in which the linear behaviour is only appreciable for small coupling, due
to the increase in the uncertainty of the resonance frequency.

Fingers f
0

(GHz) Q
loaded

Extracted C (fF) Simulated C (fF)

CC1 1 0 10.536 1671.3 0.094(8) 0.86(1)
CC1 2 2 10.128 300.5 10.3(9) 8.05(14)
CC1 3 3 9.991 150.0 14.0(12) 13.2(3)
CC1 4 4 9.783 76.0 19.9(17) 18.2(4)
CC1 5 7 9.387 30.7 33(3) 33.7(6)
CC1 6 10 8.849 29.8 53(5) 48.7(9)
CC1 7 17 8.054 13.3 94(8) 84.6(15)
CC1 8 25 7.633 10.7 120(9) 125(2)

Table 7.6: Measured resonance frequencies of the sample CC1 and corresponding
extracted and simulated coupling capacitances.
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Figure 7.3: Plot of the inverted square of the measured frequencies of CC1 as a
function of the sweeping parameter, the number of fingers. The red curve is a linear fit

of the measured points.

Similar conclusions about the linear parameter dependence have been obtained
from the analysis of previous studies with a slightly di↵erent circuit design. These
results are shown in appendix B.
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7.1.5 Design model

With the extracted values of shunt capacitance, coupling capacitance and shunt
inductance we are able to construct a model which estimates the circuit parameters
as a function of the design parameters. To do so we assumed a linear dependence
on the design parameters (number of fingers or turns), which is supported by the
linear fits shown for each of the studies and also by the dc simulations from chapter
3. This linear dependence can also be explained by assuming the contribution to
the reactive parameters of each finger capacitor or meander turn to be identical.
The expressions which model each of the components of the resonators are

CSC = aSC · nSC + bSC , (7.1)

LSI = aSI · nSI + bSI , (7.2)

CCC = aCC · nCC + bCC , (7.3)

where nSI is the number of meander turns on the inductor and nSC + 1, nCC + 1
are the number of finger capacitors on the shunt and coupling capacitors. The
extracted coe�cients of the model obtained by the linear fits of each study are
shown in table 7.7.

a b

SC 8.62(16) fF 55.0(18) fF
SI 0.0644(5) nH 0.525(8) nH
CC 5.03(18) fF 5(2) fF

Table 7.7: Coe�cients of the design model obtained from a linear fit of the extracted
parameters for the shunt capacitor (SC), shunt inductor (SI) and coupling capacitor

(CC) studies.

The obtained designed model can be used to predict the resonance frequency
and the coupling rates of designed resonators. To show the agreement between the
estimated and the measured values, we plot in figures 7.4, 7.5, 7.6 the measured
frequencies as a function of the design parameters together with a curve given by
the design model and equation 4.47.
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Figure 7.4: Plot of the measured frequencies of SC1 as a function of the number of
shunt capacitor fingers. The red curve shows the estimated frequencies determined by

our design model.
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Figure 7.5: Plot of the measured frequencies of SI1 as a function of the number
of meander turns. The red curve shows the estimated frequencies determined by our

design model.
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Figure 7.6: Plot of the measured frequencies of CC1 as a function of the number of
coupling capacitor fingers. The red curve shows the estimated frequencies determined

by our design model.

The worse agreement for the coupling capacitor study might be explained by a
deviation of the ideal 50⌦ characteristic impedance of the transmission line.

7.2 Design model applied to coupled resonators

As described in chapter 3, arrays of two and three coupled linear resonators were
fabricated with the same design characteristics as the single resonators. In figure
7.7 we show the measured reflection coe�cient of a sample with three coupled
resonators, whose fitted parameters are shown in 7.8. This sample has the same
design parameters as the measured JPT for parametric amplification in section
7.5.

Bare res. freq. (GHz) Coupling rates (MHz)

!
0,1 !

0,2 !
0,3 J

12

J
23

J
13

 �
JPT 7.665 7.651 7.418 392 387 -9 375 2

Table 7.8: Parameters obtained from the fit of the measured reflection coe�cient of
figure 7.7.

By using the design model shown in the previous section and calculating the
impedance of the equivalent circuit it is possible to calculate the estimated eigen-
frequencies of the samples with coupled resonators and compare them to the mea-
sured experimental values. This has been done for samples with two and three
coupled resonators by using the parameters of tables 7.9 and 7.10. The discrepan-
cies between the expected and experimental frequencies are represented in figures
7.8 and 7.9. The discrepancy is obtained by subtracting the measured frequen-
cies from the estimated ones and normalizing with the measured frequency. The
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Figure 7.7: Measured real part of the reflection coe�cient as a function of the applied
frequency. The red plot shows a fit based on the reflection function obtained from input-

output theory whose parameters are shown in 7.8.

agreement between the eigenfrequencies obtained from the model and the mea-
sured ones is shown to be better than 1% for the two cases, though the accuracy
is better for the case of three coupled resonators. This is probably caused by the
fact that the samples with two coupled resonators have much stronger coupling,
as is shown in figures 3.8, 3.9.

Dimer Parameters

a b

SC 8.75 fF 73 fF
SI 0.0649 nH 0.53 nH
CC 4.85 fF 3 fF
J 4 fF 0 fF

Table 7.9: Design model parameters used to obtain the eigenfrequencies of the dimer
samples in figure 7.8.

Trimer Parameters

a b

SC 8.62 fF 55 fF
SI 0.0639 nH 0.517 nH
CC 4.85 fF 3 fF
J 4.45 fF 3 fF

Table 7.10: Design model parameters used to obtain the eigenfrequencies of the trimer
samples in figure 7.9.
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Figure 7.8: Chartbar of the relative discrepancies of the two eigenfrequencies of 4
di↵erent samples with two coupled resonators (JPD 11, JPD 12, JPD 21, JPD 22).

Figure 7.9: Chartbar of the relative discrepancies of the three eigenfrequencies of 4
di↵erent samples with three coupled resonators (JPT 1, JPT 2, JPT 3, JPT 4).

7.3 Reproducibility of the sample measurements

An important topic to be discussed is the impact of fabrication uncertainty on the
reproducibility of the resonators. Due to wafer inhomogeneities or limited litho-
graphic precision, di↵erent resonators designed to be identical can display di↵erent
frequencies or quality factors, corresponding to variations on the fabricated struc-
tures. To get an idea of this e↵ect, the weakly coupled resonator used to extract the
parameters in the previous section (WSC 1) was fabricated and measured in two
copies of a chip with 8 of these resonators (EWC). The results are shown in figure
7.10, and it can clearly be seen that there is a frequency shift between the samples
which had a vertical and an horizontal arrangement on the chip. This points to a
fabrication anisotropy, probably originated during the photolithographic process
of the mask. The uncertainty in the frequency of the fabricated samples is around
20 MHz, but if we take into account this asymmetry it is smaller than 10 MHz. A



Chapter 7. Experimental results 64

similar result has been obtained from measurements of another mask, obtaining
the results of figure 7.11, which also agree with the recent results.

Figure 7.10: Histogram of the resonance frequencies of 17 samples identical in design
of the chip EWC in mask 40.

Figure 7.11: Histogram of the resonance frequencies of 7 samples identical in design
from mask 36.

7.4 Single nonlinear resonator

In this section we present the results obtained from measuring single nonlinear
resonators in the Vericold setup. First we are going to consider these samples as
frequency tunable resonators. To do so, a magnetic field has been applied to the
samples with an external coil on the base of the sample holder, which will tune the
SQUIDs’ e↵ective critical current, as described in equation 5.18. In figure 7.12 we
plot the measured phase in a reflection measurement as a function of the applied
frequency and the voltage on the magnetic coils. We can see how the resonance
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frequency is tuned by modifying the voltage applied to the coils, as explained in
chapter 5.

FINGER NUMBER SQUID ARRAYS

Ck fingers C fingers Number of SQUIDs Asymmetry
JPM 12 12 30 1/3

Table 7.11: Design parameters of the chips JPM1, JPM2, each having two nonlinear
resonators. The 4 samples have the same values of the parameters, though in JPM2

the position of the fingers is flipped. SC refers to Shunt Capacitor.

Figure 7.12: Reflected phase of resonator JPM12 1 as a function of the applied
frequency and the voltage in the magnetic coil.

By fitting each of the slices at a particular B field coil voltage we have obtained
the resonance frequency as a function of the magnetic field, as shown in figure
7.13. By fitting this dependence for four di↵erent resonators we are able to obtain
the values presented in table 7.12. We also show the approximated value of the
Josephson energy obtained from room temperature measurements of the resistance
of the junctions. From the results of the table we can deduce that the fabrication
uncertainty of EJ is close to 6%. Fabrication uncertainty on a single chip is of a
similar value.



Chapter 7. Experimental results 66

Figure 7.13: Resonance frequency as a function of the applied magnetic field for
resonator JPM12 1 and corresponding fit.

JPM f
min

- f
max

(GHz) L
min

- L
max

(nH) EJ(THz) E0
J(THz)

12 1 6.12(1) - 7.74(1) 2.02(1) - 3.20(1) 3.23(3) 3.29(3)
12 2 6.13(1) - 7.52(1) 2.14(1) - 3.19(1) 2.99(3) 3.29(3)
22 1 6.55(1) - 7.99(1) 1.90(1) - 2.80(1) 3.50(3) 3.64(3)
22 2 6.42(5) - 7.86(5) 1.93(3) - 2.92(5) 3.43(7) 3.64(3)

Table 7.12: Parameters of the SQUID arrays obtained by fitting the frequency depen-
dence on the applied magnetic field. The inductance values have been obtained using
the design model from table 7.7, and E

J

using equation 5.7 and L
max

, taking into
account the island inductance contribution of 0.5 nH. E0

J

denotes the value measured
from the resistance of the array at room temperature [31].

To measure the gain of a nonlinear resonator operated as a degenerate JPA, we
apply a strong signal at a fixed frequency (pump) and measure the reflection of
a weak signal detuned by 5 kHz with respect to the pump. By measuring this
reflected signal with the power of the pump on and o↵, we can obtain the gain of
the signal. By sweeping the B field and the applied pump power, we can obtain
the phase diagram, which is displayed in figure 7.13, and shows a similar behaviour
as the one obtained by simulation in figure 5.4. The additional gain region present
at high power is probably due to bistability, which was not taken into account in
the plotted simulated diagram.
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Figure 7.14: Phase diagram of gain in a JPA as a function of the pump power and B
field coil voltage, which is equivalent to sweeping signal frequency. The applied pump

power has been calculated assuming a cabling attenuation of 65 dB.)

Figure 7.15: Plot of the measured signal gain as a function of the signal frequency
with fixed pump power and frequency. The red line indicates a Lorentzian fit to the

gain.

Figure 7.15 has been obtained by choosing a point of the phase diagram with a
moderate gain (close to 20 dB) and using the corresponding B field voltage and
pump power parameters, while sweeping the frequency of the applied signal. The
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obtained gain can be fitted to a Lorentzian, as showed by the red curve. The
parameters obtained from fit are a gain-bandwidth product of 315 MHz, a central
frequency of 7 GHz and a maximum gain of 19.96 dB.

7.5 Josephson Parametric Trimer

In this section the results of the measurements of the trimer sample JPT4 3 are
described. The design details of this sample are displayed in table 7.13. The
phase measurement in reflection as a function of the applied frequency and B field
voltage are shown in figure 7.16, where the tunability of the three eigenfrequencies
can be observed. The e↵ect of inhomogeneities can be seen at higher voltages, and
it is a consequence of an asymmetry of the bare resonance frequencies due to an
asymmetric coupling to the magnetic flux. The source of the inhomogeneity comes
from the magnetic field not being perfectly uniform and from SQUID fabrication
inhomogeneities.

Finger number SQUID arrays

C SC1 SC2 SC3 CJ Num. of SQUIDs Asymmetry
JPT 4 12 12 15 18 5 30 1 / 3

Table 7.13: Design parameters of the sample JPT4. SC refers to Shunt Capacitor,
where SC1 is the one closest to the external coupling capacitor. C

J

is the coupling
capacitor between the resonators.

Figure 7.16: Reflected phase of trimer JPT4 as a function of the applied frequency
and the voltage in the magnetic coil.
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Degenerate and non-degenerate amplification has been studied for di↵erent regimes
in the trimer. To compare with the plots of the simulations shown in chapter 5,
degenerate and non-degenerate phase diagrams have been measured by sweeping
the frequency and power of the pump. In the degenerate case, the signal frequency
was fixed at a detuning of 5 kHz to the pump, and the measured gain phase di-
agram is shown in figure 7.17. The B field was fixed at the point which yielded
maximum eigenfrequencies in figure 7.16, close to zero voltage, since it behaves
as a sweet spot and o↵ers weak flux noise dependence. The degenerate phase dia-
gram shows gain at three di↵erent frequency regions, corresponding to these three
eigenfrequencies. Those will get redshifted as the power is increased, in the same
way as it was described for the theoretical study.

Figure 7.17: Phase diagram of the degenerate gain in a JPT as a function of the
pump power and pump frequency. The applied pump power has been calculated with

a cabling attenuation of 65 dB.

To measure the non-degenerate phase diagram it is important to optimize the
detuning between the pump and the signal, since a single gain point is measured
for each configuration of pump frequency and power. To do so, we first fixed the
pump at a moderate power and then swept the pump frequency around the central
eigenfrequency and the signal frequency around one of the two other eigenfrequen-
cies (the higher one in this case). After doing so we perform a linear regression
between the two frequencies such that it maximizes the gain. This linear relation
between the signal and the pump can be fixed during the measurement, allowing
to measure a two-dimensional phase diagram by changing the pump frequency and
power. The results are shown in figure 7.18.
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Figure 7.18: Phase diagram of the non-degenerate gain in a JPT as a function of
the pump power and frequency. Pump and signal frequencies obey the relation f

P

=
1.13f

S

� 1.494 GHz, obtained from a previous measurement. The applied pump power
has been calculated with a cabling attenuation of 65 dB.

By selecting the points with high gains from the phase diagram, we can measure
degenerate and non-degenerate gain spectra where we only sweep the applied sig-
nal frequency. As discussed in chapter 5, since most of these gains are essentially
analogous to the ones that can be measured with a JPD [9], we focus here only
in showing the gain obtained by applying the pump close to the central eigen-
frequency. There the gain will be both degenerate and non-degenerate. Three
di↵erent regimes are explored by sweeping the pump power and keeping the pump
frequency constant in figures 7.19, 7.20, 7.21. We note good agreement with the
simulations presented in chapter 5.
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Figure 7.19: Measured gain as a function of the signal frequency for a regime close to
the purely degenerate amplification of the central eigenfrequency. The pump is applied

at a frequency of 6.9 GHz and at a power of -66 dBm.
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Figure 7.20: Measured gain as a function of the signal frequency for a regime where
both degenerate and non-degenerate amplification are equally strong. The pump is

applied at a frequency of 6.9 GHz and at a power of -65.1 dBm.
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Figure 7.21: Measured gain as a function of the signal frequency for a regime close
to the purely non-degenerate amplification of the high and low eigenfrequencies. The

pump is applied at a frequency of 6.9 GHz and at a power of -64.8 dBm.
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Conclusions

In the present work we have described the design and experimental characteriza-
tion of both individual resonators and one-dimensional arrays of several coupled
resonators. Nonlinear samples have also been realized, whose frequency tunability
was studied and which were used as Josephson parametric amplifiers.

The results obtained from the high-frequency finite element simulation of our
structures indicate that the operation frequencies are well below (around seven
times) the self-resonant frequencies of each of the individual elements, allowing
to model the whole system as a lumped-element LC circuit with reactive param-
eters renormalized by their parasitic contributions. A method for the extraction
of the circuit parameters has been described and experimentally realised, which
allowed us to generate a design model for our resonators, whose predictions for
the resonance frequency have been compared to the measured values showing an
agreement within 1%. This model can now be used to design future samples with
desired Hamiltonian parameters.

The reproducibility of the resonators has been studied for both the linear and
the nonlinear terms. In the case of linear resonators, several resonators identical in
design have been fabricated and their resonance frequencies measured, indicating a
fabrication uncertainty of 20 MHz and an asymmetry between samples fabricated
horizontally or vertically in our chips. If this asymmetry is taken into account,
it leads to a value of 10 MHz fabrication uncertainty. For the case of nonlinear
resonators, the parameters of the fabricated SQUID arrays have been extracted
from four nonlinear resonators by measuring the tunability of their resonance fre-
quencies and using the predictions of the design model. Our measurements show
that SQUID arrays can be fabricated within 6% uncertainty. With our e↵ective
model we have successfully fabricated three coupled resonators with the desirable
properties.

The use of nonlinear resonators for the realization of parametric amplification
has also been studied for the cases of an individual resonator and of an array of
three coupled resonators, the Josephson Parametric Trimer. Both results show

72
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qualitative agreement with the theoretical predictions. With the trimer sample
it has been possible to perform both degenerate and nondegenerate parametric
amplification. This could improve the JPA performance, which could be switched
between the two operational modes by only modifying the applied power.

8.1 Outlook

The results from the measurement and the theoretical predictions obtained from
input-output theory for the JPT indicate that the amplification bandwidth of JPTs
could be improved by reducing the capacitive coupling between the resonators,
which would merge the bandwidths of the three eigenfrequencies together, and
which by increasing the number of coupled resonators would allow the realization
of a broadband parametric amplifier.

The fabrication process has to be improved in order to decrease the shift between
horizontal and vertical resonators. This will be especially important for future ex-
periments with periodic boundary conditions, as circular resonators arrays.

Regarding the use of the described arrays of nonlinear resonators as analogue
quantum simulators, an important step towards the control of the Hamiltonian
parameters will be the design of arrays with tunable coupling between the res-
onators, which can be achieved by using SQUIDs as coupling capacitors. Such
a progress would be essential for the study of quantum phase transitions with
superconducting circuits.
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Appendix A

The fitting procedure

Once the scattering matrix coe�cients have been measured, either by the VNA
or by an FPGA measuring setup, it is exported to be read with a Mathematica
notebook to proceed to the fitting of the reflection coe�cient [41]. In this appendix
we describe the procedure done in this notebook and its di↵erent parts.

A.1 Circle fit

Once the values of the reflection coe�cients are imported, the data is represented
on a polar plot and it is fitted to a circumference, obtaining the values of the center
and the radius. By taking the real part of the reflection as x and the imaginary
as y, we are able to fit the expression of a circumference

(x� x

0

)2 + (y � y

0

)2 = R

2

. (A.1)
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Figure A.1: Polar plot of the reflection data together with the circumference fit.
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A.2 Phase fit

Using the data from the circle fit, the data is translated so that the center is on
the origin of coordinates, and it is also rotated so that the points far from the
resonance have zero phase, therefore already obtaining a first estimation of the
phase shift of the measured data. Next, the phase of each of the points is obtained
and it is plotted as a function of frequency. This data is fitted to obtain the
frequency of the resonance and the loaded quality factor. The used expression is

�(⌫) = �

0

+ ⌧⌫ + 2 arctan

✓
2QL


1� ⌫

⌫

0

�◆
, (A.2)

where ⌫

0

is the resonance frequency, QL the loaded quality factor, ⌧ the phase
delay and �

0

a phase shift.

Figure A.2: Plot of the phase after the translation and corresponding fit.

Once the loaded quality factor and the frequency has been obtained, it is possible
to obtain the coupling rate  and the loss rate � by using the fitted radius from
the circle fit to determine the proportion between the internal and external quality
factor. However, due to the fact that the calibration is done at room temperature
but the measurements are at cryogenic temperatures, the data measured is not
properly normalized and it might also have additional reflections, which means
that the obtained values for the coupling and loss rate might not be accurate.

A.3 Complex Lorentzian fit

In many situations the loaded quality factor and the resonance frequency are
enough to characterize the measured resonator. However, in many cases it will be
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necessary to also fit the complex reflection coe�cient obtained from input-output
theory, as they can be used to extract the coupling and loss rates, and in the case
of samples with coupled resonators. Because of the non-cryogenic calibration, in
this fit we will also take into account a normalization of the whole expression that
is caused by the VNA calibration and in some cases also the o↵set term. Results
of the fit of a particular resonator are shown in figure A.3.
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(a) Data and fit of the absolute part.
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(b) Data and fit of the real part.
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(c) Data and fit of the imaginary part.
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(d) Polar plot of the data and fit.

Figure A.3: Results of the Lorentzian fit, showing the absolute, real, imaginary and
polar plots.



Appendix B

Characterization of linear
resonators

The first mask measured was mask 36, whose main objective was to characterize
the di↵erent component contributions in linear resonators. This characterization
includes an estimation of the dependence of the circuit parameters on the design,
exploring the regimes of strong and weak external coupling, study the quality
factor at mK temperatures and estimating the e↵ects of kinetic inductance.

B.1 Parameter sweeping

Studies SC0, SI0 and CC0 were devoted to sweeping the shunt capacitance, shunt
inductance and coupling capacitance respectively. By plotting the squared inverse
of the measured frequencies we can infer a linear dependence of the circuit parame-
ters on the design parameters for the three studies, as seen in figures B.1, B.2, B.3.

The design parameters of the island between the inductor and the capacitor
have also been swept to analyse their contribution. In figure B.4 we show the
approximated island inductance as a function of the total length of the island.
This approximated value was obtained by extracting the total inductance from
the measured resonance frequency and the expected total capacitance and remov-
ing the estimated contribution from the inductor. Even though the contribution
of the island is probably overestimated, the linear behaviour can be appreciated.

By using values of the capacitance obtained from dc Maxwell simulations and
the measured frequencies a design model like the one in 7.3 has also been obtained.
The model parameters are shown in B.1.
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Figure B.1: Plot of the inverted square of the measured frequencies of SC0 as a
function of the sweeping parameter, the number of shunt capacitor fingers. The red

curve is a linear fit of the measured points.
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Figure B.2: Plot of the inverted square of the measured frequencies of SI0 as a function
of the sweeping parameter, the number of shunt capacitor fingers. The red curve is a

linear fit of the measured points.

a b

SC 10.5 fF 70) fF
SI 0.05 nH 0.5 nH
CC 5 fF 3 fF

Table B.1: Coe�cients of the design model obtained from a linear fit of the extracted
parameters for the shunt capacitor (SC), shunt inductor (SI) and coupling capacitor

(CC) studies.
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Figure B.3: Plot of the inverted square of the measured frequencies of CC0 as a
function of the sweeping parameter, the number of shunt capacitor fingers. The red

curve is a linear fit of the measured points.
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Figure B.4: Plot of the extracted island inductance as a function of the island length.
The inductance has been extracted from measurements by using capacitance simulations

and approximating the meander inductance as L = 1.47 nH.

B.2 Varying coupling capacitance

Samples CC0 and CCS0 of mask 36 were dedicated to the analysis of the resonance
frequencies and the quality factors of samples with extremely di↵erent couplings.
The quality factor for the resonators in these studies as a function of the simulated
coupling capacitance is shown in figure B.5.
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Figure B.5: Graphic showing the loaded quality factor as a function of the simulated
coupling capacitance for 15 resonators with designed big (CC0) and small (CCS0)
coupling capacitances. The red curve is given by the prediction of Q

L

given by the
RLC model of chapter 4. The dashed lines indicate the expected Q

L

for the two
limiting cases of small and strong coupling.

From figure B.5 we can conclude that the internal quality factor at 4.2 K is
around 3000. By using the value of the resonance frequency we can estimate the
internal resistor (losses) to have a value of 225000⌦.

B.3 Low-temperature measurements

All the results shown in the previous two subsections were obtained by measuring
superconducting resonators at a temperature of 4.2 K by using a dipstick inside
a helium dewar. Since the experiments involving SQUIDs will require dilution
fridge temperatures, it is important to estimate how the losses in our resonators
behave at such temperatures. To do so, the sample CCS0 8, which has the smallest
coupling of mask 36, was measured at temperatures close to 17 mK in a Blufors di-
lution refrigerator. The resonance frequency was found at 6.9 GHz, slightly higher
than the value of 6.83 GHz measured at helium temperatures, which is expected
due to smaller kinetic inductance. The high quality factors allow to determine
the resonance frequency very precisely, and in figure B.6 we plot its value as a
function of the applied power. It can be observed that it decreases monotonously
as we increase the power. The reason for such a behaviour could be an increase in
kinetic inductance due to a reduction of the cooper pair density, but it could also
be associated to other kinds of nonlinearities.
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Figure B.6: Graphic showing the dependence of the resonance frequency on the input
power.

The measurement of the quality factor showed an increase with increasing input
powers, as seen in figure B.8. The Lorentzian fit of the resonances indicates that
the external quality factor keeps essentially constant for the measured powers, at
a value of Qext ⇡ 77900, and that it is the internal quality factor which increases.
This has also been observed in weakly coupled coplanar waveguide resonators, and
can be explained by the dependence of dielectric losses on the number of photons
in the cavity for low drive powers [31]. However no saturation of the quality factor
was observed for high powers, which suggests that the quality factor could reach
even higher values for strong drives.
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Figure B.7: Graphic showing the dependence of the loaded quality factor on the
applied input power. As the power increases the quality factor improves.
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Figure B.8: Graphic showing the fitted internal quality factor of the resonator as a
function of the applied power. The power dependence of the dielectric losses is the

reason for such rise.

B.4 Kinetic Inductance

As discussed in chapter 3, the inductance in a superconducting resonator will also
have a contribution from kinetic inductance, which will depend on the tempera-
ture of the superconductor as expressed by equation 3.1. By using the pulse-tube
cooler based cryostat ARCTIC, which setup details can be found in [42], we have
been able to measure the resonance frequency of our resonators at di↵erent con-
trolled temperatures. The measured frequencies as a function of temperature have
been fitted to extract the kinetic inductance and the critical temperature. To do
so, simulated values of the resonator capacitance have been used to fix the total
capacitance constant, while Tc and each of the inductance contributions have been
fitted by the expression given by [18]

f

0

(T ) =
1

2⇡
p
C(LG + LK(0)/(1� T/Tc))

. (B.1)

The fit to the measured data is shown in figure B.9. The extracted values
from the fit are LG = 1.87 nH, LK(0) = 0.04 nH and Tc = 8.97 K. By using
these values we have extrapolated the kinetic inductance contribution at di↵erent
temperatures, which can be seen in figure B.10. We note that the values are less
reliable below 4 K, since the approximate function is derived only for temperatures
close to TC . Nevertheless we can estimate the kinetic inductance at 4.2 K to be
0.06 nH, which is around 3% of the geometric inductance value.
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Figure B.9: Plot of the resonance frequency of a superconducting resonator as a
function of the cryostat temperature. The blue line indicates a fit to B.1.
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Figure B.10: Plot of the estimated ratio between kinetic and geometric inductance for
all temperatures at which niobium is superconductor. This estimation is only accurate

close to the critical temperature.
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