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Abstract

In this thesis we realize a state tomography method to fully characterize the quantum state
of one and two superconducting quantum bits (qubits) in the circuit QED architecture.

Superconducting qubits [1] coupled to a microwave resonator with high quality factor
[2] are a promising system for quantum information technology and have an interesting
analogy to cavity quantum electrodynamics (QED) known from atoms. Coherent control
of these systems is theoretically well described for single qubit operations and two qubit
operations [1]. Most resent it became possible to create entangled states [3] and Controled
NOT (CNOT) gates [4] using superconducting qubits. The ability of control over the
system enables us to perform quantum state tomography [5] as well as process tomography
[6].

Tomography is a useful experimental tool to measure any quantum state and hence
analyze the performance of creating a desired state. Tomography is a standard procedure
in NMR quantum computing [7] and widely used in ion traps [8]. This makes it favorable
to apply tomography on superconducting qubits to analyze the quantum state.

This thesis deals deals with two transmission line shunted plasma oscillation qubits
(transmon) [9] placed in a coplanar microwave resonator.

On this system tomography on one and two qubits has implemented. To proof the
possibility of the tomography we have applied state tomography on different superposition
states for one qubit. Furthermore, demonstration experiments were performed by applying
tomography on Rabi and Ramsey pulse sequences. For all this processes the deviation
to the expected theoretical value can be determine by using the L1 norm. Moreover a
Hadamard gate was implemented and process tomography was performed.

In the second part we investigate the tomography for two qubits by creating several
product states and performing tomography on them. Since noise in the measurement
causes the tomography to yield results, which do not fulfill the physical requirements
(positive definite) for being a density matrix, we have implemented a ”most likelihood”
process [5] which always gives physical solutions.

The techniques developed in this thesis should form the basis for future experiments
on more complicated processes.
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Chapter 1

Introduction

Since Feynman introduced in 1982 the concept of a quantum computer [10] to simulate
quantum mechanical phenomenas a lot of effort has been made to develop the field theoret-
ically. Already in 1992 Deutsch and Jozsa proposed an algorithm [11], which determines
whether a function is balanced or constant with a single evaluation of the function. Even
though that this algorithm is of little practical use it shows how much more powerful a
quantum algorithm can be compared to a classical one. In 1994 Shore developed an algo-
rithm that brings an exponential speed up for integer factorization [12]. shortly thereafter
Grover published in 1996 a search algorithm for unstructured data base [13], which speeds
up computation time O(

√
N) where as a classical algorithm requires O(N) steps.

On the experimental side effort has been made to create a system, which allows imple-
mentation of quantum algorithms. The criteria which have to be satisfied for a successful
realization are given by the DiVincenzo criteria [14]. Several systems have the potential
to satisfy these requirements most mentionable are quantum bits (qubits) based on ions
[15], quantum dots [16] and superconducting circuits [17].

NMR qubits, which have been the only systems where Shor’s algorithm has been
successfully implementation so far [18], are not any longer considered to be a serious
candidate for quantum computing, since upscaling is almost impossible. Qubits based on
ion are the most advanced system among the remaining. Using ions Bell states, which is a
quantum mechanical entangled state, has been created [8] and a Controlled-Not (CNOT)
gate has been realized [19]. Most recent a low fidelity CNOT gate has been implemented
in superconducting flux qubits [4].

Superconducting qubits can basically be divided into three types charge, flux and
phase qubits [17]. Furthermore, superconducting qubits give the possibility to be coupled
to a microwave resonator [1] [20]. This yield a system analogously to cavity quantum
electrodynamics (QED) known from atomic physics, but with the opportunity to be able
to engineer the coupling constant g and to change more easily the detuning between cavity
and qubit transition.

The first coherent control of a charge qubit has been reported by Nakamura in 1999 [21].
Since then charge qubits have been improved i.e. to enlarge coherence time. Charge noise
insensitivity has recently been realized in the transmission line shunted plasma oscillation
qubit (transmon) [9], which is a modified charge qubit. For the presented Diplomarbeit a
sample with two transmon qubits coupled to a coplanar high fidelity microwave resonator

9



10 CHAPTER 1. INTRODUCTION

similar to the device in [3] has been used.
To verify the creation of a desired state, for example the Bell state mentioned above,

it is required to be able to determine both qubits quantum state. Since the measurement
operators for the different components of the qubit’s density matrix do not commute, as
in the measurement of a single spin, tomography has to be performed. In this thesis
we demonstrate the implementation of one and two qubit quantum state tomography
by using a tomography procedure proposed in [5]. The system under consideration has
regardless of the amount of qubits only one measurement operator. This requires to apply
more tomography pulses than in other systems. Since the tomography procedure does
not necessary yield a positive definite matrix we have furthermore implemented a most
likelihood procedure, which determines the density matrix that is most likely to produce
the recorded response [5]. This is important to find a physical solution. Moreover, we
have implemented process tomography which determines the outcome of a process applied
on an arbitrary state [6].

Tomography is required if we want to verify the creation of a desired state or if we
want to determine the operation of a gate. However, in NMR tomography is a standard
tool [7] and in ion traps tomography is already a well established procedure [8]. Since
superconducting qubits are now on the edge to become used for creation of more advanced
states and for the implementation of gates several groups are currently implementing
tomography for their system.



Chapter 2

Basic Introduction to Circuit QED

Here I explain the basic theory about the two qubit system utilized. The chapter is out-
lined as following: the Cooper pair box is briefly introduce and how it is coupled to a cavity.
Once we understand the physical background of the qubits we will explain how coherent
operations are realized. Understanding this is important because the chapter on tomog-
raphy will make use of the formalism defined here. In the following section qubit-qubit
interactions will be discussed. This is of particular importance for two qubit tomography.
Then we will explain the transmon qubit as particular realization of the Cooper pair box.
In the end a short discussion of the measurement process for the transmon qubit will be
given. After that I will present a short discussion on decoherence processes, which are
important for to the transmon.

2.1 The Cooper pair box

We will first talk about the Cooper pair box, since this is a natural and the historical
approach to the transmon qubit.

A Cooper pair box is a superconducting island, which is connected by a Josephson
junction to a Cooper pair reservoir [22]. A Josephson junction [23] is a superconductor-
insulator-superconductor sandwich structure, which allows Cooper pairs to tunnel coher-
ently from one superconductor into the other one. This hopping of Cooper pairs through
the junction is related to the Josephson energy EJ and can be described by a sum of
raising and lowering operators

HJ = −EJ
2

∑
N

(|N + 1〉 〈N |+ H.c.) ,

where we have introduced the charge basis |N〉, which characterize the number N of
Cooper pairs on the island. It would be nice to be able to tune the Josephson energy EJ .
This can be achieved by adding an additional Josephson junction to the system and in this
way building a SQUID loop Fig. 2.1. The Josephson energy becomes then flux dependent
and is given by

EJ(Φext) =
EJ(0)

2
cos
(
πΦext

Φ0

)
11



12 CHAPTER 2. BASIC INTRODUCTION TO CIRCUIT QED

a) b)

Figure 2.1: The left graph shows systematically the energies for a Cooper pair box EC as
a function of the gate charge ng. The Josephson energy of the SQUID can be controlled
by the magnetic flux through the loop. On the left end of the picture the gate is shown.
The pictures are taken from [24].

see [1]. On the other hand if we apply a gate voltage on the Cooper pair box, we will
obtain the expression

HC = 4Ec
∑
N

(N −Ng)
2 |N〉 〈N | ,

where the charging energy is given by EC = e2/(2(CΣ + Cg)) (N −Ng)
2 [1]. The total

Hamiltonian for the Cooper pair box is given by

H = 4Ec
∑
N

(N −Ng)
2 |N〉 〈N | − EJ

2

∑
N

(|N + 1〉 〈N |+ H.c.) .

This Hamiltonian can be diagonalized numerically, if we use the charge basis |N〉 or
analytically, if we use the flux basis |θ〉 =

∑
N exp (iθN) |N〉, which results from a canonical

conjugation of the charge operator |N〉 〈N |. A full diagonalization of the Hamiltonian can
be found in [24].

Diagonalization of this Hamiltonian yield to Eigenenergies, which are periodic as a
function of the gate charge ng. Due to a finite Josephson energy EJ one can find that
the degeneracies are avoided at points with ng of integer. This is analogous to the tight
binding model from solid state physics. The right graphic shows a Cooper pair box with
a SQUID loop.

Since the eigenstates of the Hamiltonian are strongly anharmonic and the experiment
is performed at sufficiently low temperature we can separate the Hilbert space for the
Cooper pair box into a space for the first two levels Hqubit and for the remaining levels
Hrem, Hqubit⊕Hrem. The effective Hamiltonian becomes under this approximation [25]

H = −Eel
2
σ′z −

EJ
2
σ′x. (2.1)

Furthermore, we have restricted the charge to be in the interval Ng ∈ [0, 1] and introduced
the quantity Eel = 4EC (1− 2Ng). This is the Hamiltonian for a spin 1

2 -particle in a
magnetic field parallel to (EJ , 0, Eel)

T and we found the analogy to NMR qubits. We
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a) b)

Figure 2.2: The left picture shows schematically a coplanar wave guide (blue), which is
used as resonator. The equivalent network for the wave guide is also given [1]. The qubit
Cooper pair box is show in the center of the resonator. The optical microscopy image to
the right show the resonator (top), the finger capacitor (left bottom) and Cooper pair box
(right bottom) [20].

can easily find a new basis |0〉 , |1〉 in which the Hamiltonian is diagonal and the energy

level splitting is given by ~ω01 =
√
E2
J + (4EC)2(1− 2Ng)2. This already shows that the

Cooper pair box is to first order charge noise δNg insensitive at the sweet spot Ng = 1
2

[26]. Therefore, it is favorable to run experiments at the sweet spot.

2.2 Cooper pair box coupled to a cavity

To protect the qubit from spontaneous emission, to realize readout and to implement
coherent controll of the qubit the Cooper pair box is coupled to a resonator with high
quality factor [1]. The resonator is a superconducting coplanar wave guide [2] with quality
factor of several thousand. The Cooper pair box is placed in the resonators gap as shown
in Fig. 2.2. The coplanar resonator-Cooper pair box system is analogous to a cavity atom
system [1].

If we assume that only one resonator mode is of interest and if we apply the sec-
ond quantization for the electromagnetic field, we can describe the circuit by the Jaynes
Cummings Hamiltonian (see Fig. 2.3)

H ′JC = ~ωr
(
a†a+

1
2

)
+Hqubit + ~g

(
a†σ− + aσ+

)
, (2.2)

where we have used the lowering/raising operator a/a†. If we use for the Cooper pair box
the Hamiltonian Hqubit = ~ω01

2 σz as in Eq. 2.1, we can diagonalize the Jaynes Cummings
Hamiltonian as shown in [1] and we find the dressed states

|+, n〉 = cos θn |1, n〉+ sin θn |0, n+ 1〉 and |−, n〉 = − sin θn |1, n〉+ cos θn |0, n+ 1〉 ,

with the angle tan 2θn = (2g
√
n+ 1)/(ω01 − ωr).

There are now two distinct regimes of interest: one is the resonant point ωr = ω01,
where the qubit is maximally coupled (with g) to the resonator and vacuum Rabi mode
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Figure 2.3: The sketch illustrates a cavity coupled to a qubit. The qubit couples to the
field in the cavity with a rate g. Decoherence is caused by photons which escape the cavity
through the mirror at a rate κ and by modes which are not confined by the resonator at
a rate γ⊥. The picture is from [1]

Figure 2.4: The graphic gives the energy level diagram for a qubit, which has same tran-
sition frequency as the resonator, and for a qubit, which is detuned form the resonator.
The dashed lines show the energy levels for a not interacting qubit cavity system. The
full lines indicates the energy levels for a system with a finite coupling rate g. The picture
is from [1]
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splitting equal to 2
√
n is observed [27]. The other is at large detunings ω01−ωr >> g see

Fig. 2.4. In the following we will discuss the second case.
For further calculations it would be nice if the Fock space for the photons and the

Hilbert space for qubits are decoupled. For this we would have to eliminate the terms
a(†)σ(−)+. Indeed this can be achieved for large detuning g

√
n+ 1 << |ω01 − ωr|, if we

apply the transformation UH ′U † with U = exp
(
g(aσ+ − a†σ−)/(ω01 − ωr)

)
and neglect

terms with higher then second order in g/(ω01 − ωr), see [1]. For the dispersive limit this
yields the very useful expression for the dispersive Jaynes-Cummings Hamiltonian given
by

HJC = ~ωra†a+ ~
(
ω01

2
+

g2

ω01 − ωr

(
a†a+

1
2

))
σz. (2.3)

The first term of the Jaynes Cummings Hamiltonian represents the energy of the field in
the cavity, the second the energy of the qubit, the third the AC stark shift and the fourth
the Lamb shift. The Lamb shift describes the interaction of the qubit with the resonators
vacuum mode. One can clearly see that the Lamb and AC stark shift shifts the dressed
energy level compared to the case where the qubit is decoupled form the cavity.

2.3 Coherent control

Here we explain how coherent control of the qubit is realized. If the cavity is irradiated
by a microwave sigmal with a frequency ωdrive and an envelope ε(t), we will have to add
the term

H ′drive = ~ε(t)
(
a† exp

(
−iωdrivet

)
+ a exp

(
iωdrivet

))
,

to the Jaynes Cummings Hamiltonian H ′JC from Eq. (2.2). Applying the transformation

from above U
(
H ′JC +H ′drive

)
U † and assuming that the driving frequency ωdrive is close

to the transition frequency yields the driven Jaynes Cummings Hamiltonian

HJC = ~
(
ωr + ωdrive

)
a†a+

~
2

(
ω01 +

2g2

ω01 − ωr

(
a†a+

1
2

))
σz+

+
~
2

2gε(t)
ω01 − ωr

(σx cosϕ+ σy sinϕ) ,

where the phase of the driving field is given by ϕ. Obviously the driving induces Rabi
rotations of the qubit. The rotation axis for the Rabi process is given by the phase ϕ
and the rotation rate by the amplitude of the driving pulse. Moreoverit can be seen
that a detuning from the transition frequency

(
ω01 + 2g2

(
a†a+ 1

2

)
/(ω01 − ωr)

)
induces

σz rotations. This enables us to perform arbitrary unitary operations on the qubit. Since
the qubits transition frequency is far detuned from the resonator the driving field will only
virtually populate the resonator with a small average photon number and therefore not
cause any dephasing [28]. This is important to be able to perform high fidelity operations.

2.4 Qubit-qubit coupling

If two qubits are placed in the resonator they can interact with each other. If they are in
resonance with the cavity’s mode, they will exchange with each other photons, mediated
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by the cavity due to vacuum Rabi processes. This yields a qubit interaction rate of the
order of 2g. Possibilities to realize this coupling are tunable resonators or flux lines among
others [28].

On the other hand for our experiment more important is the interaction of the qubits
by the exchange of a virtual photon. If two qubits are in resonance with each other
and strong detuned form the cavity frequency, they can exchange virtual photons with
the resonator, and therefore interact with each other even though they are located on a
microscopical distance in the resonator.

To find the Jaynes Cummings Hamiltonian for such a detuned two qubit system we can
apply the transformation U = exp

(
gA(a†σA− − aσA+)/(ωr − ωA01) + gB(a†σB− − aσB+)/(ωr − ωB01)

)
on the two qubit Hamiltonian, as described in [28]. This yields under the assumption that
we can neglect therms with higher than second order in gigj

(ωr−ωi01)(ωr−ωj01)
the new Hamil-

tonian without a(†)σ+(−) terms

H = ~ωra†a+ ~ωA01σz ⊗ id+ ~ωB01id⊗ σz + ~J(σ+ ⊗ σ− + σ− ⊗ σ+).

For simplicity we have introduced the coupling therm J = gAgB(1/(ωA01 − ωr) + 1/(ωB01 −
ωr)). For this Hamiltonian the states |01〉 and |10〉 are not eigenstates any longer. However,
we can easily find the new eigenvalues and eigenstates to the Hamiltonian

H =
~
2


ωA01 + ωB01 0 0 0

0 −ωA01 + ωB01 J 0
0 J ωA01 − ωB01 0
0 0 0 −ωA01 − ωB01

 ,

as E± = ±

√
J2 +

∆2
A,B

2
and

|ψ±〉 =
1
N

∆A,B ±
√

(2J)2 + ∆2
A,B

2J
|0〉+ |1〉

 ,

where the detuning between the two qubits is given by ∆A,B = ωA01 − ωB01 and N is the
normalization constant. This is analogous to the double well potential where a similar
splitting occurs.

It can easily be seen that the qubit-qubit interaction can be suppressed by a strong
detuning between the two qubits. In this case energy conservation does not permit a
flip-flop interaction. A very intuitive way to understand how a detuning of the two qubits
prevent flip-flop interactions is by changing to the rotating frame of the first qubit ωA.
In this frame a coupling to the second qubit is suppressed by fast rotating oscillations
ωB − ωA.

2.5 Transmon

We have seen in Section 2.1 that the Cooper pair box is charge sensitive. Since usually
charge noise is low frequent and therefore adiabatic this fluctuations will not induce tran-
sitions from the excited to the ground state but they will cause a random phase shift,
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a) b)

Figure 2.5: The microscopic images show a transmon qubit. On the left hand side we can
clearly see how the reservoir is coupled to ground by a capacitor. The transmission line
coming from the bottom is a charge gate line. On the right hand side we can recognize
the SQUID loop. The pictures have been taken by Martin Goeppel.

which yields to decoherence. In fact this is the limiting factor for dephasing and hence
T2. Therefore it has been of general interest to modify the Cooper pair box in such a way
that it becomes insensitive to charge noise. This has been achieved with the proposal of
a transmission line shunted plasma oscillation qubit (transmon) [9]. However, the price
for the charge insensitivity is paid by reducing the anharmonicity. Nevertheless, the an-
harmonicity remains sufficient for selective addressing of the 01 transition. We will now
explain how this is done.

Charge insensitivity is realized by adding a large additional capacity CB between the
Cooper pair reservoir and ground see Fig. 2.5. It can be shown [9] that the Hamiltonian
becomes the same as for the Cooper pair box but with a much larger capacitance

H =
2e2

CJ + Cg + CB

∑
N

(N −Ng)2 |N〉 〈N | − EJ
2

∑
N

(|N + 1〉 〈N |+ H.c.) , (2.4)

if we add the capacity CB. Charge insensitivity is observed in the regime EC << EJ . If
we use Mathieu functions m̃µ[x] the Hamiltonian can be diagonalized in the phase basis
[9] and the eigenvalues are given by

Em(Ng) = ECm̃2(Ng+k(m,Ng))[−EJ/(2EC)].

The eigenvalues become less sensitive to charge noise ∂Em
∂Ng

δNg with increasing EJ
EC

. On
the other hand the energy spacing between energy levels becomes more harmonic, which
causes problems for selective addressing of the 01 transition. One can show that the first
three energy levels are equally spaced for a ratio of EJ

EC
≈ 9 and becomes again anharmanic

for larger EJ
EC

. For very large EJ
EC

ratio the anharmonicity decreases and approximates 0
again. It is possible to engineer a EJ

EC
ratio which satisfy both a sufficient anharmonicity as

well as charge insensitivity as shown in Fig. 2.6. Since the Josephson energy EJ depends
on the flux Φ through the SQUID loop the separation of the energy level is depending on
Φ, this is shown in Fig. 2.7.
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i) ii)

Figure 2.6: The left graph show the relative αr = E12−E01
E01

(a) and absolute αr = E12−E01

(b) anharmonicity for a transmon qubit as a function of EJ
EC

. The middle graph show
the energy diagram for the first three energy levels. On can recognize that the charge
insensitivity increases with smaller αr. The pictures are taken from [9].

Figure 2.7: The graph shows the frequency for different transitions as a function of the
flux through the SQUID loop.
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2.6 Transmon coupled to a cavity

Even though, that the transmon’s anharmonicity is large enough to prevent population
of higher energy levels we can not neglect the presence of these levels since they can be
populated virtually.

The Jaynes Cummings Hamiltonian can easily be expanded for an arbitrary number
of energy levels by writting

H̃JC = ~
∑
j

ωj |n〉 〈j|+ ~ωra†a+ (~gj,j+1 |j〉 〈j + 1|+ H.c.) ,

where we have taken into account only transition between neighboring energy levels and
|n〉 are eigenfunctions for the transmon Hamiltonian Eq. 2.4.

It would be very nice to reduce the Hilbert space again to a two level system so that we
can use the results obtained previously in the Cooper pair box. A elegant way to separate
the Hamiltonian in an effective Hamiltonian Heff and an remaining Hamiltonian Hrem is
by applying a canonical transformation

H = e
∑
j

gj,j+1
ωj−ωj+1

|j+1〉〈j|−H.c.
H̃e

(
∑
j

gj,j+1
ωj−ωj+1

|j+1〉〈j|−H.c.)†

as demonstrated in [9]. Similarly to the Cooper pair box the effective Hamiltonian takes
the simple form

Heff = ~
(
χ(a†a+

1
2

) +
ω01

2

)
σz + ~ω′ra†a.

In the effective Hamiltonian we have used the renormalized frequency

ω′r = ωr − χ12/2.

The effective dispersive shift is
χ = χ01 − χ12/2

with the dispersive shift for the jm transition given by χj,m = g2
j,m/(ωj,m − ωr). These

renormalized frequencies and the effective shift take the higher energy levels into account.
For more details we refer to [9].

2.7 Measurement process

In this section we will describe how the readout of the qubit state is realized.
As mentioned above the resonator is a superconducting coplanar wave guide, which

is capacitively coupled to a wave guide, for driving the resonator, and to an other wave
guide, for readout. Dividing the resonator into infinitesimal elements allows us to rewrite
the resonator as a LCR circuit [24] (Fig. 2.8). The transmission as a function of frequency
has has the well known Lorentzian shaped resonance

|t(ω)|2 =
(ωr)2

4Q2(ω − ωr)2 + (ωr)2
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Figure 2.8: The left picture shows a transmission line. The right picture gives an equivalent
network for the transmission line. The pictures are taken from [24].

Figure 2.9: The left plot shows the transmission of a microwave passing through the
resonator as a function of the frequency. The resonance for the ground state (blue) is
shifted by χ toward lower frequencies and the resonance for the exited state is shifted
by the same amount toward higher frequencies. The other graph gives the corresponding
phase. The pictures are taken from [1].

with half width at half maximum equal to ωr/(2Q), where the resonator quality factor is
Q. The phase of the transmitted microwave on the other hand has an arctan dependancy

ϕ(ω, ωr) = arctan
(

2Q(ω − ωr)
ωr

)
and picks up a phase shift of π when the frequency passes through the resonance. This is
total analogous to optical cavities.

As we have seen by deriving the dispersive limit of the Jaynes-Cummings Hamiltonian
the presence of the qubit induces a AC Stark shifts

(
g2

∆ a
†aσz

)
of the resonator’s bare

frequency by ±χ depending on the qubit’s state. This yield the response as given in
(Fig. 2.9).

If we measure the amplitude of the transmitted field at the resonator frequency ω|0〉,
we can find maximal transmission coefficient for the qubit in the ground state and minimal
transmission coefficient for the qubit in the excited state (Fig. 2.9). On the other hand
if we measure at bare resonator frequency we can find a maximal phase shift 2φ, with
phase −φ for the ground state and φ for the excited state. For an arbitrary measurement
frequency ω we can find the measurement operator

M = (ϕ(ω, ωr + χ)− ϕ(ω, ωr − χ))
1− σz

2
,
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where we have set the phase for the ground state equal zero. It is pointed out that
this measurement operator M commutes with the Jaynes Cummings Hamiltonian HJC .
Therefore the measurement is invariant under the time evolution and we call it quantum
non demolition measurement.

2.8 Decoherence

So far we have assumed that the qubit cavity system does not interact with the environ-
ment. In this section we will discuss time evolution of the qubit in an open system.

As explained in the appendix 5.5, if our system is open, the time evolution of the
density matrix is not given any more by the von Neumann equation but by the Master
equation. Since we have a two level system the Lindblad operator will consist of maximally
4 super operators. One of the super operator ([H, .]) comes from the Hamiltonian H for
the closed system, one (L[a]) satisfies the fact that our cavity looses photons over the
capacities Cin/Cout, one (L[σ−]) takes into account energy relaxation of the qubit and the
last one (L[σz]) describes acquisition of a random phase. The Master equation is then
given by [29]

dρ

dt
= − i

~
[H, ρ] + κL[a]ρ+ γ1L[σ−]ρ+

γφ
2
L[σz]ρ,

The super operators L[A] are defined by

L[A] = AρA† − 1
2
A†Aρ− 1

2
ρA†A.

This differential equation can be solved by changing into the Liouville space.
For the energy relaxation the ultimate limit would be given by the Purcell effect. The

energy relaxation rate is then determined by γκ = κ
g201
∆2
o

[9]. Most recently the limit of T1

due to the Purcell effect has been achieved experimentally [30]. In [9] it is estimated that
high frequent charge noise yields to relaxation times T1 as long as 1 s this is basing on
the charge noise insensitivity of the transmon and the fact that the noise has a 1/f be-
havior. Previously we have seen that the Josephson energy and hence the qubit transition
frequency is depending on the flux through the SQUID loop. High frequency fluctuations
in the magnetic field may cause a decay as well. In [9] an estimation for T1 can be found
of the order of micro seconds (depending on the flux).

The dephasing T2 can be caused by several effects we will now discuss two on them.
According to [9] the most important noise factor is given by current noise through the
Josephson junctions and T2 is supposed to be on the order of few µs. Current noise
comes from trapping and releasing of charge in the Josephson junctions, which changes
the Josephson energy and hence dephase the qubit. Another noise source is low frequency
noise in the magnetic field. In this regime the qubit is adiabaticly detuned from resonance
and no energy relaxation is induced. Since the qubit is randomly detuned it will pick up
an additional phase. However current samples have T1 and T2 well below the estimated
values.
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Chapter 3

Tomography of single qubit states

I will here discuss the tomography of one qubit. This is important because it proves that
tomography in principle works in our system. Furthermore, there are many interesting
phenomena which can be observed on one qubit that require tomography. In addition it is
important to determine the fidelity of one qubit gates i.e. the phase and Hadamard gate,
if we want to use the system for quantum information technology. Moreover, single qubit
operations like Rabi oscillations and Ramsey fringes are nice experimental demonstrations
of the ability to manipulate quantum mechanical systems. Besides that, conclusions made
in this chapter will be useful to implement tomography on several qubit systems.

3.1 Theory

This section gives a theoretical introduction on tomography for one qubit. State tomogra-
phy can be explained in a very intuitive picture using the Bloch sphere. In the Bloch sphere
picture operations are isomorphic to affine mappings of the Bloch sphere onto itself. A
mathematically more convenient picture, which uses density matrices, will be discussed in
some details. In addition we will discuss the L1 norm and the fidelity, which both measure
the distances between quantum states, which is important if we want to discuss deviation
between theory and experiment. Furthermore, we will also derive a measurement process,
which can be performed even if the tomography pulses are unknown operations. Once we
understand state tomography we are enable to do process tomography.

3.1.1 Bloch sphere picture for quantum state tomography

The Bloch sphere picture is a very illustrative way to describe the state of a qubit. The
Bloch sphere is a picture which identifies an arbitrary density matrix ρ with an point
on/in the unit sphere (Bloch sphere). However, as we will see the mapping is not strictly
unique. Nevertheless, this picture is sufficient for almost all applications. Furthermore,
the Bloch picture allows us to visualize the outcome of operations on an arbitrary state.
This is especially useful for an intuitive understanding.

The Bloch picture can be introduced by some simple thoughts. The wave function of a
two level system is given by |Ψ〉 = a |0〉+ b |1〉. The normalization condition and the fact
that the eigenstates are orthogonal yield the property 1 = |a|2 + |b|2. It is convenient to

23
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parametrize a and b in spherical coordinates a = eiδ cos
(
θ
2

)
and b = eiδeiϕ sin

(
θ
2

)
. In this

notation θ is the azimuthal angle, ϕ is the polar angle and δ is a global phase, which is of
no interest since δ is annihilated by forming the expectation value. It can immediately be
seen that all these points lie on the surface of a three dimensional unity sphere, the Bloch
sphere.

Now we will show that simple operations on an state can be described in the Bloch
picture by rotations. If operations, with exception those describing interactions with the
environment, are applied on an arbitrary pure state, the resulting state will be again a
pure state. In the Bloch picture, an operation on a point on the Bloch sphere gives again
a point which lies on the sphere. As it can be looked up in any book on linear algebra
the set of operations which maps linearly the unit sphere on it selfs and conserves the
orientation is given by the rotation group SO(3).

As mentioned above this simple picture is not totally true. Operations on a state in
a two level system are described by SU(2). On the other hand SU(2) is not isomorphic
to SO(3) but SU(2)/Id ∼= SO(3). Therefore, rotations of 2π pick up the phase −1, hence
rotations have to be at least 4π to reproduce the identity. However, in most cases this
additional phase is not of interest, an example where it is obtained is given in [31].

Now we will illustrate the tomography process, in the Bloch sphere picture, using the
tomography pulses id,

(
π
2

)
x

and
(
π
2

)
y
. The id pulse is just a identity operation on the

Bloch sphere. The
(
π
2

)
x

and
(
π
2

)
y

pulses on the other hand transform the qubit’s state in
to the equally super position state |0〉 + |1〉 and |0〉 + i |1〉. This pulses will also be used
for our experiment.

We want to determine the state |ψ〉 which is equivalent to the Bloch vector r =
(rx, ry, rz). It is important to mention that this state can be reproduced as many times as
we like. Therefore we can perform measurements several times, average the outcome and
estimate hereby the expectation value. The measurement defines our quantization axis,
which is chosen to be the z axis.

Applying the first tomography pulse, which is the identity, and measuring the expec-
tation value is equivalent to projecting the the vector r on the z axis.

pz = |〈1|ψ〉|2 = |〈1| (a |0〉+ b |1〉)|2 = |b|2 = sin
(
θ

2

)
=

1− cos
(
θ
2

)
2

=
1− rz

2

This yields perfect knowledge (up to statistical uncertainty) of the pz component of the
Bloch vector. On the other hand a maximal uncertainty in the rx and ry component
remains due to the Heissenberg principle see Fig. 3.1.

Additional rotations on the Bloch vector give the opportunity to determine the other
components of the Bloch vector (rx, ry). To determine the rx component we apply first
a Ry

(
π
2

)
rotation around the y axis. This rotation maps the Bloch vector (rx, ry, rz)

on (rz, ry,−rx). The measurement of this new state yields px = 1+rx
2 . Analogously a

Rx
(
π
2

)
rotation gives (rx,−rz, ry) the response py = 1−ry

2 . These three rotations and
coresponding measurements determine the initial state of the qubit up to a statistical
uncertainty coming form the measurement process.

Following the discussion given in [6] we will now describe processes which take inter-
actions with the environment into account. This can be done in a elegant way using the
Bloch picture. During a decoherence process points from the surface of the Bloch sphere
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Figure 3.1: The pictures show the tomography on a qubit. On the left hand side the
qubit state, which is indicated by the red vector (Bloch vector), is illustrates. The average
of the measurement is then given by the projection on the quantization axis (z axis),
which determines the rz component. However, due to Heisenberg’s uncertainty principle
a maximal indeterminacy in the rx and ry components remains (black circle). On the
right hand side the Bloch vector is rotated around the y axis by π

2 before performing the
measurement (yellow circle). This gives the opportunity to determine the ry component.

will be mapped into the inside of the Bloch sphere. This processes can be described by an
affine function which maps the unit ball into itself.

~r 7→ A~r + ~c

here A is a real 3x3 matrix and ~c is a translation. The exact form of this mapping can
easily be found by using the operator sum representation and changing into the Bloch
vector picture or can be looked up in [6]. Using polar decomposition the matrix A can
be written as A = OP with O ∈ SO(3) an orthogonal matrix and P a positive definite
matrix. The transformation as written above has now a very intuitive meaning: first
the positive definite matrix P deformes the Bloch sphere according to T1 and T2 and
the additional orthogonal matrix O rotates the Bloch sphere in respect of dephasing and
finally the translation ~c shifts the whole sphere which satisfies the relaxation T1.

3.1.2 Alternative picture for quantum state tomography

Doing QST in R3 maybe intuitive and geometrically simple but calculations become math-
ematically difficult. Furthermore the Bloch sphere picture breaks down if entanglement
is taken into consideration. However, if operations are done in SU(2) the mathematical
tools stays rather simple and an upscaling can be done easily.

If we want to fully describe the state of a qubit the density matrix has to be determined.
The density matrix ρ is a hermitian 2x2 matrix, which is positive definite and has trace
1. In the basis |0〉 ∼= (1, 0)T and |1〉 ∼= (0, 1)T the density matrix has the form
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Figure 3.2: The picture shows systematically how the set of Bloch vectors evolves if
interactions with the environment are taken into account. Here the starting set is indicated
as the set of pure states (semi transparent ball). After applying an affine transformation
a codomain, which is represented by the cigar shaped surface, can be obtained. It can
be seen that this transformation contracts and rotates (Red lines) the initial set. The
resulting codomain will not be a set of pure states any more (|~r| < 1).

(
ρ00 ρ01

ρ10 ρ11

)
Since the trace is always Tr(ρ) = 1, the density matrix’s entries have to satisfy the

condition ρ00 + ρ11 = 1. A more elegant way to write the density matrix is given by
ρ = 1

2

(
1 +

∑
k=x,y,z rkσk

)
, where Tr(ρ) = 1 is already taken into account and σk denotes

the Pauli matrices. The vector ~r is equivalent to the Bloch vector.
The task is now to determine ~r. The measurement operator σz yields the equation p0 =

Tr(ρ|1〉〈1|), which measures rz. Where p is the expectation value for the measurement.
Two more equations can be found by applying known operations Uk on ρ. Examples and
a good choice of Uk will be discusses later one in this section. In total this yields a system
of linear equations

| pk = Tr(UkρU
†
k |1〉〈1|) |k=0,1,2 .

If the rotations have been chosen in a proper way this system of equations will have kernel
zero. It can easily be seen that a rotation of the density matrix is equivalent to a rotation
of the measurement operator since the trace is commutative

pk = Tr(UkρU
†
k |1〉〈1|) = Tr(ρU †k |1〉〈1|Uk).

Again it is pointed out that the operation Uk has to be known. For simplicity we assume
that T1 and T2 are negligible on the time scale rotations are applied.
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The Hamiltonian, which describes operation on the qubit, is given by the Jaynes
Cummings Hamiltonian, written in the rotating frame, for the dispersive limit

Hrot = ~
(
χ(a†a+

1
2

) +
ω01

2
−
ωdrive

2

)
σz + ~

g01(t)
∆

(εx(t)σx + εy(t)σy) +

+~ (εx(t) + εy(t)) (a† + a) + ~
(
ωr − ωdrive

)
a†a.

The low anharmonicity of the transmon is taken into account by introducing the renormal-
ized frequencies ω′r = ωr − χ12/2, with the effective dispersive shift χ = χ01 − χ12/2, see
[9]. The first term represents σz rotations and can be chosen to be zero if the frequency of
the driving pulses ωdrive matches the qubit transition frequency plus the AC stark shift
and the Lamb shift, the second therm represents σx and σy rotations and can be controled
by the envelope εx and εy of the driving pulse, the third term represents a population of
the cavity and the last one stands for the energy of the field inside the cavity. However,
for the tomography pulses just the first two terms are of interest. Therefore, we rewrite
the Hamiltonian for operation on the qubit as

H =
~∆
2
σz +

~Ωx

2
σx +

~Ωy

2
σy,

where ∆ = χ(a†a + 1
2) + ω01

2 −
ωdrive

2 is the detuning from resonance, Ωi = 2g01ε(t)
∆ and√

Ω2
x + Ω2

y is the Rabi frequency.

The Von-Neumann equation determines the density matrix’s evolution ∂ρ
∂t = [H, ρ].

For piecewise time independent Hamiltonian the evolution is given by

ρ(t) = T exp
[
− i

~

∫
dt′H(t′)

]
ρT† exp

[
i

~

∫
dt′H(t′)

]

=

 ∏
n=1,2,...,N

exp
[
−iHn

~
∆tn

] ρ

 ∏
n=N,N−1,...,1

exp
[
i
Hn

~
∆tn

] ,

where T is the time order operator and the system evolves under the Hamiltonian Hn for
the duration ∆tn.

Now that we know the qubit evolution under a driving pulse we can write down the
system of equations | pk = Tr(UkρU

†
k |1〉〈1|) |k=0,1,2. In absence of decoherence we can

write a sequence of operations on the qubit by one unitary operator

Uk(Ωx,k,Ωy,k,∆k) = exp
[
−i

Ωx,kσx + Ωy,kσy + ∆kσz
2~

τ

]
Using the properties for the Pauli matrices we can write the operator in the intuitive way

Uk = id cos (Ω)− i~σ · ~n sin (Ω) ,

where Ωk is the Rabi frequency
√

∆2
k + Ω2

x,k + Ω2
y,k and ~n is the rotation axis. The system

of equations greatly simplifies if we parametrize the density matrix by
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ρ = 1
2

(
1 +

∑
k=x,y,z rkσk

)
. The quantities rk are equal to the Bloch vector components.

The system of linear equations can easily be solved by using the identity pk 7→ pk~ek and
rk 7→ rk~ek (the vector ~ek is the unity vector with 1 at the kth position but zero elsewhere)
and we obtain

~p =
1
2



Ωy,1 sin
√

Ω2
x,1+Ω2

y,1√
Ω2
x,1+Ω2

y,1

−Ωx,1 sin
√

Ω2
x,1+Ω2

y,1√
Ω2
x,1+Ω2

y,1

− cos
√

Ω2
x,1 + Ω2

y,1

Ωy,2 sin
√

Ω2
x,2+Ω2

y,2√
Ω2
x,2+Ω2

y,2

−Ωx,2 sin
√

Ω2
x,2+Ω2

y,2√
Ω2
x,2+Ω2

y,2

− cos
√

Ω2
x,2 + Ω2

y,2

Ωy,3 sin
√

Ω2
x,3+Ω2

y,3√
Ω2
x,3+Ω2

y,3

−Ωx,3 sin
√

Ω2
x,3+Ω2

y,3√
Ω2
x,3+Ω2

y,3

− cos
√

Ω2
x,3 + Ω2

y,3


︸ ︷︷ ︸

A

~r +
~e1 + ~e2 + ~e3

2
.

The solution is then simply given by

~r = A−1(~p− ~e1 + ~e2 + ~e3

2
).

The condition for a complete set of tomography pulses is then equivalent to the condition
det(A) 6= 0.

For illustrative purposes and because the experiment will use Id,
(
π
2 x

)
and

(
π
2 y

)
pulse

the tomography procedure will now be explained in more details for this kind of pulses.
The unknown density matrix ρ = 1

2

(
1 +

∑
k=x,y,z rkσk

)
has to be determined. Ap-

plying no pulse yield the equation

p0 = Tr(ρ
1− σz

2
) = Tr

1
2

1 +
∑

k=x,y,z

rkσk

 1− σz
2

 =
1− rz

2
,

where the property σmσn = iεmnkσk and the relation |1〉〈1| = 1−σz
2 has been used.

For the π
2 x

pulse the expectation value is given by

px = Tr(exp
[
−iπσx/2

2~
t

]
ρ exp

[
i
πσx/2

2~
t

]
1− σz

2
)

px = Tr

exp
[
−iπσx/2

2~
t

]
1
2

1 +
∑

k=x,y,z

rkσk

 exp
[
i
πσx/2

2~
t

]
1− σz

2


px = Tr

(1 + iσx)
1− σz

2
(1− iσx)

1
2

1 +
∑

k=x,y,z

rkσk


px =

1 + rx
2

,

Where in addition the property [σn, σm] = δnm and the useful feature exp
[
−iα2~σ · ~n

]
=

cos
[
α
2

]
1− i sin

[
α
2

]
~σ · ~n has been used.
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Analogously it can be found for the
(
π
2

)
y

pulses that

py =
1− ry

2
,

This measurement process fully determines any arbitrary state. For this case the A−1

matrix takes the simple form A−1 =

 1
2 0 0
0 −1

2 0
0 0 −1

2

.

3.1.3 Distance between density matrices

After measuring the density matrices it would be good to have a quantitative measure
for the difference between the measured and the theoretical expected state. In quantum
information the L1 norm and the fidelity are the two most widely used measure for distance
of quantum states. All in all the fidelity is a more often used method to calculate the
distance between two states. On the other hand the L1 norm remains a norm on the space
of the hermitian matrices with trace one, where the fidelity can only be used for density
matrices. In the following section we will describe the properties of the L1 norm as well
as the fidelity. The discussion is following ideas from [32] and [33].

L1 norm:
The L1 norm between the states ρa and ρb is defined by

D(ρa, ρb) =
1
2
Tr
(
|ρa − ρb|

)
=

1
2
Tr

(√
(ρa − ρb)†(ρa − ρb)

)
.

This definition fulfills all requirements for being a metric; it is positive definite D(ρa, ρb) ≥
0 with D(ρa, ρb) = 0 if and only if (iff) ρa = ρb, is symmetric D(ρa, ρb) = D(ρb, ρa) and
satisfies the triangle inequality D(ρa, ρb) ≤ D(ρa, ρc) +D(ρb, ρc). A proof for these three
properties of the L1 norm and therefore a proof that L1 is a metric can be found in [32].

The definition of the L1 norm is motivated by the classical L1 norm of two probability
distribution {px} and {qx} given by Dclassical(p, q) = 1

2Tr(
∑

x |px − qx|). For the case
where the matrices ρa and ρb commute the classical and quantum mechanical definition are
identical. We can see this by diagonalizing the matrices simultaneously ρa,b = U †Da,bU

and we end up with the relation 1
2Tr

(
|ρa − ρb|

)
= 1

2Tr
(√

U †(Da −Db)†(Da −Db)U
)

= 1
2Tr

(
U †
√

(Da −Db)†(Da −Db)U
)

= 1
2

∑
k |λak − λbk|.

In the case of one qubit we can use the Bloch picture and the L1 norm becomes

D(ρa, ρb) =
|(~ra − ~rb)~σ|

4
=
|~ra − ~rb|

2
,

since the eigenvalues of ~r are ±~r. The norm is equal to half the Euclidean distance of two
points on the Bloch sphere.

In addition the L1 norm has the useful property of being a metric even if we expand
the definition to all hermitian matrices with trace one. It is important to have a metric
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which is valid for arbitrary hermitian matrices because the tomography process will yield
matrices which do not have to fulfill the requirements of being positive definite.

Fidelity:
The fidelity is the most widely used measure for comparing different density matrices.

The fidelity is defined as

F (ρa, ρb) = Tr

(√√
ρaρb
√
ρa
)
.

In fact the quantum mechanical fidelity becomes equal to the classical one for the case
where ρa and ρb commute.

The fidelity is symmetric and has values between 0 ≤ F (ρa, ρb) ≤ 1, with equal zero iff
ρa and ρb are lying in orthogonal spaces and equal one iff ρa = ρb. The fidelity is almost
a metric. The quantity arccos

(
F (ρa, ρb)

)
on the other hand fulfills all requirements for a

metric. For one qubit the quantity arccos
(
F (ρa, ρb)

)
has the intuitive meaning of being

an angle between the two Bloch vectors ~ra and ~rb. And we can immediately see that there
is a close relation between the fidelity and the L1 norm, at least for two one qubit density
matrices. For the case of a pure state the fidelity is given by

F (ρ, |Ψ〉 〈Ψ|) = Tr

(√(
Σi

〈
Ψ̃i

∣∣∣ ρ ∣∣∣Ψ̃i

〉 ∣∣∣Ψ̃i

〉〈
Ψ̃i

∣∣∣) |Ψ〉 〈Ψ|) =
√
〈Ψ| ρ |Ψ〉.

In this case the fidelity is the square root of the overlap of the pure state |Ψ〉 〈Ψ| and an
arbitrary state ρ.

However, if we take the fidelity of matrices, which are not density matrices, the fidelity
can become negative or larger than one. This makes it unfavorable for matrices, which
are calculated by using a linear tomography procedure. As we will see later the most
likelihood procedure yields density matrices and the fidelity can be used as a measure of
the difference of two states.

3.2 Experimental setup

We will now discuss the experimental setup which has been used to perform all one qubit
measurements, which are presented in this thesis. The sample consists of two transmon
qubits [9], which are capacitively coupled to a microwave resonator. The transmon qubits
are localized on each end of the resonator. The magnetic flux, which tunes the qubits is
generated by two different coils. One of the coil has a inner diameter of 4 mm and couples
in good approximation to only one qubit, where the other coil has a diameter of 16 mm and
couples to both qubits. Adjusting the current of both coils gives the possibility to tune the
flux through the two qubits individually. The qubits have coupling rates of gA = 133 MHz
and gB = 134 MHz, EjA = 35.112 GHz and EjB = 37.632 GHz, EcA = 331.7 MHz and
EcB = 232.54 MHz. The microwave resonator has on both ends a one plus two finger
capacitor. The circuit is made of niobium on a sapphire substrate. The bare resonator
has it’s fundamental mode at 6.441 GHz and has a quality factor of roughly Q = 4000.
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Figure 3.3: The picture shows the mask design, which was used to fabricated the resonator.
The horizontal meandering line is the resonator, which is terminated on both ends by a
one plus two finger contact. The signal is measured in transition. On each end of the
resonator (middle of the 8 crosses) a transmon qubit is placed. Each transmos qubits is
capacitively coupled to a separate charge gate line. These individual gate lines allow a
individual manipulation of the qubits.

Operations on the qubits are done by using charge gate lines. A gate line is a wave
guide, which is capacitively coupled to the reservoir of one of the qubits. The fact that
the charge gate line is only coupled to one qubit gives the opportunity to manipulate the
qubit individually. Each gate line is then connected to a microwave generator for driving
the qubit. Between the generator and the gate line a mixer is implemented. The mixer
modulates the amplitude and the phase of the microwave pulse.

It is important to make sure that no microwave field is exciting the qubit via the gate
lines, if no drive pulse is applied. There are two possibilities to ensure that. The first is
to turn off the microwave generator the second is to bring the mixer in the point where
it fully blocks the drive field. Turning off the microwave generator sounds easier but it
turns out that the mixer needs a continuous drive field to work properly. Therefore, we
have to use the mixer to block the microwave field from exciting the qubit. However, the
mixer is not linear and has an offset in I and Q. The problem of the mixers nonlinearity
can be solved by calibrating the mixer as describes in the appendix 5.4. The offset can be
removed by adding a constant voltage to the pulse sequences. However, to achieve a good
on/off ratio the offset in I and Q has to be adjusted up to 100 µV. Unfortunately the
used arbitrary waveform generator (AWG) has only a 1 mV voltage resolution. Therefore,
additional voltage sources with smaller step size were connected in series with the AWG. To
determine the offset the mixer’s output has been measured by using a spectrum analyzer.
The mixer’s minimum can then be found by minimizing the output power as a function of
the I/Q offset. However, if the spectrum analyzer is removed from the mixer a change in
the potential at the mixer’s output will occur and result in a shift of the offset. Therefore,
the spectrum analyzer has been integrated into the setup as one can see in Fig. 3.4.
For an input power of 14.5 dBm we can obtain a leakage of Poff ≤ −95 dB. This is
quite good especially if we compare it with the attenuation of PI=300 mV ≤ −20 dB
which is at the usual operation point. This already shows that the mixer’s on/off ratio

(
P
I=300 mV
Poff

≈ 75dB) is good. To estimate the population of the excited level (for a closed

mixer) we can use the simple formula

dPe
dt

= ΩleakagePg − ΩleakagePe −
Pe
T1
,
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Figure 3.4: The graphic shows schematically the measurement and control circuitry. The
signal generation for measurement and control pulses are pictured in the top left corner
and the readout and calibration output are placed in the top right corner. The different
temperature stages are indicated by color. The graphic shows all filters, attenuators and
amplifiers. The two coils which have been used for individual detuning of the qubits are
depicted on the side of the image.
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Figure 3.5: The graph shows the measured population of the excited state if a π pulse has
been performed with backup pulse (blue) or continous driving of the mixer (red).

where Pe is the calculated population of the excited, Pg is the calculated population of
the ground state, Ωleakage is the Rabi frequency caused by the mixers leakage and T1 is

the qubit’s decay rate. If we use the steady state condition dPe
dt = 0, the normalization

condition Pg = 1 − Pe and if we assume that the Rabi frequency caused by the mixer’s

leakage is given by Ωleakage = Ω(I,Q)

√
Pleakage
P(I,Q)

, we can find a population of the excited

state which is
P

leakage
e ≤ 0.005.

To check if the population of the excited state is small we can measure the total phase
shift of the response of a π pulse. The results for continuous measurement is plotted in
Fig. 3.5. If the leaking of the mixer populates the excited state we will register a smaller
phase shift after applying a π pulse. The ratio of the phase shifts for the operation pulse
without backup pulse, which switch the microwave resonator on and off, and the operation
with backup pulse is than given by

φno backup
φbackup

= 0.92± 0.12.

This is in agreement with the calculated value. We can conclude it is possible to block the
drive pulse by turning the mixer off without changing the power of the applied microwave.

3.3 Experimental approach

Here we explain how the measurements were performed. We will first show that dephasing
processes can be neglected in good approximation for the performed experiments. Then
we talk about the way the measurement pulses were applied and averaged. In the following
we will explain how the measurement process was done. In addition we will explain how
the calibration process for the tomography pulses was realized. And finally we will give an
error estimate for systematic and statistical errors of the tomography. This section differs
a lot from the experiment for two qubits, which will be discussed later.
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Dephasing process

It would be convenient, if we could neglect all dephasing processes, which occur during the
tomography process. Therefore, we analyze the influence of T1 and T2 on the tomography
process. If we take interaction with the environment into account, the evolution of the
qubit is not anymore described by the Von Neumann equation but by the master equation,
which is a direct consequence of Markovian processes and the operator sum representation
see appendix 5.5. The master equation is than given by

dρ

dt
= − i

~
[H, ρ] +

∑
n6=0

(
LnρL

†
n −

1
2
L†nLnρ−

1
2
ρL†nLn

)
,

where the Markov approximation Mn(t) =
√
tLn has been used. This differential equation

can easily be solved by changing into the Liouville space.
From measurements of T1 and T2, which were done independently, we know that qubit

A has T1 ≈ 380 ns and T2 ≈ 400 ns and qubit B has T1 ≈ 380 ns and T2 =≈ 440 ns. An
upper limit for the error, which results from neglecting decoherence, can now been found
by

max
|~r|=1

∣∣∣∣ρLindblad − ρv.Neumann
ρv.Neumann

∣∣∣∣ .
For pulse length of τ = 20 ns we can find an error that is 0.03, 0.029 respectively. This is
of sufficient accuracy for our measurements.

Applied pulse sequences

The microwave pulses for controlling the qubit state are shaped by putting a continuous
microwave field through a I/Q mixer, which modulates the amplitude and phase of the
output field. The mixer does this modulation by applying a DC voltage to two different
channels I/Q. For further detail see Section 3.2. The pulse sequences for the mixer I/Q
port have been generated by using a arbitrary waveform generator (AWG) AWG5014
from Tektronix. The AWG has a 10 bit resolution for the amplitude of the output voltage
and a 1 ns time resolution. The AWG loads the pattern files which determines the pulse
sequences. The AWG then runs each pattern file once. After running all pattern files the
AWG repeats the process several times and averages. One pattern file consists of a file for
the I and one for the Q channel and a trigger file that turns on the microwave generator
for the measurement if the measurement has been done pulsed. In addition there would
be the possibility to implement an additional file that turns one the microwave generator
which drives the qubit.

Measurement process

The measurement process was either done continuous, which means that the resonator has
always been populated with photons (at the resonator frequency ωres), or pulses, which
means that the measurement photons are only in the resonator if we do a measurement.
Continuous measurement has the enormous drawback that the measurement photons will
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a) b)

Figure 3.6: Schematic picture for the pulse sequences. The blue pulse is the measurement
pulse and the red is the operation pulse. The left picture shows a continous measurement
where the right one shows a pulsed measurement.

cause an AC Stark shift. This can be seen by writing the Jaynes Cummings Hamiltonian
in the dispersive limit

HJC ≈ ~
(
ω′r + χσz

)(
a†a+

1
2

)
+ ~

ω01

2
σz

The AC Stark shift is represented by the term ~χσza†a. Since the Hamiltonian depends on
the photon number a†a the eigenenergies will vary, if the photon number fluctuates. This
fluctuations will cause a random phase shift which will yield decoherence [34]. Therefore,
the photon number in the resonator and hence the measurement power has to be kept low.
On the other hand the signal-to-noise ratio increases proportional to the measurement
power and measurement time. This fact requires a large averaging if the measurement is
performed at low power.

Even though that this is an enormous drawback for continuous measurement it has the
clear advantage that we can observe the qubit before, while and right after applying the
operation pulses. However, in most cases the operation pulses are much shorter than the
cavity response and the resonator is only virtually populated by photons from the operation
pulses. The two different pulse sequences for the cases of continuous measurement and
pulsed measurement are shown in Fig. 3.6.

As discussed previously, the phase shift of the transmitted microwave is determined
during the measurement process. Due to energy relaxation the phase signal will decay
exponentially in time (on a scale of T1).

On the other hand the expectation value for the population of the excited state pk =
Tr
(
U †k |1〉 〈1|Ukρ

)
is proportional to the measured phase pk ∝ φ(t = 0) shift. This can

easily be seen by the fact that the expectation value for the phase shift is given by

φk = Tr
(
U †kφ0 |1〉 〈1|Ukρ

)
= φ0pk,

where φ0 is the phase shift for the transmon in the excited state φ0 = arctan
(
ωmeas
ω0+χ

)
, χ

is the effective dispersive phase shift, ωmeas is the measurement frequency and ω0 is the
resonator frequency.

It can be shown [29] that the optimal way to determine the quantity pk(t = 0) is to cal-
culate a weighted average over time. The optimal weighting factor f(t) = p|1〉〈1| exp(−t/λ)
is an exponential decay with decay rate equal to the qubit decay rate λ. The weighted
average p̃k is given by

p̃k =
∑

t f(t)p(t)∑
t f

2(t)
.



36 CHAPTER 3. TOMOGRAPHY OF SINGLE QUBIT STATES

a) b)

Figure 3.7: The graphic shows how the population of the exited is determined for different
pulse sequence (here in a Rabi experiment). The left graphic shows the measured phase
shift (blue coresponds to high phase shift) as a function of time after applying a pulse
(x axis) and as a function of the pattern file number (y axis) here indicated by pulse
amplitude. The middle picture shows the process for determining the initial population,
which is calculated by building the scalar product of the experimental points (blue) and an
exponential weighting factor (red)

∑
t f(t)p(t)∑
t f

2(t)
. The last picture shows than the population

of the excited state as a function of the pattern file number (here pulse amplitude).

A simple calculation shows that p̃k(0) = pk(0).

p̃k =

∫∞
0 pk(t)f(t)∫∞

0 f(t)2

pk(t)=pk(0) exp(−t/τ)→ pk(0).

This method gives us the opportunity to extract the population of the excited state after
performing an operation on the qubit. This process is illustrated for the case of a Rabi
process in Fig. 3.7.

Manual calibration of the tomography pulses

We would like to use tomography pulses which are close to id,
(
π
2

)
x

and
(
π
2

)
y
. The easiest

way to distinguish the amplitude for a
(
π
2

)
pulse is by performing a Rabi oscillation. Since

we are keeping the length of the tomography pulses constant we have to perform a Rabi
experiment with varying pulse amplitude. The pulse amplitude, which yields a popula-
tion of 50% of the excited state can be identified with the amplitude, which is required
for a

(
π
2

)
pulse (see Fig. 3.10). However, this determines only the quantity

√
Ω2
x + Ω2

y

it does not state anything about the phase φi = arg (Ωx,i + iΩy,i) of the tomography
pulse. To ensure that the

(
π
2

)
x

and
(
π
2

)
y

pulses are close to be orthogonal we take the
results from the mixer calibration, which is described in the appendix 5.4. The calibra-
tion data gives us the opportunity to determine a set of (I,Q)1,2 values, which have the
property of creating orthogonal pulses parametrized in the amplitude |Ωτ | (cos(ϕ), sin(ϕ))
and |Ωτ | (− sin(ϕ), cos(ϕ)), where the power has been parametrized be the quantity |Ωτ |.
This procedure is pictured in Fig. 3.8.

Even though the tomography pulses have been calibrated we want to eliminate slight
miss matches in the calibration. Therefore, we attach to the sequence file four additional
pattern files which create

(
π
2

)
x
,
(
π
2

)
y
,
(
π
2

)
x
◦
(
π
2

)
y

and
(
π
2

)
y
◦
(
π
2

)
x

pulses. If now these four
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Figure 3.8: The graphics show the calibration procedure for finding
(
π
2

)
and π pulses used

for tomography. The plot in the lower left corner shows the voltage on the (I,Q) channel,
which is required to create orthogonal microwave pulses with variable amplitude. The
points were found by using a vector network analyzer. The population of the excited state
for the two branches was measured as shown in the graphics to the right and to the top
left side. The (I,Q) voltage for a tomography pulses is then determined by finding the
(I,Q) values, which corresponds to a population of 0.5, 1 respectively (red dashed lines).
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measurements have response 0.5 we can say with certainty that the tomography pulses
have been calibrated in the right way. If not this measurement gives the opportunity to
perform the auto calibration procedure, which is explained in the next Section 3.3.1.

3.3.1 Auto calibration for tomography pulses

The tomography procedure described above is a simple and elegant way to determine an
arbitrary state. However, the approach discussed above requires that we know exactly
what kind of operations Uk we have applied. What can be done if the operations Uk are
unknown or have a systematic error? A method will now be introduced, which determines
the tomography pulses in the same run as the tomography process is performed. For the
further discussion we will call the process which determines the tomography pulses auto
calibration.

The idea of the auto calibration is to include in the measurement run a pulse sequence,
which determines the tomography pulses. The only requirement the pulses have to fulfill
is the assumption that they yield a system of equations, which has kernel equal zero.
Of course the accuracy can be increased if the tomography pulses have been chosen in
a optimal way. A description on the best choice for tomography pulses can be found in
[35]. As the discussion of the experiment shows it is especially easy to create an identity
pulse. Therefore, we have to determine only two more pulses U1 and U2. If the system is
not detuned the Hamiltonian for the two pulses have the form Hk = ~Ω′x,kσx + ~Ω′y,kσy,
with k = 1, 2. Since a global phase is of no interest [1] the Hamiltonian can be written
in the from H1 = ~Ωx,1σx and H2 = ~Ωx,2σx + ~Ωy,2σy. The task is to determine the
three amplitudes Ωx,1, Ωx,2 and Ωy,2. This requires three proper equations. If the initial
state is chosen to be the ground state, the time evolution of the density matrix is given by
ρ(t) = exp

[
−iH2~(t− t0)

]
|0〉 〈0| exp

[
iH2~(t− t0)

]
. The required three equations can now to

be obtained by measuring the pulse sequences U1, U2 and U1U2 as shown in Fig. 3.9. The
resulting system of equations is than given by

pcal1 = Tr
(
U †1 |1〉〈1|U1|0〉〈0|

)
pcal2 = Tr

(
U †2 |1〉〈1|U2|0〉〈0|

)
pcal3 = Tr

(
U †2U

†
1 |1〉〈1|U1U2|0〉〈0|

)
This system is nonlinear but can be solved numerically. For this purpose a function

S (Ωx,1,Ωx,2,Ωy,2) =
(
p1 − Tr

(
U †1 |1〉〈1|U1|0〉〈0|

))2
+

+
(
p2 − Tr

(
U †2 |1〉〈1|U2|0〉〈0|

))2
+
(
p3 − Tr

(
U †2U

†
1 |1〉〈1|U1U2|0〉〈0|

))2

has been introduced. Since Uk are periodic functions in Ωx,1, Ωx,2 and Ωy,2 the additional

constraint |Ωx,1| < 2π and
√

Ω2
x,2 + Ωy,2 < 2π has to be satisfied. The function S in

respect to the given constraints can be minimized by using the option FindMinimum,
which is implemented in Mathematica6.0. The problem of finding local minima instead of
global can be avoided by choosing the starting point randomly.
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a)

b)

c)

Figure 3.9: Systematic scheme of the calibration procedure. The purple line indicates the
pluses U1 and U2. The two pulses U1 and U2 are different in phase (not indicated) and
different in amplitude, but have the same length of 20 ns. The blue pulse indicates, when
the RF field for the measurement is turned on and the cavity gets populated with photons
for measurement.

Error estimation

We can basically make out two different sources for measurement error. The first possibility
is that the

(
π
2

)
and π pulses are not properly calibrated. The second source is statistical

noise in the measurement process. Both of them will yield an error in the density matrix.
We will first discuss the error coming from inaccuracy in the tomography pulse and in the
next section we will talk about the influence of statistical noise.

Systematical error for tomography pulse:
Even though we found a way to correct errors in the tomography pulses it is more

convenient to assume that the tomography pulses are perfect
(
π
2

)
pulses. Therefore we

will now discuss how close this the tomography pulses are to perfect
(
π
2

)
pulses.

If we write the tomography pulses in the generalized way

U (Ωx,Ωy) = exp
(
−iΩxτσx + Ωyτσy

2

)
,

it becomes clear that the error in the
(
π
2

)
pulses comes from an error in Ωiτ . The expec-

tation value for the qubit in the excited state is then given by the A matrix
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Figure 3.10: The picture shows the population of the excited state as a function of the
pulse amplitude. This allows us to determine the power, which is required to create a π

2
and π pulse.

A =



Ωy,1sinτ
√

Ω2
x,1+Ω2

y,1√
Ω2
x,1+Ω2

y,1

−Ωx,1 sin τ
√

Ω2
x,1+Ω2

y,1√
Ω2
x,1+Ω2

y,1

− cos τ
√

Ω2
x,1 + Ω2

y,1

Ωy,2 sin τ
√

Ω2
x,2+Ω2

y,2√
Ω2
x,2+Ω2

y,2

−Ωx,2 sin τ
√

Ω2
x,2+Ω2

y,2√
Ω2
x,2+Ω2

y,2

− cos τ
√

Ω2
x,2 + Ω2

y,2

Ωy,3 sin τ
√

Ω2
x,3+Ω2

y,3√
Ω2
x,3+Ω2

y,3

−Ωx,3 sin τ
√

Ω2
x,3+Ω2

y,3√
Ω2
x,3+Ω2

y,3

− cos τ
√

Ω2
x,3 + Ω2

y,3


The error can than be estimated by

∆rk =
3∑
l=0

pl

√(
∂(Ak,l)−1

∂Ωx,l

)2

∆Ω2
x,l +

(
∂Ak,l
∂Ωy,l

)2

∆Ω2
y,l

Mathematica can calculate this strait forward calculations easily.
As shown in Fig. 3.10 the

(
π
2

)
and π pulses are determined by performing a Rabi pulse.

The accuracy for the
(
π
2

)
and π pulses are about ∆Ωiτ

Ωiτ
= 0.1. This error in Ωiτ will then

yield an inaccuracy in determining the Bloch vector ∆rk
rk
≤ 0.05.

Statistical error in tomography:
Since we are measuring only for a finite time interval the measured value for pk has

a certain statistical error. If we assume that the measurement is Gaussian distributed
the standard deviation stdwk ∝

√
n. In principle this gives the possibility to do an error

estimation. The error in the Bloch vector is then given by ∆~r = A~σ, with ~σ = (σx, σy, σz).
For the measurement we can find for each measurement point a standard deviation of
σ ≈ 3.3o. However, the population of the excited state is calculated by using a weighted
average p̃k =

∑
t
f(t)φ(t)
f2(t)

, where the weighting function is given by f(t) = exp(−t/λ). This
yield a standard deviation for pk of pk ≈ 0.015. Again this measurements were taken with
approximately 1 photon in the resonator and 655350 times averaged. The error for the
Bloch vector can be estimated as ∆rx,z

rx,z
≈ 0.03. Even though, that this error seems to
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be of the same order as the systematical it is rather easy to reduce it by increasing the
measurement time or even better by increasing the measurement power by performing
pulsed measurements. The adventage of increasing the power is given by the fact that the
statistical accuracy is proportional to the measurement photon numbers but only to the
square root of the measurement time. However, if we would have done the measurement
in pulsed mode the error would have been smaller by an order of magnitude.

3.4 Experimental results

In this section we will discuss the results of the experiments performed on one qubit. First
we will talk about a two dimensional tomography procedure, which was applied on the
four different states |0〉, |1〉, |0〉+ |1〉 and |0〉+ i |1〉. This has the motivation to show that
the system responds in an expected way. Next we will do state tomography, using three
pulses, on the same four states as above. For all the other experiments we will use three
tomography pulses. After that we will go on with tomography of a Rabi and Ramsey
experiment. This has the purpose to illustrate that the tomography procedure works. In
the end we will also perform a process tomography on a Hadamard gate.

3.4.1 Two dimensional Plots

As we have seen for the one qubit case a full tomography can be performed by using the
manipulation H = ~Ωxσx + ~Ωyσy. Therefore, it is important to verify that applying this
operations will yield the predicted states. Since this Hamiltonian is just depending on Ωx

and Ωy, which is given by the power and the phase of the drive pulse, it is enough to check
the responses as a function of Ωx and Ωy. For this reason we measure the population of
the excited state as a function of τΩx and τΩy. As starting states we use |0〉, |1〉, |0〉+ |1〉
and |0〉+ i |1〉.

For this experiment a microwave generator with integrated I/Q mixer has been used.
This microwave generator has the enormous advantage that the I/Q mixer can automati-
cally be calibrated in phase and amplitude.

Results:
The measurement response for such a pulse sequence can be calculated by

p (Ωx,Ωy) = Tr

(
exp

[
−i(Ωxσx + Ωy)τ

2

]
ρ exp

[
i
(Ωxσx + Ωy)τ

2

]
1− σz

2

)
.

The formula given above yields for the starting value |0〉, |1〉, |0〉+ |1〉 and |0〉+ i |1〉 to the
expectation values which are plotted in Fig. 3.11. The response for the qubit starting in
the ground and excited state is rotation symmetric. It can be proven by a simple straight
forward calculation that the expectation value p = Tr

(
U † 1−σz2 Uρ

)
is rotational symmetric

if and only if the density matrix takes the values ρ = (1± σz)/2.
If we assume that the preparation pulse has not been perfect we can obtain a response

similar to the one given in Fig. 3.12. For the case that the qubit is driven at a detuned
frequency ∆ = ω01−ωdrive the measured response will yield a response as give in Fig. 3.12.
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|0〉

|1〉

|0〉+ |1〉

|0〉+ i |1〉

Figure 3.11: The graphics show the population of the excited state 〈1| ρ |1〉 (blue popu-
lation zero, white population one). The prepared states from top to bottom are |0〉, |1〉,
|0〉 + |1〉 and |0〉 + i |1〉. The left hand side is a simulation and the right hand side is the
measurement.
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a) b)

Figure 3.12: The plots show simulations for imperfect preparation and tomography pulses.
The left plot shows tomography on a state with a |0〉+ b |1〉 where |a| < |b| and the right
plot shows the response for detuned tomography pulses.

If we compare the simulation to the experiment it can be recognized that the drive
frequency is slightly detuned form the qubit’s transition frequency. However, this is not
surprising since the measurement run took more than 7 hours.

Applied pulse sequences:
In the case of the microwave generator with integrated I/Q mixer, the mixer can be

calibrated automatically and the output of the microwave generator will have amplitude
∝
√
I2 +Q2 and phase = arg (I + iQ). The I/Q channel of the integrated mixer can

be controlled by an external source which is in our case a AWG generator. Since a
measurement with all pattern files in one sequence file would consume to much memory
of the acquisition card shorter sequences of pattern files have been loaded in a row.

For the experiment the measurement have been done with a continuous measurement
field. The power of the RF generator has been set to a value equivalent to one photon
in the resonator. The measurement have been averaged 655350 times. The transition
frequency for the qubit has been at 5 GHz, which corresponds to ωr − ω01 = 1.5 GHz.
The pulse lemgth was chosen to to 20 ns.

3.4.2 State tomography

Even though that the two dimensional plots, which are described above, fully determine
the initial density matrix, the measurement is not practical for application because it takes
too long to record it. However, as shown in the theory Section 3.1.2, it is sufficient to
apply three appropriate tomography pulses to reconstruct the qubit’s initial state.

To keep the pulse calibration simple we have chosen the id,
(
π
2

)
x

and
(
π
2

)
y

tomography
pulses, see Fig. 3.14.

Results:
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Tomography was done on the four different states |0〉, |1〉, |0〉 + |1〉 and |0〉 + i |1〉.
We assume perfect tomography pulse (the case of imperfect pulses will be discuss later).
This assumption is justified by reconstructing the driving pulses from the measurement
p1 = |U1ρU

†
1 |1〉 〈1| |, p2 = |U2ρU

†
2 |1〉 〈1| | and p1,2 = |U2U1ρU

†
1U
†
2 |1〉 〈1| | which yield

operations given by

U1 =
(

0.73 −0.69i
−0.69i 0.73

)
and U2 =

(
0.69 −0.72 + 0.02i

0.72 + 0.02i 0.69

)
.

Uperfect1 =
1√
2

(
1 −i
−i 1

)
and Uperfect2 =

1√
2

(
1 −1
1 1

)
.

This is very close to what would be expected from orthogonal
(
π
2

)
pulses. Therefore we

assume perfect
(
π
2

)
pulses.

The density matrices can be reconstructed by using the property

~r =
1
2

 1
2 0 0
0 −1

2 0
0 0 −1

2

 ~p− ~e1 + ~e2 + ~e3

2
.

The density matrices for these experiments are plotted in Fig. 3.13.
Since the density matrices have been determined by solving the linear system of equa-

tions the found matrices are not positive definite and calculating the fidelity would be
useless. However the L1 norm between the theoretical and the measurement states can be
calculated and are found to be

D

(
1 + σz

2
, ρid

)
= 0.03,

D

(
1 + σx

2
, ρ(π/2)x

)
= 0.13,

D

(
1 + σy

2
, ρ(π/2)y

)
= 0.05 and

D

(
1− σz

2
, ρπx

)
= 0.09.

For this case the L1 norm has the very intuitive meaning of being the Euclidean of the
points in the Bloch picture. These L1 norms are indicating the the states are quite close
together.

In the example above we have calibrated the tomography pulses well. It is interesting to
show that the tomography procedure also works with imperfectly calibrated tomography
pulses. However in that case an auto calibration procedure is required. For that reason
we performed another experiment, with less carefully calibrated tomography pulses. This
can be useful if it is not possible to calibrate th pulses perfectly.

If the tomography pulses are not perfect
(
π
2

)
, we can take a systematic error of the

tomography pulses into account, if we use the auto calibration procedure, which has been
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State <ρ =ρ ρ

|0〉

|0〉+ i |1〉

|0〉+ |1〉

|1〉

Figure 3.13: The plots show the real part (first row) and the imaginary part (second row)
of the density matrices, which were found by tomography.
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Figure 3.14: The picture shows the pulse sequence for the tomography process. The first
purple pulse is for preparing the initial state (|0〉, |1〉, |0〉+ |1〉 and |0〉+ i |1〉). The second
purple pulse for the tomography. The following pulse is for measuring (pulsed measure-
ment). For the case of continuous measurement the photons populate the resonator all
the time.

explained above. The density matrices for this states can then be reconstructed by using
the previously derived formula

~r =
1
2


Ωy,1 sin

√
Ω2
x,1+Ω2

y,1√
Ω2
x,1+Ω2

y,1

−Ωx,1 sin
√

Ω2
x,1+Ω2

y,1√
Ω2
x,1+Ω2

y,1

− cos
√

Ω2
x,1 + Ω2

y,1

Ωy,2 sin
√

Ω2
x,2+Ω2

y,2√
Ω2
x,2+Ω2

y,2

−Ωx,2 sin
√

Ω2
x,2+Ω2

y,2√
Ω2
x,2+Ω2

y,2

− cos
√

Ω2
x,2 + Ω2

y,2

0 0 −1



−1

~p−~e1 + ~e2 + ~e3

2
.

The results for this can be found in Fig. 3.15.
If we do an auto calibration procedure we can reconstruct the density matrices without

loosing any accuracy. In addition we can compare the initial state with the measured state
by calculating the L1 norm. We find

D

(
1 + σz

2
, ρid

)
= 0.015,

D

(
1 + σx

2
, ρ(π/2)x

)
= 0.11,

D

(
1 + σy

2
, ρ(π/2)y

)
= 0.11 and

D

(
1− σz

2
, ρπx

)
= 0.15.

This is of the same order as we found for well calibrated pulses. However it can be still
important to apply a proper calibration, if we want to use

(
π
2

)
for the experiment (e.g. in

a Ramsey experiment or Hadamard gate).
In both experiments (with well calibrated and imperfect calibrated tomography pulses)

I used for the state preparation the same pulses as for the tomography. To create a one
qubit system the second qubit has been detuned to Φ = 0.5Φ0 flux quantum. The other
qubit, which was used for tomography, was kept at ω01 = 4.955 GHz, which is equal to
ωr−ω01 = 1.5 GHz. In the first example the measurement was done pulsed with 8 photons
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Figure 3.15: The first row shows the real part of the measured density matrices, the second
row shows the imaginary part of the measured density matrices, the third row represents
the real part of the density matrices expected from the auto calibration procedure, the
fourth row pictures the imaginary part of the expected density matrices and the last two
rows give the corresponding matrices.
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in the resonator and 3 106 times averaged. In the second example the measurement was
performed continuously, with one photon in the resonator and 6 105 times averaged.

Applied pulse sequence:
For the sequence file we need a part which can be used for the auto calibration and one

for the tomography. The tomography process on the other hand consists of a preparation
pulse and three tomography pulses. It can be seen that the sequence files consists of a
fourth tomography pulse. However, this pulse has not been used for this analysis. For
preparing the states id,

(
π
2

)
x
,
(
π
2

)
y

and π we use pulses similar to the tomography pulses.
A schematic picture of the pulse sequence is shown in Fig. 3.13.

3.4.3 State tomography of Rabi oscillations

Now we would like to apply tomography on a Rabi oscillation process. A Rabi rotation is
one of the most simple process we can think of. As discussed above, the Hamiltonian for
interaction is given by

HRabi =
~ΩRabi

x

2
σx +

~ΩRabi
y

2
σy,

where the detuning has been chosen to be zero and Ωi = g
∆εi(t) as previously. The time

evolution of the density matrix starting from the ground state is then given by

ρ = exp
(
−iHRabi

~
t

)
|0〉 〈0| exp

(
i
HRabi

~
t

)

ρ =

 cos2
(

1
2

√
Ω2
x + Ω2

yt
)

(iΩx+Ωy) sin(
√

Ω2
x+Ω2

yt)
2
√

Ω2
x+Ω2

yt

(−iΩx+Ωy) sin(
√

Ω2
x+Ω2

yt)
2
√

Ω2
x+Ω2

yt
sin2

(
1
2

√
Ω2
x + Ω2

yt
)
 ,

where t indicates the pulse length and Ω =
√

Ω2
x + Ω2

y the pulse amplitude. It can easily
be seen that this density matrix corresponds to a Bloch vector given byΩy sin

(√
Ω2
x + Ω2

yt
)

√
Ω2
x + Ω2

y

,−
Ωx sin

(√
Ω2
x + Ω2

yt
)

√
Ω2
x + Ω2

y

, cos
(√

Ω2
x + Ω2

yt
)T

.

In the Bloch picture this is a rotation around the axis (Ωx,Ωy, 0)T with frequency ωRabi =√
Ω2
x + Ω2

y.

Results:
To measure this Rabi oscillation we can perform Rabi pulses of different length and

reconstruct the state after the Rabi pulses by applying tomography. This yields the
result given in Fig. 3.16. The measured Bloch vectors should lie on a circle. Indeed the
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Figure 3.16: The plot illustrates a Rabi experiment. Each of the points corresponds to
the qubit state after applying a pulse of different pulse length. The plot in the upper right
corner shows the points on the Bloch sphere for Rabi oscillations. The two other plots
indicate the projection on the xy-, xz- and yz- axis.
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measurements are close to the predicted circle (red). One can see that the Rabi circle is
neither lieing in the xz or yz plane. However, that is not an error in fact there is no reason
why that should be the case, it just happens because the Rabi pulse have been chosen as
arg (Ωx + iΩy) = −21o. On the other hand we can see that the Rabi circle goes through
the ground state as expected.

We can already see the Rabi experiment is close to the theoretical trajectory. However,
it would be nice to check more carefully how well our Rabi experiment has been performed.
Therefore we calculate the L1 norm for each point in comparison to the theory. As we
have seen the L1 norm is defined by

DL1(ρexper, ρtheory) =
1
2
Tr
(∣∣∣ρexper − ρtheory

∣∣∣)
Parameterizing the density matrix by the Bloch vector and using the normalization con-
dition Tr (ρ) = 1 yields

DL1(ρ, δ) =
|~rρexper − ~rρtheory |

2
,

where rρ,i is the ith component of the Bloch vector for the density matrix ρ. This enables
us to determine the error for performing and analyzing a Rabi pulse. If we assume that
the Rabi pulse was created by a pulse with Arg (Ωx + iΩy) = −21o, we can calculate the
L1 norm DL1(ρtheory, ρexperiment). This yields in average a norm of

DL1(ρtheory, ρexperiment) = 0.08± 0.04

which is comparable with the error estimated in the discussion on tomography of
(
π
2

)
pulses.

Applied pulse sequences:
The data have been measured continuously, with a RF power equivalent to one photon

in the resonator. The qubit’s transition frequency was at ω01 = 4.9 GHz a detuning of
ωr−ω01 = 1.5 GHz. In the measurement each pattern file has been averaged 655350 times.
The sequence file consists of pattern files with different Rabi pulse length. For each Rabi
pulse length three different tomography pulse have been used.

3.4.4 State tomography of Ramsey fringes

A more advanced example for time resolved experiments than the Rabi oscillations is a
Ramsey fringe experiment. In a Ramsey experiment we want to prepare a equally superpo-
sition state and then accumulate phase by a σz rotation. For this an off resonant

(
π
2

)
pulse

brings the qubit from its ground state into a equally weighted superposition state. Since
the operation pulse has been off resonant the term ∆ =

(
χ(a†a+ 1

2) + ω01
2 −

ωdrive
2

)
σz,

in the rotating wave approximation, is not equal to zero. The Hamiltonian becomes

H =
~∆
2
σz +

~Ωx

2
σx +

~Ωy

2
σy.
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Figure 3.17: This graphic shows the pulse scheme for tomography on a Rabi oscillation.
The purple pulse shows the tomography pulse, the brown pulse indicated the Rabi pulses
(the rotation angle is regulated by adjusting the length of the Rabi pulse) and the blue
indicates the measurement.

Therefore, a σz rotation will remain. If we now prepare such as superposed state and
measure it with a delay, we will register a state that has been rotated by t∆, with t the
time between the off resonant

(
π
2

)
pulse and the measurement. Since the experiment has

been performed on a long timescale we have to include decoherence T1 and T2. A common
way to solve this problem can be done by introducing the Lindblad operator and using
super operators, see Section 2.8. However, we will use here a different approach. Since we
depict the system as Bloch vector we will use the phenomenological Bloch equations [36]
to describe time evolution of the qubit. In the rotating frame the Bloch equation for a
non driven qubit is then given by

drx
dt

= − rx
T2

+ ∆ · ry

dry
dt

= −∆ · rx −
ry
T2

drz
dt

=
1− rz
T1

.

In this case the last equation is already decoupled from the other two. It can immediately
be seen that the Bloch vector performs a rotation around the z axis with a frequency equal
to the detuning. The − 1

T2
term represents phase decoherence and causes a contraction

of the rx and ry component. The time evolution of the rz component is determined by
relaxation of the qubit into the ground state and decays with a decoherence time T1.

Results:
As mentioned above we can perform a Ramsey experiment by applying a

(
π
2

)
pulse

on the ground state and do a tomography after waiting a variable time. This yields the
results given in Fig. 3.18. One can see the predicted rotation around the z axis as well as
the effects coming from T1 and T2. To determine how accurate the Ramsey experiment
in combination with the tomography fit to the experiment we can again determine the L1

norm. For the case where we fitted ∆ = 40MHz, T1 = 800 ns and T2 = 420 ns the norm
becomes DL1(ρtheory, ρexperiment) = 0.07± 0.04. This is again in good agreement with
the error form the discussion above.
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Figure 3.18: The graphic shows tomography on a Ramsey experiment. The right upper
picture illustrates the points on the Bloch sphere for different time between the preparation(
π
2

)
and the tomography pulses. The other three plots show projection of the Bloch sphere

on the xy-, xz- and yz- axis. One can see how the Bloch vector turns around the z axis
and contracts due to T2. In addition one can recognize energy relaxation corresponding
to T1.
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Figure 3.19: The schematic picture shows the pulse which were applied for a Ramsey ex-
periment. The brown pulse is a off resonant

(
π
2

)
pulse. The time t between the preparation

pulse an the tomography is varied. The purple pulse indicates the tomography pulses.

It should be mentioned that for the initial
(
π
2

)
pulse the drive frequency has to be

detuned from the qubit frequency, because we want to obtain σz rotations. On the other
hand the tomography pulses should be on resonance to prevent additional rotations while
doing the tomography. However, the tomography pulses and the preparation pulse are
created with the same microwave generator. Therefore we can only perform slow σz
rotations. A possibility to apply a preparation pulse and tomography pulses at different
frequency is by using two generators and bringing the signal together by a combiner.

Applied pulse sequences:
The measurement have been performed continuously with a power equivalent to one

photon in the resonator. The data have than been averaged 600000 times. The sequence
file consists of pattern files which have different time length between the preparation

(
π
2

)
pulse and the tomography pulse. A schematic plot of the sequence file can be seen in
Fig. 3.19.

3.4.5 Process tomography

Now that we are able to perform state tomography with good accuracy we can think of
implementing process tomography.

Process tomography is a very useful tool, because it enables us to characterize op-
erations performed on the qubit. This is of importance if we would like to characterize
coherent operations, as for example in logical gates. Furthermore it gives us the oppor-
tunity to analyze incoherent operations like decoherence processes (T1 and T2) [6], which
are important if we deal with open systems. Hence process tomography makes it possible
to measure the Lindblad operators [6]. In addition a most likelihood procedure can be
implemented [37].

The goal of process tomography is to determine an arbitrary linear function E, which
maps a initial state of the qubit ρin on a final state ρout = E(ρin). The linear function
E has to preserve hermiticity, trace and positivity, if we apply E on an arbitrary density
matrix. This has to be satisfied since we are interested in a physical quantum map.

We know from theory (see appendix 5.5) that any quantum map (even those which
describe interactions with the environment) can be written by the operator sum repre-
sentation. With N2 operators, where N is the systems dimension, we can write the map
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by
E(ρ) =

∑
n≤N2

MnρM
†
n,

where {Mn} is a set of operators, which fulfill the completeness relation

1 =
∑
n≤N2

M †nMn.

The task is now to determine the operators Mn.
On the other hand we are free in choosing the basis {Mn}. Therefore we can chose an

arbitrary basis {M ′n}, with the transformation Mn =
∑

i≤N2 aiM
′
i . The quantum map E

becomes
E(ρ) =

∑
m,n

M ′nρM
′†
m ana

∗
m︸ ︷︷ ︸

χm,n

. (3.1)

Since we have chosen the operators M ′n the only unknown quantity is χn,m, which is a
hermitian matrix. For the following we will call it the χ matrix.

We will determine χ in two steps. In step A we chose a set of density matrices
{ρ1, ..., ρN2}, which parametrize any state ρ. This allows us to write the expression
M ′mρjM

′†
n by a linear combination of our set of density matrices {ρj}j=1,...,N2

M ′nρjM
′
m =

∑
k≤N2

bn,mj,k ρk. (3.2)

The coefficients bn,mj,k can be determined by algorithm known from linear algebra.
In step B we prepare experimentally the states {ρj}j=1,...,N2 and apply the unknown

process E, which yields to the new states
{
E(ρ1), ..., E(ρN2)

}
. Using state tomography

we can fully determine E(ρj). Again we can express the mapping of E(ρj) by a linear
combination of density matrices {ρj}j=1,...,N2

E(ρj) =
∑
k≤N2

cj,kρk. (3.3)

By simple linear algebra we find the coefficients cj,k.
Now we are almost done. Inserting the two relations Eq. 3.2 and Eq. 3.3 in Eq. 3.1

yields to
cj,k =

∑
n,m≤N2

bn,mj,k χn,m.

This is a matrix equation and we can immediately obtain χn,m. Even though that we have
now quantified the quantum map E by

E(ρ) =
∑
m,n

M ′nρM
′†
mχm,n

we have not yet found the desired operator sum representation. However this can easily
be done. We apply a basis transformation U in such a way that U diagonalize χ and we
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Figure 3.20: Schematic diagram of the pulse sequence, which is used for process tomog-
raphy. The purple pulses indicate the tomography pulses, which consist here of id,

(
π
2

)
x
,(

π
2

)
x

and π pulses. However for the analysis just three of the pulses were used. The green
pulse indicated the id,

(
π
2

)
x
,
(
π
2

)
x

and π pulses, which were used for preparing the initial
density matrices ρin. The process tomography uses all 16 combinations of these pulses.
The process which has to be determined is pictured by a brown pulse. The readout is
indicated by the blue pulse.

can find
E(ρ) =

∑
x≤N2

∑
n≤N2

(√
Dx,xUx,nM

′
n

)
︸ ︷︷ ︸

Mx

ρ
∑
m≤N2

(√
Dx,xU

∗
x,mM

†
m

)
︸ ︷︷ ︸

M†x

,

where D represents the diagonal matrix similar to χ. If the χ matrix is in the diagonal
form, the diagonal elements tell us the weighting of each of the operators in the operator
sum representation. If χ is not diagonal in the chosen basis, the off diagonal elements
show the correlation between the different operators.

Since we experimentally implement process tomography on one qubit, we will now
discuss the case for N = 2. A straight forward method to implement process tomography
on one qubit systems can be found in [6]. We have used this method for the following
experiments. In addition we will chose the pure states (1±σz)/2, (1+σx)/2 and (1+σy)/2
since they are easy to be calibrated.

As an interesting example we can perform process tomography on a Hadamard gate.
A Hadamard gate consists of a

(
π
2

)
rotation around the y axis followed by a π rotation

around x axis. This process can be described by the operator

H =
1√
2

(
1 1
1 −1

)
.

The Hadamard gate maps the ground and exited state on the equally superposed states
(|0〉 + |1〉)/

√
2 and (|0〉 − |1〉)/

√
2. This forms with the phase and CNOT gate a set of

universal gates and is therefore used in many algorithms [32].

Results:
Similar to the description in the theory part the starting states for the process tomog-

raphy have been chosen as 1±σz
2 , 1+σx

2 , 1+σy
2 respectively. For the tomography we used

id,
(
π
2

)
x

and
(
π
2

)
y

pulses. The Hadamard gate has been realized by the pulse sequence
(π)y ◦

(
π
2

)
x

shown in Fig. 3.21.
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Figure 3.21: The scheme shows the pulse sequence which has been used for the process
tomography of the Hadamard gate. The brown pulses are the implementation of the
Hadamard gate. The first is a

(
π
2

)
y

and the second is a πy pulse. The Purple pulse is for
the tomography and the green for preparation pulse for process tomography. The blue
pulse indicates the measurement. Each of the pulses has a length of 20 ns.

For this implementation of a Hadamard gate we can measure for each input state the
density matrices of the output state as shown in Fig. 3.22.

The process tomography, which we have implementation and is given in [6], uses the
basis set of operators given by {1, σx, iσy, σz}. The task is now to determine the χ matrix
in this basis. From the results shown in Fig. 3.22 we can determine the χ matrix (see
Fig. 3.23) by

χexper =


0.02 0.02− 0.05i −0.01− 0.03i −0.01− 0.15i

0.02 + 0.05i 0.43 0.01− 0.03i 0.42 + 0.03i
−0.01 + 0.03i 0.01 + 0.03i 0.06 0.02− 0.02i
−0.01 + 0.15i 0.42− 0.03i 0.02 + 0.02i 0.49

 and

χtheory =


0 0 0 0
0 0.5 0 0.5
0 0 0 0
0 0.5 0 0.5


One can see that the basis {1, σx, iσy, σz} is not the canonical basis for the Hadamard gate.
The physical basis can be obtained by diagonalising the χ matrix. For this we obtain the
operators

M0 =
(

0.71− 0.15i 0.61 + 0.03i
0.66 + 0.05i −0.68− 0.15i

)
, M1 =

(
0.02− 0.11i −0.27 + 0.22i
−0.07− 0.17i −0.23− 0.11i

)
,

M2 =
(
−0.18 + 0.15i 0.07− 0.12i
−0.04− 0.06i −0.18− 0.1i

)
, M3 =

(
0.09− 0.08i 0.04− 0.08i
−0.19 + 0.05i −0.02− 0.08i

)
.

We can see that the operator M0 is close to the operator of a Hadamard gate, which is
supposed to be

H ≈
(

0.71 0.71
0.71 −0.71

)
.
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Figure 3.22: The picture shows experimental results of how four different input states
transform under the Hadamard gate as implemented above.

χexper χtheory

a) b)

Figure 3.23: The matrices show the real and imaginary part of the χ matrix. The right
plot shows the experimental obtained and the left plot shows the theoretical predicted
matrix.
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Applied pulse sequences:
The measurement has been done pulsed and with a power equivalent of approximately

8 photons in the resonator. For each pulse the length has been chosen to be 20 ns.
For the experiment one of the qubit was kept at ω01 = 5 GHz (ωr − ω01 = 1.4 GHz)
transition frequency while the other was set at the point with Φ = 0.5 flux quantum.
The measurement was averaged 600.000 times. For state preparation and tomography id,(
π
2

)
x
,
(
π
2

)
y

and πx pulses were used. As mentioned the Hadamard gate was implemented
by
(
π
2

)
x

and πy pulses. All this pulses are from the same calibration procedure. Each of
the pulses has a length of 20 ns which yields to a total length of 80 ns.



Chapter 4

Tomography of two qubit states

In this chapter we will talk about two qubit tomography. We will perform tomography on
different product states. The experiments show nicely how we can map out the density
matrix of a multi qubit system. Furthermore, two qubit tomography will be very important
if we want to verify the creation of more complicated and entangled states, e.g. Bell states,
or if we want to determine the fidelity of a CNOT gate. Moreover, we will implement a
most likelihood method, which is a way to find a density matrix that is most likely to
create the measured outcome.

4.1 Theory

In this section we explain theoretically how tomography on two qubits can be performed
in Circuit QED systems. The first section gives a short introduction into the measurement
process for two qubits. We will see this is more difficult than in the case of just one qubit.
The second section deals with how the two qubit state can be reconstructed using state
tomography. The last section is then introducing the most likelihood method.

4.1.1 Measurement operator

We will discuss the measurement operators, which are available in Circuit QED and how
this affects the tomography process. As we will see the system provides us with just one
measurement operator, which measure the transmitted microwave field of the resonator.
This is interesting because all the other qubit system give the opportunity to readout
each qubit individually. We can extract the phase and amplitude of the transmitted field.
Since the phase and the amplitude contain the same information the phase was measured
in all experiments. Nevertheless it could be desirable to combine the phase and amplitude
measurement to improve the readout fidelity. Therefore we will just focus on the phase
measurement operator.

Measuring the phase is described by the measurement operator given by

M = Σi,j∈{0,1}φij |ij〉 〈ji| ,

59
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a) b)

Figure 4.1: The left plot shows the phase shift of a transmitted microwave as a function
of the frequency for our two qubit sample. Since the two qubits have different χ they will
have a different Lamb shift and the resonance at a different point. The blue curve shows
the response for the |00〉, the brown for the |01〉, the purple for the |10〉 and the green
for the |11〉 state. The right plot shows the phase shift normalized to the ground state.
The red dashed line shows a good measurement point, all three states (|01〉,|10〉,|11〉) have
large signal. The red pointed-dashed line on the other hand shows the frequency where no
measurement should be performed since the A matrix becomes singular (see Section 4.1.2).

where 〈ij| =̂ |ji〉†. The phase shifts φi,j for the state |ij〉 〈ji| is given by

φi,j = arctan
(

νmeas
ν0 + (−1)1+iχA + (−1)1+jχB

)
,

with i, j ∈ {0, 1} for the ground and excited state and χA,B the dispersive shift for qubit
A and qubit B, as shown in Fig. 4.1. If the second excited level is taken into account,
which has to be done because of the small anharmonicity [9], χA,B can be calculated by

χA = χA,01 −
χA,12

2
,

where χA,mn stands for the dispersive shift from the mth and nth level. The dispersive
shift χA,mn can be computed by using perturbation theory and gives

χmn =
g2
mn

ωmn − ωr
,

where ωmn is the transition frequency for the nth and mth energy level. However, it turns
out that gmn depends strongly on the magnetic flux Φ trough the qubit loop. Therefore,
gmn has to be computed individually for each detuning [38].

The measurement at the time t gives the expectation value

φ(t) = Tr (Mρ(t)) ,

which represents the phase shift of the transmitted microwave at t. In the case of one
qubit the measured phase shift is proportional to the population of the excited state p,
because φ̃ = Tr (φ |1〉 〈1| ρ) = φp. However, this is no longer true for two qubits. It can
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easily be seen that different population of the excited state for qubit A and B can yield
the same phase shift.

We have just one measurement operator M , which measures the phase shift of the
cavity. In all the other physical realization of quantum computing the qubits can be
readout individually: in NMR different qubits have different frequencies, in ion traps
different ions have different spatial positions, in quantum dots different quantum dots
couple to different quantum point contacts and in superconducting flux qubits the readout
is realized in a variety of ways for single qubit readout. To our knowledge there is no other
system where the qubits are not read out individually.

In principle we could also introduce additional measurement operators and extract the
state for different qubits. A possibility would be to measure at different measurement
frequencies. Different measurement frequencies would change the phase shift φi,j and
hence yield a different measurement operator M . However, we will see in the next section
that one measurement operator does not pose any constraints for doing state tomography.

4.1.2 Quantum state tomography using 16 pulses

As mentioned above, all other qubit systems are using single qubit readout. In contrast
we have to implement a technique which can determine the qubit state by using just one
measurement operator. Such a method can be found in [5].

For a 2 qubit system the density matrix is a 4x4 hermitian, positive definite matrix
with trace one. Hence, a system of equations has to be found which yields a unique solution
for all the 16 entries of the density matrix. A simple way to realize this is to apply a set
of 16 different tomography pulses, which yield a system of equations with kernel zero.

In the experiment both qubits are addressed independently over the gate lines. There-
fore, the Hamiltonian, which describes the two qubit system, in the rotating wave approx-
imation, can be written in the form [1]

Hrot = ~

(
χ(a†a+

1
2

) +
ωA01

2
−
ωAdrive

2

)
σz ⊗ id+

+~

(
χ(a†a+

1
2

) +
ωB01

2
−
ωBdrive

2

)
id⊗ σz+

+~
gA01

∆A

(
εAx (t)σx + εAy (t)σy

)
⊗ id+

+~
gB01

∆B
id⊗

(
εBx (t)σx + εBy (t)σy

)
+

+~J (σ+ ⊗ σ− + σ− ⊗ σ+) +

+~
(
εAx (t) + εAy (t) + εBx (t) + εBy (t)

)
(a† + a).

For simplicity we have again used the effective dispersive shift χ = χ01 − χ12/2, ω′r =
ωr − χ12/2 and ω01 = ω01 + χ01. In addition we have used the raising and lowering
operators σ±. In the Hamiltonian the first two lines represent σz rotations due to off
resonant driving of the two qubits, the next two terms represent individual single qubit
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operations over the gate lines, the following term describes coupling between the two
qubits and the last term is skipped. For simplicity we rewrite the Hamiltonian as

Hrot = ~
(

∆̃Aσz ⊗ id+ ∆̃Bid⊗ σz + (Ωx,1σx + Ωy,1σy)⊗ id+

+id⊗ (Ωx,2σx + Ωy,2σy) + J (σ+ ⊗ σ− + σ− ⊗ σ+)) .

With the detuning frequency ∆̃i = χ(a†a + 1
2) + ωi01

2 −
ωidrive

2 with i = A,B, the Rabi

frequency Ωk,i = 2gi01
∆i

√
εix(t) + εiy(t) with k = x, y and i = 1, 2 and the coupling constant

J = gAgB(1/∆̃A + 1/∆̃B)/2 [3]. In addition resonant driving of the qubits and sufficient
detuning between the qubits Fig. 4.3 yield further simplifications of the Hamiltonian for
the tomography pulses

Hrot =
~
2

((Ωx,1σx + Ωy,1σy)⊗ id+ id⊗ (Ωx,2σx + Ωy,2σy)) .

Again the tomography pulses have been assumed to be much shorter in time than the
decoherence time.

We will now show that a full two qubit tomography can be done, if we perform on
both qubits all 16 combinations of the id,

(
π
2

)
x
,
(
π
2

)
y

and (π)x pulses. These pulses will
also be the tomography pulses, which we use for tomography in the experiment.

The time evolution of the density matrix can be written as

ρ(0) = exp
[
−iHi,j

~
τ

]
ρ(−τ) exp

[
i
Hi,j

~
τ

]
,

where ρ(0) is the density matrix immediately after the tomography pulse and ρ(−τ) the
density matrix right before applying the pulses. The indices i, j in the Hamiltonian Hi,j

indicates what kind of pulses
(
i, j =

{
id,
(
π
2

)
x
,
(
π
2

)
y
, (π)x

})
have been applied on qubit

A, qubit B respectively. In calculations the matrix exponential has been computed by
Mathematica6.0 which uses Jordan form. The matrix representation of the operators
Ui,j = exp [−iHi,j/(2~)τ ] are given in the appendix 5.2.

The measured response for all 16 operators give the system of equations∣∣∣∣pk = Tr (exp[− iHi,j

~
τ ]M exp[ i

Hi,j

~
τ ]ρ)

∣∣∣∣
i,j=

{
id,(π2 )

x
,(π2 )

y
,(π)x

}
For id,

(
π
2

)
x
,
(
π
2

)
y

and (π)x pulses we can write down the system of equations. For this
we first parametrize the density matrix by

ρ =
1
4

∑
i,j=0,x,y,z

ri,jσi ⊗ σj .

This is a parameterization for an arbitrary hermitian matrix. It is emphasized that the ma-
trix does not satisfy the condition Tr(ρ) = 1 nor is the matrix positive definite. However,
the normalization condition can easily be satisfied by ρ̃ = ρ/Tr(ρ).
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If we use the isomorphism rk 7→ rk~ek, we can write the system of equations by

16∑
i=0

ai,jri = pj .

The matrix A = (ai,j) is given in the appendix 5.2.
We can now analyze which conditions the measurement operator M has to fulfill to

ensure that the system of linear equations has a unique solution. The condition for linear
independency is than given by det (ai,j) 6= 0. This yields the condition M3 6= M1 + M2,
M3 6= − (M1 +M2) and M3 6= ± (M1 −M2). However, the conditions M3 6= − (M1 +M2)
and M3 6= ± (M1 −M2) are not physical, this can easily be seen from the chapter on
measurement operator 4.1.1. The quantity M3 = M1 +M2 on the other hand can occur.
Therefore, we are restricted to perform our measurements not at that frequency where
M3 = M1 +M2.

4.1.3 Most likelihood method

As mentioned above, if the density matrix is determined by solving the system of linear
equations, the resulting matrix will not necessarily be positive definite. This is caused by
a statistical noise in the measurement response pk. However, the most likelihood method
gives us the possibility to find a matrix which fulfills all requirement to be a density matrix.
The method computes a positive definite hermitian matrix with Tr(ρ) = 1, which is most
likely to produce the response measured in the experiment. The following discussion has
been written according to [5].

The most likelihood method uses a matrix ρ̃(t1, t2, ..., t16), which has been parametrized
in such a way that it describes only positive definite hermitian matrices with Tr(ρ̃) = 1.
Furthermore a likelihood function Θ(t1, t2, ..., t16, p1, p2, ..., p16) has to be introduced, which
is a measure for the probability that a density matrix ρ̃(t1, t2, ..., t16) will give the response
{p1, p2, ..., p16}. Finally the function Θ has to be maximized.

Since a hermitian matrix ρ̃ is positive definite if and only if it can be written in the
form ρ̃ = T †T we only have to parametrize T . This can easily be seen by

0
?
< 〈ϕ|ρ̃|ϕ〉 =

〈
ϕ|T †T |ϕ

〉
=
〈
ϕ′|ϕ′

〉
> 0 for |ϕ〉 6= 0

The matrix ρ̃ = T †T is also hermitian because ρ̃† = (T †T )† = T †T = ρ̃. To minimize
computation for inverting the matrix T , we parametrize T as a triangle matrix

T =


t1 0 0 0

t5 + it6 t2 0 0
t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4


Trace one is simply ensured by ρ̃ = T †T/Tr(T †T ).

In a simple model it is assumed that the noise on the response {p1, p2, ..., p16} is Gaus-
sian distributed. Due to the central limit theorem the assumption is true for almost all
physical cases. However, in our system the phase is measured. Since the phase is a peri-
odical function it will not be normal distributed. Nevertheless, if the amplitude is larger
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Figure 4.2: The picture shows schematically the likelihood function, which is parametrized
in ti. Of course a two qubit system requires an optimization in t1, t2, ..., t16. This can easily
be done numerically.

then the standard deviation, we can assume a Gaussian distribution. The probability to
obtain the response {p1, p2, ..., p16} for uncorrelated pi, which is the case, is determined by

Θ(t1, t2, ..., t16) =
16∏
k=1

exp
[
−(pk − p̃k)2

2σ2
k

]
,

where p̃k is the expectation value given by p̃k = Tr
(
UkMU †k ρ̃

)
and σk is the standard

deviation given by σk =
√
p̃k. The likelihood function becomes

Θ(t1, t2, ..., t16) = exp

[
−

16∑
k=1

(
pk − Tr

(
UkMUk(T †T/Tr(T †T ))

))2
2Tr (UkMUk(T †T/Tr(T †T )))

]
.

The task is now to maximize the likelihood function. Since the logarithms is a one to
one mapping maximizing Θ is equivalent to minimizing θ = − log [Θ]. The minimization
has to be done numerically. A routine is implemented in Mathematica6.0 under the
command FindMinimum. The function FindMinimum requires a starting value for the
algorithm. As starting value the density matrix ρstart found from solving the system of
equations above is used. The starting values for {t1, t2, ..., t16} are then given by

T =



√
det(ρstart)
det(ρ11start)

0 0 0

det(ρ12start)√
det(ρ11start) det(ρ11,22start)

√
det(ρ11start)

det(ρ11,22start)
0 0

det(ρ12,23start)√
ρstart,44 det(ρ11,22start)

det(ρ11,23start)√
ρstart,44 det(ρ11,22start)

√
det(ρ11,22start)
ρstart,44) 0

ρstart,41√
ρstart,44

ρstart,42√
ρstart,44

ρstart,43√
ρstart,44

√
ρstart,44


.



4.2. EXPERIMENTAL SETUP 65

In the above formula the expression ρijstart stands for the matrix ρstart where the ith

row and the jth column has been deleted. Similar ρij,klstart stands for the matrix where the
ith and the kth row, the jth and the lth column has been deleted.

Since the density matrix has only real numbers on the diagonal the real part of the
diagonal elements is taken instead.

4.2 Experimental setup

The experimental setup differs only in one major point from the setup described in the
previous chapter. The big difference is that we have to add one more channel to control the
second qubit. Since we want to manipulate both qubits individually (σi ⊗ id and id⊗ σj)
we drive them over two different charge gate lines. Measurements done in our lab confirm
that the gate lines address the qubits locally. In addition the qubits are detuned from each
other which also prevents a coupling between the gate line to the opposite qubit. This
justifies the assumption that the two qubits can be addressed individually. In Section 4.3
we will show that the two qubits are essentially uncoupled from each other, at least for
the used detuning.

The drive for the second qubit is created with an additional microwave generator.
Again the amplitude and phase of the second drive are set by a I/Q mixer. The mixer’s I
and Q channel are controlled by dc voltage pulses which comes from an AWG. Similar to
the one qubit experiment the mixer is driven continuously, which requires a high on/off
ratio (see Section 3.2). This is achieved by adjusting the mixer’s offset. The output is
measured by the same spectrum analyzer as the output for the first mixer (see Section 3.2)
but at a different frequency, see Fig. 4.3.

4.3 Experimental approach

Here we will talk about the difference between two qubit tomography and one qubit
tomography. First we will justify the assumption that qubit-qubit interaction can be
neglected on the time scale on which the experiments were performed. Then we will
explain how the pulse sequence for the I/Q mixer was arranged. Next we will talk about
the way how a phase shift is extracted from the measurement data. Last the calibration
procedure for the

(
π
2

)
and π pulses will be discussed.

Qubit-qubit interaction

As mentioned in the theory Section 4.1.2, it is important that the two qubits do not
interact with each other. Otherwise the

~J(σ+ ⊗ σ− + σ− ⊗ σ+)

term in the Hamiltonian would cause a
√
iSWAP interaction corresponding to the σx term.

This coupling can be suppressed by a strong detuning between the two qubits.
In general the qubit-qubit interaction is suppressed if the condition J << |ωA01−ωB01| is

satisfied [3]. The coupling constant has been determined by Martin Goeppl by measuring
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Figure 4.3: The picture shows schematically the experimental setup used for the two qubit
experiments. The only difference to the setup for one qubit experiments is that the second
gate line is used as well. This means an additional microwave generator connected to a
I/Q mixer has been added to the system. The mixer is controlled by dc pulses coming
form an AWG. Similar to the one qubit experiment a splitter is placed after the mixer
which brings one part of the microwave to the qubit while the other part goes to the
spectrum analyzer. In addition the attenuation inside the fridge has been changed, since
it had been determined that thermal photons were in the resonator.
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Figure 4.4: The left hand side shows spectroscopy for the two qubits as a function of the
magnetic flux Φ, which detunes the two qubits. The right hand side shows the extracted
transition frequencies. For the measurements one qubit has been kept at a constant
detuning of 5 GHz while the other one has been frequency. One can clearly see a dark
state |01〉+ |10〉, which yields from a symmetrical arrangement of the qubits in the cavity
[3]. This measurement and the analysis have been done by Martin Goeppl.

the splitting of the two qubits in resonance. For 5 GHz and 4.85 GHz qubits transition
frequencies a coupling constant of J = 14 MHz can be observed, see Fig. 4.4. In our
experiment the qubits were detuned by |ωA01 − ωB01| = 150 MHz. This detuning and J
causes fluctuations in the qubit-qubit population which are less then 1%.

Applied pulse sequence

The difference to the one qubit experiment is that we have now a second microwave
generator with a second I/Q mixer. Since we want to control the two mixers independently
we need two additional pattern files, for the I/Q channel of the second mixer. The used
AWG has four outputs, which create dc voltage pulses with a 1 ns time and a 10 bit
amplitude resolution. These pulses can be used to control both mixers.

Measurement process

In the measurement process we determine the phase shift of the transmitted microwave
field as a function of time. For one qubit it can be shown [29] that an accurate and
convenient way to determine the populations is not to compare the cavity’s phase shift φ
but the weighted average with the theoretical response (see Section 3.3). For two qubits
we can use a similar procedure.

For each set of measurements p(t) we calculate the weighted average

p̃k =
∑

t f(t)p(t)∑
t f

2(t)
. (4.1)

The weighting function f(t) is chosen by f(t) = exp[−t/λ], the damping factor λ is kept
for the analysis at a fix value and on the order of min{T1}, see Fig. 4.5. It is important to
notice that the weighted average is not equal the population of any of the excited states.
It is even not possible to extract the population of the excited states of the two qubits just
from this data. Additional measurements would be required to determine the population.
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Figure 4.5: The plot shows the phase shift for three different measurements. Here green is
π pulse on qubit A, blue π pulse on qubit B and brown π pulse on both of them. The red
line indicated the weighting function f(t). This measurements allow us to calculate the
measurement operator M . Analogous measurement give the response pk = Tr

(
UkMU †kρ

)
.

The new measurement operator on the other hand can be written by

M̃ = Σi,j∈{0,1}p̃|ij〉〈ji| |ij〉 〈ji| ,

where p̃|ij〉〈ji| is the weighted average defined in Eq. 4.1 for a state starting in |ij〉 〈ji|. This
measurement operator can either be derived theoretically by using cavity Bloch equations
[39] for two none interacting qubits or by measuring the response after applying a π pulse
on qubit A or on qubit B or on both of them simultaneously. Both methods allow to
determine the measurement operator M . For the experiment we have chosen to determine
M by applying π pulses. The main reason for this is because we do not have the cavity
Bloch equations for two qubits available.

The system of equations becomes then

p̃k = Tr
(
UkM̃U †kρ

)
.

Since the quantities p̃ and M̃ are in close relation with pk and M we will not distinguish
any more between them. From the context it should be clear which quantities we are
referring to.

Relative phase between different gate lines

In the two qubit tomography we are driving both qubits over different gate lines. However
this raises the question whether this has an influence on the result of the tomography
process or not. We will now show that this constant phase shift affects the reconstruction
of the density matrix. Similar problems are known form tomography on ions [40].

We can assume the two pulses have a phase difference ϕ. If we create now a tomography
pulse Uk and send it through the gate lines, the microwave will pick up an additional phase
ϕ, which yields a new tomography pulse

Ũk = SUkS
†,
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ϕ = 0o 60o 120o 180o 240o 300o

<ρ

=ρ

Figure 4.6: The plot shows simulations for reconstructed density matrices for a Bell state
|00〉 〈00|+ |11〉 〈11| and an relative phase shift of ϕ = 0o, 60o, 120o, 180o, 240o and 300o.

where the transformation is given by S = exp [−iϕσz ⊗ id]. This yield us the system of
equations∣∣∣pk = Tr

(
SUkS

†MSU †kS
†ρ
)∣∣∣
k=1,...,16

, instead of
∣∣∣pk = Tr

(
UkMU †kρ

)∣∣∣
k=1,...,16

.

However, if we do not know anything about the phase shift ϕ, we will use the wrong
operators Uk and hence reconstruct a state which is out of phase. We can easily see how
this affects the result of the tomography process.

pk = Tr
(
SUkS

†MSU †kS
†ρ
)

pk = Tr
(
UkMU †kS

†ρS
)
,

where we have used [S,M ] = 0. This phase shift S makes us believe that we are measuring
the density matrix S†ρS instead of ρ, see Fig. 4.6. An possibility to determine this relative
phase difference would be to prepare a known product state over the resonator and read
it out by tomography.

Manual calibration of the tomography pulses

Similar to the one qubit tomography the
(
π
2

)
and π pulses for the tomography have to be

calibrated. However, this time we need to calibrate
(
π
2

)
x
,
(
π
2

)
y

and π pulses for the first
and

(
π
2

)
x
,
(
π
2

)
y

and π pulses for the second qubit. The amplitude has been calibrated by
measuring the population of the excited state as a function of the pulse amplitude (see
previous chapter Fig. 3.3 and 3.3.1). The phase between

(
π
2

)
x

and
(
π
2

)
y

has been adjusted
according to the calibration done by a vector network analyzer (see appendix). However,
this calibration does not give any hint on the relative phase difference between the two
different drive. A different way to calibrate the phase has to be applied. However we will
see that for our experiment this additional phase shift does not matter as we will see in
Section 4.4.
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4.4 Experiment

To show the tomography procedure we will discuss the results of a two qubit state tomog-
raphy. In the experiment we have performed tomography on 16 different product states.
The product states have been prepared by performing on each qubit either no pulse, a(
π
2

)
x
,
(
π
2

)
y

or π pulse. First we reconstruct the density matrices by solving the system
of linear equations. For these states we calculate the L1 norm. Furthermore, we apply a
most likelihood procedure to find physical density matrices. This enables us to determine
the fidelity compared to perfect pulses.

For the tomography we use all possible combinations of id,
(
π
2

)
x
,
(
π
2

)
y

or π pulses
applied on each of the qubit. We can reconstruct the tomography pulses in the same way
as we reconstructed the tomography pulses for the case of one qubit (see Section 3.4.3)
and we find

UA1 =
(

0.74± 0.02 −0.67i± 0.02i
−0.67i± 0.02i 0.74± 0.02

)
and

UA2 =
(

0.70± 0.03 (−0.71 + 0.05i)± (0.02 + 0.04i)
(0.71 + 0.05i)± (0.02 + 0.04i) 0.70± 0.03

)
,

UB1 =
(

0.76± 0.03 −0.64i± 0.04i
−0.64i± 0.04i 0.76± 0.03

)
and

UB2 =
(

0.76± 0.02 (−0.64 + 0.13i)± (0.03 + 0.04i)
(0.64 + 0.13i)± (0.03 + 0.04i) 0.76± 0.02

)
,

where we have used the fact that the two qubits are not coupled (Section 4.3). Applying
the useful formula exp (−i~σ · ~nα/2) = cos (α/2) id − i~σ · ~n sin (α/2) we can calculate the
orientation and rotation angle for the tomography pulses represented as operations in
SO(3). For the pulses determined above we find

UA1 UA2 UB1 UB2
rotation angle : 85o 91o 81o 81o

∠ (U1, U2) : 86o 100o
.

This justifies the assumption of perfect tomography pulses. For simplicity we assume
perfect tomography pulses. We can find for the equation

∑16
i=1 ai,jri = pj the parameters

ai,j as given in the appendix 5.2. The matrix (ai,j)i,j={1,2,3,4} can be inverted, since the
measurement operator M fulfills the requirements |M3,3| 6= |M1,1 ±M2,2|.

We obtain the density matrices shown in Fig. 4.8. To check the deviation from the
theoretical value we can calculate the L1 = 1

2Tr
∣∣∣ρtheory − ρexperiment

∣∣∣ norm. We find in
Fig. 4.8 that the reconstructed states are in good agreement with the theoretical expected
density matrices.

Furthermore we can apply the most likelihood procedure as described in the theory
section. This has the advantage to obtain matrices, which are positive definite and describe
therefore physical solutions. These results are shown in Fig. 4.10. From this solution we

can now calculate the fidelity F = Tr
(√√

ρtheoryρexperiment
√
ρtheory

)
.
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In the previous section we have found that a phase shift S = exp (−iϕσz ⊗ id) can
cause problems to reconstruct the qubits state. However, we do not see such an effect in
the presented results. The reason for that is because we use the same gate lines to prepare
the state ρ as we use for the tomography pulse and hence the rotation S cancels out. We
prove that by

pk = Tr
(

(SUkS†)†M(SUkS†)ρ
)

pk = Tr
(

(SUkS†)†M(SUkS†)(SRS†) |00〉 〈00| (SRS†)†
)

pk = Tr
(
SU †kS

†MSUkRS
† |00〉 〈00|SR†S†

)
,

where we have written the state preparation by ρ = (SRS†) |00〉 〈00| (SRS†)†. If we use
the commutation relation S |ij〉 〈ji| = |ij〉 〈ji|S and the commutation relation for the
trace, the expectation value becomes

pk = Tr
(
U †kMUkR |00〉 〈00|R†

)
= Tr

(
U †kMUkρtheory

)
.

However, it is emphasized that this is only true if we use the same gate lines for the
tomography as for the state preparation.

Applied pulse sequence:
To produce the desired product state we first apply on each of the qubits either no

pulse or a
(
π
2

)
pulse or a π pulse. After that we perform the tomography by using

the 16 different Ui,j operations, with (i, j) =
{
id,
(
π
2

)
x
,
(
π
2

)
y
, π
}

. This is schematically
shown in Fig. 4.7. To ensure a proper calibration we have also added a calibration pulse
sequence. The calibration sequence works analogously to the auto calibration sequence
for one qubit. Since we have two qubits we perform calibration pulses on each of the
qubits individually. The measurement has been performed pulsed with approximately 8
photons in the resonator. The two qubits were at transition frequencies of ωA01 = 5 GHz
and ωB01 = 4.85 GHz (ωr−ωA01 = 5 GHz/ωr−ωB01 = 1.65 GHz detuned from the resonator)
as discussed in Section 4.3. All the measurements have been averaged 600.000 times.
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Figure 4.7: The figure shows a systematical picture of the pulse sequence for the tomog-
raphy process. The lower two pulse sequence show the microwave pulse which are applied
on the gate lines. These pulses are used for the state preparation and the tomography.
The uppermost graphic shows the measurement pulse which is applied on the resonator.
Each of the tomography and preparation pulse had a pulse length of 20 ns.
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<(ρtheory) =(ρtheory) <(ρtom) =(ρtom)

L1 = 0.30

|0〉 ⊗ |0〉−i|1〉√
2

L1 = 0.26

|0〉 ⊗ |0〉+|1〉√
2

L1 = 0.27

|0〉 ⊗ |1〉 L1 = 0.36

|0〉−i|1〉√
2
⊗ |0〉 L1 = 0.15

|0〉−i|1〉√
2
⊗ |0〉−i|1〉√

2
L1 = 0.20

|0〉−i|1〉√
2
⊗ |0〉+|1〉√

2
L1 = 0.14

|0〉−i|1〉√
2
⊗|1〉 L1 = 0.21

Figure 4.8: The graphic shows eight different product states for two qubits. The most left
column names the wave function which we intend to map the second and third one show
the real and imaginary part of theoretical density matrix for the corresponding state. The
next two columns give real and imaginary part for the measured density matrices using
tomography. The number shows the L1(ρtheory, ρexperiment) norm for the theory and
experiment.
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<(ρtheory) =(ρtheory) <(ρtom) =(ρtom)

L1 = 0.16

|0〉+|1〉√
2
⊗ |0〉−i|1〉√

2
L1 = 0.15

|0〉+|1〉√
2
⊗ |0〉+|1〉√

2
L1 = 0.12

|0〉+|1〉√
2
⊗ |1〉 L1 = 0.20

|1〉 ⊗ |1〉 0.36

|1〉 ⊗ |0〉−i|1〉√
2

L1 = 0.28

|1〉 ⊗ |0〉+|1〉√
2

L1 = 0.21

|1〉 ⊗ |1〉 L1 = 0.39

Figure 4.9: Continue from Fig. 4.8.



4.4. EXPERIMENT 75

<(ρtheory) =(ρtheory) <(ρML) =(ρML)

F = 0.987

|0〉 ⊗ |0〉−i|1〉√
2

F = 0.939

|0〉 ⊗ |0〉+|1〉√
2

F = 0.930

|0〉 ⊗ |1〉 F = 0.977

|0〉+|1〉√
2
⊗ |0〉 F = 0.986

|0〉−i|1〉√
2
⊗ |0〉−i|1〉√

2
F = 0.970

|0〉−i|1〉√
2
⊗ |0〉+|1〉√

2
F = 0.977

|0〉+|1〉√
2
⊗ |1〉 F = 0.974

Figure 4.10: The plots show eight different product states for two qubits. The most left
column labels the wave function, which we intend to map the second and third one show
the real and imaginary part of theoretical density matrix for the corresponding state. The
following two columns represent the real and imaginary part for the density matrices which
can be observed if we use a most likelihood procedure. The number to the left gives the
fidelity F (ρtheory, ρmostlikelihood) for the theory and matrix found by the most likelihood
procedure.
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<(ρtheory) =(ρtheory) <(ρML) =(ρML)

F = 0.976

|0〉+|1〉√
2
⊗ |0〉−i|1〉√

2
F = 0.981

|0〉+|1〉√
2
⊗ |0〉+|1〉√

2
F = 0.976

|0〉+|1〉√
2
⊗ |1〉 F = 0.956

|1〉 ⊗ |0〉 0.986

|1〉 ⊗ |0〉−i|1〉√
2

F = 0.971

|1〉 ⊗ |0〉+|1〉√
2

F = 0.952

|1〉 ⊗ |1〉 F = 0.961

Figure 4.11: Continue from Fig. 4.10.



Conclusion

In this Diplomarbeit we have realized a tomography procedure for one and two qubits.
The tomography on one qubit has been applied on different superposition states as dis-
cussed in Section 3.4.2. The tomography was performed with well calibrated pulses as
well as with an auto calibration method, which allows to compensate imperfect tomogra-
phy pulses. Further more, we performed tomography on Rabi (Section 3.4.3) and Ransey
(Section 3.4.4) experiments. These experiments agree with the theoretical expected states
as we have confirmed by extracting the L1 norm, which has been found for the two pro-
cesses to be of the order of 0.08 and 0.07. Moreover we have realized a Hadamard gate in
Section 3.4.5 and applied process tomography on it. The result confirms the theoretical
expected operation. We have written analysis files in Mathematica6.0 which can be used
for further experiments.

In addition we have realized a two qubit tomography procedure. Since Circuit QED
provides us with only one measurement operator it is impossible to readout the qubits
individually. This is a different to all the other systems like ions, NMR and quantum dots
where each qubits can be readout individually. Therefore we have realized a tomography
method to characterize the system by using just one measurement operator. We performed
this two qubit tomography on different product states as shown in (Section 4.4). With
this we have been able to reconstruct states which are close to the theoretical expected
density matrices. In addition to find physical density matrices (i.e. positive definite) we
employed a most likelihood procedure. The fidelity between the found density matrices
and the theoretical expected matrices are high and between 0.93 to 0.99. Very careful
calibration of the tomography pulses and their frequency can probably yield to an even
higher fidelity. The analysis file and pattern writing file for the two qubit tomography can
easily be applied for tomography on systems with more then two qubits.

We have seen that one and two qubit tomography works well. However it would be
good to adapt the method for the demand of further experiments. For example if we realize
a two qubit state by pulses, which are not created in the same way as the tomography
pulse (see 4.3), we will have to face the problem of a relative phase shift. Probably it will
be possible to adjust the phase by sweeping one of the microwave generators.

In a next step the automation of the tomography process would be desirable. However,
this would requires some major changes on the measurement software. Furthermore it
would be good to implement the cavity Bloch equations [39] into the two qubit tomography.
This would give us the opportunity to derive the measurement operator from theory rather
then from an experiment (see Section 4.3). Nevertheless we have not yet analised the cavity
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Bloch equations for a two qubit system. Moreover there has been ongoing effort to realize a
two qubit Bell state. Two qubit tomography enables us to verify whether we have achieved
to create an entangled state or not.
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Appendix

5.1 Topological set of tomography pulses for two qubit

If we apply id,
(
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2

)
x
,
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2

)
y

and π pulses on each of the qubit individually, we can find
the following 16 unitary operations. These operations are a complete set of tomography
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[
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5.2 System of equations for two qubit tomography

Here we give the exact form of the system of equations, which results form the 16 tomog-
raphy pulses described in the appendix 5.1. For simplicity we parametrize the density
matrix by

ρ =
1
4

∑
i,j=0,x,y,z

ri,jσi ⊗ σj .

Using the isomorphism pk 7→ pk~ek and rk 7→ rk~ek we can obtain the formula

r =
(
p|01〉〈10|Λ1 + p|10〉〈01|Λ2 + p|11〉〈11|Λ3

4

)−1

p,

with p|ij〉〈ji| the weighted averaged phase shift for the state |01〉 〈10| (see Section 4.3) the
matrices Λi defined as

The condition for inverting the matrix A =
(
M1Λ1+M2Λ2+M3Λ3

4

)
is given in the theory

chapter Section 4.1.2 and can easily be proven by calculating det(A) 6= 0.
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Figure 5.1: The picture shows a characteristic pattern file. The four plots show the pulse
sequence for the I and Q channel of mixer 1 and for the I and Q channel of mixer 2.

5.3 Sequence file

The pulse sequences for the measurement are defined by pattern files. A pattern file
consists of a pulse sequence which controlls the voltage applied on the channel for the two
I/Q mixers, a trigger for the acquisition card and a trigger for the measurement microwave
generator generator, which is used for pulsed measurements. The time resolution for the
drive pulses are 1 ns and the amplitude has a 10 bit resolution. The pattern files are run
by an arbitrary waveform generator (AWG). For a measurement run several pattern files
combined in one sequence file are load into the AWG simultaneously. The experiment
is organized in the following way: each of the pattern files is run sequential once, after
running each of the pattern files once the procedure is repeated several times and averaged.

In all the experiments the sequence file consists of an auto calibration part and a part
which contains the experiment. A schematic plot of a patter file is given in Fig. 5.1
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Figure 5.2: The picture shows schematically how we calculate the voltage (P1, P2) which
we have to apply on the I/Q mixer to create the a microwave at the output with amplitudes
(p1, p2). The points a, b, c and A,B,C comes from measurements with a VNA. The points
a, b, c are the three closest point to the desired point p.

5.4 Mixer calibration

The I/Q mixer which we used for controlling the amplitude and the phase of the microwave
pulses is not ideal. Even though that we have seen it is possible to calibrate the tomography
pulse without calibrating the mixer it would be nice if the used I/Q mixer is calibrated.

To calibrate the I/Q mixer we measured with a Vector Network Analyzer (VNA) the
amplitude and the phase of the out coming microwave field (VI , VQ) as a function of the
applied (I,Q) voltage as shown in Fig. 5.4. This gives us the discrete function F which
maps (I,Q) on (VI , VQ). The task is now to determine the voltage ~P = (P1, P2), which
we have to apply in the I/Q channel, so that we obtain on the mixer’s output the desired
microwave field ~p = (p1, p2). For this we find the three points ~a,~b,~c ∈ (VI , VQ) which are
closest to the point (P1, P2), this allows us to determine the parameter (α, β) so that the
condition α(~a− ~c) + β(~b− ~c) + ~c = ~p is fulfilled.(

α
β

)
=
(
a1 − c1 b1 − c1

a2 − c2 b2 − c2

)−1

(~p− ~c) .

On the other hand we can write for the input voltage α′( ~A − ~C) + β′( ~B − ~C) + ~C = ~P ,
where we have used from the calibration measurement ~A = F−1(~a), .... In first order we
can assume α = α′ and β = β′ and we find for the Voltage on the I/Q channel

~P =
(
A1 − C1 B1 − C1

A2 − C2 B2 − C2

)(
a1 − c1 b1 − c1

a2 − c2 b2 − c2

)−1

(~p− ~c) + ~C.
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a) b)

Figure 5.3: The right plot shows the amplitude of the output microwave filed for different
phases for the calibrated data (blue) and the uncalibrated data (red). The left picture
shows the measurement setup which was uses for the calibration. Since the Vector Network
Analyzer (VNA) can only create an output power of −7dBm but we are interested at a
power of 15dBm we have to use an amplifier.

a) b)

Figure 5.4: The Plot shows for the measurement form the Vector Network Analyzer the
amplitude (left) as a function of (I,Q) and the phase (right) as a function of (I,Q) of the
output microwave. The input field is at a power of 15 dBm.
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5.5 Operator sum representation

The time evolution is given by the map L, which is linear and conserves the property
of the density matrix (positive hermiticity and trace one). If we assume that the initial
qubit state is not entangled with the environment, we can write the starting state by
|ψ〉 = N

∑
j

∣∣∣ϕqubitj

〉
⊗
∣∣∣ϕEj 〉, where the last NE − Nqubit states build a basis orthogonal

on Hqubit. Applying the operator L on this state yields

L⊗ 1E (|ψ〉 〈ψ|) =
∑
i

qi |Φi〉 〈Φi| .

If we measure the environment TrE , we will obtain〈
ϕEj
∣∣L⊗ 1E (|ψ〉 〈ψ|)

∣∣ϕEj 〉 =
∑
i

qi
〈
ϕEj
∣∣ |Φi〉 〈Φi|

∣∣ϕEj 〉 .
The element

〈
ϕEj

∣∣∣ |Φi〉 is in Hqubit, since |Φi〉 ∈ Hqubit⊗HE and |ψi〉 ∈ HE . Therefore we
can do a basis transformation and find

L
(∣∣∣ϕqubit〉〈ϕqubit∣∣∣) =

∑
j≤N2

qubit

Mj

∣∣∣ϕqubit〉〈ϕqubit∣∣∣M †j ,
or for an arbitrary density matrix

L =
∑

j≤N2
qubit

MjρM
†
j .

It is remarkable that any process, which describes interaction between the qubit and the
environment, can be written by using not more then N2

qubit operators regardless of the
dimension of the environment (provided that dimHE > dimHqubit).

If we take interaction with the environment into account, the evolution of the qubit is
not anymore described by the Von Neumann equation but by the master equation, which
is a direct consequence of Markovian processes [41] and the operator sum representation.
The master equation is then given by

dρ

dt
= − i

~
[H, ρ] +

∑
n6=0

(
LnρL

†
n −

1
2
L†nLnρ−

1
2
ρL†nLn

)
,

where the Markov approximation Mn(t) =
√
tLn has been used.
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5.6 Data sheet for two qubit sample

The used two qubit sample has the following specifications for qubit A:

g 133 MHz
EJ 35.11 GHz
EC 231.7 GHz

Qubit B has the specificatio:
g 134 MHz
EJ 37.63 GHz
EC 231.5 GHz

The resonator has the bare resonance frequency at ν0 = 6.40845 GHz and a quality factor
Q = 4092.39 and κ = 1.56595 MHz.
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