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Abstract

The experiments presented in this thesis were carried out in a solid-state, electrical circuit analog

of atomic cavity quantum electrodynamics in which a superconducting charge qubit is strongly

coupled to a coherent microwave radiation field contained in a high quality factor transmission

line resonator, an architecture that has become to be known as circuit quantum electrodynam-

ics (QED) [1, 2, 3]. This system allows studying the interaction of individual photons with an

artificial atom and to perform fundamental quantum optics experiments on an electrical chip

[4, 5, 6]. Moreover, it has a strong, demonstrated potential for the realization of a solid-state

quantum information processor [7, 8, 9].

In the framework of this thesis, two major experiments have been performed in a circuit QED

architecture. First, on-chip quantum optics experiments are presented in which we were able

to investigate the interaction of matter and light down to the level of single quanta, ultimately

reaching the limit where a superconducting qubit dispersively interacts with the pure vacuum

fluctuations of the electromagnetic cavity field. Here, the presence of virtual photons manifests

itself as a small renormalization of the energy of the qubit in the form of the Lamb shift, which

is observed in our experiments for the first time in a solid-state system. The transition from the

strong dispersive to the resonant strong interaction is shown as a smooth, continuous overlap

of cavity transmission and qubit spectroscopy data, in a region where the Lamb shift turns into

the vacuum Rabi splitting of the cavity-qubit superposition states. The enhancement by the

cavity leads to maximum observable Lamb shifts of up to 1.4 % relative to the qubit transi-

tion frequency. Following the vacuum field measurements, the photon number is subsequently

increased. In this regime, some interesting results are presented that allow us to put the Lamb

shift in a consistent picture and to resolve individual photon number states of the cavity, as first

demonstrated experimentally in Ref. [5]. These measurements reveal that our qubit with limited

anharmonicity couples more strongly to the vacuum field than to a single photon inside the cavity.

The second part of this thesis focuses on the development of a novel type of transmission

line resonator. As opposed to conventional circuit QED cavities, the resonance frequency of

these devices can be dynamically tuned with an external magnetic field [10, 11]. Flux-tunable

transmission line resonators are systematically investigated in this thesis, ranging from a thorough

theoretical analysis to detailed experimental studies in which the tuning behavior of both the

resonance frequency as well as the quality factor is determined. Tuning ranges of up to 2.5 GHz

are observed and it is shown that the behavior of the quality factor can be controlled by choosing

adequate design parameters. Finally, a first experiment is presented in which we demonstrate

the successful strong coupling of a superconducting transmon qubit to a flux-tunable cavity.
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1 Introduction

The origins of quantum mechanics can be traced back to the beginning of the 20th century

when the quantized, discrete nature of light and radiation was revealed by Planck and Einstein

[12, 13]. Quantum theory has triggered an unprecedented scientific and technological revolution

that ultimately led up to today’s age of information. It has evolved into one of the most successful

physical theories ever developed and is believed to describe our world on both microscopic as

well as macroscopic scales. Throughout the last century, we have reached an ever deeper

understanding of the quantum nature of our world and the experimental and theoretical advances

have made it possible to test quantum theory in its most fundamental forms.

Cavity Quantum Electrodynamics

Cavity quantum electrodynamics (QED) provides a prototype system for studying quantum me-

chanics on the level of single quanta [14, 15, 16, 17]. By means of coupling an individual quantum

two-level system, such as an atom or a quantum bit (qubit), to the electromagnetic field con-

tained inside a cavity, the interaction of matter and light can be resolved in a highly controlled

fashion, allowing to observe the absorption and emission of single photons - the quantum parti-

cles of the electromagnetic field. The field inside a cavity is strongly modified in comparison to

free space, which in turn makes it possible to either suppress or strongly enhance the process of

spontaneous emission of photons by an atom. In that sense, the quantum nature of the system

can be preserved on much longer time scales than in free space. Over the course of the last

two decades, cavity QED has become an active area of research in physics and the realization of

such systems using atoms and optical mirrors has allowed for a number of hallmark experiments

such as the observation of the vacuum Rabi mode splitting [18].

In this thesis we realize a solid-state, electrical circuit analog of atomic cavity QED. Here, an

artificial atom in the form of a superconducting charge qubit is strongly coupled to the electro-

magnetic field contained in a coplanar transmission line cavity, an architecture now known as

circuit quantum electrodynamics [1, 2, 3].

Circuit Quantum Electrodynamics

Circuit QED represents one of the most beautiful examples of how two seemingly disparate

scientific disciplines can be connected and combined in an elegant and prosperous way. The

quantum-mechanical concepts of atomic cavity QED are applied to superconducting circuits to

arrive at an architecture that both serves as a high-accuracy testbed for fundamental quantum

theory as well as a promising candidate for the realization of a quantum information processor.
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1 Introduction

Circuit QED equally draws from quantum physics as well as electrical engineering and represents

an area of research where science and technology merge. Over the course of the last five

years, this novel system has generated a number of fascinating experiments in regimes, that

are in fact much more difficult to reach with traditional atomic cavity QED [2, 4, 5, 9, 6, 19].

Building on these recent developments, this thesis presents quantum optics experiments in which

we are able to investigate the interaction of matter with the pure quantum fluctuations of the

electromagnetic field, ultimately reaching the limit where a superconducting artificial atom solely

interacts with the virtual photons inside a cavity.

The Quantum Vacuum

Quantum theory predicts that empty space is not truly empty. Even in the absence of any

particles or radiation, that is in pure vacuum, virtual particles constantly pop into and out of

existence. This effect is commonly referred to as vacuum field fluctuations and can ultimately be

traced back to energy-time uncertainty in quantum mechanics. In an electromagnetic field, the

presence of virtual photons manifests itself as a small renormalization of the energy of a quantum

system, known as the Lamb shift. This shift has been measured for the first time in a hydrogen

atom [20] and is now being established as an ultra-high precision test of the theory of quantum

electrodynamics [21]. The interaction with these vacuum fluctuations is the underlying reason

for the spontaneous emission of radiation from any excited quantum system [22]. Moreover,

the same effect also triggers the well-known process of vacuum Rabi oscillations in cavity QED

[15, 16, 18]. In this thesis, we present the first experimental observation of the Lamb shift in a

solid-state system and resolve the quantum fluctuations of the vacuum field inside a cavity.

Superconducting Quantum Devices

The complete circuit QED architecture is realized in the form of macroscopic superconducting

circuits. It is a central theme of this thesis that these quantum electrical circuits can effectively

behave in the very same way as real atoms, acting as so-called artificial atoms that can be

coupled to electromagnetic fields inside a cavity. Superconductivity represents a prime example

of a macroscopic quantum effect. At low temperatures, the electrons in a circuit condense

into so-called Cooper pairs which can in turn form a coherent macroscopic state of matter

that is described by a single quantum-mechanical wave function. In that sense, it becomes

possible for superconducting circuits, consisting of billions of atoms, to essentially behave just

like single atoms. In circuit QED, we exploit these effects and harness their potential to realize

macroscopic devices that exhibit quantum-mechanical properties. This thesis focuses on two

specific superconducting quantum devices, superconducting charge qubits and superconducting

quantum interference devices. In particular, the development of a novel type of flux-tunable

superconducting cavity is presented, which has the potential to add a new dimension to circuit

QED experiments.
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Quantum Information Processing

Apart from the fundamental physical interest in studying the interaction of matter and light,

circuit QED has a strong, demonstrated potential for the realization of a solid-state quantum

information processor. Classical information, as it is processed in today’s computers, is based on

bits as elements for doing logic operations. A classical bit can take two values, either zero or

one, and can in principle be encoded in any classical system that has two distinct states, such

as the two sides of a coin or the voltages on a transistor. On the contrary, a quantum bit is

encoded in a two-state quantum system and can not only take the two values zero or one, but

in a certain sense it can be in both states simultaneously. This possibility of creating so-called

superposition states is the underlying principle of quantum information. A quantum computer

is in many ways superior to its classical counterpart. For instance, it can solve certain problems

exponentially faster than any classical computer possibly could [23, 24, 25] and the entanglement

between two qubits can be used to realize communication protocols that are secure by the laws of

nature [25, 26]. Today, many different quantum systems have been proposed and implemented

as possible candidates for quantum computation, most notably trapped ions [27, 28], electron

spins in quantum dots [29, 30], molecular spins in nuclear magnetic resonance [31, 32] and

superconducting circuits [33, 34, 35]. In particular, the high degree of control and the long

time scales on which quantum states can be preserved in cavity QED systems have made this

architecture a natural candidate for testing the concepts of quantum information processing. In

the circuit QED analog, the artificial atom is realized in the form of a superconducting charge

qubit and the electromagnetic field it couples to represents an effective means for distributing

its quantum information content and converting it into so-called flying qubits such as photons

[9].

Thesis Overview

Throughout this thesis, we will systematically explore the different concepts and regimes of cir-

cuit quantum electrodynamics. In the first part, the underlying theory for realizing quantum

devices based on so-called Josephson junctions is discussed. In particular, we focus on two

specific quantum devices, superconducting charge qubits and the superconducting quantum in-

terference device (SQUID), both of which represent essential ingredients for our experiments.

In the following, chapter 3 gives a thorough discussion of superconducting coplanar transmis-

sion line resonators which we use to realize single-mode coherent microwave radiation fields.

Here, we also present the development of a novel type of flux-tunable cavity that incorporates

a SQUID-loop at its center. The chapter is then rounded off with a discussion of the micro-

and nano-fabrication aspects and the design and operating constraints for these novel devices.

In chapter 4, superconducting charge qubits are coupled to microwave cavities to realize a solid-

state cavity QED system. First, the general theoretical framework of cavity QED, the so-called

Jaynes-Cummings model, is discussed and subsequently applied to the specific case of a coupled

qubit-resonator system. Two major circuit QED experiments have been carried out in this thesis

and are discussed extensively in chapter 5. In this final part, we present an experimental obser-

3



1 Introduction

vation of the Lamb shift in a macroscopic solid-state system where the presence of the virtual

photons inside the cavity manifests itself as a small renormalization of the energy of the qubit.

In a second experiment, the successful strong coupling of a superconducting charge qubit to a

novel flux-tunable cavity is demonstrated and some first preliminary results of our measurements

are shown.

4



2 Quantum Devices

The last two decades saw the development of a vast number of mesoscopic and macroscopic

quantum devices spanning quantum amplifiers [36, 37], ultra-sensitive detectors and magne-

tometers [38] and in particular superconducting quantum bits [33, 34, 35, 39]. In this section,

superconducting quantum devices based on so-called Josephson junctions will be systematically

investigated, laying the theoretical groundwork for the experiments discussed throughout this

thesis.

2.1 Quantum Electrical Circuits

Classical electrical circuits can be consistently described in terms of Lagrangian and Hamiltonian

mechanics [40, 41]. In this context, a quantization seems to be naturally at hand and can in

fact be carried out with ease. The key problem in this case, however, is more of a conceptual

and practical nature. Until the mid 1980s it was not clear if quantum behavior can be observed

at all in electrical circuit elements. In conventional, classical circuits, the collective electronic

degrees of freedom such as currents or voltages represent classical variables. The charge on

a capacitor plate or the voltage drop across a resistor are then given by simple numbers. In a

quantum circuit, however, all degrees of freedom have to be treated as operators which do not

necessarily commute. The behavior of a quantum integrated circuit is the result of the collective

behavior of many particles, i.e. it represents a macroscopic quantum phenomenon [42, 43].

Pioneering experiments [44, 45] and the development of the Caldeira-Leggett formalism [42,

46] consequently demonstrated the applicability of quantum mechanics to macroscopic objects

and showed that electrical circuits can indeed exhibit quantum behavior. In the following, the

formalism for describing electrical circuits in terms of quantum theory will be briefly reviewed. The

quantization procedure discussed here is used repeatedly throughout this thesis and ultimately

paves the way for the circuit QED experiments of chapter 5.

A Lagrangian and Hamiltonian description of electrical circuits naturally shows that the charge q

and the magnetic flux Φ are canonically conjugate variables. Here, Φ takes the role of position

coordinate and q is equivalent to momentum [41, 47, 48]. The voltage u and current i in an

electrical circuit are most generally defined by the line integrals

u =

∫
~E · d~s , i =

∫
~B · d~s (2.1)

where the integration path is to be taken over the length of the specific circuit element under

consideration. In general, a circuit can be thought of as a set of different branches (e.g. ca-

5



2 Quantum Devices

pacitors, inductors, etc.) which are connected at nodes [47]. Consequently, we can define the

dynamical variables branch charge q(t) and branch flux Φ(t) as functions of time t

q(t) =

∫ t
−∞

i(t ′)dt ′ , Φ(t) =

∫ t
−∞

u(t ′)dt ′ (2.2)

where the boundary condition u(t → −∞) = i(t → −∞) = 0 was assumed, i.e. no voltages

and currents in the circuit at t = −∞. Now for a linear capacitor, the general functional relation

of voltage and charge is of the well-known form u = f (q) = q/C with the capacitance C being

the inverse proportionality constant. Likewise for inductors we have i = g(Φ) = Φ/L with L

being the inductance. Furthermore, the electrical power is given by P = dW /dt = u · i and thus

we have

PC =
q

C
i =

q

C

∂q

∂t
and PL = i

∂Φ

∂t
=

Φ

L

∂Φ

∂t
. (2.3)

Hence, it follows that the energies of a linear capacitive and inductive element can be written as

EC (q) =

∫ q
0

q′

C
dq′ =

1

2
Cu2 =

q2

2C
, EL(Φ) =

∫ Φ

0

Φ′

L
dΦ′ =

1

2
Li 2 =

Φ2

2L
. (2.4)

Given these expressions, it can be easily seen that branch charge and flux represent the canonical

momentum and position coordinates fulfilling the Hamilton equations. Using (2.4), the total

energy of a conservative circuit is described by the Hamilton function

H(q, Φ) = hc(q) + hL(Φ) =
q2

2C
+

Φ2

2L
. (2.5)

All this means is that the electric field energy is stored in the capacitor while the magnetic field

energy is present in the inductor. On the other hand, a resistor dissipates energy and thus it

cannot be used as a building block of a quantum circuit, as is discussed in detail below. Now if

the two forms of energy in the electric and magnetic fields are transformed into each other, a

current flows through the circuit. Hamilton’s equations then show explicitly that q and Φ are

indeed a pair of canonically conjugate variables

∂H

∂q
=

Q

C
= −L

∂I

∂t
= −Φ̇ ,

∂H

Φ
=

Φ

L
= I = q (2.6)

→ {Φ, q} = 1 (2.7)

where Kirchhoff’s rules have been used. The quantization of the circuit then follows the stan-

dard procedure. Classical variables and Hamilton function are replaced by operators and the

quantization prescription

{A, B} →
1

i~
[A, B] (2.8)

is imposed (first quantization). Thus the charge and flux operator are defined by

[Φ, q] = i~ → q = i~
∂

∂φ
, φ = −i~

∂

∂q
. (2.9)

6



2.2 Macroscopic Quantum Model

The quantum mechanical description of the circuit is then completed by defining the current and

voltage operators

I = −
1

L

∂Φ

∂x
, V =

q

C
. (2.10)

The fundamental problem in observing the quantum nature of integrated circuits lies in the

inherent dissipation of energy. In order to preserve quantum coherence, all metallic parts of the

circuit must have zero resistance such that electronic signals can be transmitted without loss of

energy. This in turn means that the different circuit elements have to be superconducting at the

given operating temperature [48]. In practice, quantum circuits are sets of micron- or sub-micron-

size elements connected by wires or transmission lines. These superconducting systems can be

entirely fabricated using standard techniques from conventional integrated circuit technology.

The discussion so far has shown that the operators describing the collective, macroscopic degrees

of freedom can be easily inferred from their classical counterparts without necessarily having to

consider each individual particle in the circuit. Conceptually, this can be understood in terms of

the macroscopic quantum model.

2.2 Macroscopic Quantum Model

The quantum-mechanical behavior of individual microscopic particles is governed by the Schröd-

inger equation i~(∂/∂t) |Ψ〉 = H |Ψ〉. Although each particle in a given system behaves quantum-

mechanically, this behavior is in general not observed on a macroscopic scale: The quantum

nature of the individual particles is usually averaged out since macroscopic quantities involve a

summation over a broad distribution of quantum states. If, however, all particles in a system are

described by the same state (δ-distributed), the quantum nature of the individual particles can

become evident even on macroscopic scales. Two prominent examples of where this is the case

are Bose-Einstein condensates and superconductors. In these systems, the ensemble of all parti-

cles can be described by a single wavefunction |Ψ(~r , t)〉 involving macroscopic variables such as

the phase θ(~r , t). Using the Schrödinger equation and its general solution |Ψ〉 = Ψ0 exp[iθ(~r , t)],

the equation of motion for the phase of a wavefunction is written as

~
∂

∂t
θ(~r , t) = −E (2.11)

where Ψ0 was assumed to be stationary. In the case of fermions, all particles by definition have

different energies so the time-evolution of the phase also differs from particle to particle. Thus,

on average the macroscopic phase vanishes. For instance, in a normal conducting metal, no

macroscopic quantum effects are observed since the charge carriers are simple electrons obeying

Fermi-Dirac statistics. In the superconducting state, however, these electrons condense into

Cooper pairs which obey Bose-Einstein statistics. In that case, all particles have the same

energy in the ground state and thus according to (2.11) all phases evolve identically in time.

This gives rise to a so-called phase-locked state in which the ensemble of all Cooper pairs is

7



2 Quantum Devices

Figure 2.1: (a) Sketch of a Josephson tunnel junction. (b) Josephson junction viewed as a circuit element.

described by a single wavefunction

|Ψ〉 =
√

ns(~r , t)e iθ(~r ,t) (2.12)

where ns(~r , t) denotes the Cooper pair density. Therefore, a superconducting piece of metal

can be described by the macroscopic quantum variable θ(~r , t) and the local charge density

ρs(~r , t) = (−2e)ns(~r , t). A corresponding supercurrent density, fulfilling the continuity equation,

then follows directly from the Schrödinger equation [49]. On a macroscopic scale, this collective

quantized behavior manifests itself via the dependence of the current and voltage on the phase

and charge density, which leads to coherent macroscopic effects such as flux quantization and

the Josephson effect.

2.3 Josephson Junction Theory

A Josephson junction consists of two superconductors connected by a thin insulating barrier, as

depicted schematically in Fig. 2.1. If the barrier is sufficiently thin, the macroscopic wavefunc-

tions of both superconductors start to overlap and they form a weakly-coupled system in which

Cooper pairs can tunnel coherently from one side to the other with a non-vanishing probability.

The fundamental theory describing such a superconductor-insulator-superconductor system was

first given by Brian Josephson in 1962 [50] and was closely followed by the first experimental

confirmation in Ref. [51].

Josephson Relations

The two fundamental equations governing the behavior of a Josephson element relate both the

voltage V (t) across and the current Is(t) through the junction to the phase difference of the

macroscopic wavefunctions on the superconducting electrodes of the junction. The supercurrent

Is(t) flowing through a junction is given by the first Josephson equation, the current-phase

relation [49, 52]

Is(t) = Ic sinφ(t) , js(t) = jc sinφ(t) (2.13)

8



2.3 Josephson Junction Theory

where Ic is the maximum current that can be carried by the supercurrent, the so-called critical

current of the junction, and js , jc are the corresponding current densities. The supercurrent

is generated by the coherent, gauge-invariant phase difference of the two opposite junction

electrodes

φ(~r , t) = θ2(~r , t)− θ1(~r , t)−
2π

Φ0

∫ 2

1

~A(~r , t)dl (2.14)

where θi(~r , t) denotes the phase of the macroscopic wavefunction describing the Cooper pair

condensate in electrode i . The vector potential ~A(~r , t) accounts for external magnetic fields,

integrated over the junction in the direction of the current flow. Equation (2.13) describes

the tunneling of Cooper pairs from one electrode to the other, with Is being the corresponding

tunneling current. Note that this relation can be directly derived from first principles [50, 52].

An approximate expression for the critical current Ic based on a microscopic model is given by

the Ambegaokar-Baratoff-relation [53]

Ic =
π

2e

∆(T )

Rn
tanh

(
∆(T )

2kBT

)
(2.15)

which connects the critical current to the temperature-dependent BCS energy gap between

ground and excited state ∆(T ) and the tunnel resistance in the normal state Rn. The voltage

across the junction is related to the change in phase difference through the second Josephson

equation, the voltage-phase relation

dφ

dt
=

2π

Φ0
V (t) (2.16)

where Φ0 = h/2e is the flux quantum. All of the intriguing phenomena in Josephson elements

follow directly from the basic relations (2.13) and (2.16). The first Josephson effect, described

by (2.13), implies that there is a current flowing across the junction even without external applied

voltage. Furthermore, Eq. (2.16) shows that the phase difference φ(t) will change in time if

there is a non-vanishing voltage drop across the junction, which is referred to as the second

Josephson effect. As can be inferred from the two Josephson relations, the supercurrent is then

an oscillating function of the voltage with period T = Φ0/2π.

In terms of energy, a Josephson junction is characterized by the kinetic energy of the Cooper

pairs, the Josephson coupling or tunneling energy EJ =
∫

dtV · I , as well as the potential energy

capacitvely stored in the junction, the charging energy EC = CV 2/2. Note that EC is an

electrostatic energy while EJ is a magnetic energy (see also section 2.1). Using the first and

second Josephson relations, these are written as

EJ(φ) = EJ0(1− cosφ) , EC = 4EC0N2 (2.17)

EJ0 =
Φ0Ic
2π

, EC0 =
e2

2C
(2.18)

where C denotes the junction capacitance and N the number of Cooper pairs on the supercon-

ducting electrodes. As mentioned above, the kinetic energy EJ resulting from the first Josephson

relation describes the tunneling of Cooper pairs across the insulating barrier. EJ0 is the energy

9



2 Quantum Devices

required for such a transfer of a Cooper pair and EJ can be regarded as a kinetic energy term,

very much like in the quantum description of solid-state lattices [54]. This peculiar connection

will become even more obvious in section 2.5, where the tunneling process is discussed in terms

of a tight-binding model. Note that the formulation of a tunneling process in terms of phase

differences is completely equivalent to a description using wavefunction overlaps [52].

Electrical Circuit Model

From the viewpoint of an electrical circuit element, as illustrated in Fig. 2.1b, the Josephson

junction is essentially a nonlinear, non-dissipative circuit element consisting of a capacitance CJ

and the non-linear Josephson inductance LJ. Applying a bias current I , two fundamental cases

can be distinguished in a Josephson element. In the so-called zero-voltage state I < Ic , the

applied current I does not exceed the maximum critical current Ic of the junction and the total

current flowing through is just the supercurrent given by (2.13). Since there is no resistance in

that case, there is also no voltage drop across the junction, hence zero-voltage state. If however

the bias current through a Josephson junction exceeds the maximum supercurrent, i.e the critical

current Ic , it can no longer be carried completely by Is , which is referred to as the voltage state.

Taking the time derivative of (2.13) and plugging in (2.16) gives

dIs
dt

= Ic cosφ
2π

Φ0
V (t). (2.19)

Using V = L(dI/dt), the nonlinear Josephson inductance is identified as

Ls =
Φ0

2πIc

1

cosφ
=

Φ0

2πIc

1√
1− (I/Ic)2

≡
Lc√

1− (I/Ic)2
(2.20)

where (2.13) has been used. Here, Lc = (Φ0/2πIc) is the specific Josephson inductance. Note

that for very small bias currents I , the inductance essentially reduces to Ls ≈ Lc .

At finite temperatures, a Josephson element also contains normal electrons that are not con-

densed into Cooper pairs, so-called quasiparticles. In the zero-voltage state I < Ic for temper-

atures much smaller than the critical temperature Tc , these normal electrons contribute only a

small fraction to the total current, whereas in the voltage state I > Ic all current is in fact carried

by electrons rather than Cooper pairs. Thus for a complete description of the Josephson element,

additional current channels have to be considered. These include resistive, capacitive and noise

current channels. The resistive contribution results from the breaking up of Cooper pairs due

to thermal excitations, which has a non-vanishing probability at finite temperatures. Then also

’unpaired’, normal electrons contribute to the total current flowing through the junction, which

is commonly referred to as the normal current IN . Note that this current is resistive in nature,

which can ultimately be traced back to the fermionic character of electrons as opposed to the

bosonic properties of Cooper pairs [49]. The electrons due to the breaking up of Cooper pairs are

referred to as quasiparticles and their contribution to the total current can become substantial for

temperatures close to the transition temperature Tc . The second contribution results from the

10



2.3 Josephson Junction Theory

capacitance of a Josephson junction. Since a superconductor/insulator/superconductor junction

simply represents a parallel-plate capacitor, a Josephson junction also has a finite displacement

current ID = CJ · (dV /dt) in the presence of a time-varying voltage. Finally, current noise is

taken into account by generically including an additional current IF
1. Thus using Kirchhoff’s

rules, the total current through a Josephson junction in the voltage state is written as [55, 56]

I = Is + IN + ID + IF

= Ic sinφ+ V · GN(V ) + CJ
dV

dt
+ IF (2.21)

where the voltage dependence of the conductance GN in the ohmic term results from the fact

that additional Cooper pairs break up if the voltage exceeds the gap voltage Vg = 2∆/e with

∆ denoting the BCS energy gap. Now using the second Josephson equation (2.16), the current

through a junction reads

I = Ic sinφ+ GN(V )
Φ0

2π

dφ

dt
+ CJ

Φ0

2π

d2φ

dt2
+ IF . (2.22)

The capacitance of an ideal Josephson element is in general well approximated by the standard

expression

CJ =
εrε0A

d
(2.23)

where εr denotes the relative dielectric constant of an oxide barrier of thickness d and area A.

For the typical junctions in the experiments presented in this thesis, the Josephson capacitance

per unit junction area is on the order of a few fF/µm2.

RCSJ-Model

As is obvious from equation (2.21), a Josepshon junction can be effectively modeled as a parallel

circuit, see Fig. 2.2a. In this so-called resistively and capacitively shunted junction (RCSJ)

model, the voltage-dependence of the conductance is neglected. Thus using (2.18) and (2.22),

one arrives at the following differential equation governing the behavior of a Josephson junction

in the voltage state [38](
Φ0

2π

)2

CJ
d2φ

dt2
+

(
Φ0

2π

)2 1

RN

dφ

dt
+

d

dφ
[EJ0 (1− cosφ− iφ)] = 0 (2.24)

where the normalized current i = I/Ic has been introduced. One can compare this to the

standard classical equation of motion of a particle of mass M moving along the coordinate x in

a potential U with damping κ

M
d2x

dt2
+ κ

dx

dt
+∇U = 0 . (2.25)

1As will be discussed later on, this noise exhibits a typical 1/f characteristic, hence it’s denoted by IF .

11



2 Quantum Devices

Figure 2.2: (a) The RCSJ equivalent circuit model. (b) Mechanical analogue of the dynamics of the gauge-

invariant phase φ in a tilted washboard potential. Three different cases I = 0, I < Ic , I > Ic are shown with the

corresponding dynamics of the ’phase particle’ illustrated by arrows.

Mapping the two equations of motion, a ’potential’ for the phase of the Josephson junction can

be identified as

U(φ) = EJ0 (1− cosφ− iφ) (2.26)

which is commonly referred to as the tilted washboard or Josephson potential. Similarly, the

mass M of the ’phase particle’ as well as the damping κ and the quality factor Q of a Josephson

junction are found

M = CJ

(
Φ0

2π

)2

, κ =

(
Φ0

2π

)2 1

RN
, Q =

√
2π

Φ0
IcR2
NCJ ≡

√
βc (2.27)

where the Stewart-McCumber parameter βc = (2π/Φ0)IcR2
NCJ has been introduced, which

describes the damping strength of a junction. Note that in practice, however, the damping is

governed by the impedance of the embedding circuit of the junction rather than by the intrinsic

resistance RN .

The analogy between the motion of a gauge-invariant phase difference across a Josephson junc-

tion and the damped motion of a particle is illustrated in Fig. 2.2b. In the zero-voltage state

I < Ic , the phase potential is effectively given by U(φ) ≈ EJ0(1−cosφ) and becomes increasingly

tilted when ramping up the bias current. The tilt gives rise to quantum tunneling of the phase.

For vanishing bias current I = 0, the height of the tunneling potential barrier is approximately

U0 ∼ EJ0 and the oscillation frequency is given by

ω0 =

√
2πIc
Φ0C

, (2.28)

12



2.3 Josephson Junction Theory

Figure 2.3: Schematic current-voltage characteristics of a driven Josephson junction: (a) Increasing current, (b)

decreasing driving current, see text for details.

which is also referred to as the plasma frequency. The corresponding quantum tunneling rate of

the ’phase particle’ through the barrier U0 is then written as [47]

Γq = aq
ω0

2π
exp

(
−

36

5

U0

~ω0

)
(2.29)

where aq is a damping dependent, dimensionless prefactor. The characteristic form of the

nonlinear potential U(φ) forms the basis for quantum information processing with so-called

superconducting phase qubits [39, 19] (see also section 2.5).

Current-Voltage Characteristics

The behavior of a lumped Josephson junction is to a good approximation described by the

RCSJ differential equation. In particular, its peculiar current-voltage characteristics and re-

sponse to driving sources can be conveniently discussed in the framework of the RCSJ model.

The schematic current-voltage characteristics of an ideal, current-driven Josephson junction are

depicted in Fig. 2.3. The IV characteristics strongly depend on the sweeping direction of the

current. First, the case of increasing current is shown in Fig. 2.3a for temperatures well below

the critical temperature T � Tc . Starting from I = 0, the current is first carried completely

by the supercurrent (zero-voltage state) and there is no voltage drop until I reaches the critical

current Ic . In terms of the RCSJ model, the washboard is only slightly tilted in that case and the

phase particle is trapped in one of the potential minima (see Fig. 2.2), i.e. it is in a stationary

state. For T � Tc and |V | < Vg, the normal current contribution due to quasiparticles vanishes

since neither the thermal energy kBT nor the energy eV supplied by the external circuit are suf-

ficient to break up Cooper pairs, i.e. the current is carried almost entirely by the supercurrent.

At I = Ic , the voltage suddenly increases from V = 0 to the gap voltage Vg, which is referred

to as ’switching’. For I > Ic , the junction is in the normal conducting state and the current is

carried completely by quasiparticles, which gives rise to the linear, ohmic dependence shown in

13



2 Quantum Devices

Figure 2.4: Circuit diagram of a SQUID and equivalent RCSJ model, in analogy to the case of a single Josephson

junction of Fig. 2.2.

Fig. 2.3a. In this region, the washboard is tilted so strongly, that no minima exist anymore and

thus the phase particle can move freely, resulting in a time-dependent phase difference and a

voltage drop according to the second Josephson relation. Note that the IV curve is symmetric

with respect to the origin. Furthermore, the case of decreasing current is depicted in Fig. 2.3b,

which is often referred to as the quasiparticle curve. Starting from I > Ic , the junction is first in

the voltage state, i.e. the current is carried by quasiparticles. Decreasing the current to below

the critical current, we enter a region of constant voltage drop across the junction V = Vg and

at I = 0, the voltage switches from +Vg to −Vg.

2.4 Superconducting Quantum Interference Devices

One of the most influential developments in the wake of the discovery of the Josephson effects

was the invention of the so-called superconducting quantum interference device (SQUID). The

first working devices date back to the sixties and over the course of the last three decades the

SQUID has become a highly valuable tool in a vast number of different applications, ranging

from ultra-sensitive magnetometers to ultra-low noise amplifiers or digital readout electronics

[38], among many others. Moreover, the investigation of SQUIDs and the Josephson effects

ultimately paved the way for superconducting quantum information processing. The discoveries

that led to the development of the SQUID can be traced back to half a century ago when flux

quantization was predicted in [57] and experimentally observed in Refs. [58] and [59]. Shortly

after Josephson predicted the tunneling of Cooper pairs across a thin insulating barrier [50], the

rf-SQUID was proposed in Ref. [60].

2.4.1 Critical Current and Tunability

A SQUID consists of two Josephson junctions forming a closed superconducting loop, as shown

in Fig. 2.4. It is based on a unique combination of two fascinating and equally useful quantum-

mechanical effects, namely flux quantization and Josephson tunneling. As will be discussed in this

section, a SQUID can essentially be considered as a single Josephson junction with a flux tunable
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Figure 2.5: (a) Maximum critical current of a symmetric SQUID as a function of external flux bias Φ, normalized

with respect to (Ic1 + Ic2). (b) Maximum critical current of an asymmetric SQUID for different degrees of junction

asymmetry: d = 20% (blue), d = 35% (purple), d = 50% (orange) and d = 70% (purple).

inductance Ls and Josephson energy Es . According to Kirchhoff’s rules, the total supercurrent

through a SQUID loop is given by

Is = Is1 + Is2 = Ic1 sinφ1 + Ic2 sinφ2 . (2.30)

Both phase and magnetic flux through such a superconducting loop are quantized according to

Φ = Φ0 · n , φ = 2πn (2.31)

from which it also follows that (see [38] or [49], for instance)

φ2 − φ1 = 2πn +
2πΦ

Φ0
=

(
2π

Φ0

)
Φ mod2π . (2.32)

where Φ denotes the magnetic flux threading the loop. Thus the total supercurrent reads

Is = Ic1 sinφ1 + Ic2 sin

(
φ1 +

2πΦ

Φ0

)
. (2.33)

The magnetic flux Φ consists of an external contribution Φext from applied magnetic fields as

well as a self-inductance contribution ΦL = LIcir, which accounts for the induction caused by the

supercurrent Icir circulating in the loop. Since it holds that Icir = (Is1− Is2)/2, the total magnetic

flux is given by

Φ = Φext + LIcir

= Φext +
L

2

(
Ic1 sinφ1 − Ic2 sin

(
φ1 +

2πΦ

Φ0

))
. (2.34)

The SQUID’s self-inductance contribution can be neglected for LIc � Φ0, which is the case

for very small loop sizes. Now setting Φ ≡ Φext and neglecting self-inductance, the maximum
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critical current can be easily found by maximizing (2.33) with respect to φ1, which gives

Ic =

[
(Ic1 − Ic2)2 + 4Ic1Ic2 cos2

(
π

Φ

Φ0

)]1/2

(2.35)

and reduces to

Ic = 2Ic0

∣∣∣∣cos

(
π

Φ

Φ0

)∣∣∣∣ (2.36)

for symmetric junctions Ic1 = Ic2. Thus, the critical current of a SQUID is a periodic function of

Φ and can be tuned with an external magnetic flux. In case of non-negligible self-inductance, one

has to find a consistent solution of the two equations (2.33) and (2.34), as shown in Ref. [61].

For large self-inductance LIc � Φ0, the flux generated by the circulating supercurrent starts to

compensate the external flux and thus the tunability of a given SQUID decreases with increasing

L. In the devices used in our experiments, this self-inductance is usually very small and not a

limiting factor for the SQUID tunability [38].

Neglecting self-inductance, the critical currents of both symmetric (2.36) and asymmetric (2.35)

SQUIDs are plotted as functions of Φ in Fig. 2.5 for different ∆Ic = Ic1 − Ic2 with Ic1 + Ic2 =

const. .As can be seen, the range of current modulation with flux is increasingly reduced for

growing ∆Ic . This does, however, also make the SQUID less prone to magnetic field noise which

will become important later on when considering noise and decoherence in such systems. In that

sense, the relative asymmetry d = (Ic1 − Ic2)/(Ic1 + Ic2) of the two junctions can be used as a

design parameter to realize a desired tuning range and a corresponding flux-noise sensitivity. The

extrema of Ic(Φ) represent so-called ’sweet spots’ where the SQUID is to first order insensitive

to flux noise, which is discussed in more detail in sections 2.5 and 3.2.

The magnetic field dependence of the critical current of a SQUID gives rise to a tunable induc-

tance according to (2.20)

Ls(Φ, I ) =
Φ0

2π

[
(Ic1 − Ic2)2 + 4Ic1Ic2 cos2

(
π

Φ

Φ0

)
− I 2

]−1/2

(2.37)

where I is the bias current. Thus, a SQUID represents a circuit element with a flux-tunable,

non-linear inductance. In terms of the RCSJ model, it is described by the equivalent circuit

depicted in Fig. 2.4b. Here, the total capacitance of the two junction system is given by

Cs = ε0εr

(
A1

d1
+

A2

d2

)
(2.38)

with Ai and di denoting the area and thickness of junction barrier i . Note that in practice one

also has to account for possible stray capacitances. The total impedance of the SQUID loop

circuit of Fig. 2.4 reads

Zs(ω, Φ) =
iωLs(Φ)Rs

Rs + iωLs(Φ)− ω2Ls(Φ)CsRs
. (2.39)

where we have assumed a linear inductance in the limit I/Ic � 1. Note that all SQUID properties

are periodic in Φ0. The characteristic Josephson energy Es of a SQUID can be directly inferred
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from the single junction case. The magnetic flux-dependence naturally results in a tunable

Josephson energy of the two parallel junctions [62]

Es = EjΣ cos

(
πΦ

Φ0

)√
1 + d2 tan2

(
πΦ

Φ0

)
(2.40)

where EjΣ = Ej1 + Ej2. Here, we have introduced the energy asymmetry of the junctions

d =
Ej2 − Ej1
Ej2 + Ej1

. (2.41)

2.4.2 Non-Linearity and Higher Order Effects

In analogy to the single junction case, the degree of non-linearity of a superconducting quantum

interference device depends on the ratio of bias to critical current. This can be seen explicitly by

considering the Taylor expansion of the square root in the Josephson inductance with respect to

the ratio I/Ic . Neglecting self-inductance, the total inductance of the SQUID loop is just given

by (2.37) and we find that it can be split up into linear and non-linear contributions

Ls(Φ) =
Φ0

2πIc(Φ)

[
1 +

1

2!

(
I

Ic(Φ)

)2

+
1

4!
9

(
I

Ic(Φ)

)4

+ ...

]

=
Φ0

2πIc(Φ)
+ A3I 2 + 9A5I 4 + ... (2.42)

where we have introduced the anharmonicity parameter of order n

An(Φ) =
1

(n − 1)!

Φ0

2π

1

I nc (Φ)
. (2.43)

In the limit of small bias currents I � Ic , the non-linearity of the SQUID is effectively suppressed

by the critical current so that in lowest non-vanishing order one can essentially treat it as a regular

linear circuit element that happens to have a flux-tunable impedance. This limit is desirable when

trying to avoid anharmonicity in a quantum circuit while retaining tunability. In the context of

the RCSJ-model, a SQUID in that case simply represents an harmonic oscillator with plasma

frequency ωp = (2πIc/Φ0Cs)
1/2. Driving the oscillator at a frequency ωD � ωp means that

effectively no resonances are excited.

On the other hand, the non-linearity can reach significant levels when driving a SQUID-loop with

large bias currents I � Ic . In that case, a SQUID represents an anharmonic oscillator with a

non-linear energy level spectrum whose full quantum-mechanical description becomes non-trivial

(see section 3.2). To second order in the bias current, we have for the non-linear inductance of

a SQUID loop

Ls(Φ) = Ls0(Φ) + A3(Φ)I 2

=
Φ0

2π

(
1

Ic0(Φ)
+

1

4

I 2

I 3
c0(Φ)

)
. (2.44)
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Figure 2.6: Separation of the SQUID into a series combination of a linear and a non-linear circuit element.

Thus to second order, the SQUID can be modeled as a series combination of a lumped linear

inductance Ls0(Φ) and a non-linear element which is dependent on the bias current [37], see

Fig. 2.6. Note that a separation in the form of a parallel circuit, where the current instead of

the inductance is expanded, is completely equivalent. Including this non-linear perturbation, the

total impedance in the lossless case reads

Zs(Φ) = i

(
1

ω(Ls0(Φ) + A3(Φ)I 2)
− ωCs

)−1

(2.45)

from which we obtain the resonance frequency of the SQUID oscillator as

ωs =
1√

(Ls0(Φ) + A3(Φ)I 2)Cs

= ωs0 −
1

2!
A3I 2 1

2
√

L3
S0Cs

+
1

3!
A2

3I 4 3

4
√

L5
S0C 3

s

− ... (2.46)

where ωs0 = 1/
√

Ls0Cs is the linear resonance frequency of the circuit. Clearly, the Taylor

expansion shows that the non-linearity ultimately leads to frequency shifts which are proportional

to the current flowing through the SQUID. This has important implications when the SQUID is

incorporated into a larger resonant circuit: As a consequence of the SQUID non-linearity, the

resonance frequency of the total circuit will also shift by a certain amount from its unperturbed

value, depending on the magnitude of the bias current I flowing through the circuit. This

poses important constraints on the choice of the optimal critical current for a given Josephson

junction device. In some cases, a certain degree of non-linearity is a stringent requirement for

operation, e.g. in superconducting qubits (section 2.5), whereas in others linearity is clearly

favorable, in particular for the flux-tunable resonators discussed in section 3.2. There, a SQUID

is incorporated into a larger resonant circuit (a transmission line resonator) to realize a flux-

tunable harmonic oscillator. For a full quantum-mechanical description of such a system, one

first needs to formulate the dynamics of the SQUID in terms of the Langrangian and Hamiltonian

formalism.

2.4.3 Lagrangian and Hamiltonian Description

Thus far, the superconducting quantum interference device has been treated as a classical elec-

trical circuit whose peculiar properties originate from the quantum-mechanical Josephson effect.

Following section 2.1, the SQUID circuit can be easily quantized. As usual, the Lagrangian
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consists of a potential and a kinetic energy part

Ls =
∑
i=1,2

[
~2(CJi/2)

2(2e)2
φ̇2
i + EJi cosφi

]

=
~2(Cs/2)

2(2e)2
φ̇2
s −

∞∑
n=0

(−1)n

2n!

Es

φ2n
0

φ2n

≈
~2(Cs/2)

2(2e)2
φ̇2
s −

Es(Φ)

2Φ2
0

φ2
s (2.47)

where φi denotes the phase difference across junction i and φs = (φ1 + φ2)/2 and Cs = (CJ1 +

CJ2)/2. In the last step, we have expanded the cosine potential term and made the harmonic

approximation, i.e. kept only the leading term, and used the flux-dependent energy (2.40).

Making the usual canonical transformation, the Hamiltonian of the SQUID in the harmonic

approximation then reads

Hs =
~2

(4e)2Cs
q2
s +

Es(Φ)

2Φ2
0

φ2
s (2.48)

where we have used the conjugate properties of charge and flux (see section 2.1). As expected,

Hs has the form of a simple harmonic oscillator with the mapped quantities

m =
2Cs
~2

(2e)2 , ωp =

√
(2π)2Es

Φ2
0Cs

(2.49)

The harmonic approximation is valid for φs � 1, which corresponds to low amplitude plasma

oscillations. If the SQUID is driven on resonance ωd = ωp, these oscillations are excited and

the approximation breaks down, which can be effectively avoided by using operation frequencies

for which ωd � ωp holds. Since the plasma frequency is given by ωp = (2πIc/Φ0Cs)
1/2, this

operating constraint directly translates to driving the SQUID far below its critical current, which

provides a connection to the classical discussion of the non-linearity in section 2.4.2. On the

other hand, for driving frequencies ωd ∼ ωp, the harmonic approximation does no longer apply

and the system has to be described in terms of the full non-linear SQUID Hamiltonian [62]

Hs = −
1

2C (Φ0/2π)2

∂2

∂φ2
+

(
Φ0

2π

)2 1

2L

(
φ2 + β cosφ

)
(2.50)

where β is the Stewart-McCumber parameter introduced before and C and L are the total

capacitance and inductance of the SQUID circuit, respectively.

2.5 Superconducting Charge Qubits

The Josephson element has experienced a remarkable renaissance over the course of the last

decade as its potential for scalable quantum information processing was established [1, 2, 3, 33,

39, 63, 64]. The intrinsic non-linearity of a Josephson junction generates strongly anharmonic

energy levels and, in combination with its low dissipation, makes it a natural candidate for a
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Figure 2.7: Equivalent circuit diagrams of a single Cooper pair box, see discussion in the text.

solid-state quantum bit (qubit). In general, three different ’flavors’ of Josephson-junction based

qubits can be distinguished according to their relevant degree of freedom: charge [33, 34], flux

[65, 66] and phase [39]. In this thesis, we will focus on a specific type of superconducting charge

qubit, the so-called Cooper pair box [34].

2.5.1 Single Cooper Pair Box

The Cooper pair box is a series combination of a Josephson junction and a gate capacitance Cg,

as depicted in Fig. 2.7. It was theoretically proposed in Ref. [67] and first realized in Ref. [34].

In the Cooper pair box circuit, one electrode is shared between junction and capacitance, the so-

called island shown in green in Fig. 2.7. The second electrode of the junction connects the circuit

to a superconducting reservoir (in practice a ground), whereas the other capacitor electrode is

attached to a bias voltage source Vg. In the superconducting state, the reservoir contains a large

number of Cooper pairs. Cooper pairs can tunnel coherently through the junction onto the island,

giving it a certain number of Cooper pairs N and a corresponding excess charge. In addition, an

applied gate voltage Vg induces a certain number of polarization charges ng on the plates of the

capacitor and thus the total charge on the island is given by 2e(N − ng/2). In practice, the gate

charge ng serves as a control or bias parameter that is used to compensate for offset charges

qoff and fluctuations in the number of Cooper pairs on the island. Thus ng = qoff + CgVg/e is

the controlled variable of the circuit and the Cooper pair box is classified as a charge qubit.

The quantum circuit of Fig. 2.7 is conveniently described in terms of the canonical pair

of operators charge q and flux Φ, corresponding to the generalized momentum and position

coordinates. The general Hamiltonian of the Cooper pair box circuit consists of an electrostatic

and a magnetic part (see section 2.1)

H = Hel + HJ =
1

2C
q2 +

1

2L
Φ2 . (2.51)

Taking into account possible stray capacitances, the total capacitance of the Cooper pair box

circuit is CΣ = Cg + CJ + Cs . The electrostatic or capacitive energy is then Ec = q2/2CΣ,

whereas the inductive energy of the circuit is given by the Josephson energy EJ = Φ0Ic/2π =
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Figure 2.8: (a) Normalized eigenenergies of the bare electrostatic Hamiltonian Hel. Each color refers to a different

energy level and the kets denote the corresponding eigenstates |N〉. (b) Energy levels of the total Hamiltonian of

the Cooper pair box HCPB as a function of gate charge ng. The energies from (a) are shown as dashed and dotted

lines.

(Φ0/2π)2/Ls , i.e. the second Josephson relation (2.16). Since the net charge on the island is

q = 2e(N − ng/2), the total Hamiltonian is rewritten as

HCPB = Hel + HJ = 4EC0(N − ng/2)2 − EJ0 cos Θ (2.52)

where EC0 = (e2)/2CΣ denotes the charging energy and Θ the phase difference operator,

which corresponds directly to (2.14). The dimensionless operators N and Θ are the conjugate

generalized momentum and position coordinates, respectively, and thus they fulfill the canonical

commutation relation (see also section 2.1)

[Θ, N] = i and N = i
∂

∂θ
, Θ = −i

∂

∂n
. (2.53)

where n and θ are eigenvalues of the two operators. The first term of the Hamiltonian represents

the energy of a capacitor with a fixed, integer-quantized charge. The Josephson term HJ on the

other hand describes the coherent tunneling of Cooper pairs onto the superconducting island.

EJ0 is the energy required for such a transfer of a Cooper pair from the reservoir to the island

and HJ can be regarded as a discrete kinetic energy term. This will become more obvious in the

charge representation which provides an intuitive approach for understanding the Cooper pair

box.

Charge Basis

The unbounded, discrete charge basis diagonalizes the electrostatic part Hel of the CPB Hamil-

tonian. Here, the charge eigenstates |n〉 can be used to solve the corresponding eigenvalue

problem, with n being the number of Cooper pairs on the superconducting island. The charge
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basis is defined by

〈m|n〉 = δnm , I =
∑
n

|n〉 〈n| , N |n〉 = n |n〉 . (2.54)

Now rewriting cos Θ = (1/2)(exp[iΘ] + exp[−iΘ]) and using (2.53), the spectral decomposition

of the Hamiltonian in the charge basis is

HCPB =
∑
n

[
4EC0(n − ng/2)2 |n〉 〈n| −

EJ

2
(|n〉 〈n + 1|+ |n + 1〉 〈n|)

]
. (2.55)

In this representation, the eigenvalue problem can be solved by numerically diagonalizing the

Hamiltonian which yields the energy levels as functions of gate charge ng. Since this basis is

unbounded, the Schrödinger equation can not be solved analytically without first restricting the

problem to a certain subspace using a projection operator approach (see section 2.5.2).

The energy levels of the Cooper pair box are depicted in Fig. 2.8 as functions of the gate charge

parameter ng taken in units of single electrons. The bare electrostatic levels from the first term of

the Hamiltonian are shown in Fig. 2.8a. As can be seen, the unperturbed term Hel has a parabolic

energy level structure En = 4EC0(n−ng/2)2 which is periodic in the gate charge ng. Degeneracy

occurs at the crossing points of the energy parabolas, the so-called charge degeneracy points,

e.g. at ng = 1. As shown in Fig. 2.8b, the degeneracy is in turn lifted by the tunneling term HJ,

which acts as a perturbation giving only off-diagonal matrix elements in the charge basis. The

crossings of the energy levels of the unperturbed electrostatic Hamiltonian become avoided and

the charge degeneracy points vanish for the total Hamiltonian HCPB. This generates a periodic

energy band structure with periodicity np = 2e. If the gate charge changes from n to n + 1, for

instance by increasing the gate voltage by Vg = 2e/Cg, the ground state of the Cooper pair box

also shifts from |n〉 to |n + 1〉. This just means that in the ground state an induced polarization

charge 2e on the capacitor plates is compensated for by an additional Cooper pair on the island

via tunneling from the reservoir. In the presence of Josephson tunneling, the charge eigenstates

|n〉 and |n + 1〉 are no longer degenerate at ng = 1, they are however still coupled by tunneling.

This coupling leads to coherent superposition states at the avoided crossings in the energy band

structure Fig. 2.8b

|Ψ〉CPB =
1√
2

(|n〉 ± |n + 1〉) . (2.56)

At the charge degeneracy points, the lowest two energy bands have a minimum spacing of EJ
whereas the difference between adjacent higher bands is much larger. This anharmonicity is

caused by the non-linear Josephson element. The possibility of realizing anharmonic energy

bands does in turn make it possible to treat the Cooper pair box as an effective two-level system

and, ultimately, to use it as a quantum bit. The degree of anharmonicity of the energy level

spectrum is essentially determined by the ratio EJ/EC of Josephson energy to charging energy,

which can be seen explicitly in the phase representation.
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Phase Basis

In contrast to the charge basis, the basis of the conjugate operator Θ does allow for analytical

solutions of the CPB Schrödinger equation. The continuous, periodic phase basis is given by

〈θ|θ′〉 = δ(θ − θ′) , I =

∫
dθ |θ〉 〈θ| , Θ |θ〉 = θ |θ〉 , |θ〉 = |θ + 2π〉 . (2.57)

The periodicity of the phase has already been introduced in section 2.3 and it is a direct con-

sequence of charge discreteness n = 2e in BCS theory [49]. In complete analogy to the usual

unitary transformation between momentum and position basis, charge and phase basis are con-

nected via discrete and continuous Fourier transforms, i.e. [47]

|θ〉 =
∑
n

e iθn |n〉 , |n〉 =

∫ 2π

0

dθe−iθn |θ〉 (2.58)

which in turn also gives the translators for the two conjugate bases [68] (see section 2.1)

e in0Θ |n〉 = |n + n0〉 , e−iΘ0N |θ〉 = |θ − θ0〉 . (2.59)

Thus using (2.57) and (2.58), the time independent Schrödinger equation in the phase repre-

sentation reads

4EC0

(
i
∂

∂θ
− ng/2

)2

Ψk(θ)− EJ0 cos θΨk(θ) = EkΨk(θ) (2.60)

where 〈θ|k〉 = Ψk(θ). The corresponding spectral decomposition of the Hamiltonian is given by

HCPB = 4EC0

∫ 2π

0

dθ

(
i
∂

∂θ
− ng/2

)2

|θ〉 〈θ| −
EJ0

2

∫ 2π

0

dθ
(

e iθ + e−iθ
)
|θ〉 〈θ| . (2.61)

(2.60) belongs to the class of Mathieu equations and can thus be solved analytically [68]. First,

note that the translational relations (2.59) together with the gate charge periodicity imply that

the solution of the Schrödinger equation is of the form Φk(θ) = exp(−ingθ)Ψk(θ). Plugged

into (2.60), this gives the equation in an explicit Mathieu form. The energy levels can then be

written in the phase basis as [69]

Em(ng) = EC0MA(2[ng + k(m, ng))]) (−EJ0/2EC0) (2.62)

where MA is Mathieu’s characteristic value and k(m, ng) an eigenvalue sorting function. Pre-

packaged solutions for the Mathieu equations can be found in standard mathematical software,

e.g. in Mathematica. While the charge representation provides for a more easily accessible,

physical interpretation and an intuitive understanding of the Cooper pair box, the phase basis

gives exact results and most calculations are less time-consuming and not as prone to possible

truncation errors. The phase basis is especially well-suited for large ratios (EJ/EC )� 1, where

the Cooper pair box starts to go over from the charge to the phase regime. As will be discussed

in detail in section 2.7, the energy bands tend to flatten out for increasing ratio of Josephson to
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coupling energy. This is a crucial observation which has led to substantial improvements of the

original Cooper pair box design in the form of the transmon (see section 2.7) [69, 70].

2.5.2 Two Level Approximation: CPB as a Qubit

Although the Cooper pair box has an infinite number of energy levels, the discussion so far has

shown that strong degrees of anharmonicity are achieved as a consequence of the Josephson non-

linearity. The anharmonicity is maximized at the avoided crossings, the former charge degeneracy

points, where the spacing between the lowest two energy bands is much smaller than between

the higher adjacent bands. The Cooper pair box can thus be treated as an effective two level

system, i.e. a quantum bit or a pseudo spin 1/2 particle. Restricting the total Hilbert space of

the CPB to the two lowest states {|0〉 , |1〉} in the charge basis, the Hamiltonian simplifies to

H̃CPB = P01HCPBP01

= 4EC0

[
n2
g |0〉 〈0|+ (1− ng)2 |1〉 〈1|

]
−

EJ0

2
(|0〉 〈1|+ |1〉 〈0|+ |1〉 〈2|+ |2〉 〈1|)

≈ 4EC0

[
n2
g |0〉 〈0|+ (1− ng)2 |1〉 〈1|

]
−

EJ0

2
(|0〉 〈1|+ |1〉 〈0|) (2.63)

where P01 =
∑
n=1,2 |n〉 〈n| is a projector. In the last step we have neglected an off-diagonal

term as it only generates transitions to the third level, a process that is essentially suppressed

for strong enough anharmonicity.

Using the Pauli representation {σx ,σy ,σz}, the state of the Cooper pair box can be conveniently

described by a unit vector on the Bloch sphere and the Hamiltonian assumes a simpler form.

In general, an arbitrary operator A on a two-dimensional Hilbert space can be written as A =

(−1/2)hiσi + Tr(A) ·1 where hi is the unique representative vector. For the Cooper pair box we

have A = HCPB and [68]
~h = 4EC0(1− ng)~ez + EJ0~ex . (2.64)

This gives the major result of this section, the Hamiltonian in Pauli representation

HCPB = −2EC0(1− ng)σz −
EJ0

2
σx

= −
1

2
(Eelσz + EJ0σx) (2.65)

where the mean energy of the system E = Tr(HCPB) was subtracted as gauge choice and the

electrostatic energy Eel = 4EC0(1− ng) was introduced 2. Using the mixing angle [72]

θm = arctan

(
Ej0
Eel

)
, (2.66)

2Note that this result can also be derived less rigorously from (2.63) by making the identifications σx →
|n〉 〈n + 1|+ |n + 1〉 〈n|, σz → 1/2(|n〉 〈n|+ |n + 1〉 〈n + 1| and E = 8EC0n

2
g(1− 2ng) [71].
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2.5 Superconducting Charge Qubits

the Hamiltonian (2.65) can be easily solved for the symmetric and antisymmetric eigenstates

|Ψ↑/↓〉 = cos

(
θm
2

)
|0〉 ± sin

(
θm
2

)
|1〉 . (2.67)

These two states form the computational subspace {|0〉 , |1〉} ↔ {|Ψ↓〉 , |Ψ↑〉} used for encoding

quantum information in a Cooper pair box. The ground state is a symmetric superposition of the

charge eigenstates whereas the excited state is anti-symmetric. Controlled manipulation of these

states allows for quantum information processing with the Cooper Pair Box [8, 33, 34, 68].

The simplified Hamiltonian in the two-level approximation is formally equivalent to that of a

spin-1/2 particle in a magnetic field in the x-z plane. The quantization axis of the CPB qubit is

parallel to this field. To make everything a bit more elegant and less cumbersome, we can rotate

the coordinate system by the mixing angle θm about the y -axis so that

HCPB = ~ωaσz (2.68)

where the transition frequency between ground and excited state

~ωa =
√

E 2
el + E 2

J0 =
√

[4EC0(1− ng)]2 + E 2
J0 (2.69)

was introduced. In this rotated frame, the computational states are simply given by the charge

eigenstates |0〉 and |1〉 at ng = 1. At the charge degeneracy point ng = 1, the electrostatic

component vanishes and the qubit transition frequency is purely determined by the Josephson

tunneling energy. At this point, the rotated frame is identical to the original frame θm → 0 and

the computational subspace is spanned by the bare charge states |0〉 and |1〉.
So far, the two-state approximation has demonstrated that the CPB realizes an effective two-level

system that can in principle be used for quantum computation. In practice, however, operating a

CPB as a qubit represents a formidable challenge, both from a scientific as well as an engineering

point of view. The fundamental criteria that must be fulfilled for scalable quantum information

processing are compactly summarized in the form of the DiVincenzo critieria [73, 25]:

1. A scalable physical system with well-characterized qubits

2. A reset operation - the ability to initialize the state of the qubits to a simple fiducial state

3. Long relative coherence times that allow for the implementation of quantum error correct-

ing codes

4. A universal set of quantum gates

5. High-fidelity readout - a qubit specific measurement capability

6. The ability to interconvert stationary and flying qubits

7. The ability to faithfully transmit flying qubits between specified locations

In the Cooper pair box, superconductivity naturally helps in fulfilling some of these criteria (ultra-

low dissipation and noise at low temperatures). Up until now, the superconducting charge qubit

approach presented in this thesis sufficiently satisfies criteria 1, 2 and 4 [48]. In addition, the

potential to fulfill criteria 6 and 7 has been demonstrated in recent experiments [9]. So far,
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Figure 2.9: Equivalent circuit diagrams of the split Cooper pair box, see discussion in text.

number 3 and 5 are not sufficiently met, however recent developments have already shown

significant improvements towards this goal [7, 69, 70, 74].

2.5.3 Split Cooper Pair Box

The split Cooper pair box is a combination of a superconducting quantum interference device

(section 2.4) and a single Cooper pair box. It combines the flux-tunability of the Josephson

energy of a SQUID with the gate charge control in the single Cooper pair box. In a split CPB,

as depicted in Fig. 2.9, the single Josephson junction is simply replaced by a SQUID loop. This

introduces magnetic flux as a dynamical variable. With the general results for SQUIDs obtained

in section 2.4, it is straight forward to generalize the single to the split CPB case. From a circuit

point of view, all that is done is replacing one parallel circuit by another. Everything else stays

the same (see Fig. 2.9).

The two parallel junctions of the SQUID geometry are each characterized by a Josephson energy

EJ1/J2 and a superconducting phase difference φ1/2. According to (2.40), the total tunneling

energy of the loop then reads

EJ = −EJΣ cos

(
π

Φ

Φ0

)√
1 + d2 tan2

(
π

Φ

Φ0

)
cos(θ − θ0)

= −E ′J0 cos(θ − θ0) (2.70)

where θ = (φ1 + φ2)/2, EJΣ = EJ1 + EJ2 and the phase tan θ0 = d tan(πΦ/Φ0), which can be

eliminated for constant external flux [69]. Here, the junction asymmetry is given by

d =
EJ2 − EJ1

EJ1 + EJ2
. (2.71)
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The results from sections 2.5.1 and 2.5.2 are then conveniently translated to the case of a split

CPB by making the substitution

EJ0 → E ′J0 = EJΣ cos

(
π

Φ

Φ0

)√
1 + d2 tan2

(
π

Φ

Φ0

)
. (2.72)

Thus the split CPB behaves like a single Cooper pair box with a flux-tunable effective tunneling

energy EJ0(Φ)′. In total, we now have two external control parameters at our disposal, the

gate charge ng and the external flux Φ. Since the Josephson energy determines the energy

level separation E01 between the two qubit states at the charge degeneracy point, the external

magnetic flux can be used to tune the qubit transition frequency. Rewritting the Hamiltonian in

the two-state approximation with the new flux-dependent Josephson part, the qubit transition

(2.69) reads

~ωa =

√
EJΣ(cos2(πΦ/Φ0) + d2 sin2(πΦ/Φ0)) + 16E 2

C (1− ng)2 . (2.73)

Hence the split Cooper pair box realizes an effective quantum two-level system whose electrody-

namical behavior can be controlled by an external gate charge ng and an external magnetic flux

Φ.

2.6 Noise Mechanisms

The two dominant noise sources in Josephson junction-based devices are magnetic flux and criti-

cal current noise, both of which have a long history of experimental and theoretical investigation

[38, 75, 76, 77]. These noise mechanisms are universally present in all devices incorporating

parallel Josephson junctions, e.g. in SQUIDs, superconducting qubits or Josephson rings. In the

particular case of superconducting charge qubits, they are primarily responsible for dephasing, a

form of decoherence discussed in detail below. For the Cooper pair box, charge noise represents

the dominant noise source. This section gives a general overview of critical current and flux

noise in Josephson devices. Since the devices used in our experiments are exclusively based on

Al/AlOx/Al junctions, we will focus on these materials in detail.

Critical Current and Charge Noise

Fluctuations in the critical current of Josephson junctions arise from the trapping and subsequent

release of electrons in traps in the tunnel barrier [75, 78, 79]. Following recent experimental and

theoretical investigations of critical current noise in Al/AlOx/Al junctions [78, 80], defects in the

oxide tunnel barrier have been shown to affect the conducting channels of the junctions. Within

this microscopic theoretical model, an expression for critical current fluctuations in Josephson

junctions can be derived by considering the electric dipole moments of two-level system defects

in the barrier (e.g. OH− impurities) and their effect on the total barrier potential. The rms

27



2 Quantum Devices

critical current fluctuations are given by [78]

〈(δIc)2〉 =
L4

A2
〈(∆g)2〉 I 2

c ⇒ δI rmsc =
L2

A
√
〈(∆g)2〉Ic (2.74)

where L denotes the junction barrier thickness and A the junction area. Furthermore,

〈∆g2〉 =
1

2∆z0

∫ π

0

dθ0 sin θ0

∫ z02

z01

dz0∆g2(θ0, z0) (2.75)

∆g2(θ0, z0) =

∫ 2π

0

dφ

∫ ρmax

ρmin

dρρ ·
[

eβW (ρ,φ,Θ0,z0) − e−βW (ρ,φ,Θ0,z0)
]

(2.76)

W (ρ,φ, Θ0, z0) =

∞∑
n=1

(1− (−1)n)fn(ρ,φ, Θ0, z0) (2.77)

fn(ρ,φ, Θ0, z0) = K0(nπρ) sin(nπz0)− K0

(
nπ

√
ρ2 + d2 sin2 Θ0 − 2ρd sin Θ0 cosφ

)
× sin(nπz0 + nπd cosφ) (2.78)

with all spatial coordinates being normalized to the barrier thickness L. Here ∆z0 = z02 − z01

and d := d/L denotes the average dipole spacing. z0 := z0/L and θ0 are used to describe

the position of the dipoles within the barrier whereas the polar coordinates ρ := ρ/L and φ are

used as integration variables for integrating over the junction area. With these expressions, the

corresponding noise power density is given by [78]

SIc (f , T ) ≈
P0kBT

4f

L5

A 〈(∆g)2〉 (2.79)

where P0 is the two-level system density of states. Now choosing the cutoffs ρmin = 0.1 and

ρmax = 4.0 3 as well as p = 3.7 D for OH− impurities and εr = 10, d = 0.13 nm, U0 = 1 eV

for AlOx junctions, one gets 〈(∆g)2〉 = 1.5782× 102. Thus for a typical Josephson junction of

barrier thickness L = 1 nm and area A = 0.04µm2, the rms critical current fluctuations amount

to

δI rmsc ≈ 0.314× 10−5Ic . (2.80)

Using P0 = 1045 J−1m−3 for AlOx [78], the corresponding noise power at f = 1 Hz and T =

100 mK is given by

SIc ≈ 1.3612× 10−13I 2
c Hz−1 . (2.81)

We can compare this result to a second, more emperical model for δI rmsc and SIc [75]. Based

on an extensive analysis of experimental data on critical current fluctuations at T = 4.2 K for

different junction materials, the 1/f noise power spectral density is extrapolated to T < 1 K and

to a good approximation described by (see Ref. [75])

SIc (f , T ) ≈

[
144

(Ic/µA)2

(A/µm2)

(
T

4.2K

)2

(pA)2

]
1

f
(2.82)

3For values ρmin < 0.1 the effect of the dipole on the tunnelling potential would become too strong to be realistic

and for ρ > 2, W (ρ,φ, Θ0, z0) essentially vanishes [78].
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where A denotes the total junction area. Note that here SIc is independent of the barrier

thickness L. This noise power density corresponds to a rms fractional change in critical current

as follows:

〈(δIc)2〉 |t=0 =

[
144

(Ic/µA)2

(A/µm2)

(
T

4.2K

)2

(pA)2

]
2π

∫ ω2

ω1

dω
1

ω
(2.83)

⇒ δI rms
c =

[
288π

(Ic/µA)2

(A/µm2)

(
T

4.2K

)2

(pA)2ln

(
ω2

ω1

)]1/2

(2.84)

Using the same parameters as in the calculations above yields

δI rms
c ≈ 1.08675× 10−5Ic (2.85)

SIc ≈ 2.04082× 10−12I 2
c Hz−1 . (2.86)

where a bandwidth of ω1 = 0.1Hz - ω2 = 1000Hz has been assumed. Thus, despite the different

temperature scaling, the results from the two approaches agree quite well and give the same

order of magnitude for the rms fractional change δI rms
c in the critical current.

Flux Noise

In addition to critical current noise and Johnson white noise from electronic components, most

dc SQUIDs exhibit an excess low-frequency flux noise with a power spectrum that scales ∝ 1/f

[76, 77, 79]. Although flux noise in SQUIDs and superconducting qubits has been the subject

of extensive experimental investigations, a clear microscopic origin of this type of noise has not

been identified yet. In a recent theoretical work [79], flux noise is thought to be generated by

unpaired electrons that hop on and off defect centers by thermal activation, commonly referred

to as trapping. Arriving at a defect, an electron randomly adopts a low-energy spin direction.

While occupying a given trap, the spin is locked in its direction. When electrons are released from

the traps, the uncorrelated changes of their spin directions result in a series of random telegraph

signals that in sum give a 1/f power spectrum [79]. Since AlOx barriers sometimes contain

relatively large densities of defects such as OH− impurities, flux noise can be a crucial issue in

Al/AlOx/Al Josephson junctions. In the following, we will briefly discuss a generic approach that

leads to an approximate quantitative expression for the rms fluctuations due to flux noise [79].

Assuming a simple relation for the spectral density

SΦ(f ) = α/f (2.87)

with α constant, the total mean square flux noise can be written as

〈(δΦN)2〉 = α

∫ f 2

f 1

df
1

f
= α · ln

(
f2

f1

)
(2.88)
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where f1 and f2 are cutoff frequencies. Thus it follows that

α =
〈(δΦN)2〉
ln(f2/f1)

→ SΦ(f ) =
〈(δΦN)2〉
ln(f2/f1)

1

f
(2.89)

so that the rms flux noise is given by

δΦrmsN =
√

f ln(f2/f1)SΦ(f ) (2.90)

As first determined experimentally [76], the magnitude of the flux noise tends to flatten out at

low temperatures T < 1 K with a value of about S rms
Φ 10−5Φ0/

√
Hz at 1 Hz, becoming nearly

independent of the SQUID parameters and materials. Thus, the rms fluctuations in Al/AlOx/Al

junctions at f = 1 Hz can be roughly estimated as

δΦrmsN ≈ 5.4× 10−5Φ0 (2.91)

where the frequency range f1 = 10−4 Hz to f2 = 109 Hz has been chosen4.

2.7 Transmon Qubits

Over the course of the last decade, superconducting qubits such as the Cooper pair box [67, 34]

have emerged as some of the most promising candidates for quantum information processing.

Their excellent scalability properties and natural potential for strong and fast inter-coupling are

features that other implementations are struggling with [48, 81]. Superconducting qubits are,

however, still solid state systems and thus the electromagnetic, thermodynamic and mechanical

environment can (and will) also couple strongly to them. The resulting short coherence times

represent the main obstacle towards feasible quantum error correction and scalable quantum

computation.

Two complementary approaches exist towards tackling this problem. On the one hand, the

systematic investigation of materials and junction properties to control and eliminate different

types of loss and 1/f noise (see section 2.6) has the potential to improve virtually all types of

superconducting qubits [74, 75, 82]. On the other hand, the development of devices that are by

design and operation insensitive to certain sources of decoherence represents an elegant approach

that strongly benefits the specific type of qubit under investigation. This approach has already

led to significant improvements in coherence times through so-called sweet spot operation in

Cooper pair boxes [63]. Moreover, it has recently led to the development of a new generation of

superconducting charge qubits, the transmission line shunted plasma oscillation qubit or transmon

[69, 70]. This novel type of charge qubit has been used in all of the experiments in this thesis

and thus we will spend some time on explaining and discussing its properties.

In the first part of this section, the main decoherence mechanisms in superconducting charge

qubits will be reviewed, closely following the excellent discussions given in Refs. [71], [64] and

[83] . The second part will focus on the measures that can be taken to suppress some of these

4The results are only weakly sensitive to this choice.
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mechanisms and a charge noise insensitive qubit design is derived from the Cooper pair box

following Ref. [69].

2.7.1 Decoherence in Charge Qubits

In the context of quantum computation, decoherence refers to the mechanisms that cause a

quantum bit to lose its information content to the environment. Most generally, there are two

qualitatively different forms of decoherence in open quantum systems, energy relaxation and

dephasing. Although they sometimes have identical sources, they cause changes in different

quantum-mechanical properties describing a qubit. Here, we follow the Bloch-Redfield approach

[84] which describes the dynamics of a two-level system in terms of the two rates Γ1 = T−1
1

(energy relaxation) and Γ2 = T−2
2 (dephasing).

Energy Relaxation T1

Energy relaxation and heating are processes causing incoherent changes of the qubit state. That

is, the interaction with an environmental noise bath causes the qubit to flip randomly between

its two possible states. This is most generally described by the quantity T1, the characteristic

time over which a qubit is excited and de-excited by the environment. It is defined by the inverse

of the corresponding excitation and de-excitation rates [83]

T1 =
1

Γ↑ + Γ↓
. (2.92)

This type of decoherence is a consequence of the fact that all physical realizations of quantum

information are in reality open rather than closed quantum systems. To which extent a closed

system can be realized ultimately depends on how well it can be isolated from the environment. A

powerful and universal approach for describing coupling and information leakage to the environ-

ment is the Kraus or super-operator formalism [25, 85] . This representation allows to describe

the dynamics of a principal quantum system (the qubit) without having to explicitely consider

properties of the environment. Everything one needs to know is wrapped up in a superoperator

acting on the density operator of the qubit only

Λ : ρA(0)→ Λ(ρA) =
∑
m

MmρA(0)M†m (2.93)

where Mm are the Kraus operators that summarize the effect of the environment and act only on

the qubit state space. The Mm = 〈m|UAB |0〉B are determined by the matrix elements of the time

evolution operator of the whole system calculated with the basis states of the environment. In

this way, the environment itself is traced out and all that remains is the perturbed time evolution

of the qubit. Thus all that is needed is the interaction Hamiltonian of qubit and environment.

For the specific case of superconducting charge qubits, we can explicitly identify some of the

effects of the environment and write down the corresponding interaction terms [83]. In general,

relaxation is considered as a perturbation that couples a qubit operator ξ to an environment or
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noise bath operator B

HI = ξB . (2.94)

Here, ξ corresponds to the specific variable of the qubit that is affected by a certain type of noise.

In a general framework [86], the qubit operator ξ either contains σz or σ⊥ = σx+σy components,

depending on the type of decoherence that is caused by a given noise source. Energy relaxation

(T1) refers to the decay of the diagonal z component of the qubit density matrix while dephasing

(T2) describes the decay of the off-diagonal part [86, 25]. Using the general approach (2.94),

the relaxation rate corresponding to (2.92) is to a good approximation given by [83]

Γ↑↓ =
1

~2
|〈g|ξ|e〉|2 SB(∓ωa) (2.95)

where Fermi’s golden rule was used and SB(∓ωa) denotes the noise spectral density of the

environment at the qubit transition frequency.

Consider for instance the case of noise on the gate voltage Vg = Vg+δVg that is used to control

the charge bias ng of the Cooper pair box. This noise is simply the Johnson noise that results

from the ohmic environment of the CPB. This type of noise is thermal in nature and causes

random motion of charge carriers. It affects the number of charges on the island N and couples

to it via the gate capacitance Cg. Thus we can write

ξV = 2e
Cg
CΣ

δVgN . (2.96)

Note that this operator can also be equivalently written in terms of the operator σz (see

Eqs.(2.64) and (2.65)). The spectral density in this case is simply the Johnson-Nyquist ex-

pression for a dissipative circuit element (e.g. a resistor or the ohmic lines connected to the

qubit) [83]

SV (ω) =
2~ωRe[Z]

1− e−~ω/kbT
(2.97)

where Z = Z (ω) is the environment impedance. δVg ultimately causes fluctuations in the gate

charge and translates directly to energy relaxation via [71]

ΓV =
2πg2√

[4EC0(1− ng)]2 + E 2
J0

(2.98)

where we have used the two-state approximation for the CPB and g denotes the coupling strength

to the ohmic environment. These gate voltage fluctuations do, however, also lead to random

changes in the qubit transition frequency (2.69) and are thus also a source of the second form

of decoherence, dephasing. Although not discussed explicitly here, this is in fact true for all

mechanisms causing energy relaxation 5.

5Apart from the example of voltage noise discussed here, there are ample other causes for energy relaxation such

as quasi-particle, inductive or radiative material loss which are explained in detail elsewhere [71, 74, 86].
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Dephasing T2

Dephasing refers to processes that cause a qubit to accumulate a random phase rather than to

change its quantum state directly. In charge qubits, dephasing mainly arises from the intrinsic

low frequency 1/f junction noise discussed in section 2.6 as well as from thermal Johnson noise.

Although dephasing of overall phases is irrelevant, this form of decoherence more importantly

changes the relative phase in superpositions of two states. Here, the quantity T2 is the charac-

teristic time scale over which the qubit accumulates a random phase shift of π.

The phase is determined by the frequency and thus the root of dephasing lies in fluctuations

of the qubit transition. For the general case of a split Cooper pair box, the qubit transition

frequency (2.73)

~ωa =

√
EJΣ(cos2(πΦ/Φ0) + d2 sin2(πΦ/Φ0)) + 16E 2

C (1− ng)2 (2.99)

depends on a number of different parameters. Fluctuations in all of these parameters ultimately

contribute to dephasing. In particular, this means that all mechanisms of energy relaxation

are also responsible for dephasing. Since dephasing describes the decay of the amplitude of

a quantum state, energy relaxation contributes a factor of ΓT1/2. This in turn also sets a

dissipation-imposed upper limit for the dephasing time of T2 = 2T1.

Some general formulae valid for arbitrary parameters are readily derived [86, 71]. Let the fre-

quency fluctuations δωa depend on the parameter η. Expanding this general fluctuation around

η0 gives

δωa = δη

(
∂ωa
∂η

)
η0

+
δη2

2

(
∂2ωa
∂η2

)
η0

+ ... (2.100)

with the corresponding variance

〈δω2
a〉 = σ2

η

(
∂ωa
∂η

)2

η0

+
σ4
η

4

(
∂2ωa
∂η2

)2

η0

+ ... (2.101)

where the standard deviation of the parameter ση =
√
〈δη2〉 was introduced. The dimensionless

dephasing rate due to noise in η then reads

Γφ =
1

ωaT
η
2

=
1

ωa

√
〈δω2

a〉 . (2.102)

In conventional Cooper pair boxes, noise in the gate charge parameter η = ng is the dominant

contribution to dephasing. There are both intrinsic as well as extrinsic forms of charge noise

and three different types can be distinguished. The first type is the Johnson gate voltage noise

(2.97) discussed above which results from thermal fluctuations in the motion of charge carriers.

Furthermore, Josephson junctions suffer from the intrinsic 1/f charge noise presented in section

2.6. The third contribution comes from the resistive quasi-particle currents present in junctions
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[86]. From (2.99) and (2.102) we find for the first order contribution of charge noise at Φ = 0

Γφ = σng
(ng − 1)

(ng − 1)2 +
(
EJ

4EC

)2 . (2.103)

The variance σng is different for each type of charge noise and can be calculated from the

corresponding spectral noise density [87].

The second important contribution to dephasing results from fluctuations in the parameter

η = Φ, i.e. the flux bias used to tune the qubit transition. We find for the first order contribution

from flux noise

Γφ =
πσΦ

2Φ0

E 2
J

~ω2
a

(1− d2) sin

(
2πΦ

Φ0

)
. (2.104)

The third parameter in the qubit transition that is subject to noise is the Josephson energy

EJΣ = EJ1 + EJ2 itself. This results from the intrinsic 1/f fluctuations of the critical currents

discussed in section 2.6. It follows for the corresponding dephasing rate

Γφ =
EJ

~ω2
a

[
cos2

(
πΦ

Φ0

)
+ d2 sin2

(
πΦ

Φ0

)]
. (2.105)

As shown in the following, it is possible to reduce dephasing in superconducting qubits to a

certain extent by means of adequate qubit design.

2.7.2 The Transmon: A Charge Insensitive Qubit Design

Major efforts have been taken since the first experimental realizations of the Cooper pair box to

understand and control the sources of dephasing and energy relaxation discussed above. These

have brought about the notion of specific operating points in the CPB parameter space that allow

eliminating first order contributions to decoherence [63]. These points are often referred to as

sweet spots and can be directly inferred from the corresponding first order dephasing rates. The

charge noise contribution (2.103) vanishes at the gate charge sweet spot ng = 1. Unsurprisingly,

the energy bands in Fig. 2.8 have maxima and minima at these sweet spots and the Cooper pair

box becomes first-order insensitive to charge fluctuations. Operating the CPB at this point has

led to significant improvements in coherence times [63]. For flux noise, (2.104) goes to zero at

the sweet spots Φ = 0 and Φ = Φ0/2. Permanently operating at these points does, however,

nullify the tuning ability of the CPB. For critical current noise (2.105) there exists no sweet spot,

which ultimately results from the fact that there must always be at least one parameter that

sets the absolute energy scale ~ωa [71].

Although we can eliminate first order charge noise by biasing the qubit at ng = 1, there are still

higher order terms that effectively cause dephasing. Naturally, the question arises whether it is

possible to (a) eliminate higher order contributions and (b) find a regime were all of them are

suppressed simultaneously. Considerations in this direction have led to the development of the

transmission line shunted plasma oscillation qubit, the so-called transmon. It was theoretically

proposed in [69], experimentally invesitgated in [70] and already successfully used in a number
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Figure 2.10: Eigenenergies of the Cooper pair box for different ratios of Josephson to coupling energy.

of hallmark experiments [5, 9, 6, 88]. The transmon represents a type of qubit derived from the

Cooper pair box whose sensitivity to charge noise can be controlled by design. In particular, it

has become possible to eliminate terms of higher orders in the charge noise dephasing rate and

hence to fabricate qubits with a ’permanent’ sweet spot.

The most crucial quantities of a Cooper pair box are its energy level anharmonicity and its charge

dispersion. While the latter one determines the sensitivity of the energy levels to variations in

the gate voltage and to charge noise, sufficient anharmonicity is a stringent requirement to avoid

higher level excitations and allow for qubit operation. As we will see in a moment, both quantities

depend on the ratio of Josephson to charging energy (EJ/EC). Let’s start by re-considering the

eigenenergies of the Cooper pair box derived in section 2.5.1, where it was found in the phase

basis

Em(ng) = EC0MA(2[ng + k(m, ng))]) (−EJ0/2EC0) (2.106)

with MA denoting Mathieu’s characteristic value and k(m, ng) an eigenvalue sorting function

[69, 64]. The first three energy levels m = 0, 1, 2 are plotted in Fig. 2.10 for different ratios

(EJ/EC) as function of the gate charge ng. Going from small to large ratios, we observe that

the dependence on charge decreases rapidly. The energy bands tend to flatten out until a point

where the eigenenergies of the Cooper pair box become almost independent of ng. Consequently,

the Cooper pair box also becomes less and less sensitive to charge fluctuations. For large ratios

of Josephson to charging energy of a few tens to a hundred we enter a region of ’permanent’

sweet spots. This can be seen explicitly from the asymptotic charge dispersion of the Cooper
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pair box in the limit EJ/EC � 1 [69]

εm ≈ (−1)mEC
24m+5

m!

√
2

π

(
EJ

2EC

)m
2

+ 3
4

e−
√

8EJ/EC (2.107)

which gives the peak to peak value for the charge dispersion of the mth level. As can be seen, the

charge dispersion decreases exponentially with increasing ratio of Josephson to charging energy.

The sensitivity to changes in the gate charge is drastically reduced as the large Josephson energy

starts to dominate over the electrostatic energy. As a consequence it seems possible to realize

’charge’ qubits with large ratios of (EJ/EC) that are in fact independent of charge and thus also

charge noise. This is the underlying observation that led to the development of the transmon,

an improved version of the Cooper pair box. While typical CPBs are operated in a regime where

EJ/EC < 1, the transmon by design has a strongly decreased charging energy and is thus operated

in a region in parameter space where EJ/EC � 1. This creates a ’permanent’ sweet spot over

the whole range of ng values and makes the transmon virtually insensitive to any form of charge

noise. Of course charge can no longer be used as a control parameter in the transmon. But

then again this control parameter has become completely obsolete since its initial purpose, the

compensation of offset charges and fluctuations, is also void now (see section 2.5.1). Operating

in a regime of EJ/EC � 1 naturally comes with a number of drawbacks.

As the energy bands in Fig. 2.10 flatten out for increasing ratio (EJ/EC), it can be seen that not

only the charge dispersion but also the anharmonicity of the levels decreases. In other words,

a decrease in level anharmonicity is the price to pay for a gain in charge-noise insensitivity. To

see how severe this loss in anharmonicity is and if it affects qubit operation, we can expand the

Josephson cosine potential in the Hamiltonian (2.52) to fourth order and treat the quartic term

perturbatively 6, which yields the approximate eigenenergies [69]

Em ≈ −EJ +
√

8EJEC

(
m +

1

2

)
−

EC
12

(6m2 + 6m + 3) . (2.108)

The relative anharmonicity of the first two levels is defined as

αr =
E12 − E01

E01
. (2.109)

Using the approximate result for Em, we find

αr ≈ −(8EJ/EC )−1/2 . (2.110)

Thus, in contrast to the charge dispersion (2.107), the anharmonicity decreases only with a

weak power law in the Josephson to charging energy ratio. This in turn makes it possible

to find a range of values EJ/EC with strongly decreased charge noise insensitivity as well as

sufficiently large degrees of anharmonicity so that one does not have to compromise on qubit

operation. A comparison of the numerically exact result (using Mathieu functions) and the

approximate result for both the relative αr (EJ/EC ) and absolute anharmonicity α(EJ/EC ) is

6In complete analogy to the treatment of the SQUID non-linearity in section 2.4.2.
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Figure 2.11: Absolute (right) and relative (left) anharmonicity of the transmon as a function of the ratio EJ/EC :

exact calculations (blue and green solid lines), approximate expression (2.110) (dashed red).

given in Fig. 2.11. Going from the Cooper pair box regime EJ/EC < 1 towards the transmon

regime EJ/EC > 1, the relative anharmonicity changes sign at EJ/EC ∼ 9 and reaches a shallow

minimum around EJ/EC ∼ 20. The sign change indicates that the transition energies decrease

for increasing quantum number m, in particular we have E01 > E12. For typical transmon

ratios of EJ/EC ∼ 50 this is indeed the case. Note that the anharmonicity of a many-level

system used as a qubit ultimately sets a lower bound on the duration of the pulses that can

be used to control the qubit. In practice, coherent qubit control requires pulse lengths that

are small compared to T1 and T2. The minimum pulse duration is approximately set by the

anharmonicity as τp ∼ 1/|ω01αr | [69]. For typical pulse lengths on the order of 10 ns, the

minimum anharmonicity for a ω01/2π = 10 GHz qubit can be estimated as |αr | ∼ 1/200π [69].

In terms of the energy ratio, this gives a large range of possible values 20 . EJ/EC � 5× 104

where the qubit’s charge noise sensitivity is significantly decreased without having to compromise

on operational speed. This was confirmed by recent experimental investigations presented in Ref.

[70], where coherent control of transmon qubits with T2 times exceeding 2µs was demonstrated.

This already approaches the limit T2 = 2T1 imposed by energy relaxation.

The discussion above clearly showed that an improved CPB design with EJ/EC � 1 has the

potential to yield significantly increased coherence times. So how does one actually realize such

an increased energy ratio? Recalling the expressions for the charging energy from section 2.5.1

EC =
2e2

2CΣ
, CΣ = Cg + CJ + Cs , (2.111)
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Figure 2.12: Reduced circuit diagram and sketch of a transmon capactively coupled and shunted to a transmission

line resonator.

Figure 2.13: Optical microscope picture of a transmon qubit fabricated in the clean room facilities at ETH Zurich.

we see that the ratio EJ/EC can be made larger by means of increasing the total capacitance of

the CPB design. This is readily achieved by adding a parallel capacitor CB to the CPB circuit,

as shown in Fig. 2.12. In practice, transmons are coupled to and operated inside transmission

line resonators (see chapter 3), forming circuit QED systems (chapter 4). As shown in the

sketch in Fig. 2.12 , the parallel capacitor CB is then realized as a large shunt capacitance with

a finger like structure. An optical microscope picture of a realized transmon qubit is shown in

Fig. 2.13. The transmons used in the experiments presented in chapter 5 have been exclusively

fabricated in the clean room facilities at ETH Zurich and part of this thesis was to characterize

the Josephson junctions in our fabrication process.
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The strong coupling of a Cooper pair box qubit to a coplanar waveguide cavity marked a major

milestone on the road towards solid-state quantum computation and triggered a whole new

exciting field of research, now known as circuit quantum electrodynamics [1, 2, 3]. While

superconducting charge, phase and flux qubits have been actively investigated for more than a

decade [33, 34, 39, 63, 64, 65, 66], only recently it was demonstrated that these systems can be

coherently coupled to single microwave photons stored in a transmission line resonator [2]. The

notion that quasi one-dimensional coplanar transmission lines can be used to realize ultra-high Q

cavities with large rms electric field strengths [3] has ultimately allowed for the implementation

of a solid-state analog of traditional, atomic cavity quantum electrodynamics [14, 22].

Up to this point, transmission line resonators have been successfully coupled to both charge and

phase qubits [19] and have by now become a standard tool for qubit readout in these experiments.

These resonators have well-defined, fixed resonance frequencies ωr which are primarily determined

by their length. A major part of this thesis was devoted to the development and implementation

of a novel type of transmission line resonator whose resonance frequency can be dynamically

tuned over a considerable portion of the microwave spectrum. These devices have the potential

to add a new dimension to circuit QED experiments, going as far as turning the resonator itself

into a qubit [89].

The first part of this chapter focuses on ’conventional’ transmission line resonators and the

models that can be used to describe them. In the second part the focus is shifted to the novel

type of tunable cavity developed in the framework of this thesis and also in Refs. [90, 11].

Various models ranging from simple electrical circuit mapping to a full second quantization are

presented and the chapter is rounded off by a discussion of the practical constraints on the

design, fabrication and operation of these new devices.

3.1 Transmission Line Resonators

Superconducting transmission line (TL) resonators represent the electrical circuit analog of op-

tical cavities in the microwave regime. The radiation field in an optical cavity realizes a quantum

harmonic oscillator. An atom placed inside such a cavity then strongly couples to the one mode

of the radiation field that is close to its transition frequency (see section 4.1.1). If well separated,

all other modes can be neglected to a good approximation since they couple only very weakly to

the atom’s relevant transition [14, 22].

In the electrical circuit analog presented in this thesis, a superconducting charge qubit (section

2.5) plays the role of the atom, while the single-mode harmonic oscillator is realized by a trans-
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Figure 3.1: Lumped element model for transmission lines (left) and transmission line capacitively coupled to a

load impedance, see discussion in the text.

mission line cavity. In fact, there are many possible ways to realize a harmonic oscillator circuit,

most prominently in the form of a simple lumped LC circuit. In the microwave domain, however,

we are dealing with wavelengths on the order of 100 µm ≤ λ ≤ 1 m and thus a true lumped

element oscillator is somewhat hard to realize in this regime. Since we want to be able to mea-

sure the circuit, we have to attach wires to it which extend more than a wavelength and thus

there is almost inevitably one large dimension present. To a good approximation, a transmission

line resonator is the distributed element version of an LCR oscillator. Such a distributed ele-

ment construction avoids uncontrolled stray inductances and capacitances and allows for better

microwave properties than lumped element resonators.

3.1.1 Lumped Element and LC Oscillator Model

Standard circuit theory1 makes the assumption that the electrical wavelengths are a lot larger

than the dimensions of a given network [91]. If this is not the case, the phase of the current or

voltage can change significantly over the length of a device and can thus no longer be ignored.

In the microwave regime, the dimensions of the typical devices used are on the order of a

wavelength and hence we are in a situation where standard circuit theory can in general not be

applied. However, it is possible to give at least an approximate description in terms of circuit

theory without having to resort to Maxwell’s equations [91].

In its broadest sense a transmission line is simply a parallel pair of two conductors, the most

common example being a regular coaxial cable. Naturally, each of the two conductors has self-

inductance, which can be described by a self-inductance L` per unit wire length ∆x . Analogously,

each wire has losses due to finite conductivity and possible dielectric losses which can be modeled

with a resistance R` and a shunt conductance G`, both per unit wire length. Additionally, the

wires are usually quite close which implies a shunt capacitance C` per ∆x . Thus for discrete

∆x , a small incremental length of transmission line can be modeled by a circuit of the form

as depicted in Fig. 3.1a. Therefore the total transmission line can be described by an infinite

series of lumped-element circuits. Now simply applying Kirchhoff’s rules to the circuit in Fig.

3.1 a, taking the limit ∆x → 0 and separating the time component gives the one dimensional

1That is, Ohm’s law and Kirchhoff’s rules.
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differential equations

dU(x)

dx
= −(R` + iωL`)I (x) ,

dI (x)

dx
= −(G` + iωC`)U(x) (3.1)

with the current and voltage at an arbitrary point x of the transmission line

U(x) = U+
0 e−γx + U−0 eγx , I (x) = I +

0 e−γx + I−0 eγx . (3.2)

The signals on a transmission line propagate as waves of the form (3.2) with propagation coef-

ficient

γ =
√

(R` + jωL`)(G` + jωC`) . (3.3)

The imaginary part β = Im[γ] defines the phase velocity vph = ω/β and wavelength λ = 2π/β

whereas the real part α = Re[γ] describes the attenuation of the waves. The characteristic

impedance of a transmission line, i.e. the impedance of one small section of unit length, is then

given by

Z0 = ±
U±0
I±0

=

√
R` + jωL`
G` + jωC`

. (3.4)

For the nearly lossless case, all of this simplifies to

γ = jω
√

L`C` , vph =

√
1

L`C`
, Z0 =

√
L`
C`

. (3.5)

A piece of transmission line terminated at both ends by a load impedance ZL represents a

distributed resonant circuit. As depcited in Fig. 3.1b, the total load impedance consists of a

capacitance Cκ via which the electromagnetic waves, i.e. the photons, can couple into the

resonant circuit as well as the resistance RL ∼ 50 Ω of the input/output lines. The effective

input impedance at a distance ` from the terminating load impedance is given by [91]

Zin = Z0
ZL + Z0tanhγ`

Z0 + ZLtanhγ`
(3.6)

and if the load impedance is an open (ZL =∞) this simplifies to

Z open
in = Z0cothγ` = Z0

1 + jtanβ` tanhα`

tanhα`+ jtanβ`
. (3.7)

The corresponding ` = nλ/2 resonances are then given by

ωn = βvph =
2π

λ
vph =

√
1

L`C`

nπ

`
(3.8)

where n ∈ N/0 is the mode index. Thus the resonance frequency of a lossless transmission line

resonator is determined by its length and its inductance and capacitance per unit length. As will

be shown in the following sections, all of these quantities can be controlled by design, allowing to

realize cavities with specific, well-defined resonance frequencies. A transmission line resonator
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Figure 3.2: (a) LCR oscillator coupled capacitively and symmetrically to an external load RL. Typical Lorentzian

transmission spectrum of an LCR oscillator circuit.

is a distributed element version of the well-known LC oscillator and, as shown below, we can

effectively map the distributed realization onto its lumped element counterpart. This so-called

mapped LCR model provides for an intuitive picture of the resonator and its properties and it

will moreover show that a transmission line resonator can realize a quantum harmonic oscillator.

Mapped LCR-Oscillator Model

A transmission line resonator behaves around its resonance frequency effectively like a parallel

combination of a lumped inductance, capacitance and resistance, where L, C and R can be

expressed in terms of the quantities per unit length of the transmission line. By mapping the

lumped element model for transmission lines onto such a simple LCR-oscillator, a set of relations

for fast and fairly reliable calculations of the most important resonator properities can be written

down. Such a mapped LCR approximation is valid for frequencies around resonance ω ≈ ωn and

provides for an intuitive understanding of the resonator properties and the effects of coupling

the resonator to an input/output line.

Fig. 3.2a shows a LCR oscillator coupled capacitively and symmetrically to an external load

RL via an input/output capacitance Cκ. Neglecting the load for the moment, the differential

equation of motion for the charge q in this circuit follows directly from Kirchhoff’s rules

d2q

dt2
−

1

RC

dq

dt
+

q

LC
= 0 (3.9)

with the solution

q(t) = q0 exp
[

iω0t −
κ

2
t + φ

]
. (3.10)

Thus the charge in this circuit oscillates with frequency ω0 = 1/
√

LC and decays at a rate of

κ = 2/RC , which describes the damping of the oscillation. The corresponding internal quality

factor Qint = ω0/(2πκ) gives the number of oscillations per decay time Tκ = 1/κ. The total

impedance of the circuit Fig. 3.2 a reads

ZLCR =

(
1

RL
+

1

R
+ j

(
ω(C + Cκ −

1

ωL

))−1

(3.11)
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where the imaginary part vanishes at the resonance frequency of the circuit ω = ω0. These

resonances have a Lorentzian line shape and their half width at half maximum is expressed by

the quality factor δν = ν0/2Q, see Fig. 3.2b. A high Q resonant circuit will thus have sharp,

narrow resonances and oscillates many times before it decays, whereas a low Q circuit has a

broad linewidth and decays much more quickly. For the full circuit of Fig. 3.2a including the

coupling environment, the total quality factor is the parallel combination of the internal and

external quality factors
1

QL
=

1

Qint
+

1

Qex
(3.12)

where the external quality factor for symmetric coupling reads [92]

Qex =
nπ

4Z0

(
1

C 2
κRLω2

n

+ RL

)
. (3.13)

For large coupling capacitances, Qex becomes small and the loaded quality factor is dominated

by the external contribution QL ∼ Qex. On the other hand, weak coupling to the input/output

lines yields a large external quality factor and we have QL ∼ Qint. The external and internal

quality factors also determine the insertion loss L0, which gives the peak transmission of the

resonant circuit. It can be expressed using the coupling coefficient g:

L0 =
g

g + 1
=

(Qint/Qex)

(Qint/Qex) + 1
. (3.14)

As pointed out in [91], the LCR impedance (3.11) can be expanded around resonance ω0 which in

turn allows for a direct mapping of the TL resonator impedance (3.7) onto ZLCR. This mapping

gives the following relations [91, 92]:

L→
1

n

2Z0

πωn
=

2

n2

L``

π2
, C →

C``

2
, R →

Z0

α`
=

1

α`

√
L`
C`

(3.15)

and

ωn →
√

1

L`C`

nπ

`
, Qint = ωnRLCRC →

π

2α`
(3.16)

The transmission line resonator thus behaves around its resonance effectively like a simple LCR

oscillator. In this intuitive picture, the relations (3.12) - (3.16) can be used for fast and fairly

precise estimates of the most important quantities of a TL resonator around resonance.

3.1.2 Quantization of the LCR Circuit

The discussion of section 3.1.1 showed that a transmission line resonator effectively behaves like

a lumped LCR oscillator around its resonance. The mapping of TL properties onto oscillator

quantities like L, C and R in turn allowed for an intuitive understanding of the resonator behavior

and represents a convenient way to capture the physics of this system. A quantization of the LCR

oscillator in turn leads directly to a harmonic oscillator Hamiltonian and thus elegantly bridges

the gap between traditional microwave engineering and fundamental quantum mechanics.
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mechanical oscillator electrical LC oscillator

momentum px(t) q(t)

position x(t) Φ(t)

mass m C

frequency ω 1/
√

LC

commutator [x , px ] = i~ [Φ, q] = i~

Table 3.1: Correspondence table of a one-dimensional mechanical oscillator and an electrical LC oscillator circuit.

Following section 2.1, a quantum circuit is in general described by the canonical conjugate

variables charge q and flux Φ with the standard commutator [Φ, q] = i~. For the lossless LC

oscillator, charge and flux are related by the voltage across the circuit

V = −L
∂I

∂t
=

q

C
(3.17)

and the total circuit is governed by the Hamiltonian

HLC =
q2

2C
+

Φ2

2L
. (3.18)

Comparing this to the standard Hamiltonian of a mechanical harmonic oscillator H = p2/2m +

(1/2)mω2x2 and recalling that q has the role of momentum and Φ of position, one can identifiy

ω = 1/
√

LC and m = C . Furthermore, we can define the dimensionless creation and annihilation

operators of the circuit

a =
1√

2~
√

L/C
(Φ + i

√
L/C q) =

1√
2~Z0

(Φ + iZ0q) (3.19)

a† =
1√

2~
√

L/C
(Φ− i

√
L/C q) =

1√
2~Z0

(Φ− iZ0q) (3.20)

which fulfill the standard commutation relation [a, a†] = 1. Thus, the Hamiltonian of the LC

circuit can be written in the form of a standard harmonic oscillator Hamiltonian

HLC = ~ω
(

a†a +
1

2

)
. (3.21)

Furthermore, using (3.17), a voltage operator V can be introduced as

V =

√
~ω
2C

(a − a†). (3.22)

To a good approximation, a lossless TL resonator thus represents a cavity that is described by a

harmonic oscillator Hamiltonian of the form (3.21). From a quantum optics point of view, each

set of values of {Φ, q, L, C} represents a certain mode of the cavity with an average photon

number 〈n〉 = a†a. The operator V can be thought of as a quantum voltage generated by the

photons inside the cavity. The analogy of a one-dimensional mechanical oscillator such as a
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3.1 Transmission Line Resonators

Figure 3.3: Schematic sketch of a coplanar waveguide: Top view (left) and side view (right). Here, h denotes the

substrate thickness, 2a the width of the center conductor, 2b the spacing between the two ground planes and t

the thickness of the metallization. The materials used in this thesis are indicated accordingly.

massive particle moving in a harmonic potential and a resonant LC circuit is expressed in the

correspondence table Tab. 3.1.

3.1.3 Physical Implementation: Coplanar Waveguide Cavities

In the discussion so far, the transmission line resonator was treated conceptually as a parallel pair

of two (not further specified) conductors terminated by a load impedance on both ends. When

realizing a transmission line resonator, a certain physical implementation has to be chosen. As

can be expected from the universality of the concept, there exist many different realizations [91].

For the experiments presented in this thesis, we have realized transmission line resonators in the

form of superconducting coplanar waveguide cavities. A coplanar waveguide (CPW) is a quasi

one-dimensional structure that can be thought of as a planar version of a coaxial cable [93].

The first realizations date back to the late sixties and today CPWs are used in a vast number

of different applications ranging from amplifiers and mixers to photonic bandgap structures and

communication technology [94].

Most generally, a CPW on a dielectric substrate of thickness h consists of a center strip

conductor of width 2a with quasi-infinite, parallel ground planes on either side separated by 2b

as sketched in Fig. 3.3. Such a structure supports a transversal electromagnetic mode of wave

propagation (TEMnm), i.e. it represents a one-dimensional transmission line just like the one

discussed in section 3.1.1. To realize a cavity from such a structure, the CPW is terminated

on both ends by a capacitor in the form of a simple gap or finger structure whose geometric

properties are used to design the magnitude of input/output coupling. Optical microscope

pictures of a typical CPW cavity and capacitor structures are shown in Fig. 3.4. These resonators

were fabricated in the clean room facilities of ETH Zurich using standard micro lithographic

techniques. The detailed process is described in Refs .[92, 95]. We typically use a center

conductor width of 2a = 10µm and a ground plane separation of 2b = 19µm which gives a

characteristic impedance of Z0
∼= 60 Ω that is matched with all other microwave components in

our setup. All of the measurements presented here were performed using either Aluminum or

Niobium as superconducting metallization, the latter one having the highest critical temperature
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1mm
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Figure 3.4: Optical microscope picture of an Aluminum coplanar waveguide resonator. The positions of the

capacitors for input/ouput coupling are indicated by the red squares and some example finger and gap capacitor

structures are depicted below (taken from [92]).

of all known elemental metals 2 Tc = 9.2 K. The metallization has a thickness of roughly 200 nm

on a subtrate of h = 500µm. As substrate materials we use Si, SiOx as well as sapphire Al2O3.

The well-established nano- and micro fabrication techniques used for realizing these cavities

allow us to engineer many of the characteristic resonator parameters at will and to design and

produce tailor-made devices with a fairly high degree of control, a subject adressed in a design

study conducted as a sideproject to this thesis, see Ref. [92]. Important resonator properties

such as the characteristic impedance Z0, the quality factor Q or the resonance frequency are

all be determined in terms of the geometric CPW parameters, as can be seen from a so-called

conformal mapping description of the system.

3.1.4 Conformal Mapping and Scattering Matrix Description

While the mapped LCR-model of section 3.1.1 gives good results around resonance and provides

for an intuitive description of transmission line resonators, the specific realization in the form

of a coplanar waveguide cavity can be more accurately described in terms of its dielectric and

geometric properties. This section briefly discusses a conformal, quasi-static mapping technique

that leads to an analytical expression for the characteristic impedance and allows calculating

the transmission spectrum from the geometry- and temperature-dependent quantities per unit

length of a given coplanar waveguide.

Based on Refs. [91], [94] and [96], an expression for the characteristic impedance Z0 =
√

L`/C`
of a superconducting coplanar waveguide resonator on a double layer substrate, accounting for

dielectric losses as well as geometric and kinetic inductance effects, can be derived. A scattering

matrix method [91] in turn allows for convenient calculations of the network properties of a CPW

cavity like its transmission S21 or reflection S22. Such a description is in complete analogy to the

2Note that Nb is a type-II superconductor.
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3.1 Transmission Line Resonators

translation and refraction matrices used in geometric optics, which expresses the equivalency of

conventional optical cavities and the microwave version used here.

The effective dielectric constant of a coplanar waveguide on a finite thickness substrate is defined

as the ratio of the waveguide’s total capacitance per unit length C` and the partial capacitance

in the absence of all dielectrics [94]

εeff =
C`

Cair
. (3.23)

Using the analytical expression for the partial capacitance Cair in Ref. [94], the total capacitance

per unit length is then written as

C` = 4ε0εeff
K (k)

K (k ′)
. (3.24)

Here K (x) denotes the complete elliptical integral of the first kind and the geometry-dependent

quantities are given by

k =
a

b
, k ′ =

√
1− k2 (3.25)

k1,2 =
sinh(πa/2h1,2)

sinh(πb/2h1,2)
, k

′
1,2 =

√
1− k2

1,2 , β =
2πν

c

√
εeff (3.26)

with the effective dielectric constant

εeff = 1 +

(
ε1 − 1

2

)
K (k ′)K (k1)

K (k)K (k
′
1)

+

(
ε2 − ε1

2

)
K (k ′)K (k2)

K (k)K (k
′
2)

(3.27)

where ε1,2 and h1,2 denote the relative dielectric constants and thicknesses of the two substrate

materials, respectively, 2a the width of the center conductor and 2b the spacing between the

two ground planes (see also Fig. 3.3). Setting ε1 = ε2, the results are readily simplified to the

case of a single layer substrate.

Kinetic Inductance

The total inductance per unit length of a superconducting CPW resonator is given by the sum of

the temperature independent geometric inductance Lm and the temperature dependent kinetic

inductance Lk [96, 97]. A current flowing on a wire induces a magnetic flux and the energy

is stored in the resulting magnetic field. Additionally, the current also translates to a kinetic

energy of the electrons in the wire, which is usually masked by the conductivity of normal metals

[49]. In superconductors, however, resisitivity is suppressed and thus this kinetic energy gives an

additional contribution to the total inductance referred to as kinetic inductance. It holds that

[94, 97]

L` = Lm + Lk =
µ

4

K (k ′)

K (k)
+ µ

λ2
L(T )

2a · t g(a, b, t) (3.28)

47



3 Superconducting Tunable Cavities

where the geometric factor is given by

g(a, b, t) =
1

2k2K 2(k)

(
ln

(
t

8a

)
+

2b

(2b − a)
ln

(
b − a

b

)(
2a

2b − a

)
ln

(
t

4(2b − a)

))
(3.29)

and µ is the permeability of the substrate material. The temperature-dependent London pene-

tration depth λL(T ) can be calculated using the Casimir-Gorter approximation for the Cooper

pair density [98], which yields

λL(T ) ≈
λ(0)

[1− (T/Tc)4]1/2
(3.30)

where Tc is the critical temperature of the superconductor and λ(0) is the extrapolated London

length at zero temperature, e.g. λ(0)[Al] ≈ 50 nm, λ(0)[Nb] ≈ 90 nm [99]. The asymptotic

behavior implies that the temperature dependence can be neglected for very low temperatures

T � Tc , whereas λL(T → Tc) diverges as expected (above Tc , an external magnetic field

can fully penetrate the bulk superconducting material). Since the temperature dependence of

the Copper pair density follows a high power law and as λL(T ) enters quadratically into the

inductance of the resonator, kinetic inductance can cause significant shifts in the resonance

frequency for temperatures close to Tc .

Characteristic Impedance and ABCD-Matrices

Using (3.24) and (3.28), the total characteristic impedance of a superconducting CPW cavity

can be written as

Z0 =

√
L`
C`

=
1
√
εeff

[
µ0

4ε0

K (k ′)

K (k)

(
1

2

K (k ′)

K (k)
+
λ2
L

a · t g(a, b, t)

)]1/2

(3.31)

which simplifies to

Z0 =
30π
√
εeff

K (k ′)

K (k)
(3.32)

when kinetic and geometric inductances are neglected [94]. With (3.31), the total transmission

spectrum S21(ν) and thus the resonance frequencies of a capacitively coupled CPW cavity can

be conventiently determined using the ABCD-matrix method from conventional microwave the-

ory [91]. Note that this method is completely analogous to the matrix methods in geometric

optics. Each circuit element of the cavity is assigned a specific 2 × 2 matrix that describes its

transmission and reflection behavior. For a CPW resonator, the total ABCD matrix consists of

two input/output coupling matrices and a transmission line matrix(
A B

C D

)
=

(
1 Zin

0 1

)(
cosh(α+ iβ`) Z0 sinh(α+ iβ`)

Y0 sinh(α+ iβ`) cosh(α+ iβ`)

)(
1 Zout

0 1

)
(3.33)

where α = Re[γ] and β = Im[γ] are the attenuation and propagation coefficients as expressed

in terms of the internal quality factor (3.16) and the effective dielectric constant in (3.26),
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3.1 Transmission Line Resonators

respectively. The input/output impedances are simply

Zin/out =
1

iωCin/out
. (3.34)

Both dielectric and conductor losses are accounted for by α as it sums up all internal contributions

to wave attenuation in the resonator. The transmission of a CPW resonator is expressed fully in

terms of the ABCD-matrix elements and the load impedance ZL0 = RL at the input and output

ports

S21 =
2

A + B/ZL0 + CZL0 + D
. (3.35)

Numerically maximizing S21 yields the resonance frequencies. Furthermore, several interesting

parameters such as dielectric properties, effective lengths or quality factors of a resonator can

be determined using fits of S21 to measured transmission spectra [92].
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Figure 3.5: Sketch of a coplanar waveguide resonator symmetrically incorporating a SQUID-loop. The length of

a transmission line section on each side of the SQUID is ` = λ/4 so that in total one gets a λ/2 resonator.

3.2 Superconducting Tunable Resonators

The resonance frequencies of the transmission line cavities discussed so far are well-determined by

their geometric properties (e.g. length, ground plane separation, coupling capacitance) as well as

dielectric substrate properties (e.g. εeff , substrate thickness). By means of choosing appropriate

design parameters a desired, fixed resonance frequency νr can be realized [92]. However, in

order to realize a cavity whose frequencies can be changed dynamically, it has to contain some

circuit element that is tunable with respect to some external degree of freedom. As shown in

section 2.4, a SQUID-loop represents the prototype of such a circuit element whose impedance

can be tuned using an external magnetic field. Since the complex impedance of a resonant

circuit ultimately determines νr, a SQUID loop allows building circuits with tunable resonances.

Incorporating such a parallel combination of two Josephson junctions into a transmission line

resonator results in a distributed superconducting circuit whose resonance frequencies can be

tuned with an external flux bias Φ. A sketch of the basic design of such a distributed circuit

is illustrated in Fig. 3.5. A tunable cavity opens up a whole range of possibilities and some

interesting new physics, especially when it comes to coupling it to superconducting qubits in a

circuit QED architecture, where they potentially allow for fast, selective entanglement protocols

[10]. The first tunable devices have recently been realized with some promising results [11, 90].

In the framework of this thesis, designs for 30 different transmission line SQUID-resonators have

been developed, four of which have been successfully implemented and measured where one was

strongly coupled to a transmon qubit (see section 5.2).

The discussion in sections 2.3 and 2.4 showed that the behavior of a SQUID critically depends

on the magnitude of the dc current it is driven with. It was shown that if the driving current is

much smaller than the critical current I � Ic , the non-linear, higher order terms in the SQUID

inductance can be neglected to a good approximation. In that case, such a device is effectively

50



3.2 Superconducting Tunable Resonators

Figure 3.6: (a) Electrical sketch of the tunable resonator where Zin/out and Cin/out denote the input/output

impedances and capacitances, respectively, Z0 the characteristic impedance of the transmission line sections and

ZJ the SQUID impedance. (b) Mapping of the capacitively coupled resonator onto a tunable LCR oscillator.

a linear circuit element with a tunable impedance that can be modeled as a harmonic oscillator.

A transmission line cavity incorporating a SQUID can then be described as an integrated system

of two harmonic oscillators with a tunable resonance frequency ωr (Φ). On the other hand, the

non-linearity can reach significant levels for larger driving currents so that the corresponding

SQUID-resonator will essentially become an anharmonic oscillator. It is important to note that

the driving current does not necessarily have to be on the order of the critical current for the

non-linearity to become important, i.e. a given SQUID can be non-linear even for I � Ic . As

shown below, the degree of this non-linearity can be directly related to the number of photons

inside the cavity, which corresponds to an ac driving current at the position of the SQUID.

This qualitatively different behavior depending on the magnitude of the driving current has to

be accounted for in an accurate description. The total SQUID-cavity system of Fig. 3.5 will be

discussed in several different approaches. Starting with a mapped LCR model and a scattering

matrix formulation as in section 3.1.1, we will then proceed to give a full second quantization

treatment of the system including perturbation theory [89]. The section is rounded off by a

discussion of the design and operating constraints for implementing a tunable cavity.

3.2.1 Electrical Circuit and Scattering Matrix Model

In a classical electrical approach, the SQUID-cavity system depicted in Figs. 3.5 and 3.6 can

be fully described using the methods developed for regular transmission line resonators. In the

implementation of this thesis, the SQUID is positioned at the center of the resonator, attached

on both sides to a ` = λ/4 coplanar waveguide capacitively coupled to the input/output lines,

see Fig. 3.6a. In total this gives a λ/2 coplanar waveguide cavity with a flux-tunable resonance

frequency. Recalling the SQUID impedance Eq. (2.39)

Zs(ω, Φ) =
iωLs(Φ)Rs

Rs + iωLs(Φ)− ω2Ls(Φ)CsRs
, (3.36)
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Figure 3.7: (a) Comparison of calculated transmission spectra for a transmission line resonator with (red) and

without (blue) SQUID-loop incorporated. (b) Transmission spectra of a SQUID-resonator for two different external

fluxes Φ
(1)
ext = n · Φ0 (blue) and Φ

(2)
ext = (n + 1/2)Φ0 (red). For these simulations, the typical parameters ` =

22000µm, Ic1 = 1.78µA, Ic2 = 1.80µA and Cin/out = 4.7 fF of cavity design ’I1’ have been used. Note that

insertion losses α = Re[γ], γ = α+ iβ have been neglected in these calculations

we can assign each part of the circuit a specific 2× 2 matrix. The transmission coefficient S21

is then found in a straight-forward way. The total ABCD matrix of the resonator reads(
A B

C D

)
=

(
1 Zc

0 1

)(
cosβl jZ0 sinβl

jY0 sinβl cosβl

)(
1 Zs

0 1

)

×

(
cosβl jZ0 sinβl

jY0 sinβl cosβl

)(
1 Zc

0 1

)
(3.37)

where we have assumed symmetric coupling. Neglecting resistive losses, the SQUID impedance

in the linear limit is written as

Zs = i

(
2π

ωΦ0

[
(Ic1 − Ic2)2 + 4Ic1Ic2 cos2

(
πΦ

Φ0

)]1/2

− ωCs

)−1

. (3.38)

Following section 3.1.4, the transmission of the resonator is then given by

S21 =
2

A + B/ZL0 + CZL0 + D
. (3.39)

Numerically maximizing S21(ω) yields the resonance frequencies of the circuit. Since the res-

onator now incorporates a flux-dependent inductance, the resulting transmission spectrum can

be varied by applying a local external magnetic field. Fig. 3.7a shows a comparison of calculated

transmission spectra for a λ/2 resonator without SQUID (blue) and one with a SQUID-loop

incorporated at the center (red; zero flux bias). As can be seen, the resonances are slightly

shifted for zero flux bias, simply by the additional impedance of the SQUID-loop. To a good

approximation, however, the two cases with and without SQUID are identical at Φ = 0. Fur-

thermore, a comparison of two transmission spectra for different external fluxes Φ(1) = n · Φ0

and Φ(2) = (n + 1/2)Φ0 applied to a SQUID resonator are given in Fig. 3.7b. As expected,

every even mode is invariant under changes of Φ, which is a consequence of the symmetry of the
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Figure 3.8: Resonance frequencies of a SQUID-cavity as functions of flux bias for different degrees of junction

asymmetry: d = 5% (blue), d = 20% (green) and d = 50% (red). Here, we have used the parameters

` = 7600µm and Cin/out = 7.8 fF, corresponding to cavity design ’H1’.

resonator: Since the SQUID is positioned at the center of the resonator with equal λ/4 trans-

mission line sections on both sides, the current has a node I = 0 and the voltage an anti-node

V = Vmax at the SQUID’s position for every other mode n = 2i , i ∈ N. Thus, for instance, in

the second mode the electromagnetic field does not ’see’ the SQUID since the current vanishes

at its position and therefore the resonance frequency does not change under variations of Φ.

This ’deactivation’ of certain modes also naturally follows from a field-theoretical treatment and

will be further discussed in section 3.2.2. In addition, plots of the first mode resonance fre-

quency, obtained from numerically maximizing S21, are depicted in Fig. 3.8 as a function of flux

bias for three different critical current combinations at fixed resonator length. The resonance

frequency can be tuned by several GHz over a period in Φ0. The critical current asymmetry

d = (Ic1 − Ic2)/(Ic1 + Ic2) determines the tuning range and the total range decreases with in-

creasing d .

In analogy to the case of a regular CPW resonator, the tunable version can also be described

in terms of a mapped LCR oscillator model. This provides for an intuitive picture and shows

that the SQUID-cavity system effectively realizes a tunable harmonic oscillator. In the linear

limit and assuming a negligible SQUID capacitance Cs , the tunable TL resonator can be readily

mapped onto an LCR oscillator, see Fig. 3.6b. Compared to the regular mapped TL resonator,

the presence of the SQUID results in an additional parallel inductance that can be tuned with

an external flux. The total impedance reads

ZLCR(Φ) =

[
1

R
+ i

(
ωC −

1

ω

(
Ls + L

LsL

))]−1

(3.40)
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Figure 3.9: Lumped element circuit representation of a transmission line resonator incorporating a parallel pair

of two Josephson junctions. This model can be used for an effective quantization of the distributed circuit, see

detailed discussion in the text.

with the flux-tunable resonance frequencies

ωn(Φ) =
n√

C
(
LsL
Ls+L

) ≈ ωr√1 +
L

Ls
(3.41)

where Ls = Ls(Φ) is the SQUID inductance and ωr the resonance frequency of the equivalent

resonator without SQUID.

3.2.2 Circuit Quantization

Up until now, the cavity-SQUID system was discussed in terms of a classical approach. The two

systems were described in a classical electrical picture with the quantum-mechanical Josephson

effect manifesting itself only via the flux-dependent inductance. The next step now consists

of a full circuit quantization in which the tunable resonator is quantized as a whole following

the procedure of section 2.1. Incorporating a Josephson junction-based element such as a

SQUID into a TL resonator naturally introduces a Kerr-type non-linearity to the system and

thus renders the energy spectrum of the cavity non-linear. Following the discussion in sections

2.3 and 2.4.2, the degree of this non-linearity is determined by the magnitude of the current

driving the SQUID. In the non-linear regime, the tunable transmission line resonator represents an

anharmonic oscillator rather than a standard harmonic oscillator. This effect was not addressed

by the purely electrical approach of section 3.2.1, where all non-linear, higher order terms of the

SQUID inductance (2.42) have been neglected.

As shown in [10] and [89], a quantization of the full circuit consisting of transmission line and

SQUID can treat the non-linear effects perturbatively. This treatment explicitly shows that the

SQUID’s non-linearity effectively causes frequency shifts proportional to the number of photons

inside the resonator, i.e. depending on the corresponding current at the position of the SQUID.

The quantization procedure of the total SQUID-resonator system given here closely follows Ref.

[89].

Following section 2.1, the two conjugate variables describing an electrical circuit are flux Φ(t)

and charge q(t). Since the flux is directly related to the superconducting phase of the SQUID
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via φ = (2π/Φ0)ΦMod(2π), the flux representation is used here for convenience. The system

is modeled as a series lumped element circuit as depicted in Fig. 3.9. The circuit is split into

three parts: (1) a transmission line of length `1 and capacitance and inductance per unit length

C 0
1 and L0

1 on the l.h.s of the SQUID, (2) a parallel set of Josephson junctions of infinitesimal

length and Josephson energy EJ and capacitance CJ and (3) a transmission line on the r.h.s of

the SQUID with length `2 and capacitance and inductance per unit length C 0
2 and L0

2. In the

flux representation, each lumped element section i of the circuit is assigned a certain node flux,

i.e. Φi , i ∈ N on the l.h.s of the SQUID and θi , i ∈ N on the r.h.s.3. Furthermore, each section

then has a capacitance C1,2 and inductance L1,2 which are related to the infinitesimal quantities

per unit length through C1,2 = C 0
1,2∆x and L1,2 = L0

1,2∆x . The SQUID’s position is set as the

origin. Following section 2.1, the Lagrangian of the total circuit Fig. 3.9 then reads

L = Llhs + Ls + Lrhs

=

N∑
i=1

1

2

[
C1Φ̇2

i −
(Φi+1 −Φi)

2

L1

]
+

CJ
2

(θ̇1 − Φ̇N+1)2 −
EJ

2φ2
0

(θ1 −ΦN+1)2

+

M∑
i=1

1

2

[
C2θ̇

2
i −

(θi+1 − θi)2

L2

]
(3.42)

where we have used the SQUID Lagrangian of section 2.4 and introduced the reduced flux

quantum φ0 = 2π/Φ0. Note that here the harmonic approximation for the Josephson energy

has already been made, i.e. Ls only contains the first non-vanishing term of the Josephson cosine

potential (see section 2.4). All higher order terms are neglected. Later on, we will recover the

non-linearity from the harmonized Hamiltonian by means of treating the quartic order term of

the Josephson potential perturbatively. Furthermore, note that we assume a flux-independent

Josephson energy in (3.42), i.e. the SQUID is first treated as a single junction with Josephson

energy EJ throughout the quantization procedure. The flux-dependence of the SQUID will then

be recovered later on by making the simple transition EJ → EJ(Φ).

Wave Equation

The Euler Lagrange equations (d/dt)(∂L/∂q̇) − (∂L/∂qi) = 0 resulting from the Lagrangian

density (3.42) are wave equations for the generalized position coordinate on both sides of the

SQUID (x = 0), i.e. for the node flux Φi (x < 0) and θi (x > 0). Making the transition to a

continuous description in (3.42)

∆x → 0 ,

N∑
i=1

→
∫ 0

−`1

,

M∑
i=1

→
∫ `2

0

, (Φi , θi)→ (Φ(x), θ(x)) (3.43)

3Note that the total flux field is, however, continuous despite this artificial separation since the SQUID’s longi-

tudinal extension is neglected.
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and using the connection between lumped element and TL quantities per unit length C1,2 =

C 0
1,2∆x and L1,2 = L0

1,2∆x , the Lagrangian is rewritten as

L =

∫ 0

−`1

1

2

[
C (x)Φ̇2 −

1

L(x)

(
∂Φ

∂x

)2
]

+

∫ `2

0

[
C (x)θ̇2 −

1

L(x)

(
∂θ

∂x

)2
]

+
CJ
2

(
θ̇(0)− Φ̇(0)

)2 −
1

2LJ
(θ(0)−Φ(0))2 (3.44)

where we have defined

C (x) =

{
C 0

1 x < 0

C 0
2 x > 0

, L(x) =

{
L0

1 x < 0

L0
2 x > 0

. (3.45)

The wave equations for the flux field are then simply found as the Euler-Lagrange equations

corresponding to (3.44):

Φ̈(x , t)−
1

L(x)C (x)

∂2Φ(x , t)

∂x2
= 0 , θ̈(x , t)−

1

L(x)C (x)

∂2θ(x , t)

∂x2
= 0 (3.46)

with the standard plane wave solutions of the form

Φ(x , t) =
∑
k

e−iωk t
(

Ake−ikx + Bke ikx
)

, θ(x , t) =
∑
q

e−iωqt
(

Cqe−iqx + Dqe iqx
)

(3.47)

where k and q are the wave numbers on the l.h.s and r.h.s of the SQUID, respectively. The

corresponding frequencies are given in the usual form

ωk =
k√

L0
1C 0

1

, ωq =
q√

L0
2C 0

2

. (3.48)

In the end, we are interested in continuous modes of the flux field rather than in the two separate

wave functions (3.47). Such an expression can be derived by considering three fundamental

constraints on the field: (i) the continuity condition at the SQUID position x = 0, (ii) the

boundary condition that no current should flow outside the resonator at both ends I1(x =

−`1) = I2(x = `2) = 0 and (iii) the conservation of current at the origin I1(x = 0) = I2(x = 0).

Consecutively applying these constraints leads to a transcendental equation for the field whose

solutions form a complete, infinite set of orthogonal eigenfunctions [10, 89]. The detailed

calculations that lead to this equation are presented in appendix A, where it is also shown that

the eigenmodes of the total system Ψ(x , t) can be written in a separation form Ψ(x , t) =∑
k Ψk(t)χk(x), where k denotes the wave number for the complete resonator.
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3.2 Superconducting Tunable Resonators

Effective Hamiltonian

With the continuous eigenmodes Ψ(x , t) of the total circuit (see appendix A), the continuous

Lagrangian (3.44) can be conveniently written as

L =
1

2

∫ `2

−`1

[
C (x)Ψ̇(x , t)2 −

1

L(x)

(
∂Ψ(x , t)

∂x

)2
]

dx −
1

2Lj
(Ψ(0+, t)−Ψ(0−, t))2 . (3.49)

The decomposition of the field into a spatial χk(x) and a time-dependent part Ψk(t) in turn

allows rewriting this Lagrangian as a sum of harmonic oscillators of frequency ωk (see appendix

A)

L =
∑
k

Ccav

2
Ψ̇k(x , t)−

Ccavω
2
k

2
Ψ2
k(t) (3.50)

where the total capacitance of the cavity Ccav =
∫ `2

−`1
C (x)dx was introduced. Here, the flux-

dependent resonance frequency is given by [10]

ω0(Φ) =
ωr

1 + Ls(Φ)
L

(3.51)

where ωr denotes the fundamental resonance frequency of the equivalent cavity without SQUID.

The fact that the Lagrangian can be written as a sum of harmonic functions results from the

linear approximation of the Josephson potential that was made in the very beginning in (3.42).

As shown below, the anharmonicity can be recovered by means of treating higher order terms of

the potential perturbatively.

Using the fact that charge is the conjugate variable to the flux Ψk

qk =
∂L

∂Ψ̇k
, (3.52)

a Legendre transformation H = Ψkqk − L of the Lagrangian leads to the classical Hamiltonian

H0 =
∑
k

q2
k

2Ccav
+

1

2
Ccavω

2
kΨ2
k . (3.53)

As usual, the last step now consists of a second quantization where we introduce the ladder

operators through

Ψk =

√
~

2Ccavωk

(
a†k + ak

)
, qk =

√
~Ccavωk

2

(
a†k − ak

)
. (3.54)

with the final Hamiltonian

H0 =
∑
k

~ωk
(

a†kak +
1

2

)
. (3.55)

This shows explicitly that in the linear SQUID regime I � Ic , the tunable cavity can be treated

as a harmonic oscillator just like the regular cavities of section 3.1, the only difference being
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3 Superconducting Tunable Cavities

the flux-dependence of the resonance frequencies ωk . If, however, higher order terms of the

Josephson potential can not be neglected, the harmonic oscillator description is no longer valid

and the perturbed Hamiltonian acquires anharmonic terms.

Deactivated Modes

Now before turning to a discussion of the non-linear effects and the perturbative treatment

of higher order terms, the phenomenon of ’mode deactivation’ will be briefly reviewed in a

field-theoretical context. The purely electrical treatment of the λ/2 SQUID-resonator system in

section 3.2.1 already showed that for the symmetric case of a SQUID at the center position, every

even mode stays completely invariant under the presence of the SQUID. In an electrical context,

this simply results from the fact that the current has nodes at the position of the SQUID for every

even mode so that the field does not ’see’ the SQUID. In general, this deactivation of certain

modes occurs whenever the current vanishes at the SQUID’s position. Field-theoretically, this

automatically follows from the continuity condition, i.e. the diffraction law ωk ≡ ωq, kv1 = qv2

with vi denoting the wave velocity, and the conservation of current I1(x = 0) = I2(x = 0) (see

also appendix A). Using the eigenmode decomposition Ψ(x , t) =
∑
k Ψk(t)χk(x), the current

is given by

I (x , t) = −
∑
k

Ψk(t)

L0

∂χk
∂x

(3.56)

which vanishes for wave numbers k = mπ/` and q = nπ/`, ∀n, m ∈ N in a symmetric resonator

`1 = `2 = `. Using these wave numbers together with the constraint of current conservation,

the field amplitudes on the r.h.s and l.h.s of the SQUID are conditioned by (see appendix A or

[89])

Dk = Ak(−1)m−n . (3.57)

This shows explicitly that purely even modes only occur when the l.h.s and r.h.s are identical.

These modes are essentially deactivated as they ignore the presence of the SQUID. Thus, de-

pending on the frequency that is used to probe the system, we will either see a standard resonator

(deactivated modes) or a tunable one (activated modes).

3.2.3 The Non-Linear Tunable Cavity - A Solid-State Photonic Qubit

The higher order terms that have been neglected in the initial Lagrangian (3.42) can be treated

as a perturbation to the harmonic Hamiltonian (A.26) which allows us to recover some of the

non-linear effects that are caused by the SQUID. Taking into account the term quartic in phase

difference and restricting the Hilbert space to a single mode k , the anharmonic Hamiltonian can

be written as

H = H0 + HA = ~ωk
(

a†kak
1

2

)
−

Ej
4!

1

φ4
0

(θ1 − φN)4 (3.58)
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where the flux-dependence of the Josephson energy is given by (see section 2.4)

Ej = EjΣ cos

(
πΦext

Φ0

)√
1 + d2 tan2

(
πΦext

Φ0

)
(3.59)

with the asymmetry parameter

d =
Ej2 − Ej1
Ej2 + Ej1

. (3.60)

Using the ladder operators defined by (A.25), the phase difference across the SQUID in (3.58)

can be expressed in the continuous limit as [89]

θ1 − φN =
∑
k

∆k

(
a†k + ak

)
(3.61)

with ∆k denoting the phase gap at the junctions which can be rewritten as

∆k = −2Ak sin(k`/2)

√
~

2Cωk
cot(k`/2) (3.62)

where a center-positioned SQUID was assumed. Here, the field amplitude Ak is given by (see

appendix A)

Ak =

√
C

C`

[
`

2
+

sin(k`)

2k

]−1/2

(3.63)

so that the phase gap in the case of symmetric alignment simplifies to

∆k = −

√
2~

C`ωk

[
`

2
+

sin(k`)

2k

]−1/2

cos(k`/2) . (3.64)

Now using (3.64) in the nonlinear Hamiltonian (3.58), neglecting any fast oscillating terms of

a†k and ak in the rotating-wave approximation, the total Hamiltonian for mode k is obtained as

H = ~
(
ωk − ∆ωka†kak

)
a†kak (3.65)

where the frequency shift

∆ωk ≡ ∆ωk(Φext) =
Ej(Φext)

4~

(
2π

Φ0
∆k

)4

. (3.66)

has been introduced. Note that in this approximation the non-linearity of the Josephson elements

in the resonator ultimately reduces to a flux- and photon number-dependent frequency shift that

generates the anharmonicity of the energy spectrum. The corresponding eigenequation can be

easily solved algebraically with the photon number eigenstates |n, k〉 which yields the energies

En,k = ~nk(ωk − ∆ωk(Φext)nk) . (3.67)
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The non-linearity becomes most obvious from the flux-dependent spacing of the energy levels of

the single-mode radiation field

∆Ek = En+1,k − En,k = ~ωk − ~∆ωk(Φext)(2n + 1) . (3.68)

This perturbative procedure is readily expanded to account for an infinite number of modes,

which gives the general Hamiltonian of the radiation field of the tunable cavity [89]

H = ~
∑
k,j

(
ωk − 2∆ωkja

†
j aj + ∆ωkka†kak − ∆ωkj

)(
a†kak +

1

2

)
(3.69)

with the generalized frequency shift

∆ωkj(Φext) =
Ej(Φext)

4~

(
2π

Φ0

)4

(∆k∆j)
2 . (3.70)

The non-linear Hamiltonian of the SQUID-cavity contains some rich physics that are worthwhile

investigating. Owning to the non-linearity of the junctions, the bare frequency ωk of each

isolated mode acquires a photon-number dependent term that looks much like a Stark shift

and is independent of all other modes and only proportional to the internal photon number in

each mode. Indeed, the physics is the same and the modes seem to be Stark-shifted by their

own photon population. Moreover, the different modes are dispersively coupled to each other

so that a given mode k also acquires a Stark shift proportional to the photon number in the

other modes. This interesting phenomenon opens up a number of fascinating possibilities. If

the shift per photon ∆ωkk can be made larger than the linewidth of the cavity, we should be

able to observe several distinct peaks corresponding to different photons. In this way, one could

resolve individual photon number states even without the presence of a qubit. Provided the mode

spacing is sufficiently large, the photon number of a single-mode radiation field in the cavity can

then be inferred from a simple transmission measurement, realizing a resonator that monitors its

own photon population. In principle, the shift per photon ∆ωkk can be made sufficiently large by

fabricating junctions with large enough Josephson energies and using a high Q cavity with narrow

resonances can also help to resolve the individual photon states inside the resonator. Moreover,

in case of strong coupling between the different modes, it would also be possible to monitor the

photon number in a mode by measuring the transmission of an adjacent mode, thus realizing

a quantum-non demolition measurement very much in the same way as the qubit readout in

traditional circuit QED systems (see chapter 4). Unfortunately, time was too scarce to pursue

these ideas much further within this thesis, although some promising preliminary results have

been obtained.

As is also discussed in Ref. [89], the non-linearity of the resonator might in fact also make it

possible to use the resonator itself as a qubit, i.e. as a solid-state based photonic qubit. If the

degree of anharmonicity suffices, one could, for instance, use the photon number states |n = 0〉
and |n = 1〉 as logic states for quantum computation. The energy relaxation time of such a

solid state photonic qubit is given by the cavity decay time Tκ = 1/κ which is determined by

the quality factor of the resonator. A high Q yields long decay times and the photons can
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then in principle be stored for a sufficiently long time to allow for computational operations.

The coupling to a low Q cavity was proposed as a way to readout the state of the photonic

qubit [89]. An elementary calculation [89] shows that the readout mechanism works in the same

way as the dispersive readout scheme in conventional circuit QED (see chapter 4). The non-

linear, high Q cavity induces a photon-number dependent shift in the resonance frequency of the

readout cavity which can in turn be inferred from a transmission measurement. Another natural

possibility results from the Stark shifts and the mode-mode coupling discussed above, where the

qubit state could be inferred from a transmission measurement of an adjacent mode.

3.2.4 Operating Constraints

Designing and fabricating a TL cavity that incorporates a superconducting quantum interference

device represents a formidable challenge since a fairly large number of inter-dependent design

parameters have to be chosen in a consistent way. This section discusses the most important

design considerations and the constraints that have to be accounted for to effectively operate a

superconducting tunable cavity.

Critical Currents and Junction Sizes

The discussion of the RCSJ-model in chapter 2 has shown that the behavior of SQUIDs and

Josephson junctions is governed by Langevin-type pendulum equations (2.24). In the linear

regime, a SQUID represents a damped, harmonic oscillator with quality factor Q, damping κ

and plasma frequency

ωp =

√
2πIc
Φ0Cs

. (3.71)

The oscillation can be thought of as the movement of a ’phase-particle’ in the SQUID Josephson

potential. Now sending microwave signals at frequency ω through a TL cavity that incorporates

a SQUID does not only excite the resonances ωr of the cavity but also the resonances of the

superconducting loop itself. Hence ωr has to be much smaller than ωp in order to avoid resonant

excitation of the SQUID while driving the cavity. According to (2.35) and (3.71), this in turn

imposes the constraint

Ic �
ω2

r Φ0Cs
2π

(3.72)

on the choice of critical currents. For a typical capacitance value of Cs = 2 pF, this yields the

lower limit Ic ≥ 25 nA for a 6 GHz resonator. Furthermore, this requirement also gives an upper

limit for the operating temperature of the cavity

~ωp � ~ωR � kbT . (3.73)

Thus for a 6 GHz resonator one has to operate at temperatures T � 285 mK. In an actual

experiment, the non-linearity of the SQUID should be effectively suppressed to realize a cavity

that is as close as possible to an ideal harmonic oscillator. The discussions in chapter 2 have
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Figure 3.10: Schematic circuit diagram of a capacitively coupled transmission line incorporating a SQUID loop.

also shown that the degree of non-linearity is determined by the current through the SQUID.

This in turn imposes a constraint on the input power that the resonator can be driven at.

Input and Drive Power

Operating the SQUID-cavity system in the linear regime requires that the current through the

SQUID is below the critical current of the junctions I � Ic . This constraint can be directly

expressed in terms of the input power applied to the resonator.

A classical, analytical expression for the current at the position of the SQUID at a given input

power can be derived using methods borrowed from conventional microwave theory [91]. Consider

the transmission line model depicted in Fig. 3.10. The applied input or gate voltage Vg couples

into the resonator through the input capacitance ZC at position z = −` 4. The SQUID at z = 0

is effectively regarded as a load impedance ZL with reflection coefficient ΓL. The voltage wave

at an arbitrary position z along the transmission line can be written as [91]

V (z) = V +
0 e−γz + V−0 e+γz (3.74)

where γ = α+ iβ is the propagation constant introduced in section 3.1.1 and V +
0 and V−0 denote

the incident and reflected wave amplitudes, respectively. Thus using the reflection coefficient ΓL
of the load (i.e. the SQUID), the voltage reads

V (z) = V +
0

(
e−γz + ΓLe+γz

)
(3.75)

with the corresponding current

I (z) =
V +

0

Z0

(
e−γz − ΓLe+γz

)
. (3.76)

4For a more convenient derivation and less cumbersome notation, the SQUID’s position was chosen at the origin

zs = 0 with the total resonator having a length of lR = 2`. In the end we will make the transition zs → `/2

and lR → `.
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The effective input impedance Zin looking into the resonator at a distance ` from the input is

given by [91]

Zin = Z0
ZL + Z0 tanh γ`

Z0 + ZL tanh γ`
=

1 + ΓLe−2γ`

1− ΓLe−2γ`
Z0 . (3.77)

Now simply applying Ohm’s law to the circuit in Fig. 3.10 gives (voltage divider rule)

V (z = −`) = V +
0

(
eγ` + ΓLe−γ`

)
= Vin

Zin
Zin + Zc

(3.78)

from which the amplitude V +
0 can be expressed

V +
0 = Vin

Zin
Zin + Zc

1

eγ` + ΓLe−γ`
. (3.79)

Here Zc denotes the input impedance, i.e. the capacitance. Now plugging in (3.77) yields

V +
0 = Vin

Z0

Z0 + Zc

e−γ`

1− ΓcΓLe−2γ`
(3.80)

where the reflection coefficient of the input capacitance Γc = (Zc − Z0)/(Zc + Z0) has been

introduced. Note that this coefficient is just the scattering matrix parameter S22 of the input

capacitance, see section 3.1.3. Furthermore, from the definition of the parameter S21 (3.35) it

follows that

2S21 =
Z0

Z0 + Zc
(3.81)

so that Eq. (3.80) is expressed as

V +
0 = 2Vin

S21e−γ`

1− S22ΓLe−2γ`
. (3.82)

Hence using (3.76), the current at position z is written as

I (z) =
2Vin
Z0

(
e−γz − ΓLeγz

) S21e−γ`

1− S22ΓLe−2γ`
. (3.83)

The time-averaged input power is given by Pin = 1
2 V 2
in/Z0. Using this expression, reseting the

origin at the input of the resonator and making the transition ` → `/2 to the right resonator

length finally yields

I (z) =

√
8Pin
Z0

(
eγz − ΓLe−γz

) S21e−γ`/2

1− S22ΓLe−γ`
. (3.84)

Neglecting losses γ ≈ iβ where β` = π/2 for a λ/2 cavity on resonance and assuming ΓL = 1,

which holds for large Josephson energies, the current at the SQUID position at z = `/2 is plotted

as a function of input power for different coupling capacitances in Fig. 3.11. For very low driving

currents, the SQUID can be assumed to be in the linear regime and the total cavity system is

described as a simple harmonic oscillator with a tunable resonance frequency (see section 3.2.2).

Using the typical values Cκ = 5 fF, Z0 = 50 Ω and Ic = 500 nA at a resonance frequency of
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Figure 3.11: Logarithmic plot of the current I at the position of the SQUID z = `/2 as a function of input power

Pin at the resonator for different coupling capacitances.

νR = 6.65 GHz, this leads to the constraint

Pin ≤ −130 dBm (3.85)

for the power applied to the resonator input. Exceeding the critical current leads to non-linear

effects. Quantum-mechanically, this power constraint directly translates to a maximum photon

population of the resonator. Using the current definition (3.56) as well as the flux field expressions

from appendix A, we can write the current operator as

Ik(x) =
kAk
L0

√
~

2Ccavωk
sin(k(x + `))

(
a†k + ak

)
. (3.86)

Assuming coherent states, it holds that [22, 89]

〈a†k + ak〉 ∼ 2
√

nk . (3.87)

Taking 〈Ik(x)〉 = Ic , this in turn gives the maximum photon population at which the critical

current is reached:

nmax ≈
I 2
c

4

[
kAk
L0

√
~

2Ccavωk
sin(k`)

]−2

(3.88)

where we have assumed the junctions to be at x = 0. For typical junction and resonator

parameters, this critical photon number ranges from about n ∼ 6 photons at Φ = Φ0/2 to

about n ∼ 80 at zero flux bias [89].

64



3.2 Superconducting Tunable Resonators

30 μm

Figure 3.12: Center conductor gap before deposition (left) and typical asymmetric SQUID loop fabricated in the

center pin (right). The niobium metallization is shown in blue, the alumnium layers in cyan and the sapphire

substrate in black.

3.2.5 Design and Device Fabrication

Superconducting transmission line cavities can be realized using well-established micro- and nano-

fabrication techniques known from conventional chip technology. One of the great advantages

of the samples used in this thesis lies in their simplicity. All the devices that have been designed,

fabricated and measured within this thesis consist of only one respectively two metal layers on

a single-crystal substrate with no need for additional crossovers or deposited dielectrics. In

that way, we have to employ only minimal fabrication which greatly limits materials complexity.

Detailed discussions of the fabrication process for regular transmission line resonators can be

found Refs. [92, 95]. Here, we focus on the fabrication of tunable resonators incorporating a

SQUID loop.

In order to realize flux-tunable coplanar waveguide resonators, we have employed a two-step

process in which the resonator and the SQUID are fabricated separately. The design of an optical

lithography mask represented the starting point. Around 30 resonator designs with different

lengths, coupling capacitances and SQUID junctions have been developed in the framework of

this thesis. The lithography mask is used for patterning the different resonator structures on a

two inch wafer consisting of 180 nm pure, superconducting niobium on a 500 µm single-crystal

sapphire substrate. The wafer is first coated with UV-sensitive resist using a standard spinning

technique. In a ’hard contact’ lithography process, the optical mask is precisely aligned on top of

the wafer and consequently UV exposed. The exposed niobium areas can then be etched away

using either dry or wet etching techniques. To allow for the possibility to incorporate a SQUID

loop into the center pin of the resonator, all mask designs have a 30µm wide gap in the center

conductor of the resonator. This gap is etched into the Niobium layer along with the rest of the

structure in the optical lithography step. Once etching is finished, the two inch wafer is diced

into single 2×7 mm chips each containing an individual resonator.

The aluminum SQUIDs are then fabricated in the second step using electron beam lithography

and double-angle aluminum deposition. An important point before the actual SQUID fabrication

is to clean the niobium surface of the resonators and remove any oxide layers. Since the resonator

structures and the SQUIDs are fabricated separately, the niobium surface can oxidize in between

the two steps, resulting in NbOx layers of several nm thickness. If the Aluminum SQUIDs were

fabricated right on top of this layer, large contact resistances are possible and the Nb/NbOx/Al
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interface can in fact form a tunnel junction itself. In order to avoid this, the oxide layers are

removed using ion gun etching (Veeco 3 cm Argon DC Ion Source) with a beam current of 10

mA and a voltage of 300 V, respectively. Each sample is exposed for 180 s, a time interval for

which no measurable Nb/Al contact resistances could be observed anymore. Details about the

ion gun and the determination of the corresponding etching rates for the different materials in

our fabrication process are given in appendix B. Once the niobium surface is cleaned, the chip

is coated with a double-layer resist structure. This step is done right after ion gun etching in

order to avoid regrowing of oxide layers. MMA resist is first spun onto the surface at 3000

rpm for 60s followed by a layer of pure (1:1) PMMA 950K (same spinning parameters). The

SQUID structure and the two Josephson junctions are then patterned at the position of the

30 µm center pin gap using electron beam lithography and consequently developed in MIBK.

In the following, the aluminum junctions are fabricated using double-angle evaporation, where

the bottom layer is deposited under +30◦ (30 nm Al) and the top layer under -30◦ (150 nm

Al). Finally, the remaining resist layers are lifted off in an aceton bath. A typical SQUID-loop

fabricated in the center conductor is shown in Fig. 3.12 together with a picture of the center

pin gap prior to deposition.
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4 Circuit Quantum Electrodynamics

The successful strong coupling of a superconducting charge qubit to a coplanar waveguide cavity

marked a major milestone on the road towards solid state quantum information processing and

triggered a whole new exciting field, now known as circuit quantum electrodynamics [1, 2, 3].

This novel architecture represents a solid-state analog of traditional atomic cavity QED systems

and has allowed to realize a number of fascinating on-chip quantum optics experiments [2, 4, 5,

6, 9, 19]. Over the course of the last five years, the circuit QED architecture has become a high

accuracy testbed for probing the interaction of matter and light on the level of single quanta and it

quickly evolved into a promising system for future solid-state quantum computing. While charge,

phase and flux qubits have been actively investigated for more than a decade, only recently the

coherent coupling of these systems to single microwave photons stored inside a transmission line

resonator demonstrated their true potential for scalable quantum information processing. This

chapter discusses the underlying theory of circuit and cavity quantum electrodynamics.

First, the Jaynes-Cummings model is introduced, which provides a universal description of the

most fundamental system for testing matter-light interactions, a two-level system coupled to a

single-mode electromagnetic field [100, 22]. In the following, we will couple the Cooper pair box

qubits of chapter 2 to the transmission line resonators of chapter 3 and show, that the resulting

system represents a specific physical realization of the Jaynes-Cummings model. Since we use

transmons rather than Cooper pair boxes in all of the experiments in this thesis, section 4.2 will

spent some time on discussing the case of a coupled transmon-resonator system. Finally, we will

consider the coupling of a superconducting qubit to the non-linear, flux-tunable cavity of section

3.2.

4.1 Coupling Superconducting Qubits to Cavities

4.1.1 Jaynes-Cummings Interaction

The most fundamental system for studying the interaction of matter and light is a two-level atom

interacting via dipole coupling with a single-mode radiation field. This represents the simplest

possible form of the atom-field interaction and is known as the so-called Jaynes-Cummings model

[22, 100]. A quantized radiation field in free space is most generally described as an infinite sum

over harmonic oscillator Hamiltonians

HR =
∑
k

~ωk
(

a†a +
1

2

)
(4.1)
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H O R I Z O N S

In the past two decades, 
scientists and engineers 
in a variety of disciplines 
have been excited by the 
idea of quantum informa-
tion processing1, in which 
a computation is carried 
out by controlling a com-
plex collection of quantum 

objects. This idea seeks to combine two of the 
greatest advances in science and technology of 
the twentieth century. 

The first breakthrough is the development 
of quantum mechanics, with its sometimes 
strange and counterintuitive rules that hold 
sway in the domain of atoms and single parti-
cles. The second is the technological revolution 
that followed the invention of the integrated 
circuit and the advent of powerful digital 
computers, which gave rise to the current 
information age. Surprisingly, the seemingly 
bizarre quantum-mechanical ideas of super-
position and entanglement are expected to 
lead to a kind of natural parallel processing 
during computations. The unlikely marriage 
of these two revolutions could lead to incred-
ible advances in computational power, at least 
for certain special problems.

Unfortunately, the practical challenges to 
making a quantum information device are 
daunting. To build a quantum computer, the 
classical bits that store information in an ordi-
nary computer must first be replaced with 
quantum bits (qubits). These qubits can be 
composed of any quantum system with two dis-
tinct states (0 and 1), but they have the special 
property that they can be placed into quantum 
superpositions, existing in both states at once. 
A computation then proceeds by combining 
manipulations of the superpositions in single 
qubits (one-bit operations) and controlled 
interactions of multiple qubits (the quantum 
equivalent of logic gates). But to truly exceed 
the capabilities of conventional computers, the 
quantum engineer must acquire extremely pre-
cise control over the quantum domain, prevent 
any unknown evolution that affects the quan-
tum states (decoherence), and amass many 
thousands of qubits. Moreover, these qubits 
must then be ‘wired up’ in complex and pre-
scribed arrangements, so that they can interact 
and communicate their quantum information 

back and forth during the computation. 
Many different physical implementations 

of quantum information processors are being 
pursued today. Some systems comprise ‘natu-
ral’ candidates, such as single atoms, ions or 
spins, for which the manipulation of quantum 
states has a long history and is routine in many 
laboratories. Others are based on artificial 
systems in the solid state, such as quantum 
dots or superconducting circuits. These latter 
candidates have a certain appeal as they can 
be designed and fabricated using techniques 
borrowed from conventional electronics.

Before making a quantum information proc-
essor from solid-state systems such as super-
conducting circuits, two basic questions must 
be addressed. First, can the qubits be made 
from sufficiently ‘atom-like’ circuit elements, 
in which the macroscopic variables such as 
current and voltage can exist in controllable 
superpositions of distinct quantum states? And 
second, can we connect these qubits together 
in the required manner, perhaps using familiar 
electrical means such as actual wires, but keep-
ing in mind that any information transported 
must remain in its intrinsically quantum form 
and exchanged as individual quanta?

The answer to the first question, originally 
posed2 to test the applicability of quantum 

mechanics for macroscopic objects, is now at 
least a qualified ‘yes’. Pioneering work in the 
1980s on simple superconducting circuits 
incorporating a Josephson junction3 (see 
Box 1) showed that macroscopic variables 
such as voltages could indeed exhibit quan-
tum behaviour. Further work established that 
junctions could be considered as ‘atoms with 
wires’, which display energy-level quantization4 
and interact strongly with the electromagnetic 
environment5,6. It was not until the end of the 
1990s, however, that the first evidence for 
coherent superpositions7 and time-domain 
control of the quantum state8 in a supercon-
ducting qubit was demonstrated. 

The past decade has seen rapid progress in 
this field. Several different ‘flavours’ of super-
conducting qubit9 (see Box 1) have now been 
demonstrated, and two qubits have been cou-
pled to demonstrate the entanglement between 
them10 and to perform simple quantum logic 
operations11. The current state-of-the-art 
allows for superposition states that survive for 
several microseconds, long enough for hun-
dreds of operations on a single qubit. With 
improvements in superconducting qubit 
design, as well as in the materials and methods 
used for fabricating circuits, the lifetime of the 
stored quantum information may be further 
increased and the precision of qubit control 
and measurement enhanced.

But how can we address the second question 
and realize the quantum connections between 
qubits? For communicating quantum informa-
tion between real atoms, optical photons are 
natural candidates12. They have many advan-
tages, including rapid propagation and the 
ability to be guided on optical fibres for many 
kilometres without being lost. Superconduct-
ing qubits also interact electromagnetically, 
but because of their much smaller energy-level 
separations, the ‘photons’ they best couple with 
lie in the microwave range of the spectrum 
(frequencies of 3–30 GHz, or wavelengths of 
1–10 cm). Several authors13–22 have speculated 
that such microwave photons could be a route to 
connecting qubits, and recent experiments23–30

have demonstrated qubit–photon couplings 
in superconducting circuits. This approach is 
similar to the branch of atomic physics known 
as cavity quantum electrodynamics (cavity 
QED), which studies the interaction of photons 

Wiring up quantum systems
R. J. Schoelkopf and S. M. Girvin

The emerging field of circuit quantum electrodynamics could pave the way for the design 
of practical quantum computers.

Figure 1 | Cavity quantum electrodynamics. 
Schematic representation of a cavity quantum 
electrodynamics (QED) system, consisting of an 
atom with two energy levels interacting with a 
single photon mode (pink) trapped by mirrors 
(blue) to form a cavity. The blue dot is an electron 
occupying one of the energy levels. The strong 
coupling regime is reached when the interaction 
rate of the atom and a single photon (g) is larger 
than the dissipation arising from the loss of 
photons (at rate κ) or from emission from the 
atom into other modes at rate γ; in other words, 
when g >> κ,γ. 
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Figure 4.1: Sketch of a cavity QED system (taken from [3]). Quantum-mechanical two-level system (green)

coupled via dipole interaction to a single-mode radiation field with photon decay rate κ.

where each mode k is an harmonic oscillator of frequency ωk whose excitation number n equals

the number of photons 〈a†a〉 in the mode. In its ground state, each of these oscillators has a

non-vanishing zero-point energy ~ωk/2 resulting from the vacuum field fluctuations. This is a

consequence of energy-time uncertainty which allows virtual photons to constantly pop into and

out of existence. The interaction with the vacuum radiation field is also the underlying reason for

the spontaneous emission of any quantum system [22]. Now a general radiation field contains an

infinite number of modes k , with the mode density depending on the specific boundary conditions

of the physical volume V under consideration [101]. In free space, we have V →∞ which leads

to a continuous mode density. An atom or an ideal two-level system placed in such a ’free

space field’ will then couple to a very large number of modes, making it almost impossible to

study its interaction on the level of single quanta. In that case, the atom has an infinity of

vacuum states available for the spontaneous emission of radiation. If the boundary conditions

do, however, only allow for a single relevant mode, the mode density is reduced to a δ-function

and the coupling of the atom is drastically modified. If the atom’s transition frequency ωa

matches the mode frequency, it will couple strongly to the field and the process of spontaneous

emission is greatly enhanced. On the other hand, if the two frequencies are off-resonant, the

emission and absorption by the atom are effectively suppressed [14, 22]. This situation is realized

in a cavity whose spatial dimensions are comparable to the wavelength: Such a cavity will only

support modes whose wavelengths are compatible with its size. For optical frequencies, a cavity

is realized by a pair of two parallel mirrors whose separation sets the boundary conditions. An

isolated atom placed between these two mirrors then also only couples to the supported modes

and the total system realizes a Jaynes-Cummings Model, as depicted schematically in Fig. 4.1.

The ideal two-level atom is described by the simple Hamiltonian

HA =
~ωa

2
(|1〉 〈1| − |0〉 〈0|) =

~ωa
2
σz (4.2)

and it couples to the field via a standard dipole interaction

HI = −
e

mc
(~p~A) (4.3)
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4.1 Coupling Superconducting Qubits to Cavities

where ~A is the vector potential of the electromagnetic field and ~p and m the atomic electron’s

momentum and mass, respectively. In the dipole approximation for the vector potential ~A(~R) ≈
~A(0), the interaction simplifies to

HI = g(a + a†)(σ+ − σ−) (4.4)

where we have used the commutators of ~r ,~p and HA and introduced σ+ = |1〉 〈0| ,σ− = |0〉 〈1|.
Here, the coupling strength between atom and radiation field was defined

g =
Ermsd

~
=

√
ωk

2~ε0V
d (4.5)

which is the product of the dipole matrix element of the atom d and the zero-point electric field of

the mode Erms, with ε0 denoting the permittivity of free space and V the size of the quantization

volume, i.e the effective mode volume of the cavity. The coupling strength increases with

decreasing mode volume so that cavities with smaller dimensions will give stronger interaction

between atom and radiation field. Applying the rotating-wave approximation to HI by neglecting

all counter-rotating terms aσ− and a†σ+ gives

HI = ~g(a†σ− + σ+a) . (4.6)

This Hamiltonian describes the simple process of emission and absorption in the cavity. A photon

bouncing back and forth between the two mirrors can be absorbed by the atom in its ground

state (σ+a). Similarly, if the atom is excited it can decay back to the ground state by emitting a

photon into the cavity (a†σ−). The rate of this atom-photon interaction is given by the coupling

strength g. In a real system, photons leak out of the cavity at a rate κ = ωr/Q determined by the

quality factor of the cavity. In addition, the atom exhibits decoherence (i.e. energy relaxation)

and decays at a corresponding rate γ. Summing up the different terms and accounting for the

loss mechanisms, the total system is finally described by the Jaynes-Cummings Hamiltonian

HJC = HR + HA + HI + Hγ + Hκ

= ~ωr
(

a†a +
1

2

)
+
~ωa

2
σz + ~g(a†σ− + σ+a) + Hγ + Hκ (4.7)

where we have set the resonance frequency of the cavity ωr = ωk . This Hamiltonian has a quite

universal character and is not only used to describe the interaction of real atomic systems, but

also for so-called artificial atoms such as quantum dots [30], micromechanical systems [102] or

in particular superconducting qubits [1, 2].

In the microwave regime of solid-state circuit QED, the cavity is realized in the form of a

quasi one-dimensional, coplanar transmission line resonator discussed in chapter 3 and the role

of the two-level atom is played by a superconducting charge qubit as presented in chapter 2. The

coupling of the two systems is achieved by fabricating the qubit directly inside the resonator such

that the superconducting island sits between the center conductor and the ground planes of the

CPW, as sketched in Fig. 4.2a. In that way, the qubit couples capacitively to the center con-
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4 Circuit Quantum Electrodynamics

Figure 4.2: (a) Sketch and lumped element circuit model of a superconducting transmission line resonator (blue)

coupled to a Cooper pair box (green) (taken from [1]). (b) Equivalent circuit diagram of the coupled qubit-cavity

system.

ductor of the resonator, which can be expressed by the equivalent electrical circuit in Fig. 4.2b.

The total qubit-cavity system then realizes a Jaynes-Cummings interaction [1] and is governed

by the exact same Hamiltonian (4.7) as a real atom coupled to an optical cavity field. Here,

the oscillator frequency ωr is determined by the geometric and electrical properties of the CPW

resonator and the atom transition frequency ωa is given by the CPB level separation in the two

state-approximation (see section 2.5.2)

~ωa =
√

E 2
el + E 2

J0 =
√

(4EC0(1− ng)2 + E 2
J0 . (4.8)

The typical separation between ground planes and center pin is on the order of a few µm

with resonator lengths of about ` ∼ 1 cm so that the photons of the TEM field are tightly

confined in the transversal dimension (see chapter 3). This in turn leads to large rms zero-point

electric fields of about 0.2 V/m and hence to significant coupling strengths of currently up to

g/2π ∼ 130 MHz [1, 3]. By comparison, traditional atomic cavity QED realizes couplings of

about g/2π ∼ 150 MHz [103]. The relevant quantity, however, is the dimensionless coupling

strength g/ωr where we have about 2.5 × 10−2 for 1D transmission line resonators and only

3 × 10−7 for 3D optical cavities [1]. The capactive coupling of qubit and resonator can be

expressed explicitly by considering the voltage operator derived in the quantization of the LC

oscillator in section 3.1.2

V =

√
~ωr
2C

(a − a†) . (4.9)

This quantum voltage V = q/C is solely due to the photons in the single-mode radiation

field and couples to the qubit with a strength determined by the gate capacitance Cg and the

capacitance between center pin and ground plane C . Now plugging this into the electrostatic

qubit Hamiltonian (2.65) as an additional voltage to the gate voltage gives a coupling term

Hc = 2g~(a† + a)N with strength

g =
e

~
Cg
CΣ

√
~ωr
2C

=
e

~
βV 0

rms (4.10)
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4.1 Coupling Superconducting Qubits to Cavities

where CΣ = Cg + CJ + C + Cs with Cs accounting for possible stray capacitances. In the last

step, the zero-point voltage fluctuations in the resonator V 0
rms =

√
~ωr/2C have been defined,

which correspond directly to the rms vacuum field strengths in (4.5). Note that half of the zero

point energy is stored in the electric field and half is in the magnetic field. Interestingly, there is a

fundamental upper bound for the magnitude of the coupling, which limits the coupling strength

to about 10 % of the resonator frequency ωr [3, 69]. This can be seen explicitly by rewritting

the dimensionless coupling strength g/ωr in terms of the fine structure constant, see Ref. [5].

Comparing (4.10) to the general coupling strength ~g = Ermsd as defined above, the Cooper pair

box can be assigned an effective dipole moment d = eβw , where we have used Erms = Vrms/w

with w denoting the separation between ground plane and center pin of the resonator. In that

sense, the Cooper pair box can be thought of as a molecule inside an electric field generated by

the gate voltage Vg across a width w .

4.1.2 Resonant Strong Coupling Limit

The strong coupling regime of cavity QED is obtained when the rate of photon absorption and

emission g by the atom exceeds any of the two loss rates g � κ, γ [14, 22]. This can be achieved

by a combination of long coherence times, high Q cavities and large coupling strengths. In this

regime, the leakage terms in the Jaynes-Cummings Hamiltonian can be effectively neglected so

that it becomes possible to exactly diagonalize (4.7). Here, zeroth order degenerate perturbation

theory already yields the exact eigenenergies. Using the product states |↓, n〉 = |↓〉 ⊗ |n〉 and

|↑, n + 1〉 = |↑〉⊗|n + 1〉 as the unperturbed eigenstates, where |↓, ↑〉 denote the qubit eigenstate

and |n〉 the photon number states of the cavity, it follows for the dressed excited eigenstates of

the Jaynes-Cummings Hamiltonian

|+, n〉 = cos Θn |↓, n〉+ sin Θn |↑, n + 1〉 (4.11)

|−, n〉 = − sin Θn |↓, n〉+ cos Θn |↑, n + 1〉 (4.12)

with the mixing angle

Θn =
1

2
arctan

(
2g
√

n + 1

∆

)
(4.13)

and the qubit-cavity detuning ∆ = ωa − ωr . Note that the ground state of the coupled system

is simply |↑, 0〉. The corresponding eigenenergies are given by

E±,n = (n + 1)~ωR ±
~
2

√
4g2(n + 1) + ∆2 , (4.14)

E↑,0 = −
~∆

2
(4.15)

and the energy level diagram is depicted in Fig. 4.3. One can distinguish between two qualitatively

different regimes depending on the detuning ∆ between qubit and cavity. For ∆ > g, qubit

and cavity interact only dispersively and the unperturbed product states |↓, n〉 = |↓〉 ⊗ |n〉 and

|↑, n + 1〉 = |↑〉 ⊗ |n + 1〉 are to a good approximation eigenstates of the Hamiltonian. This

case will be discussed separately in section 4.1.3. On or near resonance ∆ → 0, the excited
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Figure 4.3: Energy levels of the Jaynes-Cummings Hamiltonian. (a) The dashed lines are the eigenstates of the

uncoupled Hamiltonian, where left is qubit in the ground state and right in the excited state with |n〉 corresponding

to the different photon number states. The solid lines are the energies in the presence of the dipole coupling.

Both strong dispersive (right) and resonant strong regime (left) are shown with the energy level separations and

dispersive shifts indicated accordingly (see discussion in the text).

eigenstates |+/−, n〉 are superpositions of the unperturbed states whose weight is determined

by the mixing angle Θn. In the resonant limit ∆→ 0 we have Θn → π/2 and the superposition

states become equally weighted

|±, n〉 =
1√
2

(|↑, n + 1〉 ± |↓, n〉) . (4.16)

Thus for zero detuning, the excited eigenstates of the qubit-resonator system are maximally

entangled and all excitations are equally shared between the qubit and the photon field. The two

systems can then no longer be considered as separate entities in a quantum description. Indeed,

an excitation placed in such a system will in fact coherently oscillate between qubit and cavity-

photons, as can be seen explicitly from the time evolution of the system. For zero detuning, the

probability for the qubit being in the excited state |↑〉 and the resonator containing n + 1 photons

at time t can be calculated using |↑, n + 1〉 = (1/
√

2)(|+, n〉+ |−, n〉) so that

P↑,n+1 =
∣∣∣〈n + 1, ↑ |e−iH1t/~| ↑, n + 1〉

∣∣∣2 = cos2(g
√

nt) , P↓,n = 1− P↑,n+1 . (4.17)

Thus the excitation oscillates between qubit and cavity-photon at a frequency νrabi = g
√

n.

These oscillations are referred to as vacuum Rabi oscillations at the Rabi frequency ωrabi and

their observation represents an unambiguous proof that strong coupling between resonator and

qubit has been achieved[22, 101]. Observing these oscillations naturally requires realizing a

coupled system in which the coupling rate exceeds all decay rates g > κ, γ.
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4.1 Coupling Superconducting Qubits to Cavities

The observation of vacuum Rabi oscillations is very closely related to the so-called vacuum Rabi

splitting. The superposition states (4.16) have a non-linear energy level spectrum (see Fig. 4.3)

and they are separated by

∆En = ~g
√

n (4.18)

which in turn results in two peaks separated by g
√

n in a transmission measurement of the cavity.

These peaks correspond to the transitions from the ground state to the two excited states of

the system, as depicted in the center column of the energy level diagram Fig. 4.3. This splitting

is clearly resolved in all of our experiments and will be discussed in detail in chapter 5.

4.1.3 The Dispersive Regime: Lamb and Stark Shifts

The resonant interaction of qubit and cavity allows for free, coherent exchange of energy and the

two systems lose their individual character in this limit. A qualitatively different regime of circuit

QED is obtained when qubit and cavity are far detuned from each other so that ∆ > g. In this

dispersive limit of large detunings between qubit and cavity field, the interaction manifests itself

only in the form of frequency shifts and the Jaynes-Cummings Hamiltonian can be effectively

decoupled. Making a Schrieffer-Wolf-type transformation [1]

U = exp
[ g

∆
(aσ+ − a†σ−)

]
(4.19)

of the Hamiltonian (4.7) and expanding to second order in the small parameter g/
√

∆ gives the

effective Hamiltonian

Heff = UHU† ≈ ~ωr
(

a†a +
1

2

)
+
~
2

(
ωa + 2

g2

∆
a†a +

g2

∆

)
σz (4.20)

in which the term HI in Eq. (4.7) was adiabatically eliminated. The qubit-cavity interaction is

now reduced to frequency shifts. The undressed qubit frequency ωa experiences a shift from

the populated cavity field with n = 〈a†a〉 photons, the ac Stark shift δS = 2χn = 2(g2/∆)n, as

well as a virtual photon shift δL = χ due to its interaction with the vacuum field fluctuations

〈a†a〉 = 0, the Lamb shift. In other words, the presence of both ’real’ and virtual photons inside

the cavity manifests itself as a renormalization of the energy of the qubit. The ac Stark and

the Lamb shift are closely related to the Rabi splitting in the near-resonant case as can also be

seen from the energy level diagram Fig. 4.3. The Lamb shift represents the dispersive remains

of the vacuum Rabi splitting whereas the ac Stark shift corresponds to the splittings higher up

the Jaynes-Cummings ladder with photon numbers n > 0 [88].

The dispersive interaction does also have an effect on the cavity frequency. To highlight this,

we regroup the effective Hamiltonian:

Heff = ~
(
ωr +

g2

∆
σz

)(
a†a +

1

2

)
+ ~

ωa
2
σz . (4.21)
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Apparently, the cavity resonance ωr acquires a qubit-state-dependent shift given by 〈σz 〉 (g2/∆) =

±(g2/∆). The qubit-state-dependent cavity frequency shift forms the basis of quantum non-

demolition readout in circuit QED systems [1, 104]. An ideal QND measurement allows re-

peatedly measuring a quantum-mechanical system without altering its state. In the Heisenberg

picture, this means that the measurement operator A does not change during the time we are

measuring and thus it has to fulfill the equation of motion

dA

dt
=

1

i~
[A, H] = 0 (4.22)

i.e. it has to commute with the Hamiltonian. In the dispersive circuit QED regime, all of the

individual terms in Heff commute with the total Hamiltonian and thus the cavity shift ±(g2/∆)

can be used to readout the qubit state 〈σz 〉 = ±1 in a QND-type measurement.

Note that dispersively it also possible to exactly diagonalize the Jaynes-Cummings Hamiltonian

in the basis of the decoupled states |↓, n〉 = |↓〉 ⊗ |n〉 and |↑, n + 1〉 = |↑〉 ⊗ |n + 1〉. This can

be achieved by applying an exact dispersive transformation to the full Lindblad master equation

of the system [105]. In that case the Lamb and Stark shifts are given by the exact expressions

[105]

δL =
∆

2

(√
1 + 4λ2 − 1

)
(4.23)

δS(n) =
∆

2

(√
1 + 4λ2(n + 1)−

√
1 + 4λ2 +

√
1 + 4λ2n − 1

)
(4.24)

where we have defined λ = g/∆. A Taylor expansion around λ = 0 shows that these expressions

can be reduced to the Lamb and Stark shifts derived above. Such an exact dispersive trans-

formation is, however, conditioned by the degree to which the artificial atom realizes an ideal

two-level system. For a regular Cooper pair box, such a transformation can be found, in contrast

to the case of a transmon qubit.

4.2 Circuit QED for Transmon Qubits

In the discussion of cavity and circuit QED so far, the artificial atom was regarded as a perfect

two-level system that has no higher energy states. Owing to the strong degree of level anhar-

monicity, it was shown in section 2.5.2 that this is indeed true to a very good approximation for a

Cooper pair box. In the transmon design derived from the CPB, we saw, however, that a certain

degree of anharmonicity is traded in for a decrease in charge noise sensitivity. Luckily, these two

quantities scale differently, the latter one decreasing exponentially in the ratio EJ/EC while the

first one only does so with a weak power law [69, 70]. It was shown that there exists a parameter

range of EJ/EC values in which both charge noise insensitivity as well as sufficient anharmonicity

for qubit operation are possible. However, the main price to pay for using the transmon is to

keep track of its higher energy levels in a circuit QED treatment. All of the qubit experiments

presented in this thesis were carried out with transmon qubits rather than conventional Cooper

pair boxes and thus this section will spend some time on discussing the important implications
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Figure 4.4: Equivalent circuit diagram of a Transmon qubit coupled to a transmission line cavity [69].

this has on the whole circuit QED system.

In analogy to the CPB case, the transmon is embedded directly inside the resonator and coupled

capacitively to the center conductor. This time, however, the superconducting qubit has an ad-

ditional large shunting capacitance CB , as shown in the equivalent circuit diagram Fig. 4.4. CB
changes the capacitance ratio β and thus also the actual coupling strength (4.10). As discussed

in section 2.7, the transmon is described by the same Hamiltonian as the CPB and thus the

Hamiltonian of the coupled qubit-cavity system is also given by [69]

H = 4EC (N − ng)2 − EJ(Φ) cosφ+ ~ωr
(

a†a +
1

2

)
+ 2βeVrmsN(a + a†) . (4.25)

In the CPB case, we have used the two-state approximation for the qubit Hamiltonian to realize

a Jaynes-Cummings model from this. For the transmon, however, it is important to also account

for the higher energy levels. Rewriting (4.25) in the basis of the undressed transmon states |i〉
and applying the rotating wave approximation yields [69]

H = ~
∑
j

ωj |j〉 〈j |+ ~ωr
(

a†a +
1

2

)
+

[
~
∑
i

gi ,i+1 |i〉 |i + 1〉 a† + h.c.

]
(4.26)

which represents an effective, generalized Jaynes-Cummings Hamiltonian. Here, the coupling

strength of the transition |i〉 → |i + 1〉 reads

gi ,i+1 =
2e

~
βVrms 〈i |N|i + 1〉 ≈

2e

~
βVrms

√
i + 1

2

(
EJ(Φ)

8EC

)1/4

(4.27)

with β = Cg/CΣ, CΣ = CB+Cg+C . Apparently, the coupling strength also depends on the ratio

of Josephson to charging energy and even increases weakly with EJ/EC . This comes somewhat

as a pleasant side-effect and has helped the second generation of circuit QED experiments to

go even deeper into the strong-coupling regime [5, 9, 6, 88]. The dispersive regime of the

transmon-cavity interaction is especially interesting for the experiments presented in this thesis.

Using a canonical transformation similiar to the Schrieffer-Wolf transformation discussed before,
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Figure 4.5: (a) Dispersive shift χ in transmon circuit QED as a function of normalized detuning ∆01/ω01 and the

ratio EJ/EC [69]. (b) Lamb shift as a function of detuning for three different typical coupling strengths.

one arrives to lowest order at the effective dispersive Hamiltonian [69]

Heff = ~ω′r
(

a†a +
1

2

)
+
~
2

(
ω01 + χ01 + 2χa†a

)
σz (4.28)

where

ω′r = ωr −
χ12

2
, χ = χ01 −

χ12

2
(4.29)

χij =
g2
ij

ωij − ωr
≡

g2
ij

∆ij
. (4.30)

Here ωij denotes the bare, undressed frequency of the transition i → j . Note that in the transmon

case both qubit and cavity resonances are renormalized simultaneously. The cavity resonance

acquires a slight shift due the presence of the third transmon level ω′r = ωr −χ12/2. The original

Stark shift per photon in the qubit frequency is also modified to δS = 2χ = 2χ01 − χ12. Only

the Lamb shift due to the interaction with the virtual photons stays the same

δL = χ01 =
g2

01

∆
. (4.31)

The dispersive shift χ is plotted in Fig. 4.6a as a function of normalized detuning ∆01/ω01 and

the ratio EJ/EC [69]. Three distinct regions separated by the two poles are identified: A negative

dispersive shift is observed for negative detunings ∆01 as well as for positive detunings exceeding

the charging energy ∆01 > EC . In the range of small positive detunings 0 < ∆01 < EC , the shift

becomes positive.

Furthermore, we see from the new Lamb and Stark shift expressions that it has become possible

for the qubit vacuum interaction to exceed the coupling to the actual photon field. The Stark shift

per photon is reduced by the third transmon level by a factor of χ12 which can reach significant

values for small anharmonicities. The qubits used in our experiments are operated deep in the

transmon regime EJ(0)/EC ' 160 with minimum anharmonicities of α = E01−E12 ' 240 MHz.

As demonstrated in chapter 5, we indeed reach the case of 2χ < χ01 in which the Lamb shift
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exceeds the Stark shift per photon.

General plots of the Lamb shift as a function of detuning ∆ are shown in Fig. 4.6b for different

coupling strengths. As can be seen, the Lamb shift converges towards zero for large detunings,

allowing to effectively ’switch it off’ by far detuning cavity and qubit. Note, however, that in

reality one also has to account for higher cavity modes. On the other hand, δL strongly increases

for ωr → ωa, producing large shifts in the dressed qubit transition ω̃a = ωa + δL for small

detunings. For ∆ = 0, all excitations in the system become equally shared between qubit and

cavity and there are no separate transitions or energy levels anymore. This leads to the vacuum

Rabi splittings discussed above and the pure qubit transition disappears. Chapter 5 will present

the experimental observation of a smooth transition from Lamb shift to vacuum Rabi splitting.

4.3 Tunable Cavity - Qubit Systems

Following the discussion of cavity QED with Cooper pair boxes and transmons in sections 4.1

and 4.2, the final part of this chapter will focus on what circuit quantum electrodynamics looks

like when using the flux-tunable cavity of section 3.2 instead of a regular transmission line cavity.

The discussion is split into two parts. First, we will assume a linear tunable resonator where the

Kerr-type non-linearity introduced by the SQUID is neglected. In that case, the physics stays

essentially the same as in regular circuit QED systems, however, providing us with an additional

control parameter in our experiments. The non-linear case accounting for the higher-order ef-

fects in the SQUID Josephson potential is then presented at the end of this section, where both

the resonant strong and the dispersive limit are discussed in detail.

The Linear Case

In the generic treatment of the tunable cavity with the electrical model of section 3.2.1, the non-

linearity introduced by the Josephson elements is effectively neglected and the presence of the

SQUID simply leads to a flux-dependent resonance frequency ωr (Φ). The coupled CPB-cavity

system is then described by the usual Jaynes-Cummings type interaction. The total Hamiltonian

is written in complete analogy to regular circuit QED systems, except for the flux-dependent

cavity resonance

HJC = ~ωr (Φ)

(
a†a +

1

2

)
+
~ωa(Φ)

2
σz + ~g(a†σ− + σ+a) + Hγ + Hκ . (4.32)

In a typical experiment with a conventional qubit-transmission line resonator system, the modes

of the resonator are fixed and the qubit resonance frequency is flux-tuned to enter the different

regimes of circuit QED in the resonant (∆ = 0) and the dispersive limit (∆� g). Using a tunable

resonator, however, effectively allows switching the roles of qubit and cavity. For instance, in

a Rabi splitting experiment, the qubit can be held at a fixed position in frequency space while

the cavity is tuned in and out of resonance. Such an experiment is, however, quantitatively
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Figure 4.6: Sketch of a transmon qubit (dark blue) coupled to a flux-tunable superconducting cavity incorporating

a SQUID loop at the center position.

different due to the dependence of the coupling strength on the cavity frequency which gives a

flux-dependent Rabi splitting ∆En = ~g(Φ)
√

n. In that sense, also the Lamb and Stark shifts of

the dispersive regime have different values.

The fact that entanglement (∆ → 0) and disentanglement (∆ � g) can now be achieved

by tuning the cavity rather than the qubit leads to a number of interesting possibilities. In

section 2.7 it was shown that there exist flux sweet spots in the qubit parameter space at

Φ = nΦ0, (n/2)Φ0 at which the CPB becomes to first order insensitive to flux noise, in complete

analogy to the charge sweet spots. Although flux noise is not the limiting factor at the current

stage of superconducting qubit experiments, operating at these points would in principle lead to

a decrease in dephasing and thus increased coherence times. This is, however, not possible in

conventional circuit QED as we need to be able to tune the qubit in and out of resonance with

the cavity. On the other hand, using a tunable transmission line resonator instead allows us to

switch the roles of qubit and cavity as the active elements in our experiments. Here, we can

keep the qubit at a fixed flux sweet spot and use the cavity for tuning in and out of resonance.

Now since the resonator can also be used to mediate the coupling between two different qubits

[8, 9], a tunable cavity would in turn allow entanglement between the two systems using only a

single flux bias, as has been proposed theoretically in Ref. [10].

The Non-Linear Case

The situation becomes much more complicated when the non-linearity of the resonator is taken

into account. In that case, the system is no longer described by a pure Jaynes-Cummings

Hamiltonian. The second-order perturbative treatment of the SQUID Josephson potential gave
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the anharmonic, single-mode resonator Hamiltonian (see section 3.2.3)

H = ~
(
ωk − ∆ωka†kak

)(
a†kak +

1

2

)
(4.33)

with the flux-dependent frequency shift

∆ωk ≡ ∆ωk(Φ) =
Ej(Φ)

4~

(
2π

Φ0
∆k

)4

. (4.34)

where coupling to all higher modes has been neglected. The qubit-nonlinear resonator system is

then described by a Hamiltonian of the form

H = ~(ωk − ∆ωka†kak)a†kak +
~ωa

2
σz + gk~(a†kσ

− + σ+ak) . (4.35)

where the vacuum field fluctuations have been dropped for the moment. Solving the eigenvalue

equation in zeroth order degenerate perturbation theory yields the exact eigenenergies

E1,2 = ~ωr (n + 1)− ~∆ωrn(n + 1)±
1

2

√
[~∆ar + ~∆ωr (2n + 1)]2 + 4~2g2(n + 1) (4.36)

where we have dropped the mode index and introduced the detuning ∆ar = ωa−ωr . The excited

eigenstates of the system are then written in analogy to section 4.1.2 as

|+, n〉 = cos Θn |↓, n〉+ sin Θn |↑, n + 1〉 (4.37)

|−, n〉 = − sin Θn |↓, n〉+ cos Θn |↑, n + 1〉 (4.38)

where, however, the mixing angle of the states has acquired an additional flux-dependence

Θn =
1

2
arctan

(
2g
√

n + 1

∆ar + ∆ωr (Φ)(2n + 1)

)
. (4.39)

Maximum entanglement between CPB and tunable cavity is then achieved for

∆ωr =
1

2n + 1
(ωr − ωa) (4.40)

which results in the Bell-states (4.16). The corresponding vacuum Rabi splitting then turns out

to be photon-number dependent

∆Enrabi =
√
~2∆2

ar + 4~2g2(n + 1) . (4.41)

These simple calculations already hint at the rich physics to be found in such a non-linear cavity

qubit device. Ultimately, this system no longer consists of a harmonic and an anharmonic oscil-

lator. It merely has to be thought of as the coupled system of two different forms of anharmonic

oscillators, a photonic and a superconducting one. The photon number dependence in both

the mixing angle as well as the Rabi splitting is a consequence of the ’self-Stark shift’ of the

cavity δS = ∆ωka†kak that pulls itself through the whole calculation. Some of the fascinating
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possibilities that arise from this shift are discussed in section 3.2.3.

In the dispersive regime of large detunings ∆ � g, the interaction term in (4.33) can be adia-

batically eliminated in the same way as was done in the linear Jaynes-Cummings Hamiltonian.

We get for the effective dispersive Hamiltonian

Heff = ~(ω′k − ∆ωka†kak)a†kak + ~
(
ωa
2
− χ

(
1 +

∆ωk
∆

)
− 4

χ

∆
∆ωka†kak

)
σz (4.42)

where

ω′k = ωk + χ−
χ

∆
∆ωk , ∆ω′k = ∆ωk

(
1−

χ

∆

)
(4.43)

In analogy to the linear case, the qubit experiences a Lamb and an ac Stark shift. The Lamb

shift due to the virtual photons inside the cavity takes the form δL = χ+(χ/∆)∆ωk , while the ac

Stark shift is identified as δS = 4(χ/∆)∆ωka†kak . In addition, also the cavity frequency acquires

shifts due to the Kerr-type non-linearity of the SQUID loop.
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This chapter represents the core of this thesis and discusses the major results that have been

obtained in our experiments over the course of the last ten months. Throughout the final part of

this thesis, we will systematically explore the different regimes of circuit quantum electrodynamics

that have been introduced theoretically in chapter 4. On-chip quantum optics experiments are

presented in which we were able to investigate the interaction of matter and light down to the level

of single quanta, ultimately reaching the limit where a superconducting qubit dispersively interacts

with the pure vacuum fluctuations of the electromagnetic cavity field. Here, the presence of the

virtual photons manifests itself as a small renormalization of the energy of the qubit in the form

of the Lamb shift, which is observed in our experiments for the first time in a macroscopic solid-

state system. The transition from the strong dispersive to the resonant strong limit is shown as a

smooth, continuous overlap of cavity transmission and qubit spectroscopy data, in a region where

the Lamb shift turns into the Vacuum Rabi splitting of the entangled cavity-qubit superposition

states. Following the vacuum field measurements, the photon number is sequentially increased.

In this regime, some interesting experiments will be presented that allow us to put the Lamb

shift in a consistent picture and to resolve individual photon number states of the cavity [5].

Finally, the strong coupling of a superconducting qubit to a flux-tunable transmission line cavity

is experimentally demonstrated. Section 5.5 discusses the first preliminary results from these

experiments. The presented data have been obtained in the very final stage of this thesis and

thus only hint at the vast number of possible experiments that might be done with this device

in the future.

Chapter 5 is outlined as follows. First, the measurement setup including cryogenics, filtering

and circuitry will be discussed. Section 5.2 presents the results from transmission measurements

of four tunable resonator devices and characterizes them in terms of their tuning behavior and

quality factors. The concepts of continuous and pulsed qubit spectroscopy are then discussed in

section 5.3. A detailed, in-depth analysis of the main quantum optics experiments and the Lamb

shift observation is given in the final two parts of this chapter, where we also demonstrate the

strong coupling of a superconducting qubit to a tunable resonator.

5.1 The Setup

In this section, the measurement setup, that was used and adapted for the experiments presented

throughout this thesis, is discussed. The results described in this chapter were in fact obtained

from measurements in two different, although similar setups. The measurements of the two-

qubit device discussed in section 5.4 were carried out in a setup that has been developed prior
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to this thesis [106]. This setup already allowed for a number of successful experiments [88, 107]

and was ready to use from the start, for which the author would like to express his gratitude.

The implementation of this setup will not be described here and is presented in detail in Ref.

[106].

All other experiments that included tunable superconducting cavities were performed in a second,

neighboring setup in a different cryostat. A significant amount of time for this thesis was invested

in optimizing the circuitry, installing new filtering, setting up new lines and getting the setup ready

for qubit experiments. The remainder of this section will focus on describing this setup.

Cryogenics

The experiments presented in this thesis have been exclusively conducted at ultra-low temper-

atures down to a few tens of mK above absolute zero. Such low temperatures are a stringent

requirement for the observation of coherent quantum-mechanical effects in solid-state circuits.

In section 2.1, it was shown that energy dissipation must be suppressed for a circuit to behave

quantum-mechanically and to preserve its quantum coherence. Hence, as discussed through-

out this thesis, only superconducting materials such as Nb or Al are used in the circuit QED

architecture, which in turn means operating below the corresponding critical temperatures of

Tc [Nb] ∼ 9.2K and Tc [Al] ∼ 1.2K, respectively. Furthermore, the need for ultra-low temper-

atures is also expressed by the relevant energy scales in our system. Superconducting qubits

typically have transition frequencies on the order of 10 GHz corresponding to temperatures of

kBT ∼ 500 mK. Above these temperatures, thermal excitations would induce qubit transitions

and completely destroy any coherent effects. To obtain base temperatures of about 15 mK, two

dilution refrigerators are operated in the Quantum Device Lab at ETH Zurich, a Kelvinox 400

µW dilution cryostat from Oxford Instruments and a novel pulse-tube cooled dilution refrigerator

[108, 109, 110] developed by Vericold Technologies. This section gives a description of the latter

one. In part due to the surging market prices for liquid He, this new type of cryostat has become

quite popular over the course of the last year or so, in particular among groups in the circuit

QED community.

The operation of a cryogenic refrigeration system is based on a closed-loop Helium expan-

sion cycle, as explained in detail in Ref. [111]. The dilution of liquid 3He into liquid 4He is

currently the only method known to produce temperatures in the millikelvin regime in a con-

tinuous and stable way. In a conventional dilution refrigerator, the necessary precooling of the

circulating 3He/4He mixture is accomplished by a dewar filled with liquid helium (sometimes also

nitrogen). In addition to precooling from room temperature to 4.2 K, this helium bath also acts

as a thermal radiation shield and cools the returning He in the cycle and helps to condense it

[111]. Note that such a 4He-filled dewar does not realize a closed cycle and must therefore be

refilled periodically in continuous operation mode. A number of alternatives for precooling, that

do not require any cryogenic liquids, have recently been developed. These novel types of ’dry’

dilution refrigerators rely on closed-cycle refrigerators, such as in the form of Gifford-McMahon

refrigerators [112] or pulse tube cryocoolers [113, 108, 109], rather than on a 4He bath to handle
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Figure 5.1: The pulsed-tube cooled dilution refrigerator used in the experiments of this thesis: closed state with

all thermal and outer vacuum shields (left) and ’undressed’ interior (right)

the precooling.

The Vericold pulse-tube cooled dilution refrigerator has two separate cycles, a pre-cooling and

a dilution cycle, and consists of five different temperature stages as indicated on the left-hand

side of Fig. 5.2, where the estimated cooling powers of each stage are also shown on the right.

The refrigerant gas used in both cycles is 99.999 % pure Helium. In contrast to conventional

cryostats, the precooling of the 3He/4He mixture is achieved by a pulse-tube cooler (PTC) rather

than by a helium bath [108, 109]. In that way, the Vericold system does not require the use of

any external cryogens, in particular liquid helium, for operation. This in turn supersedes periodic

filling of the cryostat and allows using a simple vacuum can instead of a He dewar. The PTC

used in our dilution refrigerator is a two-stage cryocooler whose first stage reaches a loaded

temperature of ∼ 70K while the second stage reaches about 4K, as also indicated in Fig. 5.2.

The circulating 3,4He gas is first purified in a charcoal trap which is thermally anchored at the

first stage of the PTC and is then pre-cooled in a heat exchanger at the second stage of the

PTC to about 4 K. For more details on the construction and operation of dry refrigerators see

Refs. [113], [109] and [110].

In the Vericold system, full automated cooldowns are possible in which pre-cooling and con-

densing are handled automatically by the software. In a typical cooldown, two steps can be

distinguished. First, the 700 mK, 100 mK and the base stages are pre-cooled by the dilution unit

via the mixture in the precooling cycle, while the 70 K and 4 K stages are cooled by the PTC.

The pre-cooling cycle is controlled by the temperature on the base plate. Once a value of 12 K

is reached, the He mixture is recovered from the pre-cooling cycle back into the external mixture

tank and consequently directed into the condensing cycle. From this point on, the system is
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in condensing mode and the base plate ultimately reaches a temperature of ∼15 mK. Almost

all valves in the refrigerator system are software-controlled, the major exceptions being the two

mixture tank valves. Pictures of the Vericold dilution refrigerator in its ’dressed’ (with thermal

and outer vacuum shields) and in its ’undressed’ state are shown in Fig. 5.1.

Filtering and Circuitry

As discussed throughout this thesis, the relevant energy scale of the coupled qubit-cavity system

is set in the microwave regime, where we are typically dealing with frequencies in the range of 1

to 10 GHz. To manipulate, control and readout the state of the system, classical highly phase

coherent microwave signals are required which allow us to reveal the quantized nature of our

devices. In addition, probing the matter-light interaction of a solid-state system down to the

single and ultimately the zero photon limit requires signals of extremely low powers which can only

be generated, modulated and resolved by careful filtering, amplification and attenuation/isolation.

The use of cryogenic temperatures down to 15 mK effectively eliminates thermal excitations due

to phonons entering the system from room temperature. However, the coaxial cables used for

transmitting and extracting information from the sample go down from room temperature and

thus they will also inevitably carry thermal photons to the sample. To effectively suppress this

thermal noise source, the lines have to be strongly attenuated and isolated, with each component

of the circuit properly thermalized at the relevant temperature stage of the cryostat.

The implemented microwave setup used for measuring all devices with tunable cavities is depicted

in Fig. 5.2. In many aspects, this setup is identical to the one presented in [106], which was used

for the Lamb shift measurements in section 5.4. We will thus restrict ourselves here to a rough

description of the newly implemented setup rather than an exhaustive discussion of the individual

components. In principle, three different parts can be distinguished in the setup of Fig. 5.2: (i)

The signal synthesis part in which the required microwave signals are generated and modulated

before entering the cryostat, (ii) the microwave circuit at the different temperature stages that

attenuates the signals and isolates the sample from thermal noise and (iii) the amplification and

down-conversion part.

For the generation of the RF microwave signals, a Rhode & Schwarz SMR 40 signal generator

with an operating range of 10 MHz to 40 GHz was used, while for the local oscillator (LO)

unit we employed an Agilent E8257D signal generator with a range of 250 kHz to 20 GHz

(upper left-hand corner in Fig. 5.2). All microwave sources are phase coherent and phase locked.

Note that the spectroscopy generator (upper left corner of Fig. 5.2) is illustrated in grey since

it was not required, respectively, not yet implemented in the setup up to this stage of the

tunable cavity experiments. Two 20 dB microwave attenuators are directly connected to the

output of the RF generator, followed by a DC block so that the power of the signal is already

strongly reduced before entering the dilution refrigerator. Once inside, the signal is further

attenuated and thermalized at the 4 K, 100 mK and the base temperature stages by 50 dB

in total. Typically, the coaxial cables themselves exhibit some frequency-dependent attenuation

depending on their length and material properties. Here, we use two different types of cables,

stainless steel cables (low thermal conductivity, strong signal attenuation) as well as Copper
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Figure 5.2: Implemented setup and circuitry in the pulse-tube cooled dilution refrigerator. The different tempera-

ture stages and estimated cooling powers are indicated in the right- and left-hand corners, respectively. A detailed

discussion of the individual components is given in the text.
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cables (high thermal conductivity, little attenuation). In this setup, the cable attenuation was

estimated at roughly 18 dB at 5 GHz on the whole (upward and downward lines combined). In

total, the signal at the output of the RF generator is attenuated by more than 100 dB before

arriving at the input capacitor of the resonator. Note that the choice of the attenuator positions

in the refrigerator is contrained by the relevant cooling powers at each stage (indicated on the

left-hand side in Fig. 5.2). While the input side naturally suppresses thermal photons due to

the strong attenuation that is required for the low powers at the sample level, any excessive

attenuation on the output lines would absorb the signals transmitted through the sample and

strongly reduce the signal to noise ratio. To this end, two cryogenic isolators from Pamtech

(model CWJ1019) with a frequency range of 4 to 12 GHz are used instead of regular attenuators.

Each of them is characterized by a very low (measured) attenuation in one direction (<0.6 dB)

and very strong attenuation in the opposite one (> 30 dB). In that way, the signals from the

sample are transmitted nearly without loss while all thermal photons, travelling down the lines

from the warmer stages, are effectively absorbed. Having passed the isolators, the signal is

subsequently amplified at the 4 K stage by an ultra-low noise amplifier with a noise temperature

of Tn = 4 K and 40 dB gain (manufactured at Caltech). Back at room temperature, the signal

passes another DC block and is further amplified by two Miteq amplifiers and filtered in a 4.25

- 10 GHz band pass filter from Mini-Circuits. In the following, the signal is down-converted and

mixed with the LO signal (offset by 10 MHz from the original RF signal) using an IQ mixer

(Marki M07079). Before entering the data acquisition card for post-processing, the signal gets

amplified further by a Mini-Circuits ZFL 500 low noise amplifier (24 dB gain, 1 to 500 MHz

operating range) and filtered by another band pass. In total, this setup allows for ultra-low power

GHz signals at the sample level, strong isolation from thermal photon noise and a signal to noise

ratio high enough to observe the quantum nature of our devices.

To manipulate the transition frequencies of both the qubit and the cavity, two coils wound

with superconducting Nb-Ti alloy wires are installed underneath the chip directly in the Copper

sample holder. A small coil with an inner loop diameter of d = 3 mm is centered below the

qubit and a larger one with d = 11 mm is positioned so that its center axis is aligned with the

middle of the whole chip. The chassis is made out of Torlon polyamide-imide, an ultra-high

strength thermoplastic. The coils are either current or voltage biased using a Yokogawa 7561

programmable DC source to generate a stable flux bias.

5.2 Superconducting Tunable Cavities

In total, 30 different tunable transmission line resonators have been designed in the framework of

this thesis (see section 3.2), four of which have been measured in the setup discussed above with

one successfully coupled to a superconducting transmon qubit. In summary, all of the devices are

in excellent agreement with the theory developed in chapter 3 and had parameters remarkably

close to the actual design. The two most important quantities of a tunable cavity are its total

tuning range ∆ν = νr (Φ0)−νr (Φ0/2) and the behavior of its quality factor under flux bias Q(Φ).

This section focuses on the results from the measurements of the bare resonators which have

not been coupled to a qubit. The coupled transmon-cavity system will be discussed separately
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Mask ID ` [µm] Cκ Ic1 [µA] Ic2 [µA] d loop size

H 1 7600 1+2 finger - 74 µm 2.20 1.95 6.0 % 30 µm2

J 1 7800 1+2 finger - 74 µm 2.32 2.05 6.2 % 30 µm2

L 1 13200 1+1 finger - 74 µm 2.35 2.03 7.5 % 30 µm2

L 3 13200 1+1 finger - 74 µm 2.00∗ 2.6∗ 13.0 % 30 µm2

Table 5.1: Designed and measured parameters of the four realized SQUID-cavity devices. Here, d denotes the

junction asymmetry, Ic1 and Ic2 the critical currents extracted from fits and Ck the symmetric coupling capacitances.

All of the devices are coupled by finger capacitances with a length of 74 µm per finger. (∗ Designed values. This

device is still being analyzed.)

in section 5.5.

5.2.1 Tuning Range

The total tuning range of a superconducting transmission line resonator incorporating a SQUID

loop is ultimately determined by how symmetrically the two Josephson junctions can be fabri-

cated. As shown in detail in section 3.2, the degree of asymmetry of the SQUID junctions can

be effectively used as a design parameter that sets both the absolute tuning range as well as the

flux noise sensitivity of the cavity. Perfectly symmetric junctions yield the maximum tuning range

∆ν = νr (nΦ0), while devices with asymmetric junctions are less sensitive to magnetic flux noise.

The behavior of the resonance frequency under flux bias can be modeled either numerically using

the ABCD matrix formalism or by means of a mapped LCR oscillator model (see section 3.2).

There, the resonance frequency was derived as

ω0(Φ) =
ωr

1 + Ls(Φ)
L

(5.1)

with ωr denoting the resonance frequency of the equivalent cavity without SQUID. Here, the

linear flux-tunable SQUID inductance is given by

Ls(Φ) =
Φ0

2π

[
(Ic1 − Ic2)2 + 4Ic1Ic2 cos2

(
π

Φ

Φ0

)]−1/2

. (5.2)

To test the models and see how accurate the fabrication and design processes are, four different

tunable resonators have been fabricated and systematically measured. The parameters of the

different resonators are summarized in Tab. 5.1. To experimentally verify the tuning behavior,

each of the four test resonators was measured in transmission and sweeped over several flux

periods using the setup presented above. Here, the coils for generating the flux are voltage

biased over a series combination of two RC filters. To avoid non-linear effects and keep the

current at the SQUID position below its critical current, the input power of the microwave

signals Prf was set in the approximate single photon range, corresponding to -30 to -35 dBm at

the RF generator output and roughly -140 dBm to -145 dBm at the input capacitance of the
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Figure 5.3: Transmission spectra and Lorentzian fits at different flux for device J1 (see Tab. 5.1 for sample

parameters).

resonator 1. Since all resonators are characterized by low quality factors (Q ∼ 1000−3000), the

peaks in the transmission are broad and the microwave signals get transmitted nearly without

loss, i.e. the resonators are over-coupled [92]. Thus only little averaging (∼ factor 500) and

large frequency step sizes (∼ 0.5 - 3 MHz) are required for these sweeps. The transmission

spectrum at each flux bias step was measured, recorded and fitted to a Lorentzian, which yields

both the frequency of maximum transmission as well as the quality factor. Typical transmission

spectra and Lorentzian fits at different flux biases are depicted in Fig. 5.3 for device J1. The

tuning behavior is clearly demonstrated as the resonances shift by more than 600 MHz under

a small flux variation of 0.35Φ0 ≤ Φ ≤ 0.415Φ0 close to half a flux quantum. Fig. 5.4 shows

the resonance frequencies extracted from Lorentzian fits for devices L1 and J1 over one flux

period each. Here, the solid lines are fits to the theoretical expression (5.1) from which we are

able to determine the critical currents and the junction asymmetry, see Tab 5.1. The devices

realize tuning ranges of several GHz, by far exceeding those reported in Refs. [11, 90], where the

maximum measured range was 700 MHz. The tuning curves ωr (Φ) exhibit broad maxima and

narrow, pronounced minima with total tuning ranges of ∆ν(H1) = 2.66 GHz and ∆ν(L1) = 900

MHz 2.

5.2.2 Quality Factors

The total quality factor of a transmission line resonator is given by the parallel combination of

the internal and external quality factors (see chapter 3)

1

QL
=

1

Qint
+

1

Qex
(5.3)

1See also the discussion on the operating constraints in chapter 3.
2This value is most likely higher, since the true minimum cannot be identified due to the strong degrading of the

quality factor in this case (see also section 5.2.2).
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Figure 5.4: Extracted resonance frequencies for devices H1 and L1 as a function of applied flux bias.

where we had for the external quality factor in case of symmetric coupling

Qex =
nπ

4Z0

(
1

C 2
κRLω2

n

+ RL

)
. (5.4)

For large coupling capacitances, Qex becomes small and the loaded quality factor is dominated

by the external contribution QL ∼ Qex. On the other hand, weak coupling to the input/output

lines yields a large external quality factor and we have QL ∼ Qint. All of the measured tunable

cavities are quite strongly over-coupled due to their comparably large coupling capacitances of

a few fF (see Tab. 5.1). Thus it holds for the measured quality factor QL ∼ Qex. In principle,

one would expect an increase in quality factor for Φ→ Φ0/2 as the resonance frequency reaches

its minimum and all other parameters in (5.4) are constant. However, this expression does

not account for the non-linearity and the bias current dependence of the SQUID. This effect

translates to an inhomogeneous broadening of the resonances which can become significant

at points of high noise sensitivity. This broadening is a result of the shifts of the resonance

frequency that are generated by the SQUID non-linearity. In section 2.4.2, we found for the

Taylor expansion of the non-linear resonance frequency of the SQUID loop

ωs =
1√

(Ls0(Φext) + A3(Φext)I 2)Cs

= ωs0 −
1

2!
A3I 2 1

2
√

L3
S0Cs

+
1

3!
A2

3I 4 3

4
√

L5
S0C 3

s

− ... . (5.5)

and equivalently for the flux-dependent inductance

Ls(Φ) =
Φ0

2πIc(Φ)

[
1 +

1

2!

(
I

Ic(Φ)

)2

+
1

4!
9

(
I

Ic(Φ)

)4

+ ...

]

=
Φ0

2πIc(Φ)
+ A3I 2 + 9A5I 4 + ... . (5.6)

Here, we see that fluctuations in the current I result in fluctuating shifts of the resonance

frequency of the SQUID circuit and its inductance, which in turn also causes the resonance fre-
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Figure 5.5: Extracted quality factors as a function of applied flux bias for device L1 over a whole flux period (left)

and device H1 around half a flux quantum (right).

quency of the total cavity-SQUID system to fluctuate. This leads to inhomogeneous broadening

of the resonances and thus an increase of the cavity linewidth, i.e. a decrease of the quality

factor. More rigorously, the corresponding decrease in quality factor can also be expressed as

[11]

Qinh =

[
2ω0(Φ)

πRL(1 + 2Ls(Φ)
L )

]−2
16πI 3

c (Φ)

Φ0

1√
δE 2

(5.7)

where symmetric junctions have been assumed. Here, δE 2 are the average energy fluctuations

due to the fluctuating number of photons n2 − n2 inside the resonator, which is equivalent to a

fluctuating current (see section 3.2.4). (5.7) explicitly shows that the total quality factor

1

QL
=

1

Qint
+

1

Qex
+

1

Qinh
(5.8)

reaches a sharp minimum at Φ0/2 where Ic → 0 for symmetric Josephson junctions. Apparently,

a certain degree of asymmetry helps in reducing this strong decrease.

The degrading of the quality factor is indeed observed in our measurements. The extracted

quality factors for device L1 are depicted in Fig. 5.5a over one flux period. Here, QL exhibits a

sharp decrease around Φ0/2 down from its maximum value Qmax ∼ 2900 to effectively zero. At

Φ0/2, the critical current reaches a minimum and thus small fluctuations in the ac current at

the SQUID position due to thermal noise will have a strong effect.

This degrading of the quality factor can, however, be circumvented due to the fact that the

overall quality factor decrease depends on the actual parameters of the cavity. If the resonator

is sufficiently over-coupled with large Cκ and in addition has a moderate degree of junction

asymmetry, it is in fact possible that the decrease in Q predicted by (5.5) and (5.7) can be

compensated by the increase due to (5.4) around Φ0/2. Indeed in Fig. 5.5b a flux sweep in the

vicinity of Φ0/2 of the highly over-coupled device H1 shows a strong increase of the quality factor

by a factor of 3 around the minimum, consistent with the above discussion. The possibilities

arising from such a suppression of the Q degrading could help achieve better control over the

quality factor and should be further systematically investigated in terms of a parameter design

study.
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5.3 Qubit Spectroscopy and Readout

The dispersive regime of circuit QED allows for a quantum non-demolition measurement and

readout of the qubit state and its transition frequency via the dispersive cavity frequency shifts

discussed in chapter 4. The qubit-state dependent shift of the resonances in the cavity transmis-

sion forms the basis of superconducting qubit spectroscopy. In the experiments presented here,

two different types of spectroscopic measurements have been employed, a continuous version

where the cavity is populated with photons while the qubit transition is probed and a pulsed

version where the cavity mode remains unpopulated.

5.3.1 Continuous Spectroscopy

Under microwave irradiation, a superconducting coplanar waveguide cavity essentially behaves

like a driven harmonic oscillator and thus the corresponding transmission power spectrum exhibits

a Lorentzian line shape of the general form (see chapter 3)

P(ν) = P0
δν2

0

(ν − ν0)2 + δν2
0

(5.9)

where ν is the frequency of the microwaves passing through the cavity, ν0 the resonance fre-

quency, δν0 the cavity linewidth (half width at half maximum) and P0 the input power. Using

the definition of the quality factor Q = ν0/2δν0, the transmission spectrum reads

P(ν) =
P0

4Q2

1(
ν
ν0
− 1
)2

+ 1
4

(
1
Q

)2 . (5.10)

In addition to the change in amplitude (5.9), the waves also acquire a phase shift when passing

the cavity, just like optical photons do when being transmitted or reflected by an optical medium.

The general form of this phase shift is given by

δ(ν) = arctan

(
1

δν0
(ν − ν0)

)
. (5.11)

Thus far off-resonant photons |ν − ν0| � 1 will acquire a phase shift close to ±π/2 whereas

resonant or near-resonant photons match the resonance condition of the cavity and therefore

have a vanishing phase shift.

The presence of a qubit inside the cavity results in a change of the resonance frequency ν0. In the

dispersive regime ∆ � g where qubit and resonator are essentially decoupled, the qubit-cavity

interaction manifests itself in the form of frequency shifts as described by the dispersive circuit

QED Hamiltonian (section 4.1.1)

Heff =
~
2

(
ωa +

g2

∆

)
σz + ~

(
ω0 +

g2

∆
σz

)
a†a . (5.12)

As can be seen, the bare qubit frequency ωa is shifted by χ = g2/∆ due to the interaction with

91



5 On-Chip Quantum Optics Experiments

ΝR8.83 8.84 8.86 8.87
-Π�2

+Π�2

-1

-0.5

0.

0.5

1.

probe beam frequency ΝRF @GHzD

ph
as

e
sh

ift
@de

gD

Èe\Èg\ 2Χ

ΝR8.8 8.82 8.84 8.86 8.88 8.9
0.0

0.2

0.4

0.6

0.8

1.0

probe beam frequency ΝRF @GHzD

T
ra

ns
m

is
si

on
P

HΝL

Èe\Èg\

Figure 5.6: (a) State-dependent phase shift as a function of probe beam frequency. (b) Qubit state-dependence of

transmitted amplitude with excited state (blue), ground state (red) and unshifted peaks (dashed green) calculated

for typical qubit and resonator parameters.

the vacuum field fluctuations 〈a†a〉 = 0, i.e. it is the Lamb-shifted, whereas the cavity resonance

frequency ω0 acquires a shift χσz that depends on the state of the qubit 〈σz 〉 = ±1. Hence

the qubit state can be inferred from a quantum non-demolition measurement of the frequency

shift that an incident wave experiences when passing the cavity (see also section 4.1). Using the

cavity decay rate κ = 4πδν0 and the shifted resonance frequency ν̃0 = ν0 ± g2/∆, the general

phase shift (5.11) is rewritten as

δ(ν) = arctan

(
4π

κ
(ν − ν0)±

2g2

κ∆

)
. (5.13)

For near-resonant photons ν ∼ ν0 it then follows

δν± ≈ ± arctan

(
2g2

κ∆

)
, (5.14)

i.e. the sign of the phase shift of a wave passing the cavity depends on the state of the qubit.

Hence, monitoring the phase and transmission spectrum of a probe microwave beam of constant

frequency νrf and power Prf represents an effective method for a readout of the qubit state.

As the peak in the cavity transmission spectrum shifts by ±g2/∆ depending on the state of the

qubit, both the phase shift as well as the amplitude, i.e. the number of transmitted photons

of the probe beam, change. Note that this measurement is quantum non-demolition as qubit

and cavity states are essentially decoupled in the dispersive regime. This is discussed explicitly

in section 4.1.3, where the QND character of the dispersive readout was established from the

fact that the qubit operator σz commutes with the total effective Hamiltonian [Heff ,σz ] = 0 in

this regime.

The phase shift as a function of the probe beam frequency is depicted in Fig. 5.6a for typical

qubit and cavity parameters. The dependence on the qubit state is clearly visible in the vicinity

of the resonance frequency ν̃0. For a given constant probe beam frequency νrf ∼ ν0, the phase

shift for a certain qubit state can be inferred from the intersections with the δν± curves. Fur-

thermore, Fig. 5.6b shows the qubit-dependent shift in the transmission spectrum of the cavity.

So how can these phase and resonance frequency shifts be used for spectrosopic measurements
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of the qubit?

Assuming the qubit to be initially in its ground state with no driving pulses applied, the con-

stant probe beam νrf will experience a constant phase shift δν−. If however a spectroscopic

driving beam νs is applied in addition to the constant probe beam νrf , the qubit’s transition

|e/g〉 → |g/e〉 will be driven for νs = νa. Thus according to Eq. (5.14) also the phase shift

of the probe beam νrf changes sign. This is the underlying principle of superconducting qubit

spectroscopy. Sweeping νs through resonance with the qubit, the transition frequency can be

sensitively measured by means of monitoring the phase shift of the probe beam while the spec-

troscopic tone is swept through. When νs reaches νa, the qubit is excited and the phase shift

changes sign at exactly νs = νa. The shape of this change in δν is Lorentzian as given by

(5.9), where this time δν0 is the qubit linewidth and ν0 = νa the qubit transition frequency.

The Lorentzian ’power’ P0 here is directly related to the excited state population of the qubit

[1, 4, 84]

P↑ = 1− P↓ =
1

2

nsω
2
vacT1T2

1 + nsω2
vacT1T2

(5.15)

where T1,2 are the energy relaxation and dephasing times, respectively, ns the average number

of spectroscopy photons and ωvac = 2g the vacuum Rabi frequency. The qubit linewidth is given

by the inverse of the ’broadened’ T2 time

2πδνa =
1

T ′2
=

(
1

T 2
2

+ nsω
2
vac

T1

T2

)1/2

(5.16)

which in the unbroadened case of vanishing ns reduces to the inverse of the pure dephasing time

δνa = 1/2πT2. Note that this readout and spectroscopy scheme only works in the dispersive

regime. On resonance ∆ → 0, the probe beam itself is driving the qubit and causes it to flip

back and forth between ground and excited state. Therefore also the phase shift δν of the probe

beam changes sign. On resonance ν0 = νa, all excitations in the system become equally shared

bectween qubit and cavity and there are no separate transitions or energy levels anymore.

It is important to note that in the continuous spectroscopy scheme the cavity mode is populated

while the qubit transition is probed. The probe beam (νrf , Prf ) and the spectroscopy tone νs

are applied simultaneously. Since the probe beam frequency is in the vicinity of the cavity

resonance νrf ≈ νr , it populates the resonator mode with photons to an extent depending on

the actual input power Prf that is applied. Of course, the probe beam power Prf can be chosen

low enough to be in the zero photon limit n ∼ 0. However, this in turn drastically reduces the

signal to noise ratio and implies a lot more averaging, making the overall spectroscopy much

slower. More importantly though, the qubit transition is in general ac-Stark shifted (section

4.1.3) and thus proportional to the number of photons n in the cavity mode. Fluctuations in

n then translate directly to fluctuations in ωa which in turn leads to dephasing effects in the

continuous spectroscopy scheme [4, 104].
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Figure 5.7: Schematic pulse sequence in a pulsed spectroscopy measurement of the qubit state and transition

frequency.

5.3.2 Pulsed Qubit Spectroscopy

In a continuous spectroscopy scheme, the probe beam of power Prf and frequency νrf effectively

populates the cavity during the time the qubit transition is probed by the spectroscopy tone

νs . Naturally, this implies Stark shifts and thus also photon number splitting of the qubit peak

[5, 104], see also the results presented in section 5.4.2. This leads to dephasing as the qubit

frequency is now sensitive to fluctuations in the photon number. These problems can be effec-

tively circumvented by means of using a pulsed rather than a continuous spectroscopy scheme.

Pulsed qubit spectroscopy represents a quite recent development, in which the two tones νrf and

νs are separated in time so that the cavity is not populated while the spectroscopy drive is swept.

The corresponding pulse sequence is schematically depicted in Fig. 5.7. The qubit is assumed

to be initially in its ground state |g〉. In the first step, the probe beam νrf is sweeped through to

determine the resonance frequency of the cavity νr (|g〉) when the qubit is in its ground state.

This represents a calibration in which we determine what the resonator response looks like when

the qubit is not excited (red curve in Fig. 5.7). In the second step, a rectangular saturation pulse

of frequency νs and fixed duration of about 2 µs is applied to probe the qubit transition. This

long microwave pulse prepares a fully mixed qubit state. If νs matches the qubit frequency νa,

the qubit is excited |g〉 → |e〉, otherwise the qubit stays in the ground state. At a time t0 ∼ 5

ns after the saturation pulse3 the probe beam of fixed frequency νrf = νr (|g〉) is applied and the

transmission of the resonator is measured. If the saturation pulse frequency νs was not in vicinity

of the qubit transition νa, the qubit remained in the ground state and the resonator response

will be the same as in the calibration. If, however, νs was on or near-resonant with νa, the qubit

has been excited and thus also the resonator frequency shifts away from νr (|g〉) to νr (|e〉). In

that case, the probe beam frequency no longer matches the cavity resonance and hence the

response is different from the calibration (green curve in Fig. 5.7). To see how ’different’ the

transmission is, the measured response is subtracted off the calibration response and the area

under the resulting curve is integrated. A small or vanishing area says that the qubit was not

excited by the saturation pulse νs , while large areas show that νs was in the vicinity of νa or

matched. This whole procedure is now repeated for each step in the spectroscopy frequency

3The actual time between saturation and measurement pulse is chosen such that the signals can be well separated

and is thus ultimately determined by technical specifications of the equipment used.
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sweep over the chosen intervall.

It should be highlighted here that the cavity is not populated at all times when probing the qubit

transition. No cavity-resonant probe beam is applied during the time the spectroscopy pulse is

applied and thus also no resonant photons are present. The pulsed qubit spectroscopy scheme

makes it possible to measure the qubit’s frequency while it is solely interacting with the vacuum

field and has ultimately allowed us to measure the Lamb shift.

5.4 Resolving Vacuum Fluctuations via the Circuit QED Lamb Shift

The discussion of circuit quantum electrodynamics in chapter 4 has shown that the coherent

interaction between a superconducting qubit and a transmission line cavity can be investigated

in two qualitatively different regimes. In the resonant limit, qubit and cavity can freely exchange

energy and the two systems lose their individual character. In the dispersive limit of large

detunings between qubit and cavity field, the interaction manifests itself only in the form of

frequency shifts present in the decoupled Jaynes-Cummings Hamiltonian (see section 4.1.3).

This limit yields some rich physics and has allowed for a number of hallmark experiments such

as the detection of the ac Stark shift or the resolution of individual photon number states

of a cavity, see Refs. [2, 4, 5] and section 5.4.2. In the light of these developments, the

observation of the dispersive interaction in the form of the Lamb shift seems somewhat overdue

as it represents the only term in the circuit QED Hamiltonian that has not been identified so

far. In the framework of quantum field theory, the Lamb shift represents a manifestation of the

interaction of the qubit with the virtual photons inside the cavity and it is closely related to other

important observable effects of the quantized vacuum field, such as the Casimir forces [114],

the vacuum Rabi mode splitting [22] or spontaneous emission and the Purcell effect [115, 116].

Historically, the observation of the Lamb shift in a Hydrogen atom [20] and its correct theoretical

calculation [117] marked the birth of quantum electrodynamics and the theory of renormalization

[118]. In the following, we present the first experimental observation of the Lamb shift in a solid

state system by making use of the strong dispersive coupling of an individual quantum two-level

system (qubit) to the vacuum radiation field contained in a high quality factor transmission line

resonator.

5.4.1 Lamb Shift Observation and Vacuum Rabi Splitting

The detection of the Lamb shift and the observation of its detuning behavior can be entirely

carried out using the spectroscopic concepts discussed in section 5.3. The dispersive readout

in circuit QED systems has turned out to be a powerful tool for characterizing superconducting

qubits and its quantum non-demolition nature represents an important aspect for future quantum

information processing. Although the basic techniques of qubit spectroscopy are by now well-

established and understood, a direct observation of the dispersive interaction with the vacuum

photonic field poses a number of additional challenges:

• The coupling to the vacuum electromagnetic field is very weak in the dispersive regime
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E 0
J /~ EC/~ gmax/2π νmax

a

Qubit A 35.11 GHz 231.7 GHz 133 MHz 7.84 GHz

Qubit B 37.63 GHz 232.5 GHz 134 MHz 8.10 GHz

Table 5.2: Parameters of the two-qubit device used for the Lamb shift observation.

and leads only to small frequency shifts on the order of MHz.

• Unlike the ac Stark shift, the Lamb shift is always present and cannot be ’switched off’ by

simply reducing the photon population of the resonator. In other words, a pure, undressed

qubit transition frequency does not exist and thus cannot be measured by any means.

• To make sure the cavity is in its vacuum state 〈a†a〉 = 0 and to avoid any Stark shifts,

measurements have to be carried out in the zero photon limit which requires a high degree

of isolation and attenuation on input and output lines of the setup as well as very low probe

beam powers to suppress thermal and coherent photons. Moreover, this also implies using

pulsed rather than continuous qubit spectroscopy (see section 5.3).

Sample Characterization

The experiments that lead to the observation of the Lamb shift were carried out on a device

consisting of two superconducting transmon qubits coupled to a high-quality transmission line

cavity . Optical microscope pictures of the complete chip and a zoom on one of the two trans-

mons are shown in Fig. 5.8 together with a simplified circuit diagram of our experimental setup.

The device was fabricated in the clean room facilities at ETH Zurich using the techniques and

methods discussed in detail in section 3.2.5 and Refs. [71, 92, 95]. The coplanar transmission

line resonator is characterized by a length of ` = 9420µm and symmetric input/output cou-

pling capacitances of Cκ ∼ 9.5 fF (1+2 fingers, 97 µm each). Transmission measurements

with both qubits far detuned yielded a resonance frequency of νr = 6.441 GHz and a quality

factor of Q = 4100. The two transmon qubits were designed to have identical properties,

which was achieved to a satisfying degree in fabrication. They are both operated deep in the

transmon regime E max
J /EC ' 160 with minimum anharmonicities of α = E01 − E12 ' 250 MHz

(see also section 2.7). An overview of the parameters of the two qubits is given in Tab. 5.2.

Here, the fundamental qubit parameters (E 0
J , EC ) were determined in independent continuous

spectroscopy measurements (see section 5.3.1). A detailed discussion of the determination of

the qubit parameters and their dependence on the control variables is given below in ’Results

and Discussion’. Note from Fig. 5.8 that both transmon qubits are connected to on-chip gate

lines that allow us to locally drive the qubit transitions in a controlled way. In the experiments

discussed here, these gate lines have been used to apply the spectroscopy pulses to the qubits.

The design and underlying theoretical concepts of the gate lines are presented in detail in Ref.

[119].
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300 K 20 mK 1.5 K 300 K

Qubit
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ADC
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I

Figure 5.8: Sample and experimental setup. (a) Top, optical image of a superconducting coplanar waveguide

resonator, equivalent to the one used in our experiments, with the transmon type superconducting qubit embedded

at the position shown boxed. Bottom, magnified view of boxed area, showing the qubit with dimensions 300 × 30

µm2 close to the center conductor. (b) Simplified circuit diagram of the set-up, similar to the one used in Ref. [2].

The qubit at temperature 20 mK is capacitively coupled to the radiation field contained in the resonator through

Cg. The resonator, represented by a parallel LC circuit, is coupled to input and output transmission lines via the

capacitors Cin and Cout. The qubit transition frequency is controlled via a current biased (I ) coil generating a

magnetic flux Φ threading the qubit loop. Microwave signal generators for populating the resonator with photons

(νrf ) and for exciting the qubit spectroscopically (νs) are shown. Using ultralow-noise amplifiers at 1.5 K and a

mixer at 300 K, the transmitted microwave signal is down-converted with a local oscillator (LO) and digitized with

an analog-to-digital converter (ADC) for measuring the qubit and photon states, see also detailed discussion in

the text.
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Local Flux Control

The possibility to fabricate devices with multiple qubits paves the way for a new generation

of circuit QED experiments [3, 9]. However advantageous a two-qubit device might be, the

Lamb shift observation becomes in fact a bit more challenging in such a system. Here, we are

interested in probing the vacuum field interaction of a single, undisturbed qubit. Luckily, in these

experiments we are in a position to effectively realize local qubit control, which allows us to adjust

the transition frequencies of both qubits almost independently. In particular, we can tune the

transition frequency of one qubit while the other is kept constant. For flux-biasing the transmons,

two coils wound with superconducting Nb-Ti alloy wires have been installed underneath the chip

in the Copper sample holder. A small coil of loop size d = 3 mm (inner diameter) is centered

below qubit B and a larger one with d = 11 mm is positioned so that its center axis is aligned

with the middle of the whole chip. As the two qubits are spatially separated on the chip by 4800

µm, the flux generated by the small coil can be used to locally control qubit B while having only

a very small influence on qubit A. The flux from the large coil affects both qubits equally and

can be used to tune either one of them. The two coils are voltage biased over series RC filters

at room temperature and their coupling to each qubit can be described in terms of a matrix

equation. The voltage biases and the fluxes at the two qubits are related by(
ΦA
ΦB

)
−

(
Φoff
A

Φoff
B

)
=

(
A B

C D

)(
VL
VS

)
(5.17)

where VL/S denotes the bias voltage of the large/small coil in Volts, ΦA/B the absolute flux at

qubit A/B and Φoff
A/B the offset in units of flux quanta Φ0. The matrix elements are given by

the inverse voltage periods, with A = 1/V 0
L,A, B = 1/V 0

S,A, C = 1/V 0
L,B and D = 1/V 0

S,B .

To effectively realize a one qubit sample out of a two qubit one, qubit B is tuned to ΦB = Φ0/2

at all times during the experiments. This is achieved by dynamically compensating the flux from

the large coil, which is used to control qubit A, via the local small coil. The corresponding

compensation factors are easily calculated from the ratios of the matrix elements, i.e. (−B/A)

for compensating the small coil with the large one and (−F/G ) for the other way around. The

actual compensation that keeps qubit B at Φ0/2 is then carried out using a simple Labview

code. Following a careful determination of the various voltage periods for the two qubits, the

matrix elements in (5.17) were calculated and used to keep qubit B at a constant flux bias

ΦB = Φ0/2, far detuned from both the resonator and qubit A throughout the whole experiment.

In that way, we can effectively turn a two-qubit device into a single one. Note that even if qubit

B was not set to its minimum Josephson energy EJ(Φ0/2), it would only lead to a constant

renormalization of the resonator frequency and the transition of qubit A. Precise knowledge of

qubit A’s tuning behavior is a stringent requirement to be able to unambiguously identify the

small frequency shifts we are looking for. Hence, both voltage period and offset of qubit A were

measured carefully before each run by means of sweeping over two adjacent maxima νa(nΦ0).
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Numerical Calculations of the Lamb shift

A pure, undressed qubit transition frequency does not exist as the vacuum field fluctuations are

always present. Hence, the Lamb shift cannot be determined by simply doing spectroscopy on

a dressed and (presumably) undressed qubit and comparing the two results, as is possible, for

instance, in an ac Stark shift measurement. The only way to determine the Lamb shift from the

measured data is by means of comparing them to a precise as possible theoretical calculation

of the Lamb-shifted and the ideal, undressed transmon frequency. The accuracy to which we

can determine the Lamb shift is ultimately limited by both the precision with which we are able

to measure the qubit frequency and with which we can calculate it from the measured qubit

parameters.

In the first generation of circuit QED experiments with the conventional Cooper pair box [2, 4],

the coupling between cavity and qubit was comparably low (g/2π ∼30 MHz), though sufficiently

high to reach the strong coupling regime and observe vacuum Rabi splittings. Since g also sets

the magnitude of the dispersive Lamb shift δL = g2/∆, it was not possible in these experiments

to resolve δL. Owning to the increased coupling strength of the transmon of up to g/2π ∼ 140

MHz, also the dispersive interaction becomes much stronger and the Lamb shift is now on

the order of several ten MHz, by far exceeding the qubit linewidth. This greatly helped the

experiments presented here, as it enabled us to clearly separate δL in a comparison with the

calculated undressed frequencies. Also, our understanding of the underlying theory and the

ability to use it for precise numerical calculations has also strongly improved since the beginning

of circuit QED [1, 8, 104].

For the comparison with our data shown below, we use exact numerical solutions of the full one-

qubit Jaynes-Cummings Hamiltonian and the analytically exact undressed transitions obtained

from Mathieu functions. In our numerical calculations, the full Hamiltonian is diagonalized on

a d = 10 dimensional Hilbert space, accounting for the first five cavity eigenstates |n〉 and the

lowest five transmon levels {|g〉 , |e〉 , |f 〉 , |h〉 , |k〉} of the qubit. The corresponding matrix is

parametrized in terms of the fundamental transmon parameters {E 0
J , EC}, the cavity resonance

frequency νr and the maximum coupling strength gmax. These parameters were taken from the

measured values shown in Tab. 5.2 (see also discussion below). Additionally, the gate charge ng,

the junction asymmetry d as well as the number of charge eigenstates nc of the electrostatic

part in the transmon Hamiltonian are required as input for the calculations. These were held

fixed at the values ng = 1/2 (sweet spot), d = 0 (symmetric junctions) and nc = 7. Given all

of the above parameters, the only variable remaining in the matrix equation is the flux bias Φ,

i.e. we have

H10×10Ψ10×1 = E ~Ψ , H = H(E 0
J , EC , gmax, νr ; Φ) (5.18)

where ~Ψ is a 10 component column vector and E are the eigenenergies of the complete qubit-

cavity system. The numerical code for solving this equation was implemented in a Mathematica

notebook by A. Blais. As shown below, the solutions obtained from this numerical treatment

are in very good agreement with the measured data.

99



5 On-Chip Quantum Optics Experiments

Results and Discussion

To resolve the relatively small Lamb shift of our solid state quantum system, an accurate mea-

surement of the characteristic qubit parameters and their dependence on the control variables

is required. In a first set of measurements we determine the period of modulation of the tran-

sition frequency of qubit A with magnetic field applied to the SQUID loop of the qubit. This

is achieved by measuring the cavity transmission spectrum and simultaneously performing qubit

spectroscopy using a dispersive measurement of the cavity frequency shift, see section 5.3 for

details. With this procedure, we can determine both the flux periodicity and the flux offset due to

magnetic offset fields to an accuracy better than 10−3φ0 using the flux matrix method discussed

before. For generating the voltage bias of the coils a Yokogawa 7561 programmable DC source

was used throughout the experiments. As mentioned above, qubit B was kept constant at Φ0/2

at all times during these experiments and could thus be ignored. Now tuning the flux bias applied

to qubit A to Φ/Φ0 = 0, the qubit is set to its maximum transition frequency ωge/2π = 7.84

GHz (see Tab. 5.2), which we determine spectroscopically. At this bias point, we also deter-

mine the transition frequency ωgf /2π between ground |g〉 and second excited qubit state |f 〉 via

two-photon absorption spectroscopy. With these two quantities we can in turn determine the

maximum Josephson coupling energy E 0
J = 35.11 GHz and the charging energy of our device

EC = 231.7 MHz at maximum positive detuning, where the dispersive shifts are negligibly small

and the qubit is effectively undressed and described by the exact Mathieu solutions of the bare

transmon Hamiltonian. The qubit parameters resulting from this first set of measurements are

also summarized in Tab. 5.2. Finally, the input power from the microwave generators was ac-

Stark shift calibrated [4], which gave a value of -35 dBm corresponding to one photon inside the

resonator. This was done at large detunings between qubit and resonator where photon number

splitting is effectively suppressed.

Following the accurate determination of the qubit parameters and their dependence on the

control variables, we then proceed to observe the anti-crossing of the flux-tunable qubit and the

fixed frequency resonator. This is achieved by measuring the resonator transmission spectrum

while sweeping the flux bias around small detunings ∆, which in turn allows us to determine the

coupling strength g between qubit and resonator. The probe beam microwave signals and the

LO signal for the transmission measurements were generated with two separate, phase-locked

Agilent E8257C signal generators (see also section 5.1). The individual spectra have been an-

alyzed in Mathematica, where the maxima could be determined using a simple peak finding

routine. The position of the peaks in each spectrum marks the transition frequencies and the

FWHM gives the corresponding linewidth. The extracted frequencies ν±1 of the qubit/cavity

superposition states |±n〉 for n = 1 are shown as blue data points in Fig. 5.9a, measured with a

probe tone power populating the resonator field with much less than one photon on average. On

resonance (∆ = 0), we determine the qubit/cavity coupling strength from the observed vacuum

Rabi mode splitting to gge/2π = 133 MHz, see Fig. 5.9b. The extracted eigenfrequencies ν±1

are in excellent agreement with the exact numerical solution of the full Jaynes-Cummings hamil-

tonian (solid green lines in Fig. 5.9a), as discussed above. At this point, we have fully determined

the parameters governing the coupled qubit/resonator system and can set out at measuring the

Lamb shift of the qubit spectroscopically.
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Figure 5.9: Spectrum of coupled qubit/cavity system. (a) Measured transition frequencies of cavity (blue data

points) and qubit (red data points) versus normalized flux bias Φ/Φ0. Dashed horizontal line is cavity transition

frequency νr, dashed slanted line is calculated bare qubit transtion frequency νge. Green solid lines are numerically

calculated eigen-frequencies of the coupled system. See text for details. (b) Measured resonant vacuum-Rabi

mode-split cavity transmission spectrum T (blue line) vs. probe frequency νrf at flux bias indicated by blue arrows

in (a). Solid red line is a fit to a double-peak Lorentzian. (c) Measured spectroscopic qubit line shape (blue line)

vs. spectroscopy frequency νs at flux bias indicated by red arrows in (a). Solid red line is a fit to a Lorentzian.

In section 4.1.3, we found for the Lamb shift of the transmon in the dispersive approximation

δL = χ01 =
g2

01

∆
(5.19)

with

χij =
g2
ij

ωij − ωr
≡

g2
ij

∆ij
, gij =

2e

~
βVrms

√
i + 1

2

(
EJ

8EC

)1/4

. (5.20)

The Lamb shift depends on the flux bias in two different ways. First, the coupling strength

exhibits a weak power law dependence on the Josephson energy, which is in turn a function of

flux. Furthermore, δL is inversely proportional to the detuning of qubit and cavity and thus also

depends on the flux bias via the qubit frequency. This latter dependence is much stronger and

will in a practice outweigh the flux dependence via the coupling. Hence, we can ’tune’ the Lamb
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shift and observe its behavior as a function of detuning by varying the external flux. This is the

basic strategy in our measurements.

Using magnetic flux bias, we detune the qubit to well below the cavity resonance frequency

(∆ � gge) and spectroscopically determine its transition frequency ω̃ge/2π by probing the

resonator response in a dispersive measurement, see section 5.3. A typical qubit spectral line

obtained in this way is shown in Fig. 5.9c. The qubit line width is on the order of δge ∼ 3 MHz,

slightly power broadened by the spectroscopy tone. Here it is important to point out that we

are using the pulsed qubit spectroscopy scheme of section 5.3.2. This means, that first a long

microwave pulse is applied to the qubit to prepare a fully mixed state and only after that we

apply a measurement tone to the resonator. In this pulsed spectroscopy scheme, excitation

and measurement tone are separated in time and the cavity is left approximately in the vacuum

state |0〉 while the spectroscopy pulse is applied to the qubit. In contrast, using the continuous

spectroscopy scheme of section 5.3.1 would result in an observation of a photon number-split

qubit spectrum. In that case, the strong dispersive coupling leads to distinct, well-separated

qubit lines corresponding to the individual photon number states, as is discussed theoretically in

Ref. [104] as well as in section 5.4.2 and observed experimentally in Ref. [5].

In the following, we sequentially reduce the detuning ∆ and extract the qubit transition frequency

from the maximum in the pulsed spectroscopic line, as depicted in Fig. 5.9c. The extracted

dressed frequencies ω̃ge/2π are shown as red data points in Fig. 5.9a. We observe that the

measured frequencies coincide for all detunings with the frequencies calculated from the exact

numerical diagonalization of the Jaynes-Cummings hamiltonian (solid green line). The difference

between the measured and the bare qubit transition frequency (dashed slanted line in Fig. 5.9a),

resulting from the interaction with the vacuum fluctuations, is clearly observed and well resolved

by many line widths. This represents a direct spectroscopic observation of the Lamb shift in a

solid-state system and demonstrates the dispersive interaction of a superconducting qubit with

the vaccuum field in a cavity.

The measured transition frequencies are in very good agreement with the numerical solution

of the Jaynes-Cummings Hamiltonian which in turn puts us in a position to explicitly extract

the Lamb shift from the pulsed spectroscopy data vs. flux-controlled detuning . The frequency

shift δL is determined by means of subtracting the measured qubit transition frequency ω̃ge/2π

from the undressed transition frequencies ωge/2π obtained from the exact Mathieu solution of

the transmon Hamiltonian (dashed slanted line in Fig. 5.9a), as shown by red data points in

Fig. 5.10. The measured data is good agreement with the Lamb shift calculated from the full

Jaynes-Cummings hamiltonian including counter-rotating terms, shown as the solid red line in

Fig. 5.10. For the measured range of detunings, we find that the Lamb shift varies from about

30 MHz at a detuning of ∆ ∼ 620 MHz to 85 MHz at ∆ ∼ 130 MHz, corresponding to a

maximum value of roughly 1.4 % of the bare qubit transition frequency. By comparison, the

1s-2s transition in a Hydrogen atom has a transition frequency of 2466.06 THz with an absolute

Lamb shift of 1040 MHz, corresponding to a relative shift of only 0.0001% [20, 21]. Note that

the strongly increased Lamb shifts we observe here are ultimately a result of the enhancement

of the qubit-vacuum interaction by the cavity. For comparison the Lamb-shift g2
ge/∆ expected

from the simple dispersive approximation of the hamiltonian is shown as a dashed green line

in the same plot. The dispersive approximation is in good agreement with the data for large
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Figure 5.10: Lamb shift. Difference between measured qubit transition frequency eωge/2π dressed by the vacuum

field fluctuations (red data points) and calculated bare qubit transition frequency ωge/2π vs. qubit-cavity detuning

∆/2π (bottom axis) and normalized flux bias Φ/Φ0 (top axis). Red line is predicted Lamb shift calculated

using exact numerical diagonalization of the Jaynes-Cummings hamiltonian. Also shown is a comparison to the

approximate dispersive result δL = g2/∆ (dashed green line)

detunings and is seen to break down for small ∆. The Bloch-Siegert shift resulting from the

counter-rotating terms [120] is small for the given coupling strengths in our system and could

not be clearly resolved.

Moreover, we also note that, over the range of detunings indicated by the double-headed arrow

in Fig. 5.9a, the energy of the coupled qubit/resonator system can be extracted from both the

photonic component, measured by probing the cavity resonance frequency, as well as from the

qubit component measured spectroscopically. We observe virtually identical, and thus consistent

frequencies in the overlap of the data from the two independent measurements (open blue and

solid red data points).

5.4.2 Stark Effect and Photon Number Splitting

In the measurement of the Lamb shift, we have made the transition from the dispersive to the

resonant vacuum field interaction, with the cavity populated one photon at maximum. In order to

carefully check that the observed energy shifts are in fact solely due to the vacuum fluctuations

of the radiation field and are not confused with a.c. Stark shifts induced by residual photons

in the cavity, the system can now be investigated further by letting the qubit interact with a

coherent photon field and compare the resulting frequencies with the Lamb shift data obtained
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in section 5.4.1. Each of the individual photon number states in the cavity dispersively shifts the

qubit transition frequency. In section 4.1.3, it was shown that the qubit frequency acquires a

photon number dependent shift in the dispersive regime of large detunings. For the transmon,

the ac Stark shift is given to lowest order by [69]

δS = 2χ 〈a†a〉 = (2χ01 − χ12) 〈a†a〉 (5.21)

with

χ = χ01 −
χ12

2
, χij =

g2
ij

ωij − ωr
≡

g2
ij

∆ij
(5.22)

and the coupling strength gi ,i+1 as given in (5.20). If the shift per photon becomes large enough

and exceeds the qubit linewidth, the qubit transition peak in a spectroscopic measurement will

split up into multiple peaks, each one corresponding to an individual photon number state of

the cavity. This so-called photon number splitting was successfully observed for the first time

in [5]. Here, we are interested in resolving these photon number peaks to establish a consistent

picture of the dispersive matter-light interaction with the vacuum (Lamb shift) as well as the

real photon field (Stark shift) and ensure that our Lamb shift measurements have indeed been

carried out in absence of any coherent or thermal photons, i.e. in pure vacuum. To observe

these distinct peaks, the cavity has to be controllably populated with photons. This is achieved

naturally in a continuous spectroscopy measurement (section 5.3.1).

The measurements and data analysis were carried out in complete analogy to the Lamb and

vacuum Rabi splitting observation presented in section 5.4.1, the only difference being that here

we used continuous instead of pulsed qubit spectroscopy. This means, that we apply a continuous

wave coherent microwave field at the resonator frequency with the qubit in the ground state

(ωr − δS/2n), populating the cavity with a small mean photon number. As discussed in section

5.3, the same microwave tone is simultaneously used to perform a dispersive measurement of

the qubit state.

The extracted dressed qubit frequencies as functions of flux bias are shown in Fig. 5.11 for

different intra-cavity photon numbers. The number-split qubit transition frequencies for n =

0, 1, 2, 3, 4 are shown as colored dots (blue to cyan) and compared to the numerical calculations

depicted by the solid lines. For comparison, the pulsed spectroscopy data from section 5.4.1

is also shown (red open circles). To arrive at a coherent cavity population, we applied a probe

microwave signal νrf with a power of −24 dBm at the RF generator output, corresponding to

roughly -120 dBm at the sample level. Again, we clearly observe that the qubit frequency ifs

Lamb-shifted with respect to its bare frequency by the |n = 0〉 vacuum state of the cavity. The

individual photon number states |n〉 for n = 0, 1, 2, 3, 4 are clearly resolved and the coherent

nature of the excitations is visible from the non-monotonic peak heights in the number-split

qubit spectra shown in Fig. 5.11b and c, taken at the two different detunings indicated by

colored arrows in Fig. 5.11a. The relative area under each peak in the transmission represents

a qualitative measure of the cavity photon statistics [5]. In a thermal photon distribution the

weights of the peaks decrease monotonically, while in a coherent distribution they exhibit a non-

monotonic behavior [121]. In summary, the complete set of data is in very good agreement with

the numerical solution of the Jaynes-Cummings Hamiltonian and it convincingly and consistently
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Figure 5.11: Number splitting and a.c. Stark Shift. (a) Spectroscopically measured qubit transition frequency

ω̃ge/2π (data points) dressed by a weak coherent field. Colors (red to cyan) correspond to number-split qubit

states with n = 0, 1, 2, 3, 4, respectively. Solid lines are corresponding dressed state energy levels calculated by

exact diagonalization of the Jaynes-Cummings hamiltonian, dashed line is bare qubit transition frequency. (b,c)

Measured number-split qubit spectrum at flux bias indicated by blue (red) arrows in (a). The photon number

states |n〉 corresponding to each peak are indicated.

demonstrates that the measured frequency shift for an empty cavity (n = 0) can be associated

with the vacuum fluctuations of the cavity radiation field.

As a final check, we have determined the background thermal photon number in our circuit

QED system by carefully probing the resonant vacuum Rabi mode splitting. A small thermal

population of the |±1〉 states can be detected through the transitions from the first doublet of

the Jaynes-Cummings ladder into the second doublet |±1〉 → |±2〉, appearing as weak lines in

the transmission spectrum of the resonator. The effective temperature of the radiation field is

estimated to be Tr ≈ 90 mK, corresponding to a mean thermal photon number of nth ≈ 0.03,

where we have analyzed in detail the amplitudes of these lines in the vacuum Rabi mode splitting

[122, 123].

Another particularly interesting observation concerns the relative size of the Lamb and a.c. Stark

shifts. In general, the a.c. Stark shift per photon is expected to be twice as large as the shift

induced by the vacuum field. However, we make the surprising observation that the measured

Stark shift per photon is in fact smaller than the Lamb shift. This phenomenon can be explained

by considering the higher excited states of our qubit beyond {|e〉 , |g〉}. As discussed theoretically
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Figure 5.12: (Top) Optical image of the tunable superconducting coplanar waveguide resonator with the transmon

type superconducting qubit and the SQUID loop embedded at the positions shown boxed. (Bottom) magnified

view of boxed areas, showing the qubit with dimensions 300 × 30 µm2 close to the center conductor and the

SQUID of loop size 30 µm2 incorporated at the center position.

in [69] and section 4.1.3, the a.c. Stark shift per photon is renormalized by presence of the third

transmon level |f 〉 and consequently reduced by a factor proportional to the level anharmonicity.

The minimum measured anharmonicity of our artificial atom is on the order of α = E01−E12 ∼
250 MHz, a value for which we indeed reach the limit of δS/n < δL. In this way, the qubit appears

to couple more strongly to the vacuum field than to a single photon inside the cavity.

5.5 Single Qubit Coupled to Tunable Cavity

This section presents some preliminary results from the first successful coupling of a supercon-

ducting qubit to a flux-tunable cavity. Although preliminary, these results already hint at the

fascinating possibilites for future experiments opening up in such a system. As the results have

only been obtained very recently 4, this section will focus on a first characterization of the tun-

able cavity-qubit device rather than on more elaborate experiments. The strong coupling nature

of the cavity qubit system is revealed by the observation of the vacuum Rabi splitting. The

splitting is measured in two ways, first by tuning both qubit and cavity simultaneously (though

with different periods) and second, by tuning the resonator nearly independently from the qubit.

These results demonstrate that the roles of qubit and cavity can be effectively ’switched’ in our

Rabi splitting experiments.

The Sample

The sample consists of a superconducting transmon qubit coupled to a flux-tunable transmission

line cavity incorporating a SQUID loop and was entirely fabricated in the clean room facilities

at ETH Zurich. SQUID and transmon were patterned in the same electron beam lithography

4A measurement is running while these words are written.
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run and deposited in a two step Aluminum shadow evaporation process. By means of covering

half of the chip with a simple Aluminum foil, it was possible to fabricate SQUID and transmon

under different angle configurations and thus with different metallization layer thicknesses. The

SQUID was evaporated under +30◦ (30 nm Al) and -30◦ (150 nm), while the deposition of the

transmon was carried out under 0◦ (20 nm) and +30◦ (80 nm). Optical microscope pictures

of the complete chip as well as the transmon and the SQUID loop are depicted in Fig. 5.12.

The cavity is characterized by a length of ` = 13200µm and symmetric input/output coupling

capacitances of Cκ ∼ 3.7 fF (1+1 fingers, 74 µm each), identical to the device L1 discussed

in section 5.2. There, transmission measurements yielded a maximum resonance frequency of

νr = 5.85 GHz and a quality factor of Q = 3000 at zero applied flux bias. For the SQUID

loop, we have chosen a large degree of asymmetry of d ∼ 13 % with designed critical currents

of Ic1 = 2.00µA and Ic2 = 2.60µA. In that way, the noise sensitivity of the tunable resonator

system is drastically reduced, in principle allowing for a more stable operation under flux bias and

a suppression of the quality factor degradation.

Flux Control and Cross Coupling

For applying the external flux bias to both the SQUID-cavity and the transmon qubit, two coils

wound with superconducting Nb-Ti alloy wires in a Torlon chassis have been installed underneath

the chip in the Copper sample holder, as discussed in detail in section 5.1. A small coil of loop

size d = 3 mm is centered below the qubit and a larger one with d = 11 mm is positioned so

that its center axis is aligned with the middle of the whole chip, i.e. with the SQUID-loop. As

qubit and SQUID are spatially separated on the chip by 2400 µm, the flux generated by the small

coil can be used to locally control the transmon while having only a very small influence on the

SQUID loop. On the other hand, the flux generated by the large coil couples much more strongly

to the SQUID loop than to the qubit. In turn we expect the qubit to have a large flux periodicity

when biasing the large coil and a small one when applying a bias via the small coil. Likewise, the

SQUID-loop will have a small flux periodicity on the large coil and a large one on the small coil.

In that sense, we are able to drastically reduce cross coupling and allow for nearly independent

flux control of the two systems. In order to further suppress cross coupling, the SQUIDs of the

transmon and the cavity have been fabricated with different loop sizes. For the qubit, we have

chosen the standard loop size of A = 5µm2 . In contrast, the SQUID loop inside the resonator

was designed for a loop area of A = 30µm2, giving an additional factor of 6 for independent

flux control. Therefore, the resonator can in general be tuned with smaller flux periods than the

transmon which in turn allows us to change the cavity resonance frequency ωr (Φ) while keeping

the qubit transition frequency ωa nearly constant. In the experiments presented here, the two

coils are current-biased using two separate Yokogawa 7561 programmable DC sources.

5.5.1 Vacuum Rabi Splitting with Cavity Tuning

The first step in characterizing the tunable cavity-qubit system consists of a determination of the

various flux periods and offsets from the two bias coils. In the set of measurements presented
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Figure 5.13: Measured resonator transmission spectra. (a) Density plot of resonator transmission with simulta-

neous tuning of qubit and cavity via the large coil. The flux periodicity of the resonator is clearly resolved and

two anti-crossings are observed over the given range of current bias values. (b) Magnified view of anti-crossing

between qubit and resonator. Note the different flux offset in comparison to (a).

here, the system is solely probed in transmission without applying separate spectroscopy pulses on

the transmon qubit. In section 4.3, we found for the Hamiltonian of the tunable resonator-qubit

system in the linear approximation

HJC = ~ωr (Φ)

(
a†a +

1

2

)
+
~ωa(Φ)

2
σz + ~g(a†σ− + σ+a) + Hγ + Hκ . (5.23)

In a typical experiment with a conventional qubit-transmission line resonator system, the modes

of the resonator are fixed and the qubit resonance frequency is flux-tuned to enter the different

regimes of circuit QED in the resonant (∆ = 0) and the dispersive limit (∆ � g). In the

experiments presented here, however, these two limits can be reached either by tuning the

cavity, the qubit or even by tuning both of them simultaneously. In order to determine the

flux periods and show that qubit and cavity are in the strong coupling regime, the resonator

transmission spectrum is measured while consecutively sweeping the flux bias of both the large

and the small coil separately. The probe beam microwave signals and the LO signal for the

transmission measurements were generated with two separate, phase-locked microwave signal

generators, an Agilent E8257C and a Rhode & Schwarz SMR 40 generator, as is discussed in

detail in section 5.1. A low input power of −35 dBm was chosen at the RF output such that the

cavity is on average populated only with a single photon. In that way, possible nonlinear effects

due the SQUID inside the resonator can be avoided (see also section 3.2.4).

In the first measurement that has been carried out, the large coil is sweeped over a wide range

of flux values by applying a current bias in the range of −750 ≤ Ibias ≤ +450µA. The small coil

underneath the transmon qubit is kept constant with no current bias applied. Since here we are

only interested in the frequencies, we have chosen comparably large frequency step sizes of 3
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MHz in the transmission measurements. The corresponding density plot is shown in Fig. 5.13.

Here, we observe two anti-crossings over the given range of flux bias values which demonstrates

that the strong coupling regime between transmon and tunable resonator has been reached. The

flux periodicity of both qubit and cavity is well resolved. As expected from the discussion of flux

control given above, the resonator indeed has a much smaller period under the bias from the large

coil than the transmon. As can be seen, the fact that both systems are tuned simultaneously

results in splittings that stretch over several flux periods of the resonator. The flux periodicity of

both the qubit and the cavity can then be determined by means of fitting the measured data to

the corresponding theoretical expressions, from which we can also extract the critical currents

and the degree of asymmetry of the SQUID. A magnified view of the vacuum Rabi splitting

with simultaneous qubit and cavity tuning is shown in Fig. 5.13b. Here, we observe the avoided

crossing of resonator and qubit by tuning the cavity with a small flux period and the qubit with

a larger one using the same coil. The analysis of the measured spectra is more involved than for

the simpler case of a fixed frequency resonator and has to be carried out using the theoretical

expressions derived in section 4.3.

In summary, this very first transmission measurement presented here demonstrates the successful

strong coupling of a superconducting qubit to a flux-tunable transmission line resonator. We

observe vacuum Rabi splittings and show that the two different SQUID loops of qubit and cavity

can be tuned with different periods. This experiment only represents the starting point of our

investigations of the coupled system and thus only hints at the vast number of possibilities for

future experiments.
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6 Conclusion and Outlook

The results presented throughout this thesis summarize the achievements of one year of theo-

retical and experimental investigations in the Quantum Device Laboratory at ETH Zürich. The

Lamb shift of a solid state quantum system has been observed spectroscopically for the first time.

Here, it was successfully demonstrated that the coupling of a superconducting quantum bit to

the vacuum fluctuations, strongly enhanced by the cavity, leads to maximum relative shifts of up

to 1.4 % of the qubit transition frequency, allowing us to clearly resolve the dispersive interaction

with the virtual photons of the electromagnetic field inside a transmission line resonator. Ob-

serving this small shift explicitly shows the presence of an important term in the dispersive circuit

QED Hamiltonian that has not been investigated up until now. The clear observation of vacuum

fluctuations in our strongly coupled system can serve as a motivation for further experiments

aimed at investigating other effects triggered by quantum fluctuations in solid state systems.

The Lamb shift is only one of many observable effects of the electromagnetic vacuum and the

circuit QED architecture still offers a wide range of possible experiments on interesting related

phenomena such as the Purcell effect and spontaneous emission [115, 116], the squeezing of

quantum noise [124], amplification at the quantum limit [36] or the Casimir force [114].

The second part of this thesis consisted of the development of transmission line cavities whose

resonance frequency can be tuned with an external magnetic field. All of the tunable coplanar

waveguide resonators presented here have been developed from scratch. Starting from extensive

theoretical simulations, an optical mask containing over 30 different resonators was designed.

In the following, four tunable devices have been fabricated in the clean room facilities at ETH

Zürich using photo- and electron beam lithography techniques. The cavities have been suc-

cessfully measured in transmission and characterized in terms of their tuning behavior. Here,

tuning ranges of up to 2.5 GHz have been demonstrated. Moreover, it was shown that for

highly over-coupled resonators, the reported degrading of the quality factor [11, 90] can be

effectively suppressed by choosing appropriate SQUID and resonator parameters. Finally, the

strong coupling of a tunable cavity to a superconducting transmon qubit was achieved, where

the corresponding vacuum Rabi splitting was observed in a transmission measurement. The first

results presented here only give a hint of the vast number of possible experiments that can be

carried out with these novel devices, such as in-situ tuning of single photons [90], detection of

the quantum Zeno effect of itinerant photons [125], the implementation of a solid state photonic

qubit [89] or ultra-fast entanglement between two qubits [10].
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Appendix

VII



A Full Circuit Quantization for Tunable

Resonators

In section 3.2.2, it was shown that the Lagrangian of the transmission line resonator-SQUID

circuit shown in Fig. 3.9 reads [89, 10]

L = Llhs + Ls + Lrhs

=

N∑
i=1

1

2

[
C1Φ̇2

i −
(Φi+1 −Φi)

2

L1

]
+

CJ
2

(θ̇1 − Φ̇N+1)2 −
EJ

2φ2
0

(θ1 −ΦN+1)2

+

M∑
i=1

1

2

[
C2θ̇

2
i −

(θi+1 − θi)2

L2

]
(A.1)

where we have used the SQUID Lagrangian of section 2.4 and introduced the reduced flux

quantum φ0 = 2π/Φ0. Note that here the harmonic approximation for the Josephson energy

has already been made, i.e. Ls only contains the first non-vanishing term of the Josephson

cosine potential

Ls =
CJ
2

(θ̇1 − Φ̇N+1)2 −
∞∑
n=0

(−1)n

2n!

EJ

φ2n
0

(θ1 −ΦN+1)2n . (A.2)

All higher order terms are neglected. Later on, we will recover the non-linearity from the har-

monized Hamiltonian by means of treating the quartic order term of the Josephson potential

perturbatively. Furthermore, note that we assume a flux-independent Josephson energy in (3.42),

i.e. the SQUID is first treated as a single junction with Josephson energy EJ throughout the

quantization procedure. The flux-dependence of the SQUID will then be recovered later on by

making the simple transition EJ → EJ(Φ).

Wave Equation

The Euler Lagrange equations (d/dt)(∂L/∂q̇) − (∂L/∂qi) = 0 resulting from the Lagrangian

density (A.1) are wave equations for the generalized position coordinate on both sides of the

SQUID (x = 0), i.e. for the node flux Φi (x < 0) and θi (x > 0). Making the transition to a
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continuous description in (A.1)

∆x → 0 ,

N∑
i=1

→
∫ 0

−`1

,

M∑
i=1

→
∫ `2

0

, (Φi , θi)→ (Φ(x), θ(x)) (A.3)

and using the connection between lumped element and TL quantities per unit length C1,2 =

C 0
1,2∆x and L1,2 = L0

1,2∆x , the Lagrangian is rewritten as

L =

∫ 0

−`1

1

2

[
C (x)Φ̇2 −

1

L(x)

(
∂Φ

∂x

)2
]

+

∫ `2

0

[
C (x)θ̇2 −

1

L(x)

(
∂θ

∂x

)2
]

+
CJ
2

(
θ̇(0)− Φ̇(0)

)2 −
1

2LJ
(θ(0)−Φ(0))2 (A.4)

where we have defined

C (x) =

{
C 0

1 x < 0

C 0
2 x > 0

, L(x) =

{
L0

1 x < 0

L0
2 x > 0

. (A.5)

The wave equations for the flux field are then simply found as the Euler-Lagrange equations

corresponding to (A.4):

Φ̈(x , t)−
1

L(x)C (x)

∂2Φ(x , t)

∂x2
= 0 , θ̈(x , t)−

1

L(x)C (x)

∂2θ(x , t)

∂x2
= 0 (A.6)

with the standard plane wave solutions of the form

Φ(x , t) =
∑
k

e−iωk t
(

Ake−ikx + Bke ikx
)

, θ(x , t) =
∑
q

e−iωqt
(

Cqe−iqx + Dqe iqx
)

(A.7)

where k and q are the wave numbers on the l.h.s and r.h.s of the SQUID, respectively. The

corresponding frequencies are given in the usual form

ωk =
k√

L0
1C 0

1

, ωq =
q√

L0
2C 0

2

. (A.8)

In the end, we are interested in continuous modes of the flux field rather than in the two separate

wave functions (A.7). Such an expression can be derived by considering three fundamental

constraints on the field: (i) the continuity condition at the SQUID position x = 0, (ii) the

boundary condition that no current should flow outside the resonator on both ends I1(x =

−`1) = I2(x = `2) = 0 and (iii) the conservation of current at the origin I1(x = 0) = I2(x = 0).

Consecutively applying these constraints leads to a transcendental equation for the field whose

solutions form a complete, infinite set of orthogonal eigenfunctions [10, 89]. The detailed

calculations that lead to this equation are presented in appendix A, where it is also shown that

the eigenmodes of the total system Ψ(x , t) can be written in a separational form Ψ(x , t) =∑
k Ψk(t)χk(x).
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A Full Circuit Quantization for Tunable Resonators

Boundary Conditions and Solutions

Since we are interested in a single, continuous mode of the flux field that extends over the

whole resonator rather than in the two separate wave functions (A.7), we can use the continuity

condition at the singularity x = 0

ωk ≡ ωq kv1 = qv2 (A.9)

so that the continuous mode we’re looking for has the same frequency on both sides of the

SQUID. Here, the phase velocities v1 = 1/
√

L0
1C 0

1 and v2 = 1/
√

L0
2C 0

2 have been introduced.

Another constraint on the wavefunctions (A.7) is imposed by the boundary condition that no

current should flow outside the resonator, i.e. the current must vanish at the ends of the

resonator I1(x = −`1) = I2(x = `2) = 0. Since charge is the conjugate variable to flux, it holds

for the current on the l.h.s that (see also section 2.1)

I1(x , t) = q̇(x , t) = −
1

L0
1

(
∂Φ(x , t)

∂x

)
. (A.10)

and similarly for the r.h.s current I2(x , t). Thus the boundary condition can be expressed as(
∂Φ(x , t)

∂x

)
x=−`1

= 0 ,

(
∂θ(x , t)

∂x

)
x=`2

= 0 (A.11)

from which it follows for the wave amplitudes that Bk = Ake2ik`1 and Cq = Dqe2iq`2 . Hence

using this in combination with the continuity condition (A.9), the total flux field is obtained from

(A.7) as

Ψ(x , t) =
∑
k

Ψk(t)

{
Ak cos[k(x + `1)] for x < 0

Dk cos[k v1
v2

(x − `2)] for x > 0
(A.12)

The third and final constraint is given by the conservation of current. The current flowing into

the SQUID at x = 0 must be equal to the current flowing out I1(x = 0) = I2(x = 0). Using

(A.12) and the definition of the currents (A.10), we get

−Ak
Z 0

2 sin k`1

Z 0
1 sin q`2

= Dk (A.13)

where the characteristic impedance Z 0
i =

√
L0
i /C 0

i , i = 1, 2 has been introduced. This equation

fixes Ak with respect to Dk . The corresponding Euler Lagrange equation at x = 0 is obtained

from (A.1) as

−CJ
(
θ̈1 − Φ̈N+1

)
+

ΦN+1 −ΦN
L1

−
1

LJ
(θ1 −ΦN+1) = 0 (A.14)

which in the continuous limit (A.3) becomes

−CJ
(
θ̈k(0, t)− Φ̈k(0, t)

)
+

1

L(x)

∂Φ(x , t)

∂x
|x=0 −

1

LJ
(θk(0, t)−Φk(0, t)) = 0 . (A.15)
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Now plugging in (A.12) and using (A.13), we find

ω2
kCJ(Dk cos q`2 − Ak cos k`1)−

k

L(x)
Ak sin k`1 −

1

LJ
(Dk cos q`2 − Ak cos k`1) = 0 . (A.16)

Dividing this by (Ak/LJ) sin k`1 and using the definition of the resonance frequencies (A.8) as

well as the condition (A.9), one finally arrives at a transcendental equation for the wave number

k
L(x)

LJ

(
1−

ω2
k

ω2
p

)(
Z 0

2

Z 0
1

cot k
v1

v2
`2 + cot k`1

)
= k (A.17)

which was first derived in [10] for the case of a SQUID terminating a TL resonator and in [89] for

a SQUID at arbitrary position. Here we have used the plasma frequency ωp = 1/
√

CJLJ of the

SQUID which was already introduced in section 2.4. There it was shown, that the SQUID-loop

essentially behaves like an oscillator of resonance frequency ωp. Since we are only interested

in single, well-isolated modes of the total system, excitations of the SQUID alone have to be

avoided. Thus we have to ensure that ωk � ωp so that the SQUID oscillator’s resonances are

effectively deactivated when driving the system at ωk (see also section 3.2.4). In this limit, the

transcendental equation reduces to

L(x)

LJ

(
Z 0

2

Z 0
1

cot k
v1

v2
`2 + cot k`1

)
= k . (A.18)

The solutions to this equation form a complete, infinite set of orthogonal eigenfunctions χk(x)

and they are given by [89]

χk(x) =

{
Ak cos[k(x + `1)] for x < 0

Dk cos[k v1
v2

(x − `2)] for x > 0
(A.19)

so that we can finally write the eigenmodes of the total system in separation form

Ψ(x , t) =
∑
k

Ψk(t)χk(x) . (A.20)

Note that here the amplitude Ak is determined by the normalization condition of the eigenfunc-

tions {χk} which in turn also fixes Dk via (A.13). The continuous Lagrangian (A.4) can now

be conveniently written as

L =
1

2

∫ `2

−`1

[
C (x)Ψ̇(x , t)2 −

1

L(x)

(
∂Ψ(x , t)

∂x

)2
]

dx −
1

2Lj
(Ψ(0+, t)−Ψ(0−, t))2 . (A.21)

The decomposition of the field into a spatial χk(x) and a time-dependent part Ψk(t) in turn

allows rewriting this Lagrangian as a sum of harmonic oscillators of frequency ωk

L =
∑
k

Ccav

2
Ψ̇(x , t)−

Ccavω
2
k

2
Ψ2
k(t) (A.22)
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where the total capacitance of the cavity Ccav =
∫ `2

−`1
C (x)dx was introduced. The fact that the

Lagrangian can be written as a sum of harmonic functions results from the linear approximation

of the Josephson potential that was made in the very beginning in (A.1). As shown below,

the anharmonicity can be recovered by means of treating higher order terms of the potential

perturbatively.

Using the fact that charge is the conjugate variable to the flux Ψk

qk =
∂L

∂Ψ̇k
, (A.23)

a Legendre transformation H = Ψkqk − L of the Lagrangian leads to the classical Hamiltonian

H0 =
∑
k

q2
k

2Ccav
+

1

2
Ccavω

2
kΨ2
k . (A.24)

As usual, the last step now consists of a second quantization where we introduce the ladder

operators through

Ψk =

√
~

2Ccavωk

(
a†k + ak

)
, qk =

√
~Ccavωk

2

(
a†k − ak

)
. (A.25)

with the final Hamiltonian

H0 =
∑
k

~ωk
(

a†kak +
1

2

)
. (A.26)

This shows explicitly that in the linear SQUID regime I � Ic , the tunable cavity can be treated

as a harmonic oscillator just like the regular cavities of section 3.1, the only difference being the

flux-dependence of the resonance frequencies ωk , which becomes obvious from the presence of

the SQUID inductance LJ in the transcendental equation. If, however, higher order terms of the

Josephson potential can not be neglected (i.e. for I � Ic), the harmonic oscillator description

is no longer valid and the perturbed Hamiltonian acquires an anharmonic terms, as is discussed

in detail in section 3.2.2.

XII



B Ion Gun Etching

An important point in the tunable cavity fabrication process presented in section 3.2.5 is to clean

the niobium surface of the resonators and remove any oxide layers before the deposition of the

SQUIDs. Since the resonator structures and the SQUIDs are fabricated separately, the niobium

surface can oxidize in between the two steps, resulting in NbOx layers of several nm thickness.

If the Aluminum SQUIDs were fabricated right on top of this layer, large contact resistances

are possible and the Nb/NbOx/Al interface can in fact form a tunnel junction itself. In order

to avoid this, the oxide layers are removed using an ion gun etching technique. This chapter

discusses the measurements that were carried out for testing the equipment and determining the

corresponding etching rates of the different materials used in our devices.

The Veeco 3 cm DC Ion Source as built-in in the PLASSYS evaporator system (herein referred

to as ’ion gun’) is an accurate tool for removing thin layers on wafers in the nm-range. Most

importantly, it can be used to remove thin oxide layers on different materials that would other-

wise influence their electrical properties. The target of the measurements presented here is an

accurate determination of the ion gun etch rates on the different materials used in the fabri-

cation of superconducting qubits and resonators, such as SiOx , Nb and PMMA resist. To this

aim, step heights and profiles have been measured on each material after different, well-defined

time intervals of exposure to the ion gun. The simple test structure depicted in Fig.B.1a has

been designed to allow for measuring the profiles with an Alpha Step 500 mechanical surface

profiler system. With this test structure, an arbitrary number of measurements can be taken on

different, spatially well-separated points of a given sample. The chosen measurement points are

represented by the blue bars in Fig.B.1a, with the white areas corresponding to PMMA resist

and the gray ones to the wafer surface (SiOx or Nb).

A film of PMMA resist was first spun on each piece of sample-wafer (3000 rpm for 120 s)

and then the simple test structure was written using standard electron beam lithography and

developed in MIBK (90 s) and IPA (60 s), leaving the gray squares in Fig.B.1a uncovered by the

resist and giving the initial profile shown in Fig.B.1b.

In total, more than 490 measurements have been made on 16 different samples with the Alpha

Step 500 system. The following measurement procedure has been applied for each sample, with

the variables as given in Fig. B.1b:

1. Measure initial step height h1 at each designated point, giving 16 datapoints per sample.

(h1 should be identical to the thickness of the PMMA resist layer.)

2. Expose sample to ion gun beam for a time ti with the following fixed parameters: beam

current of IB = 10 mA, beam voltage VB = 300 V, discharge current ID = 2.5 A and
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B Ion Gun Etching

Figure B.1: (a) Design of the ion gun test structure. Measurement positions are indicated by the blue bars. Gray

areas correspond to wafer surface and white ones to PMMA resist. (b) Illustration of the measurement procedure.

Three different step heights h1, h2, h3 are recorded at each measurement point from which the etching rates can

be determined using Eqs. (B.1) - (B.3).

discharge voltage VD = 35 V. These are the company-recommended parameters and they

are totally sufficient for significant etching.

3. Measure resulting step height h2 at each designated point before PMMA liftoff. In or-

der to avoid any additional post-ion gun oxidation, the step heights have been measured

immediately after the samples were removed from the PLASSYS loadlock chamber.

4. Lift-off PMMA resist layer using the following recipe: (1) 15 min. ultrasonic aceton bath

at 50◦ C and medium power1 (level ’5’ on a 40 kHz ultrasonic bath), (2) 5 min. ultrasonic

aceton bath at 50◦ C and medium power, (3) 3 min. ultrasonic IPA bath at 50◦ C and

medium power.

5. Measure resulting step height h3 at each designated point after PMMA liftoff (This should

be identical to the etched height of the substrate/metal layer). Again, in order to avoid

formation of a new oxdation layer, the step heights have been measured immediately after

the liftoff.

6. The etch rates for measurement point i are determined as follows:

• Total etch rate:

R
(i)
total =

h1 − h2

ti
[nm/min.] (B.1)

1Higher powers have been tried first, which however resulted in some samples breaking apart during liftoff. Thus

a lower power has been chosen in the end.
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Figure B.2: Comparison of measured step heights on the different materials as a function of ion gun exposure

time: PMMA (1:1) resist (green), Niobium (blue), SiO wafer substrate (red). The individual step heights taken

at each point are shown as dots, with the averages connected by the solid lines.

• PMMA resist etch rate:

R
(i)
resist =

h1 − h2 + h3

ti
[nm/min.] (B.2)

• Substrate/metal layer etch rate:

R
(i)
sub =

h3

ti
[nm/min.] (B.3)

Note that this procedure allows for a direct determination of substrate/metal layer etching rates.

A comparison of all measured step heights at different time intervals is shown in Fig. B.2 and

the resulting etch rates for the different materials are given in the following:

〈RNb〉 ± σ = 3.20± 0.24 [nm/min.] (B.4)

〈RSiOx〉 ± σ = 6.20± 0.55 [nm/min.] (B.5)

〈RPMMA〉 ± σ = 13.00± 1.59 [nm/min.] . (B.6)
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C Junction Characterization and DC

Measurements

A crucial step in the fabrication and design of Josephson-junction based devices is the determi-

nation of the critical current densities from the current-voltage characteristics (see section 2.3.

Although by now a standard experiment, measuring the voltage response of a junction can be

quite challenging, especially when the critical currents are small.

In the framework of this thesis, a setup for standard four-point dc measurements of Josephson

junctions and SQUIDs has been developed and implemented in a dilution refrigerator at a base

temperature of 15 mK. A discussion of the cryogenic aspects is postponed until section 5.1 and

here we will focus on the implemented circuitry. The four-port measurement setup is shown in

Fig. C.1. At room temperature, control and measurement of the current and voltage signals is

handled via a bias box which provides inputs, outputs, amplifiers and filtering circuits, see top in

Fig. C.1. The bias box is connected to an A/D-interface by National Instruments, which con-

verts the analog current and voltage signals into digital ones for the data acquisition card build

into a computer. Here, the bias current can be swept through using a Labview program, which

also records the voltage drop at each distinct bias point. This Labview code was implemented

in the framework of a semester thesis, see Ref. [126], where also a more detailed description

of the bias box can be found. The software-controlled bias current at the output of the data

acquisition card is converted via the A/D interface into an analog signal that is transferred to

the bias box via standard coaxial cables, see inputs at the top of Fig. C.1. In the following, the

bias box is connected to a breakout box that contains low-cutoff RC filters and handles the input

and output of the signals into the cryostat via shielded cables. The breakout box has two inputs

and two outputs and two separate closed circuits are formed inside the cryostat. One is used

for current-biasing the device under test, the other one for measuring the voltage drop across

the device, which in total realizes a standard four-point measurement. Once inside the cryostat,

Copper twisted pair cables are used to bring the signals down to the 15 mK stage. Since even

small charge fluctuations or thermal noise can lead to currents significantly exceeding Ic , careful

noise filtering is required at the lowest temperature stage for measuring small critical currents and

protecting the junctions. A first step towards achieving this is done by means of using low-cutoff

stainless steel powder filters (SSPF) on both upward and downward lines at base temperature.

These filters are based on eddy current dissipation effects and closely resemble those presented

in Ref. [127]. Several different versions of SSPFs have been constructed and tested during this

thesis. Here, we use filters with constantan wires, embedded in a mixture of Stycast glue and

stainless steel powder with additional 100 nF capacitances to ground at the input and output

ports of the filter. The filters are characterized by a low cutoff of roughly 500 kHz and provide
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Figure C.1: Schematic setup of the implemented four-port DC circuit for Josephson junction characterization.

Each line is filtered at base temperature using a stainless steel powder filter (see the discussion in the text). At

room temperature, the signals are filtered by low-cutoff feedthrough RC filters built into a break out box.

for more than -60 dB attenuation in a range of up to 15 GHz. At base temperature, the sample

is connected to the SSPFs via RF coaxial cables and mounted in a hermetic Copper box. Note

that the circuitry inside the cryostat has been implemented twice in order to allow for measuring

two devices per cooldown.

To test both the setup as well as the fabricated junctions, a series of measurements have been

carried out on a set of SQUIDs. The test devices have been patterned using electron beam

lithography and Al shadow-evaporation on a 2 x 7 mm Silicon substrate chip, mounted on a

PCB board and each connected to two input and two output ports on the PCB using Al wire

bonding. DC measurements were carried out by sweeping a bias current over several hundred

nA and simultaneously monitoring the voltage drop across the junction. A typical measured IV

curve is depicted in Fig. C.2. Although the essential features of the current-voltage character-

istics are clearly observed, the results show a need for improving the setup. First, the curve as

a whole is tilted, which means that there is a voltage drop somewhere in the circuit in parallel

to the SQUID. The additional resistance that causes this drop has to be identified. Second,

the extracted critical current is far lower than expected from the junction design. The SQUIDs
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Figure C.2: Measured current voltage characteristics of a symmetric SQUID loop at zero flux bias. The essential

features such as the switching from zero-voltage to voltage state are observed. However, the curve is tilted as a

whole which hints at unidentified resistances in the setup (see the discussion in the text).

were fabricated with large junction sizes (∼ 2µm × 300 nm) and calculations predicted critical

currents of 1-2 µA. The fact that the switching to the voltage state occurs in the nA range

hints at a (so far unidentified) noise source that induces an additional current such that the

critical current is exceeded before the actual measurement current reaches Ic . Unfortunately,

the flux bias was not tested so far. A possible explanation for the low measured critical currents

could also be magnetic offset fields such that at zero applied flux bias the SQUID is not at its

maximum Josephson energy and critical current. The evident problems of the setup are currently

being further investigated.
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