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Abstract

Superconducting qubits are promising candidates for building scalable quantum computers. A
software suite has been developed in the Quantum Device Lab for the automatic calibration of
qubits and their control pulses. This software is now also used for other types of experiments and
we have implemented a new framework which makes it easily extendable for future developers.
This thesis gives an introduction to the theoretical background of superconducting qubits,
outlines the structure of the software suite, and discusses the automatic routines we have
implemented in the new framework. These include standard calibration experiments (Rabi,
Ramsey, QScale, CalTom), measurements of the coherence time (T1, T ∗2 , T2) and gate fidelity
(randomized benchmarking), and experiments on the ef -transition.
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1 Introduction

The ability of computers to store and process huge amounts of information has become essential
for many applications. The possibilities of classical information processing however are limited,
as there are problems for which the number of steps a classical computer needs to find the
solution grows exponentially with the size of the input. Prime factorization is one such problem
and the exponential complexity makes it so hard to solve that it is used in most common
encryption algorithms. [Nielsen 00]

The idea of quantum computing was first published in the 1980s [Feynman 82, Wiesner 83,
Deutsch 85]. The basic unit of information in a quantum computer is called quantum bit or
qubit. It is a two-level quantum system with the states |0〉 and |1〉 which correspond to the
classical logical states. The difference between a classical bit and a qubit is that the qubit can
also exist in superposition states c0 |0〉+c1 |1〉 , |c0|2 + |c1|2 = 1. This extends the computational
possibilities, for example it allows an operation in a quantum computer to act on multiple input
states simultaneously.

Several algorithms for quantum computers have been presented which outperform their
fastest possible classical counterparts [Deutsch 92, Grover 96, Shor 97]. The most popular
example is Shor’s algorithm for prime factorization which has only polynomial complexity and
is exponentially faster than any classical algorithm. This algorithm has been implemented for
small numbers in different quantum computer systems [Vandersypen 01, Gilowski 08, Politi 09].

Another important application for quantum computers is the simulation of other quantum
mechanical systems, as originally proposed by Feynman and Deutsch [Feynman 82, Deutsch 85].
Because the quantum computer behaves quantum mechanically itself it can be used to imitate
another quantum mechanical system, while also allowing to engineer the interactions in that
system [Blatt 12, Georgescu 14]. For example interactions in one-dimensional quantum spin
chains have been simulated [Friedenauer 08, Kim 10, Lanyon 11, Salathé 15].

There are different physical realizations of quantum computers. Some of the two-level sys-
tems that have been used to implement qubits are nuclear or electron spin states in a magnetic
field (NMR) [Cory 97, Gershenfeld 97], electronic states of trapped atoms or ions [Cirac 95], po-
larization states of photons [Knill 01], electron spins in field induced quantum dots [Loss 98] or
nitrogen-vacancy centers in diamond [Neumann 10], and superconducting circuits [Zagoskin 07].
All of these have turned out to be challenging because the qubit must be shielded from its en-
vironment in order to have a sufficiently long coherence time. Yet coupling must be available
to be able to read out and control the qubit state precisely.
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In our setup a type of superconducting qubit called the transmon qubit [Koch 07] is used,
which will be explained in Section 2. Qubits based on superconducting circuits referred to as
circuit quantum electrodynamics (cQED) have several advantages over other implementations.
Most important is the fact that many of the physical properties of the system can be engineered,
unlike in other systems, where they are given by nature. Moreover, standard lithography
techniques can be used to fabricate the on-chip circuits, which is advantageous when it comes
to scalability. And with transition frequencies on the scale of a few gigahertz, i. e. microwave
frequencies, the necessary electronic equipment for the control and readout of the qubits is
already available.

The state of a transmon qubit is controlled by applying short resonant microwave pulses. To
achieve control with high precision these pulses have to be carefully tuned to the qubit. The
amplitude, frequency, and shape of a pulse determine its effect on the qubit state. Therefore
it is necessary to calibrate these parameters before experiments can be run on a qubit. The
calibration needs to be repeated regularly as the properties of the qubit vary slightly due to
coupling to the environment and drifts of the devices. For this, an automated calibration routine
was developed in our lab for single qubit gates [Menke 13, Landig 13] and for multi-qubit gates
[Heinsoo 13].

This thesis gives a short overview of the basic considerations involved in controlling and
measuring a single superconducting qubit state and how they are implemented in the Quantum
Device Lab. For future developers in our lab this thesis should serve as a documentation of the
framework and the experiments that are already implemented.
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2 Quantum Information Experiments with cQED

Building a quantum computer requires a scalable physical implementation of two-level systems
that can be used as qubits, coherent control and readout of these qubits and sufficiently long
coherence times for the last two [DiVincenzo 00]. In the case of cQED, the qubit is a super-
conducting circuit and is controlled with resonant microwave pulses and a DC line to control
the magnetic flux. In this Chapter, I describe how this is realized in the Quantum Device Lab
and summarize the theoretical background. I start with the qubit itself and then explain how
coupling to a cavity is used to drive qubit transitions and measure its state. Finally, I describe
the process of generating arbitrary microwave pulses to control the qubit state.

2.1 The Transmon Qubit

The qubit implementation chosen in our lab is a type of superconducting qubit called transmon
qubit [Koch 07]. It is a type of charge qubit [Büttiker 87] which is represented in the general
case by the circuit diagram shown in Fig. 1. The core part is a SQUID (Superconducting
QUantum Interference Device) loop, a superconducting loop interrupted by two Josephson
junctions [Josephson 62] with Josephson energies EJ,1 and EJ,2. If the two Josephson energies
are equal, the SQUID loop corresponds to a single Josephson junction with energy EJ(Φ) =
2EJ,1 |cos(πΦ/Φ0)| and capacitance CJ. The Josephson energy depends on the magnetic flux Φ
through the loop, which makes it tunable by applying a local magnetic field. Cooper pairs can
tunnel from the reservoir, which is connected to the ground, through the Josephson junctions to
the island. The island is capacitively coupled to a voltage source Vg through a gate capacitance
Cg. In a transmon qubit the SQUID loop is shunted by a large capacitance CS such that the
total Josephson energy EJ is much greater than the total charging energy EC = 1

2e
2/ (CJ + CS)

of the SQUID loop. This regime where EJ � EC is called the transmon regime and makes the
energy levels of the qubit independent of the charge on the island and thus much less sensitive
to charge noise [Koch 07].

The charge qubit is described by the Hamiltonian [Büttiker 87, Baur 12]

Ĥ = 4EC
(
N̂ − ng

)2
− EJ(Φ) cos δ̂ (1)

where N̂ is the number operator for the excess Cooper pairs on the island compared to the
neutral state, ng = −CgVg/2e is the gate charge on the capacitance Cg in units of 2e, and δ̂ is the
phase difference across the Josephson junction. The Schrödinger equation can be analytically
solved in the phase representation with eigenstates δ̂ |δ〉 = δ |δ〉 and N̂ = −i ∂

∂δ
[Cottet 02].
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Figure 1: Circuit diagram of a charge qubit. It consists of a SQUID loop with Josephson energies
EJ,1 and EJ,2 shunted by a capacitance CS and is capacitively coupled to a voltage source Vg through
a capacitance Cg. Figure adapted from [Baur 12].

The energy levels of a Cooper pair box in different regimes are shown in Fig. 2. The levels
flatten with increasing EJ/EC and are practically independent of the gate charge ng in the
transmon regime, as seen in Fig. 2 (c). A more thorough discussion of the different regimes and
the derivation and solution of the charge qubit Hamiltonian can be found in M. Baur’s PhD
thesis [Baur 12].

For quantum information experiments we usually restrict ourselves to the lowest two energy
levels. The eigenstates of these levels are denoted as |g〉 and |e〉 for ground and excited. The
eigenstate of the third energy level is called |f〉. In the subspace of the first two energy levels,
the single qubit Hamiltonian can be written as

Ĥge = 1
2~ωgeσ̂z, (2)

with the Pauli z-matrix σ̂z. This is an effective spin-1/2 Hamiltonian with the transition
frequency ωge = 1

~ (Ee − Eg), a two-level system that can be used as qubit. When the third
energy level is considered, the transition between |e〉 and |f〉 is treated analogously with a
transition frequency ωef = 1

~ (Ef − Ee). To be able to drive transitions between the first two
energy levels without affecting other transitions, the spectrum has to be anharmonic. In the
case of the transmon qubit, the energy difference between neighbouring energy levels decreases
in higher levels. Since only the first three energy levels are relevant, the anharmonicity is
defined as α = ωef − ωge, the difference between the first two transition frequencies.
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3 Quantum Circuits: On-Chip Quantum Processor
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Figure 3.6: Eigenenergies for the first three energy levels (k = 0, 1, 2) of the CPB
Hamiltonian (3.20) for di↵erent EJ/EC ratios. The energies are given in units of
the energy di↵erence E01 evaluated at the degeneracy point ng = 0.5. The energy
bands get less and less sensitive to gate charge, as the EJ/EC is increased from the
charge regime with a ratio of 0.5 (a) to the transmon regime with a ratio of 50 (c).

maximal spread in the transition energy between neighboring energy levels

✏k = Ek,k+1(ng = 0.5) � Ek,k+1(ng = 0), (3.39)

where Ei j = E j � Ei is the energy di↵erence between energy levels i and j. As is
shown in [Koch07a], this charge dispersion decreases exponentially fast as EJ/EC

is increased
✏k / e�i

p
8EJ/EC , (3.40)

and ✏0 becomes smaller than 1 kHz at a ratio bigger than 60, making the transmon
qubit almost immune to low frequency charge noise. To reach this ratio of energies,
it is su�cient to slightly increase EJ in comparison to the charge regime, and
to reduce the charging energy EC by adding a large shunting capacitance CS in
parallel to the Josephson junctions, see Figure 3.7d. Typical transmon qubits as
shown in Figure 3.7a-c, have energies in the range of EC/~ ⇡ 200 � 400 MHz and
EJ/~ ⇡ 10 � 30 GHz.

Unfortunately the reduction in the sensitivity to charge noise does come at the
price of typically a reduction in the anharmonicity ↵. Since for quantum computa-
tion tasks only the first three energy levels are considered, a natural definition for ↵

34

Figure 2: Energy levels of a Cooper pair box in different regimes. The energy levels flatten with
increasing EJ/EC and are practically independent of the gate charge ng in the transmon regime, shown
in (c). The energy unit E01 is the energy difference between the first two levels at ng = 0.5. Figure
from [Baur 12].

2.2 Qubit Control and State Readout

The transmon qubit described in the previous Section provides the two-level system which
is used to store quantum information. What is needed next is the possibility to manipulate
and read out the qubit state. To achieve this, the qubit is capacitively coupled to a coplanar
waveguide resonator with resonance frequency ωr, which is analogous to an optical cavity used
in quantum optics [Blais 04, Wallraff 04]. The interaction of a two-level system inside a cavity
is described by the Jaynes-Cummings Hamiltonian [Jaynes 63]

ĤJC = 1
2~ωgeσ̂z + ~ωrâ

†â+ ~g
(
|g〉〈e| â† + |e〉〈g| â

)
, (3)

where â† and â are the creation and annihilation operators for the cavity mode, respectively,
and g is the coupling strength between the cavity and the qubit. The first and second terms
of the Hamiltonian are the energies of the isolated qubit and photon the modes in the cavity.
The third term is the interaction term which allows photons to be absorbed or emitted by
the qubit, thereby raising or lowering the qubit state. Because of the small anharmonicity of
the transmon qubit, its higher energy states also have to be taken into account for an exact
treatment [Koch 07]. However, this does not change the results qualitatively.

The qubit is operated in the dispersive regime, where the detuning of the qubit and resonator
frequencies is large compared to the coupling, i. e. |ωge − ωr| � g. The Hamiltonian then takes
the form

Ĥdisp = 1
2~ω

′
geσ̂z + ~ (ωr + χσ̂z) â†â (4)
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with a qubit frequency ω′ge renormalized by the Lamb shift [Koch 07, Baur 12]. The dispersive
shift χ depends on the coupling strength and the detuning of the qubit from the resonator. The
interpretation of this Hamiltonian is that depending on the state of the qubit, the resonator
frequency is shifted by ±χ. This can be seen in the transmission spectrum of the resonator and
is used to measure the qubit state [Blais 04].

The qubit state readout is done by applying a weak microwave drive

Ĥd = ~εd
(
â†e−iωdt + âeiωdt

)
(5)

with amplitude εd and frequency ωd = ωr − χ to the resonator. The in-phase and quadrature
components I(t) = 〈â† + â〉 and Q(t) = 〈i(â† − â)〉 (see Section 2.3) of the transmitted signal
S(t) = I(t) + iQ(t) are measured [Lang 14]. The measured Q(t) transmission with the qubit in
the ground and excited state is shown in Fig. 3. The excited state response decays to the ground
state response as the qubit decays to its ground state during the measurement. The phase of
the signal is selected such that the I component vanishes and the Q component has all the
information about the qubit state, maximizing the signal-to-noise ratio for the Q component.
The |e〉 state population pe of an unknown output state |m〉 = (1− pe) |g〉+pe |e〉 is proportional
to the integrated difference

∫
Qe(t)−Qm(t)dt of the measured transmission for the qubit in the

|m〉 and |e〉 states [Bianchetti 09]. To get values between 0 and 1 for the population it is scaled
to the difference between the excited and ground state response and given by

pe =
∫
Qe(t)−Qm(t)dt∫
Qe(t)−Qg(t)dt

. (6)

This method can be generalized for measurements including the |f〉 state [Bianchetti 10] and
multiple qubits [Filipp 09]. In these cases the scaling must be chosen accordingly.

Coherent control of the qubit state is possible by applying a strong microwave drive resonant
to the qubit transition frequency. This can be done either through the resonator or through
an additional charge line capacitively coupled to the qubit. The microwave drive is described
by the Hamiltonian in Eq. (5) with amplitude εd and frequency ωd. In a frame rotating at the
drive frequency ωd this produces the Hamiltonian

Ĥ = ΩR

2 σ̂x, (7)

where ΩR = 2εdg/(ωr − ωd) is the Rabi frequency [Blais 07]. In the Bloch sphere picture this
Hamiltonian generates rotations around the x-axis. The angle by which the state is rotated
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Figure 3: One quadrature of the measured resonator transmission for the qubit in the ground and
excited state. The excited state response decays to the ground state response.

depends on the product of the Rabi frequency and the time during which the drive is applied
and can therefore be set by choosing the correct pulse duration and amplitude. The phase of
the microwave pulse determines the axis of the rotation. With these tools, arbitrary rotations
around any axis on the equatorial plane in the Bloch sphere can be performed. This is sufficient
to implement any single qubit gate. The rotations are usually chosen around the x- or y-axis
and are labeled by the rotation axis and angle, e. g. X(π) or Y(π2 ).

Another qubit parameter which can be controlled is its transition frequency. As described in
Section 2.1 it depends on the magnetic flux through the SQUID loop. It is tuned by applying
a direct current to a flux line running close to the SQUID loop, which creates a local magnetic
field. The magnetic field must be well localized in order to avoid influencing other qubits
on the same chip. Detuning the qubit with respect do the microwave drive can be used to
implement rotations around the z-axis for a single qubit, as the qubit is taken out of its rotating
reference frame while it is detuned. More commonly qubit frequency tuning is used for multi-
qubit operations, where coupling between two qubits is controlled by tuning them on- and
off-resonance [Majer 07].

2.3 Control Pulse Generation

To achieve the precise control over the phase and amplitude of the pulses needed for accurate
control of the qubit state the signal is modulated with an IQ-mixer. The IQ-mixer has three
input ports (LO, I, Q) and one output port. At the LO port a continuous wave with frequency
ωLO is applied, which is split into two components in the mixer. One component remains
in-phase with the input signal and is effectively multiplied by the voltage on the I port using
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a non-linear element. The other component is phase-shifted by −π/2 and multiplied by the
voltage on the Q port. The two components are then added together. For DC voltages on the
I and Q ports this results in an output signal [Baur 12]

sRF(t) = I cos(ωLOt) +Q sin(ωLOt) = A cos(ωLOt+ φ). (8)

The amplitude and phase of the output are given by A =
√
I2 +Q2 and φ = arctan(Q/I).

If time dependent voltages I(t) = I cos(ωIFt + φ) and Q(t) = Q cos(ωIF + φ + φQ) with an
intermediate frequency ωIF are applied instead, the output consists of two sideband signals
at frequencies ωLO ± ωIF. One of the sidebands can be eliminated by choosing I = Q and
φQ = ±π/2. The amplitude of the output signal is then controlled by the amplitude I = Q

and the phase can be adjusted with the phase φ of the input signal [Baur 12].
With IQ-modulation simultaneous control of the phase and amplitude of the signal is achieved

and it allows us to filter out DC noise from the arbitrary wavefrom generators (AWGs) with
single-sideband mixing. The upconversion is used to get from an intermediate frequency of
around 150 MHz, which is well inside the bandwidth of our AWGs, to the high qubit frequency
usually in the range of 4–10 GHz. Analogously the measured signal is downconverted to an
intermediate frequency due to the limited detection bandwidth.

With these tools pulses for arbitrary single qubit gates can be generated. The software
that generates the pulses for an experiment uses parameters from the calibration to write the
waveforms that the AWGs should output. In the next Chapters I will discuss some of these
calibration operations.
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3 Experiment Control Software

The experiment control software started as a small set of scripts for generating modulation
pulses and analyzing the measured signals, and has since grown into a large software suite.
In this Chapter, I outline the structure of the software components and data flow. I give a
motivation for an software design improvment, explain the new framework we implemented,
and show how to make use of it.

3.1 Overview

The software that controls experiments on the qubits consists of three components. QubitCalib
is the main component that a user interacts with. It has a visual interface which is used to start
measurements and show results from the analysis. CleanSweep is the interface to the hardware.
It sends the pulse sequences to the arbitrary waveform generators and collects the data from the
FPGA used for the measurement. The third component are scripts in the Wolfram Mathematica
language that generate the pulse patterns for the experiments and analyze the data.

Figure 4 shows the data flow in an experiment and how the three components work together.
When an experiment is started, QubitCalib writes a file QubitCalib.ini with the experiment
type and all relevant file paths, and calls the appropriate Mathematica script for the exper-
iment. The script loads the specified QubitCalib.ini and pattern config.cfg files. The
pattern config.cfg file, often referred to as pattern config, contains all physical parameters
needed for the pattern generation, like qubit frequencies and pulse amplitudes. With these
parameters the pulse sequences are generated and written to files accessible to the AWGs. The
parameters from the pattern config file and any additional, experiment-specific parameters that
were used are written to a file Pulses.txt for later analysis and backing up. When the Math-
ematica script finishes, QubitCalib tells CleanSweep to run the experiment with the generated
pulses. The data is saved and the Pulses.txt file is backed up as Pulses.dat. Once the mea-
surement is finished, QubitCalib runs the Mathematica script for the analysis. The analysis
script loads the pulses.dat file to get the physical parameters which were used in the pulse
generation and reads in the data.

Before QubitCalib was introduced each type of measurement had two dedicated scripts for
the pattern generation and analysis which were run by hand. When this task was automated
with QubitCalib, the same scripts were still used; two separate files for every experiment type.
However, a lot of code was identical in all files as it was doing non-specific tasks like loading
measurement parameters or reading data.

9



Figure 4: Data flow between the three components of the experiment control software. Green boxes
are LabView programs, red boxes are Mathematica scripts, blue boxes are files and white boxes are
hardware components. QubitCalib is the central unit which calls Mathematica scripts or CleanSweep
when necessary. Several files are used for communication between the components. Files marked with
an uppercase B are backed up. Figure from [Heinsoo 13].
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In an effort to improve the organization of the code which is constantly growing with the
addition of new experiments, we implemented a new framework for the Matematica component
of the software suite. The main objectives for the new framework were:

• Reusability: The code should be written in a general way, allowing other developers to
reuse functions and features which are not specific to the original application.

• Extendability: Adding new experiments and features should be simple and not require
extensive knowledge about the whole framework. This means that the framework must
be designed from the start in a way that allows extension.

• Uniformity: The measurements should follow similar steps and use similar naming con-
ventions for the parameters they use and output. This way it is easier to understand
already implemented experiments and there is a reference when implementing new ones.

These goals have many aspects in common, for example extendable code has to be reusable
for the most part aswell. Maintaining a good documentation and detailed comments inside the
code is also key to achieving these goals.

3.2 New Structure of the Pattern Generation and Analysis

The structure of the new implementation can be understood by following the steps which are
carried out when a measurement is started:

First the function GenerateQubitCalibPattern is called by QubitCalib or manually. It loads
the parameters for the pattern which needs to be generated. It passes these parameters to the
pattern generation function for the chosen measurement type and gets symbolic descriptions of
the pulse sequences used in the experiment. The descriptions are passed to the generic function
CalculateWaveforms which returns the numeric waveforms for the pulses. Finally, the binary
pattern files for the AWGs are generated from the waveforms and saved.

After the measurement, QubitCalib or a user performing a manual analysis calls the func-
tion AnalyzeQubitCalib. It loads the parameters used in the pattern generation and calls a
generic function which reads the raw data from files and returns the populations of the qubit
states. The populations are passed to the analysis function for the chosen measurement type.
The analysis function returns the new values for physical parameters which need to be up-
dated in the pattern config file, a graphical output consisting of plots of the measurement and
text with the new parameter values, and a text-based output with the measurement results.
AnalyzeQubitCalib writes the new parameters to the pattern config file, exports the graphical
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output and returns the measurement results to QubitCalib. The user can see the graphical
output on the QubitCalib frontend, perform more analyses with the returned results, and use
the updated values in the pattern config to generate pulse sequences for other experiments.

The controller functions GenerateQubitCalibPattern and AnalyzeQubitCalib are located
in the library QubitCalibSpecific.m. The pattern generation and analysis functions for sim-
ilar experiments are collected in libraries. Currently, all functions are collected in two libraries
SingleQubitCalibration.m and SingleQubitEFCalibration.m for measurements on the ge-
transition and the ef -transition respectively.

3.3 Adding New Experiment Types

Adding new experiments is greatly simplified in the new framework because only the parts
which are specific to the experiment need to be implemented. Everything else, like loading
parameters or updating the pattern config file, is handled by the two controller functions
GenerateQubitCalibPattern and AnalyzeQubitCalib. When implementing new operations
the user does not even need to know the details of the measurement non-specific tasks. The
required steps for adding a new operation are:

• Write a pattern generation function which takes the parameters from pattern config as
argument and returns a list of symbolic pulse sequence descriptions.

• Write an analysis function which takes the calculated populations, the parameters from
the pattern generation, and if necessary the AWG channels which were used as arguments.
The return value should be a list {newParams, graphicOutput, consoleOutput}.

– newParams is a list {{name, value, factor}, ...} of the parameters and values
which should be updated in the pattern config file. The string factor is used to
format the numbers in the pattern config file to be human readable. For exam-
ple {"t1", 0.000001, "10ˆ-6"} will be written to the pattern config file as t1 =
1*10ˆ-6.

– graphicOutput is a list of graphics objects and text which will be printed in the log
and shown on the QubitCalib frontend. Usually this consists of one or two plots and
a text grid with the measured parameters their and values.

– consoleOutput is a list {{label, value}, ...} of the measurement results which
are returned to QubitCalib. An example result is {"T1[us]", 1}.
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• Add calls to your new pattern generation and analysis functions in the controller functions
GenerateQubitCalibPattern and AnalyzeQubitCalib.

• Choose the method for calculating the populations in the analysis of your experiment. If
your experiment does not use the standard scaling of two populations to the ge-contrast
as explained in Section 2.2, add it to the switch where the populations are calculated in
AnalyzeQubitCalib.

Note that AnalyzeQubitCalib does not check the values before it writes them to the pattern
config file because sanity checks are measurement-specific. Therefore all error handling and
sanity checks for the new parameter values must be included in the analysis function.

3.4 Outlook

The new framework was only implemented for single qubit operations, so the next step is to
extend it to also support multi-qubit operations. Once all the code is organized in libraries,
QubitCalib can be also be updated: Currently, every time the pattern generation or analysis
is called a new Mathematica kernel is started for running a chosen Mathematica notebook.
A cleaner way to make use of the new libraries would be to have QubitCalib run a single
Mathematica kernel with the libraries loaded, and call the controller functions in the same
kernel when they are needed. This would also eliminate some of the text-based communication
between LabView and the Mathematica kernel because parameters could be stored as variables
in the kernel.
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4 Automatic Single Qubit Routines

QubitCalib has automatic routines to calibrate the gate parameters and characterize the qubit.
All physical parameters needed for the pulse generation and some characteristic values of the
qubit are stored in the pattern config file. The automatic routines perform measurements to
determine the correct parameter values and update them in the pattern config file.

This Chapter is dedicated to explaining the automatic single qubit routines that are now
implemented in the new framework. In Sections 4.1 and 4.2 I discuss the characteristics of
the control pulses and the routines which calibrate the parameters that describe them. I then
discuss the measurements used to characterize the qubit by its coherence time and gate fidelity
in Sections 4.3 and 4.4. In Section 4.5 I introduce measurements on the ef -transition and
explain the measurement of the thermal population in the |e〉 level as an example application.

4.1 Pulse Model

When applying pulses to the qubit we usually want to drive the ge-transition without affecting
other energy levels to avoid leakage of population into states outside the computational space.
To achieve this we use Gaussian-like DRAG pulses (Derivative Removal by Adiabatic Gate)
which are shaped in a way that frequency components near the ef -transition frequency ωef are
suppressed [Motzoi 09, Gambetta 11]. As shown in the comparison of the power spectra of a
Gaussian pulse and a DRAG pulse in Fig. 5, the spectrum of the DRAG pulse has a minimum
at ωef where the Gaussian pulse still has a significant contribution.

In our implementation with single-sideband mixing the two quadratures of a DRAG pulse
are given by

I(t) = A(t) cos(ωIFt+ φIQ), (9)
Q(t) = A(t) sin(ωIFt+ φIQ), (10)

with the amplitude A(t) =
√
εx(t)2 + εy(t)2 and the phase φIQ = arctan(εy(t)/εx(t)). The

function εx(t) is the initial ansatz for the pulse shape and is chosen to be a Gaussian which is
truncated at 3σ around the maximum and forced to start and end with zero amplitude. The
function εy(t) is given by

εy(t) = −qs

α

d

dt
εy(t) (11)

where α is the qubit anharmonicity [Baur 12, Gambetta 11]. The QScale factor qs is a parameter
which needs to be calibrated to optimize the pulse shape for minimal population leakage. In
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Figure 5: Power spectra of a Gaussian pulse and a DRAG pulse on the ge-transition. The DRAG
pulse is optimized to eliminate the frequency components at the ef -transition frequency ωge.

summary, a DRAG pulse has a fixed length and is characterized by the maximum amplitude,
the frequency ωIF, and the QScale factor qs.

4.2 Calibration Experiments

To make a pulse have the desired effect on the qubit state the three parameters that character-
ize it have to be carefully calibrated. The π-pulse amplitude is found with a Rabi oscillation
experiment and the qubit frequency with a Ramsey oscillation experiment. These two exper-
iments and the QScale calibration measurement are explained in this Section, as well as the
CalTom experiment used to verify the calibration. A full calibration cycle usually consists of
six experiments in the order Rabi–Ramsey–Rabi–QScale–Rabi–CalTom. This is because the
π-pulse amplitude changes when the frequency and QScale factor of the pulse are changed.

In a Rabi oscillation experiment a single pulse X(θ) is applied and the population is measured
as a function of the pulse amplitude. This simple pulse pattern is represented by the pulse
scheme in Fig. 6a. In the Bloch spehere picture, the pulse rotates the state vector around the
x-axis by an angle θ, which is determined by the pulse amplitude. The population oscillates
between 0 and 1 as a function of the pulse amplitude or rotation angle, as shown in Fig. 6b. At
the maximum of the sine the population has been inverted and therefore the amplitude at this
point is the correct amplitude for a π-pulse. The points corresponding to π- and π/2-pulses are
marked in Fig. 6b.

The precise resonance frequency of the qubit can be found with a Ramsey oscillation exper-
iment [Ramsey 50]. In this type of experiment two π/2-pulses are applied with a separation
τ between them. The population is measured directly after the second pulse as a function
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Figure 6: (a) Pulse scheme for a Rabi oscillation measurement. A single pulse rotates the state by
an angle θ. The rotation angle θ depends on the amplitude of the pulse. (b) Data and sinusoidal fit
curve of a Rabi oscillation measurement. The points corresponding to π/2- and π-pulses are marked.

of the separation τ . It oscillates with a frequency equal to the detuning of the drive from the
qubit frequency. Additionally, the population decays to 0.5 with a decay constant T ∗2 describing
the qubit dephasing [Clarke 08], as shown in Fig. 7b. A single experiment does not give any
information about the sign of the detuning. To get the correct sign the experiment is repeated
with a different driving frequency and therefore different detuning [Landig 13]. Both data sets
are combined in a vector and fitted simultaneously with a two-dimensional model

1
2
(
1 + A cos((ωge + d1) τ + φ1) e−τ/T ∗

2
)
· ~e1 + 1

2
(
1 +B cos((ωge + d2) τ + φ2) e−τ/T ∗

2
)
· ~e2. (12)

The fit parameters are ωge, A, B, φ1, φ2, and T ∗2 , while d1 and d2 are the chosen detunings.
The fit is done twice: once with same signs for the detunings d1 and d2 and once with opposite
signs. Only one of them yields a good fit for both data sets and from this fit the qubit frequency
is extracted. Additionally, the magnetic flux through the SQUID loop is calculated and the
dephasing T ∗2 is extracted from the exponential envelope. The dephasing will be explained in
more detail in Section 4.3.

The opimal value for the QScale factor qs is found by applying the three pulse sequences
X(π2 ) · X(π), X(π2 ) · Y(π), and X(π2 ) · −Y(π) and sweeping the qs value. In case of a good
calibration all three pulse sequences result in an |e〉 population pe = 0.5. The value of qs for
which this is the case is interpolated from the data as shown in Fig. 8.

The calibration is verified with a CalTom measurement. The measured population is com-
pared to the expected for 25 short pulse sequences. The used pulse sequences are given in Fig. 9,
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Figure 7: (a) Pulse scheme for a Ramsey oscillation measurement. Two π/2-pulses are applied with
a separation τ between them. The population is measured directly after the second pulse. (a) Data
and fit curve of a Ramsey oscillation measurement. The fit function is a sinusoidal oscillation with an
exponential envelope.
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Figure 8: Data and linear fits of a QScale calibration measurement. The rising line (orange points)
corresponds to the X(π2 ) ·Y(π) sequence, the horizontal line (blue points) to the X(π2 ) ·X(π) sequence,
and the falling line (green points) to the X(π2 ) ·−Y(π) sequence. The correct value for qs is found from
the intersection of the lines.
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Figure 9: Output plot from a CalTom measurement. Twenty-five different pulse sequences are
applied and the populations are measured (blue) and compared with the expected populations (red).
The points for the expected populations can hardly be seen because they are covered by the measured
populations, which means that the qubit is well calibrated.

along with the results of a good calibration. If the calibration was successful, the measured
populations do not deviate from the expected.

4.3 Coherence Time

The lifetime of a qubit state is characterized by two timescales T1 and T2 [Clarke 08]. The
longitudinal relaxation T1 describes the decay of the excited state to the ground state due to
energy loss. The transversal relaxation or dephasing T2 describes the loss of information about
the phase of the qubit state. In the Bloch sphere picture, where the computational |0〉 and
|1〉 lie on the z-axis, T1 describes the relaxation of the z-component of the state vector to its
equilibrium state, and T2 the relaxation of the x- and y-components to 0. The measurements
are usually averaged several thousand times to improve the signal-to-noise ratio and obtain a
quantum mechanical measurement of the expectation value. Small fluctuations in the qubit
frequency during the averaging due to coupling to the environment lead to additional dephasing.
This means that a phase decay time T ∗2 < T2 is observed [Clarke 08].

The energy decay T1 can be measured directly. For this a π-pulse is applied and the popula-
tion is measured as a function of the separation τ between the π-pulse and the measurement.
The lifetime T1 is extracted from an exponential fit to the |e〉 population, as shown in Fig. 10.

When measuring the dephasing one must distinguish between the averaged dephasing T ∗2 and
the real dephasing T2, as explained above. The averaged dephasing is measured in a Ramsey
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Figure 10: (a) Pulse scheme for an energy decay (T1) measurement. The population is measured
after a π-pulse and a decay time τ . (b) Data and fit of an energy decay measurement. From the
exponential fit the mean lifetime T1 is calculated.

oscillation experiment. Between the two π/2-pulses the state vector lies on the xy-plane and
decays on the timescale T ∗2 because the repetitions of the experiment average over low-frequency
noise. The decay constant of the exponential envelope of the oscillation is therefore 1/T ∗2 and
can be extracted from the fit. To get a better estimate for the dephasing T2 of a single state
the effect of the low-frequency fluctuations in the qubit frequency must be eliminated. This is
done with a spin-echo, a technique derived from NMR-spectroscopy [Hahn 50]. The spin-echo
pulse sequence is essentially the same as for a Ramsey oscillation measurement, but with an
additional Y(π)-pulse in the middle, as shown in Fig. 11. The population is measured as a
function of τ and decays exponentially with the lifetime T2.

A simple explanation for the noise cancelling effect of the spin-echo can be given in the Bloch
sphere picture, as shown in Fig. 12: The first X(π2 )-pulse rotates the state vector onto the y-axis.
During the first τ/2 period, the state vector precesses around the z-axis with a frequency equal
to the unknown detuning of the drive from the qubit. The following Y(π)-pulse mirrors the
state vector on the xz-plane, so that after precessing during the second τ/2 period, the state
vector ends up on the y-axis again, independent of the detuning. The final X(π2 )-pulse then
rotates the state onto the z-axis. During the time τ , the state vector lies on the xy-plane and
a decay with T2 is observed. It is measured as a decay of the final population pe from 1 to 0.5.

Evidently, the above explanation only holds if the detuning is constant over the time of one
pulse sequence. This means that only low-frequency noise can be cancelled with a spin-echo,
i. e. fluctuations on a timescale larger than the duration of the individual measurements. The
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Figure 11: Pulse scheme for a dephasing (T2) measurement. Three pulses X(π2 ) · Y(π) · X(π2 ) are
applied, separated by a decay time τ/2. The population is measured directly after the third pulse as
a function of τ .

X(π2 ) τ/2 Y(π) τ/2 X(π2 )

Figure 12: Bloch sphere representation of the qubit state during a spin-echo pulse sequence. The
state vector is rotated onto the y-axis by the X(π2 )-pulse and precesses around the z-axis during the
first τ/2 period. Then it is mirrored on the xz-plane by the Y(π)-pulse and precesses back to the
y-axis during the second τ/2 period. The final X(π2 )-pulse rotates the state vector onto the z-axis.

fact that the spin-echo experiment is still sensitive to noise on the same timescale as its duration
can be used to probe the noise spectrum [Bylander 11].

4.4 Randomized Benchmarking

Due to the limited coherence time of the qubit and imperfections in the pulses, errors accumulate
during longer pulse sequences. For scalable quantum computers, the error per gate must be
below 10−2, preferrably even as low as 10−4 [Knill 05, Knill 08]. A good way to find the average
error per gate for a qubit is randomized benchmarking [Knill 08]. It enables us to measure the
average gate error independent of context, e. g. the position of the gate in a sequence, aswell as
state preparation and measurement (SPAM) errors.

The idea is to apply pulse sequences of different lengths, compare the final state to the ex-
pected outcome, and measure the total fidelity of the output state as a function of the sequence
length. The sequences must be randomized to ensure that the result is not dominated by
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any particular gate or subsequence. The method was implemented by Lars Steffen [Steffen 13]
follwing the description from the original publication [Knill 08].

• Generate a sequence of randomly chosen π/2-pulses around the x- and y-axes. The length
of this sequence is lmax.

• Create NL subsequences with lengths l1 < · · · < lNL = lmax by truncating the original
sequence at each of the lengths li.

• Add a final gate to every subsequence such that the final state lies on the z-axis of the
Bloch sphere. This ensures that the expected outcome is either |g〉 or |e〉.

• From every subsequence create NP different randomized sequences by doing NP Pauli
randomizations. A Pauli randomization is done by adding π-pulses around randomly
chosen axes between the π/2-pulses in that subsequence as well as to the start and end
of it.

• Apply every randomized sequence to the qubit, measure the outcome, and compare it to
the expected outcome. The difference between the expected and measured outcome is
the total fidelity of the randomized sequence, i. e. the probability of getting the expected
result.

The above steps are repeated NG times with different sequences, giving a total of NGNLNP

randomized sequences that are applied to the qubit.
The total fidelity F decays exponentially to 0.5 as a function of the sequence length l

F (l) = 1
2
(
1 + f 2l

)
, (13)

where f is the average fidelity of a single rotation. The factor 2 in the exponent arises because
the Pauli randomization doubles the length of a sequence. By fitting a model 1/2 (1 + e−kl) to
the data the average error per gate

ε = 1− f = 1− e− k/2 (14)

can be found.
In our setup we measured average errors per gate of about log10 ε = −2.25, as shown for

example in Fig. 13. This is near the upper limit for the usage in scalable systems according
to [Knill 05]. Note that in Fig. 13 the spread of the data points gets very wide for the long
sequences. This means that the error is substantially larger in the worst case.
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Figure 13: Randomized benchmarking experiment. The total fidelity decays exponentially to 0.5 as
a function of the sequence length. The average error per gate is calculated from the decay constant.

During the analysis of data from randomized benchmarking experiments we found that some-
times the output |e〉 population did not decay to 0.5 as expected. Instead it decayed to a higher
value of about 0.7. From the fact that flipping the output state with an additional X(π) pulse
did not change the outcome we concluded that there was a problem with the measurement or
analysis. The initial analysis was only considering the |g〉 and |e〉 levels since no other tran-
sitions are expected in this experiment. To check for leakage into the |f〉 level we performed
an analysis where we calculated |g〉, |e〉, and |f〉 populations. The result for a successful ran-
domized benchmarking experiment is shown on the left in Fig. 14, where the |f〉 population is
always zero and the |g〉 and |e〉 populations decay symmetrically to 0.5 as expected. In a failed
experiment however, some population leaked into the |f〉 level, as shown on the right in Fig. 14.
The |e〉 population thus did not decay to 0.5. Additionally, an analysis that does not take into
account the |f〉 level will not give the correct populations in this case.

Similar problems with population leakage were not obsereved in other experiments. The
reason is that the ef -transition is very weakly driven. The leak only became noticeable in
randomized benchmarking experiments where long pulse sequences are used that amplify the
small amplitude of the ef -drive.

The leakage of population into the |f〉 level arises because the spectral bandwidth of the
pulses is greater than the anharmonicity of the qubit. In principle the shape of the DRAG
pulses should minimize the driving of the ef -transition, however it may not always be possible
to suppress it completely. In future it is worth considering using longer pulses to address this
problem, with the drawback that decoherence effects become stronger. One should also keep
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Figure 14: Comparison of the |g〉, |e〉, and |f〉 populations in two randomized benchmarking exper-
iments. Left: The |f〉 state is never populated and the |g〉 and |e〉 populations behave as expected.
Right: Some population leaks from the |e〉 into the |f〉 level.

in mind that the population could leak through other channels. In our setup for example the
qubit is coupled to two other qubits via resonators.

With the standard randomized benchmarking experiment an estimate of the error averaged
over all used gates is obtained. In many cases it is interesting to measure the error of a
specific gate. This can be done with a variation of the algorithm called interleaved randomized
benchmarking [Magesan 12]. Randomized benchmarking is also extendable to multi-qubit gates
[Knill 08, Magesan 11]. An alternative implementation does not use Pauli randomization but
chooses pulses randomly from the whole Clifford group [Magesan 11].

For further research it would be interesting to look for the major error sources. A first
simple test would be to check if the qubit coherence time or actual pulse errors dominate the
total fidelity. Interleaved randomized benchmarking could be used to find gates with high error
probability and those errors could be addressed by replacing single pulses with composite pulses
[Cummins 03, Vandersypen 04, Ichikawa 11, Ichikawa 14], as it is normal practice in NMR
spectroscopy [Levitt 86]. Qubit coherence times can also be increased with pulse techniques
derived from NMR [Collin 04], such as the spin-echo described in Section 4.3 [Hahn 50].

4.5 ef -transition Experiments

An ideal qubit only has two states |0〉 and |1〉. The presence of other states in our physical
realization can lead to problems, as seen in Section 4.4. However, there are also applications
that make use of the additional energy levels. A simple application that uses the |f〉 level is the
measurement of the thermal |e〉 population, which is discussed in detail below. Another example
is to use the |f〉-state to simplify the implementation of a Toffoli gate [Ralph 07, Fedorov 12].

24



To be able to make use of the |f〉 state, pulses that drive the ef -transition must be calibrated.
The experiments used for the ef -calibration are essentially the same as for the ge-calibration.
However, before every experiment an input state with an initial |e〉 population must be prepared.
This is done by applying an X(π) pulse on the ge-transition. The measurement also has to be
adjusted, since the decay from |f〉 to |g〉 is measured. Before the measurement, an additional
X(π) pulse is applied on the ge-transition to put the |e〉 population to the |g〉 state. The whole
population is thus distributed between the |g〉 and |f〉 states and the |f〉 population can be
calculated from the resonator transmission difference as usual (see Section 2.3).

The measurement of the energy decay T ef1 requires an additional adjustment. The reason is
that the |f〉 level has two decay channels: it can decay to the ground state |g〉 either directly or
over the |e〉 state. The relaxation of the three level system is described by the set of differential
equations

d

dt
f(t) = − (λfe + λfg) f(t), (15)

d

dt
e(t) = λfef(t)− λege(t), (16)

d

dt
g(t) = λfgf(t) + λege(t). (17)

The functions f , e, and g describe the populations of the three levels. The initial conditions in
a T ef1 experiment are f(0) = 1, e(0) = g(0) = 0. The solution of this system is given by

f(t) = e−(λfe+λfg)t, (18)

e(t) = λfe
λfe + λfg − λeg

(
e−λegt − e−(λfe+λfg)t

)
, (19)

g(t) = 1− λfe
λfe + λfg − λeg

e−λegt − λfg − λeg
λfe + λfg − λeg

e−(λfe+λfg). (20)

To analyze the T ef1 experiment the populations of all three energy levels are calculated. The |e〉
and |f〉 populations are combined in a vector and fitted simultaneously with a two-dimensional
model

Ae−Λf τ~ef +
(
Be−λegτ − Ce−Λf τ

)
~ee. (21)

In this model the total decay rate Λf = λfe + λfg is used as a fit parameter because the two
rates λfe and λfg are strongly correlated and hard to fit. The third decay rate λeg = 1/T ge1 is
fixed at the value known from the ef -calibration. The model describes the data fairly well, as
shown in Fig. 15.
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Figure 15: Data and fit for a T ef1 measurement. The total decay constant Λf = λfe + λfg of the |f〉
state is fitted and the λeg = 1/T ge1 is fixed at the value known from the ge-calibration.

The calibration experiments for the ef -transition are available in QubitCalib as automatic
routines. Additionally, we added an automatic measurment of the thermal |e〉 population. This
measurement is useful because it gives information about the effective temperature that the
qubit sees. The effective temperature is raised by electrical noise which passes through the
filters in the cabling and is therefore higher than the base temeperature of 20 mK provided by
the cryostat.

The thermal population is measured by driving two Rabi oscillations on the ef -transition
as shown in Fig. 16 [Geerlings 13]. Since the experiments start from the thermal equilibrium,
we can assume that the initial states are fully classical. In this case the amplitude of a Rabi
oscillation is proportional to the difference of the inital populations in the levels between which
the oscillation is driven. In the first of the two experiments, the |g〉 and |e〉 state populations are
swapped with a π-pulse on the ge-transition before applying the Rabi pulses. The amplitude
of the first Rabi oscillation is therefore A1 = F − G = F − (1− E − F ), where G, E, and
F are the equilibrium populations of the |g〉, |e〉, and |f〉 states, respectively. In the second
experiment there is no initial πge-pulse and the Rabi oscillation is measured directly on the
thermal equilibrium state, such that the amplitude is given by A2 = F − E. The equilibrium
populations are given by the Boltzmann distribution

E = e
− ~ωge

kBTeff , (22)

F = e
−

~(ωge+ωef)
kBTeff , (23)
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Figure 16: Pulse schemes, data and fits for a thermal population measurement. On the top is the
Rabi experiment with an initial ge-pulse, on the bottom the one without the initial ge-pulse. Note
that the units on the y-axes are scaled to the ge-transition in both plots. The thermal population is
calculated from the ratio of the oscillation amplitudes.

where ωge and ωef are the transition frequencies of the qubit. The effective temperature Teff of
the qubit can be found by solving

A2

A1
= E − F
G− F

= E − F
1− E − 2F (24)

numerically for Teff .
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5 Summary

The software suite that was originally developed in the Quantum Device Lab to automatically
run qubit calibration routines is now also used to run other types of experiments. This was
a motivation to rethink the design of the software in order to make it easily extendable. In a
first step we implemented a new framework for the Wolfram Mathematica component of the
software by moving from individual scripts for every experiment type to functions which are
organized in libraries. We implemented the standard calibration routines in the new framework
as well as a few new experiments to characterize the qubit. We discussed the characterization
by the coherence time and with randomized benchmarking and also the use of the |f〉 level.
Along the road we found that there is a problem with population leaking into the |f〉 level in
long pulse sequences. We considered using longer pulses with a smaller spectral bandwidth to
address this problem.

29





Acknowledgements

I would like to thank Andreas Wallraff and the members of the QuDev Lab for the possibility
to write my Bachelor thesis in their group and giving me an insight in the interesting field of
quantum computing. My special thanks go to my supervisor Johannes Heinsoo who helped
and motivated me during the time we worked together, and with whom I had some interesting
discussions. Even though I do not know them personally I would also like to thank Matthias
Baur, Andreas Landig, Tim Menke, and Lars Steffen who’s work mine is based on [Baur 12,
Menke 13, Landig 13, Steffen 13].

31





References

[Baur 12] Matthias Baur. Realizing quantum gates and algorithms with three supercon-
ducting qubits. PhD thesis, ETH Zurich, 03 2012. 3, 4, 5, 6, 8, 15, 31

[Bianchetti 09] R. Bianchetti, S. Filipp, M. Baur, J. M. Fink, M. Göppl, P. J. Leek, L. Stef-
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[Büttiker 87] M. Büttiker. Zero-current persistent potential drop across small-capacitance
Josephson junctions. Phys. Rev. B, vol. 36, no. 7, pages 3548–3555, Sep
1987. 3

[Bylander 11] J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch,
D. G. Cory, Y. Nakamura, J.-S. Tsai & Oliver W. D. Noise spectroscopy
through dynamical decoupling with a superconducting flux qubit. Nat. Phys.,
vol. 7, pages 565–570, 2011. 21

[Cirac 95] J. I. Cirac & P. Zoller. Quantum Computations with Cold Trapped Ions.
Phys. Rev. Lett., vol. 74, pages 4091–4094, May 1995. 1

33



[Clarke 08] John Clarke & Frank K. Wilhelm. Superconducting quantum bits. Nature,
vol. 453, no. 7198, pages 1031–1042, June 2008. 17, 19

[Collin 04] E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion & D. Esteve. NMR-like
control of a quantum bit superconducting circuit. Phys. Rev. Lett., vol. 93,
no. 15, pages 157005–4, October 2004. 24

[Cory 97] David G. Cory, Amr F. Fahmy & Timothy F. Havel. Ensemble quantum
computing by NMR spectroscopy. Proceedings of the National Academy of
Sciences, vol. 94, no. 5, pages 1634–1639, March 1997. 1

[Cottet 02] A. Cottet. Implementation of a quantum bit in a superconducting circuit.
PhD thesis, Université Paris 6, 2002. 3
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A Input and Output of Automatic Routines

This appendix serves as a documentation for developers in the QuDev Lab. It contains a table
with the parameters from the pattern config file needed for the pattern generation and updated
during the analysis of every implemented single qubit routine. Additionally, it contains example
output plots for selected routines.

A.1 Input and Output Parameters

Type Input parameters Updated parameters

Rabi rabi min amplitude pi amp
rabi max amplitude pihalf amp
rabi points

Ramsey ramsey detuning1 if freq
ramsey detuning2 qubitFrequency[qubitNumber]
ramsey min separation t2
ramsey max separation fluxOffsetsParking
ramsey points

QScale qscale min qscale
qscale max
qscale points

T1 t1 min separation t1
t1 max separation
t1 points

T2 t2 min separation real t2
t2 max separation
t2 points

CalTom
RBPauli RBPauli NG

RBPauli NP
RBPauli lengths

RabiEF rabi ef min amplitude pi amp ef
rabi ef max amplitude pihalf amp ef
rabi ef points

RamseyEF ramsey ef detuning1 if freq ef
ramsey ef detuning2 qubit anharmonicity
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Type Input parameters Updated parameters

ramsey ef min separation t2 ef
ramsey ef max separation
ramsey ef points

QScaleEF qscale ef min qscale ef
qscale ef max
qscale ef points

T1EF t1 ef min separation t1 ef
t1 ef max separation
t1 ef points

T2EF t2 ef min separation real t2 ef
t2 ef max separation
t2 ef points

CalTomEF
ThermalPop rabi ef min amplitude

rabi ef max amplitude
rabi ef points
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A.2 Example Graphical Output of QubitCalib

Wed 29 Apr 2015 14:59:25
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Rabi Oscillation, Q data

π amplitude = 0.89193 Δ(π amplitude) = 0.0129889
π /2 amplitude = 0.443389 Δ(π /2 amplitude) = 0.00517264
R2 = 0.999843

43



Fri 5 Jun 2015 13:18:46
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Ramsey Oscillation, detuning 1 = 4 MHz, Q data
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Ramsey Oscillation, detuning 2 = 0 MHz, Q data

IF [MHz] = 96.725 ± 0.00203672 ΔIF [MHz] = 0.175
T2* [μs] = 1.75756 ± 0.0416296 ΔT2* [μs] = 0.281885
Q1 frequency [GHz] = 5.44928
Flux [Φ0] = 0.0792862 ΔFlux [Φ0] = 0.0000764394
R2 = 0.999548
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Wed 29 Apr 2015 15:02:49
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CalTom measurement, Q data
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Deviation of measured population from expected

Maximal e population: 0.999058 with pulse: 1 πx

πx pulse population: 0.999058
πy pulse population: 0.996119
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Randomized Benchmarking (Pauli), log

ε = 0.00567222 ± 0.00175868
log10ε = -2.24625 ± 0.134654
Fidelity: 99.4328%
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T1 EF [μs] = 3.20236 ± 0.114981
ΔT1 EF [μs] = 0.403051
T1 GE [μs] = 4.78947
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Without initial ge pulse

Teff = 64.7203 mK
pe = 0.0265609
pf = 0.000888119
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